The study of the thermal imaging law on several objects in winter environment
NASA Astrophysics Data System (ADS)
Wang, Xuan-yu; Pang, Min-hui
2013-09-01
Some thermal imaging experiments have been done about a building with a door made of iron, copperplate and aluminum flake, several trees, marbles, a glass window and a concrete wall under different conditions in a winter day while the environmental temperature and relative humidity are simultaneously measured by an electronic sensor. The experimental results show that the thermal imaging temperatures of the targets are related to the category of materials, and presenting some laws with the environment temperature changing. All of the thermal imaging temperature of the targets obviously varies with the atmospheric environment temperature by the large temperature difference. The changes of the surface temperature of metals are more obviously than nonmetals. The thermal imaging temperature of the door made of iron is more easily affected by the atmospheric environment temperature than copperplate while aluminum flake is more difficultly affected than copperplate under the same condition. The temperature of an ordinary concrete wall is obviously higher than the one painted by oil paint. Under the same condition, the changes of glasses are the most in all of the nonmetal targets.
A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles
NASA Technical Reports Server (NTRS)
Cognata, Thomas J.; Hartl, Darren J.; Sheth, Rubik; Dinsmore, Craig
2014-01-01
Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system may be required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a relatively high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but crew safety and environment compatibility have constrained these solutions to massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design that employs the behavior of shape memory alloys (SMAs) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, or power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Coupled thermal-stress analyses predict that the desired morphing behavior of the concept is attainable. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept has been demonstrated in proof-of-concept benchtop tests.
Multispectral optical telescope alignment testing for a cryogenic space environment
NASA Astrophysics Data System (ADS)
Newswander, Trent; Hooser, Preston; Champagne, James
2016-09-01
Multispectral space telescopes with visible to long wave infrared spectral bands provide difficult alignment challenges. The visible channels require precision in alignment and stability to provide good image quality in short wavelengths. This is most often accomplished by choosing materials with near zero thermal expansion glass or ceramic mirrors metered with carbon fiber reinforced polymer (CFRP) that are designed to have a matching thermal expansion. The IR channels are less sensitive to alignment but they often require cryogenic cooling for improved sensitivity with the reduced radiometric background. Finding efficient solutions to this difficult problem of maintaining good visible image quality at cryogenic temperatures has been explored with the building and testing of a telescope simulator. The telescope simulator is an onaxis ZERODUR® mirror, CFRP metered set of optics. Testing has been completed to accurately measure telescope optical element alignment and mirror figure changes in a cryogenic space simulated environment. Measured alignment error and mirror figure error test results are reported with a discussion of their impact on system optical performance.
A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles
NASA Technical Reports Server (NTRS)
Cognata, Thomas J.; Hardtl, Darren; Sheth, Rubik; Dinsmore, Craig
2015-01-01
Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system is in other words required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a quite high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but for crew safety and environment compatibility these are massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design which employs the behavior of shape memory alloys (SMA) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, nor power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Stress and deformation analyses predict the desired morphing behavior of the concept. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept is demonstrated in proof-of-concept benchtop tests.
Origin of cometary and chondritic refractory organics: Ion irradiation experiments
NASA Astrophysics Data System (ADS)
Quirico, E.; Faure, M.; Faure, A.; Baklouti, D.; Boduch, P.; Rothard, H.; Ballanzat, E.; Dartois, E.; Brunetto, R.; Bonal, L.; Beck, P.; Schmitt, B.; Duprat, J.; Engrand, C.
2017-09-01
The formation process of Refractory Organic matter present in chondrites and Interplanetary Dust Particles (IDPs) of cometary and asteroidal origin is a debated issue. Earlier studies have advocated a formation step in a hot environment, however the potential role of ion irradiation has been so far poorly constrained. We present here experimental simulations that address this issue, comprising thermal degradation and ion irradiation experiments conducted at GANIL (Caen France) and CSNSM (Orsay France). We show that unlike thermal reactions, ion irradiation might lead to ROM-like material under very stringent conditions on both the nuclear dose and the nature of precursor. These very narrow conditions suggest that forming ROM without any action of thermal reactions is extremely difficult in astrophysical environments, either ISM or the proto-solar disk.
Six-Tube Freezable Radiator Testing and Model Correlation
NASA Technical Reports Server (NTRS)
Lillibridge, Sean; Navarro, Moses
2011-01-01
Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the spacecraft s surroundings and because of different thermal loads rejected during different mission phases. However, freezing and thawing (recovering) a freezable radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. These predictions are a critical step in gaining the capability to quickly design and produce optimized freezable radiators for a range of mission requirements. This paper builds upon previous efforts made to correlate a Thermal Desktop(TradeMark) model with empirical testing data from two test articles, with additional model modifications and empirical data from a sub-component radiator for a full scale design. Two working fluids were tested, namely MultiTherm WB-58 and a 50-50 mixture of DI water and Amsoil ANT.
Six-Tube Freezable Radiator Testing and Model Correlation
NASA Technical Reports Server (NTRS)
Lilibridge, Sean T.; Navarro, Moses
2012-01-01
Freezable Radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the spacecraft?s surroundings and because of different thermal loads rejected during different mission phases. However, freezing and thawing (recov ering) a freezable radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. These predictions are a critical step in gaining the capability to quickly design and produce optimized freezable radiators for a range of mission requirements. This paper builds upon previous efforts made to correlate a Thermal Desktop(TM) model with empirical testing data from two test articles, with additional model modifications and empirical data from a sub-component radiator for a full scale design. Two working fluids were tested: MultiTherm WB-58 and a 50-50 mixture of DI water and Amsoil ANT.
Thermal Deformation of Very Slender Triangular Rollable and Collapsible Booms
NASA Technical Reports Server (NTRS)
Stohlman, Olive R.; Loper, Erik R.
2016-01-01
Metallic triangular rollable and collapsible (TRAC) booms have deployed two Cubesat-based solar sails in low Earth orbit, making TRAC booms the most popular solar sail deployment method in practice. This paper presents some concerns and solutions surrounding the behavior of these booms in the space thermal environment. A 3.5-cm-tall, 4-meter-long TRAC boom of Elgiloy cobalt alloy, when exposed to direct sunlight in a 1 AU deep space environment, has a predicted tip motion of as much as 0.5 meters. Such large thermal deflections could generate unacceptable distortions in the shape of a supported solar sail, making attitude control of the solar sail spacecraft difficult or impossible. As a possible means of mitigating this issue, the thermal distortion behaviors of three alternative material TRAC booms are investigated and compared with the uncoated Elgiloy baseline boom. A tenfold decrease in induced curvature is shown to be possible relative to the baseline boom. Potential thermal distortions of the LightSail-A solar sail TRAC booms are also examined and compared, although inconclusively, with available on-orbit camera imagery.
Freezable Radiator Coupon Testing and Full Scale Radiator Design
NASA Technical Reports Server (NTRS)
Lillibridge, Sean T.; Guinn, John; Cognata, Thomas; Navarro, Moses
2009-01-01
Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the space craft s surroundings and because of different thermal loads during different mission phases. However, freezing and thawing (recovering) a radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. This paper summarizes tests on three test articles that were performed to further empirically quantify the behavior of a simple freezable radiator, and the culmination of those tests into a full scale design. Each test article explored the bounds of freezing and recovery behavior, as well as providing thermo-physical data of the working fluid, a 50-50 mixture of DowFrost HD and water. These results were then used as a tool for developing correlated thermal model in Thermal Desktop which could be used for modeling the behavior of a full scale thermal control system for a lunar mission. The final design of a thermal control system for a lunar mission is also documented in this paper.
A hybrid electronically scanned pressure module for cryogenic environments
NASA Technical Reports Server (NTRS)
Chapman, J. J.; Hopson, P., Jr.; Kruse, N.
1995-01-01
Pressure is one of the most important parameters measured when testing models in wind tunnels. For models tested in the cryogenic environment of the National Transonic Facility at NASA Langley Research Center, the technique of utilizing commercially available multichannel pressure modules inside the models is difficult due to the small internal volume of the models and the requirement of keeping the pressure transducer modules within an acceptable temperature range well above the -173 degrees C tunnel temperature. A prototype multichannel pressure transducer module has been designed and fabricated with stable, repeatable sensors and materials optimized for reliable performance in the cryogenic environment. The module has 16 single crystal silicon piezoresistive pressure sensors electrostatically bonded to a metalized Pyrex substrate for sensing the wind tunnel model pressures. An integral temperature sensor mounted on each silicon micromachined pressure sensor senses real-time temperature fluctuations to within 0.1 degrees C to correct for thermally induced non-random sensor drift. The data presented here are from a prototype sensor module tested in the 0.3 M cryogenic tunnel and thermal equilibrium conditions in an environmental chamber which approximates the thermal environment (-173 degrees C to +60 degrees C) of the National Transonic Facility.
NASA Astrophysics Data System (ADS)
E Fesmire, J.; Ancipink, J. B.; Swanger, A. M.; White, S.; Yarbrough, D.
2017-12-01
Thermal conductivity of low-density materials in thermal insulation systems varies dramatically with the environment: cold vacuum pressure, residual gas composition, and boundary temperatures. Using a reference material of aerogel composite blanket (reinforcement fibers surrounded by silica aerogel), an experimental basis for the physical heat transmission model of aerogel composites and other low-density, porous materials is suggested. Cryogenic-vacuum testing between the boundary temperatures of 78 K and 293 K is performed using a one meter cylindrical, absolute heat flow calorimeter with an aerogel blanket specimen exposed to different gas environments of nitrogen, helium, argon, or CO2. Cold vacuum pressures include the full range from 1×10-5 torr to 760 torr. The soft vacuum region, from about 0.1 torr to 10 torr, is complex and difficult to model because all modes of heat transfer - solid conduction, radiation, gas conduction, and convection - are significant contributors to the total heat flow. Therefore, the soft vacuum tests are emphasized for both heat transfer analysis and practical thermal data. Results for the aerogel composite blanket are analyzed and compared to data for its component materials. With the new thermal conductivity data, future applications of aerogel-based insulation systems are also surveyed. These include Mars exploration and surface systems in the 5 torr CO2 environment, field joints for vacuum-jacketed cryogenic piping systems, common bulkhead panels for cryogenic tanks on space launch vehicles, and liquid hydrogen cryofuel systems with helium purged conduits or enclosures.
1992-12-01
Limmer , 1983; Vallerand et al., 1992a, 1992b). -22- Without the information provided by the heat balance, it is very difficult to try to explain the...nonuniform thermal environments between 18 and 30 0C. Aviat Space Environ Med 60: 558- 565, 1989. Livingstone SD, Grayson J, Frim J, Allen CL & Limmer RE...caffeine mixture in humans. J App! Physic! 67(1): 438-444, 1989a. 0 Vallerand AL, Limmer R and Schmegner IF. Computer acquisition and analysis of skin
Rintamäki, Hannu; Rissanen, Sirkka
2006-07-01
In spite of increased environmental cold stress, heat strain is possible also in a cold environment. The body heat balance depends on three factors: environmental thermal conditions, metabolic heat production and thermal insulation of clothing and other protective garments. As physical exercise may increase metabolic heat production from rest values by ten times or even more, the required thermal insulation of clothing may vary accordingly. However, in most outdoor work, and often in indoor cold work, too, the thermal insulation of clothing is impractical, difficult or impossible to adjust according to the changes in physical activity. This is especially true with whole body covering garments like chemical protective clothing. As a result of this imbalance, heat strain may develop. In cold all the signs of heat strain (core temperature above 38 degrees C, warm or hot thermal sensations, increased cutaneous circulation and sweating) may not be present at the same time. Heat strain in cold may be whole body heat strain or related only to torso or core temperature. Together with heat strain in torso or body core, there can be at the same time even cold strain in peripheral parts and/or superficial layers of the body. In cold environment both the preservation of insulation and facilitation of heat loss are important. Development of clothing design is still needed to allow easy adjustments of thermal insulation.
Psychological Aspects of Military Performance in Hot Environments
2001-01-01
F, 60% rh, re- gardless of clothing or drug condition . Fine and 95 Kobrick28 found that 6 hours of ambient heat (91OF, 61% rh) exposure led to...relationships between climatic conditions and psychological performance has been difficult. Thermal stress researchers have attempted to identify...psychological breaking points in performance, but the environmental conditions employed to simulate the natural world (combinations of temperature, humidity, wind
Recent Loads Calibration Experience With a Delta Wing Airplane
NASA Technical Reports Server (NTRS)
Jenkins, Jerald M.; Kuhl, Albert E.
1977-01-01
Aircraft which are designed for supersonic and hypersonic flight are evolving with delta wing configurations. An integral part of the evolution of all new aircraft is the flight test phase. Included in the flight test phase is an effort to identify and evaluate the loads environment of the aircraft. The most effective way of examining the loads environment is to utilize calibrated strain gages to provide load magnitudes. Using strain gage data to accomplish this has turned out to be anything but a straightforward task. The delta wing configuration has turned out to be a very difficult type of wing structure to calibrate. Elevated structural temperatures result in thermal effects which contaminate strain gage data being used to deduce flight loads. The concept of thermally calibrating a strain gage system is an approach to solving this problem. This paper will address how these problems were approached on a program directed toward measuring loads on the wing of a large, flexible supersonic aircraft. Structural configurations typical of high-speed delta wing aircraft will be examined. The temperature environment will be examined to see how it induces thermal stresses which subsequently cause errors in loads equations used to deduce the flight loads.
NASA Astrophysics Data System (ADS)
Canzian, Blaise; Barentine, J.; Hull, T.
2012-01-01
L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to make the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakala, Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot” at the prime focus of the ATST and so presents special challenges. In this paper, we will describe the L-3 IOS technical approach to meet these challenges, including subsystems for opto-mechanical positioning, rejected and stray light control, wavefront tip-tilt compensation, and thermal management. Key words: ATST, TEOA, L-3 IOS, thermal management, silicon carbide (SiC) mirrors, hexapods, solar astronomy
Lorenz, Ralph D
2012-08-01
Thermal drilling has been applied to studies of glaciers on Earth and proposed for study of the martian ice caps and the crust of Europa. Additionally, inadvertent thermal drilling by radioisotope sources released from the breakup of a space vehicle is of astrobiological concern in that this process may form a downward-propagating "warm little pond" that could convey terrestrial biota to a habitable environment. A simple analytic solution to the asymptotic slow-speed case of thermal drilling is noted and used to show that the high thermal conductivity of the low-temperature ice on Europa and Titan makes thermal drilling qualitatively more difficult than at Mars. It is shown that an isolated General Purpose Heat Source (GPHS) "brick" can drill effectively on Earth or Mars, whereas on Titan or Europa with ice at 100 K, the source would stall and become stuck in the ice with a surface temperature of <200 K.
Thermal Analysis of ISS Service Module Active TCS
NASA Technical Reports Server (NTRS)
Altov, Vladimir V.; Zaletaev, Sergey V.; Belyavskiy, Evgeniy P.
2000-01-01
ISS Service Module mission must begin in July 2000. The verification of design thermal requirements is mostly due to thermal analysis. The thermal analysis is enough difficult problem because of large number of ISS configurations that had to be investigated and various orbital environments. Besides the ISS structure has articulating parts such as solar arrays and radiators. The presence of articulating parts greatly increases computation times and requires accurate approach to organization of calculations. The varying geometry needs us to calculate the view factors several times during the orbit, while in static geometry case we need do it only once. In this paper we consider the thermal mathematical model of SM that includes the TCS and construction thermal models and discuss the results of calculations for ISS configurations 1R and 9Al. The analysis is based on solving the nodal heat balance equations for ISS structure by Kutta-Merson method and analytical solutions of heat transfer equations for TCS units. The computations were performed using thermal software TERM [1,2] that will be briefly described.
Potential pressurized payloads: Fluid and thermal experiments
NASA Technical Reports Server (NTRS)
Swanson, Theodore D.
1992-01-01
Space Station Freedom (SSF) presents the opportunity to perform long term fluid and thermal experiments in a microgravity environment. This presentation provides perspective on the need for fluids/thermal experimentation in a microgravity environment, addresses previous efforts, identifies possible experiments, and discusses the capabilities of a proposed fluid physics/dynamics test facility. Numerous spacecraft systems use fluids for their operation. Thermal control, propulsion, waste management, and various operational processes are examples of such systems. However, effective ground testing is very difficult. This is because the effect of gravity induced phenomena, such as hydrostatic pressure, buoyant convection, and stratification, overcome such forces as surface tension, diffusion, electric potential, etc., which normally dominate in a microgravity environment. Hence, space experimentation is necessary to develop and validate a new fluid based technology. Two broad types of experiments may be performed on SSF: basic research and applied research. Basic research might include experiments focusing on capillary phenomena (with or without thermal and/or solutal gradients), thermal/solutal convection, phase transitions, and multiphase flow. Representative examples of applied research might include two-phase pressure drop, two-phase flow instabilities, heat transfer coefficients, fluid tank fill/drain, tank slosh dynamics, condensate removal enhancement, and void formation within thermal energy storage materials. In order to better support such fluid/thermal experiments on board SSF, OSSA has developed a conceptual design for a proposed Fluid Physics/Dynamics Facility (FP/DF). The proposed facility consists of one facility rack permanently located on SSF and one experimenter rack which is changed out as needed to support specific experiments. This approach will minimize the on-board integration/deintegration required for specific experiments. The FP/DF will have acceleration/vibration compensation, power and thermal interfaces, computer command/data collection, a video imaging system, and a portable glove box for operations. This facility will allow real-time astronaut interaction with the testing.
Space and Atmospheric Environments: From Low Earth Orbits to Deep Space
NASA Technical Reports Server (NTRS)
Barth, Janet L.
2003-01-01
Natural space and atmospheric environments pose a difficult challenge for designers of technological systems in space. The deleterious effects of environment interactions with the systems include degradation of materials, thermal changes, contamination, excitation, spacecraft glow, charging, radiation damage, and induced background interference. Design accommodations must be realistic with minimum impact on performance while maintaining a balance between cost and risk. The goal of applied research in space environments and effects is to limit environmental impacts at low cost relative to spacecraft cost and to infuse enabling and commercial off-the-shelf technologies into space programs. The need to perform applied research to understand the space environment in a practical sense and to develop methods to mitigate these environment effects is frequently underestimated by space agencies and industry. Applied science research in this area is critical because the complexity of spacecraft systems is increasing, and they are exposed simultaneously to a multitude of space environments.
Hydration and thermal strain during tennis in the heat.
Bergeron, Michael F
2014-04-01
Competitive tennis in the heat can prompt substantial sweat losses and extensive consequent body water and electrolyte deficits, as well as a level of thermal strain that considerably challenges a player's physiology, perception of effort, and on-court well-being and performance. Adequate hydration and optimal performance can be notably difficult to maintain when multiple same-day matches are played on successive days in hot weather. Despite the recognised effects of the heat, much more research needs to be carried out to better appreciate the broader scope and full extent of the physiological demands and hydration and thermal strain challenges facing junior and adult players in various environments, venues and competition scenarios. However, certain recommendations of best practices should be emphasised to minimise exertional heat illness risk and improve player safety, well-being and on-court performance.
Influence of solder joint length to the mechanical aspect during the thermal stress analysis
NASA Astrophysics Data System (ADS)
Tan, J. S.; Khor, C. Y.; Rahim, Wan Mohd Faizal Wan Abd; Ishak, Muhammad Ikman; Rosli, M. U.; Jamalludin, Mohd Riduan; Zakaria, M. S.; Nawi, M. A. M.; Aziz, M. S. Abdul; Ani, F. Che
2017-09-01
Solder joint is an important interconnector in surface mount technology (SMT) assembly process. The real time stress, strain and displacement of the solder joint is difficult to observe and assess the experiment. To tackle these problems, simulation analysis was employed to study the von Mises stress, strain and displacement in the thermal stress analysis by using Finite element based software. In this study, a model of leadless electronic package was considered. The thermal stress analysis was performed to investigate the effect of the solder length to those mechanical aspects. The simulation results revealed that solder length gives significant effect to the maximum von Mises stress to the solder joint. Besides, changes in solder length also influence the displacement of the solder joint in the thermal environment. The increment of the solder length significantly reduces the von Mises stress and strain on the solder joint. Thus, the understanding of the physical parameter for solder joint is important for engineer prior to designing the solder joint of the electronic component.
A Thermally Insulating Textile Inspired by Polar Bear Hair.
Cui, Ying; Gong, Huaxin; Wang, Yujie; Li, Dewen; Bai, Hao
2018-04-01
Animals living in the extremely cold environment, such as polar bears, have shown amazing capability to keep warm, benefiting from their hollow hairs. Mimicking such a strategy in synthetic fibers would stimulate smart textiles for efficient personal thermal management, which plays an important role in preventing heat loss and improving efficiency in house warming energy consumption. Here, a "freeze-spinning" technique is used to realize continuous and large-scale fabrication of fibers with aligned porous structure, mimicking polar bear hairs, which is difficult to achieve by other methods. A textile woven with such biomimetic fibers shows an excellent thermal insulation property as well as good breathability and wearability. In addition to passively insulating heat loss, the textile can also function as a wearable heater, when doped with electroheating materials such as carbon nanotubes, to induce fast thermal response and uniform electroheating while maintaining its soft and porous nature for comfortable wearing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A candidate multimodal functional genetic network for thermal adaptation
Pathak, Rachana; Prajapati, Indira; Bankston, Shannon; Thompson, Aprylle; Usher, Jaytriece; Isokpehi, Raphael D.
2014-01-01
Vertebrate ectotherms such as reptiles provide ideal organisms for the study of adaptation to environmental thermal change. Comparative genomic and exomic studies can recover markers that diverge between warm and cold adapted lineages, but the genes that are functionally related to thermal adaptation may be difficult to identify. We here used a bioinformatics genome-mining approach to predict and identify functions for suitable candidate markers for thermal adaptation in the chicken. We first established a framework of candidate functions for such markers, and then compiled the literature on genes known to adapt to the thermal environment in different lineages of vertebrates. We then identified them in the genomes of human, chicken, and the lizard Anolis carolinensis, and established a functional genetic interaction network in the chicken. Surprisingly, markers initially identified from diverse lineages of vertebrates such as human and fish were all in close functional relationship with each other and more associated than expected by chance. This indicates that the general genetic functional network for thermoregulation and/or thermal adaptation to the environment might be regulated via similar evolutionarily conserved pathways in different vertebrate lineages. We were able to identify seven functions that were statistically overrepresented in this network, corresponding to four of our originally predicted functions plus three unpredicted functions. We describe this network as multimodal: central regulator genes with the function of relaying thermal signal (1), affect genes with different cellular functions, namely (2) lipoprotein metabolism, (3) membrane channels, (4) stress response, (5) response to oxidative stress, (6) muscle contraction and relaxation, and (7) vasodilation, vasoconstriction and regulation of blood pressure. This network constitutes a novel resource for the study of thermal adaptation in the closely related nonavian reptiles and other vertebrate ectotherms. PMID:25289178
A Software Upgrade of the NASA Aeroheating Code "MINIVER"
NASA Technical Reports Server (NTRS)
Louderback, Pierce Mathew
2013-01-01
Computational Fluid Dynamics (CFD) is a powerful and versatile tool simulating fluid and thermal environments of launch and re-entry vehicles alike. Where it excels in power and accuracy, however, it lacks in speed. An alternative tool for this purpose is known as MINIVER, an aeroheating code widely used by NASA and within the aerospace industry. Capable of providing swift, reasonably accurate approximations of the fluid and thermal environment of launch vehicles, MINIVER is used where time is of the essence and accuracy need not be exact. However, MINIVER is an old, aging tool: running on a user-unfriendly, legacy command-line interface, it is difficult for it to keep pace with more modem software tools. Florida Institute of Technology was tasked with the construction of a new Graphical User Interface (GUI) that implemented the legacy version's capabilities and enhanced them with new tools and utilities. This thesis provides background to the legacy version of the program, the progression and final version of a modem user interface, and benchmarks to demonstrate its usefulness.
Kim, Jong Hyun; Hong, Hyung Gil; Park, Kang Ryoung
2017-05-08
Because intelligent surveillance systems have recently undergone rapid growth, research on accurately detecting humans in videos captured at a long distance is growing in importance. The existing research using visible light cameras has mainly focused on methods of human detection for daytime hours when there is outside light, but human detection during nighttime hours when there is no outside light is difficult. Thus, methods that employ additional near-infrared (NIR) illuminators and NIR cameras or thermal cameras have been used. However, in the case of NIR illuminators, there are limitations in terms of the illumination angle and distance. There are also difficulties because the illuminator power must be adaptively adjusted depending on whether the object is close or far away. In the case of thermal cameras, their cost is still high, which makes it difficult to install and use them in a variety of places. Because of this, research has been conducted on nighttime human detection using visible light cameras, but this has focused on objects at a short distance in an indoor environment or the use of video-based methods to capture multiple images and process them, which causes problems related to the increase in the processing time. To resolve these problems, this paper presents a method that uses a single image captured at night on a visible light camera to detect humans in a variety of environments based on a convolutional neural network. Experimental results using a self-constructed Dongguk night-time human detection database (DNHD-DB1) and two open databases (Korea advanced institute of science and technology (KAIST) and computer vision center (CVC) databases), as well as high-accuracy human detection in a variety of environments, show that the method has excellent performance compared to existing methods.
Assessment of thermal environments: working conditions in the portuguese glass industry
OLIVEIRA, A. Virgílio M.; GASPAR, Adélio R.; RAIMUNDO, António M.; QUINTELA, Divo A.
2017-01-01
The objective of the present contribution is to assess the exposure to hot thermal environments in the Portuguese glass industry. For this purpose a field survey was carried out and the measurements took place in industrial units - five industries and nineteen workplaces were considered–so all the results are based on real working conditions. In order to assess the level of heat exposure the Wet Bulb Globe Temperature (WBGT) index and the Predicted Heat Strain (PHS) model, defined in ISO Standards 7243 (1989) and 7933 (2004), respectively, were used. According to the WBGT index, the results show that almost 80% of the workplaces under analysis are prone to heat stress conditions. If the PHS model is considered, the results highlight that the predicted and the maximum sweat rates present equal values in about 40% of the workplaces. In addition, in almost 25% of the workplaces the estimated rectal temperature was higher than 38°C, just for an exposure period of one hour. Thus, the present study brings to light the characteristics of the glass industry in terms of the occupational exposure to hot environments and places this activity sector as one of the most difficult to deal with. PMID:28824045
Thermal Management Tools for Propulsion System Trade Studies and Analysis
NASA Technical Reports Server (NTRS)
McCarthy, Kevin; Hodge, Ernie
2011-01-01
Energy-related subsystems in modern aircraft are more tightly coupled with less design margin. These subsystems include thermal management subsystems, vehicle electric power generation and distribution, aircraft engines, and flight control. Tighter coupling, lower design margins, and higher system complexity all make preliminary trade studies difficult. A suite of thermal management analysis tools has been developed to facilitate trade studies during preliminary design of air-vehicle propulsion systems. Simulink blocksets (from MathWorks) for developing quasi-steady-state and transient system models of aircraft thermal management systems and related energy systems have been developed. These blocksets extend the Simulink modeling environment in the thermal sciences and aircraft systems disciplines. The blocksets include blocks for modeling aircraft system heat loads, heat exchangers, pumps, reservoirs, fuel tanks, and other components at varying levels of model fidelity. The blocksets have been applied in a first-principles, physics-based modeling and simulation architecture for rapid prototyping of aircraft thermal management and related systems. They have been applied in representative modern aircraft thermal management system studies. The modeling and simulation architecture has also been used to conduct trade studies in a vehicle level model that incorporates coupling effects among the aircraft mission, engine cycle, fuel, and multi-phase heat-transfer materials.
Low thermal diffusivity measurements of thin films using mirage technique
NASA Astrophysics Data System (ADS)
Wong, P. K.; Fung, P. C. W.; Tam, H. L.
1998-12-01
Mirage technique is proved to be powerful in measurements of thermal diffusivity. Its contactless nature makes it suitable for delicate samples such as thin films and single crystals. However, as the damping of the thermal wave profile increases progressively upon the decrease in thermal diffusivity of the medium, mirage technique becomes more difficult to be applied to low thermal diffusivity measurements. Moreover influences from substrate signals make analysis difficult when the samples are thermally thin. Recently a thermal-wave-coupling method for mirage signal analysis [P. K. Wong, P. C. W. Fung, H. L. Tam, and J. Gao, Phys. Rev. B 51, 523 (1995)] was reported for thermal diffusivity measurements of thin film down to 60 nm thick. In this article we apply the thermal-wave-coupling method to thin films of low thermal diffusivity, especially polymer films. A new lower limit of thermal diffusivity measurable by mirage technique has been reached.
High-Temperature Self-Healing and Re-Adhering Geothermal Well Cement Composites
NASA Astrophysics Data System (ADS)
Pyatina, T.; Sugama, T.; Boodhan, Y.; Nazarov, L.
2017-12-01
Self-healing cementitious materials are particularly attractive for the cases where damaged areas are difficult to locate and reach. High-temperature geothermal wells with aggressive environments impose most difficult conditions on cements that must ensure durable zonal isolation under repeated thermal, chemical and mechanical stresses. The present work evaluates matrix and carbon steel (CS) - cement interface self-healing and re-adhering properties of various inorganic cementitious composites under steam, alkali carbonate or brine environments at 270-300oC applicable to geothermal wells. The composite materials included blends based on Ordinary Portland Cement (OPC) and natural zeolites and alkali or phosphate activated composites of Calcium Aluminate Cement (CAC) with fly ash, class F. Class G cement blend with crystalline silica was used as a baseline. Compressive-strength and bond-strength recoveries were examined to evaluate self-healing and re-adhering properties of the composites after repeated crush tests followed by 5-day healing periods in these environments. The optical and scanning electron microscopes, X-ray diffraction, Fourier Transform infrared, Raman spectroscopy and EDX measurements were used to identify phases participating in the strengths recoveries and cracks filling processes. Amorphous silica-rich- and small-size crystalline phases played an important role in the healing of the tested composites in all environments. Possible ways to enhance self-healing properties of cementitious composites under conditions of geothermal wells were identified.
NASA Technical Reports Server (NTRS)
Clem, Michelle M.; Abdul-Aziz, Ali; Woike, Mark R.; Fralick, Gustave C.
2015-01-01
The modern turbine engine operates in a harsh environment at high speeds and is repeatedly exposed to combined high mechanical and thermal loads. The cumulative effects of these external forces lead to high stresses and strains on the engine components, such as the rotating turbine disks, which may eventually lead to a catastrophic failure if left undetected. The operating environment makes it difficult to use conventional strain gauges, therefore, non-contact strain measurement techniques is of interest to NASA and the turbine engine community. This presentation describes one such approach; the use of cross correlation analysis to measure strain experienced by the engine turbine disk with the goal of assessing potential faults and damage.
NASA Astrophysics Data System (ADS)
Canzian, Blaise; Barentine, J.; Arendt, J.; Bader, S.; Danyo, G.; Heller, C.
2012-09-01
L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to design and produce the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakal', Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot" at the prime focus of the ATST and so presents special challenges. In this paper, we describe progress in the L-3 technical approach to meeting these challenges, including silicon carbide off-axis mirror design, fabrication, and high accuracy figuring and polishing all within L-3; mirror support design; the design for stray light control; subsystems for opto-mechanical positioning and high accuracy absolute mirror orientation sensing; Lyot stop design; and thermal management of all design elements to remain close to ambient temperature despite the imposed solar irradiance load.
Cating, Emma E M; Pinion, Christopher W; Van Goethem, Erika M; Gabriel, Michelle M; Cahoon, James F; Papanikolas, John M
2016-01-13
Thermal management is an important consideration for most nanoelectronic devices, and an understanding of the thermal conductivity of individual device components is critical for the design of thermally efficient systems. However, it can be difficult to directly probe local changes in thermal conductivity within a nanoscale system. Here, we utilize the time-resolved and diffraction-limited imaging capabilities of ultrafast pump-probe microscopy to determine, in a contact-free configuration, the local thermal conductivity in individual Si nanowires (NWs). By suspending single NWs across microfabricated trenches in a quartz substrate, the properties of the same NW both on and off the substrate are directly compared. We find the substrate has no effect on the recombination lifetime or diffusion length of photogenerated charge carriers; however, it significantly impacts the thermal relaxation properties of the NW. In substrate-supported regions, thermal energy deposited into the lattice by the ultrafast laser pulse dissipates within ∼10 ns through thermal diffusion and coupling to the substrate. In suspended regions, the thermal energy persists for over 100 ns, and we directly image the time-resolved spatial motion of the thermal signal. Quantitative analysis of the transient images permits direct determination of the NW's local thermal conductivity, which we find to be a factor of ∼4 smaller than in bulk Si. Our results point to the strong potential of pump-probe microscopy to be used as an all-optical method to quantify the effects of localized environment and morphology on the thermal transport characteristics of individual nanostructured components.
Completion of the Design of the Top End Optical Assembly for ATST
NASA Astrophysics Data System (ADS)
Canzian, Blaise; Barentine, J.
2013-01-01
L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to make the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakala, Maui. ATST will perform to a very high optical performance level in a difficult operational environment. The TEOA (including a 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, Lyot stop, safety interlock and control system, and support frame) operates in the “hot spot” at the prime focus of the ATST, presenting unusual challenges. L-3 IOS has passed Critical Design Review of the TEOA. In this paper, we describe L-3 IOS success meeting technical challenges, including our solutions for optic fabrication, opto-mechanical positioning, rejected and stray light control, wavefront tip-tilt compensation, and thermal management and control.
Cognitive function in hot environments: a question of methodology.
Gaoua, N
2010-10-01
The physiological responses of thermal stress and its consequences on health have been well documented. However, the effect on cognitive function remains equivocal despite a substantial number of studies conducted in the area. Methodological discrepancies across different studies have made it difficult to conclude whether or not heat exposure per se has an adverse effect upon cognitive function and under what specific environmental and physiological conditions these alterations appear. This article gives an overview of the different confounding factors that have made it difficult to make conclusive interpretations. In addition, the current state of knowledge is presented and discussed with reference to the Global Workspace theory. Although previously presented conclusions are promising, much remains to be completed before understanding the mechanisms that could explain the relationship between heat exposure and cognitive function. Finally, recommendations are presented for further research in this area. © 2010 John Wiley & Sons A/S.
Crystal growth in a microgravity environment
NASA Technical Reports Server (NTRS)
Kroes, Roger L. (Inventor); Reiss, Donald A. (Inventor); Lehoczky, Sandor L. (Inventor)
1992-01-01
Gravitational phenomena, including convection, sedimentation, and interactions of materials with their containers all affect the crystal growth process. If they are not taken into consideration they can have adverse effects on the quantity and quality of crystals produced. As a practical matter, convection, and sedimentation can be completely eliminated only under conditions of low gravity attained during orbital flight. There is, then, an advantage to effecting crystallization in space. In the absence of convection in a microgravity environment cooling proceeds by thermal diffusion from the walls to the center of the solution chamber. This renders control of nucleation difficult. Accordingly, there is a need for a new improved nucleation process in space. Crystals are nucleated by creating a small localized region of high relative supersaturation in a host solution at a lower degree of supersaturation.
Visual Computing Environment Workshop
NASA Technical Reports Server (NTRS)
Lawrence, Charles (Compiler)
1998-01-01
The Visual Computing Environment (VCE) is a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis.
Climatological targets for Mars Pathfinder
NASA Technical Reports Server (NTRS)
Zent, Aaron P.
1994-01-01
Four areas fit within the elevation and latitude constraints: Chryse, Elysium, Amazonis, and Isidis. There is geomorphic evidence that all have supported standing water. In some cases it would be difficult to pick a landing site that had no hope of teaching us about the climatic history of Mars. The southeast Elysium Basin provides an optimal target in which a variety of materials may be accessible in a near-shore environment. The albedo of the region is moderately low, and the thermal inertia is indicative of moderate rock coverage or some consolidation of fines, arguing that the site has not been covered with eolian dust deposits.
Image based performance analysis of thermal imagers
NASA Astrophysics Data System (ADS)
Wegner, D.; Repasi, E.
2016-05-01
Due to advances in technology, modern thermal imagers resemble sophisticated image processing systems in functionality. Advanced signal and image processing tools enclosed into the camera body extend the basic image capturing capability of thermal cameras. This happens in order to enhance the display presentation of the captured scene or specific scene details. Usually, the implemented methods are proprietary company expertise, distributed without extensive documentation. This makes the comparison of thermal imagers especially from different companies a difficult task (or at least a very time consuming/expensive task - e.g. requiring the execution of a field trial and/or an observer trial). For example, a thermal camera equipped with turbulence mitigation capability stands for such a closed system. The Fraunhofer IOSB has started to build up a system for testing thermal imagers by image based methods in the lab environment. This will extend our capability of measuring the classical IR-system parameters (e.g. MTF, MTDP, etc.) in the lab. The system is set up around the IR- scene projector, which is necessary for the thermal display (projection) of an image sequence for the IR-camera under test. The same set of thermal test sequences might be presented to every unit under test. For turbulence mitigation tests, this could be e.g. the same turbulence sequence. During system tests, gradual variation of input parameters (e. g. thermal contrast) can be applied. First ideas of test scenes selection and how to assembly an imaging suite (a set of image sequences) for the analysis of imaging thermal systems containing such black boxes in the image forming path is discussed.
3D thermography for improving temperature measurements in thermal vacuum testing
NASA Astrophysics Data System (ADS)
Robinson, D. W.; Simpson, R.; Parian, J. A.; Cozzani, A.; Casarosa, G.; Sablerolle, S.; Ertel, H.
2017-09-01
The application of thermography to thermal vacuum (TV) testing of spacecrafts is becoming a vital additional tool in the mapping of structures during thermal cycles and thermal balance (TB) testing. Many of the customers at the European Space Agency (ESA) test centre, European Space Research and Technology Centre (ESTEC), The Netherlands, now make use of a thermal camera during TB-TV campaigns. This complements the use of embedded thermocouples on the structure, providing the prospect of monitoring temperatures at high resolution and high frequency. For simple flat structures with a well-defined emissivity, it is possible to determine the surface temperatures with reasonable confidence. However, for most real spacecraft and sub-systems, the complexity of the structure's shape and its test environment creates inter-reflections from external structures. This and the additional complication of angular and spectral variations of the spacecraft surface emissivity make the interpretation of the radiation detected by a thermal camera more difficult in terms of determining a validated temperature with high confidence and well-defined uncertainty. One solution to this problem is: to map the geometry of the test specimen and thermal test environment; to model the surface temperatures and emissivity variations of the structures and materials; and to use this model to correct the apparent temperatures recorded by the thermal camera. This approach has been used by a team from NPL (National Physical Laboratory), Psi-tran, and PhotoCore, working with ESA, to develop a 3D thermography system to provide a means to validate thermal camera temperatures, based on a combination of thermal imaging photogrammetry and ray-tracing scene modeling. The system has been tested at ESTEC in ambient conditions with a dummy spacecraft structure containing a representative set of surface temperatures, shapes, and spacecraft materials, and with hot external sources and a high power lamp as a sun simulator. The results are presented here with estimated temperature measurement uncertainties and defined confidence levels according to the internationally accepted Guide to Uncertainty of Measurement as used in the IEC/ISO17025 test and measurement standard. This work is understood to represent the first application of well-understood thermal imaging theory, commercial photogrammetry software, and open-source ray-tracing software (adapted to realize the Planck function for thermal wavebands and target emission), and to produce from these elements a complete system for determining true surface temperatures for complex spacecraft-testing applications.
NASA Technical Reports Server (NTRS)
Scola, Salvatore; Stavely, Rebecca; Jackson, Trevor; Boyer, Charlie; Osmundsen, Jim; Turczynski, Craig; Stimson, Chad
2016-01-01
Performance-related effects of system level temperature changes can be a key consideration in the design of many types of optical instruments. This is especially true for space-based imagers, which may require complex thermal control systems to maintain alignment of the optical components. Structural-Thermal-Optical-Performance (STOP) analysis is a multi-disciplinary process that can be used to assess the performance of these optical systems when subjected to the expected design environment. This type of analysis can be very time consuming, which makes it difficult to use as a trade study tool early in the project life cycle. In many cases, only one or two iterations can be performed over the course of a project. This limits the design space to best practices since it may be too difficult, or take too long, to test new concepts analytically. In order to overcome this challenge, automation, and a standard procedure for performing these studies is essential. A methodology was developed within the framework of the Comet software tool that captures the basic inputs, outputs, and processes used in most STOP analyses. This resulted in a generic, reusable analysis template that can be used for design trades for a variety of optical systems. The template captures much of the upfront setup such as meshing, boundary conditions, data transfer, naming conventions, and post-processing, and therefore saves time for each subsequent project. A description of the methodology and the analysis template is presented, and results are described for a simple telescope optical system.
NASA Astrophysics Data System (ADS)
Scola, Salvatore; Stavely, Rebecca; Jackson, Trevor; Boyer, Charlie; Osmundsen, Jim; Turczynski, Craig; Stimson, Chad
2016-09-01
Performance-related effects of system level temperature changes can be a key consideration in the design of many types of optical instruments. This is especially true for space-based imagers, which may require complex thermal control systems to maintain alignment of the optical components. Structural-Thermal-Optical-Performance (STOP) analysis is a multi-disciplinary process that can be used to assess the performance of these optical systems when subjected to the expected design environment. This type of analysis can be very time consuming, which makes it difficult to use as a trade study tool early in the project life cycle. In many cases, only one or two iterations can be performed over the course of a project. This limits the design space to best practices since it may be too difficult, or take too long, to test new concepts analytically. In order to overcome this challenge, automation, and a standard procedure for performing these studies is essential. A methodology was developed within the framework of the Comet software tool that captures the basic inputs, outputs, and processes used in most STOP analyses. This resulted in a generic, reusable analysis template that can be used for design trades for a variety of optical systems. The template captures much of the upfront setup such as meshing, boundary conditions, data transfer, naming conventions, and post-processing, and therefore saves time for each subsequent project. A description of the methodology and the analysis template is presented, and results are described for a simple telescope optical system.
NASA Astrophysics Data System (ADS)
Kurazumi, Y.; Ishii, J.; Fukagawa, K.; Kondo, E.; Aruninta, A.
2017-12-01
Thermal sensation affects body temperature regulation. As a starting point for behavioral body temperature regulation taken to improve from a poor thermal environment to a more pleasant environment, thermal sense of thermal environment stimulus is important. The poupose of this sutudy is to use the outdoor thermal environment evaluation index ETFe to quantify effects on thermal sensations of the human body of a tropical region climate with small annual temperature differences, and to examine seasonal differences in thermal sensation. It was found temperature preferences were lower in the winter season than in the dry season, and that a tolerance for higher temperatures in the dry season than in the winter season. It was found effects of seasonal differences of the thermal environment appear in quantitative changes in thermal sensations. It was found that effects of seasonal differences of the thermal environment do not greatly affect quantitative changes in thermal comfort.
Effect of temperature on anodic behavior of 13Cr martensitic steel in CO2 environment
NASA Astrophysics Data System (ADS)
Zhao, G. X.; Zheng, M.; Lv, X. H.; Dong, X. H.; Li, H. L.
2005-04-01
The corrosion behavior of 13Cr martensitic stainless steel in a CO2 environment in a stimulated oilfield was studied with potentiodynamic polarization and the impedance spectra technique. The results showed that the microstructure of the surface scale clearly changed with temperature. This decreased the sensitivity of pitting corrosion and increased the tendency toward general (or uniform) corrosion. The capacitance, the charge transfer resistance, and the polarization resistance of the corrosion product scale decrease with increasing temperature from 90 to 120 °C, and thus the corrosion is a thermal activation controlled process. Charge transfer through the scale is difficult and the corrosion is controlled by a diffusion process at a temperature of 150 °C. Resistance charge transfer through the corrosion product layer is higher than that in the passive film.
Zhou, X; Ouyang, Q; Zhu, Y; Feng, C; Zhang, X
2014-04-01
To investigate whether occupants' anticipated control of their thermal environment can influence their thermal comfort and to explain why the acceptable temperature range in naturally ventilated environments is greater than that in air-conditioned environments, a series of experiments were conducted in a climate chamber in which the thermal environment remained the same but the psychological environment varied. The results of the experiments show that the ability to control the environment can improve occupants' thermal sensation and thermal comfort. Specifically, occupants' anticipated control decreased their thermal sensation vote (TSV) by 0.4-0.5 and improved their thermal comfort vote (TCV) by 0.3-0.4 in neutral-warm environment. This improvement was due exclusively to psychological factors. In addition, having to pay the cost of cooling had no significant influence on the occupants' thermal sensation and thermal comfort in this experiment. Thus, having the ability to control the thermal environment can improve occupants' comfort even if there is a monetary cost involved. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Wilson, Robbie S; Condon, Catriona H L; Johnston, Ian A
2007-11-29
The mating system of eastern mosquito fish (Gambusia holbrooki) is dominated by male sexual coercion, where all matings are forced and females never appear to cooperate and actively avoid all attempts. Previous research has shown that male G. holbrooki offer a model system for examining the benefits of reversible thermal acclimation for reproductive success, but examining the benefits to female avoidance behaviour has been difficult. In this study, we examined the ability of non-male-deprived female G. holbrooki to avoid forced-coercive matings following acclimation to either 18 or 30 degrees C for six weeks (12h light:12h dark photoperiod). Thermal acclimation of burst and sustained swimming performance was also assessed, as these traits are likely to underlie their ability to avoid forced matings. There was no influence of thermal acclimation on the burst swimming performance of female G. holbrooki over the range 18-30 degrees C; however, sustained swimming performance was significantly lower in the warm- than the cool-acclimation group. For mating behaviour, we tested the hypothesis that acclimation would enhance the ability of female G. holbrooki to avoid forced matings at their host acclimation temperature relative to females acclimated to another environment. However, our hypothesis was not supported. The rate of copulations was almost three times greater for females acclimated to 30 degrees C than 18 degrees C when tested at 30 degrees C, indicating that they possess the ability to alter their avoidance behaviour to 'allow' more copulations in some environments. Coupled with previous studies, female G. holbrooki appear to have greater control on the outcome of coercive mating attempts than previously considered and can alter their propensity to receive forced matings following thermal acclimation. The significance of this change in female mating-avoidance behaviours with thermal acclimation remains to be explored.
Thermal performance modeling of NASA s scientific balloons
NASA Astrophysics Data System (ADS)
Franco, H.; Cathey, H.
The flight performance of a scientific balloon is highly dependant on the interaction between the balloon and its environment. The balloon is a thermal vehicle. Modeling a scientific balloon's thermal performance has proven to be a difficult analytical task. Most previous thermal models have attempted these analyses by using either a bulk thermal model approach, or by simplified representations of the balloon. These approaches to date have provided reasonable, but not very accurate results. Improvements have been made in recent years using thermal analysis tools developed for the thermal modeling of spacecraft and other sophisticated heat transfer problems. These tools, which now allow for accurate modeling of highly transmissive materials, have been applied to the thermal analysis of NASA's scientific balloons. A research effort has been started that utilizes the "Thermal Desktop" addition to AUTO CAD. This paper will discuss the development of thermal models for both conventional and Ultra Long Duration super-pressure balloons. This research effort has focused on incremental analysis stages of development to assess the accuracy of the tool and the required model resolution to produce usable data. The first stage balloon thermal analyses started with simple spherical balloon models with a limited number of nodes, and expanded the number of nodes to determine required model resolution. These models were then modified to include additional details such as load tapes. The second stage analyses looked at natural shaped Zero Pressure balloons. Load tapes were then added to these shapes, again with the goal of determining the required modeling accuracy by varying the number of gores. The third stage, following the same steps as the Zero Pressure balloon efforts, was directed at modeling super-pressure pumpkin shaped balloons. The results were then used to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. The development of the radiative environment and program input files, the development of the modeling techniques for balloons, and the development of appropriate data output handling techniques for both the raw data and data plots will be discussed. A general guideline to match predicted balloon performance with known flight data will also be presented. One long-term goal of this effort is to develop simplified approaches and techniques to include results in performance codes being developed.
Effect of the environmental stimuli upon the human body in winter outdoor thermal environment.
Kurazumi, Yoshihito; Kondo, Emi; Ishii, Jin; Sakoi, Tomonori; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi
2013-01-01
In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach.
Chronska, K; Przepiorkowska, A
2008-03-01
Buffing dust from chrome tanned leather is one of the difficult tannery wastes to manage. It is also hazardous to both human health and the environment. The scientific literature rarely reports studies on dust management, especially on its utilization as a filler for elastomers. In this connection we have made an attempt to use this leather waste as a filler for rubbers such as XNBR and NBR. The addition of the buffing dust to rubber mixes brought improvement in mechanical properties, and increase in resistance to thermal ageing as well as in electric conductivity and crosslink density of vulcalizates.
Effect of the Environmental Stimuli upon the Human Body in Winter Outdoor Thermal Environment
Kurazumi, Yoshihito; Kondo, Emi; Ishii, Jin; Sakoi, Tomonori; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi
2013-01-01
In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach. PMID:23861691
NASA Technical Reports Server (NTRS)
Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.
2012-01-01
Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.
Convolutional Neural Network-Based Shadow Detection in Images Using Visible Light Camera Sensor.
Kim, Dong Seop; Arsalan, Muhammad; Park, Kang Ryoung
2018-03-23
Recent developments in intelligence surveillance camera systems have enabled more research on the detection, tracking, and recognition of humans. Such systems typically use visible light cameras and images, in which shadows make it difficult to detect and recognize the exact human area. Near-infrared (NIR) light cameras and thermal cameras are used to mitigate this problem. However, such instruments require a separate NIR illuminator, or are prohibitively expensive. Existing research on shadow detection in images captured by visible light cameras have utilized object and shadow color features for detection. Unfortunately, various environmental factors such as illumination change and brightness of background cause detection to be a difficult task. To overcome this problem, we propose a convolutional neural network-based shadow detection method. Experimental results with a database built from various outdoor surveillance camera environments, and from the context-aware vision using image-based active recognition (CAVIAR) open database, show that our method outperforms previous works.
Convolutional Neural Network-Based Shadow Detection in Images Using Visible Light Camera Sensor
Kim, Dong Seop; Arsalan, Muhammad; Park, Kang Ryoung
2018-01-01
Recent developments in intelligence surveillance camera systems have enabled more research on the detection, tracking, and recognition of humans. Such systems typically use visible light cameras and images, in which shadows make it difficult to detect and recognize the exact human area. Near-infrared (NIR) light cameras and thermal cameras are used to mitigate this problem. However, such instruments require a separate NIR illuminator, or are prohibitively expensive. Existing research on shadow detection in images captured by visible light cameras have utilized object and shadow color features for detection. Unfortunately, various environmental factors such as illumination change and brightness of background cause detection to be a difficult task. To overcome this problem, we propose a convolutional neural network-based shadow detection method. Experimental results with a database built from various outdoor surveillance camera environments, and from the context-aware vision using image-based active recognition (CAVIAR) open database, show that our method outperforms previous works. PMID:29570690
A Comparison of Space and Ground Based Facility Environmental Effects for FEP Teflon. Revised
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; Banks, Bruce A.; Kitral, Michael
1998-01-01
Fluorinated Ethylene Propylene (FEP) Teflon is widely used as a thermal control material for spacecraft, however, it is susceptible to erosion, cracking, and subsequent mechanical failure in low Earth orbit. One of the difficulties in determining whether FEP Teflon will survive during a mission is the wide disparity of erosion rates observed for this material in space and in ground based facilities. Each environment contains different levels of atomic oxygen, ions, and vacuum ultraviolet (VUV) radiation in addition to parameters such as the energy of the arriving species and temperature. These variations make it difficult to determine what is causing the observed differences in erosion rates. This paper attempts to narrow down which factors affect the erosion rate of FEP Teflon through attempting to change only one environmental constituent at a time. This was attempted through the use of a single simulation facility (plasma asher) environment with a variety of Faraday cages and VUV transparent windows. Isolating one factor inside of a radio frequency (RF) plasma proved to be very difficult. Two observations could be made. First, it appears that the erosion yield of FEP Teflon with respect to that of polyimide Kapton is not greatly affected by the presence or lack of VUV radiation present in the RF plasma and the relative erosion yield for the FEP Teflon may decrease with increasing fluence. Second, shielding from charged particles appears to lower the relative erosion yield of the FEP to approximately that observed in space, however it is difficult to determine for sure whether ions, electrons, or some other components are causing the enhanced erosion.
ERIC Educational Resources Information Center
Streveler, Ruth; Geist, Monica; Ammerman, Ravel; Sulzbach, Candace; Miller, Ronald; Olds, Barbara; Nelson, Mary
2007-01-01
This study extends ongoing work to identify difficult concepts in thermal and transport science and measure students' understanding of those concepts via a concept inventory. Two research questions provided the focal point: "What important concepts in electric circuits and engineering mechanics do students find difficult to learn?" and…
The Stanford Prison Experiment: Implications for the Care of the "Difficult" Patient.
Onishi, So L; Hebert, Randy S
2016-02-01
Approximately 15% of patients are perceived by clinicians as "difficult." Early theories about difficult patients focused on patients' and clinicians' characteristics, often underemphasizing the influence of the environment on patients' behavior. The Stanford Prison Experiment, a classic experiment in the psychology of human behavior, provides a broader systems approach for understanding the environmental influences on patient behavior. A systems approach to the care of the difficult patient takes into consideration not only the patient's characteristics but also the health care environment and the more distal environments (ie, familial, societal, and cultural). Clinicians who are aware of the multilevel impact of these various environments on the behavior of patients are better equipped to understand, address, and hopefully even prevent difficult patient encounters. © The Author(s) 2014.
Cooling Effect of Evapotranspiration (ET) and ET Measurement by Thermal Remote Sensing in Urban
NASA Astrophysics Data System (ADS)
Qiu, G. Y.; Yang, B.; Li, X.; Guo, Q.; Tan, S.
2015-12-01
Affected by global warming and rapid urbanization, urban thermal environment and livability are getting worse over the world. Global terrestrial evapotranspiration (ET) can annually consume 1.483 × 1023 joules of solar energy, which is about 300 times of the annual human energy use on the earth (4.935×1020 joules). This huge amount of energy use by ET indicates that there is great potential to cool the urban by regulating ET. However, accurately measurement of urban ET is quiet difficult because of the great spatial heterogeneity in urban. This study focuses on to quantify the cooling effects ET by mobile traverse method and improve a methodology to measure the urban ET by thermal remote sensing. The verifying experiment was carried out in Shenzhen, a sub-tropical mega city in China. Results showed that ET of vegetation could obviously reduce the urban temperature in hot season. Daily transpiration rate of a small-sized Ficus tree (Ficus microcarpa, 5 m in height and 20 cm of trunk diameter, measured by sap-flow method) was 36-55 kg and its cooling effect was equivalent to a 1.6-2.4 kWh air conditioner working for 24 hours. A 10% increase in the vegetated area could decrease urban temperature by 0.60°C at hot night. Moreover, it was found that a region with a vegetated area ratio over 55% had obvious effect on temperature decreasing. In addition, a methodology by using "thermal remote sensing + three-temperature model" was improved to measure the urban ET. Results showed that the urban ET could be reasonably measured by the proposed method. The daily ET of an urban lawn was 0.01-2.86 mm and monthly ET was 21-60 mm. This result agreed well with the verification study (Bowen ratio method, r=0.953). These results are very useful for urban planning, urban lower impact development, and improving of urban thermal environment.
Process-based quality for thermal spray via feedback control
NASA Astrophysics Data System (ADS)
Dykhuizen, R. C.; Neiser, R. A.
2006-09-01
Quality control of a thermal spray system manufacturing process is difficult due to the many input variables that need to be controlled. Great care must be taken to ensure that the process remains constant to obtain a consistent quality of the parts. Control is greatly complicated by the fact that measurement of particle velocities and temperatures is a noisy stochastic process. This article illustrates the application of quality control concepts to a wire flame spray process. A central feature of the real-time control system is an automatic feedback control scheme that provides fine adjustments to ensure that uncontrolled variations are accommodated. It is shown how the control vectors can be constructed from simple process maps to independently control particle velocity and temperature. This control scheme is shown to perform well in a real production environment. We also demonstrate that slight variations in the feed wire curvature can greatly influence the process. Finally, the geometry of the spray system and sensor must remain constant for the best reproducibility.
Caribbean mesophotic coral ecosystems are unlikely climate change refugia.
Smith, Tyler B; Gyory, Joanna; Brandt, Marilyn E; Miller, William J; Jossart, Jonathan; Nemeth, Richard S
2016-08-01
Deeper coral reefs experience reduced temperatures and light and are often shielded from localized anthropogenic stressors such as pollution and fishing. The deep reef refugia hypothesis posits that light-dependent stony coral species at deeper depths are buffered from thermal stress and will avoid bleaching-related mass mortalities caused by increasing sea surface temperatures under climate change. This hypothesis has not been tested because data collection on deeper coral reefs is difficult. Here we show that deeper (mesophotic) reefs, 30-75 m depth, in the Caribbean are not refugia because they have lower bleaching threshold temperatures than shallow reefs. Over two thermal stress events, mesophotic reef bleaching was driven by a bleaching threshold that declines 0.26 °C every +10 m depth. Thus, the main premise of the deep reef refugia hypothesis that cooler environments are protective is incorrect; any increase in temperatures above the local mean warmest conditions can lead to thermal stress and bleaching. Thus, relatively cooler temperatures can no longer be considered a de facto refugium for corals and it is likely that many deeper coral reefs are as vulnerable to climate change as shallow water reefs. © 2015 John Wiley & Sons Ltd.
Microbial community dynamics in Inferno Crater Lake, a thermally fluctuating geothermal spring
Ward, Laura; Taylor, Michael W; Power, Jean F; Scott, Bradley J; McDonald, Ian R; Stott, Matthew B
2017-01-01
Understanding how microbial communities respond and adjust to ecosystem perturbation is often difficult to interpret due to multiple and often simultaneous variations in observed conditions. In this research, we investigated the microbial community dynamics of Inferno Crater Lake, an acidic geothermal spring in New Zealand with a unique thermal cycle that varies between 30 and 80 °C over a period of 40–60 days. Using a combination of next-generation sequencing, geochemical analysis and quantitative PCR we found that the microbial community composition was predominantly chemolithotrophic and strongly associated with the thermal cycle. At temperatures >65 °C, the microbial community was dominated almost exclusively by sulphur-oxidising archaea (Sulfolobus-like spp.). By contrast, at mesophilic temperatures the community structure was more mixed, comprising both archaea and bacteria but dominated primarily by chemolithotrophic sulphur and hydrogen oxidisers. Multivariate analysis of physicochemical data confirmed that temperature was the only significant variable associated with community turnover. This research contributes to our understanding of microbial community dynamics in variable environments, using a naturally alternating system as a model and extends our limited knowledge of acidophile ecology in geothermal habitats. PMID:28072418
Microbial community dynamics in Inferno Crater Lake, a thermally fluctuating geothermal spring.
Ward, Laura; Taylor, Michael W; Power, Jean F; Scott, Bradley J; McDonald, Ian R; Stott, Matthew B
2017-05-01
Understanding how microbial communities respond and adjust to ecosystem perturbation is often difficult to interpret due to multiple and often simultaneous variations in observed conditions. In this research, we investigated the microbial community dynamics of Inferno Crater Lake, an acidic geothermal spring in New Zealand with a unique thermal cycle that varies between 30 and 80 °C over a period of 40-60 days. Using a combination of next-generation sequencing, geochemical analysis and quantitative PCR we found that the microbial community composition was predominantly chemolithotrophic and strongly associated with the thermal cycle. At temperatures >65 °C, the microbial community was dominated almost exclusively by sulphur-oxidising archaea (Sulfolobus-like spp.). By contrast, at mesophilic temperatures the community structure was more mixed, comprising both archaea and bacteria but dominated primarily by chemolithotrophic sulphur and hydrogen oxidisers. Multivariate analysis of physicochemical data confirmed that temperature was the only significant variable associated with community turnover. This research contributes to our understanding of microbial community dynamics in variable environments, using a naturally alternating system as a model and extends our limited knowledge of acidophile ecology in geothermal habitats.
1998-01-01
than COND 2(6 +/- 2 W) and COND 3 (11 +/- 5 W, p 0.05). The thermal comfort and thermal sensation assessments reflected the physiological responses...was related to thermal comfort (R2 = 0.94. This research provided evidence that skin wettedness predicted thermal comfort effectively in all...environments tested. The subjective assessment of thermal comfort discriminated between all environments and the heat index derived from the USARIEM
Sun, Tie Gang; Xiao, Rong Bo; Cai, Yun Nan; Wang, Yao Wu; Wu, Chang Guang
2016-08-01
Quantitative assessment of urban thermal environment has become a focus for urban climate and environmental science since the concept of urban heat island has been proposed. With the continual development of space information and computer simulation technology, substantial progresses have been made on quantitative assessment techniques and methods of urban thermal environment. The quantitative assessment techniques have been developed to dynamics simulation and forecast of thermal environment at various scales based on statistical analysis of thermal environment on urban-scale using the historical data of weather stations. This study reviewed the development progress of ground meteorological observation, thermal infrared remote sensing and numerical simulation. Moreover, the potential advantages and disadvantages, applicability and the development trends of these techniques were also summarized, aiming to add fundamental knowledge of understanding the urban thermal environment assessment and optimization.
NASA Astrophysics Data System (ADS)
Zhang, Linfang; Yu, Zhenyang; Liu, Jiying; Zhang, Linhua
2018-02-01
With the improvement of people’s living standard, people not only pay attention to the indoor environment, but also the outdoor environment. The paper simulated the outdoor wind environment and thermal environment for the building in its design stage, then suggestions are provided for further design stage using a case study in a residential area in Liaocheng, China. SketchUp is used to establish 3D model and PHOENICS is adopted to simulate wind environment and thermal environment. The evaluation criterion mainly utilized Green Building Evaluation Criteria and Urban Residential Area Thermal Environment Design Criteria and ISO7243. Through the analysis of the wind and thermal environment problems, this paper puts forward measures and suggestions to provide reference for the later planning.
Simple Thermal Environment Model (STEM) User's Guide
NASA Technical Reports Server (NTRS)
Justus, C.G.; Batts, G. W.; Anderson, B. J.; James, B. F.
2001-01-01
This report presents a Simple Thermal Environment Model (STEM) for determining appropriate engineering design values to specify the thermal environment of Earth-orbiting satellites. The thermal environment of a satellite, consists of three components: (1) direct solar radiation, (2) Earth-atmosphere reflected shortwave radiation, as characterized by Earth's albedo, and (3) Earth-atmosphere-emitted outgoing longwave radiation (OLR). This report, together with a companion "guidelines" report provides methodology and guidelines for selecting "design points" for thermal environment parameters for satellites and spacecraft systems. The methods and models reported here are outgrowths of Earth Radiation Budget Experiment (ERBE) satellite data analysis and thermal environment specifications discussed by Anderson and Smith (1994). In large part, this report is intended to update (and supersede) those results.
Size, shape, and the thermal niche of endotherms
Porter, Warren P.; Kearney, Michael
2009-01-01
A key challenge in ecology is to define species' niches on the basis of functional traits. Size and shape are important determinants of a species' niche but their causal role is often difficult to interpret. For endotherms, size and shape define the thermal niche through their interaction with core temperature, insulation, and environmental conditions, determining the thermoneutral zone (TNZ) where energy and water costs are minimized. Laboratory measures of metabolic rate used to describe TNZs cannot be generalized to infer the capacity for terrestrial animals to find their TNZ in complex natural environments. Here, we derive an analytical model of the thermal niche of an ellipsoid furred endotherm that accurately predicts field and laboratory data. We use the model to illustrate the relative importance of size and shape on the location of the TNZ under different environmental conditions. The interaction between body shape and posture strongly influences the location of the TNZ and the expected scaling of metabolic rate with size at constant temperature. We demonstrate that the latter relationship has a slope of approximately ½ rather than the commonly expected surface area/volume scaling of ⅔. We show how such functional traits models can be integrated with spatial environmental datasets to calculate null expectations for body size clines from a thermal perspective, aiding mechanistic interpretation of empirical clines such as Bergmann's Rule. The combination of spatially explicit data with biophysical models of heat exchange provides a powerful means for studying the thermal niches of endotherms across climatic gradients. PMID:19846790
The thermal limits to life on Earth
NASA Astrophysics Data System (ADS)
Clarke, Andrew
2014-04-01
Living organisms on Earth are characterized by three necessary features: a set of internal instructions encoded in DNA (software), a suite of proteins and associated macromolecules providing a boundary and internal structure (hardware), and a flux of energy. In addition, they replicate themselves through reproduction, a process that renders evolutionary change inevitable in a resource-limited world. Temperature has a profound effect on all of these features, and yet life is sufficiently adaptable to be found almost everywhere water is liquid. The thermal limits to survival are well documented for many types of organisms, but the thermal limits to completion of the life cycle are much more difficult to establish, especially for organisms that inhabit thermally variable environments. Current data suggest that the thermal limits to completion of the life cycle differ between the three major domains of life, bacteria, archaea and eukaryotes. At the very highest temperatures only archaea are found with the current high-temperature limit for growth being 122 °C. Bacteria can grow up to 100 °C, but no eukaryote appears to be able to complete its life cycle above ~60 °C and most not above 40 °C. The lower thermal limit for growth in bacteria, archaea, unicellular eukaryotes where ice is present appears to be set by vitrification of the cell interior, and lies at ~-20 °C. Lichens appear to be able to grow down to ~-10 °C. Higher plants and invertebrates living at high latitudes can survive down to ~-70 °C, but the lower limit for completion of the life cycle in multicellular organisms appears to be ~-2 °C.
Material of LAPAN's thermal IR camera equipped with two microbolometers in one aperture
NASA Astrophysics Data System (ADS)
Bustanul, A.; Irwan, P.; Andi M., T.
2017-11-01
Besides the wavelength used, there is another factor that we have to notice in designing an optical system. It is material used which is correct for the spectral bands determined. Basically, due the limitation of the available range and expensive, choosing and determining materials for Infra Red (IR) wavelength are more difficult and complex rather than visible spectrum. We also had the same problem while designing our thermal IR camera equipped with two microbolometers sharing aperture. Two spectral bands, 3 - 4 μm (MWIR) and 8 - 12 μm (LWIR), have been decided to be our thermal IR camera spectrum to address missions, i.e., peat land fire, volcanoes activities, and Sea Surface Temperature (SST). Referring those bands, we chose the appropriate material for LAPAN's IR camera optics. This paper describes material of LAPAN's IR camera equipped with two microbolometer in one aperture. First of all, we were learning and understanding of optical materials properties all matters of IR technology including its bandwidths. Considering some aspects, i.e., Transmission, Index of Refraction, Thermal properties covering the index gradient and coefficient of thermal expansion (CTE), the analysis then has been accomplished. Moreover, we were utilizing a commercial software, Thermal Desktop/Sinda Fluint, to strengthen the process. Some restrictions such as space environment, low cost, and performance mainly durability and transmission, were also cared throughout the trade off the works. The results of all those analysis, either in graphs or in measurement, indicate that the lens of LAPAN's IR camera with sharing aperture is based on Germanium/Zinc Selenide materials.
Dynamic thermal environment and thermal comfort.
Zhu, Y; Ouyang, Q; Cao, B; Zhou, X; Yu, J
2016-02-01
Research has shown that a stable thermal environment with tight temperature control cannot bring occupants more thermal comfort. Instead, such an environment will incur higher energy costs and produce greater CO2 emissions. Furthermore, this may lead to the degeneration of occupants' inherent ability to combat thermal stress, thereby weakening thermal adaptability. Measured data from many field investigations have shown that the human body has a higher acceptance to the thermal environment in free-running buildings than to that in air-conditioned buildings with similar average parameters. In naturally ventilated environments, occupants have reported superior thermal comfort votes and much greater thermal comfort temperature ranges compared to air-conditioned environments. This phenomenon is an integral part of the adaptive thermal comfort model. In addition, climate chamber experiments have proven that people prefer natural wind to mechanical wind in warm conditions; in other words, dynamic airflow can provide a superior cooling effect. However, these findings also indicate that significant questions related to thermal comfort remain unanswered. For example, what is the cause of these phenomena? How we can build a comfortable and healthy indoor environment for human beings? This article summarizes a series of research achievements in recent decades, tries to address some of these unanswered questions, and attempts to summarize certain problems for future research. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Thompson, Cynthia L; Williams, Susan H; Glander, Kenneth E; Teaford, Mark F; Vinyard, Christopher J
2014-05-01
Free-ranging primates are confronted with the challenge of maintaining an optimal range of body temperatures within a thermally dynamic environment that changes daily, seasonally, and annually. While many laboratory studies have been conducted on primate thermoregulation, we know comparatively little about the thermal pressures primates face in their natural, evolutionarily relevant environment. Such knowledge is critical to understanding the evolution of thermal adaptations in primates and for comparative evaluation of humans' unique thermal adaptations. We examined temperature and thermal environment in free-ranging, mantled howling monkeys (Alouatta palliata) in a tropical dry forest in Guanacaste, Costa Rica. We recorded subcutaneous (Tsc ) and near-animal ambient temperatures (Ta ) from 11 animals over 1586.5 sample hours during wet and dry seasons. Howlers displayed considerable variation in Tsc , which was largely attributable to circadian effects. Despite significant seasonal changes in the ambient thermal environment, howlers showed relatively little evidence for seasonal changes in Tsc . Howlers experienced warm thermal conditions which led to body cooling relative to the environment, and plateaus in Tsc at increasingly warm Ta . They also frequently faced cool thermal conditions (Ta < Tsc ) in which Tsc was markedly elevated compared with Ta . These data add to a growing body of evidence that non-human primates have more labile body temperatures than humans. Our data additionally support a hypothesis that, despite inhabiting a dry tropical environment, howling monkeys experience both warm and cool thermal pressures. This suggests that thermal challenges may be more prevalent for primates than previously thought, even for species living in nonextreme thermal environments. Copyright © 2014 Wiley Periodicals, Inc.
Study on indoor thermal environment in winter for rural residences in Yulin region
NASA Astrophysics Data System (ADS)
Yanjun, Li; Weixiao, Han
2018-02-01
Yulin region is located in the northern part of Shaanxi Province, China. The winter here is very cold and it has a long duration. In this paper, a rural residence which was located in Yulin region was taken as a study object. Indoor thermal environment of the rural residence were tested, including indoor air temperature and air relative humidity. Then, test data were analyzed. It was summarized that indoor thermal environment of test room can not fully meet human thermal comfort needs, and some tactics of regulation building thermal environment were proposed. This research contributes to improvement of indoor thermal environment for local rural residences and it provides reference for rural residences in other cold regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhuri, Ahsan; Love, Norman
High-velocity oxy–fuel (HVOF) thermal spraying was developed in 1930 and has been commercially available for twenty-five years. HVOF thermal spraying has several benefits over the more conventional plasma spray technique including a faster deposition rate which leads to quicker turn-around, with more durable coatings and higher bond strength, hardness and wear resistance due to a homogeneous distribution of the sprayed particles. HVOF thermal spraying is frequently used in engineering to deposit cermets, metallic alloys, composites and polymers, to enhance product life and performance. HVOF thermal spraying system is a highly promising technique for applying durable coatings on structural materials formore » corrosive and high temperature environments in advanced ultra-supercritical coal- fired (AUSC) boilers, steam turbines and gas turbines. HVOF thermal spraying is the preferred method for producing coatings with low porosity and high adhesion. HVOF thermal spray process has been shown to be one of the most efficient techniques to deposit high performance coatings at moderate cost. Variables affecting the deposit formation and coating properties include hardware characteristics such as nozzle geometry and spraying distance and process parameters such as equivalence ratio, gas flow density, and powder feedstock. In the spray process, the powder particles experience very high speeds combined with fast heating to the powder material melting point or above. This high temperature causes evaporation of the powder, dissolution, and phase transformations. Due to the complex nature of the HVOF technique, the control and optimization of the process is difficult. In general, good coating quality with suitable properties and required performance for specific applications is the goal in producing thermal spray coatings. In order to reach this goal, a deeper understanding of the spray process as a whole is needed. Although many researchers studied commercial HVOF thermal spray systems, there exists a lack of fundamental understanding of the effect of hardware characteristics and operating parameters on HVOF thermally sprayed coatings. Motivated by these issues, this study is devoted to investigate the effect of hardware characteristics (e.g. spraying distance) and operating parameters (e.g. combustion chamber pressure, equivalence ratio, and total gas flow rate) on HVOF sprayed coatings using Inconel 718 alloy. The current study provides extensive understanding of several key operating and process parameters to optimize the next generation of HVOF thermally sprayed coatings for high temperature and harsh environment applications. A facility was developed to support this endeavor in a safe and efficient way, including a HVOF thermal spray system with a Data Acquisition and Remote Controls system (DARCS). The coatings microstructure and morphology were examined using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Nanoindentation.« less
Current Issues in Human Spacecraft Thermal Control Technology
NASA Technical Reports Server (NTRS)
Ungar, Eugene K.
2008-01-01
Efficient thermal management of Earth-orbiting human spacecraft, lunar transit spacecraft and landers, as well as a lunar habitat will require advanced thermal technology. These future spacecraft will require more sophisticated thermal control systems that can dissipate or reject greater heat loads at higher input heat fluxes while using fewer of the limited spacecraft mass, volume and power resources. The thermal control designs also must accommodate the harsh environments associated with these missions including dust and high sink temperatures. The lunar environment presents several challenges to the design and operation of active thermal control systems. During the Apollo program, landings were located and timed to occur at lunar twilight, resulting in a benign thermal environment. The long duration polar lunar bases that are foreseen in 15 years will see extremely cold thermal environments. Long sojourns remote from low-Earth orbit will require lightweight, but robust and reliable systems. Innovative thermal management components and systems are needed to accomplish the rejection of heat from lunar bases. Advances are required in the general areas of radiators, thermal control loops and equipment. Radiators on the Moon's poles must operate and survive in very cold environments. Also, the dusty environment of an active lunar base may require dust mitigation and removal techniques to maintain radiator performance over the long term.
Supramolecular assembly in the epiisopiloturine hydrochloride salt
NASA Astrophysics Data System (ADS)
Mafud, Ana Carolina; Reinheimer, Eric W.; Lima, Filipe Camargo Dalmatti Alves; Batista, Larissa Fernandes; de Paula, Karina; Véras, Leiz Maria Costa; de Souza de Almeida Leite, José Roberto; Venancio, Tiago; Mascarenhas, Yvonne Primerano
2017-05-01
Epiisopiloturine hydrochloride (Epi-HCl) salt was synthetized from epiisopiloturine, an in vivo anthelmintic compound against Schistosoma mansoni worms. Despite there being no acute toxicity in mammalian cells, the compound's water insolubility makes its administration difficult. In this communication, we report the characterization of Epi-HCl its features by spectroscopy, thermal analysis, and PXRD. The single crystals suitable to X-ray diffraction were grown by slow evaporation technique. To better understand the nature of Epi-HCl' solid state, SS-NMR was also used. The salt's intramolecular structure was maintained via cation-pi intramolecular interactions, which in conjunction with hydrogen bonding, gives rise to an extended supramolecular assembly. The interatomic distances within the cations and environment around the chloride anion vary as function of temperature, suggesting a packing relaxation.
Thermal-to-visible face recognition using partial least squares.
Hu, Shuowen; Choi, Jonghyun; Chan, Alex L; Schwartz, William Robson
2015-03-01
Although visible face recognition has been an active area of research for several decades, cross-modal face recognition has only been explored by the biometrics community relatively recently. Thermal-to-visible face recognition is one of the most difficult cross-modal face recognition challenges, because of the difference in phenomenology between the thermal and visible imaging modalities. We address the cross-modal recognition problem using a partial least squares (PLS) regression-based approach consisting of preprocessing, feature extraction, and PLS model building. The preprocessing and feature extraction stages are designed to reduce the modality gap between the thermal and visible facial signatures, and facilitate the subsequent one-vs-all PLS-based model building. We incorporate multi-modal information into the PLS model building stage to enhance cross-modal recognition. The performance of the proposed recognition algorithm is evaluated on three challenging datasets containing visible and thermal imagery acquired under different experimental scenarios: time-lapse, physical tasks, mental tasks, and subject-to-camera range. These scenarios represent difficult challenges relevant to real-world applications. We demonstrate that the proposed method performs robustly for the examined scenarios.
Comments on an Analytical Thermal Agglomeration for Problems with Surface Growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, N. E.
2017-03-22
Up until Dec 2016, the thermal agglomeration was very heuristic, and as such, difficult to define. The lack of predictability became problematic, and the current notes represent the first real attempt to systematize the specification of the agglomerated process parameters.
NASA Astrophysics Data System (ADS)
Tulaczyk, S. M.; Hossainzadeh, S.
2010-12-01
Antarctic heat flow plays an important role in determining the rate of meltwater production at the base of the Antarctic ice sheet. Basal meltwater represents a key control on ice sheet mass balance, Antarctic geochemical fluxes into the Southern Ocean, and subglacial microbial habitats. However, direct measurements of heat flow are difficult in glaciated terrains. Vertical temperature profiles determined in ice boreholes are influenced by thermal energy fluxes associated with basal melting/freezing and have to be used with caution when calculating geothermal flux rates. Two published continent-wide geophysical estimates of Antarctic geothermal fluxes provide valuable databases but are not fully consistent with each other and need to be verified by direct subglacial measurements. Planned drilling into Antarctic subglacial environments will offer the opportunity to perform such measurements. Determination of temperature gradients in sedimentary sequences resting at the bottom of subglacial lakes will offer particularly useful insights. Temperature profiles in such environments will not be thermally or mechanically disturbed as it may be the case in till layers proximal to a sliding ice base. We will review plans for making such measurements as part of the WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) project, which is scheduled to penetrate the West Antarctic ice sheet in 2012-13 and 2013-14.
Yang, Zunyi; McLendon, Chris; Hutter, Daniel; Bradley, Kevin M; Hoshika, Shuichi; Frye, Carole B; Benner, Steven A
2015-06-15
Assays that detect DNA or RNA (xNA) are highly sensitive, as small amounts of xNA can be amplified by PCR. Unfortunately, PCR is inconvenient in low-resource environments, and requires equipment and power that might not be available in these environments. Isothermal procedures, which avoid thermal cycling, are often confounded by primer dimers, off-target priming, and other artifacts. Here, we show how a "self avoiding molecular recognition system" (SAMRS) eliminates these artifacts and gives clean amplicons in a helicase-dependent isothermal amplification (SAMRS-HDA). We also show that incorporating SAMRS into the 3'-ends of primers facilitates the design and screening of primers for HDA assays. Finally, we show that SAMRS-HDA can be twofold multiplexed, difficult to achieve with HDA using standard primers. Thus, SAMRS-HDA is a more versatile approach than standard HDA, with a broader applicability for xNA-targeted diagnostics and research. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Zunyi; McLendon, Chris; Hutter, Daniel; Bradley, Kevin M.; Hoshika, Shuichi; Frye, Carole; Benner, Steven A.
2015-01-01
Assays that target DNA or RNA (xNA) are highly sensitive, as small amounts of xNA can be amplified by PCR. Unfortunately, PCR is inconvenient in low resource environments, requiring equipment and power that may not be available in these environments. However, isothermal procedures that avoid thermal cycling are often confounded by primer dimers, off-target priming, and other artifacts. Here, we show how a “self avoiding molecular recognition system” (SAMRS) eliminates these artifacts to give clean amplicons in a helicase-dependent isothermal amplification (SAMRS-HDA). We also show that incorporating SAMRS into the 3′-ends of primers facilitates the design and screening of primers for HDA assays. Finally, we show that SAMRS-HDA can be twofold multiplexed, something difficult to achieve with HDA using standard primers. This shows that SAMRS-HDA is a more versatile approach than standard HDA with a broader applicability for xNA-targeted diagnostics and research. PMID:25953623
Corrosion behavior of a superduplex stainless steel in chloride aqueous solution
NASA Astrophysics Data System (ADS)
Dabalà, Manuele; Calliari, Irene; Variola, Alessandra
2004-04-01
Super duplex stainless steels (SDSS) have been widely used as structural materials for chemical plants (especially in those engaged in phosphoric acid production), in the hydrometallurgy industries, and as materials for offshore applications due to their excellent corrosion resistance in chloride environments, compared with other commercial types of ferritic stainless steels. These alloys also possess superior weldability and better mechanical properties than austenitic stainless steels. However, due to their two-phase structure, the nature of which is very dependent on their composition and thermal history, the behavior of SDSS regarding localized corrosion appears difficult to predict, especially in chloride environments. To improve their final properties, the effect of the partition of the alloying elements between the two phases, and the composition and microstructure of each phase are the key to understanding the localized corrosion phenomena of SDSS. This paper concerns the effects of the SDSS microstructure and heat treatment on the SDSS corrosion resistance in aqueous solutions, containing different amounts of NaCl at room temperature.
Specific Heat Capacities of Martian Sedimentary Analogs at Low Temperatures
NASA Astrophysics Data System (ADS)
Vu, T. H.; Piqueux, S.; Choukroun, M.; Christensen, P. R.; Glotch, T. D.; Edwards, C. S.
2017-12-01
Data returned from Martian missions have revealed a wide diversity of surface mineralogies, especially in geological structures interpreted to be sedimentary or altered by liquid water. These terrains are of great interest because of their potential to document the environment at a time when life may have appeared. Intriguingly, Martian sedimentary rocks show distinctly low thermal inertia values (300-700 J.m-2.K-1.s-1/2, indicative of a combination of low thermal conductivity, specific heat, and density) that are difficult to reconcile with their bedrock morphologies (where hundreds of magmatic bedrock occurrences have been mapped with thermal inertia values >> 1200 J.m-2.K-1.s-1/2). While low thermal conductivity and density values are sometimes invoked to lower the thermal inertia of massive bedrock, both are not sufficient to lower values below 1200 J.m-2.K-1.s-1/2, far above the numbers reported in the literature for Martian sedimentary/altered rocks. In addition, our limited knowledge of the specific heat of geological materials and their temperature dependency, especially below room temperature, have prevented accurate thermal modeling and impeded interpretation of the thermal inertia data. In this work, we have addressed that knowledge gap by conducting experimental measurements of the specific heat capacities of geological materials relevant to Martian sedimentary rocks at temperatures between 100 and 350 K. The results show that variation of the specific heat with temperature, while appreciable to some extent, is rather small and is unlikely to contribute significantly in the lowering of thermal inertia values. Therefore, thermal conductivity is the parameter that has the most potential in explaining this phenomenon. Such scenario could be possible if the sedimentary rocks are finely layered with poor thermal contact between each internal bed. As the density of most geological materials is well-known, the obtained specific heat data can be used to uniquely constrain the thermal conductivity, thereby improving thermal prediction models for Martian surface temperatures. This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Support from the NASA Solar System Workings Program and government sponsorship are acknowledged.
2010-03-01
AFRL-RB-WP-TR-2010-3028 DESIGN AND ANALYSIS OF ADVANCED MATERIALS IN A THERMAL /ACOUSTIC ENVIRONMENT Delivery Order 0007: Volume 1‒Structural...Final 15 July 2005 – 30 March 2010 4. TITLE AND SUBTITLE DESIGN AND ANALYSIS OF ADVANCED MATERIALS IN A THERMAL /ACOUSTIC ENVIRONMENT Delivery...color. 14. ABSTRACT Air vehicles flying at hypersonic speeds encounter extreme thermal , aerodynamic and acoustic loads, utilizing thermal protection
Simplified numerical description of latent storage characteristics for phase change wallboard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feustel, H.E.
1995-05-01
Cooling of residential California buildings contributes significantly to electrical consumption and peak power demand. Thermal mass can be utilized to reduce the peak-power demand, down-size the cooling systems and/or switch to low-energy cooling sources. Large thermal storage devices have been used in the past to overcome the short-comings of alternative cooling sources or to avoid high demand charges. With the advent of phase change material (PCM) implemented in gypsum board, plaster or other wall-covering material, thermal storage can be part of the building structure even for light-weight buildings. PCMs have two important advantages as storage media: they can offer anmore » order-of-magnitude increase in thermal storage capacity and their discharge is almost isothermal. This allows to store large amounts of energy without significantly changing the temperature of the sheathing. As heat storage takes place in the building part where the loads occur, rather than externally (e.g., ice or chilled water storage), additional transport energy is not needed. To numerically evaluate the latent storage performance of treated wallboard, RADCOOL, a thermal building simulation model based on the finite difference approach, will be used. RADCOOL has been developed in the SPARK environment in order to be compatible with the new family of simulation tools being developed at Lawrence Berkeley Laboratory. As logical statements are difficult to use in SPARK, a continuous function for the specific heat and the enthalpy had to be found. This report covers the development of a simplified description of latent storage characteristics for wallboard treated with phase change material.« less
Thermal control on the lunar surface
NASA Technical Reports Server (NTRS)
Walker, Sherry T.; Alexander, Reginald A.; Tucker, Stephen P.
1995-01-01
For a mission to the Moon which lasts more than a few days, thermal control is a challenging problem because of the Moon's wide temperature swings and long day and night periods. During the lunar day it is difficult to reject heat temperatures low enough to be comfortable for either humans or electronic components, while excessive heat loss can damage unprotected equipment at night. Fluid systems can readily be designed to operate at either the hot or cold temperature extreme but it is more difficult to accomodate both extermes within the same system. Special consideration should be given to sensitive systems, such as optics and humans, and systems that generate large amounts of waste heat, such as lunar bases or manufacturing facilities. Passive thermal control systems such as covers, shades and optical coatings can be used to mitigate the temperature swings experienced by components. For more precise thermal control active systems such as heaters or heat pumps are required although they require more power than passive systems.
Embryos of non-native anoles are robust to urban thermal environments.
Tiatragul, Sarin; Kurniawan, Audeline; Kolbe, Jason J; Warner, Daniel A
2017-04-01
The transformation of natural habitats into urban landscapes dramatically alters thermal environments, which in turn, can impact local biota. Ectothermic organisms that are oviparous are particularly sensitive to these altered environments because their embryos cannot behaviorally thermoregulate and the surrounding environment determines the temperature experienced during development. We studied the effects of urban and forested thermal environments on embryo development and hatchling phenotypes in two non-native lizards (Anolis sagrei and A. cristatellus) in metropolitan Miami, Florida. To determine if embryos from urban and forested sites are adapted to their respective thermal environments, we incubated eggs from each site using temperatures that simulate likely nest conditions in both urban and forested environments. For both species, urban thermal environments accelerated embryonic development, but had no impact on egg survival or any of the phenotypic traits that were measured (e.g., body size, running performance, and locomotor behavior). Our results provide no evidence that embryos from urban and forested sites are adapted to their respective thermal environments. Instead, the lack of any major effects suggest that embryos of both species are physiologically robust with respect to novel environments, which could have facilitated their success in establishing in non-native ranges and in human-modified landscapes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Humplik, Thomas; Stirrup, Emily K.; Grillet, Anne M.; ...
2016-04-30
The transient transport of electrolytes in thermally-activated batteries is studied in this paper using electron probe micro-analysis (EPMA), demonstrating the robust capability of EPMA as a useful tool for studying and quantifying mass transport within porous materials, particularly in difficult environments where classical flow measurements are challenging. By tracking the mobility of bromine and potassium ions from the electrolyte stored within the separator into the lithium silicon anode and iron disulfide cathode, we are able to quantify the transport mechanisms and physical properties of the electrodes including permeability and tortuosity. Due to the micron to submicron scale porous structure ofmore » the initially dry anode, a fast capillary pressure driven flow is observed into the anode from which we are able to set a lower bound on the permeability of 10 -1 mDarcy. The transport into the cathode is diffusion-limited because the cathode originally contained some electrolyte before activation. Finally, using a transient one-dimensional diffusion model, we estimate the tortuosity of the cathode electrode to be 2.8 ± 0.8.« less
NASA Technical Reports Server (NTRS)
Koontz, S. L.; Albyn, K.; Leger, L.
1990-01-01
The use of thermal atom test methods as a materials selection and screening technique for low-earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined in thermal atom environments are compared with those observed in LEO and in high-quality LEO simulations. Reaction efficiencies (cu cm/atom) measured in a new type of thermal atom apparatus are one-thousandth to one ten-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of eight in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain speciic thermal atom test environments can be used as reliable materials screening tools.
Adaptive optics using a MEMS deformable mirror for a segmented mirror telescope
NASA Astrophysics Data System (ADS)
Miyamura, Norihide
2017-09-01
For small satellite remote sensing missions, a large aperture telescope more than 400mm is required to realize less than 1m GSD observations. However, it is difficult or expensive to realize the large aperture telescope using a monolithic primary mirror with high surface accuracy. A segmented mirror telescope should be studied especially for small satellite missions. Generally, not only high accuracy of optical surface but also high accuracy of optical alignment is required for large aperture telescopes. For segmented mirror telescopes, the alignment is more difficult and more important. For conventional systems, the optical alignment is adjusted before launch to achieve desired imaging performance. However, it is difficult to adjust the alignment for large sized optics in high accuracy. Furthermore, thermal environment in orbit and vibration in a launch vehicle cause the misalignments of the optics. We are developing an adaptive optics system using a MEMS deformable mirror for an earth observing remote sensing sensor. An image based adaptive optics system compensates the misalignments and wavefront aberrations of optical elements using the deformable mirror by feedback of observed images. We propose the control algorithm of the deformable mirror for a segmented mirror telescope by using of observed image. The numerical simulation results and experimental results show that misalignment and wavefront aberration of the segmented mirror telescope are corrected and image quality is improved.
Potchter, Oded; Cohen, Pninit; Lin, Tzu-Ping; Matzarakis, Andreas
2018-08-01
Over the past century, many research studies have been conducted in an attempt to define thermal conditions for humans in the outdoor environment and to grade thermal sensation. Consequently, a large number of indices have been proposed. The examination of human thermal indices by thermal subjective perception has become recently a methodical issue to confirm the accuracy, applicability and validation of human thermal indices. The aims of this study are: (a) to review studies containing both calculated human thermal conditions and subjective thermal perception in the outdoor environment (b) to identify the most used human thermal indices for evaluating human thermal perception (c) to examine the relation between human thermal comfort range and outdoor thermal environment conditions and (d) to compare between categories of thermal sensation in different climatic zones based on subjective perception and levels of thermal strain. A comprehensive literature review identified 110 peer-reviewed articles which investigated in-situ thermal conditions versus subjective thermal perception during 2001-2017. It seems that out of 165 human thermal indices that have been developed, only 4 (PET, PMV, UTCI, SET*) are widely in use for outdoor thermal perception studies. Examination of the relation between human thermal comfort range and outdoor thermal environment conditions for selective indices in different climatic zones shows that the range of the thermal comfort or dis-comfort is affected by the outdoor thermal environment. For the PET index, the "neutral" range for hot climates of 24-26°C is agreed by 95% of the studies where for cold climate, the "neutral" range of 15-20°C is agreed by 89% of the studies. For the UTCI, the "no thermal stress" category is common to all climates. The "no stress category" of 16-23°C is agreed by 80% of the case studies, while 100% of the case studies agreed that the range is between 18 and 23°C. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Koontz, S. L.; Kuminecz, J.; Leger, L.; Nordine, P.
1988-01-01
The use of thermal atom test methods as a materials selection and screening technique for low-Earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined to be in thermal atom environments are compared to those observed in LEO and in high quality LEO simulations. Reaction efficiencies measured in a new type of thermal atom apparatus are one-hundredth to one-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of 8 in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain specific thermal test environments can be used as reliable materials screening tools. Using thermal atom methods to predict material lifetime in LEO requires direct calibration of the method against LEO data or high quality simulation data for each material.
Human thermal sensation and comfort in a non-uniform environment with personalized heating.
Deng, Qihong; Wang, Runhuai; Li, Yuguo; Miao, Yufeng; Zhao, Jinping
2017-02-01
Thermal comfort in traditionally uniform environment is apparent and can be improved by increasing energy expenses. To save energy, non-uniform environment implemented by personalized conditioning system attracts considerable attention, but human response in such environment is unclear. To investigate regional- and whole-body thermal sensation and comfort in a cool environment with personalized heating. In total 36 subjects (17 males and 19 females) including children, adults and the elderly, were involved in our experiment. Each subject was first asked to sit on a seat in an 18°C chamber (uniform environment) for 40min and then sit on a heating seat in a 16°C chamber (non-uniform environment) for another 40min after 10min break. Subjects' regional- and whole-body thermal sensation and comfort were surveyed by questionnaire and their skin temperatures were measured by wireless sensors. We statistically analyzed subjects' thermal sensation and comfort and their skin temperatures in different age and gender groups and compared them between the uniform and non-uniform environments. Overall thermal sensation and comfort votes were respectively neutral and just comfortable in 16°C chamber with personalized heating, which were significantly higher than those in 18°C chamber without heating (p<0.01). The effect of personalized heating on improving thermal sensation and comfort was consistent in subjects of different age and gender. However, adults and the females were more sensitive to the effect of personalized heating and felt cooler and less comfort than children/elderly and the males respectively. Variations of the regional thermal sensation/comfort across human body were consistent with those of skin temperature. Personalized heating significantly improved human thermal sensation and comfort in non-uniform cooler environment, probably due to the fact that it increased skin temperature. However, the link between thermal sensation/comfort and variations of skin temperature is rather complex and warrant further investigation. Copyright © 2016 Elsevier B.V. All rights reserved.
Influence of winding construction on starter-generator thermal processes
NASA Astrophysics Data System (ADS)
Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.
2018-01-01
Dynamic processes in starter-generators features high winding are overcurrent. It can lead to insulation overheating and fault operation mode. For hybrid and electric vehicles, new high efficiency construction of induction machines windings is proposed. Stator thermal processes need be considered in the most difficult operation modes. The article describes construction features of new compact stator windings, electromagnetic and thermal models of processes in stator windings and explains the influence of innovative construction on thermal processes. Models are based on finite element method.
Long-term perceptions of outdoor thermal environments in an elementary school in a hot-humid climate
NASA Astrophysics Data System (ADS)
Shih, Wen-Mei; Lin, Tzu-Ping; Tan, Ning-Xin; Liu, Mu-Hsien
2017-09-01
Previous studies on thermal comfort in school environments have focused more on indoor thermal environments than outdoor ones, thus providing a limited understanding of occupants' long-term thermal perceptions. Taiwan is located in a subtropical region, where it can be stiflingly hot outside in summer. This highlights the need to ensure proper thermal comfort on campus. In the present study, thermal environment parameters were measured and collected in several outdoor spaces of an elementary school in southern Taiwan. In addition, a questionnaire was used to explore occupants' long-term thermal perceptions of these spaces. During summer months, the physiological equivalent temperature (PET) of these outdoor spaces in over 60% of the daytime in summer between 10 a.m. and 4 p.m. was higher than 38 °C PET, indicating high heat stress. The results of occupants' long-term perceptions of the thermal comfort of these spaces suggested that dissatisfaction with thermal comfort was associated more with solar radiation than with wind speed. Finally, this study simulated a campus environment where more trees are planted and compared the thermal comfort indices before and after the simulation. The results indicated that this solution contributed to a decrease in the PET of these environments, thereby alleviating high heat stress. This study can inform the improvement of microclimates and thermal comfort during campus layout planning. Planting trees judiciously across a campus increases outdoor shades and creates outdoor spaces that are more comfortable and adaptable to hot weather conditions, thereby ensuring frequent use of these spaces.
Gaussian ancillary bombardment
NASA Astrophysics Data System (ADS)
Grimmer, Daniel; Brown, Eric; Kempf, Achim; Mann, Robert B.; Martín-Martínez, Eduardo
2018-05-01
We analyze in full detail the time evolution of an open Gaussian quantum system rapidly bombarded by Gaussian ancillae. As a particular case this analysis covers the thermalization (or not) of a harmonic oscillator coupled to a thermal reservoir made of harmonic oscillators. We derive general results for this scenario and apply them to the problem of thermalization. We show that only a particular family of system-environment couplings will cause the system to thermalize to the temperature of its environment. We discuss that if we want to understand thermalization as ensuing from the Markovian interaction of a system with the individual microconstituents of its (thermal) environment then the process of thermalization is not as robust as one might expect.
GC/FT-IR ANALYSIS OF THE THERMALLY LABILE COMPOUND TRIS (2,3-DIBROMOPROPYL) PHOSPHATE
A fast and convenient GC method has been developed for a compound [tris(2,3-dibromopropyl)phosphate] that poses a difficult analytical problem for both GC (thermal instability/low volatility) and LC (not amenable to commonly available, sensitive detectors) analysis. his method em...
Thermogravimetric and differential thermal analysis of potassium bicarbonate contaminated cellulose
A. Broido
1966-01-01
When samples undergo a complicated set of simultaneous and sequential reactions, as cellulose does on heating, results of thermogravimetric and differential thermal analyses are difficult to interpret. Nevertheless, careful comparison of pure and contaminated samples, pyrolyzed under identical conditions, can yield useful information. In these experiments TGA and DTA...
Electroset Technology: On the Forefront of Manufacturing
1993-01-01
cure of the can be electrically controlled and electrically accelerated. This is useful because polymers are typically not good thermal conductors...from a fluid to a gas. But polymers are not good thermal conductors so it is difficult to get the heat into them in order to make the foam. With
Flight test of a synthetic aperture radar antenna using STEP
NASA Technical Reports Server (NTRS)
Zimcik, D. G.; Vigeron, F. R.; Ahmed, S.
1984-01-01
To establish confidence in its overall performance, credible information on the synthetic aperture radar antenna's mechanical properties in orbit must be obtained. However, the antenna's size, design, and operating environment make it difficult to simulate operating conditions under 1-g Earth conditions. The Space Technology Experiments Platform (STEP) offers a timely opportunity to mechanically qualify and characterize the antenna design in a representative environment. The proposed experimental configuration would employ a half-system of the full-scale RADARSAT antenna which would be mounted on the STEP platform in the orbiter cargo bay such that it could be deployed and retracted in orbit (as shown in this figure). The antenna would be subjected to typical environmental exposures while an array of targets and sensors on the antenna support structure and reflecting surface are observed and monitored. In particular, the typical environments would include deployment and retraction, dynamic response to vehicle thruster or base exciter inputs, and thermal soak and transient effects upon entering or exiting Earth eclipse. The proposed experiment would also provide generic information on the properties of large space structures in space and on techniques to obtain the desired information.
Telemeco, Rory S; Gangloff, Eric J; Cordero, Gerardo A; Polich, Rebecca L; Bronikowski, Anne M; Janzen, Fredric J
2017-10-01
The mechanisms that mediate the interaction between the thermal environment and species ranges are generally uncertain. Thermal environments may directly restrict species when environments exceed tolerance limits (i.e. the fundamental niche). However, thermal environments might also differentially affect relative performance among species prior to fundamental tolerances being met (i.e. the realized niche). We examined stress physiology (plasma glucose and corticosterone), mitochondrial performance and the muscle metabolome of congeneric lizards that naturally partition the thermal niche, Elgaria multicarinata (southern alligator lizards; SALs) and Elgaria coerulea (northern alligator lizards; NALs), in response to a thermal challenge to quantify variation in physiological performance and tolerance. Both NAL and SAL displayed physiological stress in response to high temperature, but neither showed signs of irreversible damage. NAL displayed a higher baseline mitochondrial respiration rate than SAL. Moreover, NAL substantially adjusted their physiology in response to thermal challenge, whereas SAL did not. For example, the metabolite profile of NAL shifted with changes in key energetic molecules, whereas these were unaffected in SAL. Our results indicate that near-critical high temperatures should incur greater energetic cost in NAL than SAL via an elevated metabolic rate and changes to the metabolome. Thus, SAL displace NAL in warm environments that are within NAL's fundamental thermal niche, but relatively costly. Our results suggest that subcritical thermal events can contribute to biogeographic patterns via physiological differences that alter the relative costs of living in warm or cool environments. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Laser-based firing systems for prompt initiation of secondary explosives
NASA Technical Reports Server (NTRS)
Meeks, Kent D.; Setchell, Robert E.
1993-01-01
Motivated by issues of weapon safety and security, laser based firing systems for promptly initiating secondary explosives have been under active development at Sandia National Laboratories for more than four years. Such a firing system consists of miniaturized, Q-switched, solid-state laser, optical detonators, optical safety switches, and elements for splitting, coupling, and transmitting the laser output. Potential system applications pose significant challenges in terms of server mechanical and thermal environments and packaging constraints, while requiring clear demonstration of safety enhancements. The Direct Optical Initiation (DOI) Program at Sandia is addressing these challenges through progress development phases during which the design, fabrication, and testing of prototype hardware is aimed at more difficult application requirements. A brief history of the development program, and a summary of current and planned activities, will be presented.
Joint Test Plan for Gas Dynamic Spray Technology Demonstration
NASA Technical Reports Server (NTRS)
Lewis, Pattie
2008-01-01
Air Force Space Command (AFSPC) and NASA have similar missions, facilities, and structures located in similar harsh environments. Both are responsible for a number of facilities/structures with metallic structural and non-structural components in highly and moderately corrosive environments. Regardless of the corrosivity of the environment, all metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are subject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by AFSPC and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GDS) technology (also known as Cold Spray) will be evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GDS coatings also have no VOCs and are environmentally preferable coatings. To achieve a condition suitable for the application of a coating system, including GDS coatings, the substrate must undergo some type of surface preparation and/or depainting operation to ensure adhesion of the new coating system. The GDS unit selected for demonstration has a powder feeding system that can be used for surface preparation or coating application. The surface preparation feature will also be examined. The primary objective of this effort is to demonstrate GDS technology as a repair method for TSCs. The project will also determine the optimal GDS coating thickness for acceptable performance. Successful completion of this project will result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations and will improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.
Aerodynamic heating environment definition/thermal protection system selection for the HL-20
NASA Astrophysics Data System (ADS)
Wurster, K. E.; Stone, H. W.
1993-09-01
Definition of the aerothermal environment is critical to any vehicle such as the HL-20 Personnel Launch System that operates within the hypersonic flight regime. Selection of an appropriate thermal protection system design is highly dependent on the accuracy of the heating-environment prediction. It is demonstrated that the entry environment determines the thermal protection system design for this vehicle. The methods used to predict the thermal environment for the HL-20 Personnel Launch System vehicle are described. Comparisons of the engineering solutions with computational fluid dynamic predictions, as well as wind-tunnel test results, show good agreement. The aeroheating predictions over several critical regions of the vehicle, including the stagnation areas of the nose and leading edges, windward centerline and wing surfaces, and leeward surfaces, are discussed. Results of predictions based on the engineering methods found within the MINIVER aerodynamic heating code are used in conjunction with the results of the extensive wind-tunnel tests on this configuration to define a flight thermal environment. Finally, the selection of the thermal protection system based on these predictions and current technology is described.
Teaching about Heat and Temperature Using an Investigative Demonstration
ERIC Educational Resources Information Center
Brown, Patrick
2011-01-01
One physical science topic that is difficult for middle school students is the transfer of thermal energy: Research indicates many have trouble understanding that thermal energy naturally transfers from the "warmer" object to the "colder" object until both objects reach the same temperature (Driver et al. 1994; Keeley, Eberle, and Tugel 2007).…
External fuel vaporization study, phase 2
NASA Technical Reports Server (NTRS)
Szetela, E. J.; Chiappetta, L.
1981-01-01
An analytical study was conducted to evaluate the effect of variations in fuel properties on the design of an external fuel vaporizaton system. The fuel properties that were considered included thermal stability, critical temperature, enthalpy a critical conditions, volatility, and viscosity. The design parameters that were evaluated included vaporizer weight and the impact on engine requirement such as maintenance, transient response, performance, and altitude relight. The baseline fuel properties were those of Jet A. The variation in thermal stability was taken as the thermal stability variation for Experimental Referee Broad Specification (ERBS) fuel. The results of the analysis indicate that a change in thermal stability equivalent to that of ERBS would increase the vaporization system weight by 20 percent, decrease oprating time between cleaning by 40 percent and make altitude relight more difficult. An increase in fuel critical temperature of 39 K would require a 40 percent increase in vaporization system weight. The assumed increase in enthalpy and volatility would also increase vaporizer weight by 40 percent and make altitude relight extremely difficult. The variation in fuel viscosity would have a negligible effect on the design parameters.
NASA Astrophysics Data System (ADS)
Walter, M. R.; Des Marais, David J.
1993-01-01
Current interpretations of the early history of Mars suggest many similarities with the early Earth and therefore raise the possibility that the Archean and Proterozoic history of life on Earth could have a counterpart on Mars. Terrestrial experience suggests that, with techniques that can be employed remotely, ancient springs, including thermal springs, could well yield important information. By delivering water and various dissolved species to the sunlit surface of Mars, springs very likely created an environment suitable for life, which could have been difficult, if not impossible, to attain elsewhere. The chemical and temperature gradients associated with thermal springs sort organisms into sharply delineated, distinctive and different communities, and so diverse organisms are concentrated into relatively small areas in a predictable and informative fashion. A wide range of metabolic strategies are concentrated into small areas, thus furnishing a useful and representative sampling of the existing biota. Mineral-charged springwaters frequently deposit chemical precipitates of silica and/or carbonate which incorporate microorganisms and preserve them as fossils. The juxtaposition of stream valley headwaters with volcanoes and impact craters on Mars strongly implies that subsurface heating of groundwater created thermal springs. On Earth, thermal springs create distinctive geomorphic features and chemical signatures which can be detected by remote sensing. Spring deposits can be quite different chemically from adjacent rocks. Individual springs can be hundreds of meters wide, and complexes of springs occupy areas up to several kilometers wide. Benthic microbial mats and the resultant stromatolites occupy a large fraction of the available area. The relatively high densities of fossils and microbial mat fabrics within these deposits make them highly prospective in any search for morphological evidence of life, and there are examples of microbial fossils in spring deposits as old as 300 Myr.
Walter, M R; Des Marais, D J
1993-01-01
Current interpretations of the early history of Mars suggest many similarities with the early Earth and therefore raise the possibility that the Archean and Proterozoic history of life on Earth could have a counterpart on Mars. Terrestrial experience suggests that, with techniques that can be employed remotely, ancient springs, including thermal springs, could well yield important information. By delivering water and various dissolved species to the sunlit surface of Mars, springs very likely created an environment suitable for life, which could have been difficult, if not impossible, to attain elsewhere. The chemical and temperature gradients associated with thermal springs sort organisms into sharply delineated, distinctive and different communities, and so diverse organisms are concentrated into relatively small areas in a predictable and informative fashion. A wide range of metabolic strategies are concentrated into small areas, thus furnishing a useful and representative sampling of the existing biota. Mineral-charged springwaters frequently deposit chemical precipitates of silica and/or carbonate which incorporate microorganisms and preserve them as fossils. The juxtaposition of stream valley headwaters with volcanoes and impact craters on Mars strongly implies that subsurface heating of groundwater created thermal springs. On Earth, thermal springs create distinctive geomorphic features and chemical signatures which can be detected by remote sensing. Spring deposits can be quite different chemically from adjacent rocks. Individual springs can be hundreds of meters wide, and complexes of springs occupy areas up to several kilometers wide. Benthic microbial mats and the resultant stromatolites occupy a large fraction of the available area. The relatively high densities of fossils and microbial mat fabrics within these deposits make them highly prospective in any search for morphological evidence of life, and there are examples of microbial fossils in spring deposits as old as 300 Myr.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rugh, John P; Chaney, Larry; Hepokoski, Mark
2015-04-14
Reliable assessment of occupant thermal comfort can be difficult to obtain within automotive environments, especially under transient and asymmetric heating and cooling scenarios. Evaluation of HVAC system performance in terms of comfort commonly requires human subject testing, which may involve multiple repetitions, as well as multiple test subjects. Instrumentation (typically comprised of an array of temperature sensors) is usually only sparsely applied across the human body, significantly reducing the spatial resolution of available test data. Further, since comfort is highly subjective in nature, a single test protocol can yield a wide variation in results which can only be overcome bymore » increasing the number of test replications and subjects. In light of these difficulties, various types of manikins are finding use in automotive testing scenarios. These manikins can act as human surrogates from which local skin and core temperatures can be obtained, which are necessary for accurately predicting local and whole body thermal sensation and comfort using a physiology-based comfort model (e.g., the Berkeley Comfort Model). This paper evaluates two different types of manikins, i) an adaptive sweating thermal manikin, which is coupled with a human thermoregulation model, running in real-time, to obtain realistic skin temperatures; and, ii) a passive sensor manikin, which is used to measure boundary conditions as they would act on a human, from which skin and core temperatures can be predicted using a thermophysiological model. The simulated physiological responses and comfort obtained from both of these manikin-model coupling schemes are compared to those of a human subject within a vehicle cabin compartment transient heat-up scenario.« less
Thermal tolerance breadths among groundwater crustaceans living in a thermally constant environment.
Mermillod-Blondin, F; Lefour, C; Lalouette, L; Renault, D; Malard, F; Simon, L; Douady, C J
2013-05-01
The climate variability hypothesis assumes that the thermal tolerance breadth of a species is primarily determined by temperature variations experienced in its environment. If so, aquatic invertebrates living in thermally buffered environments would be expected to exhibit narrow thermal tolerance breadths (stenothermy). We tested this prediction by studying the thermal physiology of three isopods (Asellidae, Proasellus) colonizing groundwater habitats characterized by an annual temperature amplitude of less than 1°C. The species responses to temperature variation were assessed in the laboratory using five physiological variables: survival, locomotor activity, aerobic respiration, immune defense and concentrations of total free amino acids and sugars. The three species exhibited contrasted thermal physiologies, although all variables were not equally informative. In accordance with the climate variability hypothesis, two species were extremely sensitive even to moderate changes in temperature (2°C) below and above their habitat temperature. In contrast, the third species exhibited a surprisingly high thermal tolerance breadth (11°C). Differences in response to temperature variation among Proasellus species indicated that their thermal physiology was not solely shaped by the current temperature seasonality in their natural habitats. More particularly, recent gene flow among populations living in thermally constant yet contrasted habitats might explain the occurrence of eurytherm species in thermally buffered environments.
Liu, H L; Shi, Y; Liang, L; Li, L; Guo, S S; Yin, L; Yang, Y
2017-03-29
A gradient refractive index (GRIN) lens has a great potential for on-chip imaging and detection systems because of its flat surface with reduced defects. This paper reports a liquid thermal GRIN lens prepared using heat conduction between only one liquid, and uses it as a tunable optical tweezer for single living cell trapping in a flowing environment. This liquid GRIN lens consists of a trapezoidal region in the upper layer which is used to establish a GRIN profile by the heat conduction between three streams of benzyl alcohol with different temperatures, and subsequently a rhombus region in the lower layer with compensation liquids to form a steady square-law parabolic refractive index profile only in transverse direction. Simulations and experiments successfully show the real-time tunability of the focusing properties. The focal length can be modulated in the range of 500 μm with the minimum focal length of 430 μm. A considerable high enhancement factor achieves 5.4 whereas the full width at half maximum is 4 μm. The response time of the GRIN lens is about 20 ms. Based on this enhancement, tunable optical trapping for single human embryonic kidney 293 cell in the range of 280 μm is demonstrated by varying the focal length and working distance which is difficult for solid optical tweezers. The considerable quality of this liquid GRIN lens indicates on-chip applications especially in high quality optical imaging, detection and cells' handling.
Visual information without thermal energy may induce thermoregulatory-like cardiovascular responses
2013-01-01
Background Human core body temperature is kept quasi-constant regardless of varying thermal environments. It is well known that physiological thermoregulatory systems are under the control of central and peripheral sensory organs that are sensitive to thermal energy. If these systems wrongly respond to non-thermal stimuli, it may disturb human homeostasis. Methods Fifteen participants viewed video images evoking hot or cold impressions in a thermally constant environment. Cardiovascular indices were recorded during the experiments. Correlations between the ‘hot-cold’ impression scores and cardiovascular indices were calculated. Results The changes of heart rate, cardiac output, and total peripheral resistance were significantly correlated with the ‘hot-cold’ impression scores, and the tendencies were similar to those in actual thermal environments corresponding to the impressions. Conclusions The present results suggest that visual information without any thermal energy can affect physiological thermoregulatory systems at least superficially. To avoid such ‘virtual’ environments disturbing human homeostasis, further study and more attention are needed. PMID:24373765
Thermal dynamic simulation of wall for building energy efficiency under varied climate environment
NASA Astrophysics Data System (ADS)
Wang, Xuejin; Zhang, Yujin; Hong, Jing
2017-08-01
Aiming at different kind of walls in five cities of different zoning for thermal design, using thermal instantaneous response factors method, the author develops software to calculation air conditioning cooling load temperature, thermal response factors, and periodic response factors. On the basis of the data, the author gives the net work analysis about the influence of dynamic thermal of wall on air-conditioning load and thermal environment in building of different zoning for thermal design regional, and put forward the strategy how to design thermal insulation and heat preservation wall base on dynamic thermal characteristic of wall under different zoning for thermal design regional. And then provide the theory basis and the technical references for the further study on the heat preservation with the insulation are in the service of energy saving wall design. All-year thermal dynamic load simulating and energy consumption analysis for new energy-saving building is very important in building environment. This software will provide the referable scientific foundation for all-year new thermal dynamic load simulation, energy consumption analysis, building environment systems control, carrying through farther research on thermal particularity and general particularity evaluation for new energy -saving walls building. Based on which, we will not only expediently design system of building energy, but also analyze building energy consumption and carry through scientific energy management. The study will provide the referable scientific foundation for carrying through farther research on thermal particularity and general particularity evaluation for new energy saving walls building.
NASA Astrophysics Data System (ADS)
Pizzolato, Nicola; Fazio, Claudio; Rosario Battaglia, Onofrio
2014-01-01
An open inquiry (OI)-based teaching/learning experience, regarding a scientific investigation of the process of energy exchange by thermal radiation, is presented. A sample of upper secondary school physics teachers carried out this experience at the University of Palermo, Italy, in the framework of ESTABLISH, a FP7 European Project aimed at promoting and developing inquiry-based science education. The teachers had the opportunity to personally experience an OI-based learning activity, with the aim of exploring the pedagogical potentialities of this teaching approach to promote both the understanding of difficult concepts and a deeper view of scientific practices. The teachers were firstly engaged in discussions concerning real-life problematic situations, and then stimulated to design and carry out their own laboratory activities, aimed at investigating the process of energy exchange by thermal radiation. A scientific study on the energy exchange between a powered resistor and its surrounding environment, during the heating and cooling processes, was designed and performed. Here we report the phases of this experiment by following the teachers' perspective. A structured interview conducted both before and after the OI experience allowed us to analyze and point out the teachers' feedback from a pedagogical point of view. The advantages and limits of an OI-based approach to promote the development of more student-centred inquiry-oriented teaching strategies are finally discussed.
An efficient and inexpensive method for measuring long-term thermoregulatory behavior
Sperry, Jinelle H.; Rohr, Jason R.
2016-01-01
Thermoregulatory ability and behavior influence organismal responses to their environment. By measuring thermal preferences, researchers can better understand the effects that temperature tolerances have on ecological and physiological responses to both biotic and abiotic stressors. However, because of funding limitations and confounders, measuring thermoregulation can often be difficult. Here, we provide an effective, affordable (∼$50 USD per unit), easy to construct, and validated apparatus for measuring the long-term thermal preferences of animals. In tests, the apparatus spanned temperatures from 9.29 to 33.94 °C, and we provide methods to further increase this range. Additionally, we provide simple methods to non-invasively measure animal and substrate temperatures and to prevent temperature preferences of the focal organisms from being confounded with temperature preferences of its prey and its humidity preferences. To validate the apparatus, we show that it was capable of detecting individual-level consistency and among individual-level variation in the preferred body temperatures of Southern toads (Anaxyrus terrestris) and Cuban tree frogs (Osteopilus septentrionalis) over three-weeks. Nearly every aspect of our design is adaptable to meet the needs of a multitude of study systems, including various terrestrial amphibious, and aquatic organisms. The apparatus and methods described here can be used to quantify behavioral thermal preferences, which can be critical for determining temperature tolerances across species and thus the resiliency of species to current and impending climate change. PMID:27503737
NASA Astrophysics Data System (ADS)
Tseliou, Areti; Tsiros, Ioannis X.; Nikolopoulou, Marialena
2017-07-01
Outdoor urban areas are very important for cities and microclimate is a critical parameter in the design process, contributing to thermal comfort which is important for urban developments. The research presented in this paper is part of extensive field surveys conducted in Athens aimed at investigating people's thermal sensation in a Mediterranean city. Based on 2313 questionnaires and microclimatic data the current work focuses on the relative frequencies of people's evaluation of the thermal along with the sun and wind sensations between two seasons trying to identify the seasonal differences in thermal sensation. The impact of basic meteorological factors on thermal discomfort with respect to season are also examined, as well as the use of the outdoor environment. Results show that psychological adaptation is an important contributing factor influencing perception of the thermal environment between seasons. In addition, the thermal sensation votes during the cool months show that individuals are satisfied to a great extend with the thermal environment whereas the combination of high air temperature, strong solar radiation and weak wind lead to thermal discomfort during summertime. As far as the appropriate urban design in the Mediterranean climate is concerned, priority should be given to the warm months of the year.
Colson-Proch, Céline; Morales, Anne; Hervant, Frédéric; Konecny, Lara; Moulin, Colette; Douady, Christophe J
2010-05-01
Whereas the consequences of global warming at population or community levels are well documented, studies at the cellular level are still scarce. The study of the physiological or metabolic effects of such small increases in temperature (between +2 degrees C and +6 degrees C) is difficult because they are below the amplitude of the daily or seasonal thermal variations occurring in most environments. In contrast, subterranean biotopes are highly thermally buffered (+/-1 degrees C within a year), and underground water organisms could thus be particularly well suited to characterise cellular responses of global warming. To this purpose, we studied genes encoding chaperone proteins of the HSP70 family in amphipod crustaceans belonging to the ubiquitous subterranean genus Niphargus. An HSP70 sequence was identified in eight populations of two complexes of species of the Niphargus genus (Niphargus rhenorhodanensis and Niphargus virei complexes). Expression profiles were determined for one of these by reverse transcription and quantitative polymerase chain reaction, confirming the inducible nature of this gene. An increase in temperature of 2 degrees C seemed to be without effect on N. rhenorhodanensis physiology, whereas a heat shock of +6 degrees C represented an important thermal stress for these individuals. Thus, this study shows that although Niphargus individuals do not undergo any daily or seasonal thermal variations in underground water, they display an inducible HSP70 heat shock response. This controlled laboratory-based physiological experiment constitutes a first step towards field investigations of the cellular consequences of global warming on subterranean organisms.
A hot topic: the genetics of adaptation to geothermal vents in Mimulus guttatus.
Ferris, Kathleen G
2016-11-01
Identifying the individual loci and mutations that underlie adaptation to extreme environments has long been a goal of evolutionary biology. However, finding the genes that underlie adaptive traits is difficult for several reasons. First, because many traits and genes evolve simultaneously as populations diverge, it is difficult to disentangle adaptation from neutral demographic processes. Second, finding the individual loci involved in any trait is challenging given the respective limitations of quantitative and population genetic methods. In this issue of Molecular Ecology, Hendrick et al. (2016) overcome these difficulties and determine the genetic basis of microgeographic adaptation between geothermal vent and nonthermal populations of Mimulus guttatus in Yellowstone National Park. The authors accomplish this by combining population and quantitative genetic techniques, a powerful, but labour-intensive, strategy for identifying individual causative adaptive loci that few studies have used (Stinchcombe & Hoekstra ). In a previous common garden experiment (Lekberg et al. 2012), thermal M. guttatus populations were found to differ from their closely related nonthermal neighbours in various adaptive phenotypes including trichome density. Hendrick et al. (2016) combine quantitative trait loci (QTL) mapping, population genomic scans for selection and admixture mapping to identify a single genetic locus underlying differences in trichome density between thermal and nonthermal M. guttatus. The candidate gene, R2R3 MYB, is homologous to genes involved in trichome development across flowering plants. The major trichome QTL, Tr14, is also involved in trichome density differences in an independent M. guttatus population comparison (Holeski et al. 2010) making this an example of parallel genetic evolution. © 2016 John Wiley & Sons Ltd.
Can Models Foster Conceptual Change? The Case of Heat and Temperature. Technical Report.
ERIC Educational Resources Information Center
Wiser, Marianne; And Others
The target of difficulty of the Educational Technology Center (ETC) Heat and Temperature Group is basic thermal physics, particularly the differentiation between heat and temperature. High school teachers often find that thermal concepts are very difficult for their students to master and attribute students' difficulties at least in part to the…
Natural selection on thermal preference, critical thermal maxima and locomotor performance.
Gilbert, Anthony L; Miles, Donald B
2017-08-16
Climate change is resulting in a radical transformation of the thermal quality of habitats across the globe. Whereas species have altered their distributions to cope with changing environments, the evidence for adaptation in response to rising temperatures is limited. However, to determine the potential of adaptation in response to thermal variation, we need estimates of the magnitude and direction of natural selection on traits that are assumed to increase persistence in warmer environments. Most inferences regarding physiological adaptation are based on interspecific analyses, and those of selection on thermal traits are scarce. Here, we estimate natural selection on major thermal traits used to assess the vulnerability of ectothermic organisms to altered thermal niches. We detected significant directional selection favouring lizards with higher thermal preferences and faster sprint performance at their optimal temperature. Our analyses also revealed correlational selection between thermal preference and critical thermal maxima, where individuals that preferred warmer body temperatures with cooler critical thermal maxima were favoured by selection. Recent published estimates of heritability for thermal traits suggest that, in concert with the strong selective pressures we demonstrate here, evolutionary adaptation may promote long-term persistence of ectotherms in altered thermal environments. © 2017 The Author(s).
Creation of Two-Particle Entanglement in Open Macroscopic Quantum Systems
Merkli, M.; Berman, G. P.; Borgonovi, F.; ...
2012-01-01
We considermore » an open quantum system of N not directly interacting spins (qubits) in contact with both local and collective thermal environments. The qubit-environment interactions are energy conserving. We trace out the variables of the thermal environments and N − 2 qubits to obtain the time-dependent reduced density matrix for two arbitrary qubits. We numerically simulate the reduced dynamics and the creation of entanglement (concurrence) as a function of the parameters of the thermal environments and the number of qubits, N . Our results demonstrate that the two-qubit entanglement generally decreases as N increases. We show analytically that, in the limit N → ∞ , no entanglement can be created. This indicates that collective thermal environments cannot create two-qubit entanglement when many qubits are located within a region of the size of the environment coherence length. We discuss possible relevance of our consideration to recent quantum information devices and biosystems.« less
Thermal Design Overview of the Mars Exploration Rover Project
NASA Technical Reports Server (NTRS)
Tsuyuki, Glenn
2002-01-01
Contents include the following: Mission Overview. Thermal Environments. Driving Thermal Requirements. Thermal Design Approach. Thermal Control Block Diagram. Thermal Design Description. Thermal Analysis Results Summary. Testing Plans. Issues & Concerns.
Tunable thermal expansion in framework materials through redox intercalation
Chen, Jun; Gao, Qilong; Sanson, Andrea; Jiang, Xingxing; Huang, Qingzhen; Carnera, Alberto; Rodriguez, Clara Guglieri; Olivi, Luca; Wang, Lei; Hu, Lei; Lin, Kun; Ren, Yang; Lin, Zheshuai; Wang, Cong; Gu, Lin; Deng, Jinxia; Attfield, J. Paul; Xing, Xianran
2017-01-01
Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework-type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF3, doped with 10% Fe to enable reduction. The small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. Redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion. PMID:28181576
Tunable thermal expansion in framework materials through redox intercalation
NASA Astrophysics Data System (ADS)
Chen, Jun; Gao, Qilong; Sanson, Andrea; Jiang, Xingxing; Huang, Qingzhen; Carnera, Alberto; Rodriguez, Clara Guglieri; Olivi, Luca; Wang, Lei; Hu, Lei; Lin, Kun; Ren, Yang; Lin, Zheshuai; Wang, Cong; Gu, Lin; Deng, Jinxia; Attfield, J. Paul; Xing, Xianran
2017-02-01
Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework-type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF3, doped with 10% Fe to enable reduction. The small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. Redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.
Study on Endurance and Performance of Impregnated Ruthenium Catalyst for Thruster System.
Kim, Jincheol; Kim, Taegyu
2018-02-01
Performance and endurance of the Ru catalyst were studied for nitrous oxide monopropellant thruster system. The thermal decomposition of N2O requires a considerably high temperature, which make it difficult to be utilized as a thruster propellant, while the propellant decomposition temperature can be reduced by using the catalyst through the decomposition reaction with the propellant. However, the catalyst used for the thruster was frequently exposed to high temperature and high-pressure environment. Therefore, the state change of the catalyst according to the thruster operation was analyzed. Characterization of catalyst used in the operation condition of the thruster was performed using FE-SEM and EDS. As a result, performance degradation was occurred due to the volatilization of Ru catalyst and reduction of the specific surface area according to the phase change of Al2O3.
The Positive Effect of Resilience on Stress and Business Outcomes in Difficult Work Environments.
Shatté, Andrew; Perlman, Adam; Smith, Brad; Lynch, Wendy D
2017-02-01
To examine whether resilience has a protective effect in difficult work environments. A survey of 2063 individuals measured individual resilience, stress, burnout, sleep problems, likelihood of depression, job satisfaction, intent to quit, absences, and productivity. It also measured work characteristics: job demands, job influence, and social support. Multivariate and logistic regression models examined the main effects and interactions of resilience and job characteristics. High strain work environments (high demand, low influence, and low support) have an unfavorable effect on all outcomes. Resilience has a protective effect on all outcomes. For stress, burnout, and sleep, higher resilience has a more protective effect under low-strain conditions. For depression, absence and productivity, resilience has a more protective effect when job strain is high. Workers with high resilience have better outcomes in difficult work environments.
Adamopoulou, Theodora; Papadaki, Maria I; Kounalakis, Manolis; Vazquez-Carreto, Victor; Pineda-Solano, Alba; Wang, Qingsheng; Mannan, M Sam
2013-06-15
Thermal decomposition of hydroxylamine, NH2OH, was responsible for two serious accidents. However, its reactive behavior and the synergy of factors affecting its decomposition are not being understood. In this work, the global enthalpy of hydroxylamine decomposition has been measured in the temperature range of 130-150 °C employing isoperibolic calorimetry. Measurements were performed in a metal reactor, employing 30-80 ml solutions containing 1.4-20 g of pure hydroxylamine (2.8-40 g of the supplied reagent). The measurements showed that increased concentration or temperature, results in higher global enthalpies of reaction per unit mass of reactant. At 150 °C, specific enthalpies as high as 8 kJ per gram of hydroxylamine were measured, although in general they were in the range of 3-5 kJ g(-1). The accurate measurement of the generated heat was proven to be a cumbersome task as (a) it is difficult to identify the end of decomposition, which after a fast initial stage, proceeds very slowly, especially at lower temperatures and (b) the environment of gases affects the reaction rate. Copyright © 2013 Elsevier B.V. All rights reserved.
Zeng, L. F.; Gao, R.; Xie, Z. M.; Miao, S.; Fang, Q. F.; Wang, X. P.; Zhang, T.; Liu, C. S.
2017-01-01
Traditional nanostructured metals are inherently comprised of a high density of high-energy interfaces that make this class of materials not stable in extreme conditions. Therefore, high performance bulk nanostructured metals containing stable interfaces are highly desirable for extreme environments applications. Here, we reported an attractive bulk Cu/V nanolamellar composite that was successfully developed by integrating interface engineering and severe plastic deformation techniques. The layered morphology and ordered Cu/V interfaces remained stable with respect to continued rolling (total strain exceeding 12). Most importantly, for layer thickness of 25 nm, this bulk Cu/V nanocomposite simultaneously achieves high strength (hardness of 3.68 GPa) and outstanding thermal stability (up to 700 °C), which are quite difficult to realize simultaneously in traditional nanostructured materials. Such extraordinary property in our Cu/V nanocomposite is achieved via an extreme rolling process that creates extremely high density of stable Cu/V heterophase interfaces and low density of unstable grain boundaries. In addition, high temperature annealing result illustrates that Rayleigh instability is the dominant mechanism driving the onset of thermal instability after exposure to 800 °C. PMID:28094346
NASA Astrophysics Data System (ADS)
Kim, Sungho
2017-06-01
Automatic target recognition (ATR) is a traditionally challenging problem in military applications because of the wide range of infrared (IR) image variations and the limited number of training images. IR variations are caused by various three-dimensional target poses, noncooperative weather conditions (fog and rain), and difficult target acquisition environments. Recently, deep convolutional neural network-based approaches for RGB images (RGB-CNN) showed breakthrough performance in computer vision problems, such as object detection and classification. The direct use of RGB-CNN to the IR ATR problem fails to work because of the IR database problems (limited database size and IR image variations). An IR variation-reduced deep CNN (IVR-CNN) to cope with the problems is presented. The problem of limited IR database size is solved by a commercial thermal simulator (OKTAL-SE). The second problem of IR variations is mitigated by the proposed shifted ramp function-based intensity transformation. This can suppress the background and enhance the target contrast simultaneously. The experimental results on the synthesized IR images generated by the thermal simulator (OKTAL-SE) validated the feasibility of IVR-CNN for military ATR applications.
Tobler, Ray; Hermisson, Joachim; Schlötterer, Christian
2015-01-01
Thermal stress is a pervasive selective agent in natural populations that impacts organismal growth, survival, and reproduction. Drosophila melanogaster exhibits a variety of putatively adaptive phenotypic responses to thermal stress in natural and experimental settings; however, accompanying assessments of fitness are typically lacking. Here, we quantify changes in fitness and known thermal tolerance traits in replicated experimental D. melanogaster populations following more than 40 generations of evolution to either cyclic cold or hot temperatures. By evaluating fitness for both evolved populations alongside a reconstituted starting population, we show that the evolved populations were the best adapted within their respective thermal environments. More strikingly, the evolved populations exhibited increased fitness in both environments and improved resistance to both acute heat and cold stress. This unexpected parallel response appeared to be an adaptation to the rapid temperature changes that drove the cycling thermal regimes, as parallel fitness changes were not observed when tested in a constant thermal environment. Our results add to a small, but growing group of studies that demonstrate the importance of fluctuating temperature changes for thermal adaptation and highlight the need for additional work in this area. PMID:26080903
Report of NPSAT1 Battery Thermal Contact Resistance Testing, Modeling and Simulation
2012-10-01
lithium ion battery is the spacecraft component with the smallest temperature range of 0?C to 45?C during operation. Thermal analysis results, however, can only provide adequate results if there is sufficient fidelity in thermal modeling. Arguably, the values used in defining thermal coupling for components are the most difficult to estimate because of the many variables that define them. This document describes the work performed by the authors starting in the 2012 winter quarter as part of the SS3900 directed study course. The objectives of the study were to
NASA Astrophysics Data System (ADS)
Pei, Yifei; Zhang, Jingchuan; Zhang, Luosha; Liu, Yang; Zhang, Lina; Chen, Shiyu
2018-01-01
To satisfy the application of fiber grating sensor technology in high vacuum thermal environment, two different kinds of sleeve compactly single model fiber covered by acrylate and polyimide are researched. Influence of the cover to the characteristic of FBG reflectance spectrum in high vacuum thermal environment is analyzed and verified. First, transmission characteristic of single model fiber in high vacuum thermal environment is analyzed by solve the equation of heat conduction. Then, experimental program of influence on FBG reflection spectrum characteristics is designed and a hardware-in-the-loop detection platform is set up. Finally, the influence of temperature and vacuum on the reflection peak power of FBG in different coating single-mode transmission fiber under high vacuum thermal environment is studied and verified. Experimental results indicate that: when vacuum varied from normal pressure to 10-4Pa level and then return to normal pressure, temperature of two different coating single-mode transmission fiber dropped to -196 ° from room temperature and then returned to room temperature, after 224 hours, the peak power of the FBG reflectance spectrum did not change. It provided the theoretical and experimental basis for the application of optical fiber sensing technology in high vacuum (pressure about 10-4Pa level) and thermal environment (-196 ° 25 ° temperature cycle) .
Du, Xiuyuan; Li, Baizhan; Liu, Hong; Yang, Dong; Yu, Wei; Liao, Jianke; Huang, Zhichao; Xia, Kechao
2014-01-01
This paper reports on studies of the effect of temperature step-change (between a cool and a neutral environment) on human thermal sensation and skin temperature. Experiments with three temperature conditions were carried out in a climate chamber during the period in winter. Twelve subjects participated in the experiments simulating moving inside and outside of rooms or cabins with air conditioning. Skin temperatures and thermal sensation were recorded. Results showed overshoot and asymmetry of TSV due to the step-change. Skin temperature changed immediately when subjects entered a new environment. When moving into a neutral environment from cool, dynamic thermal sensation was in the thermal comfort zone and overshoot was not obvious. Air-conditioning in a transitional area should be considered to limit temperature difference to not more than 5°C to decrease the unacceptability of temperature step-change. The linear relationship between thermal sensation and skin temperature or gradient of skin temperature does not apply in a step-change environment. There is a significant linear correlation between TSV and Qloss in the transient environment. Heat loss from the human skin surface can be used to predict dynamic thermal sensation instead of the heat transfer of the whole human body. PMID:25136808
Arcjet Testing of Micro-Meteoroid Impacted Thermal Protection Materials
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Munk, Michelle M.; Glaab, Louis J.
2013-01-01
There are several harsh space environments that could affect thermal protection systems and in turn pose risks to the atmospheric entry vehicles. These environments include micrometeoroid impact, extreme cold temperatures, and ionizing radiation during deep space cruise, all followed by atmospheric entry heating. To mitigate these risks, different thermal protection material samples were subjected to multiple tests, including hyper velocity impact, cold soak, irradiation, and arcjet testing, at various NASA facilities that simulated these environments. The materials included a variety of honeycomb packed ablative materials as well as carbon-based non-ablative thermal protection systems. The present paper describes the results of the multiple test campaign with a focus on arcjet testing of thermal protection materials. The tests showed promising results for ablative materials. However, the carbon-based non-ablative system presented some concerns regarding the potential risks to an entry vehicle. This study provides valuable information regarding the capability of various thermal protection materials to withstand harsh space environments, which is critical to sample return and planetary entry missions.
Yokota, M; Karis, A J; Tharion, W J
2014-01-01
Background: Thermal safety standards for the use of chemical, biological, radiological, and nuclear (CBRN) ensembles have been established for various US occupations, but not for law enforcement personnel. Objectives: We examined thermal strain levels of 30 male US law enforcement personnel who participated in CBRN field training in Arizona, Florida, and Massachusetts. Methods: Physiological responses were examined using unobtrusive heart rate (HR) monitors and a simple thermoregulatory model to predict core temperature (Tc) using HR and environment. Results: Thermal strain levels varied by environments, activity levels, and type of CBRN ensemble. Arizona and Florida volunteers working in hot-dry and hot-humid environment indicated high heat strain (predicted max Tc>38.5°C). The cool environment of Massachusetts reduced thermal strain although thermal strains were occasionally moderate. Conclusions: The non-invasive method of using physiological monitoring and thermoregulatory modeling could improve law enforcement mission to reduce the risk of heat illness or injury. PMID:24999847
Improved Silica Aerogel Composite Materials
NASA Technical Reports Server (NTRS)
Paik, Jong-Ah; Sakamoto, Jeffrey; Jones, Steven
2008-01-01
A family of aerogel-matrix composite materials having thermal-stability and mechanical- integrity properties better than those of neat aerogels has been developed. Aerogels are known to be excellent thermal- and acoustic-insulation materials because of their molecular-scale porosity, but heretofore, the use of aerogels has been inhibited by two factors: (1) Their brittleness makes processing and handling difficult. (2) They shrink during production and shrink more when heated to high temperatures during use. The shrinkage and the consequent cracking make it difficult to use them to encapsulate objects in thermal-insulation materials. The underlying concept of aerogel-matrix composites is not new; the novelty of the present family of materials lies in formulations and processes that result in superior properties, which include (1) much less shrinkage during a supercritical-drying process employed in producing a typical aerogel, (2) much less shrinkage during exposure to high temperatures, and (3) as a result of the reduction in shrinkage, much less or even no cracking.
NASA Technical Reports Server (NTRS)
Berrios, William M.
1990-01-01
A post flight mission thermal environment for the Long Duration Exposure Facility was created as part of the thermal analysis data reduction effort. The data included herein is the thermal parameter data used in the calculation of boundary temperatures. This boundary temperature data is to be released in the near future for use by the LDEF principal investigators in the final analysis of their particular experiment temperatures. Also included is the flight temperature data as recorded by the LDEF Thermal Measurements System (THERM) for the first 90 days of flight.
NASA Astrophysics Data System (ADS)
Greiner, Nathan J.
Modern turbine engines require high turbine inlet temperatures and pressures to maximize thermal efficiency. Increasing the turbine inlet temperature drives higher heat loads on the turbine surfaces. In addition, increasing pressure ratio increases the turbine coolant temperature such that the ability to remove heat decreases. As a result, highly effective external film cooling is required to reduce the heat transfer to turbine surfaces. Testing of film cooling on engine hardware at engine temperatures and pressures can be exceedingly difficult and expensive. Thus, modern studies of film cooling are often performed at near ambient conditions. However, these studies are missing an important aspect in their characterization of film cooling effectiveness. Namely, they do not model effect of thermal property variations that occur within the boundary and film cooling layers at engine conditions. Also, turbine surfaces can experience significant radiative heat transfer that is not trivial to estimate analytically. The present research first computationally examines the effect of large temperature variations on a turbulent boundary layer. Subsequently, a method to model the effect of large temperature variations within a turbulent boundary layer in an environment coupled with significant radiative heat transfer is proposed and experimentally validated. Next, a method to scale turbine cooling from ambient to engine conditions via non-dimensional matching is developed computationally and the experimentally validated at combustion temperatures. Increasing engine efficiency and thrust to weight ratio demands have driven increased combustor fuel-air ratios. Increased fuel-air ratios increase the possibility of unburned fuel species entering the turbine. Alternatively, advanced ultra-compact combustor designs have been proposed to decrease combustor length, increase thrust, or generate power for directed energy weapons. However, the ultra-compact combustor design requires a film cooled vane within the combustor. In both these environments, the unburned fuel in the core flow encounters the oxidizer rich film cooling stream, combusts, and can locally heat the turbine surface rather than the intended cooling of the surface. Accordingly, a method to quantify film cooling performance in a fuel rich environment is prescribed. Finally, a method to film cool in a fuel rich environment is experimentally demonstrated.
Test and analysis of indoor environment of dormitories of universities in autumn
NASA Astrophysics Data System (ADS)
Chen, Shijia
2017-03-01
In this paper, the indoor thermal and humid environment, luminous environment and acoustic environment of college dormitories in Baoding are tested and conducted a questionnaire survey. From the test, the subjective feelings and the objective evaluation parameters of the students in the dormitory were obtained. At last, the differences of thermal comfort, luminous environment and acoustic environment caused by students' different living habits and adaptability were analyzed.
Thermal suitability in industrial environment: a case study in a metallurgical industry.
Broday, Evandro Eduardo; de Paula Xavier, Antonio Augusto
2014-01-01
This article presents the results of an investigation into the thermal aspect of workplaces of the metallurgical branch of furniture manufacturing, looking for the number of dissatisfied people in the environment. This study aims to analyze the thermal suitability of a metallurgical industrial environment, from four interpretations of vote +1/-1 (slightly warm or slightly cool) on the thermal sensation range, reported by workers. The methodological approach consists of quantitative research and a literature review set for this work, composed of spreadsheets and statistical processing of data. Data collection took place through the use of environmental variables measurement equipment and software for statistical assistance. The results indicate an average above 35% of workers dissatisfied with the environment, thus, portraying the lack of suitability. It was noted, further, that, although average temperatures may be between 21°C to 28°C, workplace improvements can be made, so that the thermal sensations will be satisfactory.
Thermal Flow Sensors for Harsh Environments.
Balakrishnan, Vivekananthan; Phan, Hoang-Phuong; Dinh, Toan; Dao, Dzung Viet; Nguyen, Nam-Trung
2017-09-08
Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI), and complementary metal-oxide semiconductor (CMOS) have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application.
Thermal Flow Sensors for Harsh Environments
Dinh, Toan; Dao, Dzung Viet
2017-01-01
Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI), and complementary metal-oxide semiconductor (CMOS) have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application. PMID:28885595
The Positive Effect of Resilience on Stress and Business Outcomes in Difficult Work Environments
Shatté, Andrew; Perlman, Adam; Smith, Brad; Lynch, Wendy D.
2017-01-01
Objective: To examine whether resilience has a protective effect in difficult work environments. Methods: A survey of 2063 individuals measured individual resilience, stress, burnout, sleep problems, likelihood of depression, job satisfaction, intent to quit, absences, and productivity. It also measured work characteristics: job demands, job influence, and social support. Multivariate and logistic regression models examined the main effects and interactions of resilience and job characteristics. Results: High strain work environments (high demand, low influence, and low support) have an unfavorable effect on all outcomes. Resilience has a protective effect on all outcomes. For stress, burnout, and sleep, higher resilience has a more protective effect under low-strain conditions. For depression, absence and productivity, resilience has a more protective effect when job strain is high. Conclusions: Workers with high resilience have better outcomes in difficult work environments. PMID:28002352
Active management of plant canopy temperature as a tool for modifying plant metabolic activity
USDA-ARS?s Scientific Manuscript database
The relationship between a plant and its thermal environment is a major determiner of its growth and development. Since plants grow and develop within continuously variable thermal environments, they are subjected to continuous thermal variation over their life cycle. Transpiration serves to uncoupl...
Geomagnetic Secular Variation Prediction with Thermal Heterogeneous Boundary Conditions
NASA Astrophysics Data System (ADS)
Kuang, W.; Tangborn, A.; Jiang, W.
2011-12-01
It has long been conjectured that thermal heterogeneity at the core-mantle boundary (CMB) affects the geodynamo substantially. The observed two pairs of steady and strong magnetic flux lobes near the Polar Regions and the low secular variation in the Pacific over the past 400 years (and perhaps longer) are likely the consequences of this CMB thermal heterogeneity. There are several studies on the impact of the thermal heterogeneity with numerical geodynamo simulations. However, direct correlation between the numerical results and the observations is found very difficult, except qualitative comparisons of certain features in the radial component of the magnetic field at the CMB. This makes it difficult to assess accurately the impact of thermal heterogeneity on the geodynamo and the geomagnetic secular variation. We revisit this problem with our MoSST_DAS system in which geomagnetic data are assimilated with our geodynamo model to predict geomagnetic secular variations. In this study, we implement a heterogeneous heat flux across the CMB that is chosen based on the seismic tomography of the lowermost mantle. The amplitude of the heat flux (relative to the mean heat flux across the CMB) varies in the simulation. With these assimilation studies, we will examine the influences of the heterogeneity on the forecast accuracies, e.g. the accuracies as functions of the heterogeneity amplitude. With these, we could be able to assess the model errors to the true core state, and thus the thermal heterogeneity in geodynamo modeling.
SRB ascent aerodynamic heating design criteria reduction study, volume 1
NASA Technical Reports Server (NTRS)
Crain, W. K.; Frost, C. L.; Engel, C. D.
1989-01-01
An independent set of solid rocket booster (SRB) convective ascent design environments were produced which would serve as a check on the Rockwell IVBC-3 environments used to design the ascent phase of flight. In addition, support was provided for lowering the design environments such that Thermal Protection System (TPS), based on conservative estimates, could be removed leading to a reduction in SRB refurbishment time and cost. Ascent convective heating rates and loads were generated at locations in the SRB where lowering the thermal environment would impact the TPS design. The ascent thermal environments are documented along with the wind tunnel/flight test data base used as well as the trajectory and environment generation methodology. Methodology, as well as, environment summaries compared to the 1980 Design and Rockwell IVBC-3 Design Environment are presented in this volume, 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorka, K. M.; Copeland, E. K.; Winterhalter, W. E.
To improve thermoregulation in colder environments, insects are expected to darken their cuticles with melanin via the phenoloxidase cascade, a phenomenon predicted by the thermal melanin hypothesis. However, the phenoloxidase cascade also plays a significant role in insect immunity, leading to the additional hypothesis that the thermal environment indirectly shapes immune function via direct selection on cuticle color. Support for the latter hypothesis comes from the cricket Allonemobius socius, where cuticle darkness and immune-related phenoloxidase activity increase with latitude. However, thermal environments vary seasonally as well as geographically, suggesting that seasonal plasticity in immunity may also exist. Although seasonal fluctuationsmore » in vertebrate immune function are common (because of flux in breeding or resource abundance), seasonality in invertebrate immunity has not been widely explored. We addressed this possibility by rearing crickets in simulated summer and fall environments and assayed their cuticle color and immune function. Prior to estimating immunity, crickets were placed in a common environment to minimize metabolic rate differences. Individuals reared under fall-like conditions exhibited darker cuticles, greater phenoloxidase activity and greater resistance to the bacteria Serratia marcescens. These data support the hypothesis that changes in the thermal environment modify cuticle color, which indirectly shapes immune investment through pleiotropy. This hypothesis may represent a widespread mechanism governing immunity in numerous systems, considering that most insects operate in seasonally and geographically variable thermal environments.« less
NASA Technical Reports Server (NTRS)
Panczak, Tim; Ring, Steve; Welch, Mark
1999-01-01
Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.
Prediction of air temperature for thermal comfort of people in outdoor environments
NASA Astrophysics Data System (ADS)
Huang, Jianhua
2007-05-01
Current thermal comfort indices do not take into account the effects of wind and body movement on the thermal resistance and vapor resistance of clothing. This may cause public health problem, e.g. cold-related mortality. Based on the energy balance equation and heat exchanges between a clothed body and the outdoor environment, a mathematical model was developed to determine the air temperature at which an average adult, wearing a specific outdoor clothing and engaging in a given activity, attains thermal comfort under outdoor environment condition. The results indicated low clothing insulation, less physical activity and high wind speed lead to high air temperature prediction for thermal comfort. More accurate air temperature prediction is able to prevent wearers from hypothermia under cold conditions.
Thermal-environment testing of a 30-cm engineering model thruster
NASA Technical Reports Server (NTRS)
Mirtich, M. J.
1976-01-01
An experimental test program was carried out to document all 30-cm electron bombardment Hg ion bombardment thruster functions and characteristics over the thermal environment of several proposed missions. An engineering model thruster was placed in a thermal test facility equipped with -196 C walls and solar simulation. The thruster was cold soaked and exposed to simulated eclipses lasting in duration from 17 to 72 minutes. The thruster was operated at quarter, to full beam power in various thermal configurations which simulated multiple thruster operation, and was also exposed to 1 and 2 suns solar simulation. Thruster control characteristics and constraints; performance, including thrust magnitude and direction; and structural integrity were evaluated over the range of thermal environments tested.
Tobler, Ray; Hermisson, Joachim; Schlötterer, Christian
2015-07-01
Thermal stress is a pervasive selective agent in natural populations that impacts organismal growth, survival, and reproduction. Drosophila melanogaster exhibits a variety of putatively adaptive phenotypic responses to thermal stress in natural and experimental settings; however, accompanying assessments of fitness are typically lacking. Here, we quantify changes in fitness and known thermal tolerance traits in replicated experimental D. melanogaster populations following more than 40 generations of evolution to either cyclic cold or hot temperatures. By evaluating fitness for both evolved populations alongside a reconstituted starting population, we show that the evolved populations were the best adapted within their respective thermal environments. More strikingly, the evolved populations exhibited increased fitness in both environments and improved resistance to both acute heat and cold stress. This unexpected parallel response appeared to be an adaptation to the rapid temperature changes that drove the cycling thermal regimes, as parallel fitness changes were not observed when tested in a constant thermal environment. Our results add to a small, but growing group of studies that demonstrate the importance of fluctuating temperature changes for thermal adaptation and highlight the need for additional work in this area. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Experimental and numerical study of physiological responses in hot environments.
Yang, Jie; Weng, Wenguo; Zhang, Baoting
2014-10-01
This paper proposed a multi-node human thermal model to predict human thermal responses in hot environments. The model was extended based on the Tanabe's work by considering the effects of high temperature on heat production, blood flow rate, and heat exchange coefficients. Five healthy men dressed in shorts were exposed in thermal neutral (29 °C) and high temperature (45 °C) environments. The rectal temperatures and skin temperatures of seven human body segments were continuously measured during the experiment. Validation of this model was conducted with experimental data. The results showed that the current model could accurately predict the skin and core temperatures in terms of the tendency and absolute values. In the human body segments expect calf and trunk, the temperature differences between the experimental data and the predicted results in high temperature environment were smaller than those in the thermally neutral environment conditions. The extended model was proved to be capable of predicting accurately human physiological responses in hot environments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Quantum cloning disturbed by thermal Davies environment
NASA Astrophysics Data System (ADS)
Dajka, Jerzy; Łuczka, Jerzy
2016-06-01
A network of quantum gates designed to implement universal quantum cloning machine is studied. We analyze how thermal environment coupled to auxiliary qubits, `blank paper' and `toner' required at the preparation stage of copying, modifies an output fidelity of the cloner. Thermal environment is described in terms of the Markovian Davies theory. We show that such a cloning machine is not universal any more but its output is independent of at least a part of parameters of the environment. As a case study, we consider cloning of states in a six-state cryptography's protocol. We also briefly discuss cloning of arbitrary input states.
Biological Weapons Attribution: A Primer
2007-06-01
attacks are very difficult: (1) the nature of biological weapons, (2) the unique restrictions the international environment places on BW attribution, and...provides a basic epistemological framework for analysis for successful BW attribution, detailing the nature , methods, and limits of current BW...difficult: (1) the nature of biological weapons, (2) the unique restrictions the international environment places on BW attribution, and (3) the
Quantitative study of bundle size effect on thermal conductivity of single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Feng, Ya; Inoue, Taiki; An, Hua; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo
2018-05-01
Compared with isolated single-walled carbon nanotubes (SWNTs), thermal conductivity is greatly impeded in SWNT bundles; however, the measurement of the bundle size effect is difficult. In this study, the number of SWNTs in a bundle was determined based on the transferred horizontally aligned SWNTs on a suspended micro-thermometer to quantitatively study the effect of the bundle size on thermal conductivity. Increasing the bundle size significantly degraded the thermal conductivity. For isolated SWNTs, thermal conductivity was approximately 5000 ± 1000 W m-1 K-1 at room temperature, three times larger than that of the four-SWNT bundle. The logarithmical deterioration of thermal conductivity resulting from the increased bundle size can be attributed to the increased scattering rate with neighboring SWNTs based on the kinetic theory.
40 CFR 458.20 - Applicability: description of the carbon black thermal process subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability: description of the carbon black thermal process subcategory. 458.20 Section 458.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal...
40 CFR 458.20 - Applicability: description of the carbon black thermal process subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability: description of the carbon black thermal process subcategory. 458.20 Section 458.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal...
40 CFR 74.47 - Transfer of allowances from the replacement of thermal energy-combustion sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Transfer of allowances from the replacement of thermal energy-combustion sources. 74.47 Section 74.47 Protection of Environment ENVIRONMENTAL...—combustion sources. (a) Thermal energy plan—(1) General provisions. The designated representative of an opt...
40 CFR 74.47 - Transfer of allowances from the replacement of thermal energy-combustion sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Transfer of allowances from the replacement of thermal energy-combustion sources. 74.47 Section 74.47 Protection of Environment ENVIRONMENTAL...—combustion sources. (a) Thermal energy plan—(1) General provisions. The designated representative of an opt...
40 CFR 74.47 - Transfer of allowances from the replacement of thermal energy-combustion sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Transfer of allowances from the replacement of thermal energy-combustion sources. 74.47 Section 74.47 Protection of Environment ENVIRONMENTAL...—combustion sources. (a) Thermal energy plan—(1) General provisions. The designated representative of an opt...
40 CFR 74.47 - Transfer of allowances from the replacement of thermal energy-combustion sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Transfer of allowances from the replacement of thermal energy-combustion sources. 74.47 Section 74.47 Protection of Environment ENVIRONMENTAL...—combustion sources. (a) Thermal energy plan—(1) General provisions. The designated representative of an opt...
Design of outdoor urban spaces for thermal comfort
Harriet J. Plumley
1977-01-01
Microclimates in outdoor urban spaces may be modified by controlling the wind and radiant environments in these spaces. Design guidelines were developed to specify how radiant environments may be selected or modified to provide conditions for thermal comfort. Fanger's human-thermal-comfort model was used to determine comfortable levels of radiant-heat exchange for...
An Evaluation of a Passively Cooled Cylindrical Spectrometer Array in Lunar Orbit
NASA Technical Reports Server (NTRS)
Waggoner, Jason
2014-01-01
This thesis will evaluate a passively cooled cylindrical spectrometer array in lunar orbit characterizing the thermal response in order to provide context for decision-making to scientists and engineers. To provide perspective on thermal issues and controls of space science instruments, a background search of historical lunar missions is provided. Next, a trial science mission is designed and analyzed which brings together the elements of the background search, lunar orbit environment and passive cooling. Finally, the trial science mission analysis results are provided along with the conclusions drawn. Scintillators are materials that when struck by particle radiation, absorb the particle energy which is then reemitted as light in or near the visible range. Nuclear astrophysics utilizes scintillating materials for observation of high-energy photons which are generated by sources such as solar flares, supernovae and neutron stars. SPMs are paired with inorganic scintillators to detect the light emitted which is converted into electronic signals. The signals are captured and analyzed in order to map the number and location of the high-energy sources. The SPM is utilized as it has single photon sensitivity, low voltage requirements and a fast response. SPMs are also compact, relatively inexpensive and allow the usage of lower-cost scintillating materials within the spectrometer. These characteristics permit large-area arrays while lowering cost and power requirements. The ability of a spectrometer to record and identify the interaction of high-energy photons for scientific return is not a trivial matter. Background noise is generated when particles that have not originated from the desired distant source impact the spectrometer. Additionally, thermally induced electrical signals are randomly generated within the SPM even in the absence of light which is referred to as dark current. Overcoming these obstacles requires greater light emittance and energy resolution with reduced dark current. Strong scintillation photon emittance ensures that low energy impacts will produce enough visible photons to be detected by the SPM. Higher energy resolution will ensure that single photon impacts can be distinguished from others of similar wavelength and energy; reduced dark current decreases the generation of random signals not associated with a photon impact. Increasing efficiency in each of these properties in a spectrometer comprised of inorganic scintillators and SPMs requires low temperatures. Low temperature maintenance in a lunar environment presents many unique challenges of its own. Even with the accumulated successes of past missions, the lunar environment remains a thermal challenge for engineers. The lunar orbit thermal environment is driven by radiation from three sources, direct solar radiation, reflected solar radiation from the lunar surface (albedo) and lunar radiation (Clawson 2002). Direct solar radiation values are consistent with those seen in Earth orbit (1325 W/m2) (Clawson 2002). The percentage of solar radiation reflected from the moon is consistently very low with the moon's dark regolith covered surface absorbing nearly 90% of the incident light (Clawson 2002). Yet, it is this absorption that gives the lunar orbit environment one of its most difficult thermal attributes as the absorbed solar radiation is released from the lunar surface as infrared radiation (IR). IR is of a wavelength that is readily absorbed by surfaces designed to function as radiation emitters. It is practical to therefore "choose radiator locations and spacecraft attitude to minimize radiator views to the lunar surface, when possible...pointing the radiator towards the sun to some extent, to minimize its view to the lunar surface, is frequently preferable. (Clawson 2002)" Additionally, the amount of direct solar radiation, lunar IR and albedo an orbiting satellite receives varies from one side of the moon to the other as the moon blocks the sun from view. This environment produces large temperature variations in a satellite's instrumentation, control electronics and propulsion systems which must be understood to characterize operating temperature envelopes.
Veselá, S; Kingma, B R M; Frijns, A J H
2017-03-01
Local thermal sensation modeling gained importance due to developments in personalized and locally applied heating and cooling systems in office environments. The accuracy of these models depends on skin temperature prediction by thermophysiological models, which in turn rely on accurate environmental and personal input data. Environmental parameters are measured or prescribed, but personal factors such as clothing properties and metabolic rates have to be estimated. Data for estimating the overall values of clothing properties and metabolic rates are available in several papers and standards. However, local values are more difficult to retrieve. For local clothing, this study revealed that full and consistent data sets are not available in the published literature for typical office clothing sets. Furthermore, the values for local heat production were not verified for characteristic office activities, but were adapted empirically. Further analyses showed that variations in input parameters can lead to local skin temperature differences (∆T skin,loc = 0.4-4.4°C). These differences can affect the local sensation output, where ∆T skin,loc = 1°C is approximately one step on a 9-point thermal sensation scale. In conclusion, future research should include a systematic study of local clothing properties and the development of feasible methods for measuring and validating local heat production. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Patterson, James D.; Li, Wei-Gang
1995-01-01
The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.
Zhu, Hui; Wang, Hanqing; Liu, Zhiqiang; Li, Duanru; Kou, Guangxiao; Li, Can
2018-03-01
In order to study the human thermal comfort under different environments, the electrocardiogram (ECG) data of 6 subjects were recorded continuously under 60 environments composed by different air temperature, relative humidity and air speed that were created by an environmental chamber. Based on the ECG data, the frequency-domain method was adopted to obtain the heart rate variability (HRV) results. Among the HRV indices, the ratio of the low frequency power and high frequency power of the HRV analysis results (LF/HF), which reflects the balance of the autonomic nervous system, was selected as an indicator of the thermal comfort in the study. And the effects of air temperature, relative humidity and air speed on LF/HF were scrutinized. Meanwhile, a questionnaire survey was conducted during the experiment to evaluate the thermal comfort of the subjects. And the relationships between mean LF/HF and thermal sensation, mean thermal comfort were established based on the survey. The results showed that different LF/HF was observed under different environments, and that the air temperature had the most significant effects on LF/HF. The changes in the air temperature could easily lead to the excitation of the sympathetic nerve that could promote the activities of the thermoregulatory effectors thus thermal discomfort. Additionally, the fitting curves illustrating the relationships between LF/HF and thermal sensation and thermal comfort showed that the higher LF/HF yielded thermal discomfort, while the low LF/HF indicated a thermally acceptable state. Copyright © 2017 Elsevier B.V. All rights reserved.
Detection of leaks in buried rural water pipelines using thermal infrared images
Eidenshink, Jeffery C.
1985-01-01
Leakage is a major problem in many pipelines. Minor leaks called 'seeper leaks', which generally range from 2 to 10 m3 per day, are common and are difficult to detect using conventional ground surveys. The objective of this research was to determine whether airborne thermal-infrared remote sensing could be used in detecting leaks and monitoring rural water pipelines. This study indicates that such leaks can be detected using low-altitude 8.7- to 11.5. micrometer wavelength, thermal infrared images collected under proper conditions.
Thermal Curing Process Monitoring of the Composite Material Using the FBG sensor
NASA Astrophysics Data System (ADS)
Zhang, Youhong; Chang, Xinlong; Zhang, Xiaojun; He, Xiangyong
2018-03-01
The raw composite material will suffer complex chemical and morphological changes during the thermal curing process, and it is difficult to monitor the curing process and curing effect. In this paper, the FBG sensor was embedded in the raw composite material to monitor the whole curing process. The experiment results showed that the FBG sensor can monitor the resin transformation and residual deformation of the composite material, and the FBG sensor can be applied to monitor the thermal curing process of the composite structure.
Tunable thermal expansion in framework materials through redox intercalation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jun; Gao, Qilong; Sanson, Andrea
Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present, offering a potential route for control. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF 3, doped with 10% Fe to enable reduction. Themore » small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. As a result, redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.« less
Tunable thermal expansion in framework materials through redox intercalation
Chen, Jun; Gao, Qilong; Sanson, Andrea; ...
2017-02-09
Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present, offering a potential route for control. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF 3, doped with 10% Fe to enable reduction. Themore » small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. As a result, redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.« less
Space simulation test for thermal control materials
NASA Technical Reports Server (NTRS)
Hardgrove, W. R.
1990-01-01
Tests were run in TRW's Combined Environment Facility to examine the degradation of thermal control materials in a simulated space environment. Thermal control materials selected for the test were those presently being used on spacecraft or predicted to be used within the next few years. The geosynchronous orbit environment was selected as the most interesting. One of the goals was to match degradation of those materials with available flight data. Another aim was to determine if degradation can adequately be determined with accelerated or short term ground tests.
Early sinkhole detection using a drone-based thermal camera and image processing
NASA Astrophysics Data System (ADS)
Lee, Eun Ju; Shin, Sang Young; Ko, Byoung Chul; Chang, Chunho
2016-09-01
Accurate advance detection of the sinkholes that are occurring more frequently now is an important way of preventing human fatalities and property damage. Unlike naturally occurring sinkholes, human-induced ones in urban areas are typically due to groundwater disturbances and leaks of water and sewage caused by large-scale construction. Although many sinkhole detection methods have been developed, it is still difficult to predict sinkholes that occur in depth areas. In addition, conventional methods are inappropriate for scanning a large area because of their high cost. Therefore, this paper uses a drone combined with a thermal far-infrared (FIR) camera to detect potential sinkholes over a large area based on computer vision and pattern classification techniques. To make a standard dataset, we dug eight holes of depths 0.5-2 m in increments of 0.5 m and with a maximum width of 1 m. We filmed these using the drone-based FIR camera at a height of 50 m. We first detect candidate regions by analysing cold spots in the thermal images based on the fact that a sinkhole typically has a lower thermal energy than its background. Then, these regions are classified into sinkhole and non-sinkhole classes using a pattern classifier. In this study, we ensemble the classification results based on a light convolutional neural network (CNN) and those based on a Boosted Random Forest (BRF) with handcrafted features. We apply the proposed ensemble method successfully to sinkhole data for various sizes and depths in different environments, and prove that the CNN ensemble and the BRF one with handcrafted features are better at detecting sinkholes than other classifiers or standalone CNN.
Gas Dynamic Spray Technology Demonstration Project Management. Joint Test Report
NASA Technical Reports Server (NTRS)
Lewis, Pattie
2011-01-01
The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are sUbject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by Air Force Space Command (AFSPC) and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GOS) technology (also known as Cold Spray) was evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GOS coatings also have no VOCs and are environmentally preferable coatings. The primary objective of this effort was to demonstrate GDS technology as a repair method for TSCs. The aim was that successful completion of this project would result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations to improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.
Carroll, J Matthew; Davis, Craig A; Elmore, R Dwayne; Fuhlendorf, Samuel D
2015-01-01
The habitat selection choices that individuals make in response to thermal environments influence both survival and reproduction. Importantly, the way that organisms behaviorally respond to thermal environments depends on the availability and juxtaposition of sites affording tolerable or preferred microclimates. Although, ground nesting birds are especially susceptible to heat extremes across many reproductive stages (i.e., breeding, nesting, brood rearing), the mechanistic drivers of nest site selection for these species are not well established from a thermal perspective. Our goal was to assess nest site selection relative to the configuration of the thermal landscape by quantifying thermal environments available to a ground-nesting bird species inhabiting a climatically stressful environment. Using northern bobwhite (Colinus virginanus) as a model species, we measured black bulb temperature (Tbb) and vegetation parameters at 87 nests, 87 paired sites and 205 random landscape sites in Western Oklahoma during spring and summer 2013 and 2014. We found that thermal space within the study area exhibited differences in Tbb of up to 40°C during peak diurnal heating, resulting in a diverse thermal landscape available to ground-nesting birds. Within this thermally heterogeneous landscape, nest sites moderated Tbb by more than 12°C compared to random landscape sites. Furthermore, successful nests remained on average 6°C cooler than unsuccessful nests on days experiencing ambient temperatures ≥ 39°C. Models of future Tbb associated with 2080 climate change projections indicate that nesting bobwhites will face substantially greater Tbb throughout the landscape for longer durations, placing an even greater importance on thermal choices for nest sites in the future. These results highlight the capacity of landscape features to act as moderators of thermal extremes and demonstrate how thermal complexity at organism-specific scales can dictate habitat selection.
Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Taylor, B. D.; Caffrey, J.; Hedayat, A.; Stephens, J.; Polsgrove, R.
2015-01-01
Cryogenic fluid management technology is critical to the success of future nuclear thermal propulsion powered vehicles and long duration missions. This paper discusses current capabilities in key technologies and their development path. The thermal environment, complicated from the radiation escaping a reactor of a nuclear thermal propulsion system, is examined and analysis presented. The technology development path required for maintaining cryogenic propellants in this environment is reviewed. This paper is intended to encourage and bring attention to the cryogenic fluid management technologies needed to enable nuclear thermal propulsion powered deep space missions.
Boron Nitride Nanotube: Synthesis and Applications
NASA Technical Reports Server (NTRS)
Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung;
2014-01-01
Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.
Workshop on High Power ICH Antenna Designs for High Density Tokamaks
NASA Astrophysics Data System (ADS)
Aamodt, R. E.
1990-02-01
A workshop in high power ICH antenna designs for high density tokamaks was held to: (1) review the data base relevant to the high power heating of high density tokamaks; (2) identify the important issues which need to be addressed in order to ensure the success of the ICRF programs on CIT and Alcator C-MOD; and (3) recommend approaches for resolving the issues in a timely realistic manner. Some specific performance goals for the antenna system define a successful design effort. Simply stated these goals are: couple the specified power per antenna into the desired ion species; produce no more than an acceptable level of RF auxiliary power induced impurities; and have a mechanical structure which safely survives the thermal, mechanical and radiation stresses in the relevant environment. These goals are intimately coupled and difficult tradeoffs between scientific and engineering constraints have to be made.
Boron nitride nanotube: synthesis and applications
NASA Astrophysics Data System (ADS)
Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Kang, Jin Ho; Sauti, Godfrey; Thibeault, Sheila A.; Yamakov, Vesselin; Wise, Kristopher E.; Su, Ji; Fay, Catharine C.
2014-04-01
Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA/JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800°C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.
Wu, Zhibin; Li, Nianping; Cui, Haijiao; Peng, Jinqing; Chen, Haowen; Liu, Penglong
2017-01-01
Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments’ conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm) and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC) located in the hot summer and cold winter (HSCW) climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET*) was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*. PMID:28934173
Wu, Zhibin; Li, Nianping; Cui, Haijiao; Peng, Jinqing; Chen, Haowen; Liu, Penglong
2017-09-21
Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments' conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm) and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC) located in the hot summer and cold winter (HSCW) climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET*) was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*.
Lee, Chi-Wen; Wang, Hsiu-Jung; Hwang, Jenn-Kang; Tseng, Ching-Ping
2014-01-01
Protein thermal stability is an important factor considered in medical and industrial applications. Many structural characteristics related to protein thermal stability have been elucidated, and increasing salt bridges is considered as one of the most efficient strategies to increase protein thermal stability. However, the accurate simulation of salt bridges remains difficult. In this study, a novel method for salt-bridge design was proposed based on the statistical analysis of 10,556 surface salt bridges on 6,493 X-ray protein structures. These salt bridges were first categorized based on pairing residues, secondary structure locations, and Cα-Cα distances. Pairing preferences generalized from statistical analysis were used to construct a salt-bridge pair index and utilized in a weighted electrostatic attraction model to find the effective pairings for designing salt bridges. The model was also coupled with B-factor, weighted contact number, relative solvent accessibility, and conservation prescreening to determine the residues appropriate for the thermal adaptive design of salt bridges. According to our method, eight putative salt-bridges were designed on a mesophilic β-glucosidase and 24 variants were constructed to verify the predictions. Six putative salt-bridges leaded to the increase of the enzyme thermal stability. A significant increase in melting temperature of 8.8, 4.8, 3.7, 1.3, 1.2, and 0.7°C of the putative salt-bridges N437K-D49, E96R-D28, E96K-D28, S440K-E70, T231K-D388, and Q277E-D282 was detected, respectively. Reversing the polarity of T231K-D388 to T231D-D388K resulted in a further increase in melting temperatures by 3.6°C, which may be caused by the transformation of an intra-subunit electrostatic interaction into an inter-subunit one depending on the local environment. The combination of the thermostable variants (N437K, E96R, T231D and D388K) generated a melting temperature increase of 15.7°C. Thus, this study demonstrated a novel method for the thermal adaptive design of salt bridges through inference of suitable positions and substitutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopra, O. K.; Rao, A. S.
The effect of thermal aging on the degradation of fracture toughness and Charpy-impact properties of austenitic stainless steel (SS) welds has been characterized at reactor temperatures. The solidification behavior and the distribution and morphology of the ferrite phase in SS welds are described. Thermal aging of the welds results in moderate decreases in Charpy-impact strength and fracture toughness. The upper-shelf Charpy-impact energy of aged welds decreases by 50–80 J/cm2. The decrease in fracture toughness J-R curve, or JIc is relatively small. Thermal aging has minimal effect on the tensile strength. The fracture properties of SS welds are insensitive to fillermore » metal; the welding process has a significant effect. The large variability in the data makes it difficult to establish the effect of the welding process on fracture properties of SS welds. Consequently, the approach used for evaluating thermal and neutron embrittlement of austenitic SS welds relies on establishing a lower-bound fracture toughness J-R curve for unaged and aged, and non-irradiated and irradiated, SS welds. The existing fracture toughness J-R curve data for SS welds have been reviewed and evaluated to define lower-bound J-R curve for submerged arc (SA)/shielded metal arc (SMA)/manual metal arc (MMA) welds and gas tungsten arc (GTA)/tungsten inert gas (TIG) welds in the unaged and aged conditions. At reactor temperatures, the fracture toughness of GTA/TIG welds is a factor of about 2.3 higher than that of SA/SMA/MMA welds. Thermal aging decreases the fracture toughness by about 20%. The potential combined effects of thermal and neutron embrittlement of austenitic SS welds are also described. Lower-bound curves are presented that define the change in coefficient C and exponent n of the power-law J-R curve and the JIc value for SS welds as a function of neutron dose. The potential effects of reactor coolant environment on the fracture toughness of austenitic SS welds are also discussed.« less
Schade, Franziska M; Shama, Lisa N S; Wegner, K Mathias
2014-07-26
Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found for some families at elevated temperatures showed that there is evolutionary potential for resistance to Vibrio sp. in both thermal environments. The negative genetic correlation of pathogen resistance between thermal environments, on the other hand, indicates that adaptation to current conditions can be a weak predictor for performance in changing environments. The observed feedback on selective gradients exerted on life history traits may exacerbate this effect, as it can also modify the response to selection for other vital components of fitness.
NASA Astrophysics Data System (ADS)
Fei, T.; Skidmore, A.; Liu, Y.
2012-07-01
Thermal environment is especially important to ectotherm because a lot of physiological functions rely on the body temperature such as thermoregulation. The so-called behavioural thermoregulation function made use of the heterogeneity of the thermal properties within an individual's habitat to sustain the animal's physiological processes. This function links the spatial utilization and distribution of individual ectotherm with the thermal properties of habitat (thermal habitat). In this study we modelled the relationship between the two by a spatial explicit model that simulates the movements of a lizard in a controlled environment. The model incorporates a lizard's transient body temperatures with a cellular automaton algorithm as a way to link the physiology knowledge of the animal with the spatial utilization of its microhabitat. On a larger spatial scale, 'thermal roughness' of the habitat was defined and used to predict the habitat occupancy of the target species. The results showed the habitat occupancy can be modelled by the cellular automaton based algorithm at a smaller scale, and can be modelled by the thermal roughness index at a larger scale.
Thermal Analysis--Human Comfort--Indoor Environments. NBS Special Publication 491.
ERIC Educational Resources Information Center
Mangum, Billy W., Ed.; Hill, James E., Ed.
Included in these proceedings are 11 formal papers presented by leading researchers in the field of thermal comfort and heat stress at a symposium held for the purpose of exploring new aspects of indoor thermal environments, caused primarily by the impact of energy conservation in new and existing buildings. The contributed papers were from…
Quantum Two Player Game in Thermal Environment
Dajka, Jerzy; Kłoda, Dawid; Łobejko, Marcin; Sładkowski, Jan
2015-01-01
A two-player quantum game is considered in the presence of thermal decoherence. It is shown how the thermal environment modeled in terms of rigorous Davies approach affects payoffs of the players. The conditions for either beneficial or pernicious effect of decoherence are identified. The general considerations are exemplified by the quantum version of Prisoner Dilemma. PMID:26322833
Shuttle payload bay thermal environments: Summary and conclusion report for STS Flights 1-5
NASA Technical Reports Server (NTRS)
Fu, J. H.; Graves, G. R.
1987-01-01
The thermal data for the payload bay of the first five shuttle flights is summarized and the engineering evaluation of that data is presented. After a general discussion on mission profiles and vehicle configurations, the thermal design and flight instrumentation systems of the payload bay are described. The thermal flight data sources and a categorization of the data are then presented. A thermal flight data summarization section provides temperature data for the five phases of a typical mission profile. These are: prelaunch, ascent, on-orbit, entry and postlanding. The thermal flight data characterization section encompasses this flight data for flight to flight variations, payload effects, temperature ranges, and other variations. Discussion of the thermal environment prediction models in use by industry and various NASA Centers, and the results predicted by these models, is followed by an evaluation of the correlation between the actual flight data and the results predicted by the models. Finally, the available thermal data are evaluated from the viewpoint of the user concerned with establishing the thermal environment in the payload bay. The data deficiencies are discussed and recommendations for their elimination are presented.
NASA Technical Reports Server (NTRS)
Dietz, J. B.
1973-01-01
The environmental heat flux routine version 4, (EHFR-4) is a generalized computer program which calculates the steady state and/or transient thermal environments experienced by a space system during lunar surface, deep space, or thermal vacuum chamber operation. The specific environments possible for EHFR analysis include: lunar plain, lunar crater, combined lunar plain and crater, lunar plain in the region of spacecraft surfaces, intervehicular, deep space in the region of spacecraft surfaces, and thermal vacuum chamber generation. The EHFR was used for Extra Vehicular Mobility Unit environment analysis of the Apollo 11-17 missions, EMU manned and unmanned thermal vacuum qualification testing, and EMU-LRV interface environmental analyses.
of plasma membranes of eukaryotic cells in vitro and in vivo. The physical to biological driving mechanisms behind nanoporation still remain unclear...but could be a result of a multitude of stimuli, including mechanical (shockwaves, electrode formation), thermal, and electrical (ion transport...channel gating). Experimentally quantifying and characterizing mechanical fields with piezoelectric transducers proves difficult due to electromagnetic
Influences of thermal environment on fish growth.
Boltaña, Sebastián; Sanhueza, Nataly; Aguilar, Andrea; Gallardo-Escarate, Cristian; Arriagada, Gabriel; Valdes, Juan Antonio; Soto, Doris; Quiñones, Renato A
2017-09-01
Thermoregulation in ectothermic animals is influenced by the ability to effectively respond to thermal variations. While it is known that ectotherms are affected by thermal changes, it remains unknown whether physiological and/or metabolic traits are impacted by modifications to the thermal environment. Our research provides key evidence that fish ectotherms are highly influenced by thermal variability during development, which leads to important modifications at several metabolic levels (e.g., growth trajectories, microstructural alterations, muscle injuries, and molecular mechanisms). In Atlantic salmon ( Salmo salar ), a wide thermal range (Δ T 6.4°C) during development (posthatch larvae to juveniles) was associated with increases in key thermal performance measures for survival and growth trajectory. Other metabolic traits were also significantly influenced, such as size, muscle cellularity, and molecular growth regulators possibly affected by adaptive processes. In contrast, a restricted thermal range (Δ T 1.4°C) was detrimental to growth, survival, and cellular microstructure as muscle growth could not keep pace with increased metabolic demands. These findings provide a possible basic explanation for the effects of thermal environment during growth. In conclusion, our results highlight the key role of thermal range amplitude on survival and on interactions with major metabolism-regulating processes that have positive adaptive effects for organisms.
Solar Probe Plus MAG Sensor Thermal Design for Low Heater Power and Extreme Thermal Environment
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2015-01-01
The heater power available for the Solar Probe Plus FIELDS MAG sensor is less than half of the heritage value for other missions. Nominally the MAG sensors are in the spacecraft's umbra. In the worst hot case, approximately 200 spacecraft communication downlinks, up to 10 hours each, are required at 0.7 AU. These downlinks require the spacecraft to slew 45 deg. about the Y-axis, exposing the MAG sensors and boom to sunlight. This paper presents the thermal design to meet the MAG sensor thermal requirements in the extreme thermal environment and with low heater power. A thermal balance test on the MAG sensor engineering model has verified the thermal design and correlated the thermal model for flight temperature predictions.
A correct enthalpy relationship as thermal comfort index for livestock.
Rodrigues, Valéria Cristina; da Silva, Iran José Oliveira; Vieira, Frederico Márcio Corrêa; Nascimento, Sheila Tavares
2011-05-01
Researchers working with thermal comfort have been using enthalpy to measure thermal energy inside rural facilities, establishing indicator values for many situations of thermal comfort and heat stress. This variable turned out to be helpful in analyzing thermal exchange in livestock systems. The animals are exposed to an environment which is decisive for the thermoregulatory process, and, consequently, the reactions reflect states of thermal comfort or heat stress, the last being responsable for problems of sanity, behavior and productivity. There are researchers using enthalpy as a qualitative indicator of thermal environment of livestock such as poultry, cattle and hogs in tropical regions. This preliminary work intends to check different enthalpy equations using information from classical thermodynamics, and proposes a direct equation as thermal comfort index for livestock systems.
NASA Astrophysics Data System (ADS)
Zhang, Jingchuan; Zhang, Wen; Lv, Jianfeng; Liang, Shuo; Wang, Lei; Li, Xiyuan
2018-01-01
To satisfy the application of fiber grating sensor technology in high vacuum thermal environment, FBG on sleeve compactly single model fiber with two typical different kind of connection such as fiber splicing and optical fiber connector are researched. Influence of the different connection to the characteristic of FBG reflectance spectrum in high vacuum thermal environment is analyzed and verified. First, experimental program of influence on FBG reflection spectrum characteristics is designed. Then, a hardware-in-the-loop detection platform is set up. Finally, the influence of temperature and vacuum on the reflection peak power of FBG with two typical different connections under high vacuum thermal environment is studied and verified. Experimental results indicate that: when vacuum varied from normal pressure to 10-4Pa level and then return to normal pressure, temperature of two different single-mode optical fiber connection dropped to -196 °C from room temperature and then returned to room temperature, after 224 hours, the peak power of the FBG reflectance spectrum did not change. It provided the experimental basis for the application of optical fiber sensing technology in high vacuum (pressure about 10-4Pa level) and thermal environment (-196 °C temperature cycle).
Impact of cabin environment on thermal protection system of crew hypersonic vehicle
NASA Astrophysics Data System (ADS)
Zhu, Xiao Wei; Zhao, Jing Quan; Zhu, Lei; Yu, Xi Kui
2016-05-01
Hypersonic crew vehicles need reliable thermal protection systems (TPS) to ensure their safety. Since there exists relative large temperature difference between cabin airflow and TPS structure, the TPS shield that covers the cabin is always subjected to a non-adiabatic inner boundary condition, which may influence the heat transfer characteristic of the TPS. However, previous literatures always neglected the influence of the inner boundary by assuming that it was perfectly adiabatic. The present work focuses on studying the impact of cabin environment on the thermal performance. A modified TPS model is created with a mixed thermal boundary condition to connect the cabin environment with the TPS. This helps make the simulation closer to the real situation. The results stress that cabin environment greatly influences the temperature profile inside the TPS, which should not be neglected in practice. Moreover, the TPS size can be optimized during the design procedure if taking the effect of cabin environment into account.
That Elusive, Eclectic Thing Called Thermal Environment: What a Board Should Know About It
ERIC Educational Resources Information Center
Schutte, Frederick
1970-01-01
Discussion of proper thermal environment for protection of sophisticated educational equipment such as computer and data-processing machines, magnetic tapes, closed-circuit television and video tape communications systems.
Thermal Recovery of Plastic Deformation in Dissimilar Metal Weld
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, Dongxiao; Yu, Xinghua; Zhang, Wei
Stainless steel has been widely used in challenging environments typical to nuclear power plant structures, due its excellent corrosion resistance. Nickel filler metals containing high chromium concentration, including Alloy 82/182, are used for joining stainless steel to carbon steel components to achieve similar high resistance to stress corrosion cracking. However, the joint usually experience weld metal stress corrosion cracking (SCC), which affects the safety and structural integrity of light water nuclear reactor systems. A primary driving force for SCC is the high tensile residual stress in these welds. Due to large dimension of pressure vessel and limitations in the field,more » non-destructive residual stress measurement is difficult. As a result, finite element modeling has been the de facto method to evaluate the weld residual stresses. Recent studies on this subject from researchers worldwide report different residual stress value in the weldments [5]. The discrepancy is due to the fact that most of investigations ignore or underestimate the thermal recovery in the heat-affect zone or reheated region in the weld. In this paper, the effect of heat treatment on thermal recovery and microhardness is investigated for materials used in dissimilar metal joint. It is found that high equivalent plastic strains are predominately accumulated in the buttering layer, the root pass, and the heat affected zone, which experience multiple welding thermal cycles. The final cap passes, experiencing only one or two welding thermal cycles, exhibit less plastic strain accumulation. Moreover, the experimental residual plastic strains are compared with those predicted using an existing weld thermo-mechanical model with two different strain hardening rules. The importance of considering the dynamic strain hardening recovery due to high temperature exposure in welding is discussed for the accurate simulation of weld residual stresses and plastic strains. In conclsuion, the experimental result reveals that the typical post-buttering heat treatment for residual stress relief may not be adequate to completely eliminate the residual plastic strains in the buttering layer.« less
Measuring Thermal Characteristics of Urban Landscapes
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.
1999-01-01
The additional heating of the air over the city is the result of the replacement of naturally vegetated surfaces with those composed of asphalt, concrete, rooftops and other man-made materials. The temperatures of these artificial surfaces can be 20 to 40 C higher than vegetated surfaces. Materials such as asphalt store much of the sun's energy and remains hot long after sunset. This produces a dome of elevated air temperatures 5 to 8 C greater over the city, compared to the air temperatures over adjacent rural areas. This effect is called the "urban heat island". Urban landscapes are a complex mixture of vegetated and nonvegetated surfaces. It is difficult to take enough temperature measurements over a large city area to characterize the complexity of urban radiant surface temperature variability. However, the use of remotely sensed thermal data from airborne scanners are ideal for the task. In a study funded by NASA, a series of flights over Huntsville, Alabama were performed in September 1994 and over Atlanta, Georgia in May 1997. Analysis of thermal energy responses for specific or discrete surfaces typical of the urban landscape (e.g., asphalt, building rooftops, vegetation) requires measurements at a very fine spatial scale (i.e., <15 m) to adequately resolve these surfaces and their attendant thermal energy regimes. Additionally, very fine scale spatial resolution thermal infrared data, such as that obtained from aircraft, are very useful for demonstrating to planning officials, policy makers, and the general populace, what the benefits are of the urban forest in both mitigating the urban heat island effect, in making cities more aesthetically pleasing and more habitable environments, and in overall cooling of the community. In this presentation we will examine the techniques of analyzing remotely sensed data for measuring the effect of various urban surfaces on their contribution to the urban heat island effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohn, M.E.; Patchen, D.G.; Heald, M.
Non-uniform composition and permeability of a reservoir, commonly referred to as reservoir heterogeneity, is recognized as a major factor in the efficient recovery of oil during primary production and enhanced recovery operations. Heterogeneities are present at various scales and are caused by various factors, including folding and faulting, fractures, diagenesis and depositional environments. Thus, a reservoir consists of a complex flow system, or series of flow systems, dependent on lithology, sandstone genesis, and structural and thermal history. Ultimately, however, fundamental flow units are controlled by the distribution and type of depositional environments. Reservoir heterogeneity is difficult to measure and predict,more » especially in more complex reservoirs such as fluvial-deltaic sandstones. The Appalachian Oil and Natural Gas Research Consortium (AONGRC), a partnership of Appalachian basin state geological surveys in Kentucky, Ohio, Pennsylvania, and West Virginia, and West Virginia University, studied the Lower Mississippian Big Injun sandstone in West Virginia. The Big Injun research was multidisciplinary and designed to measure and map heterogeneity in existing fields and undrilled areas. The main goal was to develop an understanding of the reservoir sufficient to predict, in a given reservoir, optimum drilling locations versus high-risk locations for infill, outpost, or deeper-pool tests.« less
High-temperature Raman spectroscopy of solid oxide fuel cell materials and processes.
Pomfret, Michael B; Owrutsky, Jeffrey C; Walker, Robert A
2006-09-07
Chemical and material processes occurring in high temperature environments are difficult to quantify due to a lack of experimental methods that can probe directly the species present. In this letter, Raman spectroscopy is shown to be capable of identifying in-situ and noninvasively changes in material properties as well as the formation and disappearance of molecular species on surfaces at temperatures of 715 degrees C. The material, yttria-stabilized zirconia or YSZ, and the molecular species, Ni/NiO and nanocrystalline graphite, factor prominently in the chemistry of solid oxide fuel cells (SOFCs). Experiments demonstrate the ability of Raman spectroscopy to follow reversible oxidation/reduction kinetics of Ni/NiO as well as the rate of carbon disappearance when graphite, formed in-situ, is exposed to a weakly oxidizing atmosphere. In addition, the Raman active phonon mode of YSZ shows a temperature dependent shift that correlates closely with the expansion of the lattice parameter, thus providing a convenient internal diagnostic for identifying thermal gradients in high temperature systems. These findings provide direct insight into processes likely to occur in operational SOFCs and motivate the use of in-situ Raman spectroscopy to follow chemical processes in these high-temperature, electrochemically active environments.
A review of wood thermal pretreatments to improve wood composite properties
Manuel Raul Pelaez-Samaniego; Vikram Yadama; Eini Lowell; Raul Espinoza-Herrera
2013-01-01
The objective of this paper is to review the published literature on improving properties of wood composites through thermal pretreatment of wood. Thermal pretreatment has been conducted in moist environments using hot water or steam at temperatures up to 180 and 230 ˚C, respectively, or in dry environments using inert gases at temperatures up to 240 ...
Construction of a Thermal Vacuum Chamber for Environment Test of Triple CubeSat Mission TRIO-CINEMA
NASA Astrophysics Data System (ADS)
Jeon, Jeheon; Lee, Seongwhan; Yoon, Seyoung; Seon, Jongho; Jin, Ho; Lee, Donghun; Lin, Robert P.
2013-12-01
TRiplet Ionospheric Observatory-CubeSat for Ion, Neutron, Electron & MAgnetic fields (TRIO-CINEMA) is a CubeSat with 3.14 kg in weight and 3-U (10 × 10 × 30 cm) in size, jointly developed by Kyung Hee University and UC Berkeley to measure magnetic fields of near Earth space and detect plasma particles. When a satellite is launched into orbit, it encounters ultrahigh vacuum and extreme temperature. To verify the operation and survivability of the satellite in such an extreme space environment, experimental tests are conducted on the ground using thermal vacuum chamber. This paper describes the temperature control device and monitoring system suitable for CubeSat test environment using the thermal vacuum chamber of the School of Space Research, Kyung Hee University. To build the chamber, we use a general purpose thermal analysis program and NX 6.0 TMG program. We carry out thermal vacuum tests on the two flight models developed by Kyung Hee University based on the thermal model of the TRIO-CINEMA satellite. It is expected from this experiment that proper operation of the satellite in the space environment will be achieved.
Vacuum stability requirements of polymeric material for spacecraft application
NASA Technical Reports Server (NTRS)
Craig, J. W.
1984-01-01
The purpose of this document is to establish outgassing requirements and test guidelines for polymeric materials used in the space thermal/vacuum environment around sensitive optical or thermal control surfaces. The scope of this document covers the control of polymeric materials used near or adjacent to optical or thermal control surfaces that are exposed to the thermal/vacuum environment of space. This document establishes the requirements and defines the test method to evaluate polymeric materials used in the vicinity of these surfaces in space applications.
A radiant heating test facility for space shuttle orbiter thermal protection system certification
NASA Technical Reports Server (NTRS)
Sherborne, W. D.; Milhoan, J. D.
1980-01-01
A large scale radiant heating test facility was constructed so that thermal certification tests can be performed on the new generation of thermal protection systems developed for the space shuttle orbiter. This facility simulates surface thermal gradients, onorbit cold-soak temperatures down to 200 K, entry heating temperatures to 1710 K in an oxidizing environment, and the dynamic entry pressure environment. The capabilities of the facility and the development of new test equipment are presented.
NASA Technical Reports Server (NTRS)
Sadunas, J. A.; French, E. P.; Sexton, H.
1973-01-01
A 1/25 scale model S-2 stage base region thermal environment test is presented. Analytical results are included which reflect the effect of engine operating conditions, model scale, turbo-pump exhaust gas injection on base region thermal environment. Comparisons are made between full scale flight data, model test data, and analytical results. The report is prepared in two volumes. The description of analytical predictions and comparisons with flight data are presented. Tabulation of the test data is provided.
Time-Dependent Thermal Transport Theory.
Biele, Robert; D'Agosta, Roberto; Rubio, Angel
2015-07-31
Understanding thermal transport in nanoscale systems presents important challenges to both theory and experiment. In particular, the concept of local temperature at the nanoscale appears difficult to justify. Here, we propose a theoretical approach where we replace the temperature gradient with controllable external blackbody radiations. The theory recovers known physical results, for example, the linear relation between the thermal current and the temperature difference of two blackbodies. Furthermore, our theory is not limited to the linear regime and goes beyond accounting for nonlinear effects and transient phenomena. Since the present theory is general and can be adapted to describe both electron and phonon dynamics, it provides a first step toward a unified formalism for investigating thermal and electronic transport.
NASA Astrophysics Data System (ADS)
Go, Gwangjun; Choi, Hyunchul; Jeong, Semi; Ko, Seong Young; Park, Jong-Oh; Park, Sukho
2016-03-01
Microparticle manipulation using a microrobot in an enclosed environment, such as a lab-on-a-chip, has been actively studied because an electromagnetic actuated microrobot can have accurate motility and wireless controllability. In most studies on electromagnetic actuated microrobots, only a single microrobot has been used to manipulate cells or microparticles. However, the use of a single microrobot can pose several limitations when performing multiple roles in microparticle manipulation. To overcome the limitations associated with using a single microrobot, we propose a new method for the control of multiple microrobots. Multiple microrobots can be controlled independently by an electromagnetic actuation system and multiple microclampers combined with microheaters. To select a specific microrobot among multiple microrobots, we propose a microclamper composed of a clamper structure using thermally responsive hydrogel and a microheater for controlling the microclamper. A fundamental test of the proposed microparticle manipulation system is performed by selecting a specific microrobot among multiple microrobots. Through the independent locomotion of multiple microrobots with U- and V-shaped tips, heterogeneous microparticle manipulation is demonstrated in the creation of a two-dimensional structure. In the future, our proposed multiple-microrobot system can be applied to tasks that are difficult to perform using a single microrobot, such as cell manipulation, cargo delivery, tissue assembly, and cloning.
Silberg, Judy L; Miguel, Vivian Febo San; Murrelle, E Lenn; Prom, Elizabeth; Bates, John E; Canino, Glorisa; Egger, Helen; Eaves, Lindon J
2005-08-01
Three dimensions of temperament -- difficult temperament, unadaptablility and unsociability -- were assessed in the first year of life by maternal interview in twins born in Puerto Rico during 2001 and 2002. Eight hundred and sixty-five eligible mothers (80%) were traced and interviewed. Model-fitting results showed that additive genetic factors and the individual specific environment contributed to variation in all three dimensions. In addition, the pattern of variances and correlations suggested that sibling contrast effects influence ratings of difficult temperament. Moderate effects of the shared environment contributed to ratings of adaptability and sociability. There was a significant genetic correlation between difficult temperament and unadaptability. Genetic and environmental effects do not differ significantly between boys and girls. The study is the first population-based study of Puerto Rican twins and one of few to attempt the assessment of behavior in the first year. Preliminary results for difficult temperament and sociability were consistent with those in other populations and ages. In contrast, a significant effect of the shared environment on the temperamental trait of unadaptability has not been reported previously.
Human thermal physiological and psychological responses under different heating environments.
Wang, Zhaojun; Ning, Haoran; Ji, Yuchen; Hou, Juan; He, Yanan
2015-08-01
Anecdotal evidence suggests that many residents of severely cold areas of China who use floor heating (FH) systems feel warmer but drier compared to those using radiant heating (RH) systems. However, this phenomenon has not been verified experimentally. In order to validate the empirical hypothesis, and research the differences of human physiological and psychological responses in these two asymmetrical heating environments, an experiment was designed to mimic FH and RH systems. The subjects participating in the experiment were volunteer college-students. During the experiment, the indoor air temperature, air speed, relative humidity, globe temperature, and inner surface temperatures were measured, and subjects' heart rate, blood pressure and skin temperatures were recorded. The subjects were required to fill in questionnaires about their thermal responses during testing. The results showed that the subjects' skin temperatures, heart rate and blood pressure were significantly affected by the type of heating environment. Ankle temperature had greatest impact on overall thermal comfort relative to other body parts, and a slightly cool FH condition was the most pleasurable environment for sedentary subjects. The overall thermal sensation, comfort and acceptability of FH were higher than that of RH. However, the subjects of FH felt drier than that of RH, although the relative humidity in FH environments was higher than that of the RH environment. In future environmental design, the thermal comfort of the ankles should be scrutinized, and a FH cool condition is recommended as the most comfortable thermal environment for office workers. Consequently, large amounts of heating energy could be saved in this area in the winter. The results of this study may lead to more efficient energy use for office or home heating systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Putt, Charles W.
1997-01-01
The Visual Computing Environment (VCE) is a NASA Lewis Research Center project to develop a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis. The objectives of VCE are to (1) develop a visual computing environment for controlling the execution of individual simulation codes that are running in parallel and are distributed on heterogeneous host machines in a networked environment, (2) develop numerical coupling algorithms for interchanging boundary conditions between codes with arbitrary grid matching and different levels of dimensionality, (3) provide a graphical interface for simulation setup and control, and (4) provide tools for online visualization and plotting. VCE was designed to provide a distributed, object-oriented environment. Mechanisms are provided for creating and manipulating objects, such as grids, boundary conditions, and solution data. This environment includes parallel virtual machine (PVM) for distributed processing. Users can interactively select and couple any set of codes that have been modified to run in a parallel distributed fashion on a cluster of heterogeneous workstations. A scripting facility allows users to dictate the sequence of events that make up the particular simulation.
Effects of thermal cycling on composite materials for space structures
NASA Technical Reports Server (NTRS)
Tompkins, Stephen S.
1989-01-01
The effects of thermal cycling on the thermal and mechanical properties of composite materials that are candidates for space structures are briefly described. The results from a thermal analysis of the orbiting Space Station Freedom is used to define a typical thermal environment and the parameters that cause changes in the thermal history. The interactions of this environment with composite materials are shown and described. The effects of this interaction on the integrity as well as the properties of GR/thermoset, Gr/thermoplastic, Gr/metal and Gr/glass composite materials are discussed. Emphasis is placed on the effects of the interaction that are critical to precision spacecraft. Finally, ground test methodology are briefly discussed.
Measurement of in-plane thermal conductivity in polymer films
NASA Astrophysics Data System (ADS)
Wei, Qingshuo; Uehara, Chinatsu; Mukaida, Masakazu; Kirihara, Kazuhiro; Ishida, Takao
2016-04-01
Measuring the in-plane thermal conductivity of organic thermoelectric materials is challenging but is critically important. Here, a method to study the in-plane thermal conductivity of free-standing films (via the use of commercial equipment) based on temperature wave analysis is explored in depth. This subject method required a free-standing thin film with a thickness larger than 10 μm and an area larger than 1 cm2, which are not difficult to obtain for most solution-processable organic thermoelectric materials. We evaluated thermal conductivities and anisotropic ratios for various types of samples including insulating polymers, undoped semiconducting polymers, doped conducting polymers, and one-dimensional carbon fiber bulky papers. This approach facilitated a rapid screening of in-plane thermal conductivities for various organic thermoelectric materials.
Thermal stress, human performance, and physical employment standards.
Cheung, Stephen S; Lee, Jason K W; Oksa, Juha
2016-06-01
Many physically demanding occupations in both developed and developing economies involve exposure to extreme thermal environments that can affect work capacity and ultimately health. Thermal extremes may be present in either an outdoor or an indoor work environment, and can be due to a combination of the natural or artificial ambient environment, the rate of metabolic heat generation from physical work, processes specific to the workplace (e.g., steel manufacturing), or through the requirement for protective clothing impairing heat dissipation. Together, thermal exposure can elicit acute impairment of work capacity and also chronic effects on health, greatly contributing to worker health risk and reduced productivity. Surprisingly, in most occupations even in developed economies, there are rarely any standards regarding enforced heat or cold safety for workers. Furthermore, specific physical employment standards or accommodations for thermal stressors are rare, with workers commonly tested under near-perfect conditions. This review surveys the major occupational impact of thermal extremes and existing employment standards, proposing guidelines for improvement and areas for future research.
Natural selection on thermal performance in a novel thermal environment
Logan, Michael L.; Cox, Robert M.; Calsbeek, Ryan
2014-01-01
Tropical ectotherms are thought to be especially vulnerable to climate change because they are adapted to relatively stable temperature regimes, such that even small increases in environmental temperature may lead to large decreases in physiological performance. One way in which tropical organisms may mitigate the detrimental effects of warming is through evolutionary change in thermal physiology. The speed and magnitude of this response depend, in part, on the strength of climate-driven selection. However, many ectotherms use behavioral adjustments to maintain preferred body temperatures in the face of environmental variation. These behaviors may shelter individuals from natural selection, preventing evolutionary adaptation to changing conditions. Here, we mimic the effects of climate change by experimentally transplanting a population of Anolis sagrei lizards to a novel thermal environment. Transplanted lizards experienced warmer and more thermally variable conditions, which resulted in strong directional selection on thermal performance traits. These same traits were not under selection in a reference population studied in a less thermally stressful environment. Our results indicate that climate change can exert strong natural selection on tropical ectotherms, despite their ability to thermoregulate behaviorally. To the extent that thermal performance traits are heritable, populations may be capable of rapid adaptation to anthropogenic warming. PMID:25225361
Natural selection on thermal performance in a novel thermal environment.
Logan, Michael L; Cox, Robert M; Calsbeek, Ryan
2014-09-30
Tropical ectotherms are thought to be especially vulnerable to climate change because they are adapted to relatively stable temperature regimes, such that even small increases in environmental temperature may lead to large decreases in physiological performance. One way in which tropical organisms may mitigate the detrimental effects of warming is through evolutionary change in thermal physiology. The speed and magnitude of this response depend, in part, on the strength of climate-driven selection. However, many ectotherms use behavioral adjustments to maintain preferred body temperatures in the face of environmental variation. These behaviors may shelter individuals from natural selection, preventing evolutionary adaptation to changing conditions. Here, we mimic the effects of climate change by experimentally transplanting a population of Anolis sagrei lizards to a novel thermal environment. Transplanted lizards experienced warmer and more thermally variable conditions, which resulted in strong directional selection on thermal performance traits. These same traits were not under selection in a reference population studied in a less thermally stressful environment. Our results indicate that climate change can exert strong natural selection on tropical ectotherms, despite their ability to thermoregulate behaviorally. To the extent that thermal performance traits are heritable, populations may be capable of rapid adaptation to anthropogenic warming.
Thermally assisted adiabatic quantum computation.
Amin, M H S; Love, Peter J; Truncik, C J S
2008-02-15
We study the effect of a thermal environment on adiabatic quantum computation using the Bloch-Redfield formalism. We show that in certain cases the environment can enhance the performance in two different ways: (i) by introducing a time scale for thermal mixing near the anticrossing that is smaller than the adiabatic time scale, and (ii) by relaxation after the anticrossing. The former can enhance the scaling of computation when the environment is super-Ohmic, while the latter can only provide a prefactor enhancement. We apply our method to the case of adiabatic Grover search and show that performance better than classical is possible with a super-Ohmic environment, with no a priori knowledge of the energy spectrum.
NASA Technical Reports Server (NTRS)
Homan, Jonathan L.; Lauterbach, John; Garcia, Sam
2016-01-01
Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. The chamber was originally built to support testing of the Apollo Service and Command Module for lunar missions, but underwent major modifications to be able to test the James Webb Space Telescope in a simulated deep space environment. To date seven tests have been performed in preparation of testing the flight optics for the James Webb Space Telescope (JWST). Each test has had a uniquie thermal profile and set of thermal requirements for cooling down and warming up, controlling contamination, and releasing condensed air. These range from temperatures from 335K to 15K, with tight uniformity and controllability for maintining thermal stability and pressure control. One unique requirement for two test was structurally proof loading hardware by creating thermal gradients at specific temperatures. This paper will discuss the thermal requirements and goals of the tests, the original requirements of the chamber thermal systems for planned operation, and how the new requirements were met by the team using the hardware, system flexiblilty, and engineering creativity. It will also discuss the mistakes and successes to meet the unique goals, especially when meeting the thermal proof load.
Bioinspired engineering of thermal materials.
Tao, Peng; Shang, Wen; Song, Chengyi; Shen, Qingchen; Zhang, Fangyu; Luo, Zhen; Yi, Nan; Zhang, Di; Deng, Tao
2015-01-21
In the development of next-generation materials with enhanced thermal properties, biological systems in nature provide many examples that have exceptional structural designs and unparalleled performance in their thermal or nonthermal functions. Bioinspired engineering thus offers great promise in the synthesis and fabrication of thermal materials that are difficult to engineer through conventional approaches. In this review, recent progress in the emerging area of bioinspired advanced materials for thermal science and technology is summarized. State-of-the-art developments of bioinspired thermal-management materials, including materials for efficient thermal insulation and heat transfer, and bioinspired materials for thermal/infrared detection, are highlighted. The dynamic balance of bioinspiration and practical engineering, the correlation of inspiration approaches with the targeted applications, and the coexistence of molecule-based inspiration and structure-based inspiration are discussed in the overview of the development. The long-term outlook and short-term focus of this critical area of advanced materials engineering are also presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Divergence of gastropod life history in contrasting thermal environments in a geothermal lake.
Johansson, M P; Ermold, F; Kristjánsson, B K; Laurila, A
2016-10-01
Experiments using natural populations have provided mixed support for thermal adaptation models, probably because the conditions are often confounded with additional environmental factors like seasonality. The contrasting geothermal environments within Lake Mývatn, northern Iceland, provide a unique opportunity to evaluate thermal adaptation models using closely located natural populations. We conducted laboratory common garden and field reciprocal transplant experiments to investigate how thermal origin influences the life history of Radix balthica snails originating from stable cold (6 °C), stable warm (23 °C) thermal environments or from areas with seasonal temperature variation. Supporting thermal optimality models, warm-origin snails survived poorly at 6 °C in the common garden experiment and better than cold-origin and seasonal-origin snails in the warm habitat in the reciprocal transplant experiment. Contrary to thermal adaptation models, growth rate in both experiments was highest in the warm populations irrespective of temperature, indicating cogradient variation. The optimal temperatures for growth and reproduction were similar irrespective of origin, but cold-origin snails always had the lowest performance, and seasonal-origin snails often performed at an intermediate level compared to snails originating in either stable environment. Our results indicate that central life-history traits can differ in their mode of evolution, with survival following the predictions of thermal optimality models, whereas ecological constraints have shaped the evolution of growth rates in local populations. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Surface analyses of composites exposed to the space environment on LDEF
NASA Technical Reports Server (NTRS)
Mallon, Joseph J.; Uht, Joseph C.; Hemminger, Carol S.
1992-01-01
We have conducted a series of surface analyses on carbon fiber/polyarylacetylene matrix composites that were exposed to the space environment on the LDEF satellite. None of the composites were catastrophically damaged by nearly six years of exposure to the space environment. Composites on the leading edge exhibited about 5 mils of surface erosion, but trailing edge panels exhibited no physical appearance changes due to exposure. Scanning electron microscopy (SEM) was used to show that the erosion morphology on the leading edge samples was dominated by crevasses parallel to the fibers with triangular cross sections 10 to 100 microns in depth. The edges of the crevasses were well defined and penetrated through both matrix and fiber. The data suggest that the carbon fibers are playing a significant role in crevasse initiation and/or enlargement, and in the overall erosion rate of the composite. X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS) results showed the presence of silicone and hydrocarbon contamination from in-flight sources. The role of contamination in crevasse initiation and enlargement is unknown at this time. These LDEF results demonstrate that the prediction of long term atomic oxygen erosion morphology for composite materials from erosion data obtained on short Space Shuttle missions is difficult. A better understanding of other factors such as thermal cycling and UV exposure which may influence erosion is necessary to improve the accuracy of the predictions.
ERIC Educational Resources Information Center
Milbank, N. O.
The paper argues that existing computer programs for thermal predictions do not produce suitable information for architects, particularly at the early stages of design. It reviews the important building features that determine the thermal environment and the need for heating and cooling plant. Graphical design aids are proposed, with examples to…
NASA Technical Reports Server (NTRS)
Gudimenko, Y.; Ng, R.; Iskanderova, Z.; Kleiman, J.; Grigorevsky, A.; Kiseleva, L.; Finckenor, M.; Edwards, D.
2005-01-01
Research has been continued to further improve the space durability of conductive and non-conductive polymer-based paints and of conductive thermal control paints for space applications. Efforts have been made to enhance the space durability and stability of functional Characteristics in ground-based space environment imitating conditions, using specially developed surface modification treatment. The results of surface modification of new conductive paints, including the ground-based testing in aggressive oxidative environments, such as atomic oxygen/UV and oxygen plasma, and performance evaluation are presented. Functional properties and performance characteristics, such as thermal optical properties (differential solar absorptance and thermal emittance representing the thermal optical performance of thermal control paints) and surface resistivity characteristics of pristine, surface modified, and tested materials were verified. Extensive surface analysis studies have been performed using complementary surface analyses including SEM/EDS and XPS. Test results revealed that the successfully treated materials exhibit reduced mass loss and no surface morphology change, thus indicating good protection from the severe oxidative environment. It was demonstrated that the developed surface modification treatment could be applied successfully to charge dissipative and conductive paints.
Thermal stability of single-side hydrogenated graphene
NASA Astrophysics Data System (ADS)
Openov, L. A.; Podlivaev, A. I.
2012-11-01
The temperature dependence of the time of hydrogen desorption from single-side hydrogenated graphene is calculated using molecular dynamics simulation. The activation energy ( E a = 0.75 ± 0.10 eV) and the frequency factor ( A = (2.5 ± 1.0) × 1015 s-1) of the desorption are found. This quasi-two-dimensional carbon-hydrogen system is shown to have a relatively low thermal stability, which makes it difficult to use it in practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihaescu, Tatiana, E-mail: mihaescu92tatiana@gmail.com; Isar, Aurelian
We describe the evolution of the quantum entanglement of an open system consisting of two bosonic modes interacting with a common thermal environment, described by two different models. The initial state of the system is taken of Gaussian form. In the case of a thermal bath, characterized by temperature and dissipation constant which correspond to an asymptotic Gibbs state of the system, we show that for a zero temperature of the thermal bath an initial entangled Gaussian state remains entangled for all finite times. For an entangled initial squeezed thermal state, the phenomenon of entanglement sudden death takes place andmore » we calculate the survival time of entanglement. For the second model of the environment, corresponding to a non-Gibbs asymptotic state, we study the possibility of generating entanglement. We show that the generation of the entanglement between two uncoupled bosonic modes is possible only for definite values of the temperature and dissipation constant, which characterize the thermal environment.« less
Thermal control surfaces experiment flight system performance
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Hummer, Leigh L.; Zwiener, James M.
1991-01-01
The Thermal Control Surfaces Experiment (TCSE) is the most complex system, other than the LDEF, retrieved after long term space exposure. The TCSE is a microcosm of complex electro-optical payloads being developed and flow by NASA and the DoD including SDI. The objective of TCSE was to determine the effects of the near-Earth orbital environment and the LDEF induced environment on spacecraft thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive post flight analyses of thermal control surfaces to determine the effects of exposure to the low earth orbit space environment. The TCSE was the first space experiment to measure the optical properties of thermal control surfaces the way they are routinely measured in a lab. The performance of the TCSE confirms that low cost, complex experiment packages can be developed that perform well in space.
[The evaluation of the thermal environment of man (author's transl)].
Sönning, W; Jendritzky, G
1979-10-01
Many problems in bioclimatology require an accurate knowledge of the variations of all meteorological parameters which influence the thermal environment of man (i.g. short- and long-wave radiation, air temperature, wind velocity and air humidity). In addition to that a method for determining this thermal environment by a biometeorological index has to consider thermophysiologically relevant factors so as activity level and thermal resistance of the clothing. By means of the comfort equation (Fanger, 1970) it is possible, for any activity level and clothing to calculate all combinations of meteorological parameters, which will create optimal thermal comfort. The parametrization of the fluxes of short- and long-wave radiation permits to applicate this equation to outdoor conditions (Jendritzky, Sönning and Swantes, 1977). Examples for calculating some given conditions (i.g. street in the city, cross-country kinesitherapy, special land-use areas within a city) are demonstrated.
2014-01-01
Background Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. Results We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. Conclusion To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found for some families at elevated temperatures showed that there is evolutionary potential for resistance to Vibrio sp. in both thermal environments. The negative genetic correlation of pathogen resistance between thermal environments, on the other hand, indicates that adaptation to current conditions can be a weak predictor for performance in changing environments. The observed feedback on selective gradients exerted on life history traits may exacerbate this effect, as it can also modify the response to selection for other vital components of fitness. PMID:25927537
An analysis of influential factors on outdoor thermal comfort in summer.
Yin, JiFu; Zheng, YouFei; Wu, RongJun; Tan, JianGuo; Ye, DianXiu; Wang, Wei
2012-09-01
A variety of research has linked high temperature to outdoor thermal comfort in summer, but it remains unclear how outdoor meteorological environments influence people's thermal sensation in subtropical monsoon climate areas, especially in China. In order to explain the process, and to better understand the related influential factors, we conducted an extensive survey of thermally comfortable conditions in open outdoor spaces. The goal of this study was to gain an insight into the subjects' perspectives on weather variables and comfort levels, and determine the factors responsible for the varying human thermal comfort response in summer. These perceptions were then compared to actual ambient conditions. The database consists of surveys rated by 205 students trained from 6:00 am to 8:00 pm outdoors from 21 to 25 August 2009, at Nanjing University of Information Science & Technology (NUIST), Nanjing, China. The multiple regression approach and simple factor analysis of variance were used to investigate the relationships between thermal comfort and meteorological environment, taking into consideration individual mood, gender, level of regular exercise, and previous environmental experiences. It was found that males and females have similar perceptions of maximum temperature; in the most comfortable environment, mood appears to have a significant influence on thermal comfort, but the influence of mood diminishes as the meteorological environment becomes increasingly uncomfortable. In addition, the study confirms the strong relationship between thermal comfort and microclimatic conditions, including solar radiation, atmospheric pressure, maximum temperature, wind speed and relative humidity, ranked by importance. There are also strong effects of illness, clothing and exercise, all of which influence thermal comfort. We also find that their former place of residence influences people's thermal comfort substantially by setting expectations. Finally, some relationships between thermal perception and amount of exercise, thermal experience, mood, clothing, illness and microclimate, etc., are established. Our findings also shed light on how to resist or adapt to outdoor hyperthermic conditions during summer in subtropical monsoon climate areas.
An analysis of influential factors on outdoor thermal comfort in summer
NASA Astrophysics Data System (ADS)
Yin, JiFu; Zheng, YouFei; Wu, RongJun; Tan, JianGuo; Ye, DianXiu; Wang, Wei
2012-09-01
A variety of research has linked high temperature to outdoor thermal comfort in summer, but it remains unclear how outdoor meteorological environments influence people's thermal sensation in subtropical monsoon climate areas, especially in China. In order to explain the process, and to better understand the related influential factors, we conducted an extensive survey of thermally comfortable conditions in open outdoor spaces. The goal of this study was to gain an insight into the subjects' perspectives on weather variables and comfort levels, and determine the factors responsible for the varying human thermal comfort response in summer. These perceptions were then compared to actual ambient conditions. The database consists of surveys rated by 205 students trained from 6:00 am to 8:00 pm outdoors from 21 to 25 August 2009, at Nanjing University of Information Science & Technology (NUIST), Nanjing, China. The multiple regression approach and simple factor analysis of variance were used to investigate the relationships between thermal comfort and meteorological environment, taking into consideration individual mood, gender, level of regular exercise, and previous environmental experiences. It was found that males and females have similar perceptions of maximum temperature; in the most comfortable environment, mood appears to have a significant influence on thermal comfort, but the influence of mood diminishes as the meteorological environment becomes increasingly uncomfortable. In addition, the study confirms the strong relationship between thermal comfort and microclimatic conditions, including solar radiation, atmospheric pressure, maximum temperature, wind speed and relative humidity, ranked by importance. There are also strong effects of illness, clothing and exercise, all of which influence thermal comfort. We also find that their former place of residence influences people's thermal comfort substantially by setting expectations. Finally, some relationships between thermal perception and amount of exercise, thermal experience, mood, clothing, illness and microclimate, etc., are established. Our findings also shed light on how to resist or adapt to outdoor hyperthermic conditions during summer in subtropical monsoon climate areas.
NASA Astrophysics Data System (ADS)
Duan, Pengfei; Lei, Wenping
2017-11-01
A number of disciplines (mechanics, structures, thermal, and optics) are needed to design and build Space Camera. Separate design models are normally constructed by each discipline CAD/CAE tools. Design and analysis is conducted largely in parallel subject to requirements that have been levied on each discipline, and technical interaction between the different disciplines is limited and infrequent. As a result a unified view of the Space Camera design across discipline boundaries is not directly possible in the approach above, and generating one would require a large manual, and error-prone process. A collaborative environment that is built on abstract model and performance template allows engineering data and CAD/CAE results to be shared across above discipline boundaries within a common interface, so that it can help to attain speedy multivariate design and directly evaluate optical performance under environment loadings. A small interdisciplinary engineering team from Beijing Institute of Space Mechanics and Electricity has recently conducted a Structural/Thermal/Optical (STOP) analysis of a space camera with this collaborative environment. STOP analysis evaluates the changes in image quality that arise from the structural deformations when the thermal environment of the camera changes throughout its orbit. STOP analyses were conducted for four different test conditions applied during final thermal vacuum (TVAC) testing of the payload on the ground. The STOP Simulation Process begins with importing an integrated CAD model of the camera geometry into the collaborative environment, within which 1. Independent thermal and structural meshes are generated. 2. The thermal mesh and relevant engineering data for material properties and thermal boundary conditions are then used to compute temperature distributions at nodal points in both the thermal and structures mesh through Thermal Desktop, a COTS thermal design and analysis code. 3. Thermally induced structural deformations of the camera are then evaluated in Nastran, an industry standard code for structural design and analysis. 4. Thermal and structural results are next imported into SigFit, another COTS tool that computes deformation and best fit rigid body displacements for the optical surfaces. 5. SigFit creates a modified optical prescription that is imported into CODE V for evaluation of optical performance impacts. The integrated STOP analysis was validated using TVAC test data. For the four different TVAC tests, the relative errors between simulation and test data of measuring points temperatures were almost around 5%, while in some test conditions, they were even much lower to 1%. As to image quality MTF, relative error between simulation and test was 8.3% in the worst condition, others were all below 5%. Through the validation, it has been approved that the collaborative design and simulation environment can achieved the integrated STOP analysis of Space Camera efficiently. And further, the collaborative environment allows an interdisciplinary analysis that formerly might take several months to perform to be completed in two or three weeks, which is very adaptive to scheme demonstration of projects in earlier stages.
Thermoelectric Measurements of Magnetic Nanostructures Using Thermal Isolation Platforms
NASA Astrophysics Data System (ADS)
Avery, A. D.; Sultan, R.; Bassett, D.; Pufall, M. R.; Zink, B. L.
2010-03-01
The effective design of next-generation memory storage and logic devices based on spin necessitates a thorough understanding of transport properties of their potential components. Although electrical transport in magnetic materials is well-understood, thermal transport is historically difficult to measure. Using micromachined thermal isolation structures, we make direct measurements of thermal and electrical transport in these systems. Our technique offers a method for accurately measuring films and other low-dimensional geometries from the microscale down to the nano regime. We will present in-plane thermal conductivity, resistivity, and thermopower results, as well as direct comparisons with the Wiedemann-Franz law for films of various thicknesses and preparation techniques. We will also present the extension of our technique to explore an evaporated multilayer film. Finally, we discuss the application of our method to examining the fundamental physics underlying thermoelectric effects, such as thermally driven spin currents, to further the emerging sub-field of spin caloritronics.
Layerwise Finite Elements for Smart Piezoceramic Composite Plates in Thermal Environments
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.; Lee, Ho-Jun
1996-01-01
Analytical formulations are presented which account for the coupled mechanical, electrical, and thermal response of piezoelectric composite laminates and plate structures. A layerwise theory is formulated with the inherent capability to explicitly model the active and sensory response of piezoelectric composite plates having arbitrary laminate configurations in thermal environments. Finite element equations are derived and implemented for a bilinear 4-noded plate element. Application cases demonstrate the capability to manage thermally induced bending and twisting deformations in symmetric and antisymmetric composite plates with piezoelectric actuators, and show the corresponding electrical response of distributed piezoelectric sensors. Finally, the resultant stresses in the thermal piezoelectric composite laminates are investigated.
NASA Technical Reports Server (NTRS)
Katz, Daniel S.; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.; Borgioli, Andrea
2000-01-01
The process of designing and analyzing a multiple-reflector system has traditionally been time-intensive, requiring large amounts of both computational and human time. At many frequencies, a discrete approximation of the radiation integral may be used to model the system. The code which implements this physical optics (PO) algorithm was developed at the Jet Propulsion Laboratory. It analyzes systems of antennas in pairs, and for each pair, the analysis can be computationally time-consuming. Additionally, the antennas must be described using a local coordinate system for each antenna, which makes it difficult to integrate the design into a multi-disciplinary framework in which there is traditionally one global coordinate system, even before considering deforming the antenna as prescribed by external structural and/or thermal factors. Finally, setting up the code to correctly analyze all the antenna pairs in the system can take a fair amount of time, and introduces possible human error. The use of parallel computing to reduce the computational time required for the analysis of a given pair of antennas has been previously discussed. This paper focuses on the other problems mentioned above. It will present a methodology and examples of use of an automated tool that performs the analysis of a complete multiple-reflector system in an integrated multi-disciplinary environment (including CAD modeling, and structural and thermal analysis) at the click of a button. This tool, named MOD Tool (Millimeter-wave Optics Design Tool), has been designed and implemented as a distributed tool, with a client that runs almost identically on Unix, Mac, and Windows platforms, and a server that runs primarily on a Unix workstation and can interact with parallel supercomputers with simple instruction from the user interacting with the client.
Thermal spray coating for corrosion under insulation (CUI) prevention
NASA Astrophysics Data System (ADS)
Fuad, Mohd Fazril Irfan Ahmad; Razak, Khalil Abdul; Alias, Nur Hashimah; Othman, Nur Hidayati; Lah, Nik Khairul Irfan Nik Ab
2017-12-01
Corrosion under insulation (CUI) is one of the predominant issues affecting process of Oil and Gas and Petrochemical industries. CUI refers to external corrosion, but it is difficult to be detected as the insulation cover masks the corrosion problem. One of the options to prevent CUI is by utilizing the protective coating systems. Thermal spray coating (TSC) is an advanced coating system and it shows promising performance in harsh environment, which could be used to prevent CUI. However, the application of TSC is not attractive due to the high initial cost. This work evaluates the potential of TSC based on corrosion performance using linear polarization resistance (LPR) method and salt spray test (SST). Prior to the evaluation, the mechanical performance of TSC was first investigated using adhesion test and bend test. Microstructure characterization of the coating was investigated using Scanning Electron Microscope (SEM). The LPR test results showed that low corrosion rate of 0.05 mm/years was obtained for TSC in compared to the bare steel especially at high temperature of 80 °C, where usually normal coating would fail. For the salt spray test, there was no sign of corrosion products especially at the center (fully coated region) was observed. From SEM images, no corrosion defects were observed after 336 hours of continuous exposure to salt fog test. This indicates that TSC protected the steel satisfactorily by acting as a barrier from a corrosive environment. In conclusion, TSC can be a possible solution to minimize the CUI in a long term. Further research should be done on corrosion performance and life cycle cost by comparing TSC with other conventional coating technology.
Realization of the electrical Sentinel 4 detector integration
NASA Astrophysics Data System (ADS)
Hermsen, M.; Hohn, R.; Skegg, M.; Woffinden, C.; Reulke, R.
2017-09-01
The detectors of the Sentinel 4 multi spectral imager are operated in flight at 215K while the analog electronics is operated at ambient temperature. The detector is cooled by means of a radiator. For thermal reasons no active component has been allowed in the cooled area closest to the detector as the passive radiator is restricted in its size. For thermal decoupling of detector and electronics a long distance between detector and electronics is considered ideal as thermal conductivity decreases with the length of the connection. In contradiction a short connection between detector and electronics is ideal for the electronic signals. Only a short connection ensures the signal integrity of both the weak detector output signal but similarly also the clock signals for driving the detector. From a mechanical and thermal point of view the connection requires a certain minimum length. The selected solution serves all these needs but had to approach the limits of what is electrically, mechanically and thermally feasible. In addition, shielding from internal (self distortion) and external distorting signals has to be realized for the connection between FEE(Front End Electronics) and detectors. At the time of the design of the flex it was not defined whether the mechanical structure between FEE and FPA (Focal Plane Assembly) would act as a shielding structure. The physical separation between CCD detector and the Front-end Electronics, the adverse EMI environment in which the instrument will be operated in (the location of the instrument on the satellite is in vicinity to a down-link K-band communication antenna of the S/C) require at least the video output signals to be shielded. Both detectors (a NIR and a UVVIS detector) are sensitive to contamination and difficult to be cleaned in case of any contamination. This brings up extreme cleanliness requirements for the detector in manufacturing and assembly. Effectively the detector has to be kept in an ISO 5 environment and additionally humidity has to be avoided - which does not comply with the usual clean-room atmosphere. This paper describes how in Sentinel 4 the given challenges have been overcome, how the limited load drive capability of the detector component has been considered on a flex length of about 20 cm (7.87 in) and how EMC shielding of the highly sensitive analog signals of the detector has been realized. Also covered are design/manufacturing aspects and a glance on testing results is provided
Thermal stability characterization of SiC ceramic fibers. II. Fractography and structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawyer, L.C.; Chen, R.T.; Haimbach, F.,IV
1986-08-01
SiC ceramic fibers (Nicalon) exhibit tensile strength reduction following thermal treatment in air, argon and nitrogen environments above 1200 C. Grain-size variations have been observed in the treated fibers by X-ray diffraction and electron microscopy. Fractography studies show that strength reduction occurs in all thermal treatments, although the mechanism of fiber failure varies depending upon the specific environment. Structure-property relations will be developed as mechanical testing and fractography of the thermally treated fibers are associated with tensile strength loss mechanisms. 16 references.
Continuous monitoring of Hawaiian volcanoes using thermal cameras
NASA Astrophysics Data System (ADS)
Patrick, M. R.; Orr, T. R.; Antolik, L.; Lee, R.; Kamibayashi, K.
2012-12-01
Thermal cameras are becoming more common at volcanoes around the world, and have become a powerful tool for observing volcanic activity. Fixed, continuously recording thermal cameras have been installed by the Hawaiian Volcano Observatory in the last two years at four locations on Kilauea Volcano to better monitor its two ongoing eruptions. The summit eruption, which began in March 2008, hosts an active lava lake deep within a fume-filled vent crater. A thermal camera perched on the rim of Halema`uma`u Crater, acquiring an image every five seconds, has now captured about two years of sustained lava lake activity, including frequent lava level fluctuations, small explosions , and several draining events. This thermal camera has been able to "see" through the thick fume in the crater, providing truly 24/7 monitoring that would not be possible with normal webcams. The east rift zone eruption, which began in 1983, has chiefly consisted of effusion through lava tubes onto the surface, but over the past two years has been interrupted by an intrusion, lava fountaining, crater collapse, and perched lava lake growth and draining. The three thermal cameras on the east rift zone, all on Pu`u `O`o cone and acquiring an image every several minutes, have captured many of these changes and are providing an improved means for alerting observatory staff of new activity. Plans are underway to install a thermal camera at the summit of Mauna Loa to monitor and alert to any future changes there. Thermal cameras are more difficult to install, and image acquisition and processing are more complicated than with visual webcams. Our system is based in part on the successful thermal camera installations by Italian volcanologists on Stromboli and Vulcano. Equipment includes custom enclosures with IR transmissive windows, power, and telemetry. Data acquisition is based on ActiveX controls, and data management is done using automated Matlab scripts. Higher-level data processing, also done with Matlab, includes automated measurements of lava lake level and surface crust velocity, tracking temperatures and hot areas in real-time, and alerts which notify users of notable temperature increases via text messaging. Lastly, real-time image and processed data display, which is vital for effective use of the images at the observatory, is done through a custom Web-based environment . Near real-time webcam images are displayed for the public at hvo.wr.usgs.gov/cams. Thermal cameras are costly, but have proven to be an extremely effective monitoring and research tool at the Hawaiian Volcano Observatory.
Near-surface Thermal Infrared Imaging of a Mixed Forest
NASA Astrophysics Data System (ADS)
Aubrecht, D. M.; Helliker, B. R.; Richardson, A. D.
2014-12-01
Measurement of an organism's temperature is of basic physiological importance and therefore necessary for ecosystem modeling, yet most models derive leaf temperature from energy balance arguments or assume it is equal to air temperature. This is because continuous, direct measurement of leaf temperature outside of a controlled environment is difficult and rarely done. Of even greater challenge is measuring leaf temperature with the resolution required to understand the underlying energy balance and regulation of plant processes. To measure leaf temperature through the year, we have mounted a high-resolution, thermal infrared camera overlooking the canopy of a temperate deciduous forest. The camera is co-located with an eddy covariance system and a suite of radiometric sensors. Our camera measures longwave thermal infrared (λ = 7.5-14 microns) using a microbolometer array. Suspended in the canopy within the camera FOV is a matte black copper plate instrumented with fine wire thermocouples that acts as a thermal reference for each image. In this presentation, I will discuss the challenges of continuous, long-term field operation of the camera, as well as measurement sensitivity to physical and environmental parameters. Based on this analysis, I will show that the uncertainties in converting radiometric signal to leaf temperature are well constrained. The key parameter for minimizing uncertainty is the emissivity of the objects being imaged: measuring the emissivity to within 0.01 enables leaf temperature to be calculated to within 0.5°C. Finally, I will present differences in leaf temperature observed amongst species. From our two-year record, we characterize high frequency, daily, and seasonal thermal signatures of leaves and crowns, in relation to environmental conditions. Our images are taken with sufficient spatial and temporal resolution to quantify the preferential heating of sunlit portions of the canopy and the cooling effect of wind gusts. Future work will be focused on correlations between hyperspectral vegetation indices, fluxes, and thermal signatures to characterize vegetation stress. As water stress increases, causing photosynthesis and transpiration to shutdown, heat fluxes, leaf temperature, and narrow band vegetation indices should report signatures of the affected processes.
Effect of wind speed on human thermal sensation and thermal comfort
NASA Astrophysics Data System (ADS)
Hou, Yuhan
2018-06-01
In this experiment, a method of questionnaire survey was adopted. By changing the air flow rate under the indoor and outdoor natural conditions, the subjective Thermal Sensation Vote (TSV) and the Thermal Comfort Vote (TCV) were recorded. The draft sensation can reduce the thermal sensation, but the draft sensation can cause discomfort, and the thermal comfort in a windy environment is lower than in a windless environment. When the temperature rises or the level of human metabolism increases, the person feels heat, the demand for draft sensation increases, and the uncomfortable feeling caused by the draft sensation may be reduced. Increasing the air flow within a certain range can be used to compensate for the increase in temperature.
Thermal Insulation System for Non-Vacuum Applications Including a Multilayer Composite
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor)
2017-01-01
The thermal insulation system of the present invention is for non-vacuum applications and is specifically tailored to the ambient pressure environment with any level of humidity or moisture. The thermal insulation system includes a multilayered composite including i) at least one thermal insulation layer and at least one compressible barrier layer provided as alternating, successive layers, and ii) at least one reflective film provided on at least one surface of the thermal insulation layer and/or said compressible barrier layer. The different layers and materials and their combinations are designed to provide low effective thermal conductivity for the system by managing all modes of heat transfer. The thermal insulation system includes an optional outer casing surrounding the multilayered composite. The thermal insulation system is particularly suited for use in any sub-ambient temperature environment where moisture or its adverse effects are a concern. The thermal insulation system provides physical resilience against damaging mechanical effects including compression, flexure, impact, vibration, and thermal expansion/contraction.
Assembly of DNA Architectures in a Non-Aqueous Solution
2012-08-31
environment, where butanol was chosen for optical compatibility and thermal properties. The retention of DNA hierarchical structure and thermal stability...transitioned to a non-aqueous environment, where butanol was chosen for optical compatibility and thermal properties. The retention of DNA hierarchical...techniques were first validated using a more widely studied DNA system, genomic salmon sperm DNA (saDNA) [19]. The saDNA samples were reacted with two
NASA Astrophysics Data System (ADS)
Danca, Paul; Bode, Florin; Nastase, Ilinca; Meslem, Amina
2018-02-01
Nowadays, thermal comfort became one of the criteria in choosing a vehicle. In last decades time spent by people in vehicles had risen substantially. During each trip, thermal comfort must to be ensured for a good psychological and physical state of the passengers. Also, a comfortable environment leads to a higher power concentration of the driver thereby to a safe trip for vehicle occupants and for all traffic participants. The present study numerically investigated the effect of human body sited in the driver's place, over the air velocity distribution and over the thermal comfort in a passenger compartment. CFD simulations were made with different angles of the left inlet grill, in both cases, with and without driver presence. In majority of the actual vehicles environment studies, are made without consideration of human body geometry, in this case, the results precision can be affected. The results show that the presence of human body, lead to global changing of the whole flow pattern inside the vehicular cabin. Also, the locations of the maximum velocities are changing with the angle of the guiding vanes. The thermal comfort PMV/PPD indexes were calculated for each case. The presence of human body leads to a more comfortable environment.
Coupling of the Models of Human Physiology and Thermal Comfort
NASA Astrophysics Data System (ADS)
Pokorny, J.; Jicha, M.
2013-04-01
A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus-FE [1]. In the paper validation of the model for very light physical activities (1 met) indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.
Health Risk Assessment of Inhalable Particulate Matter in Beijing Based on the Thermal Environment
Xu, Lin-Yu; Yin, Hao; Xie, Xiao-Dong
2014-01-01
Inhalable particulate matter (PM10) is a primary air pollutant closely related to public health, and an especially serious problem in urban areas. The urban heat island (UHI) effect has made the urban PM10 pollution situation more complex and severe. In this study, we established a health risk assessment system utilizing an epidemiological method taking the thermal environment effects into consideration. We utilized a remote sensing method to retrieve the PM10 concentration, UHI, Normalized Difference Vegetation Index (NDVI), and Normalized Difference Water Index (NDWI). With the correlation between difference vegetation index (DVI) and PM10 concentration, we utilized the established model between PM10 and thermal environmental indicators to evaluate the PM10 health risks based on the epidemiological study. Additionally, with the regulation of UHI, NDVI and NDWI, we aimed at regulating the PM10 health risks and thermal environment simultaneously. This study attempted to accomplish concurrent thermal environment regulation and elimination of PM10 health risks through control of UHI intensity. The results indicate that urban Beijing has a higher PM10 health risk than rural areas; PM10 health risk based on the thermal environment is 1.145, which is similar to the health risk calculated (1.144) from the PM10 concentration inversion; according to the regulation results, regulation of UHI and NDVI is effective and helpful for mitigation of PM10 health risk in functional zones. PMID:25464132
The Development of Erosion and Impact Resistant Turbine Airfoil Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2007-01-01
Thermal barrier coatings are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments and extend component lifetimes. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Advanced erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the doped thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion and impact damage mechanisms of the thermal barrier coatings will also be discussed.
Quantum correlations from a room-temperature optomechanical cavity
NASA Astrophysics Data System (ADS)
Purdy, T. P.; Grutter, K. E.; Srinivasan, K.; Taylor, J. M.
2017-06-01
The act of position measurement alters the motion of an object being measured. This quantum measurement backaction is typically much smaller than the thermal motion of a room-temperature object and thus difficult to observe. By shining laser light through a nanomechanical beam, we measure the beam’s thermally driven vibrations and perturb its motion with optical force fluctuations at a level dictated by the Heisenberg measurement-disturbance uncertainty relation. We demonstrate a cross-correlation technique to distinguish optically driven motion from thermally driven motion, observing this quantum backaction signature up to room temperature. We use the scale of the quantum correlations, which is determined by fundamental constants, to gauge the size of thermal motion, demonstrating a path toward absolute thermometry with quantum mechanically calibrated ticks.
Use of skin temperature to predict tolerance to thermal environments.
DOT National Transportation Integrated Search
1971-01-01
Skin temperature is a sensitive index of the effect of the thermal environment on the seminude man. Skin temperatures and tolerance times from several studies have been utilized in an attempt to establish a relationship between (1) final skin tempera...
Thermal control surfaces experiment: Initial flight data analysis
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Hummer, Leigh L.
1991-01-01
The behavior of materials in the space environment continues to be a limiting technology for spacecraft and experiments. The thermal control surfaces experiment (TCSE) aboard the Long Duration Exposure Facility (LDEF) is the most comprehensive experiment flown to study the effects of the space environment on thermal control surfaces. Selected thermal control surfaces were exposed to the LDEF orbital environment and the effects of this exposure were measured. The TCSE combined in-space orbital measurements with pre and post-flight analyses of flight materials to determine the effects of long term space exposure. The TCSE experiment objective, method, and measurements are described along with the results of the initial materials analysis. The TCSE flight system and its excellent performance on the LDEF mission is described. A few operational anomalies were encountered and are discussed.
Performance testing and analysis results of AMTEC cells for space applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borkowski, C.A.; Barkan, A.; Hendricks, T.J.
1998-01-01
Testing and analysis has shown that AMTEC (Alkali Metal Thermal to Electric Conversion) (Weber, 1974) cells can reach the performance (power) levels required by a variety of space applications. The performance of an AMTEC cell is highly dependent on the thermal environment to which it is subjected. A guard heater assembly has been designed, fabricated, and used to expose individual AMTEC cells to various thermal environments. The design and operation of the guard heater assembly will be discussed. Performance test results of an AMTEC cell operated under guard heated conditions to simulate an adiabatic cell wall thermal environment are presented.more » Experimental data and analytic model results are compared to illustrate validation of the model. {copyright} {ital 1998 American Institute of Physics.}« less
Llusia, Diego; Márquez, Rafael; Beltrán, Juan F; Benítez, Maribel; do Amaral, José P
2013-09-01
Calling behaviour is strongly temperature-dependent and critical for sexual selection and reproduction in a variety of ectothermic taxa, including anuran amphibians, which are the most globally threatened vertebrates. However, few studies have explored how species respond to distinct thermal environments at time of displaying calling behaviour, and thus it is still unknown whether ongoing climate change might compromise the performance of calling activity in ectotherms. Here, we used new audio-trapping techniques (automated sound recording and detection systems) between 2006 and 2009 to examine annual calling temperatures of five temperate anurans and their patterns of geographical and seasonal variation at the thermal extremes of species ranges, providing insights into the thermal breadths of calling activity of species, and the mechanisms that enable ectotherms to adjust to changing thermal environments. All species showed wide thermal breadths during calling behaviour (above 15 °C) and increases in calling temperatures in extremely warm populations and seasons. Thereby, calling temperatures differed both geographically and seasonally, both in terrestrial and aquatic species, and were 8-22 °C below the specific upper critical thermal limits (CTmax ) and strongly associated with the potential temperatures of each thermal environment (operative temperatures during the potential period of breeding). This suggests that calling behaviour in ectotherms may take place at population-specific thermal ranges, diverging when species are subjected to distinct thermal environments, and might imply plasticity of thermal adjustment mechanisms (seasonal and developmental acclimation) that supply species with means of coping with climate change. Furthermore, the thermal thresholds of calling at the onset of the breeding season were dissimilar between conspecific populations, suggesting that other factors besides temperature are needed to trigger the onset of reproduction. Our findings imply that global warming would not directly inhibit calling behaviour in the study species, although might affect other temperature-dependent features of their acoustic communication system. © 2013 John Wiley & Sons Ltd.
Numerical analysis of thermal drilling technique on titanium sheet metal
NASA Astrophysics Data System (ADS)
Kumar, R.; Hynes, N. Rajesh Jesudoss
2018-05-01
Thermal drilling is a technique used in drilling of sheet metal for various applications. It involves rotating conical tool with high speed in order to drill the sheet metal and formed a hole with bush below the surface of sheet metal. This article investigates the finite element analysis of thermal drilling on Ti6Al4Valloy sheet metal. This analysis was carried out by means of DEFORM-3D simulation software to simulate the performance characteristics of thermal drilling technique. Due to the contribution of high temperature deformation in this technique, the output performances which are difficult to measure by the experimental approach, can be successfully achieved by finite element method. Therefore, the modeling and simulation of thermal drilling is an essential tool to predict the strain rate, stress distribution and temperature of the workpiece.
Dunlap, K D; Ragazzi, M A
2015-11-01
In ectotherms, the rate of many neural processes is determined externally, by the influence of the thermal environment on body temperature, and internally, by hormones secreted from the thyroid gland. Through thermal acclimation, animals can buffer the influence of the thermal environment by adjusting their physiology to stabilize certain processes in the face of environmental temperature change. The electric organ discharge (EOD) used by weak electric fish for electrocommunication and electrolocation is highly temperature sensitive. In some temperate species that naturally experience large seasonal fluctuations in environmental temperature, the thermal sensitivity (Q10) of the EOD shifts after long-term temperature change. We examined thermal acclimation of EOD frequency in a tropical electric fish, Apteronotus leptorhynchus that naturally experiences much less temperature change. We transferred fish between thermal environments (25.3 and 27.8 °C) and measured EOD frequency and its thermal sensitivity (Q10) over 11 d. After 6d, fish exhibited thermal acclimation to both warming and cooling, adjusting the thermal dependence of EOD frequency to partially compensate for the small change (2.5 °C) in water temperature. In addition, we evaluated the thyroid influence on EOD frequency by treating fish with thyroxine or the anti-thyroid compound propylthiouricil (PTU) to stimulate or inhibit thyroid activity, respectively. Thyroxine treatment significantly increased EOD frequency, but PTU had no effect. Neither thyroxine nor PTU treatment influenced the thermal sensitivity (Q10) of EOD frequency during acute temperature change. Thus, the EOD of Apteronotus shows significant thermal acclimation and responds to elevated thyroxine. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Milam, Laura J.
1990-01-01
The Cosmic Background Explorer Observatory (COBE) underwent a thermal vacuum thermal balance test in the Space Environment Simulator (SES). This was the largest and most complex test ever conducted at this facility. The 4 x 4 m (13 x 13 ft) spacecraft weighed approx. 2223 kg (4900 lbs) for the test. The test set up included simulator panels for the inboard solar array panels, simulator panels for the flight cowlings, Sun and Earth Sensor stimuli, Thermal Radio Frequency Shield heater stimuli and a cryopanel for thermal control in the Attitude Control System Shunt Dissipator area. The fixturing also included a unique 4.3 m (14 ft) diameter Gaseous Helium Cryopanel which provided a 20 K environment for the calibration of one of the spacecraft's instruments, the Differential Microwave Radiometer. This cryogenic panel caused extra contamination concerns and a special method was developed and written into the test procedure to prevent the high buildup of condensibles on the panel which could have led to backstreaming of the thermal vacuum chamber. The test was completed with a high quality simulated space environment provided to the spacecraft. The test requirements, test set up, and special fixturing are described.
Predication of skin temperature and thermal comfort under two-way transient environments.
Zhou, Xin; Xiong, Jing; Lian, Zhiwei
2017-12-01
In this study, three transient environmental conditions consisting of one high-temperature phase within two low-temperature phases were developed, thus creating a temperature rise followed by a temperature fall. Twenty-four subjects (including 12 males and 12 females) were recruited and they underwent all three test scenarios. Skin temperature on seven body parts were measured during the whole period of the experiment. Besides, thermal sensation was investigated at specific moments by questionnaires. Thermal sensation models including PMV model, Fiala model and the Chinese model were applied to predict subjects' thermal sensation with comparisons carried out among them. Results show that most predicated thermal sensation by Chinese model lies within the range of 0.5 scale of the observed sensation vote, and it agrees best with the observed thermal sensation in transient thermal environment than PMV and Fiala model. Further studies should be carried out to improve performance of Chinese model for temperature alterations between "very hot" to "hot" environment, for prediction error in the temperature-fall situation of C5 (37-32°C) was over 0.5 scale. Copyright © 2017 Elsevier Ltd. All rights reserved.
Seebacher, Frank; James, Rob S
2008-03-01
Thermoregulation and thermal sensitivity of performance are thought to have coevolved so that performance is optimized within the selected body temperature range. However, locomotor performance in thermoregulating crocodiles (Crocodylus porosus) is plastic and maxima shift to different selected body temperatures in different thermal environments. Here we test the hypothesis that muscle metabolic and biomechanical parameters are optimized at the body temperatures selected in different thermal environments. Hence, we related indices of anaerobic (lactate dehydrogenase) and aerobic (cytochrome c oxidase) metabolic capacities and myofibrillar ATPase activity to the biomechanics of isometric and work loop caudofemoralis muscle function. Maximal isometric stress (force per muscle cross-sectional area) did not change with thermal acclimation, but muscle work loop power output increased with cold acclimation as a result of shorter activation and relaxation times. The thermal sensitivity of myofibrillar ATPase activity decreased with cold acclimation in caudofemoralis muscle. Neither aerobic nor anaerobic metabolic capacities were directly linked to changes in muscle performance during thermal acclimation, although there was a negative relationship between anaerobic capacity and isometric twitch stress in cold-acclimated animals. We conclude that by combining thermoregulation with plasticity in biomechanical function, crocodiles maximize performance in environments with highly variable thermal properties.
NASA Technical Reports Server (NTRS)
Milam, Laura J.
1991-01-01
The Cosmic Background Explorer Observatory (COBE) underwant a thermal vacuum thermal balance test in the Space Environment Simulator (SES). This was the largest and most complex test ever conducted at this facility. The 4 x 4 m (13 x 13 ft) spacecraft weighed approx. 2223 kg (4900 lbs) for the test. The test set up included simulator panels for the inboard solar array panels, simulator panels for the flight cowlings, Sun and Earth Sensor stimuli, Thermal Radio Frequency Shield heater stimuli and a cryopanel for thermal control in the Attitude Control System Shunt Dissipator area. The fixturing also included a unique 4.3 m (14 ft) diameter Gaseous Helium Cryopanel which provided a 20 K environment for the calibration of one of the spacecraft's instruments, the Differential Microwave Radiometer. This cryogenic panel caused extra contamination concerns and a special method was developed and written into the test procedure to prevent the high buildup of condensibles on the panel which could have led to backstreaming of the thermal vacuum chamber. The test was completed with a high quality simulated space environment provided to the spacecraft. The test requirements, test set up, and special fixturing are described.
Using a 3D profiler and infrared camera to monitor oven loading in fully cooked meat operations
NASA Astrophysics Data System (ADS)
Stewart, John; Giorges, Aklilu
2009-05-01
Ensuring meat is fully cooked is an important food safety issue for operations that produce "ready to eat" products. In order to kill harmful pathogens like Salmonella, all of the product must reach a minimum threshold temperature. Producers typically overcook the majority of the product to ensure meat in the most difficult scenario reaches the desired temperature. A difficult scenario can be caused by an especially thick piece of meat or by a surge of product into the process. Overcooking wastes energy, degrades product quality, lowers the maximum throughput rate of the production line and decreases product yield. At typical production rates of 6000lbs/hour, these losses from overcooking can have a significant cost impact on producers. A wide area 3D camera coupled with a thermal camera was used to measure the thermal mass variability of chicken breasts in a cooking process. Several types of variability are considered including time varying thermal mass (mass x temperature / time), variation in individual product geometry and variation in product temperature. The automatic identification of product arrangement issues that affect cooking such as overlapping product and folded products is also addressed. A thermal model is used along with individual product geometry and oven cook profiles to predict the percentage of product that will be overcooked and to identify products that may not fully cook in a given process.
The environmental genomics of metazoan thermal adaptation
Porcelli, D; Butlin, R K; Gaston, K J; Joly, D; Snook, R R
2015-01-01
Continued and accelerating change in the thermal environment places an ever-greater priority on understanding how organisms are going to respond. The paradigm of ‘move, adapt or die', regarding ways in which organisms can respond to environmental stressors, stimulates intense efforts to predict the future of biodiversity. Assuming that extinction is an unpalatable outcome, researchers have focussed attention on how organisms can shift in their distribution to stay in the same thermal conditions or can stay in the same place by adapting to a changing thermal environment. How likely these respective outcomes might be depends on the answer to a fundamental evolutionary question, namely what genetic changes underpin adaptation to the thermal environment. The increasing access to and decreasing costs of next-generation sequencing (NGS) technologies, which can be applied to both model and non-model systems, provide a much-needed tool for understanding thermal adaptation. Here we consider broadly what is already known from non-NGS studies about thermal adaptation, then discuss the benefits and challenges of different NGS methodologies to add to this knowledge base. We then review published NGS genomics and transcriptomics studies of thermal adaptation to heat stress in metazoans and compare these results with previous non-NGS patterns. We conclude by summarising emerging patterns of genetic response and discussing future directions using these increasingly common techniques. PMID:25735594
Simultaneous Measurement of Thermal Conductivity and Specific Heat in a Single TDTR Experiment
NASA Astrophysics Data System (ADS)
Sun, Fangyuan; Wang, Xinwei; Yang, Ming; Chen, Zhe; Zhang, Hang; Tang, Dawei
2018-01-01
Time-domain thermoreflectance (TDTR) technique is a powerful thermal property measurement method, especially for nano-structures and material interfaces. Thermal properties can be obtained by fitting TDTR experimental data with a proper thermal transport model. In a single TDTR experiment, thermal properties with different sensitivity trends can be extracted simultaneously. However, thermal conductivity and volumetric heat capacity usually have similar trends in sensitivity for most materials; it is difficult to measure them simultaneously. In this work, we present a two-step data fitting method to measure the thermal conductivity and volumetric heat capacity simultaneously from a set of TDTR experimental data at single modulation frequency. This method takes full advantage of the information carried by both amplitude and phase signals; it is a more convenient and effective solution compared with the frequency-domain thermoreflectance method. The relative error is lower than 5 % for most cases. A silicon wafer sample was measured by TDTR method to verify the two-step fitting method.
Hard X-ray imaging and the relative contribution of thermal and nonthermal emission in flares
NASA Technical Reports Server (NTRS)
Holman, G. D.
1986-01-01
The question of whether the impulsive 25 to 100 keV X-ray emission from solar flares is thermal or nonthermal has been a long-standing controversy. Both thermal and nonthermal (beam) models have been developed and applied to the hard X-ray data. It now seems likely that both thermal and nonthermal emission have been observed at hard X-ray energies. The Hinotori classification scheme, for example, is an attempt to associate the thermal-nonthermal characteristics of flare hard X-ray emission with other flare properties. From a theoretical point of view, it is difficult to generate energetic, nonthermal electrons without dumping an equal or greater amount of energy into plasma heating. On the other hand, any impulsive heating process will invariably generate at least some nonthermal particles. Hence, strictly speaking, although thermal or nonthermal emission may dominate the hard X-ray emission in a given energy range for a given flare, there is no such thing as a purely thermal or nonthermal flare mechanism.
NASA Astrophysics Data System (ADS)
Wang, Xinwei; Chen, Zhe; Sun, Fangyuan; Zhang, Hang; Jiang, Yuyan; Tang, Dawei
2018-03-01
Heat transfer in nanostructures is of critical importance for a wide range of applications such as functional materials and thermal management of electronics. Time-domain thermoreflectance (TDTR) has been proved to be a reliable measurement technique for the thermal property determinations of nanoscale structures. However, it is difficult to determine more than three thermal properties at the same time. Heat transfer model simplifications can reduce the fitting variables and provide an alternative way for thermal property determination. In this paper, two simplified models are investigated and analyzed by the transform matrix method and simulations. TDTR measurements are performed on Al-SiO2-Si samples with different SiO2 thickness. Both theoretical and experimental results show that the simplified tri-layer model (STM) is reliable and suitable for thin film samples with a wide range of thickness. Furthermore, the STM can also extract the intrinsic thermal conductivity and interfacial thermal resistance from serial samples with different thickness.
MODELING COMPARATIVE THERMAL PERFORMANCE OF LIGHTWEIGHT FABRICS USING A COMPUTATIONAL DESIGN TOOL
2017-04-14
lost through clothing = ( T / Rc ) + ( pv / Ret ) (5) T = temperature difference between skin and environment (°C) Rc...thermal resistance (m²-°C/Watt) pv = vapor pressure difference between skin and environment (Pa) Ret = water vapor diffusion resistance (m²-Pa/Watt...clothing, and the external environment (wind, temperature, humidity, solar radiation). Activity: Stationary Anatomic Build: Newton, Fine
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Transfer of allowances from the replacement of thermal energy-process sources. [Reserved] 74.48 Section 74.48 Protection of Environment... energy—process sources. [Reserved] ...
NASA Technical Reports Server (NTRS)
Funk, Joan G.; Sykes, George F., Jr.
1989-01-01
The effects of simulated space environmental parameters on microdamage induced by the environment in a series of commercially available graphite-fiber-reinforced composite materials were determined. Composites with both thermoset and thermoplastic resin systems were studied. Low-Earth-Orbit (LEO) exposures were simulated by thermal cycling; geosynchronous-orbit (GEO) exposures were simulated by electron irradiation plus thermal cycling. The thermal cycling temperature range was -250 F to either 200 F or 150 F. The upper limits of the thermal cycles were different to ensure that an individual composite material was not cycled above its glass transition temperature. Material response was characterized through assessment of the induced microcracking and its influence on mechanical property changes at both room temperature and -250 F. Microdamage was induced in both thermoset and thermoplastic advanced composite materials exposed to the simulated LEO environment. However, a 350 F cure single-phase toughened epoxy composite was not damaged during exposure to the LEO environment. The simuated GEO environment produced microdamage in all materials tested.
NASA Astrophysics Data System (ADS)
Akoshima, Megumi; Tanaka, Takashi; Endo, Satoshi; Baba, Tetsuya; Harada, Yoshio; Kojima, Yoshitaka; Kawasaki, Akira; Ono, Fumio
2011-11-01
Ceramic-based thermal barrier coatings are used as heat and wear shields of gas turbine blades. There is a strong need to evaluate the thermal conductivity of coating for thermal design and use. The thermal conductivity of a bulk material is obtained as the product of thermal diffusivity, specific heat capacity, and density above room temperature in many cases. Thermal diffusivity and thermal conductivity are unique for a given material because they are sensitive to the structure of the material. Therefore, it is important to measure them in each sample. However it is difficult to measure the thermal diffusivity and thermal conductivity of coatings because coatings are attached to substrates. In order to evaluate the thermal diffusivity of a coating attached to the substrate, we have examined the laser flash method with the multilayer model on the basis of the response function method. We carried out laser flash measurements in layered samples composed of a CoNiCrAlY bond coating and a 8YSZ top coating by thermal spraying on a Ni-based superalloy substrate. It was found that the procedure using laser flash method with the multilayer model is useful for the thermal diffusivity evaluation of a coating attached to a substrate.
Challenges to quantitative applications of Landsat observations for the urban thermal environment.
Chen, Feng; Yang, Song; Yin, Kai; Chan, Paul
2017-09-01
Since the launch of its first satellite in 1972, the Landsat program has operated continuously for more than forty years. A large data archive collected by the Landsat program significantly benefits both the academic community and society. Thermal imagery from Landsat sensors, provided with relatively high spatial resolution, is suitable for monitoring urban thermal environment. Growing use of Landsat data in monitoring urban thermal environment is demonstrated by increasing publications on this subject, especially over the last decade. Urban thermal environment is usually delineated by land surface temperature (LST). However, the quantitative and accurate estimation of LST from Landsat data is still a challenge, especially for urban areas. This paper will discuss the main challenges for urban LST retrieval, including urban surface emissivity, atmospheric correction, radiometric calibration, and validation. In addition, we will discuss general challenges confronting the continuity of quantitative applications of Landsat observations. These challenges arise mainly from the scan line corrector failure of the Landsat 7 ETM+ and channel differences among sensors. Based on these investigations, the concerns are to: (1) show general users the limitation and possible uncertainty of the retrieved urban LST from the single thermal channel of Landsat sensors; (2) emphasize efforts which should be done for the quantitative applications of Landsat data; and (3) understand the potential challenges for the continuity of Landsat observation (i.e., thermal infrared) for global change monitoring, while several climate data record programs being in progress. Copyright © 2017. Published by Elsevier B.V.
Radiation-Driven Flame Spread Over Thermally-Thick Fuels in Quiescent Microgravity Environments
NASA Technical Reports Server (NTRS)
Honda, Linton K.; Son, Youngjin; Ronney, Paul D.; Olson, Sandra (Technical Monitor); Gokoglu, Suleyman (Technical Monitor)
2001-01-01
Microgravity experiments on flame spread over thermally thick fuels were conducted using foam fuels to obtain low density and thermal conductivity, and thus large spread rate (Sf) compared to dense fuels such as PMMA. This scheme enabled meaningful results to lie obtained even in 2.2 second drop tower experiments. It was found that, in contrast conventional understanding; steady spread can occur over thick fuels in quiescent microgravity environments, especially when a radiatively active diluent gas such as CO2 is employed. This is proposed to be due to radiative transfer from the flame to the fuel surface. Additionally, the transition from thermally thick to thermally thin behavior with decreasing bed thickness is demonstrated.
Pressurized heat treatment of glass-ceramic to control thermal expansion
Kramer, Daniel P.
1985-01-01
A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.
2012-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability
NASA Technical Reports Server (NTRS)
Birur, Gajanana C.; Siebes, Georg; Swanson, Theodore D.; Powers, Edward I. (Technical Monitor)
2001-01-01
Thermal control of the spacecraft is typically achieved by removing heat from the spacecraft parts that tend to overheat and adding heat to the parts that tend get too cold. The equipment on the spacecraft can get very hot if it is exposed to the sun or have internal heat generation. The pans also can get very cold if they are exposed to the cold of deep space. The spacecraft and instruments must be designed to achieve proper thermal balance. The combination of the spacecraft's external thermal environment, its internal heat generation (i.e., waste heat from the operation of electrical equipment), and radiative heat rejection will determine this thermal balance. It should also be noted that this is seldom a static situation, external environmental influences and internal heat generation are normally dynamic variables which change with time. Topics discussed include thermal control system components, spacecraft mission categories, spacecraft thermal requirements, space thermal environments, thermal control hardware, launch and flight operations, advanced technologies for future spacecraft,
Household scale of greenhouse design in Merauke
NASA Astrophysics Data System (ADS)
Alahudin, Muchlis; Widarnati, Indah; Luh Sri Suryaningsih, Ni
2018-05-01
Merauke is one of the areas that still use conventional methods in agriculture, The agricultural business does not run the maximum during the year because agricultural products quite difficult to obtain in the market. In the rainy season, the intensity of rain is very high, the water condition is abundant and hard to be channeled due to topography/soil contour conditions average, otherwise in the dry season the water is quite difficult to obtain. The purpose of this research is to compare the thermal conditions between greenhouse with auvplastic and plastic bottle roof.This research is experimental, measurement of thermal conditions in Greenhouse using measuring weather station.Greenhouse design with Quonset type with area of 24 m2The result of this research are greenhouse with paranet + UV plastic roof has an average temperature of 28.7 °C, 70.4% humidity and 0.5 m/s wind speed, while the greenhouse with paranet + plastic bottle roof has an average temperature of 26, 2 °C, humidity 66.4% and wind speed 0.9 m/s. Conclusion is Greenhouse with paranet + plastic bottle roof more thermally comfortable than greenhouse with paranet + UV plastic roof.
Yoshimura, H. R.; Pope, R. B.; Kubo, M.
2007-06-01
Three separate fire test programmes exposing casks beyond the regulatory thermal test requirements were performed by Sandia National Laboratories during the late 1970s and mid 1980s. The results of these test programmes can be used to assist in addressing the adequacy of the regulatory thermal test of fully engulfing exposure at 800°C for 30 min and how that test might relate to real accident thermal environments. The test programmes were undertaken on obsolete and new casks on behalf of the US Department of Energy (DOE), the US Department of Transportation (DOT) and the Japanese Power Reactor and Nuclear Fuel Developmentmore » Corporation (PNC), currently known as the Japan Atomic Energy Agency. Two of the tests involved exposure of casks in damaged transport vehicles to fully engulfing fires for 72–125 min, and the other test involved four exposures of a cask to torch environments for 30 min. Much of the original documentation regarding these tests and their results is no longer readily available. The documents relating to these tests have been surveyed; this paper presents summaries from this survey of the tests and their results. Specifically, for the pool fire exposures, the temperatures measured in the flames of both exceeded the flame temperature required by the Transport Regulations; yet an obsolete 67 t cask endured 90 min of exposure before evidence of failure was detected, and a new cask endured the 72 min exposure while retaining its containment integrity. For the exposure of a modified obsolete cask to four different torch environments, the integrity of the cask was retained and the relative temperature increases within the cask were well within acceptable limits and well below the values that could be expected if the cask was exposed to the regulatory thermal test. In this paper, a review of these three thermal test programmes, establishes that the two older cask designs and one new cask design have the ability to survive environments that were different from (the torch environments) or more severe than the environment specified by the existing thermal test requirement in the Transport Regulations. Finally, these results can be extrapolated to apply to modern casks that generally have more robust designs as well as better quality assurance applied during the manufacturing process.« less
Evaluating thermoregulation in reptiles: an appropriate null model.
Christian, Keith A; Tracy, Christopher R; Tracy, C Richard
2006-09-01
Established indexes of thermoregulation in ectotherms compare body temperatures of real animals with a null distribution of operative temperatures from a physical or mathematical model with the same size, shape, and color as the actual animal but without mass. These indexes, however, do not account for thermal inertia or the effects of inertia when animals move through thermally heterogeneous environments. Some recent models have incorporated body mass, to account for thermal inertia and the physiological control of warming and cooling rates seen in most reptiles, and other models have incorporated movement through the environment, but none includes all pertinent variables explaining body temperature. We present a new technique for calculating the distribution of body temperatures available to ectotherms that have thermal inertia, random movements, and different rates of warming and cooling. The approach uses a biophysical model of heat exchange in ectotherms and a model of random interaction with thermal environments over the course of a day to create a null distribution of body temperatures that can be used with conventional thermoregulation indexes. This new technique provides an unbiased method for evaluating thermoregulation in large ectotherms that store heat while moving through complex environments, but it can also generate null models for ectotherms of all sizes.
Learning to soar in turbulent environments
Reddy, Gautam; Celani, Antonio; Sejnowski, Terrence J.; Vergassola, Massimo
2016-01-01
Birds and gliders exploit warm, rising atmospheric currents (thermals) to reach heights comparable to low-lying clouds with a reduced expenditure of energy. This strategy of flight (thermal soaring) is frequently used by migratory birds. Soaring provides a remarkable instance of complex decision making in biology and requires a long-term strategy to effectively use the ascending thermals. Furthermore, the problem is technologically relevant to extend the flying range of autonomous gliders. Thermal soaring is commonly observed in the atmospheric convective boundary layer on warm, sunny days. The formation of thermals unavoidably generates strong turbulent fluctuations, which constitute an essential element of soaring. Here, we approach soaring flight as a problem of learning to navigate complex, highly fluctuating turbulent environments. We simulate the atmospheric boundary layer by numerical models of turbulent convective flow and combine them with model-free, experience-based, reinforcement learning algorithms to train the gliders. For the learned policies in the regimes of moderate and strong turbulence levels, the glider adopts an increasingly conservative policy as turbulence levels increase, quantifying the degree of risk affordable in turbulent environments. Reinforcement learning uncovers those sensorimotor cues that permit effective control over soaring in turbulent environments. PMID:27482099
Learning to soar in turbulent environments.
Reddy, Gautam; Celani, Antonio; Sejnowski, Terrence J; Vergassola, Massimo
2016-08-16
Birds and gliders exploit warm, rising atmospheric currents (thermals) to reach heights comparable to low-lying clouds with a reduced expenditure of energy. This strategy of flight (thermal soaring) is frequently used by migratory birds. Soaring provides a remarkable instance of complex decision making in biology and requires a long-term strategy to effectively use the ascending thermals. Furthermore, the problem is technologically relevant to extend the flying range of autonomous gliders. Thermal soaring is commonly observed in the atmospheric convective boundary layer on warm, sunny days. The formation of thermals unavoidably generates strong turbulent fluctuations, which constitute an essential element of soaring. Here, we approach soaring flight as a problem of learning to navigate complex, highly fluctuating turbulent environments. We simulate the atmospheric boundary layer by numerical models of turbulent convective flow and combine them with model-free, experience-based, reinforcement learning algorithms to train the gliders. For the learned policies in the regimes of moderate and strong turbulence levels, the glider adopts an increasingly conservative policy as turbulence levels increase, quantifying the degree of risk affordable in turbulent environments. Reinforcement learning uncovers those sensorimotor cues that permit effective control over soaring in turbulent environments.
NASA Astrophysics Data System (ADS)
Wong, N.; Grace, J. M.; Liang, J.; Owyang, S.; Storrs, A.; Zhou, J.; Rothschild, L. J.; Gentry, D.
2014-12-01
Life acclimated to harsh conditions is frequently difficult to study using normal lab techniques and conventional equipment. Simplified studies using in-lab 'simulated' extreme environments, such as UV bulbs or cold blocks, are manually intensive, error-prone, and lose many complexities of the microbe/environment interaction. We have built a prototype instrument to address this dilemma by allowing automated iterations of microbial cultures to be subject to combinations of modular environmental pressures such as heat, radiation, and chemical exposure. The presence of multiple sensors allows the state of the culture and internal environment to be continuously monitored and adjusted in response.Our first prototype showed successful iterations of microbial growth and thermal exposure. Our second prototype, presented here, performs an demonstration of repeated exposure of Escherichia coli to ultraviolet radiation, a well-established procedure. As the E. coli becomes more resistant to ultraviolet radiation, the device detects their increased survival and growth and increases the dosage accordingly. Calibration data for the instrument was generated by performing the same proof-of-concept exposure experiment, at a smaller scale, by hand. Current performance data indicates that our finalized instrument will have the ability to run hundreds of iterations with multiple selection pressures. The automated sensing and adaptive exposure that the device provides will inform the challenges of managing and culturing life tailored to uncommon environmental stresses. We have designed this device to be flexible, extensible, low-cost and easy to reproduce. We hope that it enter wide use as a tool for conducting scalable studies of the interaction between extremophiles and multiple environmental stresses, and potentially for generating artificial extremophiles as analogues for life we might find in extreme environments here on Earth or elsewhere.
Testing of solar cell covers and encapsulants conducted in a simulated space environment
NASA Technical Reports Server (NTRS)
Russell, D. A.
1981-01-01
The materials included in the evaluation were 0211 micro-sheet, FEP-A used as a cover and as an adhesive, DC 93-500 adhesive, PFA "hard coat" used as a cover, GE 615/UV-24 used as a cover, GR 650 used as a cover, and electrostatically bonded 7070 glass. The test environments were 1 MeV electron irradiation interspersed with thermal cycling, 0.5 MeV proton irradiation interspersed with thermal cycling and UV exposure interspersed with thermal cycling. Summary data is given describing the response of the test materials both visually and electrically to the three different environments.
Cooled, temperature controlled electrometer
Morgan, John P.
1992-01-01
A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.
Cooled, temperature controlled electrometer
Morgan, John P.
1992-08-04
A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.
NASA Astrophysics Data System (ADS)
Nakamura, Y.; Aoki, A.
Effects of sub-atmospheric ambient pressure and oxygen content on irradiated ignition characteristics of solid combustibles were examined experimentally in order to elucidate the flammability and chance of fire in depressurized systems and give ideas for the fire safety and fire fighting strategies for such environments. Thin cellulosic paper was used as the solid combustible since cellulose is one of major organic compounds and flammables in the nature. Applied atmospheres consisted of inert gases (either CO 2 or N 2) and oxygen at various mixture ratios. Total ambient pressure ( P) was varied from 101 kPa (standard atmospheric pressure, P0) to 20 kPa. Ignition was initiated by external thermal radiation with CO 2 laser (10 W total; 21.3 W/cm 2 of the corresponding peak flux) onto the solid surface. Thermal degradation of the solid produced combustible gaseous products (e.g. CO, H 2, or other low weight of HCs) and these products mixed with ambient oxygen to form the combustible mixture over the solid. Heat transfer from the irradiated surface into the mixture accelerated the exothermic reaction in the gas phase and finally thermal runaway (ignition) was achieved. A digital video camera was used to analyze the ignition characteristics. Flammability maps in partial pressure of oxygen (ppO 2) and normalized ambient pressure ( P/ P0) plane were made to reveal the fire hazard in depressurized environments. Results showed that a wider flammable range was obtained in sub-atmospherics conditions. In middle pressure range (101-40 kPa), the required ppO 2 for ignition decreased almost linearly as the total pressure decreased, indicating that higher fire risk is expected. In lower pressure range (<40 kPa), the required partial pressure of oxygen increased dramatically, then ignition was eventually not achieved at pressures less than 20 kPa under the conditions studied here. The findings suggest that it might be difficult to satisfy safety in space agriculture since it has been reported that higher oxygen concentrations are preferable for plant growth in depressurized environments. Our results imply that there is an optimum pressure level to achieve less fire chance with acceptable plant growth. An increase of the flammable range in middle pressure level might be explained by following two effects: one is a physical effect, such as a weak convective thermal removal from ignitable domain (near the hot surface) to the ambient of atmosphere, and the other is chemical effect which causes so-called "explosion peninsula" as a result of depleting radical consumption due to third-body recombination reaction. Further studies are necessary to determine the controlling factor on the observed flammable trend in depressurized conditions.
Kallenbach, Mario; Oh, Youngjoo; Eilers, Elisabeth J.; Veit, Daniel; Baldwin, Ian T.; Schuman, Meredith C.
2014-01-01
Summary Plant volatiles (PVs) mediate interactions between plants and arthropods, microbes, and other plants, and are involved in responses to abiotic stress. PV emissions are therefore influenced by many environmental factors, including herbivore damage, microbial invasion, and cues from neighboring plants, but also light regime, temperature, humidity, and nutrient availability. Thus an understanding of the physiological and ecological functions of PVs must be grounded in measurements reflecting PV emissions under natural conditions. However, PVs are usually sampled in the artificial environments of laboratories or climate chambers. Sampling of PVs in natural environments is difficult, limited by the need to transport, maintain, and power instruments, or use expensive sorbent devices in replicate. Ideally, PVs should be measured in natural settings with high replication, spatiotemporal resolution, and sensitivity, and at modest costs. Polydimethysiloxane (PDMS), a sorbent commonly used for PV sampling, is available as silicone tubing (ST) for as little as 0.60 €/m (versus 100-550 € apiece for standard PDMS sorbent devices). Small (mm-cm) ST pieces (STs) can be placed in any environment and used for headspace sampling with little manipulation of the organism or headspace. STs have sufficiently fast absorption kinetics and large capacity to sample plant headspaces on a timescale of minutes to hours, and thus can produce biologically meaningful “snapshots” of PV blends. When combined with thermal desorption (TD)-GC-MS analysis – a 40-year-old and widely available technology – STs yield reproducible, sensitive, spatiotemporally resolved, quantitative data from headspace samples taken in natural environments. PMID:24684685
Cabral, Larry G.; Holland, Brett
2014-01-01
Courtship song in D. melanogaster contributes substantially to male mating success through female selection. We used experimental evolution to test whether this display trait is maintained through adaptive female selection because it indicates heritable male quality for thermal stress tolerance. We used non-displaying, outbred populations of D. melanogaster (nub1) mutants and measured their rate of adaptation to a new, thermally stressful environment, relative to wild-type control populations that retained courtship song. This design retains sexually selected conflict in both treatments. Thermal stress should select across genomes for newly beneficial alleles, increasing the available genetic and phenotypic variation and, therefore, the magnitude of female benefit derived from courtship song. Following introduction to the thermally stressful environment, net reproductive rate decreased 50% over four generations, and then increased 19% over the following 16 generations. There were no differences between the treatments. Possible explanations for these results are discussed. PMID:25365209
NASA Astrophysics Data System (ADS)
Zeng, YuLang; Dong, Liang
2015-01-01
The outdoor thermal environment of a public space is highly relevant to the thermal perception of individuals, thereby affecting the use of space. This study aims to connect thermal human biometeorological conditions and subjective thermal sensation in hot and humid regions and to find its influence on street use. We performed a thermal comfort survey at three locations in a pedestrian precinct of Chengdu, China. Meteorological measurements and questionnaire surveys were used to assess the thermal sensation of respondents. The number of people visiting the streets was counted. Meanwhile, mean radiant temperature ( T mrt) and the physiological equivalent temperature (PET) index were used to evaluate the thermal environment. Analytical results reveal that weather and street design drive the trend of diurnal micrometeorological conditions of the street. With the same geometry and orientation, a street with no trees had wider ranges of meteorological parameters and a longer period of discomfort. The neutral temperature in Chengdu (24.4 °C PET) is similar to that in Taiwan, demonstrating substantial human tolerance to hot conditions in hot and humid regions. Visitors' thermal sensation votes showed the strongest positive relationships with air temperature. Overall comfort level was strongly related to every corresponding meteorological parameter, indicating the complexity of people's comfort in outdoor environments. In major alleys with multiple functions, the number of people in the street decreased as thermal indices increased; T mrt and PET had significant negative correlations with the number of people. This study aids in understanding pedestrian street use in hot and humid regions.
Space environment effects on polymers in low earth orbit
NASA Astrophysics Data System (ADS)
Grossman, E.; Gouzman, I.
2003-08-01
Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. The low earth orbit (LEO) space environment includes hazards such as atomic oxygen, UV radiation, ionizing radiation (electrons, protons), high vacuum, plasma, micrometeoroids and debris, as well as severe temperature cycles. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The high vacuum induces material outgassing (e.g. low-molecular weight residues, plasticizers and additives) and consequent contamination of nearby surfaces. The present work reviews the LEO space environment constituents and their interactions with polymers. Examples of degradation of materials exposed in ground simulation facilities are presented. The issues discussed include the erosion mechanisms of polymers, formation of contaminants and their interaction with the space environment, and protection of materials from the harsh space environment.
NASA Astrophysics Data System (ADS)
Choi, J. H.; Kim, S. W.; Won, J. S.
2017-12-01
The objective of this study is monitoring and evaluating the stability of buildings in Seoul, Korea. This study includes both algorithm development and application to a case study. The development focuses on improving the PSI approach for discriminating various geophysical phase components and separating them from the target displacement phase. A thermal expansion is one of the key components that make it difficult for precise displacement measurement. The core idea is to optimize the thermal expansion factor using air temperature data and to model the corresponding phase by fitting the residual phase. We used TerraSAR-X SAR data acquired over two years from 2011 to 2013 in Seoul, Korea. The temperature fluctuation according to seasons is considerably high in Seoul, Korea. Other problem is the highly-developed skyscrapers in Seoul, which seriously contribute to DEM errors. To avoid a high computational burden and unstable solution of the nonlinear equation due to unknown parameters (a thermal expansion parameter as well as two conventional parameters: linear velocity and DEM errors), we separate a phase model into two main steps as follows. First, multi-baseline pairs with very short time interval in which deformation components and thermal expansion can be negligible were used to estimate DEM errors first. Second, single-baseline pairs were used to estimate two remaining parameters, linear deformation rate and thermal expansion. The thermal expansion of buildings closely correlate with the seasonal temperature fluctuation. Figure 1 shows deformation patterns of two selected buildings in Seoul. In the figures of left column (Figure 1), it is difficult to observe the true ground subsidence due to a large cyclic pattern caused by thermal dilation of the buildings. The thermal dilation often mis-leads the results into wrong conclusions. After the correction by the proposed method, true ground subsidence was able to be precisely measured as in the bottom right figure in Figure 1. The results demonstrate how the thermal expansion phase blinds the time-series measurement of ground motion and how well the proposed approach able to remove the noise phases caused by thermal expansion and DEM errors. Some of the detected displacements matched well with the pre-reported events, such as ground subsidence and sinkhole.
The performance of thermal control coatings on LDEF and implications to future spacecraft
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Miller, Edgar R.; Mell, Richard J.; Lemaster, Paul S.; Zwiener, James M.
1993-01-01
The stability of thermal control coatings over the lifetime of a satellite or space platform is crucial to the success of the mission. With the increasing size, complexity, and duration of future missions, the stability of these materials becomes even more important. The Long Duration Exposure Facility (LDEF) offered an excellent testbed to study the stability and interaction of thermal control coatings in the low-Earth orbit (LEO) space environment. Several experiments on LDEF exposed thermal control coatings to the space environment. This paper provides an overview of the different materials flown and their stability during the extended LDEF mission. The exposure conditions, exposure environment, and measurements of materials properties (both in-space and postflight) are described. The relevance of the results and the implications to the design and operation of future space vehicles are also discussed.
Thermal spray for commercial shipbuilding
NASA Astrophysics Data System (ADS)
Rogers, F. S.
1997-09-01
Thermal spraying of steel with aluminum to protect it from corrosion is a technology that has been proven to work in the marine environment. The thermal spray coating system includes a paint sealer that is applied over the thermally sprayed aluminum. This extends the service life of the coating and provides color to the end product. The thermal spray system protects steel both through the principle of isolation (as in painting) and galvanizing. With this dual protection mechanism, steel is protected from corrosion even when the coating is damaged. The thermal- sprayed aluminum coating system has proved the most cost- effective corrosion protection system for the marine environment. Until recently, however, the initial cost of application has limited its use for general application. Arc spray technology has reduced the application cost of thermal spraying of aluminum to below that of painting. Commercial shipbuilders could use this technology to enhance their market position in the marine industry.
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.
2003-01-01
In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZrO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long-term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.
2003-01-01
In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZTO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long- term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.
Thermal changes of the environment and their influence on reinforced concrete structures
NASA Astrophysics Data System (ADS)
Fojtik, R.; Cajka, R.
2018-04-01
The thermal expansion of concrete elements concerns both monolithic and prefabricated structures. Inappropriate design of dilation segments may cause minor but even larger failures. Critical environment factors are temperature-changing operations, such as unheated underground garages, where temperature fluctuations may occur depending on the exterior conditions. This paper numerically and experimentally analyses the thermal deformation of selected girders in the underground garages and the consequent structure failures, their causes, possible prevention and appropriate remediation.
Design and analysis on thermal adaptive clamping device for PPMgLN crystal used in solid state laser
NASA Astrophysics Data System (ADS)
Yan, Conglin; Chen, Yongliang; Zhang, Wei
2015-02-01
The quality of clamping device for PPMgLN crystal has a vital influence on the optical property of solid-state laser. It has highly requirements of work stability and environmental adaptation ability, especially the thermal adaptation under high temperature differences. To achieve thermal adaptation, structural stiffness will be unavoidably weakened. How to keep both enough stiffness and thermal adaptation as far as possible is the key design point and also difficult point. In this paper, a kind of flexible thermal release unit which can work permanent under 130+/-10°C is studied. Thermal compensation principle and flexible thermal release theory are applied. Analysis results indicate that this device can effectively decreased the thermal stress of the crystal from 85MPa to 0.66MPa. The results of the vibration resistance test on the optical axis direction of the crystal indicate that the device can provide at least 5.62N to resistant 57.2g impact vibration and 18.5g impact vibration in the side direction, well satisfied the requirements of ability to resistant 6g impact vibration.
Mathematical Modeling of Ultraporous Nonmetallic Reticulated Materials
NASA Astrophysics Data System (ADS)
Alifanov, O. M.; Cherepanov, V. V.; Morzhukhina, A. V.
2015-01-01
We have developed an imitation statistical mathematical model reflecting the structure and the thermal, electrophysical, and optical properties of nonmetallic ultraporous reticulated materials. This model, in combination with a nonstationary thermal experiment and methods of the theory of inverse heat transfer problems, permits determining the little-studied characteristics of the above materials such as the radiative and conductive heat conductivities, the spectral scattering and absorption coefficients, the scattering indicatrix, and the dielectric constants, which are of great practical interest but are difficult to investigate.
Cooling and Warming Laws: An Exact Analytical Solution
ERIC Educational Resources Information Center
Besson, Ugo
2010-01-01
This paper deals with temperature variations over time of objects placed in a constant-temperature environment in the presence of thermal radiation. After a historical introduction, the paper discusses cooling and warming laws, by taking into account first solely object-environment energy exchange by thermal radiation, and then adding…
NASA Technical Reports Server (NTRS)
Head, D. E.; Mitchell, K. L.
1967-01-01
Program computes the thermal environment of a spacecraft in a lunar orbit. The quantities determined include the incident flux /solar and lunar emitted radiation/, total radiation absorbed by a surface, and the resulting surface temperature as a function of time and orbital position.
The influence of outdoor thermal environment on young Japanese females.
Kurazumi, Yoshihito; Ishii, Jin; Kondo, Emi; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Sakoi, Tomonori; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi
2014-07-01
The influence of short wave solar radiation appears to be strong outdoors in summer, and the influence of airflow appears to be strong outdoors in winter. The purpose of this paper was to clarify the influence of the outdoor environment on young Japanese females. This research shows the relationship between the physiological and psychological responses of humans and the enhanced conduction-corrected modified effective temperature (ETFe). Subjective experiments were conducted in an outdoor environment. Subjects were exposed to the thermal environment in a standing posture. Air temperature, humidity, air velocity, short wave solar radiation, long wave radiation, ground surface temperature, sky factor, and the green solid angle were measured. The temperatures of skin exposed to the atmosphere and in contact with the ground were measured. Thermal sensation and thermal comfort were measured by means of rating the whole-body thermal sensation (cold-hot) and the whole body thermal comfort (comfortable-uncomfortable) on a linear scale. Linear rating scales are given for the hot (100) and cold (0), and comfortable (100) and uncomfortable (0) directions only. Arbitrary values of 0 and 100 were assigned to each endpoint, the reported values read in, and the entire length converted into a numerical value with an arbitrary scale of 100 to give a linear rating scale. The ETFe considered to report a neither hot nor cold, thermally neutral sensation of 50 was 35.9 °C, with 32.3 °C and 42.9 °C, respectively, corresponding to the low and high temperature ends of the ETFe considered to report a neither comfortable nor uncomfortable comfort value of 50. The mean skin temperature considered to report a neither hot nor cold, thermally neutral sensation of 50 was 33.3 °C, with 31.0 °C and 34.3 °C, respectively, corresponding to the low and high temperature ends of the mean skin temperature considered to report a neither comfortable nor uncomfortable comfort value of 50. The acceptability raised the mean skin temperature even for thermal environment conditions in which ETFe was high.
The influence of outdoor thermal environment on young Japanese females
NASA Astrophysics Data System (ADS)
Kurazumi, Yoshihito; Ishii, Jin; Kondo, Emi; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Sakoi, Tomonori; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi
2014-07-01
The influence of short wave solar radiation appears to be strong outdoors in summer, and the influence of airflow appears to be strong outdoors in winter. The purpose of this paper was to clarify the influence of the outdoor environment on young Japanese females. This research shows the relationship between the physiological and psychological responses of humans and the enhanced conduction-corrected modified effective temperature (ETFe). Subjective experiments were conducted in an outdoor environment. Subjects were exposed to the thermal environment in a standing posture. Air temperature, humidity, air velocity, short wave solar radiation, long wave radiation, ground surface temperature, sky factor, and the green solid angle were measured. The temperatures of skin exposed to the atmosphere and in contact with the ground were measured. Thermal sensation and thermal comfort were measured by means of rating the whole-body thermal sensation (cold-hot) and the whole body thermal comfort (comfortable-uncomfortable) on a linear scale. Linear rating scales are given for the hot (100) and cold (0), and comfortable (100) and uncomfortable (0) directions only. Arbitrary values of 0 and 100 were assigned to each endpoint, the reported values read in, and the entire length converted into a numerical value with an arbitrary scale of 100 to give a linear rating scale. The ETFe considered to report a neither hot nor cold, thermally neutral sensation of 50 was 35.9 °C, with 32.3 °C and 42.9 °C, respectively, corresponding to the low and high temperature ends of the ETFe considered to report a neither comfortable nor uncomfortable comfort value of 50. The mean skin temperature considered to report a neither hot nor cold, thermally neutral sensation of 50 was 33.3 °C, with 31.0 °C and 34.3 °C, respectively, corresponding to the low and high temperature ends of the mean skin temperature considered to report a neither comfortable nor uncomfortable comfort value of 50. The acceptability raised the mean skin temperature even for thermal environment conditions in which ETFe was high.
Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method.
Li, Qingwei; Liu, Changhong; Wang, Xueshen; Fan, Shoushan
2009-04-08
The thermal contact resistance is a difficult problem that has puzzled many researchers in measuring the intrinsic thermal conductivity of an individual carbon nanotube (CNT). To avoid this problem, a non-contact Raman spectra shift method is introduced, by which we have successfully measured the thermal conductivity (kappa) of an individual single-walled carbon nanotube and a multi-walled carbon nanotube. The measured kappa values are 2400 W m(-1) K(-1) and 1400 W m(-1) K(-1), respectively. The CNT was suspended over a trench and heated by electricity. The temperature difference between the middle and the two ends of the CNT indicated its intrinsic heat transfer capability. The temperature difference was determined by the temperature-induced shifts of its G band Raman spectra. This new method can eliminate the impact of the thermal contact resistance which was a Gordian knot in many previous measurements.
Wu, Shu-lian; Li, Hui; Zhang, Xiao-man; Chen, Wei R; Wang, Yun-Xia
2014-01-01
Quantitative characterization of skin collagen on photo-thermal response and its regeneration process is an important but difficult task. In this study, morphology and spectrum characteristics of collagen during photo-thermal response and its light-induced remodeling process were obtained by second-harmonic generation microscope in vivo. The texture feature of collagen orientation index and fractal dimension was extracted by image processing. The aim of this study is to detect the information hidden in skin texture during the process of photo-thermal response and its regeneration. The quantitative relations between injured collagen and texture feature were established for further analysis of the injured characteristics. Our results show that it is feasible to determine the main impacts of phototherapy on the skin. It is important to understand the process of collagen remodeling after photo-thermal injuries from texture feature.
G-300: The first French Getaway Special microgravity measurements of fluid thermal conductivity
NASA Technical Reports Server (NTRS)
Perron, J. C.; Chretien, P.; Garnier, C.; Lecaude, N.
1987-01-01
Thermal conductivity measurements on liquids are difficult to perform on Earth because of thermal motions due to convection. In microgravity, the convection due to buoyancy is evanescent, and a strong reduction of Rayleigh and Nusselt numbers can be expected. Three low viscosity liquids are selected to carry out the measurements; distilled water (standard) and two silicone oils. A modified hot plate method with a simplified guard ring is used; the reduction of convective motions permitted the use in the experimental cells of larger interplate distances and/or temperature differences than in Earth measurements, improving the accuracy. Comparisons between Earth and orbit results may help to understand the convection occurrence in the cells. Thermal, vibrational, and EMI tests have proved that the design satisfies the NASA requirements.
Extremophiles in Household Water Heaters
NASA Astrophysics Data System (ADS)
Wilpiszeski, R.; House, C. H.
2016-12-01
A significant fraction of Earth's microbial diversity comes from species living in extreme environments, but natural extreme environments can be difficult to access. Manmade systems like household water heaters serve as an effective proxy for thermophilic environments that are otherwise difficult to sample directly. As such, we are investigating the biogeography, taxonomic distribution, and evolution of thermophiles growing in domestic water heaters. Citizen scientists collected hot tap water culture- and filter- samples from 101 homes across the United States. We recovered a single species of thermophilic heterotroph from culture samples inoculated from water heaters across the United States, Thermus scotoductus. Whole-genome sequencing was conducted to better understand the distribution and evolution of this single species. We have also sequenced hyper-variable regions of the 16S rRNA gene from whole-community filter samples to identify the broad diversity and distribution of microbial cells captured from each water heater. These results shed light on the processes that shape thermophilic populations and genomes at a spatial resolution that is difficult to access in naturally occurring extreme ecosystems.
DOT National Transportation Integrated Search
1994-09-01
This report presents a theoretical analysis predicting the temperature distribution, thermal deflections, and thermal stresses that may occur in typical steel Maglev guideways under the proposed Orlando FL thermal environment. Transient, finite eleme...
NASA Astrophysics Data System (ADS)
Mei, Hui
2012-06-01
The effect of preoxidation on the thermal shock of air plasma sprayed thermal barrier coatings (TBCs) was completely investigated in a combustion gas environment by burning jet fuel with high speed air. Results show that with increasing cycles, the as-oxidized TBCs lost more weight and enlarged larger spallation area than the as-sprayed ones. Thermally grown oxide (TGO) growth and thermal mismatch stress were proven to play critical roles on the as-oxidized TBC failure. Two types of significant cracks were identified: the type I crack was vertical to the TGO interface and the type II crack was parallel to the TGO interface. The former accelerated the TGO growth to develop the latter as long as the oxidizing gas continuously diffused inward and then oxidized the more bond coat (BC). The preoxidation treatment directly increased the TGO thickness, formed the parallel cracks earlier in the TGO during the thermal shocks, and eventually resulted in the worse thermal shock resistance.
Thermal-environmental testing of a 30-cm engineering model thruster
NASA Technical Reports Server (NTRS)
Mirtich, M. J.
1976-01-01
An experimental test program was carried out to document all 30-cm electron bombardment Hg ion bombardment thruster functions and characteristics over the thermal environment of several proposed missions. An engineering model thruster was placed in a thermal test facility equipped with -196 C walls and solar simulation. The thruster was cold soaked and exposed to simulated eclipses lasting in duration from 17 to 72 minutes. The thruster was operated at quarter, to full beam power in various thermal configurations which simulated multiple thruster operation, and was also exposed to 1 and 2 suns solar simulation. Thruster control characteristics and constraints; performance, including thrust magnitude and direction; and structural integrity were evaluated over the range of thermal environments tested.
In Situ Target Engagement Studies in Adherent Cells.
Axelsson, Hanna; Almqvist, Helena; Otrocka, Magdalena; Vallin, Michaela; Lundqvist, Sara; Hansson, Pia; Karlsson, Ulla; Lundbäck, Thomas; Seashore-Ludlow, Brinton
2018-04-20
A prerequisite for successful drugs is effective binding of the desired target protein in the complex environment of a living system. Drug-target engagement has typically been difficult to monitor in physiologically relevant models, and with current methods, especially, while maintaining spatial information. One recent technique for quantifying drug-target engagement is the cellular thermal shift assay (CETSA), in which ligand-induced protein stabilization is measured after a heat challenge. Here, we describe a CETSA protocol in live A431 cells for p38α (MAPK14), where remaining soluble protein is detected in situ, using high-content imaging in 384-well, microtiter plates. We validate this assay concept using a number of known p38α inhibitors and further demonstrate the potential of this technology for chemical probe and drug discovery purposes by performing a small pilot screen for novel p38α binders. Importantly, this protocol creates a workflow that is amenable to adherent cells in their native state and yields spatially resolved target engagement information measurable at the single-cell level.
Separation processes during binary monotectic alloy production
NASA Technical Reports Server (NTRS)
Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.
1984-01-01
Observation of microgravity solidification processes indicates that outside of sedimentation, at least two other important effects can separate the phases: critical-point wetting and spreading; and thermal migration of second-phase droplets due to interfacial tension gradients. It is difficult to study these surface tension effects while in a unit gravity field. In order to investigate the processes occurring over a temperature range, i.e., between a consolute point and the monotectic temperature, it is necessary to use a low-gravity environment. The MSFC drop tube (and tower), the ballistic trajectory KC-135 airplane, and the Space Shuttle are ideal facilities to aid formation and testing of hypotheses. Much of the early work in this area focuses on transparent materials so that process dynamics may be studied by optical techniques such as photography for viewing macro-processes; holography for studying diffusional growth; spinodal decomposition and coalescence; ellipsometry for surface wetting and spreading effects; and interferometry and spectroscopy for small-scale spatial resolution of concentration profiles.
Thermal environment in eight low-energy and twelve conventional Finnish houses.
Kähkönen, Erkki; Salmi, Kari; Holopainen, Rauno; Pasanen, Pertti; Reijula, Kari
2015-11-01
We assessed the thermal environment of eight recently built low-energy houses and twelve conventional Finnish houses. We monitored living room, bedroom and outdoor air temperatures and room air relative humidity from June 2012 to September 2013. Perceived thermal environment was evaluated using a questionnaire survey during the heating, cooling and interim seasons. We compared the measured and perceived thermal environments of the low-energy and conventional houses. The mean air temperature was 22.8 °C (21.9-23.8 °C) in the low-energy houses, and 23.3 °C (21.4-26.5 °C) in the conventional houses during the summer (1. June 2013-31. August 2013). In the winter (1. December 2012-28. February 2013), the mean air temperature was 21.3 °C (19.8-22.5 °C) in the low-energy houses, and 21.6 °C (18.1-26.4 °C) in the conventional houses. The variation of the air temperature was less in the low-energy houses than that in the conventional houses. In addition, the occupants were on average slightly more satisfied with the indoor environment in the low-energy houses. However, there was no statistically significant difference between the mean air temperature and relative humidity of the low-energy and conventional houses. Our measurements and surveys showed that a good thermal environment can be achieved in both types of houses. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Field study of thermal comfort in non-air-conditioned buildings in a tropical island climate.
Lu, Shilei; Pang, Bo; Qi, Yunfang; Fang, Kun
2018-01-01
The unique geographical location of Hainan makes its climate characteristics different from inland areas in China. The thermal comfort of Hainan also owes its uniqueness to its tropical island climate. In the past decades, there have been very few studies on thermal comfort of the residents in tropical island areas in China. A thermal environment test for different types of buildings in Hainan and a thermal comfort field investigation of 1944 subjects were conducted over a period of about two months. The results of the survey data show that a high humidity environment did not have a significant impact on human comfort. The neutral temperature for the residents in tropical island areas was 26.1 °C, and the acceptable temperature range of thermal comfort was from 23.1 °C to 29.1 °C. Residents living in tropical island areas showed higher heat resistance capacity, but lower cold tolerance than predicted. The neutral temperature for females (26.3 °C) was higher than for males (25.8 °C). Additionally, females were more sensitive to air temperature than males. The research conclusions can play a guiding role in the thermal environment design of green buildings in Hainan Province. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simulation of thermal environment in a three-layer vinyl greenhouse by natural ventilation control
NASA Astrophysics Data System (ADS)
Jin, Tea-Hwan; Shin, Ki-Yeol; Yoon, Si-Won; Im, Yong-Hoon; Chang, Ki-Chang
2017-11-01
A high energy, efficient, harmonious, ecological greenhouse has been highlighted by advanced future agricultural technology recently. This greenhouse is essential for expanding the production cycle toward growth conditions through combined thermal environmental control. However, it has a negative effect on farming income via huge energy supply expenses. Because not only production income, but operating costs related to thermal load for thermal environment control is important in farming income, it needs studies such as a harmonious ecological greenhouse using natural ventilation control. This study is simulated for energy consumption and thermal environmental conditions in a three-layered greenhouse by natural ventilation using window opening. A virtual 3D model of a three-layered greenhouse was designed based on the real one in the Gangneung area. This 3D model was used to calculate a thermal environment state such as indoor temperature, relative humidity, and thermal load in the case of a window opening rate from 0 to 100%. There was also a heat exchange operated for heating or cooling controlled by various setting temperatures. The results show that the cooling load can be reduced by natural ventilation control in the summer season, and the heat exchange capacity for heating can also be simulated for growth conditions in the winter season.
Laser assisted machining: a state of art review
NASA Astrophysics Data System (ADS)
Punugupati, Gurabvaiah; Kandi, Kishore Kumar; Bose, P. S. C.; Rao, C. S. P.
2016-09-01
Difficult-to-cut materials have increasing demand in aerospace and automobile industries due to their high yield stress, high strength to weight ratio, high toughness, high wear resistance, high creep, high corrosion resistivity, ability to retain high strength at high temperature, etc. The machinability of these advanced materials, using conventional methods of machining is typical due to the high temperature and pressure at the cutting zone and tool and properties such as low thermal conductivity, high cutting forces and cutting temperatures makes the materials difficult to machine. Laser assisted machining (LAM) is a new and innovative technique for machining the difficult-to-cut materials. This paper deals with a review on the advances in lasers, tools and the mechanism of machining using LAM and their effects.
Multiagent Flight Control in Dynamic Environments with Cooperative Coevolutionary Algorithms
NASA Technical Reports Server (NTRS)
Colby, Mitchell; Knudson, Matthew D.; Tumer, Kagan
2014-01-01
Dynamic environments in which objectives and environmental features change with respect to time pose a difficult problem with regards to planning optimal paths through these environments. Path planning methods are typically computationally expensive, and are often difficult to implement in real time if system objectives are changed. This computational problem is compounded when multiple agents are present in the system, as the state and action space grows exponentially with the number of agents in the system. In this work, we use cooperative coevolutionary algorithms in order to develop policies which control agent motion in a dynamic multiagent unmanned aerial system environment such that goals and perceptions change, while ensuring safety constraints are not violated. Rather than replanning new paths when the environment changes, we develop a policy which can map the new environmental features to a trajectory for the agent while ensuring safe and reliable operation, while providing 92% of the theoretically optimal performance.
Real-Time Measurements of Aft Dome Insulation Erosion on Space Shuttle Reusable Solid Rocket Motor
NASA Technical Reports Server (NTRS)
McWhorter, Bruce; Ewing, Mark; Albrechtsen, Kevin; Noble, Todd; Longaker, Matt
2004-01-01
Real-time erosion of aft dome internal insulation was measured with internal instrumentation on a static test of a lengthened version of the Space Shuffle Reusable Solid Rocket Motor (RSRM). This effort marks the first time that real-time aft dome insulation erosion (Le., erosion due to the combined effects of thermochemical ablation and mechanical abrasion) was measured in this kind of large motor static test [designated as Engineering Test Motor number 3 (ETM3)I. This paper presents data plots of the erosion depth versus time. The data indicates general erosion versus time behavior that is in contrast to what would be expected from earlier analyses. Engineers have long known that the thermal environment in the aft dome is severe and that the resulting aft dome insulation erosion is significant. Models of aft dome erosion involve a two-step process of computational fluid dynamics (CFD) modeling and material ablation modeling. This modeling effort is complex. The time- dependent effects are difficult to verify with only prefire and postfire insulation measurements. Nozzle vectoring, slag accumulation, and changing boundary conditions will affect the time dependence of aft dome erosion. Further study of this data and continued measurements on future motors will increase our understanding of the aft dome flow and erosion environment.
Matusik, Katarzyna E.; Duke, Daniel J.; Kastengren, Alan L.; ...
2017-04-09
The sparking behavior in an internal combustion engine affects the fuel efficiency, engine-out emissions, and general drivability of a vehicle. As emissions regulations become progressively stringent, combustion strategies, including exhaust gas recirculation (EGR), lean-burn, and turbocharging are receiving increasing attention as models of higher efficiency advanced combustion engines with reduced emissions levels. Because these new strategies affect the working environment of the spark plug, ongoing research strives to understand the influence of external factors on the spark ignition process. Due to the short time and length scales involved and the harsh environment, experimental quantification of the deposited energy from themore » sparking event is difficult to obtain. We present the results of x-ray radiography measurements of spark ignition plasma generated by a conventional spark plug. Our measurements were performed at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory. The synchrotron x-ray source enables time-resolved measurements of the density change due to glow discharge in the spark gap with 153 ns temporal and 5 μm spatial resolutions. We also explore the effects of charging time, EGR-relevant gas compositions, and gas pressure on the sparking behavior. We also quantify the influence of the measurement technique on the obtained results.« less
Creep and Rupture Strength of an Advanced CVD SiC Fiber
NASA Technical Reports Server (NTRS)
Goldsby, J. C.; Yun, H. M.; DiCarlo, J. A.
1997-01-01
In the as-produced condition the room temperature strength (approx. 6 GPa) of Textron Specialty Materials' 50 microns CVD SiC fiber represents the highest value thus far obtained for commercially produced polycrystalline SiC fibers. To understand whether this strength can be maintained after composite processing conditions, high temperature studies were performed on the effects of time, stress, and environment on 1400 deg. C tensile creep strain and stress rupture on as-produced, chemically vapor deposited SiC fibers. Creep strain results were consistent, allowing an evaluation of time and stress effects. Test environment had no influence on creep strain but I hour annealing at 1600 deg. C in argon gas significantly reduced the total creep strain and increased the stress dependence. This is attributed to changes in the free carbon morphology and its distribution within the CVD SiC fiber. For the as-produced and annealed fibers, strength at 1400 deg. C was found to decrease from a fast fracture value of 2 GPa to a 100-hr rupture strength value of 0. 8 GPa. In addition a loss of fast fracture strength from 6 GPa is attributed to thermally induced changes in the outer carbon coating and microstructure. Scatter in rupture times made a definitive analysis of environmental and annealing effects on creep strength difficult.
Evaluation of a Cooling Headpiece during Work in a Hot Environment
1987-10-01
Press, 1960. 3. Brown, GA, and Willims, GM: The effects of head cooling on deep body temperature and thermal comfort in man. Aviat. Space & Environ...1971. 18. Williams, BA, and Shitzer, A,. A modular liquid-cooled helmet for thermal comfort . Aerospace Med. 45(g):1030-1036, 1974. 11J i. E Appendix A...to physiological benefits, soldier comfort and performance mey I also be enhanced by the CHP. Scalp temperature may be a factor in whole body thermal
Single-node orbit analsyis with radiation heat transfer only
NASA Technical Reports Server (NTRS)
Peoples, J. A.
1977-01-01
The steady-state temperature of a single node which dissipates energy by radiation only is discussed for a nontime varying thermal environment. Relationships are developed to illustrate how shields can be utilized to represent a louver system. A computer program is presented which can assess periodic temperature characteristics of a single node in a time varying thermal environment having energy dissipation by radiation only. The computer program performs thermal orbital analysis for five combinations of plate, shields, and louvers.
The Damping Rates of Embedded Oscillating Starless Cores
NASA Astrophysics Data System (ADS)
Broderick, Avery E.; Narayan, Ramesh; Keto, Eric; Lada, Charles J.
2008-08-01
In a previous paper we demonstrated that nonradial hydrodynamic oscillations of a thermally supported (Bonnor-Ebert) sphere embedded in a low-density, high-temperature medium persist for many periods. The predicted column density variations and molecular spectral line profiles are similar to those observed in the Bok globule B68, suggesting that the motions in some starless cores may be oscillating perturbations on a thermally supported equilibrium structure. Such oscillations can produce molecular line maps which mimic rotation, collapse, or expansion and, thus, could make determining the dynamical state from such observations alone difficult. However, while B68 is embedded in a very hot, low-density medium, many starless cores are not, having interior/exterior density contrasts closer to unity. In this paper we investigate the oscillation damping rate as a function of the exterior density. For concreteness we use the same interior model employed by Broderick et al., with varying models for the exterior gas. We also develop a simple analytical formalism, based on the linear perturbation analysis of the oscillations, which predicts the contribution to the damping rates due to the excitation of sound waves in the external medium. We find that the damping rate of oscillations on globules in dense molecular environments is always many periods, corresponding to hundreds of thousands of years and persisting over the inferred lifetimes of the globules.
NASA Astrophysics Data System (ADS)
Pintilei, G. L.; Crismaru, V. I.; Abrudeanu, M.; Munteanu, C.; Baciu, E. R.; Istrate, B.; Basescu, N.
2015-10-01
Aluminum alloy present numerous advantages like lightness, high specific strength and diversity which recommend them to a high number of applications from different fields. In extreme environments the protection of aluminum alloys is difficult and requires a high number of requirements like high temperature resistance, thermal fatigue resistance, corrosion fatigue resistance and galvanic corrosion resistance. To obtain these characteristics coatings can be applied to the surfaces so they can enhance the mechanical and chemical properties of the parts. In this paper two coatings were considered for deposition on an AA2024 aluminum alloy, ZrO2/20%Y2O3 and Al2O3. To obtain a better adherence of the coating to the base material an additional bond layer of NiCr is used. Both the coatings and bond layer were deposited by atmospheric plasma spraying on the samples. The samples were subjected to a temperature of 500 °C and after that slowly cooled to room temperature. The samples were analyzed by electron microscopy and X-ray diffraction to determine the morphological and phase changes that occurred during the temperature exposure. To determine the stress level in the parts due to thermal expansion a finite element analysis was performed in the same conditions as the tests.
NASA Astrophysics Data System (ADS)
Kariminia, Shahab; Motamedi, Shervin; Shamshirband, Shahaboddin; Piri, Jamshid; Mohammadi, Kasra; Hashim, Roslan; Roy, Chandrabhushan; Petković, Dalibor; Bonakdari, Hossein
2016-05-01
Visitors utilize the urban space based on their thermal perception and thermal environment. The thermal adaptation engages the user's behavioural, physiological and psychological aspects. These aspects play critical roles in user's ability to assess the thermal environments. Previous studies have rarely addressed the effects of identified factors such as gender, age and locality on outdoor thermal comfort, particularly in hot, dry climate. This study investigated the thermal comfort of visitors at two city squares in Iran based on their demographics as well as the role of thermal environment. Assessing the thermal comfort required taking physical measurement and questionnaire survey. In this study, a non-linear model known as the neural network autoregressive with exogenous input (NN-ARX) was employed. Five indices of physiological equivalent temperature (PET), predicted mean vote (PMV), standard effective temperature (SET), thermal sensation votes (TSVs) and mean radiant temperature ( T mrt) were trained and tested using the NN-ARX. Then, the results were compared to the artificial neural network (ANN) and the adaptive neuro-fuzzy inference system (ANFIS). The findings showed the superiority of the NN-ARX over the ANN and the ANFIS. For the NN-ARX model, the statistical indicators of the root mean square error (RMSE) and the mean absolute error (MAE) were 0.53 and 0.36 for the PET, 1.28 and 0.71 for the PMV, 2.59 and 1.99 for the SET, 0.29 and 0.08 for the TSV and finally 0.19 and 0.04 for the T mrt.
Mixed time integration methods for transient thermal analysis of structures
NASA Technical Reports Server (NTRS)
Liu, W. K.
1983-01-01
The computational methods used to predict and optimize the thermal-structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a difficult yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally-useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.
NASA Technical Reports Server (NTRS)
Gracey, Renee; Bartoszyk, Andrew; Cofie, Emmanuel; Comber, Brian; Hartig, George; Howard, Joseph; Sabatke, Derek; Wenzel, Greg; Ohl, Raymond
2016-01-01
The James Webb Space Telescope includes the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. We performed extensive structural, thermal, and optical performance(STOP) modeling in support of all phases of ISIM development. In this paper, we focus on modeling and results associated with test and verification. ISIMs test program is bound by ground environments, mostly notably the 1g and test chamber thermal environments. This paper describes STOP modeling used to predict ISIM system performance in 0g and at various on-orbit temperature environments. The predictions are used to project results obtained during testing to on-orbit performance.
Flexible radiator thermal vacuum test report
NASA Technical Reports Server (NTRS)
Oren, J. A.; Hixon, C. W.
1982-01-01
Two flexible, deployable/retraction radiators were designed and fabricated. The two radiator panels are distinguishable by their mission life design. One panel is designed with a 90 percent probability of withstanding the micrometeoroid environment of a low earth orbit for 30 days. This panel is designated the soft tube radiator after the PFA Teflon tubes which distribute the transport fluid over the panel. The second panel is designed with armored flow tubes to withstand the same micrometeoroid environment for 5 years. It is designated the hard tube radiator after its stainless steel flow tubes. The thermal performance of the radiators was tested under anticipated environmental conditions. The two deployment systems of the radiators were evaluated in a thermal vacuum environment.
Apollo telescope mount thermal systems unit thermal vacuum test
NASA Technical Reports Server (NTRS)
Trucks, H. F.; Hueter, U.; Wise, J. H.; Bachtel, F. D.
1971-01-01
The Apollo Telescope Mount's thermal systems unit was utilized to conduct a full-scale thermal vacuum test to verify the thermal design and the analytical techniques used to develop the thermal mathematical models. Thermal vacuum test philosophy, test objectives configuration, test monitoring, environment simulation, vehicle test performance, and data correlation are discussed. Emphasis is placed on planning and execution of the thermal vacuum test with particular attention on problems encountered in conducting a test of this maguitude.
Creating Electronic Learning Environments: Games, Flow, and the User Interface.
ERIC Educational Resources Information Center
Jones, Marshall G.
A difficult task in creating rich, exploratory interactive learning environments is building an environment that is truly engaging. Engagement can be defined as the nexus of intrinsic knowledge and/or interest and external stimuli that promote the initial interest in, and continued use of a computer-based learning environment. Complete and total…
Space tug thermal control. [design criteria and specifications
NASA Technical Reports Server (NTRS)
1974-01-01
It was determined that space tug will require the capability to perform its mission within a broad range of thermal environments with currently planned mission durations of up to seven days, so an investigation was conducted to define a thermal design for the forward and intertank compartments and fuel cell heat rejection system that satisfies tug requirements for low inclination geosynchronous deploy and retrieve missions. Passive concepts were demonstrated analytically for both the forward and intertank compartments, and a worst case external heating environment was determined for use during the study. The thermal control system specifications and designs which resulted from the research are shown.
Arc-Heater Facility for Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Foote, John P.; Wang,Ten-See; Hickman, Robert; Panda, Binayak; Dobson, Chris; Osborne, Robin; Clifton, Scooter
2006-01-01
A hyper-thermal environment simulator is described for hot hydrogen exposure of nuclear thermal rocket material specimens and component development. This newly established testing capability uses a high-power, multi-gas, segmented arc-heater to produce high-temperature pressurized hydrogen flows representative of practical reactor core environments and is intended to serve. as a low cost test facility for the purpose of investigating and characterizing candidate fueUstructura1 materials and improving associated processing/fabrication techniques. Design and development efforts are thoroughly summarized, including thermal hydraulics analysis and simulation results, and facility operating characteristics are reported, as determined from a series of baseline performance mapping tests.
NASA Technical Reports Server (NTRS)
Gale, E. H.
1980-01-01
The advantages and possible pitfalls of using a generalized method of measuring and, based on these measurements, predicting the transient or steady-state thermal response characteristics of an electronic equipment designed to operate in a space environment are reviewed. The method requires generation of a set of thermal influence coefficients by test measurement in vacuo. A implified thermal mockup isused in this test. Once this data set is measured, temperatures resulting from arbitrary steady-state or time varying power profiles can be economically calculated with the aid of a digital computer.
Performance of finned thermal capacitors. Ph.D. Thesis - Texas Univ., Austin
NASA Technical Reports Server (NTRS)
Humphries, W. R.
1974-01-01
The performance of typical thermal capacitors, both in earth and orbital environments, was investigated. Techniques which were used to make predictions of thermal behavior in a one-g earth environment are outlined. Orbital performance parameters are qualitatively discussed, and those effects expected to be important under zero-g conditions are outlined. A summary of thermal capacitor applications are documentated, along with significant problem areas and current configurations. An experimental program was conducted to determine typical one-g performance, and the physical significance of these data is discussed in detail. Numerical techniques were employed to allow comparison between analytical and experimental data.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Bhatt, Ramakrishna T.; Harder, Bryan
2016-01-01
This paper presents the developments of thermo-mechanical testing approaches and durability performance of environmental barrier coatings (EBCs) and EBC coated SiCSiC ceramic matrix composites (CMCs). Critical testing aspects of the CMCs will be described, including state of the art instrumentations such as temperature, thermal gradient, and full field strain measurements; materials thermal conductivity evolutions and thermal stress resistance; NDE methods; thermo-mechanical stress and environment interactions associated damage accumulations. Examples are also given for testing ceramic matrix composite sub-elements and small airfoils to help better understand the critical and complex CMC and EBC properties in engine relevant testing environments.
NASA Technical Reports Server (NTRS)
Bertagne, Christopher L.; Chong, Jorge B.; Whitcomb, John D.; Hartl, Darren J.; Erickson, Lisa R.
2017-01-01
For future long duration space missions, crewed vehicles will require advanced thermal control systems to maintain a desired internal environment temperature in spite of a large range of internal and external heat loads. Current radiators are only able to achieve turndown ratios (i.e. the ratio between the radiator's maximum and minimum heat rejection rates) of approximately 3:1. Upcoming missions will require radiators capable of 12:1 turndown ratios. A radiator with the ability to alter shape could significantly increase turndown capacity. Shape memory alloys (SMAs) offer promising qualities for this endeavor, namely their temperature-dependent phase change and capacity for work. In 2015, the first ever morphing radiator prototype was constructed in which SMA actuators passively altered the radiator shape in response to a thermal load. This work describes a follow-on endeavor to demonstrate a similar concept using highly thermally conductive composite materials. Numerous versions of this new concept were tested in a thermal vacuum environment and successfully demonstrated morphing behavior and variable heat rejection, achieving a turndown ratio of 4.84:1. A summary of these thermal experiments and their results are provided herein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Section 210 of the Public Utility Regulatory Policies Act of 1978 (PURPA) (16 U.S.C. Section 824a-3) (Attachment 1) was enacted to overcome certain institutional barriers and to provide a favorable, non-discriminatory regulatory environment for the integration of electricity-producing solar thermal and other qualifying technologies into the electric utility network. PURPA Section 210 is designed to reduce these institutional barriers for qualifying cogeneration and small power production facilities (QF's) - terminology which includes solar thermal facilities producing electricity for sale, if other prerequisites are met - by exempting certain QF's from economically burdensome legal requirements applicable to electric utilities, and bymore » requiring utilities to offer to purchase electricity from, and sell electricity to, QF's at reasonable and non-discriminatory rates. The present and future PURPA Section 210 regulatory implications for solar thermal QF's are explored. The current PURPA Section 210 regulatory environment and its consequences for solar thermal energy development are outlined. Legislation pending before Congress to amend PURPA Section 210 is described. Possible amendments to PURPA Section 210 that might further stimulate construction and operation of economically sound solar thermal facilities are explored.« less
Passenger thermal comfort and behavior: a field investigation in commercial aircraft cabins.
Cui, W; Wu, T; Ouyang, Q; Zhu, Y
2017-01-01
Passengers' behavioral adjustments warrant greater attention in thermal comfort research in aircraft cabins. Thus, a field investigation on 10 commercial aircrafts was conducted. Environment measurements were made and a questionnaire survey was performed. In the questionnaire, passengers were asked to evaluate their thermal comfort and record their adjustments regarding the usage of blankets and ventilation nozzles. The results indicate that behavioral adjustments in the cabin and the use of blankets or nozzle adjustments were employed by 2/3 of the passengers. However, the thermal comfort evaluations by these passengers were not as good as the evaluations by passengers who did not perform any adjustments. Possible causes such as differences in metabolic rate, clothing insulation and radiation asymmetry are discussed. The individual difference seems to be the most probable contributor, suggesting possibly that passengers who made adjustments had a narrower acceptance threshold or a higher expectancy regarding the cabin environment. Local thermal comfort was closely related to the adjustments and significantly influenced overall thermal comfort. Frequent flying was associated with lower ratings for the cabin environment. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Local body cooling to improve sleep quality and thermal comfort in a hot environment.
Lan, L; Qian, X L; Lian, Z W; Lin, Y B
2018-01-01
The effects of local body cooling on thermal comfort and sleep quality in a hot environment were investigated in an experiment with 16 male subjects. Sleep quality was evaluated subjectively, using questionnaires completed in the morning, and objectively, by analysis of electroencephalogram (EEG) signals that were continuously monitored during the sleeping period. Compared with no cooling, the largest improvement in thermal comfort and sleep quality was observed when the back and head (neck) were both cooled at a room temperature of 32°C. Back cooling alone also improved thermal comfort and sleep quality, although the effects were less than when cooling both back and head (neck). Mean sleep efficiency was improved from 84.6% in the no cooling condition to 95.3% and 92.8%, respectively, in these conditions, indicating good sleep quality. Head (neck) cooling alone slightly improved thermal comfort and subjective sleep quality and increased Stage N3 sleep, but did not otherwise improve sleep quality. The results show that local cooling applied to large body sections (back and head) could effectively maintain good sleep and improve thermal comfort in a hot environment. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Reflector surface distortion analysis techniques (thermal distortion analysis of antennas in space)
NASA Technical Reports Server (NTRS)
Sharp, R.; Liao, M.; Giriunas, J.; Heighway, J.; Lagin, A.; Steinbach, R.
1989-01-01
A group of large computer programs are used to predict the farfield antenna pattern of reflector antennas in the thermal environment of space. Thermal Radiation Analysis Systems (TRASYS) is a thermal radiation analyzer that interfaces with Systems Improved Numerical Differencing Analyzer (SINDA), a finite difference thermal analysis program. The programs linked together for this analysis can now be used to predict antenna performance in the constantly changing space environment. They can be used for very complex spacecraft and antenna geometries. Performance degradation caused by methods of antenna reflector construction and materials selection are also taken into consideration. However, the principal advantage of using this program linkage is to account for distortions caused by the thermal environment of space and the hygroscopic effects of the dry-out of graphite/epoxy materials after the antenna is placed into orbit. The results of this type of analysis could ultimately be used to predict antenna reflector shape versus orbital position. A phased array antenna distortion compensation system could then use this data to make RF phase front corrections. That is, the phase front could be adjusted to account for the distortions in the antenna feed and reflector geometry for a particular orbital position.
Thomas, K A; Burr, R
1999-06-01
Incubator thermal environments produced by skin versus air servo-control were compared. Infant abdominal skin and incubator air temperatures were recorded from 18 infants in skin servo-control and 14 infants in air servo-control (26- to 29-week gestational age, 14 +/- 2 days postnatal age) for 24 hours. Differences in incubator and infant temperature, neutral thermal environment (NTE) maintenance, and infant and incubator circadian rhythm were examined using analysis of variance and scatterplots. Skin servo-control resulted in more variable air temperature, yet more stable infant temperature, and more time within the NTE. Circadian rhythm of both infant and incubator temperature differed by control mode and the relationship between incubator and infant temperature rhythms was a function of control mode. The differences between incubator control modes extend beyond temperature stability and maintenance of NTE. Circadian rhythm of incubator and infant temperatures is influenced by incubator control.
Den Hartog, Emiel A; Havenith, George
2010-01-01
For wearers of protective clothing in radiation environments there are no quantitative guidelines available for the effect of a radiative heat load on heat exchange. Under the European Union funded project ThermProtect an analytical effort was defined to address the issue of radiative heat load while wearing protective clothing. As within the ThermProtect project much information has become available from thermal manikin experiments in thermal radiation environments, these sets of experimental data are used to verify the analytical approach. The analytical approach provided a good prediction of the heat loss in the manikin experiments, 95% of the variance was explained by the model. The model has not yet been validated at high radiative heat loads and neglects some physical properties of the radiation emissivity. Still, the analytical approach provides a pragmatic approach and may be useful for practical implementation in protective clothing standards for moderate thermal radiation environments.
NASA Astrophysics Data System (ADS)
Qin, G.; Li, C.; Lin, Q.
2017-12-01
Marine fish species escape from harmful environment by migration. Seahorses, with upright posture and low mobility, could migrate from unfavorable environment by rafting with their prehensile tail. The present study was designed to examine the tolerance of lined seahorse Hippocampus erectus to thermal stress and evaluate the effects of temperature on seahorse migration. The results figured that seahorses' tolerance to thermal stress was time dependent. Acute thermal stress (30°C) increased breathing rate and HSP genes expression significantly, but didn't affect seahorse feeding behavior. Chronic thermal treatment lead to persistent high expression of HSP genes, higher breathing rate, and decreasing feeding, and final higher mortality, suggesting that seahorse cannot adapt to thermal stress by acclimation. No significant negative effects were found in seahorse reproduction in response to chronic thermal stress. Given that seahorses make much slower migration by rafting on sea surface compared to other fishes, we suggest that thermal stress might limit seahorse migration range. and the influence might be magnified by global warming in future.
Nico, Maria Anna; Liuzzi, Stefania; Stefanizzi, Pietro
2015-05-01
Assessing thermal comfort becomes more relevant when the aim is to maximise learning and productivity performances, as typically occurs in offices and schools. However, if, in the offices, the Fanger model well represents the thermal occupant response, then on the contrary, in schools, adaptive mechanisms significantly influence the occupants' thermal preference. In this study, an experimental approach was performed in the Polytechnic University of Bari, during the first days of March, in free running conditions. First, the results of questionnaires were compared according to the application of the Fanger model and the adaptive model; second, using a subjective scale, a complete analysis was performed on thermal preference in terms of acceptability, neutrality and preference, with particular focus on the influence of gender. The user possibility to control the indoor plant system produced a significant impact on the thermal sensation and the acceptability of the thermal environment. Gender was also demonstrated to greatly influence the thermal judgement of the thermal environment when an outdoor cold climate occurs. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The present research hypothesized that the thermal, lighting and acoustic environments in commercial swine farrowing rooms vary over time and among crates. The study was conducted in 27 replicates in two commercial farrowing rooms in North Central Indiana, each equipped with 60 farrowing crates. Tem...
Thermal barrier coating life prediction model development
NASA Technical Reports Server (NTRS)
Sheffler, K. D.; Demasi, J. T.
1985-01-01
A methodology was established to predict thermal barrier coating life in an environment simulative of that experienced by gas turbine airfoils. Specifically, work is being conducted to determine failure modes of thermal barrier coatings in the aircraft engine environment. Analytical studies coupled with appropriate physical and mechanical property determinations are being employed to derive coating life prediction model(s) on the important failure mode(s). An initial review of experimental and flight service components indicates that the predominant mode of TBC failure involves thermomechanical spallation of the ceramic coating layer. This ceramic spallation involves the formation of a dominant crack in the ceramic coating parallel to and closely adjacent to the metal-ceramic interface. Initial results from a laboratory test program designed to study the influence of various driving forces such as temperature, thermal cycle frequency, environment, and coating thickness, on ceramic coating spalling life suggest that bond coat oxidation damage at the metal-ceramic interface contributes significantly to thermomechanical cracking in the ceramic layer. Low cycle rate furnace testing in air and in argon clearly shows a dramatic increase of spalling life in the non-oxidizing environments.
Heat-coping strategies and bedroom thermal satisfaction in New York City.
Lee, W Victoria; Shaman, Jeffrey
2017-01-01
There has been little research into the thermal condition of the sleeping environment. Even less well documented and understood is how the sleeping thermal environment is affected by occupant behaviors such as the use of air-conditioning (AC) and electric fans, or window operations. In this paper we present results from a questionnaire survey administered to assess summertime bedroom thermal satisfaction and heat-coping strategies among New York City (NYC) residents. Specifically, we investigated current AC usage in bedrooms and examined alternate cooling strategies, cooling appliance usage patterns, and the motivations that drove these patterns during the 2015 summer. Among survey respondents (n=706), AC was the preferred heat-coping strategy, and for 30% of respondents was the only strategy used. Electric fan use and window opening were deemed ineffective for cooling by many respondents. Indeed, less than a quarter of all respondents ever opened windows to alleviate heat in their bedrooms. In general, people utilized strategies that modify the environment more than the individual person. Unsurprisingly, the frequency and overall use of AC were significantly associated with greater bedroom thermal satisfaction; however, setting AC to a lower temperature provided no additional benefit. In contrast, more frequent use of electric fans was associated with lower thermal satisfaction. In addition, 14.7% of all respondents did not have AC in their sleeping environment and 5.8% were without any AC at home. Despite the high penetration of AC ownership, usage cost was still a major concern for most. This work contributes to a better understanding of bedtime heat-coping strategies, cooling appliance usage patterns, and associated thermal satisfaction in NYC. The findings of this study suggest resident AC usage patterns may not be optimized for thermal satisfaction. Potential alternative cooling approaches could be explored to better balance maximizing thermal comfort while reducing energy consumption and environmental impact. Copyright © 2016 Elsevier B.V. All rights reserved.
Degradation of thermal control materials under a simulated radiative space environment
NASA Astrophysics Data System (ADS)
Sharma, A. K.; Sridhara, N.
2012-11-01
A spacecraft with a passive thermal control system utilizes various thermal control materials to maintain temperatures within safe operating limits. Materials used for spacecraft applications are exposed to harsh space environments such as ultraviolet (UV) and particle (electron, proton) irradiation and atomic oxygen (AO), undergo physical damage and thermal degradation, which must be considered for spacecraft thermal design optimization and cost effectiveness. This paper describes the effect of synergistic radiation on some of the important thermal control materials to verify the assumptions of beginning-of-life (BOL) and end-of-life (EOL) properties. Studies on the degradation in the optical properties (solar absorptance and infrared emittance) of some important thermal control materials exposed to simulated radiative geostationary space environment are discussed. The current studies are purely related to the influence of radiation on the degradation of the materials; other environmental aspects (e.g., thermal cycling) are not discussed. The thermal control materials investigated herein include different kind of second-surface mirrors, white anodizing, white paints, black paints, multilayer insulation materials, varnish coated aluminized polyimide, germanium coated polyimide, polyether ether ketone (PEEK) and poly tetra fluoro ethylene (PTFE). For this purpose, a test in the constant vacuum was performed reproducing a three year radiative space environment exposure, including ultraviolet and charged particle effects on North/South panels of a geostationary three-axis stabilized spacecraft. Reflectance spectra were measured in situ in the solar range (250-2500 nm) and the corresponding solar absorptance values were calculated. The test methodology and the degradations of the materials are discussed. The most important degradations among the low solar absorptance materials were found in the white paints whereas the rigid optical solar reflectors remained quite stable. Among the high solar absorptance elements, as such the change in the solar absorptance was very low, in particular the germanium coated polyimide was found highly stable.
NASA Astrophysics Data System (ADS)
Barla, Lindi; Verdaasdonk, Rudolf M.; Rustemeyer, Thomas; Klaessens, John; van der Veen, Albert
2016-02-01
Allergy testing is usually performed by exposing the skin to small quantities of potential allergens on the inner forearm and scratching the protective epidermis to increase exposure. After 15 minutes the dermatologist performs a visual check for swelling and erythema which is subjective and difficult for e.g. dark skin types. A small smart phone based thermo camera (FLIR One) was used to obtain quantitative images in a feasibility study of 17 patients Directly after allergen exposure on the forearm, thermal images were captured at 30 seconds interval and processed to a time lapse movie over 15 minutes. Considering the 'subjective' reading of the dermatologist as golden standard, in 11/17 pts (65%) the evaluation of dermatologist was confirmed by the thermo camera including 5 of 6 patients without allergic response. In 7 patients thermo showed additional spots. Of the 342 sites tested, the dermatologist detected 47 allergies of which 28 (60%) were confirmed by thermo imaging while thermo imaging showed 12 additional spots. The method can be improved with user dedicated acquisition software and better registration between normal and thermal images. The lymphatic reaction seems to shift from the original puncture site. The interpretation of the thermal images is still subjective since collecting quantitative data is difficult due to motion patient during 15 minutes. Although not yet conclusive, thermal imaging shows to be promising to improve the sensitivity and selectivity of allergy testing using a smart phone based camera.
Loomis, C.C.; Ash, W.J.
1957-11-26
An improved retort assembly useful in the thermal reduction of volatilizable metals such as magnesium and calcium is described. In this process a high vacuum is maintained in the retort, however the retort must be heated to very high temperatures while at the same time the unloading end must bo cooled to condense the metal vapors, therefore the retention of the vacuum is frequently difficult due to the thermal stresses involved. This apparatus provides an extended condenser sleeve enclosed by the retort cover which forms the vacuum seal. Therefore, the seal is cooled by the fluid in the condenser sleeve and the extreme thermal stresses found in previous designs together with the deterioration of the sealing gasket caused by the high temperatures are avoided.
Space environment durability of beta cloth in LDEF thermal blankets
NASA Technical Reports Server (NTRS)
Linton, Roger C.; Whitaker, Ann F.; Finckenor, Miria M.
1993-01-01
Beta cloth performance for use on long-term space vehicles such as Space Station Freedom (S.S. Freedom) requires resistance to the degrading effects of the space environment. The major issues are retention of thermal insulating properties through maintaining optical properties, preserving mechanical integrity, and generating minimal particulates for contamination-sensitive spacecraft surfaces and payloads. The longest in-flight test of beta cloth's durability was on the Long Duration Exposure Facility (LDEF), where it was exposed to the space environment for 68 months. The LDEF contained 57 experiments which further defined the space environment and its effects on spacecraft materials. It was deployed into low-Earth orbit (LEO) in Apr. 1984 and retrieved Jan. 1990 by the space shuttle. Among the 10,000 plus material constituents and samples onboard were thermal control blankets of multilayer insulation with a beta cloth outer cover and Velcro attachments. These blankets were exposed to hard vacuum, thermal cycling, charged particles, meteoroid/debris impacts, ultraviolet (UV) radiation, and atomic oxygen (AO). Of these space environmental exposure elements, AO appears to have had the greatest effect on the beta cloth. The beta cloth analyzed in this report came from the MSFC Experiment S1005 (Transverse Flat-Plate Heat Pipe) tray oriented approximately 22 deg from the leading edge vector of the LDEF satellite. The location of the tray on LDEF and the placement of the beta cloth thermal blankets are shown. The specific space environment exposure conditions for this material are listed.
40 CFR 90.427 - Catalyst thermal stress resistance evaluation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on...
40 CFR 90.427 - Catalyst thermal stress resistance evaluation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on...
40 CFR 90.427 - Catalyst thermal stress resistance evaluation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on...
40 CFR 90.427 - Catalyst thermal stress resistance evaluation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on...
40 CFR 90.427 - Catalyst thermal stress resistance evaluation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on...
Modeling Specular Exchange Between Concentric Cylinders in a Radiative Shielded Furnace
NASA Technical Reports Server (NTRS)
Schunk, Richard Gregory; Wessling, Francis C.
2000-01-01
The objective of this research is to develop and validate mathematical models to characterize the thermal performance of a radiative shielded furnace, the University of Alabama in Huntsville (UAH) Isothermal Diffusion Oven. The mathematical models are validated against experimental data obtained from testing the breadboard oven in a terrestrial laboratory environment. It is anticipated that the validation will produce math models capable of predicting the thermal performance of the furnace over a wide range of operating conditions, including those for which no experimental data is available. Of particular interest is the furnace core temperature versus heater power parametric and the transient thermal response of the furnace. Application to a microgravity environment is not considered, although it is conjectured that the removal of any gravity dependent terms from the math models developed for the terrestrial application should yield adequate results in a microgravity environment. The UAH Isothermal Diffusion Oven is designed to provide a thermal environment that is conducive to measuring the diffusion of high temperature liquid metals. In addition to achieving the temperatures required to melt a sample placed within the furnace, reducing or eliminating convective motions within the melt is an important design consideration [1]. Both of these influences are reflected in the design of the furnace. Reducing unwanted heat losses from the furnace is achieved through the use of low conductivity materials and reflective shielding. As evidenced by the highly conductive copper core used to house the sample within the furnace, convective motions can be greatly suppressed by providing an essentially uniform thermal environment. An oven of this design could ultimately be utilized in a microgravity environment, presumably as a experiment payload. Such an application precipitates other design requirements that limit the resources available to the furnace such as power, mass, volume, and possibly even time. Through the experimental and numerical results obtained, the power requirements and thermal response time of the breadboard furnace are quantified.
Combined comfort model of thermal comfort and air quality on buses in Hong Kong.
Shek, Ka Wing; Chan, Wai Tin
2008-01-25
Air-conditioning settings are important factors in controlling the comfort of passengers on buses. The local bus operators control in-bus air quality and thermal environment by conforming to the prescribed levels stated in published standards. As a result, the settings are merely adjusted to fulfill the standards, rather than to satisfy the passengers' thermal comfort and air quality. Such "standard-oriented" practices are not appropriate; the passengers' preferences and satisfaction should be emphasized instead. Thus a "comfort-oriented" philosophy should be implemented to achieve a comfortable in-bus commuting environment. In this study, the achievement of a comfortable in-bus environment was examined with emphasis on thermal comfort and air quality. Both the measurement of physical parameters and subjective questionnaire surveys were conducted to collect practical in-bus thermal and air parameters data, as well as subjective satisfaction and sensation votes from the passengers. By analyzing the correlation between the objective and subjective data, a combined comfort models were developed. The models helped in evaluating the percentage of dissatisfaction under various combinations of passengers' sensation votes towards thermal comfort and air quality. An effective approach integrated the combined comfort model, hardware and software systems and the bus air-conditioning system could effectively control the transient in-bus environment. By processing and analyzing the data from the continuous monitoring system with the combined comfort model, air-conditioning setting adjustment commands could be determined and delivered to the hardware. This system adjusted air-conditioning settings depending on real-time commands along the bus journey. Therefore, a comfortable in-bus air quality and thermal environment could be achieved and efficiently maintained along the bus journey despite dynamic outdoor influences. Moreover, this model can help optimize air-conditioning control by striking a beneficial balance between energy conservation and passengers' satisfaction level.
Influence of G-jitter on the characteristics of a non-premixed flame: Experimental approach
NASA Astrophysics Data System (ADS)
Joulain, Pierre; Cordeiro, Pierre; Rouvreau, Sébastien; Legros, Guillaume; Fuentes, Andres; Torero, José L.
2005-03-01
The combustion of a flat plate in a boundary layer under microgravity conditions, which was first described by Emmons, is studied using a gas burner. Magnitude of injection and blowing velocities are chosen to be characteristic of pyrolyzing velocity of solid fuels, and of ventilation systems in space stations. These velocities are about 0.1 m/s for oxidiser flow and 0.004m/s for fuel flow. In this configuration, flame layout results from a coupled interaction between oxidiser flow, fuel flow and thermal expansion. Influences of these parameters are studied experimentally by means of flame length and standoff distance measurements using CH* chemiluminescence's and visible emission of the flame. Flow was also studied with Particle Image Velocimetry (PIV). Inert flows, with and without injection, and reacting flow in a microgravity environment were considered to distinguish aerodynamic from thermal effect. Thermal expansion effects have been shown by means of the acceleration of oxidiser flow. Three-dimensional effects, which are strongly marked for high injection velocities were studied. Three-dimensional tools adaptability to parabolic flights particular conditions were of concern. Flame sensitivity to g-jitters was investigated according to g-jitters frequency and range involved by parabolic flights. It appears that flame location (standoff distance), flame characteristics (length, thickness, brightness) and the aerodynamic field of the low velocity reacting flow are very much affected by the fluctuation of the gravity level or g-jitter. The lower the g-jitter frequency is, the higher the perturbation. Consequently it is difficult to perform relevant experiments for a main flow velocity lower than 0.05m/s. DNS calculations confirm the present observations, but most of the results are presented elsewhere.
Eradication of Pseudomonas aeruginosa Biofilms by Atmospheric Pressure Non-Thermal Plasma
Alkawareek, Mahmoud Y.; Algwari, Qais Th.; Laverty, Garry; Gorman, Sean P.; Graham, William G.; O'Connell, Deborah; Gilmore, Brendan F.
2012-01-01
Bacteria exist, in most environments, as complex, organised communities of sessile cells embedded within a matrix of self-produced, hydrated extracellular polymeric substances known as biofilms. Bacterial biofilms represent a ubiquitous and predominant cause of both chronic infections and infections associated with the use of indwelling medical devices such as catheters and prostheses. Such infections typically exhibit significantly enhanced tolerance to antimicrobial, biocidal and immunological challenge. This renders them difficult, sometimes impossible, to treat using conventional chemotherapeutic agents. Effective alternative approaches for prevention and eradication of biofilm associated chronic and device-associated infections are therefore urgently required. Atmospheric pressure non-thermal plasmas are gaining increasing attention as a potential approach for the eradication and control of bacterial infection and contamination. To date, however, the majority of studies have been conducted with reference to planktonic bacteria and rather less attention has been directed towards bacteria in the biofilm mode of growth. In this study, the activity of a kilohertz-driven atmospheric pressure non-thermal plasma jet, operated in a helium oxygen mixture, against Pseudomonas aeruginosa in vitro biofilms was evaluated. Pseudomonas aeruginosa biofilms exhibit marked susceptibility to exposure of the plasma jet effluent, following even relatively short (∼10′s s) exposure times. Manipulation of plasma operating conditions, for example, plasma operating frequency, had a significant effect on the bacterial inactivation rate. Survival curves exhibit a rapid decline in the number of surviving cells in the first 60 seconds followed by slower rate of cell number reduction. Excellent anti-biofilm activity of the plasma jet was also demonstrated by both confocal scanning laser microscopy and metabolism of the tetrazolium salt, XTT, a measure of bactericidal activity. PMID:22952948
Shallow Horizontal GCHP Effectiveness in Arid Climate Soils
NASA Astrophysics Data System (ADS)
North, Timothy James
Ground coupled heat pumps (GCHPs) have been used successfully in many environments to improve the heating and cooling efficiency of both small and large scale buildings. In arid climate regions, such as the Phoenix, Arizona metropolitan area, where the air condi-tioning load is dominated by cooling in the summer, GCHPs are difficult to install and operate. This is because the nature of soils in arid climate regions, in that they are both dry and hot, renders them particularly ineffective at dissipating heat. The first part of this thesis addresses applying the SVHeat finite element modeling soft-ware to create a model of a GCHP system. Using real-world data from a prototype solar-water heating system coupled with a ground-source heat exchanger installed in Menlo Park, California, a relatively accurate model was created to represent a novel GCHP panel system installed in a shallow vertical trench. A sensitivity analysis was performed to evaluate the accuracy of the calibrated model. The second part of the thesis involved adapting the calibrated model to represent an ap-proximation of soil conditions in arid climate regions, using a range of thermal properties for dry soils. The effectiveness of the GCHP in the arid climate region model was then evaluated by comparing the thermal flux from the panel into the subsurface profile to that of the prototype GCHP. It was shown that soils in arid climate regions are particularly inefficient at heat dissipation, but that it is highly dependent on the thermal conductivity inputted into the model. This demonstrates the importance of proper site characterization in arid climate regions. Finally, several soil improvement methods were researched to evaluate their potential for use in improving the effectiveness of shallow horizontal GCHP systems in arid climate regions.
NASA Astrophysics Data System (ADS)
Hull, Tony; Westerhoff, Thomas; Weidmann, Gunter
2015-09-01
A key consideration in defining a space telescope mission is definition of the optical materials. This selection defines both the performance of the system and system complexity and cost. Optimal material selection for system stability must consider the thermal environment and its variation. Via numerical simulations, we compare the thermal and structural-mechanical behavior of ZERODUR® and SiC as mirror substrates for telescope assemblies in space. SiC has significantly larger CTE values then ZERODUR®, but also its thermal diffusivity k/(ρcp) is larger, and that helps to homogenize thermal gradients in the mirror. Therefore it is not obvious at first glance which material performs with better dimensional stability under realistic unsteady, inhomogeneous thermal loads. We specifically examine the telescope response to transient, gradient driving, thermal environments representative of low- and high-earth- orbits.
Goller, Maria; Goller, Franz; French, Susannah S
2014-01-01
Ectotherms can attain preferred body temperatures by selecting specific temperature microhabitats within a varied thermal environment. The side-blotched lizard, Uta stansburiana may employ microhabitat selection to thermoregulate behaviorally. It is unknown to what degree habitat structural complexity provides thermal microhabitats for thermoregulation. Thermal microhabitat structure, lizard temperature, and substrate preference were simultaneously evaluated using thermal imaging. A broad range of microhabitat temperatures was available (mean range of 11°C within 1–2 m2) while mean lizard temperature was between 36°C and 38°C. Lizards selected sites that differed significantly from the mean environmental temperature, indicating behavioral thermoregulation, and maintained a temperature significantly above that of their perch (mean difference of 2.6°C). Uta's thermoregulatory potential within a complex thermal microhabitat structure suggests that a warming trend may prove advantageous, rather than detrimental for this population. PMID:25535549
Microelectronics Instrument Products Shock and Vibration Electro-optics: C-Qualification Test Report
NASA Technical Reports Server (NTRS)
1994-01-01
In this test report all measurements made during testing are recorded in ATP 20049 DS data sheets and are included in the log. The motor/encoder (henceforth referred to as the UUT) test sequence began with a baseline functional evaluation, which demonstrated that the motor satisfied the operating torque, cogging torque, winding resistance, and mechanical requirements of SOW. In addition, the encoder electrical requirements were verified, as well as the alignment of the encoder outputs relative tc, the motor shaft position. There were no discrepancies observed in this portion of the test. The UUT was then exposed to a number of environments, including thermal vacuum, thermal cycling, random and sine vibration, and mechanical shock. During the thermal environments, the performance of the UUT under load was verified at specified points in the cycles, as described in ATP 20049. In addition, the UUT was bench tested between the two thermal environments. No anomalies were observed during the thermal tests. The load attachment method was subsequently corrected, and vibration of S/N 0002 began while 0003 was being repaired.
Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment
Zhou, Ao; Wong, Kwun-Wah
2014-01-01
Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes. PMID:25177718
Thermal insulating concrete wall panel design for sustainable built environment.
Zhou, Ao; Wong, Kwun-Wah; Lau, Denvid
2014-01-01
Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes.
Computer assisted thermal-vacuum testing
NASA Technical Reports Server (NTRS)
Petrie, W.; Mikk, G.
1977-01-01
In testing complex systems and components under dynamic thermal-vacuum environments, it is desirable to optimize the environment control sequence in order to reduce test duration and cost. This paper describes an approach where a computer is utilized as part of the test control operation. Real time test data is made available to the computer through time-sharing terminals at appropriate time intervals. A mathematical model of the test article and environmental control equipment is then operated on using the real time data to yield current thermal status, temperature analysis, trend prediction and recommended thermal control setting changes to arrive at the required thermal condition. The data acquisition interface and the time-sharing hook-up to an IBM-370 computer is described along with a typical control program and data demonstrating its use.
NASA Technical Reports Server (NTRS)
1989-01-01
The ascent thermal environment and propulsion acoustic sources for the Martin-Marietta Corporation designed Liquid Rocket Boosters (LRB) to be used with the Space Shuttle Orbiter and External Tank are described. Two designs were proposed: one using a pump-fed propulsion system and the other using a pressure-fed propulsion system. Both designs use LOX/RP-1 propellants, but differences in performance of the two propulsion systems produce significant differences in the proposed stage geometries, exhaust plumes, and resulting environments. The general characteristics of the two designs which are significant for environmental predictions are described. The methods of analysis and predictions for environments in acoustics, aerodynamic heating, and base heating (from exhaust plume effects) are also described. The acoustic section will compare the proposed exhaust plumes with the current SRB from the standpoint of acoustics and ignition overpressure. The sections on thermal environments will provide details of the LRB heating rates and indications of possible changes in the Orbiter and ET environments as a result of the change from SRBs to LRBs.
Chasing the Patagonian sun: comparative thermal biology of Liolaemus lizards.
Azócar, Débora Lina Moreno; Vanhooydonck, Bieke; Bonino, Marcelo F; Perotti, M Gabriela; Abdala, Cristian S; Schulte, James A; Cruz, Félix B
2013-04-01
The importance of the thermal environment for ectotherms and its relationship with thermal physiology and ecology is widely recognized. Several models have been proposed to explain the evolution of the thermal biology of ectotherms, but experimental studies have provided mixed support. Lizards from the Liolaemus goetschi group can be found along a wide latitudinal range across Argentina. The group is monophyletic and widely distributed, and therefore provides excellent opportunities to study the evolution of thermal biology. We studied thermal variables of 13 species of the L. goetschi group, in order to answer three questions. First, are aspects of the thermal biology of the L. goetschi group modelled by the environment or are they evolutionarily conservative? Second, have thermal characteristics of these animals co-evolved? And third, how do the patterns of co-evolution observed within the L. goetschi group compare to those in a taxonomically wider selection of species of Liolaemus? We collected data on 13 focal species and used species information of Liolaemus lizards available in the literature and additional data obtained by the authors. We tackled these questions using both conventional and phylogenetically based analyses. Our results show that lizards from the L. goetschi group and the genus Liolaemus in general vary in critical thermal minimum in relation to mean air temperature, and particularly the L. goetschi group shows that air temperature is associated with critical thermal range, as well as with body temperature. Although the effect of phylogeny cannot be ignored, our results indicate that these thermal biology aspects are modelled by cold environments of Patagonia, while other aspects (preferred body temperature and critical thermal maximum) are more conservative. We found evidence of co-evolutionary patterns between critical thermal minimum and preferred body temperature at both phylogenetic scales (the L. goetschi group and the extended sample of 68 Liolaemus species).
Analysis of Solar-Heated Thermal Wadis to Support Extended-Duration Lunar Exploration
NASA Technical Reports Server (NTRS)
Balasubramaniam, R.; Wegeng, R. S.; Gokoglu, S. A.; Suzuki, N. H.; Sacksteder, K. R.
2010-01-01
The realization of the renewed exploration of the Moon presents many technical challenges; among them is the survival of lunar surface assets during periods of darkness when the lunar environment is very cold. Thermal wadis are engineered sources of stored solar energy using modified lunar regolith as a thermal storage mass that can enable the operation of lightweight robotic rovers or other assets in cold, dark environments without incurring potential mass, cost, and risk penalties associated with various onboard sources of thermal energy. Thermal wadi-assisted lunar rovers can conduct a variety of long-duration missions including exploration site surveys; teleoperated, crew-directed, or autonomous scientific expeditions; and logistics support for crewed exploration. This paper describes a thermal analysis of thermal wadi performance based on the known solar illumination of the moon and estimates of producible thermal properties of modified lunar regolith. Analysis was performed for the lunar equatorial region and for a potential Outpost location near the lunar south pole. The results are presented in some detail in the paper and indicate that thermal wadis can provide the desired thermal energy reserve, with significant margin, for the survival of rovers or other equipment during periods of darkness.
Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment
NASA Technical Reports Server (NTRS)
Page, Arthur T.
2001-01-01
This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(TM), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(TM) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(TM) generates the SINDA input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment, conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.
Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment
NASA Technical Reports Server (NTRS)
Page, Arhur T.
1999-01-01
This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(Tm), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(Tm) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(Tm) generates the SINDA/Fluint input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.
Mission Life Thermal Analysis and Environment Correlation for the Lunar Reconnaissance Orbiter
NASA Technical Reports Server (NTRS)
Garrison, Matthew B.; Peabody, Hume
2012-01-01
Standard thermal analysis practices include stacking worst-case conditions including environmental heat loads, thermo-optical properties and orbital beta angles. This results in the design being driven by a few bounding thermal cases, although those cases may only represent a very small portion of the actual mission life. The NASA Goddard Space Flight Center Thermal Branch developed a procedure to predict the flight temperatures over the entire mission life, assuming a known beta angle progression, variation in the thermal environment, and a degradation rate in the coatings. This was applied to the Global Precipitation Measurement core spacecraft. In order to assess the validity of this process, this work applies the similar process to the Lunar Reconnaissance Orbiter. A flight-correlated thermal model was exercised to give predictions of the thermal performance over the mission life. These results were then compared against flight data from the first two years of the spacecraft s use. This is used to validate the process and to suggest possible improvements for future analyses.
46 CFR 54.30-3 - Introduction.
Code of Federal Regulations, 2010 CFR
2010-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Mechanical Stress... petroleum and natural gases, at “low temperatures” may often be difficult to thermally stress relieve. Where no other problem, such as corrosion exists, mechanical stress relief will be permitted for Class II-L...
46 CFR 54.30-3 - Introduction.
Code of Federal Regulations, 2014 CFR
2014-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Mechanical Stress... petroleum and natural gases, at “low temperatures” may often be difficult to thermally stress relieve. Where no other problem, such as corrosion exists, mechanical stress relief will be permitted for Class II-L...
46 CFR 54.30-3 - Introduction.
Code of Federal Regulations, 2013 CFR
2013-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Mechanical Stress... petroleum and natural gases, at “low temperatures” may often be difficult to thermally stress relieve. Where no other problem, such as corrosion exists, mechanical stress relief will be permitted for Class II-L...
46 CFR 54.30-3 - Introduction.
Code of Federal Regulations, 2012 CFR
2012-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Mechanical Stress... petroleum and natural gases, at “low temperatures” may often be difficult to thermally stress relieve. Where no other problem, such as corrosion exists, mechanical stress relief will be permitted for Class II-L...
46 CFR 54.30-3 - Introduction.
Code of Federal Regulations, 2011 CFR
2011-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Mechanical Stress... petroleum and natural gases, at “low temperatures” may often be difficult to thermally stress relieve. Where no other problem, such as corrosion exists, mechanical stress relief will be permitted for Class II-L...
Giomi, Folco; Mandaglio, Concetta; Ganmanee, Monthon; Han, Guo-Dong; Dong, Yun-Wei; Williams, Gray A; Sarà, Gianluca
2016-03-01
Although thermal performance is widely recognised to be pivotal in determining species' distributions, assessment of this performance is often based on laboratory-acclimated individuals, neglecting their proximate thermal history. The thermal history of a species sums the evolutionary history and, importantly, the thermal events recently experienced by individuals, including short-term acclimation to environmental variations. Thermal history is perhaps of greatest importance for species inhabiting thermally challenging environments and therefore assumed to be living close to their thermal limits, such as in the tropics. To test the importance of thermal history, the responses of the tropical oyster Isognomon nucleus to short-term differences in thermal environments were investigated. Critical and lethal temperatures and oxygen consumption were improved in oysters that previously experienced elevated air temperatures, and were associated with an enhanced heat shock response, indicating that recent thermal history affects physiological performance as well as inducing short-term acclimation to acute conditions. These responses were, however, associated with trade-offs in feeding activity, with oysters that experienced elevated temperatures showing reduced energy gain. Recent thermal history, therefore, seems to rapidly invoke physiological mechanisms that enhance survival of short-term thermal challenge but also longer term climatic changes and consequently needs to be incorporated into assessments of species' thermal performances. © 2016. Published by The Company of Biologists Ltd.
Non-thermal plasma technologies: new tools for bio-decontamination.
Moreau, M; Orange, N; Feuilloley, M G J
2008-01-01
Bacterial control and decontamination are crucial to industrial safety assessments. However, most recently developed materials are not compatible with standard heat sterilization treatments. Advanced oxidation processes, and particularly non-thermal plasmas, are emerging and promising technologies for sanitation because they are both efficient and cheap. The applications of non-thermal plasma to bacterial control remain poorly known for several reasons: this technique was not developed for biological applications and most of the literature is in the fields of physics and chemistry. Moreover, the diversity of the devices and complexity of the plasmas made any general evaluation of the potential of the technique difficult. Finally, no experimental equipment for non-thermal plasma sterilization is commercially available and reference articles for microbiologists are rare. The present review aims to give an overview of the principles of action and applications of plasma technologies in biodecontamination.
Thermal effects of optical antenna under the irradiation of laser
NASA Astrophysics Data System (ADS)
Sun, Yi; Li, Fu; Yang, Wenqiang; Yang, Jianfeng
2017-10-01
The laser communication terminal is a precision optical, mechanical, electrical integration device which operations extremely high accuracy. It is hard to improve the space environment adaptability in the hash vibration, thermal cycling, high vacuum and radiation conditions space environment. Accordingly, the optical antenna will be influenced by space thermal environment. Laser energy will be absorbed when optical antenna under the irradiation of laser. It can contribute to thermal distortion and make the beam quality degradation which affects the performance of laser communications links. This influence will aggravate when the laser power rising.Wavefront aberration is the distance between the ideal reference sphere and the actual distorted wavefront. The smaller the wavefront aberration, the better the optical performance of the optical antenna. On the contrary, the greater the wavefront aberration, the worse the performance of the optical antenna or even affect the normal operation of the optical antenna. The performance index of the optical antenna generally requires the wavefront aberration to be better than λ/20. Due to the different thermal and thermal expansion coefficients of the material, the effect of thermal deformation on the optical antenna can be reduced by matching the appropriate material. While the appropriate support structure and proper heat dissipation design can also reduce the impact. In this paper, the wavefront aberration of the optical antenna is better than λ/50 by the material matching and the appropriate support structure and the secondary design of the diameter of 5mm hole thermal design.
Miniature Arcs for Synthesis of Carbon Nanotubes in Microgravity
NASA Technical Reports Server (NTRS)
Alford, J. M.; Mason, G. R.; Feikema, D. A.
2006-01-01
Although many methods are available for producing single-walled carbon nanotubes (SWNTs), the conventional carbon arc process remains the most popular due to its simplicity and large production rate. In the carbon arc, SWNTs are catalytically synthesized by rapidly evaporating a graphite anode impregnated with NiN metal catalyst from which the nanotubes grow in an inert atmosphere. However, high temperatures inside the carbon arc generate strong buoyancy driven convection, and it is hypothesized that the non-uniform environment created by this flow has a large effect on the growth and morphology of the SWNTs. To study the effect of buoyancy on the arc process, a miniature carbon arc apparatus was developed to synthesize SWNTs in a microgravity environment substantially free from these strong convective flows. The reactor was operated for either 2.2 or 5 seconds during free-fall in the drop towers at the NASA Glenn Research Center. Two apparatus designs differing mainly in their production rate and power capacity were investigated. The first consisted of a miniaturized carbon arc employing a 1 mm diameter graphite anode and powered by a 0.54 F capacitor bank charged to 65 V. The second, larger apparatus employed a 4 mm diameter anode and was powered by a portable battery pack capable of providing in excess of 300 amps at 30 volts to the arc for the duration of a 5 second drop. Initial results indicated that transient heating is a very large effect in the short-duration drop tower carbon arcs, and thermal equilibrium of the arc plasma, buffer gas, and apparatus was not attained during the short microgravity periods. In addition, removal of the buoyant convection by the microgravity now allowed clear observation of large jets of evaporated carbon vapor streaming from the anode and mixing with the inert buffer gas. The initial mixing of these jets with the cold buffer gas combined with the thermal transient made it difficult to establish a uniform high temperature environment around the arc in the 2.1 to 5 second microgravity time interval, and even with a very high-powered arc, the arc region was cooler than in continuously operated arcs. Despite these difficulties, the miniature arc produced SWNTs in microgravity. However, given the large thermal transient to overcome, no dramatic difference in sample yield or composition was noted between normal gravity and q2-,andL%econd long microgravity runs.
The Density of Mid-sized Kuiper Belt Objects from ALMA Thermal Observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Michael E.; Butler, Bryan J.
The densities of mid-sized Kuiper Belt objects (KBOs) are a key constraint in understanding the assembly of objects in the outer solar system. These objects are critical for understanding the currently unexplained transition from the smallest KBOs with densities lower than that of water, to the largest objects with significant rock content. Mapping this transition is made difficult by the uncertainties in the diameters of these objects, which maps into an even larger uncertainty in volume and thus density. The substantial collecting area of the Atacama Large Millimeter Array allows significantly more precise measurements of thermal emission from outer solarmore » system objects and could potentially greatly improve the density measurements. Here we use new thermal observations of four objects with satellites to explore the improvements possible with millimeter data. We find that effects due to effective emissivity at millimeter wavelengths make it difficult to use the millimeter data directly to find diameters and thus volumes for these bodies. In addition, we find that when including the effects of model uncertainty, the true uncertainties on the sizes of outer solar system objects measured with radiometry are likely larger than those previously published. Substantial improvement in object sizes will likely require precise occultation measurements.« less
Weber, Stefan A L; Kilpatrick, Jason I; Brosnan, Timothy M; Jarvis, Suzanne P; Rodriguez, Brian J
2014-05-02
Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments.
NASA Astrophysics Data System (ADS)
Weber, Stefan A. L.; Kilpatrick, Jason I.; Brosnan, Timothy M.; Jarvis, Suzanne P.; Rodriguez, Brian J.
2014-05-01
Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments.
Pressure Ratio to Thermal Environments
NASA Technical Reports Server (NTRS)
Lopez, Pedro; Wang, Winston
2012-01-01
A pressure ratio to thermal environments (PRatTlE.pl) program is a Perl language code that estimates heating at requested body point locations by scaling the heating at a reference location times a pressure ratio factor. The pressure ratio factor is the ratio of the local pressure at the reference point and the requested point from CFD (computational fluid dynamics) solutions. This innovation provides pressure ratio-based thermal environments in an automated and traceable method. Previously, the pressure ratio methodology was implemented via a Microsoft Excel spreadsheet and macro scripts. PRatTlE is able to calculate heating environments for 150 body points in less than two minutes. PRatTlE is coded in Perl programming language, is command-line-driven, and has been successfully executed on both the HP and Linux platforms. It supports multiple concurrent runs. PRatTlE contains error trapping and input file format verification, which allows clear visibility into the input data structure and intermediate calculations.
Daniel J. Isaak; Seth J. Wenger; Michael K. Young
2017-01-01
Temperature profoundly affects ecology, a fact ever more evident as the ability to measure thermal environments increases and global changes alter these environments. The spatial structure of thermalscapes is especially relevant to the distribution and abundance of ectothermic organisms but the ability to describe biothermal relationships at extents and grains relevant...
SIM PlanetQuest: The TOM-3 (Thermo-Optical-Mechanical) Siderostat Mirror Test
NASA Technical Reports Server (NTRS)
Phillips, Charles J.
2006-01-01
This slide presentation reviews the Space Interferometry Mission (SIM) PlanetQuest mission. It describes the mission, shows diagrams of the instrument, the collector bays, the Siderostat mirrors, the COL bay thermal environment, the TOM-3 replicating COL Bay Environment, the thermal hardware for the SID heater control, and the results of the test are shown
Force Sensing Applications of DNA Origami Nanodevices
NASA Astrophysics Data System (ADS)
Hudoba, Michael William
Mechanical forces in biological systems vary in both length and magnitude by orders of magnitude making them difficult to probe and characterize with existing experimental methodologies. From molecules to cells, forces can act across length scales of nanometers to microns at magnitudes ranging from picoNewtons to nanoNewtons. Although single-molecule techniques such as optical traps, magnetic tweezers, and atomic force microscopy have improved the resolution and sensitivity of such measurements, inherent drawbacks exist in their capabilities due to the nature of the tools themselves. Specifically, these techniques have limitations in their ability to measure forces in realistic cellular environments and are not amenable to in vivo applications or measurements in mimicked physiological environments. In this thesis, we present a method to develop DNA force-sensing nanodevices with sub-picoNewton resolution capable of measuring forces in realistic cellular environments, with future applications in vivo. We use a design technique known as DNA origami to assemble devices with nanoscale geometric precision through molecular self-assembly via Watson-Crick base pairing. The devices have multiple conformational states, monitored by observing a Forster Resonance Energy Transfer signal that can change under the application of force. We expanded this study by demonstrating the design of responsive structural dynamics in DNA-based nanodevices. While prior studies have relied on external inputs to drive relatively slow dynamics in DNA nanostructures, here we developed DNA nanodevices with thermally driven dynamic function. The device was designed with an ensemble of conformations, and we establish methods to tune the equilibrium distribution of conformations and the rate of switching between states. We also show this nanodynamic behavior is responsive to physical interactions with the environment by measuring molecular crowding forces in the sub-picoNewton range, which are known to play a critical role in regulating molecular interactions and processes. Broadly, this work establishes a foundation for nanodevices with thermally driven dynamics that enable new measurement and control functions. We also examine the effect that forces have on the mechanical properties of DNA origami devices by developing a method to automate mesh generation for Finite Element Analysis. With this approach we are able to determine how defects that arise during assembly affect mechanical strain within structures during force application that can ultimately lead to device failure.
26th Space Simulation Conference Proceedings. Environmental Testing: The Path Forward
NASA Technical Reports Server (NTRS)
Packard, Edward A.
2010-01-01
Topics covered include: A Multifunctional Space Environment Simulation Facility for Accelerated Spacecraft Materials Testing; Exposure of Spacecraft Surface Coatings in a Simulated GEO Radiation Environment; Gravity-Offloading System for Large-Displacement Ground Testing of Spacecraft Mechanisms; Microscopic Shutters Controlled by cRIO in Sounding Rocket; Application of a Physics-Based Stabilization Criterion to Flight System Thermal Testing; Upgrade of a Thermal Vacuum Chamber for 20 Kelvin Operations; A New Approach to Improve the Uniformity of Solar Simulator; A Perfect Space Simulation Storm; A Planetary Environmental Simulator/Test Facility; Collimation Mirror Segment Refurbishment inside ESA s Large Space; Space Simulation of the CBERS 3 and 4 Satellite Thermal Model in the New Brazilian 6x8m Thermal Vacuum Chamber; The Certification of Environmental Chambers for Testing Flight Hardware; Space Systems Environmental Test Facility Database (SSETFD), Website Development Status; Wallops Flight Facility: Current and Future Test Capabilities for Suborbital and Orbital Projects; Force Limited Vibration Testing of JWST NIRSpec Instrument Using Strain Gages; Investigation of Acoustic Field Uniformity in Direct Field Acoustic Testing; Recent Developments in Direct Field Acoustic Testing; Assembly, Integration and Test Centre in Malaysia: Integration between Building Construction Works and Equipment Installation; Complex Ground Support Equipment for Satellite Thermal Vacuum Test; Effect of Charging Electron Exposure on 1064nm Transmission through Bare Sapphire Optics and SiO2 over HfO2 AR-Coated Sapphire Optics; Environmental Testing Activities and Capabilities for Turkish Space Industry; Integrated Circuit Reliability Simulation in Space Environments; Micrometeoroid Impacts and Optical Scatter in Space Environment; Overcoming Unintended Consequences of Ambient Pressure Thermal Cycling Environmental Tests; Performance and Functionality Improvements to Next Generation Thermal Vacuum Control System; Robotic Lunar Lander Development Project: Three-Dimensional Dynamic Stability Testing and Analysis; Thermal Physical Properties of Thermal Coatings for Spacecraft in Wide Range of Environmental Conditions: Experimental and Theoretical Study; Molecular Contamination Generated in Thermal Vacuum Chambers; Preventing Cross Contamination of Hardware in Thermal Vacuum Chambers; Towards Validation of Particulate Transport Code; Updated Trends in Materials' Outgassing Technology; Electrical Power and Data Acquisition Setup for the CBER 3 and 4 Satellite TBT; Method of Obtaining High Resolution Intrinsic Wire Boom Damping Parameters for Multi-Body Dynamics Simulations; and Thermal Vacuum Testing with Scalable Software Developed In-House.
Pressurized heat treatment of glass ceramic
Kramer, D.P.
1984-04-19
A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.
An Intelligent Strain Gauge with Debond Detection and Temperature Compensation
NASA Technical Reports Server (NTRS)
Jensen, Scott L.
2012-01-01
The harsh rocket propulsion test environment will expose any inadequacies associated with preexisting instrumentation technologies, and the criticality for collecting reliable test data justifies investigating any encountered data anomalies. Novel concepts for improved systems are often conceived during the high scrutiny investigations by individuals with an in-depth knowledge from maintaining critical test operations. The Intelligent Strain Gauge concept was conceived while performing these kinds of activities. However, the novel concepts are often unexplored even if it has the potential for advancing the current state of the art. Maturing these kinds of concepts is often considered to be a tangential development or a research project which are both normally abandoned within the propulsion-oriented environment. It is also difficult to justify these kinds of projects as a facility enhancement because facility developments are only accepted for mature and proven technologies. Fortunately, the CIF program has provided an avenue for bringing the Intelligent Strain Gauge to fruition. Two types of fully functional smart strain gauges capable of performing reliable and sensitive debond detection have been successfully produced. Ordinary gauges are designed to provide test article data and they lack the ability to supply information concerning the gauge itself. A gauge is considered to be a smart gauge when it provides supplementary data relating other relevant attributes for performing diagnostic function or producing enhanced data. The developed strain gauges provide supplementary signals by measuring strain and temperature through embedded Karma and nickel chromium (NiCr) alloy elements. Intelligently interpreting the supplementary data into valuable information can be performed manually, however, integrating this functionality into an automatic system is considered to be an intelligent gauge. This was achieved while maintaining a very low mass. The low mass enables debond detection and temperature compensation to be performed when the gauge is utilized on small test articles. It was also found that the element's mass must be relatively small to avoid overbearing the desired thermal dissipation characteristics. Detecting the degradation of a gauge s bond was reliably achieved by correlating thermal dissipation with the bond s integrity. This was accomplished by precisely coupling a NiCr element with a Karma element for accurately interjecting and quantifying thermal energy. A finite amount of thermal energy is consistently placed in the gauge by electrically powering the NiCr element. The energy will only be temporarily stored before it begins to dissipate into the surrounding structure through the gauge bond. The ability to transmit the energy into the structure becomes greatly inhibited by any discontinuity in the bond s substrate. Therefore, the way the thermal dissipation occurs will reveal even the slightest change in the integrity of the bond.
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.
2017-01-01
To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). Last year NTREES was successfully used to satisfy a testing milestone for the Nuclear Cryogenic Propulsion Stage (NCPS) project and met or exceeded all required objectives.
SPiRiT Scoring Through Self-Assessment Charrettes
2004-09-01
Continued) 0 Max 17 5.C5 Indoor Chemical and Pollutant Source Control 1 5.C6 Controllability of Systems 2 5.C7 Thermal Comfort 2 5.C8...Pollutant Source Control 1 5.C6 Controllability of Systems 2 5.C7 Thermal Comfort 2 5.C8 Daylight and Views 2 5.C9 Acoustic Environment...1 5.C6 Controllability of Systems 2 5.C7 Thermal Comfort 2 5.C8 Daylight and Views 2 5.C9 Acoustic Environment /Noise Control 1 5
40 CFR 74.47 - Transfer of allowances from the replacement of thermal energy-combustion sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... replacement of thermal energy-combustion sources. 74.47 Section 74.47 Protection of Environment ENVIRONMENTAL...—combustion sources. (a) Thermal energy plan—(1) General provisions. The designated representative of an opt... quarter the replacement unit(s) will replace thermal energy of the opt-in source; (ii) The name...
System Measures Thermal Noise In A Microphone
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J.; Ngo, Kim Chi T.
1994-01-01
Vacuum provides acoustic isolation from environment. System for measuring thermal noise of microphone and its preamplifier eliminates some sources of error found in older systems. Includes isolation vessel and exterior suspension, acting together, enables measurement of thermal noise under realistic conditions while providing superior vibrational and accoustical isolation. System yields more accurate measurements of thermal noise.
Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components
NASA Technical Reports Server (NTRS)
Campbell, J. E.
1973-01-01
The thermal inactivation curve for Bacillus subtilis var. niger spores on the Viking lander is examined. Tests were conducted at 113 C and 25% RH, and over a wide range of temperatures using .001% RH and additions of P2O5 to dry the environment. Results show the 25% RH environment did not significantly reduce the survival curve, while the survival curves for spores treated under the drier .001% RH environment was reduced by a factor of 3.
Pan, D; Chan, M; Deng, S; Xia, L; Xu, X
2011-11-01
This article reports on two numerical studies on the microclimate around, and the thermal neutrality of, a sleeping person in a space installed with a displacement ventilation system. The development of a sleeping computational thermal manikin (SCTM) placed in a space air-conditioned by a displacement ventilation system is first described. This is followed by reporting the results of the first numerical study on the microclimate around the SCTM, including air temperature and velocity distributions and the heat transfer characteristics. Then the outcomes of the other numerical study on the thermal neutrality of a sleeping person are presented, including the thermal neutrality for a naked sleeping person and the effects of the total insulation value of a bedding system on the thermal neutrality of a sleeping person. STATEMENT OF RELEVANCE: The thermal environment would greatly affect the sleep quality of human beings. Through developing a SCTM, the microclimate around a sleeping person has been numerically studied. The thermal neutral environment may then be predicted and contributions to improved sleep quality may be made.
Finite Correlation Length Implies Efficient Preparation of Quantum Thermal States
NASA Astrophysics Data System (ADS)
Brandão, Fernando G. S. L.; Kastoryano, Michael J.
2018-05-01
Preparing quantum thermal states on a quantum computer is in general a difficult task. We provide a procedure to prepare a thermal state on a quantum computer with a logarithmic depth circuit of local quantum channels assuming that the thermal state correlations satisfy the following two properties: (i) the correlations between two regions are exponentially decaying in the distance between the regions, and (ii) the thermal state is an approximate Markov state for shielded regions. We require both properties to hold for the thermal state of the Hamiltonian on any induced subgraph of the original lattice. Assumption (ii) is satisfied for all commuting Gibbs states, while assumption (i) is satisfied for every model above a critical temperature. Both assumptions are satisfied in one spatial dimension. Moreover, both assumptions are expected to hold above the thermal phase transition for models without any topological order at finite temperature. As a building block, we show that exponential decay of correlation (for thermal states of Hamiltonians on all induced subgraphs) is sufficient to efficiently estimate the expectation value of a local observable. Our proof uses quantum belief propagation, a recent strengthening of strong sub-additivity, and naturally breaks down for states with topological order.
Active Learning Environment with Lenses in Geometric Optics
ERIC Educational Resources Information Center
Tural, Güner
2015-01-01
Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…
NASA Astrophysics Data System (ADS)
Abrudean, C.
2017-05-01
Due to multiple reflexions on walls, the electromagnetic field in a multimode microwave oven is difficult to estimate analytically. This paper presents a C++ program that calculates the electromagnetic field in a resonating cavity with an absorbing payload, uses the result to calculate heating in the payload taking its properties into account and then repeats. This results in a simulation of microwave heating, including phenomena like thermal runaway. The program is multithreaded to make use of today’s common multiprocessor/multicore computers.
Myth 5: Creativity Is Too Difficult to Measure
ERIC Educational Resources Information Center
Treffinger, Donald J.
2009-01-01
In his 1982 response to the myth that "creativity is too difficult to measure," Dr. Joe Khatena (a long-time contributor to the literature on creativity), characterized creativity as the "most exciting dimension of mental functioning." Building on a three-dimensional view of creativity (emphasizing the "individual," the "environment," and the…
ERIC Educational Resources Information Center
Frederiksen, Linda
2017-01-01
In a politically and digitally polarized environment, identifying and evaluating fake news is more difficult than ever before. Librarians who have been teaching information and media literacy skills for decades understand the role we can and must play in this environment.
NASA Astrophysics Data System (ADS)
Garrison, John D.
1989-02-01
The main goal of the US Department of Energy supported part of this project is to develop information about controlling the complicated chemical processes involved in the formation of a carbonaceous selective absorber and learn what equipment will allow production of this absorber commercially. The work necessary to accomplish this goal is not yet complete. Formation of the carbonaceous selective absorber in the conveyor oven tried so far has been unsatisfactory, because the proper conditions for applying the carbonaceous coating in each conveyor oven fabricated, either have been difficult to obtain, or have been difficult to maintain over an extended period of time. A new conveyor oven is nearing completion which is expected to allow formation of the carbonaceous selective absorber on absorber tubes in a continuous operation over many days without the necessity of cleaning the conveyor oven or changing the thickness of the electroplated nickel catalyst to compensate for changes in the coating environment in the oven. Work under this project concerned with forming and sealing glass panels to test ideas on evacuated glass solar collector designs and production have been generally quite satisfactory. Delays in completion of the selective absorber work, has caused postponement of the fabrication of a small prototype evacuated glass solar collector panel. Preliminary cost estimates of the selective absorber and solar collector panel indicate that this collector system should be lower in cost than evacuated solar collectors now on the market.
A spectroscopic method for identifying terrestrial biocarbonates and application to Mars
NASA Astrophysics Data System (ADS)
Blanco, A.; Orofino, V.; D'Elia, M.; Fonti, S.; Mastandrea, A.; Guido, A.; Russo, F.
2011-06-01
Searching for traces of extinct and/or extant life on Mars is one of the major objectives for remote-sensing and in situ exploration of the planet. In previous laboratory works we have investigated the infrared spectral modifications induced by thermal processing on different carbonate samples, in the form of fresh shells and fossils of different ages, whose biotic origin is easily recognizable. The goal was to discriminate them from their abiotic counterparts. In general, it is difficult to identify biotic signatures, especially when the organisms inducing the carbonate precipitation have low fossilization potential (i.e. microbes, bacteria, archaea). A wide variety of microorganisms are implicated in carbonate genesis, and their direct characterization is very difficult to evaluate by traditional methods, both in ancient sedimentary systems and even in recent environments. In the present work we apply our analysis to problematic carbonate samples, in which there is no clear evidence of controlled or induced biomineralization. This analysis indicates a very likely biotic origin of the aragonite samples under study, in agreement with the conclusion previously reported by Guido et al. (2007) who followed a completely different approach based on a complex set of sedimentary, petrographic, geochemical and biochemical analyses. We show that our method is reliable for discriminating between biotic and abiotic carbonates, and therefore it is a powerful tool in the search for life on Mars in the next generation of space missions to the planet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brock, T.D.
Thermal pollution is discussed with regard to sources of manmade thermal water; thermal consequences of thermal pollution; and thermal effects on water quality. Natural habitats receiving thermal additions are discussed with regard to geothermal habitats and geothermal modification of normal aquatic ecosystems. Ecological observations on geothermal habitats include upper temperature limits for various taxonomic groups and consequences of species restriction by temperature. General ecological consequences of thermal polution are discussed with regard to differences between thermal effects on cold and warm water habitats; adaptation to the thermal environment; effect of temperature on gruwth rate; temperatare and water quality; and bacterialmore » indicators of thermal pollution. (HLW)« less
Thermal Management Coating As Thermal Protection System for Space Transportation System
NASA Technical Reports Server (NTRS)
Kaul, Raj; Stuckey, C. Irvin
2003-01-01
This paper presents viewgraphs on the development of a non-ablative thermal management coating used as the thermal protection system material for space shuttle rocket boosters and other launch vehicles. The topics include: 1) Coating Study; 2) Aerothermal Testing; 3) Preconditioning Environments; 4) Test Observations; 5) Lightning Strike Test Panel; 6) Test Panel After Impact Testing; 7) Thermal Testing; and 8) Mechanical Testing.
Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory
2015-01-01
Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of-the-art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments, and or heavy phase change material heat exchangers for thermal storage. These approaches can lead to large loss of water and a significant mass penalties for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. This paper describes analysis models to predict performance and optimize the size of the SEAR system, estimated size and mass of key components, and an assessment of potential mass savings compared with alternative thermal management approaches. We also describe a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.
Experimental Investigation of Ice Phase Change Material Heat Exchangers
NASA Technical Reports Server (NTRS)
Leimkuehler, Thomas O.; Stephan, Ryan A.
2011-01-01
Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.
Experimental Investigation of Ice Phase Change Material Heat Exchangers
NASA Technical Reports Server (NTRS)
Leimkuehler, Thomas O.; Stephan, Ryan A.
2012-01-01
Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.
NASA Astrophysics Data System (ADS)
Laanearu, J.; Borodinecs, A.; Rimeika, M.; Palm, B.
2017-10-01
The thermal-energy potential of urban water sources is largely unused to accomplish the up-to-date requirements of the buildings energy demands in the cities of Baltic Sea Region. A reason is that the natural and excess-heat water sources have a low temperature and heat that should be upgraded before usage. The demand for space cooling should increase in near future with thermal insulation of buildings. There are a number of options to recover heat also from wastewater. It is proposed that a network of heat extraction and insertion including the thermal-energy recovery schemes has potential to be broadly implemented in the region with seasonally alternating temperature. The mapping of local conditions is essential in finding the suitable regions (hot spots) for future application of a heat recovery schemes by combining information about demands with information about available sources. The low-temperature water in the urban environment is viewed as a potential thermal-energy source. To recover thermal energy efficiently, it is also essential to ensure that it is used locally, and adverse effects on environment and industrial processes are avoided. Some characteristics reflecting the energy usage are discussed in respect of possible improvements of energy efficiency.
Vacuum-isolation vessel and method for measurement of thermal noise in microphones
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J. (Inventor); Ngo, Kim Chi T. (Inventor)
1992-01-01
The vacuum isolation vessel and method in accordance with the present invention are used to accurately measure thermal noise in microphones. The apparatus and method could be used in a microphone calibration facility or any facility used for testing microphones. Thermal noise is measured to determine the minimum detectable sound pressure by the microphone. Conventional isolation apparatus and methods have been unable to provide an acoustically quiet and substantially vibration free environment for accurately measuring thermal noise. In the present invention, an isolation vessel assembly comprises a vacuum sealed outer vessel, a vacuum sealed inner vessel, and an interior suspension assembly coupled between the outer and inner vessels for suspending the inner vessel within the outer vessel. A noise measurement system records thermal noise data from the isolation vessel assembly. A vacuum system creates a vacuum between an internal surface of the outer vessel and an external surface of the inner vessel. The present invention thus provides an acoustically quiet environment due to the vacuum created between the inner and outer vessels and a substantially vibration free environment due to the suspension assembly suspending the inner vessel within the outer vessel. The thermal noise in the microphone, effectively isolated according to the invention, can be accurately measured.
Thermal Comfort and Strategies for Energy Conservation.
ERIC Educational Resources Information Center
Rohles, Frederick H., Jr.
1981-01-01
Discusses studies in thermal comfort which served as the basis for the comfort standard. Examines seven variables in the human response to the thermal environment in terms of the ways in which they can be modified to conserve energy. (Author/MK)
Why do young adults with Type 1 diabetes find it difficult to manage diabetes in the workplace?
Balfe, Myles; Brugha, Ruairi; Smith, Diarmuid; Sreenan, Seamus; Doyle, Frank; Conroy, Ronan
2014-03-01
This article explores how and why workplace environments impact diabetes management for adults people with Type 1 diabetes, 23-30 years of age. Interviews were conducted with 35 young adults, 29 women and 6 men. The majority of these interviewees worked in sectors such as banking, technology and administration. Young adults found it difficult to manage diabetes in the workplace for two main reasons: work-related time pressures and the non-routine nature of interviewees' work and working environment. Young adults also found it difficult to get the time to exercise both inside and outside of work. Young adults with Type 1 diabetes need to be provided with the tools and technologies that they need to manage diabetes in modern flexible workplaces. Copyright © 2014 Elsevier Ltd. All rights reserved.
Banta, Marilyn R
2003-01-01
Desert endotherms such as Merriam's kangaroo rat (Dipodomys merriami) use both behavioral and physiological means to conserve energy and water. The energy and water needs of kangaroo rats are affected by their thermal environment. Animals that choose temperatures within their thermoneutral zone (TNZ) minimize energy expenditure but may impair water balance because the ratio of water loss to water gain is high. At temperatures below the TNZ, water balance may be improved because animals generate more oxidative water and reduce evaporative water loss; however, they must also increase energy expenditure to maintain a normal body temperature. Hence, it is not possible for kangaroo rats to choose thermal environments that simultaneously minimize energy expenditure and increase water conservation. I used a thermal gradient to test whether water stress, energy stress, simultaneous water and energy stress, or no water/energy stress affected the thermal environment selected by D. merriami. During the night (i.e., active phase), animals in all four treatments chose temperatures near the bottom of their TNZ. During the day (i.e., inactive phase), animals in all four treatments settled at temperatures near the top of their TNZ. Thus, kangaroo rats chose thermal environments that minimized energy requirements, not water requirements. Because kangaroo rats have evolved high water use efficiency, energy conservation may be more important than water conservation to the fitness of extant kangaroo rats.
Thermal cycle testing of Space Station Freedom solar array blanket coupons
NASA Technical Reports Server (NTRS)
Scheiman, David A.; Schieman, David A.
1991-01-01
Lewis Research Center is presently conducting thermal cycle testing of solar array blanket coupons that represent the baseline design for Space Station Freedom. Four coupons were fabricated as part of the Photovoltaic Array Environment Protection (PAEP) Program, NAS 3-25079, at Lockheed Missile and Space Company. The objective of the testing is to demonstrate the durability or operational lifetime of the solar array welded interconnect design within the durability or operational lifetime of the solar array welded interconnect design within a low earth orbit (LEO) thermal cycling environment. Secondary objectives include the observation and identification of potential failure modes and effects that may occur within the solar array blanket coupons as a result of thermal cycling. The objectives, test articles, test chamber, performance evaluation, test requirements, and test results are presented for the successful completion of 60,000 thermal cycles.
NASA Technical Reports Server (NTRS)
Brehm, Christoph; Sozer, Emre; Barad, Michael F.; Housman, Jeffrey A.; Kiris, Cetin C.; Moini-Yekta, Shayan; Vu, Bruce T.; Parlier, Christopher R.
2014-01-01
One of the key objectives for the development of the 21st Century Space Launch Com- plex is to provide the exibility needed to support evolving launch vehicles and spacecrafts with enhanced range capacity. The launch complex needs to support various proprietary and commercial vehicles with widely di erent needs. The design of a multi-purpose main ame de ector supporting many di erent launch vehicles becomes a very challenging task when considering that even small geometric changes may have a strong impact on the pressure and thermal environment. The physical and geometric complexity encountered at the launch site require the use of state-of-the-art Computational Fluid Dynamics (CFD) tools to predict the pressure and thermal environments. Due to harsh conditions encountered in the launch environment, currently available CFD methods which are frequently employed for aerodynamic and ther- mal load predictions in aerospace applications, reach their limits of validity. This paper provides an in-depth discussion on the computational and physical challenges encountered when attempting to provide a detailed description of the ow eld in the launch environ- ment. Several modeling aspects, such as viscous versus inviscid calculations, single-species versus multiple-species ow models, and calorically perfect gas versus thermally perfect gas, are discussed. The Space Shuttle and the Falcon Heavy launch vehicles are used to study di erent engine and geometric con gurations. Finally, we provide a discussion on traditional analytical tools which have been used to provide estimates on the expected pressure and thermal loads.
NASA Technical Reports Server (NTRS)
Martin, Heath T.
2015-01-01
Due to the severity of the internal solid rocket motor (SRM) environment, very few direct measurements of that environment exist; therefore, the appearance of such data provides a unique opportunity to assess current thermal/fluid modeling capabilities. As part of a previous study of SRM internal insulation performance, the internal thermal environment of a laboratory-scale SRM featuring aluminized propellant was characterized with two types of custom heat-flux calorimeters: one that measured the total heat flux to a graphite slab within the SRM chamber and another that measured the thermal radiation flux. Therefore, in the current study, a thermal/fluid model of this lab-scale SRM was constructed using ANSYS Fluent to predict not only the flow field structure within the SRM and the convective heat transfer to the interior walls, but also the resulting dispersion of alumina droplets and the radiative heat transfer to the interior walls. The dispersion of alumina droplets within the SRM chamber was determined by employing the Lagrangian discrete phase model that was fully coupled to the Eulerian gas-phase flow. The P1-approximation was engaged to model the radiative heat transfer through the SRM chamber where the radiative contributions of the gas phase were ignored and the aggregate radiative properties of the alumina dispersion were computed from the radiative properties of its individual constituent droplets, which were sourced from literature. The convective and radiative heat fluxes computed from the thermal/fluid model were then compared with those measured in the lab-scale SRM test firings and the modeling approach evaluated.
Simulated Space Environment Effects on a Candidate Solar Sail Material
NASA Technical Reports Server (NTRS)
Kang, Jin Ho; Bryant, Robert G.; Wilkie, W. Keats; Wadsworth, Heather M.; Craven, Paul D.; Nehls, Mary K.; Vaughn, Jason A.
2017-01-01
For long duration missions of solar sail vehicles, the sail material needs to survive the harsh space environment as the degradation of the sail material determines its operational lifetime. Therefore, understanding the effects of the space environment on the sail membrane is essential for mission success. In this study, the effect of simulated space environments of ionizing radiation and thermal aging were investigated. In order to assess some of the potential damage effects on the mechanical, thermal and optical properties of a commercial off the shelf (COTS) polyester solar sail membrane. The solar sail membrane was exposed to high energy electrons [about 70 keV and 10 nA/cm(exp. 2)], and the physical properties were characterized. After about 8.3 Grad dose, the tensile modulus, tensile strength and failure strain of the sail membrane decreased by 20 to 95%. The aluminum reflective layer was damaged and partially delaminated but it did not show any significant change in solar absorbance or thermal emittance. The mechanical properties of a precracked sample, simulating potential impact damage of the sail membrane, as well as thermal aging effects on metallized PEN (polyethylene naphthalate) film, will be discussed.
Simulated Space Environment Effects on a Candidate Solar Sail Material
NASA Technical Reports Server (NTRS)
Kang, Jin Ho; Bryant, Robert G.; Wilkie, W. Keats; Wadsworth, Heather M.; Craven, Paul D.; Nehls, Mary K.; Vaughn, Jason A.
2017-01-01
For long duration missions of solar sails, the sail material needs to survive harsh space environments and the degradation of the sail material controls operational lifetime. Therefore, understanding the effects of the space environment on the sail membrane is essential for mission success. In this study, we investigated the effect of simulated space environment effects of ionizing radiation, thermal aging and simulated potential damage on mechanical, thermal and optical properties of a commercial off the shelf (COTS) polyester solar sail membrane to assess the degradation mechanisms on a feasible solar sail. The solar sail membrane was exposed to high energy electrons (about 70 keV and 10 nA/cm2), and the physical properties were characterized. After about 8.3 Grad dose, the tensile modulus, tensile strength and failure strain of the sail membrane decreased by about 20 95%. The aluminum reflective layer was damaged and partially delaminated but it did not show any significant change in solar absorbance or thermal emittance. The effect on mechanical properties of a pre-cracked sample, simulating potential impact damage of the sail membrane, as well as thermal aging effects on metallized PEN (polyethylene naphthalate) film will be discussed.
Space environmental effects on spacecraft: LEO materials selection guide, part 2
NASA Astrophysics Data System (ADS)
Silverman, Edward M.
1995-08-01
This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 2 covers thermal control systems, power systems, optical components, electronic systems, and applications.
Space environmental effects on spacecraft: LEO materials selection guide, part 2
NASA Technical Reports Server (NTRS)
Silverman, Edward M.
1995-01-01
This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 2 covers thermal control systems, power systems, optical components, electronic systems, and applications.
In situ SEM thermal fatigue of Al/graphite metal matrix composites
NASA Technical Reports Server (NTRS)
Zong, G. S.; Rabenberg, L.; Marcus, H. L.
1990-01-01
Several thermal fatigue-induced failure mechanisms are deduced for unidirectional graphite-reinforced 6061 Al-alloy MMCs subjected to in situ thermal cycling. These thermal cycling conditions are representative of MMC service cycles in aerospace environments, where thermal fatigue is primarily associated with changes in the stress states near the interfaces due to coefficient of thermal expansion mismatch between fiber and matrix. This in situ SEM thermal-cycling study clarified such factors affecting MMCs' thermal fatigue as local fiber content and distribution, void volume, fiber stiffness, thermal excursion magnitude, and number of thermal cycles. MMC microfailure modes in thermal fatigue have been deduced.
PID temperature controller in pig nursery: spatial characterization of thermal environment
NASA Astrophysics Data System (ADS)
de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar
2018-05-01
The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.
PID temperature controller in pig nursery: spatial characterization of thermal environment
NASA Astrophysics Data System (ADS)
de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar
2017-11-01
The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.
Multiagent Flight Control in Dynamic Environments with Cooperative Coevolutionary Algorithms
NASA Technical Reports Server (NTRS)
Knudson, Matthew D.; Colby, Mitchell; Tumer, Kagan
2014-01-01
Dynamic flight environments in which objectives and environmental features change with respect to time pose a difficult problem with regards to planning optimal flight paths. Path planning methods are typically computationally expensive, and are often difficult to implement in real time if system objectives are changed. This computational problem is compounded when multiple agents are present in the system, as the state and action space grows exponentially. In this work, we use cooperative coevolutionary algorithms in order to develop policies which control agent motion in a dynamic multiagent unmanned aerial system environment such that goals and perceptions change, while ensuring safety constraints are not violated. Rather than replanning new paths when the environment changes, we develop a policy which can map the new environmental features to a trajectory for the agent while ensuring safe and reliable operation, while providing 92% of the theoretically optimal performance
Spatial Control of Functional Response in 4D-Printed Active Metallic Structures
NASA Astrophysics Data System (ADS)
Ma, Ji; Franco, Brian; Tapia, Gustavo; Karayagiz, Kubra; Johnson, Luke; Liu, Jun; Arroyave, Raymundo; Karaman, Ibrahim; Elwany, Alaa
2017-04-01
We demonstrate a method to achieve local control of 3-dimensional thermal history in a metallic alloy, which resulted in designed spatial variations in its functional response. A nickel-titanium shape memory alloy part was created with multiple shape-recovery stages activated at different temperatures using the selective laser melting technique. The multi-stage transformation originates from differences in thermal history, and thus the precipitate structure, at various locations created from controlled variations in the hatch distance within the same part. This is a first example of precision location-dependent control of thermal history in alloys beyond the surface, and utilizes additive manufacturing techniques as a tool to create materials with novel functional response that is difficult to achieve through conventional methods.
NASA Astrophysics Data System (ADS)
Chen, Jianwei; Zhao, Yang; Ma, Jian
2015-04-01
The residual stress of electron beam-physical vapor deposition (EB-PVD) thermal barrier coatings (TBC) is complex and difficult to be obtained. In this paper, the interface morphology of TBCs subjected to cyclic heating and cooling was observed by SEM. Based on the thermal elastic-plastic finite method, corresponding interface model of TBCs was established. The residual stress of EB-PVD TBCs with different interface morphologies and TGO thicknesses was calculated using the FE method without regard to the presence of cracks and defects. The result shows that the distribution of residual stress is significantly affected by the interface morphology, and the growth of TGO also has influence on the residual stress of TC and TGO.
Computing Thermal Imbalance Forces On Satellites
NASA Technical Reports Server (NTRS)
Vigue, Yvonne; Schutz, Robert E.; Sewell, Granville; Abusali, Pothai A. M.
1994-01-01
HEAT.PRO computer program calculates imbalance force caused by heating of surfaces of satellite. Calculates thermal imbalance force and determines its effect on orbit of satellite, especially where shadow cast by Earth Causes periodic changes in thermal environment around satellite. Written in FORTRAN 77.
Experimental investigation of a molten salt thermocline storage tank
NASA Astrophysics Data System (ADS)
Yang, Xiaoping; Yang, Xiaoxi; Qin, Frank G. F.; Jiang, Runhua
2016-07-01
Thermal energy storage is considered as an important subsystem for solar thermal power stations. Investigations into thermocline storage tanks have mainly focused on numerical simulations because conducting high-temperature experiments is difficult. In this paper, an experimental study of the heat transfer characteristics of a molten salt thermocline storage tank was conducted by using high-temperature molten salt as the heat transfer fluid and ceramic particle as the filler material. This experimental study can verify the effectiveness of numerical simulation results and provide reference for engineering design. Temperature distribution and thermal storage capacity during the charging process were obtained. A temperature gradient was observed during the charging process. The temperature change tendency showed that thermocline thickness increased continuously with charging time. The slope of the thermal storage capacity decreased gradually with the increase in time. The low-cost filler material can replace the expensive molten salt to achieve thermal storage purposes and help to maintain the ideal gravity flow or piston flow of molten salt fluid.
Negative obstacle detection by thermal signature
NASA Technical Reports Server (NTRS)
Matthies, Larry; Rankin, A.
2003-01-01
Detecting negative obstacles (ditches, potholes, and other depressions) is one of the most difficult problems in perception for autonomous, off-road navigation. Past work has largely relied on range imagery, because that is based on the geometry of the obstacle, is largely insensitive to illumination variables, and because there have not been other reliable alternatives. However, the visible aspect of negative obstacles shrinks rapidly with range, making them impossible to detect in time to avoid them at high speed. To relive this problem, we show that the interiors of negative obstacles generally remain warmer than the surrounding terrain throughout the night, making thermal signature a stable property for night-time negative obstacle detection. Experimental results to date have achieved detection distances 45% greater by using thermal signature than by using range data alone. Thermal signature is the first known observable with potential to reveal a deep negative obstacle without actually seeing far into it. Modeling solar illumination has potential to extend the usefulness of thermal signature through daylight hours.
Measurement of thermal conductivity and thermal diffusivity using a thermoelectric module
NASA Astrophysics Data System (ADS)
Beltrán-Pitarch, Braulio; Márquez-García, Lourdes; Min, Gao; García-Cañadas, Jorge
2017-04-01
A proof of concept of using a thermoelectric module to measure both thermal conductivity and thermal diffusivity of bulk disc samples at room temperature is demonstrated. The method involves the calculation of the integral area from an impedance spectrum, which empirically correlates with the thermal properties of the sample through an exponential relationship. This relationship was obtained employing different reference materials. The impedance spectroscopy measurements are performed in a very simple setup, comprising a thermoelectric module, which is soldered at its bottom side to a Cu block (heat sink) and thermally connected with the sample at its top side employing thermal grease. Random and systematic errors of the method were calculated for the thermal conductivity (18.6% and 10.9%, respectively) and thermal diffusivity (14.2% and 14.7%, respectively) employing a BCR724 standard reference material. Although errors are somewhat high, the technique could be useful for screening purposes or high-throughput measurements at its current state. This new method establishes a new application for thermoelectric modules as thermal properties sensors. It involves the use of a very simple setup in conjunction with a frequency response analyzer, which provides a low cost alternative to most of currently available apparatus in the market. In addition, impedance analyzers are reliable and widely spread equipment, which facilities the sometimes difficult access to thermal conductivity facilities.
NASA Astrophysics Data System (ADS)
Yazji, S.; Swinkels, M. Y.; De Luca, M.; Hoffmann, E. A.; Ercolani, D.; Roddaro, S.; Abstreiter, G.; Sorba, L.; Bakkers, E. P. A. M.; Zardo, I.
2016-06-01
The peculiar shape and dimensions of nanowires (NWs) have opened the way to their exploitation in thermoelectric applications. In general, the parameters entering into the thermoelectric figure of merit are strongly interdependent, which makes it difficult to realize an optimal thermoelectric material. In NWs, instead, the power factor can be increased and the thermal conductivity reduced, thus boosting the thermoelectric efficiency compared to bulk materials. However, the assessment of all the thermoelectric properties of a NW is experimentally very challenging. Here, we focus on InSb NWs, which have proved to be promising thermoelectric materials. The figure of merit is accurately determined by using a novel method based on a combination of Raman spectroscopy and electrical measurements. Remarkably, this type of experiment provides a powerful approach allowing us to neglect the role played by thermal contact resistance. Furthermore, we compare the thermal conductivity determined by this novel method to the one determined on the same sample by the thermal bridge method. In this latter approach, the thermal contact resistance is a non-negligible parameter, especially in NWs with large diameters. We provide experimental evidence of the crucial role played by thermal contact resistance in the assessment of the thermal properties of nanostructures, using two different measurement methods of the thermal conductivity.
NASA Astrophysics Data System (ADS)
Telejko, Marek; Zender-Świercz, Ewa
2017-10-01
Thermal comfort determines the state of satisfaction of a person or group of people with thermal conditions of the environment in which the person or group of persons is staying. This state of satisfaction depends on the balance between the amount of heat generated by the body’s metabolism, and the dissipation of heat from the body to the surrounding environment. Due to differences in body build, metabolism, clothing etc. individuals may feel the parameters of the environment in which they are staying differently. Therefore, it is impossible to ensure the thermal comfort of all users of the room. However, properly designed building systems (heating, ventilation, air conditioning) allow for creating optimal thermal conditions that will evaluated positively by the vast majority of users. Due to the fact that currently we spend even 100% of the day indoors, the subject becomes extremely important. The article presents the evaluation of thermal comfort in rooms heated with a tiled fireplace with the function of accumulation of heat using the PMV (Predicted Mean Vote) and PPD (Predicted Percentage Dissatisfied) indices. It also presents the results of studies, on the quality of the micro-climate in such spaces. The system of heating premises described in the article is not a standard solution, but is now more and more commonly used as a supplement to the heating system, or even as a primary heating system in small objects, e.g. single-family houses, seasonal homes, etc. The studies comprised the measurements and analysis of typical internal micro-climate parameters: temperature, relative humidity and CO2 concentration. The results obtained did not raise any major reservations. In order to fully assess the conditions of use, the evaluation of thermal comfort of the analyzed rooms was made. Therefore, additionally the temperature of radiation of the surrounding areas, and the insulation of the users’ clothing was determined. Based on the data obtained, the PPD and PMV indices were determined according to EN ISO 7730: 2005 Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria [1]. The obtained PMV values did not fit within the limits of thermal comfort, and the percentage of people dissatisfied reached almost 20%.
Crew Launch Vehicle Mobile Launcher Solid Rocket Motor Plume Induced Environment
NASA Technical Reports Server (NTRS)
Vu, Bruce T.; Sulyma, Peter
2008-01-01
The plume-induced environment created by the Ares 1 first stage, five-segment reusable solid rocket motor (RSRMV) will impose high heating rates and impact pressures on Launch Complex 39. The extremes of these environments pose a potential threat to weaken or even cause structural components to fail if insufficiently designed. Therefore the ability to accurately predict these environments is critical to assist in specifying structural design requirements to insure overall structural integrity and flight safety. This paper presents the predicted thermal and pressure environments induced by the launch of the Crew Launch Vehicle (CLV) from Launch Complex (LC) 39. Once the environments are predicted, a follow-on thermal analysis is required to determine the surface temperature response and the degradation rate of the materials. An example of structures responding to the plume-induced environment will be provided.
Multidimensional Tests of Thermal Protection Materials in the Arcjet Test Facility
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Ellerby, Donald T.; Switzer, Mathew R.; Squire, Thomas H.
2010-01-01
Many thermal protection system materials used for spacecraft heatshields have anisotropic thermal properties, causing them to display significantly different thermal characteristics in different directions, when subjected to a heating environment during flight or arcjet tests. This paper investigates the effects of sidewall heating coupled with anisotropic thermal properties of thermal protection materials in the arcjet environment. Phenolic Impregnated Carbon Ablator (PICA) and LI-2200 materials (the insulation material of Shuttle tiles) were used for this study. First, conduction-based thermal response simulations were carried out, using the Marc.Mentat finite element solver, to study the effects of sidewall heating on PICA arcjet coupons. The simulation showed that sidewall heating plays a significant role in thermal response of these models. Arcjet tests at the Aerodynamic Heating Facility (AHF) at NASA Ames Research Center were performed later on instrumented coupons to obtain temperature history at sidewall and various radial locations. The details of instrumentation and experimental technique are the prime focus of this paper. The results obtained from testing confirmed that sidewall heating plays a significant role in thermal response of these models. The test results were later used to verify the two-dimensional ablation, thermal response, and sizing program, TITAN. The test data and model predictions were found to be in excellent agreement
NASA Technical Reports Server (NTRS)
Cassinis, R.; Lechi, G. (Principal Investigator); Zilioli, E.; Marini, A.; Brivio, P. A.; Tosi, N.
1981-01-01
The usefulness of thermal inertia mapping in discriminating geolithological units was investigated using Sardinia and the Gulf of Orosei as test sites. Software designed for LANDSAT data were modified and improved for HCMM tapes. A first attempt was made to compare the geological cross section, the topography, the IR radiance, and the thermal inertia along selected profiles of the test site. Thermal inertia profiles appear smoothed in comparison with the thermal radiance. The lowest apparent thermal inertia (ATI) was found on granitic and basaltic outcrops where their image is of sufficient extent, while ATI is higher on carbonatic and dolomitic or moist deposits. Almost every fault is marked by a jump of ATI, the interval being sometimes of the order of one pixel. This seems to demonstrate the ability of ATI to detect contacts or tectonically disturbed zones with a good resolution. It seems more difficult to measure the differences in ATI between homogeneous materials having different lithology. Ground surveys conducted and a simulation model of diurnal temperatures of rocks having different thermal inertia are discussed.
USDA-ARS?s Scientific Manuscript database
Soil and vegetation component temperatures in non-isothermal pixels encapsulate more physical meaning and are more applicable than composite temperatures. The component temperatures however are difficult to be obtained from thermal infrared (TIR) remote sensing data provided by single view angle obs...
Genetic diversity in the environmental conditioning of two sorghum (Sorghum bicolor L.) hybrids
USDA-ARS?s Scientific Manuscript database
Sorghum metabolism continually adapts to environmental temperature as thermal patterns modulate diurnally and seasonally. The degree of adaptation to any given temperature may be difficult to determine from phenotypic responses of the plants. The present study was designed to see if the efficiency o...
NASA Technical Reports Server (NTRS)
Dever, Joyce A.; Degroh, Kim K.; Stidham, Curtis R.; Stueber, Thomas J.; Dever, Therese M.; Rodriguez, Elvin; Terlep, Judith A.
1992-01-01
In order to assess the low Earth orbit (LEO) durability of candidate space materials, it is necessary to use ground laboratory facilities which provide LEO environmental effects. A facility combining vacuum thermal cycling and vacuum ultraviolet (VUV) radiation has been designed and constructed at NASA Lewis Research Center for this purpose. This facility can also be operated without the VUV lamps. An additional facility can be used to provide VUV exposure only. By utilizing these facilities, followed by atomic oxygen exposure in an RF plasma asher, the effects of the individual vacuum thermal cycling and VUV environments can be compared to the effect of the combined vacuum thermal cycling/VUV environment on the atomic oxygen durability of materials. The synergistic effects of simulated LEO environmental conditions on materials were evaluated by first exposing materials to vacuum thermal cycling, VUV, and vacuum thermal cycling/VUV environments followed by exposure to atomic oxygen in an RP plasma asher. Candidate space power materials such as atomic oxygen protected polyimides and solar concentrator mirrors were evaluated using these facilities. Characteristics of the Vacuum Thermal Cycling/VUV Exposure Facility which simulates the temperature sequences and solar ultraviolet radiation exposure that would be experienced by a spacecraft surface in LEO are discussed. Results of durability evaluations of some candidate space power materials to the simulated LEO environmental conditions will also be discussed. Such results have indicated that for some materials, atomic oxygen durability is affected by previous exposure to thermal cycling and/or VUV exposure.
NASA Technical Reports Server (NTRS)
Leimkuehler, Thomas O.; Hansen, Scott; Stephan, Ryan A.
2009-01-01
Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. Wax PCM units have been baselined for the Orion thermal control system and also provide risk mitigation for the Altair Lander. However, the use of water as a PCM has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. An ice PCM heat exchanger that replicates the thermal energy storage capacity of an existing wax PCM unit was fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion are investigated. This paper presents the results to date of this investigation.
NASA Technical Reports Server (NTRS)
Leimkuehler, Thomas O.; Hansen, Scott; Stephan, Ryan A.
2010-01-01
Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM's have over evaporators in this scenario is that they do not use a consumable. Wax PCM units have been baselined for the Orion thermal control system and also provide risk mitigation for the Altair Lander. However, the use of water as a PCM has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. An ice PCM heat exchanger that replicates the thermal energy storage capacity of an existing wax PCM unit was fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion are investigated. This paper presents the results to date of this investigation. Nomenclature
Numerical Simulations of Single Flow Element in a Nuclear Thermal Thrust Chamber
NASA Technical Reports Server (NTRS)
Cheng, Gary; Ito, Yasushi; Ross, Doug; Chen, Yen-Sen; Wang, Ten-See
2007-01-01
The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed and global thermo-fluid environments of a single now element in a hypothetical solid-core nuclear thermal thrust chamber assembly, Several numerical and multi-physics thermo-fluid models, such as chemical reactions, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver. The numerical simulations of a single now element provide a detailed thermo-fluid environment for thermal stress estimation and insight for possible occurrence of mid-section corrosion. In addition, detailed conjugate heat transfer simulations were employed to develop the porosity models for efficient pressure drop and thermal load calculations.
Ballistic Performance of Porous-Ceramic, Thermal Protection Systems to 9 km/s
NASA Technical Reports Server (NTRS)
Miller, Joshua E.; Bohl, William E.; Foreman, Cory D.; Christiansen, Eric C.; Davis, Bruce A.
2010-01-01
Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Orbiter, and they are currently being proposed for the next generation of US manned spacecraft, Orion. These materials insulate the structural components and sensitive components of a spacecraft against the intense thermal environments of atmospheric reentry. These materials are also highly exposed to solid particle space environment hazards. This paper discusses recent impact testing up to 9.65 km/s on ceramic tiles similar to those used on the Orbiter. These tiles are a porous-ceramic insulator of nominally 8 lb/ft(exp 3) alumina-fiber-enhanced-thermal-barrier (AETB8) coated with a damage-resistant, toughened-unipiece-fibrous-insulation/reaction-cured-glass layer (TUFI/RCG).
ERIC Educational Resources Information Center
Segedy, James R.; Kinnebrew, John S.; Biswas, Gautam
2015-01-01
Researchers have long recognized the potential benefits of open-ended computer- based learning environments (OELEs) to help students develop self-regulated learning (SRL) behaviours. However, measuring self-regulation in these environments is a difficult task. In this paper, we present our work in developing and evaluating "coherence…
7 CFR 650.7 - When to prepare an EIS.
Code of Federal Regulations, 2013 CFR
2013-01-01
... evaluation to affect significantly the quality of the human environment (§ 650.7(b)). If it is difficult to determine whether there is a significant impact on the human environment, it may be necessary to complete... environment (40 CFR 1508.14)? For example, will it significantly alter or destroy valuable wetlands, important...
7 CFR 650.7 - When to prepare an EIS.
Code of Federal Regulations, 2014 CFR
2014-01-01
... evaluation to affect significantly the quality of the human environment (§ 650.7(b)). If it is difficult to determine whether there is a significant impact on the human environment, it may be necessary to complete... environment (40 CFR 1508.14)? For example, will it significantly alter or destroy valuable wetlands, important...
Thermal stability comparison of nanocrystalline Fe-based binary alloy pairs
Clark, Blythe G.; Hattar, Khalid Mikhiel; Marshall, Michael Thomas; ...
2016-03-24
Here, the widely recognized property improvements of nanocrystalline (NC) materials have generated significant interest, yet have been difficult to realize in engineering applications due to the propensity for grain growth in these interface-dense systems. While traditional pathways to thermal stabilization can slow the mobility of grain boundaries, recent theories suggest that solute segregation in NC alloy can reduce the grain boundary energy such that thermodynamic stabilization is achieved. Following the predictions of Murdock et al., here we compare for the first time the thermal stability of a predicted NC stable alloy (Fe-10at.% Mg) with a predicted non-NC stable alloy (Fe-10at.%more » Cu) using the same processing and characterization methodologies. Results indicate improved thermal stability of the Fe-Mg alloy in comparison to the Fe-Cu, and observed microstructures are consistent with those predicted by Monte Carlo simulations.« less
Bhagavatula, Sharath K; Chick, Jeffrey F B; Chauhan, Nikunj R; Shyn, Paul B
2017-02-01
Image-guided percutaneous thermal ablation is increasingly utilized in the treatment of hepatic malignancies. Peripherally located hepatic tumors can be difficult to access or located adjacent to critical structures that can be injured. As a result, ablation of peripheral tumors may be avoided or may be performed too cautiously, leading to inadequate ablation coverage. In these cases, separating the tumor from adjacent critical structures can increase the efficacy and safety of procedures. Artificial ascites and artificial pneumoperitoneum are techniques that utilize fluid and gas, respectively, to insulate critical structures from the thermal ablation zone. Induction of artificial ascites and artificial pneumoperitoneum can enable complete ablation of otherwise inaccessible hepatic tumors, improve tumor visualization, minimize unintended thermal injury to surrounding organs, and reduce post-procedural pain. This pictorial essay illustrates and discusses the proper technique and clinical considerations for successful artificial ascites and pneumoperitoneum creation to facilitate safe peripheral hepatic tumor ablation.
Thermal blinding of gated detectors in quantum cryptography.
Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim
2010-12-20
It has previously been shown that the gated detectors of two commercially available quantum key distribution (QKD) systems are blindable and controllable by an eavesdropper using continuous-wave illumination and short bright trigger pulses, manipulating voltages in the circuit [Nat. Photonics 4, 686 (2010)]. This allows for an attack eavesdropping the full raw and secret key without increasing the quantum bit error rate (QBER). Here we show how thermal effects in detectors under bright illumination can lead to the same outcome. We demonstrate that the detectors in a commercial QKD system Clavis2 can be blinded by heating the avalanche photo diodes (APDs) using bright illumination, so-called thermal blinding. Further, the detectors can be triggered using short bright pulses once they are blind. For systems with pauses between packet transmission such as the plug-and-play systems, thermal inertia enables Eve to apply the bright blinding illumination before eavesdropping, making her more difficult to catch.
Controllable Fabrication of Au Nanocups by Confined-Space Thermal Dewetting for OCT Imaging.
Gao, Aiqin; Xu, Wenjing; Ponce de León, Yenisey; Bai, Yaocai; Gong, Mingfu; Xie, Kongliang; Park, Boris Hyle; Yin, Yadong
2017-07-01
Here, this study reports a novel confined-space thermal dewetting strategy for the fabrication of Au nanocups with tunable diameter, height, and size of cup opening. The nanocup morphology is defined by the cup-shaped void space created by a yolk-shell silica template that spontaneously takes an eccentric configuration during annealing. Thermal dewetting of Au, which is sandwiched between the yolk and shell, leads to the desired nanocup morphology. With strong scattering in near infrared, the Au nanocups exhibit superior efficiency as contrast agents for spectral-domain optical coherence tomography imaging. This confined-space thermal dewetting strategy is scalable and general, and can be potentially extended to the synthesis of novel anisotropic nanostructures of various compositions that are difficult to produce by conventional wet chemical or physical methods, thus opening up opportunities for many new applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A comparison of experimental and calculated thin-shell leading-edge buckling due to thermal stresses
NASA Technical Reports Server (NTRS)
Jenkins, Jerald M.
1988-01-01
High-temperature thin-shell leading-edge buckling test data are analyzed using NASA structural analysis (NASTRAN) as a finite element tool for predicting thermal buckling characteristics. Buckling points are predicted for several combinations of edge boundary conditions. The problem of relating the appropriate plate area to the edge stress distribution and the stress gradient is addressed in terms of analysis assumptions. Local plasticity was found to occur on the specimen analyzed, and this tended to simplify the basic problem since it effectively equalized the stress gradient from loaded edge to loaded edge. The initial loading was found to be difficult to select for the buckling analysis because of the transient nature of thermal stress. Multiple initial model loadings are likely required for complicated thermal stress time histories before a pertinent finite element buckling analysis can be achieved. The basic mode shapes determined from experimentation were correctly identified from computation.
Quantum correlations from a room-temperature optomechanical cavity.
Purdy, T P; Grutter, K E; Srinivasan, K; Taylor, J M
2017-06-23
The act of position measurement alters the motion of an object being measured. This quantum measurement backaction is typically much smaller than the thermal motion of a room-temperature object and thus difficult to observe. By shining laser light through a nanomechanical beam, we measure the beam's thermally driven vibrations and perturb its motion with optical force fluctuations at a level dictated by the Heisenberg measurement-disturbance uncertainty relation. We demonstrate a cross-correlation technique to distinguish optically driven motion from thermally driven motion, observing this quantum backaction signature up to room temperature. We use the scale of the quantum correlations, which is determined by fundamental constants, to gauge the size of thermal motion, demonstrating a path toward absolute thermometry with quantum mechanically calibrated ticks. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Tailoring Thin Film-Lacquer Coatings for Space Application
NASA Technical Reports Server (NTRS)
Peters, Wanda C.; Harris, George; Miller, Grace; Petro, John
1998-01-01
Thin film coatings have the capability of obtaining a wide range of thermal radiative properties, but the development of thin film coatings can sometimes be difficult and costly when trying to achieve highly specular surfaces. Given any space mission's thermal control requirements, there is often a need for a variation of solar absorptance (Alpha(s)), emittance (epsilon) and/or highly specular surfaces. The utilization of thin film coatings is one process of choice for meeting challenging thermal control requirements because of its ability to provide a wide variety of Alpha(s)/epsilon ratios. Thin film coatings' radiative properties can be tailored to meet specific thermal control requirements through the use of different metals and the variation of dielectric layer thickness. Surface coatings can be spectrally selective to enhance radiative coupling and decoupling. The application of lacquer to a surface can also provide suitable specularity for thin film application without the cost and difficulty associated with polishing.
Ground Plane and Near-Surface Thermal Analysis for NASA's Constellation Program
NASA Technical Reports Server (NTRS)
Gasbarre, Joseph F.; Amundsen, Ruth M.; Scola, Salvatore; Leahy, Frank F.; Sharp, John R.
2008-01-01
Most spacecraft thermal analysis tools assume that the spacecraft is in orbit around a planet and are designed to calculate solar and planetary fluxes, as well as radiation to space. On NASA Constellation projects, thermal analysts are also building models of vehicles in their pre-launch condition on the surface of a planet. This process entails making some modifications in the building and execution of a thermal model such that the radiation from the planet, both reflected albedo and infrared, is calculated correctly. Also important in the calculation of pre-launch vehicle temperatures are the natural environments at the vehicle site, including air and ground temperatures, sky radiative background temperature, solar flux, and optical properties of the ground around the vehicle. A group of Constellation projects have collaborated on developing a cohesive, integrated set of natural environments that accurately capture worst-case thermal scenarios for the pre-launch and launch phases of these vehicles. The paper will discuss the standardization of methods for local planet modeling across Constellation projects, as well as the collection and consolidation of natural environments for launch sites. Methods for Earth as well as lunar sites will be discussed.
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.
2016-01-01
While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. In this investigation, surface temperature mapping was performed using recently developed Cr-doped GdAlO3 phosphor thermometry. Measurements were performed in the NASA GRC Mach 0.3 burner rig on a TBC-coated plate using a scaled up cooling hole geometry where both the mainstream hot gas temperature and the blowing ratio were varied. Procedures for surface temperature and cooling effectiveness mapping of the air film-cooled TBC-coated surface are described. Applications are also shown for an engine component in both the burner rig test environment as well as an engine afterburner environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.
Elimination of estrogenic activity of thermal paper using laccase from Trichoderma sp NFCCI-2745.
Divya, L M; Prasanth, G K; Sadasivan, C
2013-02-01
In thermal printing, bisphenol A (BPA) functions chemically as a developer and reacts with white or colorless dyes in the presence of heat, converting them to a dark color. BPA can transfer readily to skin in small amounts from these papers. Its damage to environment and organisms has caused an extensive concern. In the present study, thermal paper used at the local automated teller machine counters of India were analyzed for the presence of BPA, and the capability of the paper to produce estrogenicity were assessed using a yeast two-hybrid assay experimental system. The study also focused on eliminating the endocrine-disrupting properties with partially purified laccase from newly isolated ascomycete fungi. The results indicate that these papers can produce estrogen hormone-like effect on experimental systems. It should be noted that on a daily basis, tons of such receipts are being dumped in the environment. Estrogenic properties of thermal paper were effectively removed from the reaction mixture within 3 h of incubation with the partially purified enzyme. We propose the utilization of waste thermal paper as a cheap substrate for laccase production for a safer and cleaner environment.
ERIC Educational Resources Information Center
Kerr, Deirdre
2014-01-01
Educational video games provide an opportunity for students to interact with and explore complex representations of academic content and allow for the examination of problem-solving strategies and mistakes that can be difficult to capture in more traditional environments. However, data from such games are notoriously difficult to analyze. This…
Code of Federal Regulations, 2012 CFR
2012-07-01
... replacement of thermal energy-process sources. [Reserved] 74.48 Section 74.48 Protection of Environment... and Transfer and End of Year Compliance § 74.48 Transfer of allowances from the replacement of thermal energy—process sources. [Reserved] ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... replacement of thermal energy-process sources. [Reserved] 74.48 Section 74.48 Protection of Environment... and Transfer and End of Year Compliance § 74.48 Transfer of allowances from the replacement of thermal energy—process sources. [Reserved] ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... replacement of thermal energy-process sources. [Reserved] 74.48 Section 74.48 Protection of Environment... and Transfer and End of Year Compliance § 74.48 Transfer of allowances from the replacement of thermal energy—process sources. [Reserved] ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... replacement of thermal energy-process sources. [Reserved] 74.48 Section 74.48 Protection of Environment... and Transfer and End of Year Compliance § 74.48 Transfer of allowances from the replacement of thermal energy—process sources. [Reserved] ...
Jiao, Yu; Yu, Hang; Wang, Tian; An, Yusong; Yu, Yifan
2017-12-01
The relationship between thermal environmental parameters and clothing insulation is an important element in improving thermal comfort for the elderly. A field study was conducted on the indoor, transition space, and outdoor thermal environments of 17 elderly facilities in Shanghai, China. A random questionnaire survey was used to gather data from 672 valid samples. A statistical analysis of the data was conducted, and multiple linear regression models were established to quantify the relationships between clothing insulation, respondent age, indoor air temperature, and indoor relative humidity. Results indicated that the average thermal insulation of winter and summer clothing is 1.38 clo and 0.44 clo, respectively, for elderly men and 1.39 clo and 0.45 clo, respectively, for elderly women. It was also found that the thermal insulation of winter clothing is linearly correlated with age, and that there were seasonal differences in the relationship between clothing insulation and the environment. During winter, the clothing insulation is negatively correlated only with indoor temperature parameters (air temperature and operative temperature) for elderly males, while it is negatively correlated with indoor temperature parameters as well as transition space and outdoor air temperature for elderly females. In summer, clothing insulation for both elderly males and females is negatively correlated with outdoor temperature, as well as indoor temperature parameters (air temperature and operative temperature). The thermal insulation of summer clothing is also negatively correlated with transitional space temperature for males. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thermal biology of eastern box turtles in a longleaf pine system managed with prescribed fire.
Roe, John H; Wild, Kristoffer H; Hall, Carlisha A
2017-10-01
Fire can influence the microclimate of forest habitats by removing understory vegetation and surface debris. Temperature is often higher in recently burned forests owing to increased light penetration through the open understory. Because physiological processes are sensitive to temperature in ectotherms, we expected fire-maintained forests to improve the suitability of the thermal environment for turtles, and for turtles to seasonally associate with the most thermally-optimal habitats. Using a laboratory thermal gradient, we determined the thermal preference range (T set ) of eastern box turtles, Terrapene carolina, to be 27-31°C. Physical models simulating the body temperatures experienced by turtles in the field revealed that surface environments in a fire-maintained longleaf pine forest were 3°C warmer than adjacent unburned mixed hardwood/pine forests, but the fire-maintained forest was never of superior thermal quality owing to wider T e fluctuations above T set and exposure to extreme and potentially lethal temperatures. Radiotracked turtles using fire-managed longleaf pine forests maintained shell temperatures (T s ) approximately 2°C above those at a nearby unburned forest, but we observed only moderate seasonal changes in habitat use which were inconsistent with thermoregulatory behavior. We conclude that turtles were not responding strongly to the thermal heterogeneity generated by fire in our system, and that other aspects of the environment are likely more important in shaping habitat associations. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opalka, K.O.
1989-08-01
The construction of a large test facility has been proposed for simulating the blast and thermal environment resulting from nuclear explosions. This facility would be used to test the survivability and vulnerability of military equipment such as trucks, tanks, and helicopters in a simulated thermal and blast environment, and to perform research into nuclear blast phenomenology. The proposed advanced design concepts, heating of driver gas and fast-acting throat valves for wave shaping, are described and the results of CFD studies to advance these new technical concepts fro simulating decaying blast waves are reported.
An active thermal control surfaces experiment. [spacecraft temperature determination
NASA Technical Reports Server (NTRS)
Wilkes, D. R.; Brown, M. J.
1979-01-01
An active flight experiment is described that has the objectives to determine the effects of the low earth natural environment and the Shuttle induced environment on selected thermal control and optical surfaces. The optical and thermal properties of test samples will be measured in-situ using an integrating sphere reflectrometer and using calorimetric methods. This experiment has been selected for the Long Duration Exposure Facility (LDEF) flight which will be carried to orbit by the NASA Space Shuttle. The LDEF will remain in orbit to be picked up by a later Shuttle mission and returned for postflight evaluation.
Cryogenic Thermal Absorptance Measurements on Small-Diameter Stainless Steel Tubing
NASA Technical Reports Server (NTRS)
Tuttle, James; Jahromi, Amir; Canavan, Edgar; DiPirro, Michael
2015-01-01
The Mid Infrared Instrument (MIRI) on the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 Kelvin operating temperature. The coolant gas flows through several meters of small-diameter stainless steel tubing, which is exposed to thermal radiation from its environment. Over much of its length this tubing is gold-plated to minimize the absorption of this radiant heat. In order to confirm that the cryocooler will meet MIRI's requirements, the thermal absorptance of this tubing was measured as a function of its environment temperature. We describe the measurement technique and present the results.
Multiple-Sensor Discrimination of Closely-Spaced Objects on a Ballistic Trajectory
2015-05-18
Nominal System Architecture ..................................................................................... 8 2 Simulation Environment... architecture ........................................................................................... 8 Figure 2. Simulation environment developed...uncertainty band for one or multiple sensors within the observation architecture . Resolving targets from one sensor image to another can prove difficult
Carter, J.C.; Armstrong, R.H.; Janicke, M.J.
1963-05-14
A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)
Predicting Thermal Conductivity
NASA Technical Reports Server (NTRS)
Penn, B.; Ledbetter, F. E., III; Clemons, J.
1984-01-01
Empirical equation predicts thermal conductivity of composite insulators consisting of cellular, granular or fibrous material embedded in matrix of solid viscoelastic material. Application in designing custom insulators for particular environments.
1996-08-07
Thermal comfort is very important for optimal functioning of humans. It gives information about the thermal state of the body, by which the human...receptors and sending efferent information to the effectors by which the body controls its temperature. Thermal comfort is determined by the temperature...global thermal comfort are core temperature, temperature of the extremities and temperature of the environment. In local thermal comfort and pain
Thermal stress in high temperature cylindrical fasteners
NASA Technical Reports Server (NTRS)
Blosser, Max L.
1988-01-01
Uninsulated structures fabricated from carbon or silicon-based materials, which are allowed to become hot during flight, are attractive for the design of some components of hypersonic vehicles. They have the potential to reduce weight and increase vehicle efficiency. Because of manufacturing contraints, these structures will consist of parts which must be fastened together. The thermal expansion mismatch between conventional metal fasteners and carbon or silicon-based structural materials may make it difficult to design a structural joint which is tight over the operational temperature range without exceeding allowable stress limits. In this study, algebraic, closed-form solutions for calculating the thermal stresses resulting from radial thermal expansion mismatch around a cylindrical fastener are developed. These solutions permit a designer to quickly evaluate many combinations of materials for the fastener and the structure. Using the algebraic equations developed, material properties and joint geometry were varied to determine their effect on thermal stresses. Finite element analyses were used to verify that the closed-form solutions derived give the correct thermal stress distribution around a cylindrical fastener and to investigate the effect of some of the simplifying assumptions made in developing the closed-form solutions for thermal stresses.
Thermal energy storage for low grade heat in the organic Rankine cycle
NASA Astrophysics Data System (ADS)
Soda, Michael John
Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The addition of graphite to augment heat transfer rates was also tested. Melting and solidification temperatures largely matched predictions. The magnesium salts were found to be less stable under thermal cycling than the waxes. Graphite was only soluble in the waxes. Mixtures of magnesium salts and waxes yielded a layered composite with the less dense waxes creating a sealing layer over the salt layer that significantly increased the stability of the magnesium salts. Research into optimum heat exchangers and storage vessels for these applications indicates that horizontally oriented aluminum pipes with vertically oriented aluminum fins would be the best method of storing and retrieving energy. Fin spacing can be predicted by an equation based on target temperatures and PCM characteristics.
Rapid thermal cycling of new technology solar array blanket coupons
NASA Technical Reports Server (NTRS)
Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.
1990-01-01
NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.
NASA Astrophysics Data System (ADS)
Wang, Yuewu; Wu, Dafang
2016-10-01
Dynamic response of an axially functionally graded (AFG) beam under thermal environment subjected to a moving harmonic load is investigated within the frameworks of classical beam theory (CBT) and Timoshenko beam theory (TBT). The Lagrange method is employed to derive the equations of thermal buckling for AFG beam, and then with the critical buckling temperature as a parameter the Newmark-β method is adopted to evaluate the dynamic response of AFG beam under thermal environments. Admissible functions denoting transverse displacement are expressed in simple algebraic polynomial forms. Temperature-dependency of material constituent is considered. The rule of mixture (Voigt model) and Mori-Tanaka (MT) scheme are used to evaluate the beam's effective material properties. A ceramic-metal AFG beam with immovable boundary condition is considered as numerical illustration to show the thermal effects on the dynamic behaviors of the beam subjected to a moving harmonic load.
Thermal modal analysis of novel non-pneumatic mechanical elastic wheel based on FEM and EMA
NASA Astrophysics Data System (ADS)
Zhao, Youqun; Zhu, Mingmin; Lin, Fen; Xiao, Zhen; Li, Haiqing; Deng, Yaoji
2018-01-01
A combination of Finite Element Method (FEM) and Experiment Modal Analysis (EMA) have been employed here to characterize the structural dynamic response of mechanical elastic wheel (ME-Wheel) operating under a specific thermal environment. The influence of high thermal condition on the structural dynamic response of ME-Wheel is investigated. The obtained results indicate that the EMA results are in accordance with those obtained using the proposed Finite Element (FE) model, indicting the high reliability of this FE model applied in analyzing the modal of ME-Wheel working under practical thermal environment. It demonstrates that the structural dynamic response of ME-Wheel operating under a specific thermal condition can be predicted and evaluated using the proposed analysis method, which is beneficial for the dynamic optimization design of the wheel structure to avoid tire temperature related vibration failure and improve safety of tire.
Lifetime prediction of materials exposed to the natural space environment
NASA Technical Reports Server (NTRS)
Zee, Ralph
1993-01-01
The goal of this study is to model the lifetime of different types of seal materials based on results obtained from accelerated experiments. A semi-mechanistic approach was taken. Thermal aging data were taken from the literature whereas experiments were conducted at Auburn under this contract for selected environments. The seal materials of interest are Silicone 383, Silicone 650, Viton 835, and Viton 747. The relevant conditions include thermal, oxygen, inert gas, vacuum, and gamma radiation. Compression set data available from NASA were used to examine the thermal effect. Experiments were conducted at Auburn University and at NASA to isolate the role of thermal, oxygen, inert gas, vacuum, gamma irradiation, and proton irradiation. A simple discrete stress relaxation method was developed to determine the relaxation response of the elastomers. Dynamic mechanical thermal analysis was also used to characterize the mechanical response of the specimens. These provide a more meaningful correlation between mechanisms and degradation.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.
2010-01-01
Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Lee, Kang N.; Miller, Robert A.
2002-01-01
Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protection of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.
Common System and Software Testing Pitfalls
2014-11-03
GEN- TTE -1) Target Platform Difficult to Access (GEN- TTE -2) → Inadequate Test Environments (GEN- TTE -3) Poor Fidelity of Test Environments (GEN- TTE -4...Inadequate Test Environment Quality (GEN- TTE -5) Test Environments Inadequately Tested (GEN- TTE -6) [new pitfall] Inadequate Test Configuration...Management (GEN- TTE -7) 29Common System/SW Testing PitfallsDonald G. Firesmith, 3 November 2014 General Pitfalls – Automated Testing [new pitfall category
Thermal design and performance of the REgolith x-ray imaging spectrometer (REXIS) instrument
NASA Astrophysics Data System (ADS)
Stout, Kevin D.; Masterson, Rebecca A.
2014-08-01
The REgolith X-ray Imaging Spectrometer (REXIS) instrument is a student collaboration instrument on the OSIRIS-REx asteroid sample return mission scheduled for launch in September 2016. The REXIS science mission is to characterize the elemental abundances of the asteroid Bennu on a global scale and to search for regions of enhanced elemental abundance. The thermal design of the REXIS instrument is challenging due to both the science requirements and the thermal environment in which it will operate. The REXIS instrument consists of two assemblies: the spectrometer and the solar X-ray monitor (SXM). The spectrometer houses a 2x2 array of back illuminated CCDs that are protected from the radiation environment by a one-time deployable cover and a collimator assembly with coded aperture mask. Cooling the CCDs during operation is the driving thermal design challenge on the spectrometer. The CCDs operate in the vicinity of the electronics box, but a 130 °C thermal gradient is required between the two components to cool the CCDs to -60 °C in order to reduce noise and obtain science data. This large thermal gradient is achieved passively through the use of a copper thermal strap, a large radiator facing deep space, and a two-stage thermal isolation layer between the electronics box and the DAM. The SXM is mechanically mounted to the sun-facing side of the spacecraft separately from the spectrometer and characterizes the highly variable solar X-ray spectrum to properly interpret the data from the asteroid. The driving thermal design challenge on the SXM is cooling the silicon drift detector (SDD) to below -30 °C when operating. A two-stage thermoelectric cooler (TEC) is located directly beneath the detector to provide active cooling, and spacecraft MLI blankets cover all of the SXM except the detector aperture to radiatively decouple the SXM from the flight thermal environment. This paper describes the REXIS thermal system requirements, thermal design, and analyses, with a focus on the driving thermal design challenges for the instrument. It is shown through both analysis and early testing that the REXIS instrument can perform successfully through all phases of its mission.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Lee, Kang N.; Miller, Robert A.
2002-01-01
Plasma-sprayed ZrO2-8wt%Y2O3 and mullite+BSAS/Si multilayer thermal and environmental barrier coating (TBC-EBC) systems on SiC/SiC ceramic matrix composite (CMC) substrates were thermally cyclic tested under high thermal gradients using a laser high-heat-flux rig in conjunction with furnace exposure in water-vapor environments. Coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after exposure. Sintering kinetics of the coating systems were also independently characterized using a dilatometer. It was found that the coating failure involved both the time-temperature dependent sintering and the cycle frequency dependent cyclic fatigue processes. The water vapor environments not only facilitated the initial coating conductivity increases due to enhanced sintering and interface reaction, but also promoted later conductivity reductions due to the accelerated coating cracking and delamination. The failure mechanisms of the coating systems are also discussed based on the cyclic test results and are correlated to the sintering and thermal stress behavior under the thermal gradient test conditions.
Analysis of Sensory/Active Piezoelectric Composite Structures in Thermal Environments
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun; Saravanos, Dimitris A.
1996-01-01
Although there has been extensive development of analytical methods for modeling the behavior of piezoelectric structures, only a limited amount of research has been performed concerning the implications of thermal effects on both the active and sensory response of smart structures. Thermal effects become important when the piezoelectric structure has to operate in either extremely hot or cold temperature environments. Consequently, the purpose of this paper is to extend the previously developed discrete layer formulation of Saravanos and Heyliger to account for the coupled mechanical, electrical, and thermal response in modern smart composite beams. The mechanics accounts for thermal effects which may arise in the elastic and piezoelectric media at the material level through the constitutive equations. The displacements, electric potentials, and temperatures are introduced as state variables, allowing them to be modeled as variable fields through the laminate thickness. This unified representation leads to an inherent capability to model both the active compensation of thermal distortions in smart structures and the resultant sensory voltage when thermal loads are applied. The corresponding finite element formulation is developed and numerical results demonstrate the ability to model both the active and sensory modes of composite beams with heterogeneous plies with attached piezoelectric layers under thermal loadings.
A Review of Radiolysis Concerns for Water Shielding in Fission Surface Power Applications
NASA Technical Reports Server (NTRS)
Schoenfeld, Michael P.
2008-01-01
This paper presents an overview of radiolysis concerns with regard to water shields for fission surface power. A review of the radiolysis process is presented and key parameters and trends are identified. From this understanding of the radiolytic decomposition of water, shield pressurization and corrosion are identified as the primary concerns. Existing experimental and modeling data addressing concerns are summarized. It was found that radiolysis of pure water in a closed volume results in minimal, if any net decomposition, and therefore reduces the potential for shield pressurization and corrosion. With the space program focus m emphasize more on permanent return to the Moon and eventually manned exploration of Mars, there has been a renewed look at fission power to meet the difficult technical & design challenges associated with this effort. This is due to the ability of fission power to provide a power rich environment that is insensitive to solar intensity and related aspects such as duration of night, dusty environments, and distance from the sun, etc. One critical aspect in the utilization of fission power for these applications of manned exploration is shielding. Although not typically considered for space applications, water shields have been identified as one potential option due to benefits in mass savings and reduced development cost and technical risk (Poston, 2006). However, the water shield option requires demonstration of its ability to meet key technical challenges including such things as adequate natural circulation for thermal management and capability for operational periods up to 8 years. Thermal management concerns have begun to be addressed and are not expected to be a problem (Pearson, 2007). One significant concern remaining is the ability to maintain the shield integrity through its operational lifetime. Shield integrity could be compromised through shield pressurization and corrosion resulting from the radiolytic decomposition of water.
Dingkuhn, Michael; Pasco, Richard; Pasuquin, Julie Mae; Damo, Jean; Soulié, Jean-Christophe; Raboin, Louis-Marie; Dusserre, Julie; Sow, Abdoulaye; Manneh, Baboucarr; Shrestha, Suchit; Kretzschmar, Tobias
2017-07-10
Low night and high day temperatures during sensitive reproductive stages cause spikelet sterility in rice. Phenotyping of tolerance traits in the field is difficult because of temporal interactions with phenology and organ temperature differing from ambient. Physiological models can be used to separate these effects. A 203-accession indica rice diversity panel was phenotyped for sterility in ten environments in Senegal and Madagascar and climate data were recorded. Here we report on sterility responses while a companion study reported on phenology. The objectives were to improve the RIDEV model of rice thermal sterility, to estimate response traits by fitting model parameters, and to link the response traits to genomic regions through genome-wide association studies (GWAS). RIDEV captured 64% of variation of sterility when cold acclimation during vegetative stage was simulated, but only 38% when it was not. The RIDEV parameters gave more and stronger quantitative trait loci (QTLs) than index variables derived more directly from observation. The 15 QTLs identified at P<1 × 10-5 (33 at P<1 × 10-4) were related to sterility effects of heat, cold, cold acclimation, or unexplained causes (baseline sterility). Nine annotated genes were found on average within the 50% linkage disequilibrium (LD) region. Among them, one to five plausible candidate genes per QTL were identified based on known expression profiles (organ, stage, stress factors) and function. Meiosis-, development- and flowering-related genes were frequent, as well a stress signaling kinases and transcription factors. Putative epigenetic factors such as DNA methylases or histone-related genes were frequent in cold-acclimation QTLs, and positive-effect alleles were frequent in cold-tolerant highland rice from Madagascar. The results indicate that epigenetic control of acclimation may be important in indica rice genotypes adapted to cool environments. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
A Multidisciplinary Approach to Assessing the Causal Components of Climate Change
NASA Astrophysics Data System (ADS)
Gosnold, W. D.; Todhunter, P. E.; Dong, X.; Rundquist, B.; Majorowicz, J.; Blackwell, D. D.
2004-05-01
Separation of climate forcing by anthropogenic greenhouse gases from natural radiative climate forcing is difficult because the composite temperature signal in the meteorological and multi-proxy temperature records cannot be resolved directly into radiative forcing components. To address this problem, we have initiated a large-scale, multidisciplinary project to test coherence between ground surface temperatures (GST) reconstructed from borehole T-z profiles, surface air temperatures (SAT), soil temperatures, and solar radiation. Our hypothesis is that radiative heating and heat exchange between the ground and the air directly control the ground surface temperature. Consequently, borehole T-z measurements at multi-year intervals spanning time periods when solar radiation, soil and air temperatures have been recorded should enable comparison of the thermal energy stored in the ground to these quantities. If coherence between energy storage, solar radiation, GST, SAT and multi-proxy temperature data can be discerned for a one or two decade scale, synthesis of GST and multi-proxy data over the past several centuries may enable us to separately determine the anthropogenic and natural forcings of climate change. The data we are acquiring include: (1) New T-z measurements in boreholes previously used in paleoclimate and heat flow research in Canada and the United States from the 1970's to the present. (2) Meteorological data from the US Historical Climatology Network and the Automated Weather Data Network of the High Plains Regional Climate Center, and Environment Canada. (3) Direct and remotely sensed data on land use, environment, and soil properties at selected borehole and meteorological sites for the periods between borehole observations. The project addresses three related questions: What is the coherence between the GST, SAT, soil temperatures and solar radiation? Have microclimate changes at borehole sites and climate stations affected temperature trends? If good coherence is obtained, can the coherence between thermal energy stored in the ground and radiative forcing during the time between T-z measurements be extended several centuries into the past?
Combined Pressure and Thermal Window System for Space Vehicles
NASA Technical Reports Server (NTRS)
Svartstrom, Kirk Nils (Inventor)
2015-01-01
A window system for a vehicle comprising a pressure and thermal window pane, a seal system, and a retainer system. The pressure and thermal window pane may be configured to provide desired pressure protection and desired thermal protection when exposed to an environment around the vehicle during operation of the vehicle. The pressure and thermal window pane may have a desired ductility. The seal system may be configured to contact the pressure and thermal window pane to seal the pressure and thermal window pane. The retainer system may be configured to hold the seal system and the pressure and thermal window pane.
Combined Pressure and Thermal Window System for Space Vehicles
NASA Technical Reports Server (NTRS)
Svartstrom, Kirk Nils (Inventor)
2017-01-01
A window system for a vehicle comprising a pressure and thermal window pane, a seal system, and a retainer system. The pressure and thermal window pane may be configured to provide desired pressure protection and desired thermal protection when exposed to an environment around the vehicle during operation of the vehicle. The pressure and thermal window pane may have a desired ductility. The seal system may be configured to contact the pressure and thermal window pane to seal the pressure and thermal window pane. The retainer system may be configured to hold the seal system and the pressure and thermal window pane.
40 CFR 458.20 - Applicability: description of the carbon black thermal process subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... carbon black thermal process subcategory. 458.20 Section 458.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal Process Subcategory § 458.20 Applicability: description of the carbon black...
Pressure And Thermal Modeling Of Rocket Launches
NASA Technical Reports Server (NTRS)
Smith, Sheldon D.; Myruski, Brian L.; Farmer, Richard C.; Freeman, Jon A.
1995-01-01
Report presents mathematical model for use in designing rocket-launching stand. Predicts pressure and thermal environment, as well as thermal responses of structures to impinging rocket-exhaust plumes. Enables relatively inexperienced analyst to determine time-varying distributions and absolute levels of pressure and heat loads on structures.
Microfibre-nanowire hybrid structure for energy scavenging.
Qin, Yong; Wang, Xudong; Wang, Zhong Lin
2008-02-14
A self-powering nanosystem that harvests its operating energy from the environment is an attractive proposition for sensing, personal electronics and defence technologies. This is in principle feasible for nanodevices owing to their extremely low power consumption. Solar, thermal and mechanical (wind, friction, body movement) energies are common and may be scavenged from the environment, but the type of energy source to be chosen has to be decided on the basis of specific applications. Military sensing/surveillance node placement, for example, may involve difficult-to-reach locations, may need to be hidden, and may be in environments that are dusty, rainy, dark and/or in deep forest. In a moving vehicle or aeroplane, harvesting energy from a rotating tyre or wind blowing on the body is a possible choice to power wireless devices implanted in the surface of the vehicle. Nanowire nanogenerators built on hard substrates were demonstrated for harvesting local mechanical energy produced by high-frequency ultrasonic waves. To harvest the energy from vibration or disturbance originating from footsteps, heartbeats, ambient noise and air flow, it is important to explore innovative technologies that work at low frequencies (such as <10 Hz) and that are based on flexible soft materials. Here we present a simple, low-cost approach that converts low-frequency vibration/friction energy into electricity using piezoelectric zinc oxide nanowires grown radially around textile fibres. By entangling two fibres and brushing the nanowires rooted on them with respect to each other, mechanical energy is converted into electricity owing to a coupled piezoelectric-semiconductor process. This work establishes a methodology for scavenging light-wind energy and body-movement energy using fabrics.
Plywood production wastes to energy
NASA Astrophysics Data System (ADS)
Lyubov, V. K.; Popov, A. N.
2017-11-01
Wood and by-products of its processing are a renewable energy source with carbon neutral and may be used in solving energy problems. ZAO «Arkhangelsk plywood factory» installed and put into operation the boiler with capacity of 22 MW (saturated steam of 1.2 MPa) to reduce the cost of thermal energy, the impact of environmental factors on stability of the company’s development and for reduction of harmful emissions into the environment. Fuel for boiler is the mixture consists of chip plywood, birch bark, wood sanding dust (WSD) and sawdust of the plywood processing. The components of the fuel mixture significantly differ in thermotechnical characteristics and technological parameters but especially in size composition. Particle dimensions in the fuel mixture differ by more than a thousand times which makes it «unique» and very difficult to ensure the effective and non-explosive use. WSD and sawdust from line of cutting of plywood are small fraction material and relate to IV group of explosion. Criterion of explosive for them has great values (КfWSD=10.85 Кfsaw=9.66). Boiler’s furnace equipped with reciprocating grate where implemented a three-stage scheme of combustion. For a comprehensive survey of the effectiveness of installed equipment was analyzed the design features of the boiler, defined the components of thermal balance, studied nitrogen oxide emissions, carbon and particulate matter with the determination of soot emissions. Amount of solid particles depending on their shape and size was analyzed.
A Flexible Evolvable Architecture for Constellation Mission Systems User Applications
NASA Technical Reports Server (NTRS)
Trimble, Jay P.; Crocker, Alan R.
2008-01-01
While simulating a complex set of repair tasks to be performed by EVA crewmembers on an upcoming mission, flight controllers and astronauts determine that the repair will take much longer than originally anticipated. All equipment in the vicinity of the worksite must be powered off to maintain a safe environment for the astronauts. Because heater power will be unavailable, several critical components will now be at risk of freezing and permanent damage. If an impending thermal violation is detected, Mission Control will have very limited time to react. Therefore, flight controllers must not only modify their procedures to account for these risks, they must also incorporate into their displays outputs from thermal models, alternate temperature measurements, new alarm limits, and emergency power-on commands to enable the detection and response to freezing conditions. Current software for mission control systems makes scenarios like this difficult to address. Given the time frame for modifying software, operations teams are left with labor-intensive operational workarounds as their only options. NASA Ames Research Center (ARC) and NASA Johnson Space Center (JSC) are collaborating on the development of a flexible software system for mission operations that will enable greater user flexibility than has been available to date. Using composable software, end users in the scenario described above could recompose procedures and command and control displays to allow flight controllers to monitor temperature measurements, identify time-critical conditions, and execute the procedures required to respond to these conditions before flight hardware is permanently damaged.
Mapping Irrigated Areas in the Tunisian Semi-Arid Context with Landsat Thermal and VNIR Data Imagery
NASA Astrophysics Data System (ADS)
Rivalland, Vincent; Drissi, Hsan; Simonneaux, Vincent; Tardy, Benjamin; Boulet, Gilles
2016-04-01
Our study area is the Merguellil semi-arid irrigated plain in Tunisia, where the water resource management is an important stake for governmental institutions, farmer communities and more generally for the environment. Indeed, groundwater abstraction for irrigation is the primary cause of aquifer depletion. Moreover, unregistered pumping practices are widespread and very difficult to survey by authorities. Thus, the identification of areas actually irrigated in the whole plain is of major interest. In order to map the irrigated areas, we tried out a methodology based on the use of Landsat 7 and 8 Land Surface Temperature (LST) data issued from atmospherically corrected thermal band using the LANDARTs Tool jointly with the NDVI vegetation indices obtained from visible ane near infrared (VNIR) bands. For each Landsat acquisition during the years 2012 to 2014, we computed a probability of irrigation based on the location of the pixel in the NDVI - LST space. Basically for a given NDVI value, the cooler the pixel the higher its probability to be irrigated is. For each date, pixels were classified in seven bins of irrigation probability ranges. Pixel probabilities for each date were then summed over the study period resulting in a probability map of irrigation. Comparison with ground data shows a consistent identification of irrigated plots and supports the potential operational interest of the method. However, results were hampered by the low Landsat LST data availability due to clouds and the inadequate revisit frequency of the sensor.
The thermal environment effect on the comfort of electronic factory worker
NASA Astrophysics Data System (ADS)
Nurul Huda, Listiani
2018-03-01
In this paper, thermal comfort issues of the operators working on one of the electronics companies in the evaporator area are observed. The objective of this study is to reduce Percentage of Dissatisfied (PD) of operators in an effort to improve the work productivity. PD is predicted using CBE Thermal Comfort Tool by measuring the thermal variables around the evaporator area and by calculating the Heat Stress Index (HSI). The operator productivity is analyzed by Wet Bulb Globe Thermometer (WBGT) Work-Rest Chart. The PD of operators before and after improvement is compared. The results showed that the average temperature around the operators area at evaporator station is high with average WBGT of 33,6°C. HSI value is 51.95 indicating that the effect of 8-h exposure is severe strain with work impact is health threat for unit operators and acclimatization is necessary. The PD value is 96% indicating that almost all operators feel uncomfortable at work. These indicate that the thermal environment should be improved. The proposed improvement is by installing water cooled and sprayed into the evaporator area. This installation is able to reduce HSI and PD by more 70% and more 60%, respectively. These findings indicate that improving the thermal environment will be able to improve working comfort which will further affect the level of work productivity.
Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim
2007-01-01
A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.
Cunning, R; Silverstein, R N; Baker, A C
2015-06-22
Dynamic symbioses may critically mediate impacts of climate change on diverse organisms, with repercussions for ecosystem persistence in some cases. On coral reefs, increases in heat-tolerant symbionts after thermal bleaching can reduce coral susceptibility to future stress. However, the relevance of this adaptive response is equivocal owing to conflicting reports of symbiont stability and change. We help reconcile this conflict by showing that change in symbiont community composition (symbiont shuffling) in Orbicella faveolata depends on the disturbance severity and recovery environment. The proportion of heat-tolerant symbionts dramatically increased following severe experimental bleaching, especially in a warmer recovery environment, but tended to decrease if bleaching was less severe. These patterns can be explained by variation in symbiont performance in the changing microenvironments created by differentially bleached host tissues. Furthermore, higher proportions of heat-tolerant symbionts linearly increased bleaching resistance but reduced photochemical efficiency, suggesting that any change in community structure oppositely impacts performance and stress tolerance. Therefore, even minor symbiont shuffling can adaptively benefit corals, although fitness effects of resulting trade-offs are difficult to predict. This work helps elucidate causes and consequences of dynamism in symbiosis, which is critical to predicting responses of multi-partner symbioses such as O. faveolata to environmental change. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Niphargus: a silicon band-gap sensor temperature logger for high-precision environmental monitoring
NASA Astrophysics Data System (ADS)
Burlet, Christian; Vanbrabant, Yves; Piessens, Kris; Welkenhuysen, Kris; Verheyden, Sophie
2014-05-01
A temperature logger, called 'Niphargus', was developed at the Geological Survey of Belgium to monitor temperature of local natural processes with sensitivity of the order of a few hundredths of degrees to monitor temperature variability in open air, caves, soils and rivers. The newly developed instrument uses a state-of-the-art band-gap silicon temperature sensor with digital output. This sensor reduces the risk of drift associated with thermistor-based sensing devices, especially in humid environments. The Niphargus is designed to be highly reliable, low-cost and powered by a single lithium cell with up to several years autonomy depending on the sampling rate and environmental conditions. The Niphargus was evaluated in an ice point bath experiment in terms of temperature accuracy and thermal inertia. The small size and low power consumption of the logger allow its use in difficult accessible environments, e.g. caves and space-constrained applications, inside a rock in a water stream. In both cases, the loggers have proven to be reliable and accurate devices. For example, spectral analysis of the temperature signal in the Han caves (Belgium) allowed detection and isolation of a 0.005° C amplitude day-night periodic signal in the temperature curve. PIC Figure 1: a Niphargus logger in its standard size. SMD components side. Photo credit: W. Miseur
Security surveillance challenges and proven thermal imaging capabilities in real-world applications
NASA Astrophysics Data System (ADS)
Francisco, Glen L.; Roberts, Sharon
2004-09-01
Uncooled thermal imaging was first introduced to the public in early 1980's by Raytheon (legacy Texas Instruments Defense Segment Electronics Group) as a solution for military applications. Since the introduction of this technology, Raytheon has remained the leader in this market as well as introduced commercial versions of thermal imaging products specifically designed for security, law enforcement, fire fighting, automotive and industrial uses. Today, low cost thermal imaging for commercial use in security applications is a reality. Organizations of all types have begun to understand the advantages of using thermal imaging as a means to solve common surveillance problems where other popular technologies fall short. Thermal imaging has proven to be a successful solution for common security needs such as: ¸ vision at night where lighting is undesired and 24x7 surveillance is needed ¸ surveillance over waterways, lakes and ports where water and lighting options are impractical ¸ surveillance through challenging weather conditions where other technologies will be challenged by atmospheric particulates ¸ low maintenance requirements due to remote or difficult locations ¸ low cost over life of product Thermal imaging is now a common addition to the integrated security package. Companies are relying on thermal imaging for specific applications where no other technology can perform.
NASA Astrophysics Data System (ADS)
Daffara, C.; Parisotto, S.; Mariotti, P. I.
2015-06-01
Cultural Heritage is discovering how precious is thermal analysis as a tool to improve the restoration, thanks to its ability to inspect hidden details. In this work a novel dual mode imaging approach, based on the integration of thermography and thermal quasi-reflectography (TQR) in the mid-IR is demonstrated for an effective mapping of surface materials and of sub-surface detachments in mural painting. The tool was validated through a unique application: the "Monocromo" by Leonardo da Vinci in Italy. The dual mode acquisition provided two spatially aligned dataset: the TQR image and the thermal sequence. Main steps of the workflow included: 1) TQR analysis to map surface features and 2) to estimate the emissivity; 3) projection of the TQR frame on reference orthophoto and TQR mosaicking; 4) thermography analysis to map detachments; 5) use TQR to solve spatial referencing and mosaicking for the thermal-processed frames. Referencing of thermal images in the visible is a difficult aspect of the thermography technique that the dual mode approach allows to solve in effective way. We finally obtained the TQR and the thermal maps spatially referenced to the mural painting, thus providing the restorer a valuable tool for the restoration of the detachments.
Karst Groundwater Hydrologic Analyses Based on Aerial Thermography
NASA Technical Reports Server (NTRS)
Campbell, C. Warren; Keith, A. G.
2000-01-01
On February 23, 1999, thermal imagery of Marshall Space Flight Center, Alabama was collected using an airborne thermal camera. Ground resolution was I in. Approximately 40 km 2 of thermal imagery in and around Marshall Space Flight Center (MSFC) was analyzed to determine the location of springs for groundwater monitoring. Subsequently, forty-five springs were located ranging in flow from a few ml/sec to approximately 280 liter/sec. Groundwater temperatures are usually near the mean annual surface air temperature. On thermography collected during the winter, springs show up as very warm spots. Many of the new springs were submerged in lakes, streams, or swamps; consequently, flow measurements were difficult. Without estimates of discharge, the impacts of contaminated discharge on surface streams would be difficult to evaluate. An approach to obtaining an estimate was developed using the Environmental Protection Agency (EPA) Cornell Mixing Zone Expert System (CORMIX). The thermography was queried to obtain a temperature profile down the center of the surface plume. The spring discharge was modeled with CORMIX, and the flow adjusted until the surface temperature profile was matched. The presence of volatile compounds in some of the new springs also allowed MSFC to unravel the natural system of solution cavities of the karst aquifer. Sampling results also showed that two springs on either side of a large creek had the same water source so that groundwater was able to pass beneath the creek.
Radiation and Thermal Cycling Effects on EPC1001 Gallium Nitride Power Transistors
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Scheick, Leif Z.; Lauenstein, Jean M.; Casey, Megan C.; Hammoud, Ahmad
2012-01-01
Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These include radiation, extreme temperatures, and thermal cycling, to name a few. Information pertaining to performance of electronic parts and systems under hostile environments is very scarce, especially for new devices. Such data is very critical so that proper design is implemented in order to ensure mission success and to mitigate risks associated with exposure of on-board systems to the operational environment. In this work, newly-developed enhancement-mode field effect transistors (FET) based on gallium nitride (GaN) technology were exposed to various particles of ionizing radiation and to long-term thermal cycling over a wide temperature range. Data obtained on control (un-irradiated) and irradiated samples of these power transistors are presented and the results are discussed.
Md Din, Mohd Fadhil; Lee, Yee Yong; Ponraj, Mohanadoss; Ossen, Dilshan Remaz; Iwao, Kenzo; Chelliapan, Shreeshivadasan
2014-04-01
Recent years have seen issues related to thermal comfort gaining more momentum in tropical countries. The thermal adaptation and thermal comfort index play a significant role in evaluating the outdoor thermal comfort. In this study, the aim is to capture the thermal sensation of respondents at outdoor environment through questionnaire survey and to determine the discomfort index (DI) to measure the thermal discomfort level. The results indicated that most respondents had thermally accepted the existing environment conditions although they felt slightly warm and hot. A strong correlation between thermal sensation and measured DI was also identified. As a result, a new discomfort index range had been proposed in association with local climate and thermal sensation of occupants to evaluate thermal comfort. The results had proved that the respondents can adapt to a wider range of thermal conditions.Validation of the questionnaire data at Putrajaya was done to prove that the thermal sensation in both Putrajaya and UTM was almost similar since they are located in the same tropical climate region. Hence, a quantitative field study on building layouts was done to facilitate the outdoor human discomfort level based on newly proposed discomfort index range. The results showed that slightly shaded building layouts of type- A and B exhibited higher temperature and discomfort index. The resultant adaptive thermal comfort theory was incorporated into the field studies as well. Finally, the study also showed that the DI values were highly dependent on ambient temperature and relative humidity but had fewer effects for solar radiation intensity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Teaching thermal physics in the paradigms project
NASA Astrophysics Data System (ADS)
Roundy, David
2011-10-01
Thermal physics is probably the most disliked course in the physics major curriculum, with students feeling that they are being led through a mathematical maze, leading to an unsatisfactory conclusion. Classical thermodynamics involves scary derivatives, while statistical mechanics leads to lengthy summations and is difficult to apply to interacting systems. It is unsurprising that students find themselves failing to see the physics for the math. In this talk, I will discuss my experiences teaching the Energy and Entropy paradigm, and will introduce materials we have developed to aide student understanding of partial derivatives and their relationship to experimental observables.
The 1980 Aircraft Safety and Operating Problems, part 1
NASA Technical Reports Server (NTRS)
Stickle, J. W. (Compiler)
1981-01-01
It is difficult to categorize aircraft operating problems, human factors and safety. Much of NASA's research involves all three and considers the important inter-relationships between man, the machine and the environment, whether the environment be man-made or natural. Topics covered in 20 papers include terminal-area operations; avionics and human factors; and the atmospheric environment.
An Assessment of a Mixed Reality Environment: Toward an Ethnomethodological Approach
ERIC Educational Resources Information Center
Dugdale, Julie; Pallamin, Nico; Pavard, Bernard
2006-01-01
Training firefighters is a difficult process in which emotions and nonverbal behaviors play an important role. The authors have developed a mixed reality environment for training a small group of firefighters, which takes into account these aspects. The assessment of the environment was made up of three phases: assessing the virtual agents to…
Orion Passive Thermal Control Overview
NASA Technical Reports Server (NTRS)
Miller, Stephen W.
2007-01-01
An viewgraph presentation of Orion's passive thermal control system is shown. The topics include: 1) Orion in CxP Hierarchy; 2) General Orion Description/Orientation; 3) Module Descriptions and Images; 4) Orion PTCS Overview; 5) Requirements/Interfaces; 6) Design Reference Missions; 7) Natural Environments; 8) Thermal Models; 9) Challenges/Issues; and 10) Testing
Evaluation and Refinement of the Environment Stress Index (ESI) for Different Climatic Conditions
2002-06-01
generally determined through meteorological parameters that enable one to estimate the influence of several environmental factors on thermal comfort and...pp 1-20 Gun RT, Budd GM (1995) Effects of thermal, personal and behavioral factors on the physiological strain, thermal comfort and productivity of
Thermal Environments. Educational Facilities Review Series Number 17.
ERIC Educational Resources Information Center
Baas, Alan M.
This review surveys documents and journal articles previously announced in RIE and CIJE that deal with climate control, integrated thermal and luminous systems, total energy systems, and current trends in school air conditioning. The literature cited indicates that selection of thermal systems must take into account longterm operating costs in…
Long Duration Exposure Facility M0003-5 thermal control coatings on DoD flight experiment
NASA Technical Reports Server (NTRS)
Hurley, Charles J.; Lehn, William L.
1992-01-01
The M0003-5 thermal control coatings and materials orbited on the LDEF M0003 Space Environment Effects on Spacecraft Materials were a part of a Wright Laboratories Materials Directorate larger experiment. They were selected from new materials which emerged from development programs during the 1978-1982 time frame. Included were materials described in the technical literature which were being considered or had been applied to satellites. Materials that had been exposed on previous satellite materials experiments were also included to provide data correlation with earlier space flight experiments. The objective was to determine the effect of the LDEF environment on the physical and optical properties of thermal control coatings and materials. One hundred and two specimens of various pigmented organic and inorganic coatings, metallized polymer thin films, optical solar reflectors, and mirrors were orbited on LDEF. The materials were exposed in four separate locations on the vehicle. The first set was exposed on the direct leading edge of the satellite. The second set was exposed on the direct trailing edge of the vehicle. The third and fourth sets were exposed in environmental exposure control canisters (EECC) located 30 degrees off normal to the leading and trailing edges. The purpose of the experiment was to understand the changes in the properties of materials before and after exposure to the space environment and to compare the changes with predictions based on laboratory experiments. The basic approach was to measure the optical and physical properties of materials before and after long-term exposure to a low earth orbital environment comprised of UV, VUV, electrons, protons, atomic oxygen, thermal cycling, vacuum, debris, and micrometeoroids. Due to the unanticipated extended orbital flight of LDEF, the thermal control coatings and materials in the direct leading and trailing edge were exposed for a full five years and ten months to the space environment and the canister materials were exposed for approximately one year to the full environment.