Epitaxial titanium diboride films grown by pulsed-laser deposition
NASA Astrophysics Data System (ADS)
Zhai, H. Y.; Christen, H. M.; Cantoni, C.; Goyal, A.; Lowndes, D. H.
2002-03-01
Epitaxial, smooth, and low-resistivity titanium diboride (TiB2) films have been grown on SiC substrates using pulsed-laser deposition. Combined studies from ex situ x-ray diffraction and in situ reflection high-energy electron diffraction indicate the crystallographic alignment between TiB2 and SiC both parallel and normal to the substrate. Atomic force microscopy and scanning electron microscopy studies show that these epitaxial films have a smooth surface, and the resistivity of these films is comparable to that of single-crystal TiB2. Growth of these films is motivated by this material's structural and chemical similarity and lattice match to the newly discovered superconductor MgB2, both to gain further insight into the physical mechanisms of diborides in general and, more specifically, as a component of MgB2-based thin-film heterostructures.
Angularly-selective transmission imaging in a scanning electron microscope.
Holm, Jason; Keller, Robert R
2016-08-01
This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Tsuda, Kenji; Tanaka, Michiyoshi
2015-08-01
Rhombohedral nanostructures previously found in the orthorhombic phase of KNbO3, by convergent-beam electron diffraction [Tsuda et al., Appl. Phys. Lett. 102, 051913 (2013)], have been investigated by the combined use of scanning transmission electron microscopy and convergent-beam electron diffraction. Two-dimensional distributions of the rhombohedral nanostructures, or nanometer-scale spatial fluctuations of polarization clusters, have been successfully visualized. The correlation length of the observed spatial fluctuations of local polarizations is related to the cpc/apc ratio and the transition entropy.
Scanning force microscope for in situ nanofocused X-ray diffraction studies
Ren, Zhe; Mastropietro, Francesca; Davydok, Anton; Langlais, Simon; Richard, Marie-Ingrid; Furter, Jean-Jacques; Thomas, Olivier; Dupraz, Maxime; Verdier, Marc; Beutier, Guillaume; Boesecke, Peter; Cornelius, Thomas W.
2014-01-01
A compact scanning force microscope has been developed for in situ combination with nanofocused X-ray diffraction techniques at third-generation synchrotron beamlines. Its capabilities are demonstrated on Au nano-islands grown on a sapphire substrate. The new in situ device allows for in situ imaging the sample topography and the crystallinity by recording simultaneously an atomic force microscope (AFM) image and a scanning X-ray diffraction map of the same area. Moreover, a selected Au island can be mechanically deformed using the AFM tip while monitoring the deformation of the atomic lattice by nanofocused X-ray diffraction. This in situ approach gives access to the mechanical behavior of nanomaterials. PMID:25178002
Investigating the Effects of Low Temperature Annealing of Amorphous Corrosion Resistant Alloys.
1980-11-01
Ray Diffraction.................................................... 6 Differential Scanning Calorimetry....................................... 9...17 LIST OF FIGURES Figure 1. X- Ray Diffraction Results From Fe32Ni 36Cr 4P 2 B Annealed for One Hour at...Various Temperatures (Cr Ka Radiation) ................................. 7 Figure 2. X- Ray Diffraction Results From FeU2NiaeCr14SieB Annealed for One
Habibi, Neda
2015-02-05
The preparation and characterization of functional biocompatible magnetite-cellulose nano-composite fibrous material is described. Magnetite-cellulose nano-composite was prepared by a combination of the solution-based formation of magnetic nano-particles and subsequent coating with amino celluloses. Characterization was accomplished using X-ray powder diffraction (XRD), fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. The peaks of Fe3O4 in the XRD pattern of nanocomposite confirm existence of the nanoparticles in the amino cellulose matrix. Magnetite-cellulose particles exhibit an average diameter of roughly 33nm as demonstrated by field emission scanning electron microscopy. Magnetite nanoparticles were irregular spheres dispersed in the cellulose matrix. The vibration corresponding to the NCH3 functional group about 2850cm(-1) is assigned in the FTIR spectra. Functionalized magnetite-cellulose nano-composite polymers have a potential range of application as targeted drug delivery system in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.
High-resolution scanning precession electron diffraction: Alignment and spatial resolution.
Barnard, Jonathan S; Johnstone, Duncan N; Midgley, Paul A
2017-03-01
Methods are presented for aligning the pivot point of a precessing electron probe in the scanning transmission electron microscope (STEM) and for assessing the spatial resolution in scanning precession electron diffraction (SPED) experiments. The alignment procedure is performed entirely in diffraction mode, minimising probe wander within the bright-field (BF) convergent beam electron diffraction (CBED) disk and is used to obtain high spatial resolution SPED maps. Through analysis of the power spectra of virtual bright-field images extracted from the SPED data, the precession-induced blur was measured as a function of precession angle. At low precession angles, SPED spatial resolution was limited by electronic noise in the scan coils; whereas at high precession angles SPED spatial resolution was limited by tilt-induced two-fold astigmatism caused by the positive spherical aberration of the probe-forming lens. Copyright © 2016 Elsevier B.V. All rights reserved.
System and method for compressive scanning electron microscopy
Reed, Bryan W
2015-01-13
A scanning transmission electron microscopy (STEM) system is disclosed. The system may make use of an electron beam scanning system configured to generate a plurality of electron beam scans over substantially an entire sample, with each scan varying in electron-illumination intensity over a course of the scan. A signal acquisition system may be used for obtaining at least one of an image, a diffraction pattern, or a spectrum from the scans, the image, diffraction pattern, or spectrum representing only information from at least one of a select subplurality or linear combination of all pixel locations comprising the image. A dataset may be produced from the information. A subsystem may be used for mathematically analyzing the dataset to predict actual information that would have been produced by each pixel location of the image.
Wojdyla, Justyna Aleksandra; Panepucci, Ezequiel; Martiel, Isabelle; Ebner, Simon; Huang, Chia-Ying; Caffrey, Martin; Bunk, Oliver; Wang, Meitian
2016-01-01
A fast continuous grid scan protocol has been incorporated into the Swiss Light Source (SLS) data acquisition and analysis software suite on the macromolecular crystallography (MX) beamlines. Its combination with fast readout single-photon counting hybrid pixel array detectors (PILATUS and EIGER) allows for diffraction-based identification of crystal diffraction hotspots and the location and centering of membrane protein microcrystals in the lipid cubic phase (LCP) in in meso in situ serial crystallography plates and silicon nitride supports. Diffraction-based continuous grid scans with both still and oscillation images are supported. Examples that include a grid scan of a large (50 nl) LCP bolus and analysis of the resulting diffraction images are presented. Scanning transmission X-ray microscopy (STXM) complements and benefits from fast grid scanning. STXM has been demonstrated at the SLS beamline X06SA for near-zero-dose detection of protein crystals mounted on different types of sample supports at room and cryogenic temperatures. Flash-cooled crystals in nylon loops were successfully identified in differential and integrated phase images. Crystals of just 10 µm thickness were visible in integrated phase images using data collected with the EIGER detector. STXM offers a truly low-dose method for locating crystals on solid supports prior to diffraction data collection at both synchrotron microfocusing and free-electron laser X-ray facilities. PMID:27275141
Paria Sena, Robert; Babaryk, Artem A; Khainakov, Sergiy; Garcia-Granda, Santiago; Slobodyanik, Nikolay S; Van Tendeloo, Gustaaf; Abakumov, Artem M; Hadermann, Joke
2016-01-21
The crystal structure of the K6.4Nb28.2Ta8.1O94 pseudo-tetragonal tungsten bronze-type oxide was determined using a combination of X-ray powder diffraction, neutron diffraction and transmission electron microscopy techniques, including electron diffraction, high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), annular bright field STEM (ABF-STEM) and energy-dispersive X-ray compositional mapping (STEM-EDX). The compound crystallizes in the space group Pbam with unit cell parameters a = 37.468(9) Å, b = 12.493(3) Å, c = 3.95333(15) Å. The structure consists of corner sharing (Nb,Ta)O6 octahedra forming trigonal, tetragonal and pentagonal tunnels. All tetragonal tunnels are occupied by K(+) ions, while 1/3 of the pentagonal tunnels are preferentially occupied by Nb(5+)/Ta(5+) and 2/3 are occupied by K(+) in a regular pattern. A fractional substitution of K(+) in the pentagonal tunnels by Nb(5+)/Ta(5+) is suggested by the analysis of the HAADF-STEM images. In contrast to similar structures, such as K2Nb8O21, also parts of the trigonal tunnels are fractionally occupied by K(+) cations.
Electron microscopy characterization of Ni-Cr-B-Si-C laser deposited coatings.
Hemmati, I; Rao, J C; Ocelík, V; De Hosson, J Th M
2013-02-01
During laser deposition of Ni-Cr-B-Si-C alloys with high amounts of Cr and B, various microstructures and phases can be generated from the same chemical composition that results in heterogeneous properties in the clad layer. In this study, the microstructure and phase constitution of a high-alloy Ni-Cr-B-Si-C coating deposited by laser cladding were analyzed by a combination of several microscopy characterization techniques including scanning electron microscopy in secondary and backscatter imaging modes, energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The combination of EDS and EBSD allowed unequivocal identification of micron-sized precipitates as polycrystalline orthorhombic CrB, single crystal tetragonal Cr5B3, and single crystal hexagonal Cr7C3. In addition, TEM characterization showed various equilibrium and metastable Ni-B, Ni-Si, and Ni-Si-B eutectic products in the alloy matrix. The findings of this study can be used to explain the phase formation reactions and to tune the microstructure of Ni-Cr-B-Si-C coatings to obtain the desired properties.
Rational design of Ag/TiO2 nanosystems by a combined RF-sputtering/sol-gel approach.
Armelao, Lidia; Barreca, Davide; Bottaro, Gregorio; Gasparotto, Alberto; Maccato, Chiara; Tondello, Eugenio; Lebedev, Oleg I; Turner, Stuart; Van Tendeloo, Gustaaf; Sada, Cinzia; Stangar, Urska Lavrencic
2009-12-21
The present work is devoted to the preparation of Ag/TiO(2) nanosystems by an original synthetic strategy, based on the radio-frequency (RF) sputtering of silver particles on titania-based xerogels prepared by the sol-gel (SG) route. This approach takes advantage of the synergy between the microporous xerogel structure and the infiltration power characterizing RF-sputtering, whose combination enables the obtainment of a tailored dispersion of Ag-containing particles into the titania matrix. In addition, the system's chemico-physical features can be tuned further through proper ex situ thermal treatments in air at 400 and 600 degrees C. The synthesized composites are extensively characterized by the joint use of complementary techniques, that is, X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), secondary ion mass spectrometry (SIMS), glancing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron diffraction (ED), high-angle annular dark field scanning TEM (HAADF-STEM), energy-filtered TEM (EF-TEM) and optical absorption spectroscopy. Finally, the photocatalytic performances of selected samples in the decomposition of the azo-dye Plasmocorinth B are preliminarily investigated. The obtained results highlight the possibility of tailoring the system characteristics over a broad range, directly influencing their eventual functional properties.
Plana-Ruiz, S; Portillo, J; Estradé, S; Peiró, F; Kolb, Ute; Nicolopoulos, S
2018-06-06
A general method to set illuminating conditions for selectable beam convergence and probe size is presented in this work for Transmission Electron Microscopes (TEM) fitted with µs/pixel fast beam scanning control, (S)TEM, and an annular dark field detector. The case of interest of beam convergence and probe size, which enables diffraction pattern indexation, is then used as a starting point in this work to add 100 Hz precession to the beam while imaging the specimen at a fast rate and keeping the projector system in diffraction mode. The described systematic alignment method for the adjustment of beam precession on the specimen plane while scanning at fast rates is mainly based on the sharpness of the precessed STEM image. The complete alignment method for parallel condition and precession, Quasi-Parallel PED-STEM, is presented in block diagram scheme, as it has been tested on a variety of instruments. The immediate application of this methodology is that it renders the TEM column ready for the acquisition of Precessed Electron Diffraction Tomographies (EDT) as well as for the acquisition of slow Precessed Scanning Nanometer Electron Diffraction (SNED). Examples of the quality of the Precessed Electron Diffraction (PED) patterns and PED-STEM alignment images are presented with corresponding probe sizes and convergence angles. Copyright © 2018. Published by Elsevier B.V.
Bragg projection ptychography on niobium phase domains
NASA Astrophysics Data System (ADS)
Burdet, Nicolas; Shi, Xiaowen; Clark, Jesse N.; Huang, Xiaojing; Harder, Ross; Robinson, Ian
2017-07-01
Bragg projection ptychography (BPP) is a coherent x-ray diffraction imaging technique which combines the strengths of scanning microscopy with the phase contrast of x-ray ptychography. Here we apply it for high resolution imaging of the phase-shifted crystalline domains associated with epitaxial growth. The advantages of BPP are that the spatial extent of the sample is arbitrary, it is nondestructive, and it gives potentially diffraction limited spatial resolution. Here we demonstrate the application of BPP for revealing the domain structure caused by epitaxial misfit in a nanostructured metallic thin film. Experimental coherent diffraction data were collected from a niobium thin film, epitaxially grown on a sapphire substrate as the beam was scanned across the sample. The data were analyzed by BPP using a carefully selected combination of refinement procedures. The resulting image shows a close packed array of epitaxial domains, shifted with respect to each other due to misfit between the film and its substrate.
Crystal structure and thermal expansion of a CsCe 2Cl 7 scintillator
Zhuravleva, M.; Lindsey, A.; Chakoumakos, B. C.; ...
2015-04-06
Here we used single-crystal X-ray diffraction data to determine crystal structure of CsCe 2Cl 7. It crystallizes in a P112 1/b space group with a = 19.352(1) Å, b = 19.352(1) Å, c = 14.838(1) Å, γ = 119.87(2) ° , and V = 4818.6(5) Å 3. Differential scanning calorimetry measurements combined with the structural evolution of CsCe 2Cl 7 via X-ray diffractometry over a temperature range from room temperature to the melting point indicates no obvious intermediate solid-solid phase transitions. The anisotropy in the average linear coefficient of thermal expansion of the a axis (21.3 10 -6/ °C) withmore » respect to the b and c axes (27.0 10 -6/ °C) was determined through lattice parameter refinement of the temperature dependent diffraction patterns. Lastly, these findings suggest that the reported cracking behavior during melt growth of CsCe 2Cl 7 bulk crystals using conventional Bridgman and Czochralski techniques may be largely attributed to the anisotropy in thermal expansion.« less
Free-space wavelength-multiplexed optical scanner demonstration.
Yaqoob, Zahid; Riza, Nabeel A
2002-09-10
Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92 degrees as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively.
Rapid hydrothermal synthesis of VO2 (B) and its conversion to thermochromic VO2 (M1).
Popuri, Srinivasa Rao; Miclau, Marinela; Artemenko, Alla; Labrugere, Christine; Villesuzanne, Antoine; Pollet, Michaël
2013-05-06
The present study provides a rapid way to obtain VO2 (B) under economical and environmentally friendly conditions. VO2 (B) is one of the well-known polymorphs of vanadium dioxide and is a promising cathode material for aqueous lithium ion batteries. VO2 (B) was successfully synthesized by rapid single-step hydrothermal process using V2O5 and citric acid as precursors. The present study shows that phase-pure VO2 (B) polytype can be easily obtained at 180 °C for 2 h and 220 °C for 1 h, that is, the lowest combination of temperature and duration reported so far. The obtained VO2 (B) is characterized by X-ray powder diffraction, high-resolution scanning electron microscopy, and Fourier transform infrared spectroscopy. In addition, we present an indirect way to obtain VO2 (M1) by annealing VO2 (B) under vacuum for 1 h.
Grieb, Tim; Krause, Florian F; Schowalter, Marco; Zillmann, Dennis; Sellin, Roman; Müller-Caspary, Knut; Mahr, Christoph; Mehrtens, Thorsten; Bimberg, Dieter; Rosenauer, Andreas
2018-07-01
Strain analyses from experimental series of nano-beam electron diffraction (NBED) patterns in scanning transmission electron microscopy are performed for different specimen tilts. Simulations of NBED series are presented for which strain analysis gives results that are in accordance with experiment. This consequently allows to study the relation between measured strain and actual underlying strain. A two-tilt method which can be seen as lowest-order electron beam precession is suggested and experimentally implemented. Strain determination from NBED series with increasing beam convergence is performed in combination with the experimental realization of a probe-forming aperture with a cross inside. It is shown that using standard evaluation techniques, the influence of beam convergence on spatial resolution is lower than the influence of sharp rings around the diffraction disc which occur at interfaces and which are caused by the tails of the intensity distribution of the electron probe. Copyright © 2018 Elsevier B.V. All rights reserved.
Three-dimensional Bragg coherent diffraction imaging of an extended ZnO crystal.
Huang, Xiaojing; Harder, Ross; Leake, Steven; Clark, Jesse; Robinson, Ian
2012-08-01
A complex three-dimensional quantitative image of an extended zinc oxide (ZnO) crystal has been obtained using Bragg coherent diffraction imaging integrated with ptychography. By scanning a 2.5 µm-long arm of a ZnO tetrapod across a 1.3 µm X-ray beam with fine step sizes while measuring a three-dimensional diffraction pattern at each scan spot, the three-dimensional electron density and projected displacement field of the entire crystal were recovered. The simultaneously reconstructed complex wavefront of the illumination combined with its coherence properties determined by a partial coherence analysis implemented in the reconstruction process provide a comprehensive characterization of the incident X-ray beam.
NASA Astrophysics Data System (ADS)
Margiani, N. G.; Mumladze, G. A.; Adamia, Z. A.; Kuzanyan, A. S.; Zhghamadze, V. V.
2018-05-01
In this paper, the combined effects of B4C-doping and planetary ball milling on the phase evolution, microstructure and transport properties of Bi1.7Pb0.3Sr2Ca2Cu3Oy(B4C)x HTS with x = 0 ÷ 0.125 were studied through X-ray diffraction (XRD), scanning electron microscopy (SEM), resistivity and critical current density measurements. Obtained results have shown that B4C additive leads to the strong acceleration of high-Tc phase formation and substantial enhancement in Jc. High-energy ball milling seems to produce a more homogeneous distribution of refined doped particles in the (Bi,Pb)-2223 HTS which results in an improved intergranular flux pinning and better self-field Jc performance.
Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa
2016-01-01
We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109
NASA Astrophysics Data System (ADS)
Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa
2016-06-01
We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions.
NASA Astrophysics Data System (ADS)
Chen, J. L.; Li, J.; Song, R.; Bai, L. L.; Shao, J. Z.; Qu, C. C.
2015-09-01
Laser cladding composite coatings were fabricated on the surface of the Ti6Al4V substrate by fiber laser cladding the NiCrBSi alloy powder. The influences of scanning speed on the dilution rate and microstructure of the coatings were investigated in detail by X-ray diffraction (XRD), optical microscopy (OM) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). Combined with the analyses of microhardness and fracture toughness, the wear behaviors of the coatings obtained at different scanning speeds were revealed. Results indicated that the dilution rates of the coatings were similar (about 64.23%) with variations in scanning speed ranging from 5 mm/s to 15 mm/s. An abrupt decrease in dilution rate (37.06%) was observed at the scanning speed of 20 mm/s. Microstructural observation showed that the blocky TiB2 and the cellular dendrite TiC particles were uniformly dispersed in the TiNi-Ti2Ni dual-phase intermetallic compound matrix at scanning speeds of 5-15 mm/s. When the scanning speed was further increased to 20 mm/s, the stripe-shaped CrB, gray irregular-shaped Cr3C2 and black blocky TiC particles uniformly dispersed in the γ(Ni) matrix were synthesized in situ. The particles became finer with the increase in scanning speed. The average microhardness of the coating (1026.5 HV0.2) at the scanning speed of 20 mm/s was enhanced significantly compared with that of the other three coatings (about 886.4 HV0.2). The lowest average friction coefficient (about 0.371) was obtained at the scanning speed of 20 mm/s and was relatively stable with the change in sliding time. The lowest wear loss of the coating was also obtained at the scanning speed of 20 mm/s. Analyses of the worn surfaces showed that the coating prepared at the scanning speed of 20 mm/s was in good condition because of its excellent combination of resistance to micro-cutting and brittle debonding. Comparatively speaking, the coating produced at the scanning speed of 20 mm/s possessed excellent comprehensive mechanical properties.
Optical Tweezers for Sample Fixing in Micro-Diffraction Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amenitsch, H.; Rappolt, M.; Sartori, B.
2007-01-19
In order to manipulate, characterize and measure the micro-diffraction of individual structural elements down to single phospholipid liposomes we have been using optical tweezers (OT) combined with an imaging microscope. We were able to install the OT system at the microfocus beamline ID13 at the ESRF and trap clusters of about 50 multi-lamellar liposomes (< 10 {mu}m large cluster). Further we have performed a scanning diffraction experiment with a 1 micrometer beam to demonstrate the fixing capabilities and to confirm the size of the liposome cluster by X-ray diffraction.
Brodusch, Nicolas; Demers, Hendrix; Gauvin, Raynald
2015-01-01
Dark-field (DF) images were acquired in the scanning electron microscope with an offline procedure based on electron backscatter diffraction (EBSD) patterns (EBSPs). These EBSD-DF images were generated by selecting a particular reflection on the electron backscatter diffraction pattern and by reporting the intensity of one or several pixels around this point at each pixel of the EBSD-DF image. Unlike previous studies, the diffraction information of the sample is the basis of the final image contrast with a pixel scale resolution at the EBSP providing DF imaging in the scanning electron microscope. The offline facility of this technique permits the selection of any diffraction condition available in the diffraction pattern and displaying the corresponding image. The high number of diffraction-based images available allows a better monitoring of deformation structures compared to electron channeling contrast imaging (ECCI) which is generally limited to a few images of the same area. This technique was applied to steel and iron specimens and showed its high capability in describing more rigorously the deformation structures around micro-hardness indents. Due to the offline relation between the reference EBSP and the EBSD-DF images, this new technique will undoubtedly greatly improve our knowledge of deformation mechanism and help to improve our understanding of the ECCI contrast mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Charbonnier, Véronique; Monnier, Judith; Zhang, Junxian; Paul-Boncour, Valérie; Joiret, Suzanne; Puga, Beatriz; Goubault, Lionel; Bernard, Patrick; Latroche, Michel
2016-09-01
Intermetallic compounds A2B7 (A = rare earth, B = transition metal) are of interest for Ni-MH batteries. Indeed they are able to absorb hydrogen reversibly and exhibit good specific capacity in electrochemical route. To understand the effect of rare earth on properties of interest such as thermodynamic, cycling stability and corrosion, we synthesized and studied three compounds: Y2Ni7, Gd2Ni7 and Sm2Ni7. Using Sieverts' method, we plot P-c-isotherms up to 10 MPa and study hydride stability upon solid-gas cycling. Electrochemical cycling was also performed, as well as calendar and cycling corrosion study. Corrosion products were characterized by means of X-ray diffraction, electron diffraction, Raman micro-spectroscopy and scanning and transmission electron microscopies. Magnetic measurements were also performed to calculate corrosion rates. A corrosion mechanism, based on the nature of corrosion products, is proposed. By combining results from solid-gas cycling, electrochemical cycling and corrosion study, we attribute the loss in capacity either to corrosion or loss of crystallinity.
Scanning X-ray diffraction on cardiac tissue: automatized data analysis and processing.
Nicolas, Jan David; Bernhardt, Marten; Markus, Andrea; Alves, Frauke; Burghammer, Manfred; Salditt, Tim
2017-11-01
A scanning X-ray diffraction study of cardiac tissue has been performed, covering the entire cross section of a mouse heart slice. To this end, moderate focusing by compound refractive lenses to micrometer spot size, continuous scanning, data acquisition by a fast single-photon-counting pixel detector, and fully automated analysis scripts have been combined. It was shown that a surprising amount of structural data can be harvested from such a scan, evaluating the local scattering intensity, interfilament spacing of the muscle tissue, the filament orientation, and the degree of anisotropy. The workflow of data analysis is described and a data analysis toolbox with example data for general use is provided. Since many cardiomyopathies rely on the structural integrity of the sarcomere, the contractile unit of cardiac muscle cells, the present study can be easily extended to characterize tissue from a diseased heart.
Pascal, Elena; Singh, Saransh; Callahan, Patrick G; Hourahine, Ben; Trager-Cowan, Carol; Graef, Marc De
2018-04-01
Transmission Kikuchi diffraction (TKD) has been gaining momentum as a high resolution alternative to electron back-scattered diffraction (EBSD), adding to the existing electron diffraction modalities in the scanning electron microscope (SEM). The image simulation of any of these measurement techniques requires an energy dependent diffraction model for which, in turn, knowledge of electron energies and diffraction distances distributions is required. We identify the sample-detector geometry and the effect of inelastic events on the diffracting electron beam as the important factors to be considered when predicting these distributions. However, tractable models taking into account inelastic scattering explicitly are lacking. In this study, we expand the Monte Carlo (MC) energy-weighting dynamical simulations models used for EBSD [1] and ECP [2] to the TKD case. We show that the foil thickness in TKD can be used as a means of energy filtering and compare band sharpness in the different modalities. The current model is shown to correctly predict TKD patterns and, through the dictionary indexing approach, to produce higher quality indexed TKD maps than conventional Hough transform approach, especially close to grain boundaries. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Highlighting material structure with transmission electron diffraction correlation coefficient maps.
Kiss, Ákos K; Rauch, Edgar F; Lábár, János L
2016-04-01
Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. Copyright © 2016 Elsevier B.V. All rights reserved.
Grating angle magnification enhanced angular sensor and scanner
NASA Technical Reports Server (NTRS)
Sun, Ke-Xun (Inventor); Byer, Robert L. (Inventor)
2009-01-01
An angular magnification effect of diffraction is exploited to provide improved sensing and scanning. This effect is most pronounced for a normal or near-normal incidence angle in combination with a grazing diffraction angle, so such configurations are preferred. Angular sensitivity can be further enhanced because the width of the diffracted beam can be substantially less than the width of the incident beam. Normal incidence configurations with two symmetric diffracted beams are preferred, since rotation and vertical displacement can be readily distinguished. Increased sensitivity to vertical displacement can be provided by incorporating an interferometer into the measurement system. Quad cell detectors can be employed to provide sensitivity to rotation about the grating surface normal. A 2-D grating can be employed to provide sensitivity to angular displacements in two different planes (e.g., pitch and yaw). Combined systems can provide sensitivity to vertical displacement and to all three angular degrees of freedom.
STM-electroluminescence from clustered C3N4 nanodomains synthesized via green chemistry process.
Andrade, E P; Costa, B B A; Chaves, C R; de Paula, A M; Cury, L A; Malachias, A; Safar, G A M
2018-01-01
A Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and synchrotron X-ray diffraction study on clustered C 3 N 4 nanoparticles (nanoflakes) is conducted on green-chemistry synthesized samples obtained from chitosan through high power sonication. Morphological aspects and the electronic characteristics are investigated. The observed bandgap of the nanoflakes reveals the presence of different phases in the material. Combining STM morphology, STS spectra and X-ray diffraction (XRD) results one finds that the most abundant phase is graphitic C 3 N 4 . A high density of defects is inferred from the XRD measurements. Additionally, STM-electroluminescence (STMEL) is detected in C 3 N 4 nanoflakes deposited on a gold substrate. The tunneling current creates photons that are three times more energetic than the tunneling electrons of the STM sample. We ponder about the two most probable models to explain the observed photon emission energy: either a nonlinear optical phenomenon or a localized state emission. Copyright © 2017 Elsevier B.V. All rights reserved.
Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging
NASA Astrophysics Data System (ADS)
Wang, Feifei; Liu, Lianqing; Yu, Haibo; Wen, Yangdong; Yu, Peng; Liu, Zhu; Wang, Yuechao; Li, Wen Jung
2016-12-01
Nanoscale correlation of structural information acquisition with specific-molecule identification provides new insight for studying rare subcellular events. To achieve this correlation, scanning electron microscopy has been combined with super-resolution fluorescent microscopy, despite its destructivity when acquiring biological structure information. Here we propose time-efficient non-invasive microsphere-based scanning superlens microscopy that enables the large-area observation of live-cell morphology or sub-membrane structures with sub-diffraction-limited resolution and is demonstrated by observing biological and non-biological objects. This microscopy operates in both non-invasive and contact modes with ~200 times the acquisition efficiency of atomic force microscopy, which is achieved by replacing the point of an atomic force microscope tip with an imaging area of microspheres and stitching the areas recorded during scanning, enabling sub-diffraction-limited resolution. Our method marks a possible path to non-invasive cell imaging and simultaneous tracking of specific molecules with nanoscale resolution, facilitating the study of subcellular events over a total cell period.
NASA Astrophysics Data System (ADS)
Leeburg, Kelsey C.; El-Haddad, Mohamed T.; Malone, Joseph D.; Terrones, Benjamin D.; Tao, Yuankai K.
2018-02-01
Scanning laser ophthalmoscopy (SLO) provides high-speed, noninvasive en face imaging of the retinal fundus. Optical coherence tomography (OCT) is the current "gold-standard" for ophthalmic diagnostic imaging and enables depth-resolved visualization of ophthalmic structures and image-based surrogate biomarkers of disease. We present a compact optical and mechanical design for handheld spectrally encoded coherence tomography and reflectometry (SECTR) for multimodality en face spectrally encoded reflectometry (SER) and cross-sectional OCT imaging. We custom-designed a double-pass telecentric scan lens, which halves the size of 4-f optical relays and allowed us to reduce the footprint of our SECTR scan-head by a factor of >2.7x (volume) over our previous design. The double-pass scan lens was optimized for diffraction-limited performance over a +/-10° scan field. SECTR optics and optomechanics were combined in a compact rapid-prototyped enclosure with dimensions 87 x 141.8 x 137 mm (w x h x d). SECTR was implemented using a custom-built 400 kHz 1050 nm swept-source. OCT and SER were simultaneously digitized on dual input channels of a 4 GS/s digitizer at 1.4 GS/s per channel. In vivo human en face SER and cross-sectional OCT images were acquired at 350 fps. OCT volumes of 1000 B-scans were acquired in 2.86 s. We believe clinical translation of our compact handheld design will benefit point-of-care ophthalmic diagnostics in patients who are unable to be imaged on conventional slit-lamp based systems, such as infants and the bedridden. When combined with multi-volumetric registration methods, handheld SECTR will have advantages in motion-artifact free imaging over existing handheld technologies.
Corina, Danciu; Bojin, Florina; Ambrus, Rita; Muntean, Delia; Soica, Codruta; Paunescu, Virgil; Cristea, Mirabela; Pinzaru, Iulia; Dehelean, Cristina
2017-01-01
Fisetin,quercetin and kaempferol are among the important representatives of flavonols, biological active phytocomounds, with low water solubility. To evaluate the antimicrobial effect, respectively the antiproliferative and pro apoptotic activity on the B164A5 murine melanoma cell line of pure flavonols and their beta cyclodextrins complexes. Incorporation of fisetin, quercetin and kaempferol in beta cyclodextrins was proved by scanning electron microscopy (SEM), differencial scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). Pure compounds and their complexes were tested for antiproliferative (MTT) and pro-apoptotic activity (Annexin V-PI) on the B164A5 murine melanoma cell line and for the antimicrobial properties (Disk Diffusion Method) on the selected strains. The phytocompounds presented in a different manner in vitro chemopreventive activity against B164A5 murine melanoma cell line and weak antimicrobial effect. The three flavonols: fisetin, quercetin and kaempferol were successfully incorporated in beta-cyclodextrin (BCD) and hydroxylpropyl-beta-cyclodextrin (HPBCD). Incorporation in beta cyclodextrins had a mix effect on the biological activity conducing to decrease, increase or consistent effect compared to pure phytocompound, depending on the screened process and on the chosen combination. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Diamond sensors and polycapillary lenses for X-ray absorption spectroscopy.
Ravel, B; Attenkofer, K; Bohon, J; Muller, E; Smedley, J
2013-10-01
Diamond sensors are evaluated as incident beam monitors for X-ray absorption spectroscopy experiments. These single crystal devices pose a challenge for an energy-scanning experiment using hard X-rays due to the effect of diffraction from the crystalline sensor at energies which meet the Bragg condition. This problem is eliminated by combination with polycapillary lenses. The convergence angle of the beam exiting the lens is large compared to rocking curve widths of the diamond. A ray exiting one capillary from the lens meets the Bragg condition for any reflection at a different energy from the rays exiting adjacent capillaries. This serves to broaden each diffraction peak over a wide energy range, allowing linear measurement of incident intensity over the range of the energy scan. Extended X-ray absorption fine structure data are measured with a combination of a polycapillary lens and a diamond incident beam monitor. These data are of comparable quality to data measured without a lens and with an ionization chamber monitoring the incident beam intensity.
Biological applications of near-field scanning optical microscopy
NASA Astrophysics Data System (ADS)
Moers, Marco H. P.; Ruiter, A. G. T.; Jalocha, Alain; van Hulst, Niko F.; Kalle, W. H. J.; Wiegant, J. C. A. G.; Raap, A. K.
1995-09-01
Near-field Scanning Optical Microscopy (NSOM) is a true optical microscopic technique allowing fluorescence, absorption, reflection and polarization contrast with the additional advantage of nanometer lateral resolution, unlimited by diffraction and operation at ambient conditions. NSOM based on metal coated adiabatically tapered fibers, combined with shear force feedback and operated in illumination mode, has proven to be the most powerful NSOM arrangement, because of its true localization of the optical interaction, its various optical contrast possibilities and its sensitivity down to the single molecular level. In this paper applications of `aperture' NSOM to Fluorescence In Situ Hybridization of human metaphase chromosomes are presented, where the localized fluorescence allows to identify specific DNA sequences. All images are accompanied by the simultaneously acquired force image, enabling direct comparison of the optical contrast with the sample topography on nanometer scale, far beyond the diffraction limit. Thus the unique combination of high resolution, specific optical contrast and ambient operation offers many new direction possibilities in biological studies.
Kurt, Abdullah; Toker, Omer Said; Tornuk, Fatih
2017-09-01
The present study was aimed to use different combinations of xanthan (XG) and locust bean gum (LBG) in the biodegradable edible film preparation by benefitting from their synergistic interactions for the first time. Concentrations of LBG, XG and glycerol of the optimized film sample were found to be 89.6%, 10.4% and 20%, respectively. At the optimum point the WVP, TS, E% and EM values of film were found 0.22gmmh -1 m 2 kPa, 86.97MPa, 33.34% and 177.25MPa, respectively. The optimized film was characterized for its physical, thermal and structural behavior. The scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FTIR) analyses exhibited miscibility and presence of interaction between polymers. In conclusion, XG and LBG interaction was used successfully to get biodegradable films and coatings with improved characteristics. Copyright © 2017 Elsevier B.V. All rights reserved.
Crystal structure refinement of ReSi1.75 with an ordered arrangement of silicon vacancies
NASA Astrophysics Data System (ADS)
Harada, Shunta; Hoshikawa, Hiroaki; Kuwabara, Kosuke; Tanaka, Katsushi; Okunishi, Eiji; Inui, Haruyuki
2011-08-01
The crystal structure and microstructure of ReSi1.75 were investigated by synchrotron X-ray diffraction combined with scanning transmission electron microscopy. ReSi1.75 contains an ordered arrangement of vacancies in Si sites in the underlying tetragonal C11b lattice of the MoSi2-type and the crystal structure is monoclinic with the space group Cm. Atomic positions of Si atoms near vacancies are considerably displaced from the corresponding positions in the parent C11b structure, and they exhibit anomalously large local thermal vibration accompanied by large values of atomic displacement parameter. There are four differently-oriented domains with two of them being related to each other by the 90° rotation about the c-axis of the underlying C11b lattice and the other two being their respective twins. The habit planes for domain boundaries observed experimentally are consistent with those predicted with ferroelastic theory.
Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging
Warren, Anna J.; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R.; Horrell, Sam; McAuley, Katherine E.; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf
2013-01-01
The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required. PMID:23793151
Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging.
Warren, Anna J; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R; Horrell, Sam; McAuley, Katherine E; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf
2013-07-01
The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required.
Effect of variable parboiling on crystallinity of rice samples.
USDA-ARS?s Scientific Manuscript database
Rice parboiled at various combinations of cooking time and temperature, were analyzed by differential scanning calorimetry and X-Ray diffraction. Generally, gelatinization enthalpy decreased as the soaking temperature increased from 30ºC through 50ºC, and 70ºC to 90ºC, and gelatinization enthalpy d...
NASA Astrophysics Data System (ADS)
Hopkins, Deborah; Datuin, Marvin; Aldrin, John; Warchol, Mark; Warchol, Lyudmila; Forsyth, David
2018-04-01
The work presented here aims to develop and transition angled-beam shear-wave inspection techniques for crack localization at fastener sites in multi-layer aircraft structures. This requires moving beyond detection to achieve reliable crack location and size, thereby providing invaluable information for maintenance actions and service-life management. The technique presented is based on imaging cracks in "True" B-scans (depth view projected in the sheets along the beam path). The crack traces that contribute to localization in the True B-scans depend on small, diffracted signals from the crack edges and tips that are visible in simulations and experimental data acquired with sufficient gain. The most recent work shows that cracks rotated toward and away from the central ultrasonic beam also yield crack traces in True B-scans that allow localization in simulations, even for large obtuse angles where experimental and simulation results show very small or no indications in the C-scans. Similarly, for two sheets joined by sealant, simulations show that cracks in the second sheet can be located in True B-scans for all locations studied: cracks that intersect the front or back wall of the second sheet, as well as relatively small mid-bore cracks. These results are consistent with previous model verification and sensitivity studies that demonstrate crack localization in True B-scans for a single sheet and cracks perpendicular to the ultrasonic beam.
Frequency multiplexed long range swept source optical coherence tomography
Zurauskas, Mantas; Bradu, Adrian; Podoleanu, Adrian Gh.
2013-01-01
We present a novel swept source optical coherence tomography configuration, equipped with acousto-optic deflectors that can be used to simultaneously acquire multiple B-scans originating from different depths. The sensitivity range of the configuration is evaluated while acquiring five simultaneous B-scans. Then the configuration is employed to demonstrate long range B-scan imaging by combining two simultaneous B-scans from a mouse head sample. PMID:23760762
Metastable and equilibrium phase formation in sputter-deposited Ti/Al multilayer thin films
NASA Astrophysics Data System (ADS)
Lucadamo, G.; Barmak, K.; Lavoie, C.; Cabral, C., Jr.; Michaelsen, C.
2002-06-01
The sequence and kinetics of metastable and equilibrium phase formation in sputter deposited multilayer thin films was investigated by combining in situ synchrotron x-ray diffraction (XRD) with ex situ electron diffraction and differential scanning calorimetry (DSC). The sequence included both cubic and tetragonal modifications of the equilibrium TiAl3 crystal structure. Values for the formation activation energies of the various phases in the sequence were determined using the XRD and DSC data obtained here, as well as activation energy data reported in the literature.
In-Depth View of the Structure and Growth of SnO2 Nanowires and Nanobrushes.
Stuckert, Erin P; Geiss, Roy H; Miller, Christopher J; Fisher, Ellen R
2016-08-31
Strategic application of an array of complementary imaging and diffraction techniques is critical to determine accurate structural information on nanomaterials, especially when also seeking to elucidate structure-property relationships and their effects on gas sensors. In this work, SnO2 nanowires and nanobrushes grown via chemical vapor deposition (CVD) displayed the same tetragonal SnO2 structure as revealed via powder X-ray diffraction bulk crystallinity data. Additional characterization using a range of electron microscopy imaging and diffraction techniques, however, revealed important structure and morphology distinctions between the nanomaterials. Tailoring scanning transmission electron microscopy (STEM) modes combined with transmission electron backscatter diffraction (t-EBSD) techniques afforded a more detailed view of the SnO2 nanostructures. Indeed, upon deeper analysis of individual wires and brushes, we discovered that, despite a similar bulk structure, wires and brushes grew with different crystal faces and lattice spacings. Had we not utilized multiple STEM diffraction modes in conjunction with t-EBSD, differences in orientation related to bristle density would have been overlooked. Thus, it is only through a methodical combination of several structural analysis techniques that precise structural information can be reliably obtained.
Physical and chemical properties of biobased plastic resins containing chicken feather fibers
USDA-ARS?s Scientific Manuscript database
This study was conducted to (a) characterize bioplastic pellets containing feather fibers (pellets) by low temperature-scanning electron microscopy and X-Ray diffraction analysis, (b) evaluate growth and flowering of Begonia boliviensis A. DC. ‘Bonfire’ when grown in medium amended with pellets, and...
Tripathi, Ashish; McNulty, Ian; Shpyrko, Oleg G
2014-01-27
Ptychographic coherent x-ray diffractive imaging is a form of scanning microscopy that does not require optics to image a sample. A series of scanned coherent diffraction patterns recorded from multiple overlapping illuminated regions on the sample are inverted numerically to retrieve its image. The technique recovers the phase lost by detecting the diffraction patterns by using experimentally known constraints, in this case the measured diffraction intensities and the assumed scan positions on the sample. The spatial resolution of the recovered image of the sample is limited by the angular extent over which the diffraction patterns are recorded and how well these constraints are known. Here, we explore how reconstruction quality degrades with uncertainties in the scan positions. We show experimentally that large errors in the assumed scan positions on the sample can be numerically determined and corrected using conjugate gradient descent methods. We also explore in simulations the limits, based on the signal to noise of the diffraction patterns and amount of overlap between adjacent scan positions, of just how large these errors can be and still be rendered tractable by this method.
Precipitate statistics in an Al-Mg-Si-Cu alloy from scanning precession electron diffraction data
NASA Astrophysics Data System (ADS)
Sunde, J. K.; Paulsen, Ø.; Wenner, S.; Holmestad, R.
2017-09-01
The key microstructural feature providing strength to age-hardenable Al alloys is nanoscale precipitates. Alloy development requires a reliable statistical assessment of these precipitates, in order to link the microstructure with material properties. Here, it is demonstrated that scanning precession electron diffraction combined with computational analysis enable the semi-automated extraction of precipitate statistics in an Al-Mg-Si-Cu alloy. Among the main findings is the precipitate number density, which agrees well with a conventional method based on manual counting and measurements. By virtue of its data analysis objectivity, our methodology is therefore seen as an advantageous alternative to existing routines, offering reproducibility and efficiency in alloy statistics. Additional results include improved qualitative information on phase distributions. The developed procedure is generic and applicable to any material containing nanoscale precipitates.
NASA Astrophysics Data System (ADS)
Bewer, Brian E.
Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These X-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing a large change in intensity for a small angle change introduced by the X-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultra small angle X-ray scattering (USAXS) contrast thus improving visualization and extending the utility of X-ray imaging. To improve on the current DEI technique this body of work describes the design of an X-ray prism (XRP) included in the imaging system which allows the analyzer crystal to be aligned anywhere on the rocking curve without moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from muradians for direct mechanical movement of the analyzer crystal to milliradian control for movement the XRP angle. In addition to using an XRP for the traditional DEI acquisition method of two scans on opposite sides of the rocking curve preliminary tests will be presented showing the potential of using an XRP to scan quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single fast measurement thus removing the occurrence of motion artifacts for each point or line used during a scan. The XRP design is also intended to be compatible with combined imaging systems where more than one technique is used to investigate a sample. Candidates for complimentary techniques are investigated and measurements from a combined X-ray imaging system are presented.
Reddy, Chagam Koteswara; Suriya, M; Vidya, P V; Haripriya, Sundaramoorthy
2017-01-01
This study describes a simple method of preparation and physico-chemical properties of modified starches (type-3 resistant starches) from banana (Musa AAB), and the modified starches investigated as functional food with a beneficial effect on type-2 diabetes. RS3 was prepared using a method combined with debranching modification and physical modification; native and modifies starches were characterized by scanning electron microscope (SEM), powder X-ray diffraction (XRD), differential scanning calorimetry (DSC) and rapid visco analyzer (RVA). Use of the enzymatic and physical modification methodology, improved the yield of RS (26.62%) from Musa AAB. A reduced viscosity and swelling power; increased transition temperatures, water absorption capacity and solubility index with B-type crystalline pattern and loss of granular appearance were observed during the debranching modification and physical modification. The modified starches exhibited beneficial health effects in diabetic and HFD rats who consumed it. These results recommend that dietary feeding of RS3 was effective in the regulation of glucose and lipid profile in serum and suppressing the oxidative stress in rats under diabetic and HFD condition. This current study provides new bioactive starches, with potential applications in the food and non-food industries. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madden, Jeremy T.; Toth, Scott J.; Dettmar, Christopher M.
Nonlinear optical (NLO) instrumentation has been integrated with synchrotron X-ray diffraction (XRD) for combined single-platform analysis, initially targeting applications for automated crystal centering. Second-harmonic-generation microscopy and two-photon-excited ultraviolet fluorescence microscopy were evaluated for crystal detection and assessed by X-ray raster scanning. Two optical designs were constructed and characterized; one positioned downstream of the sample and one integrated into the upstream optical path of the diffractometer. Both instruments enabled protein crystal identification with integration times between 80 and 150 µs per pixel, representing a ~10 3–10 4-fold reduction in the per-pixel exposure time relative to X-ray raster scanning. Quantitative centering andmore » analysis of phenylalanine hydroxylase fromChromobacterium violaceumcPAH,Trichinella spiralisdeubiquitinating enzyme TsUCH37, human κ-opioid receptor complex kOR-T4L produced in lipidic cubic phase (LCP), intimin prepared in LCP, and α-cellulose samples were performed by collecting multiple NLO images. The crystalline samples were characterized by single-crystal diffraction patterns, while α-cellulose was characterized by fiber diffraction. Good agreement was observed between the sample positions identified by NLO and XRD raster measurements for all samples studied.« less
NASA Astrophysics Data System (ADS)
Vančo, Ľubomír; Kadlečíková, Magdaléna; Breza, Juraj; Čaplovič, Ľubomír; Gregor, Miloš
2013-01-01
In this paper we studied the material composition of the ground layer of a neoclassical painting. We used Raman spectroscopy (RS) as a prime method. Thereafter scanning electron microscopy combined with energy dispersive spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD) were employed as complementary techniques. The painting inspected was of the side altar in King St. Stephen's Church in Galanta (Slovakia), signed and dated by Jos. Chr. Mayer 1870. Analysis was carried out on both covered and uncovered ground layers. Four principal compounds (barite, lead white, calcite, dolomite) and two minor compounds (sphalerite, quartz) were identified. This ground composition is consistent with the 19th century painting technique used in Central Europe consisting of white pigments and white fillers. Transformation of lead white occurred under laser irradiation. Subdominant Raman peaks of the components were measured. The observed results elucidate useful partnership of RS and SEM-EDS measurements supported by X-ray powder diffraction as well as possibilities and limitations of non-destructive analysis of covered lower layers by RS.
Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli
2015-01-01
Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application. PMID:26553709
Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agocs, A G; Agostinelli, A; Aguilar Salazar, S; Ahammed, Z; Ahmad Masoodi, A; Ahmad, N; Ahn, S A; Ahn, S U; Akindinov, A; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Alici, A; Alkin, A; Almaráz Aviña, E; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldini Ferroli, R; Baldisseri, A; Baldit, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Beck, H; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, N; Bianchi, L; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Bock, N; Böttger, S; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bose, S; Bossú, F; Botje, M; Botta, E; Boyer, B; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Busch, O; Buthelezi, Z; Caballero Orduna, D; Caffarri, D; Cai, X; Caines, H; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carlin Filho, N; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Castillo Hernandez, J F; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chawla, I; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Coccetti, F; Colamaria, F; Colella, D; Conesa Balbastre, G; Conesa Del Valle, Z; Constantin, P; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cruz Alaniz, E; Cuautle, E; Cunqueiro, L; Dainese, A; Dalsgaard, H H; Danu, A; Das, D; Das, K; Das, I; Dash, S; Dash, A; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; Delagrange, H; Deloff, A; Demanov, V; De Marco, N; Dénes, E; De Pasquale, S; Deppman, A; D Erasmo, G; de Rooij, R; Diaz Corchero, M A; Di Bari, D; Dietel, T; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Divià, R; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Domínguez, I; Dönigus, B; Dordic, O; Driga, O; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Dutta Majumdar, M R; Dutta Majumdar, A K; Elia, D; Emschermann, D; Engel, H; Erazmus, B; Erdal, H A; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fearick, R; Fedunov, A; Fehlker, D; Feldkamp, L; Felea, D; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Ferretti, R; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Garishvili, I; Gerhard, J; Germain, M; Geuna, C; Gheata, M; Gheata, A; Ghidini, B; Ghosh, P; Gianotti, P; Girard, M R; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Ferreiro, E G; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Grabski, V; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, C; Grigoras, A; Grigoriev, V; Grigoryan, S; Grigoryan, A; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerra Gutierrez, C; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Gutbrod, H; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Han, B H; Hanratty, L D; Hansen, A; Harmanová-Tóthová, Z; Harris, J W; Hartig, M; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, P G; Innocenti, G M; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, A; Ivanov, M; Ivanov, V; Ivanytskyi, O; Jachołkowski, A; Jacobs, P M; Jang, H J; Janik, R; Janik, M A; Jayarathna, P H S Y; Jena, S; Jha, D M; Jimenez Bustamante, R T; Jirden, L; Jones, P G; Jung, H; Jusko, A; Kaidalov, A B; Kakoyan, V; Kalcher, S; Kaliňák, P; Kalliokoski, T; Kalweit, A; Kang, J H; Kaplin, V; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, P; Khan, S A; Khan, M M; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, S; Kim, B; Kim, T; Kim, D J; Kim, D W; Kim, J H; Kim, J S; Kim, M; Kim, M; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Kluge, A; Knichel, M L; Knospe, A G; Koch, K; Köhler, M K; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Korneev, A; Kour, R; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kraus, I; Krawutschke, T; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kugathasan, T; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A B; Kurepin, A; Kuryakin, A; Kushpil, V; Kushpil, S; Kvaerno, H; Kweon, M J; Kwon, Y; Ladrón de Guevara, P; Lakomov, I; Langoy, R; La Pointe, S L; Lara, C; Lardeux, A; La Rocca, P; Lea, R; Le Bornec, Y; Lechman, M; Lee, S C; Lee, G R; Lee, K S; Lefèvre, F; Lehnert, J; Lenhardt, M; Lenti, V; León, H; Leoncino, M; León Monzón, I; León Vargas, H; Lévai, P; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Liu, L; Loggins, V R; Loginov, V; Lohn, S; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luquin, L; Luzzi, C; Ma, K; Ma, R; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, M V D; Malzacher, P; Mamonov, A; Mangotra, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Marin Tobon, C A; Markert, C; Marquard, M; Martashvili, I; Martinengo, P; Martínez, M I; Martínez Davalos, A; Martínez García, G; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastroserio, A; Matthews, Z L; Matyja, A; Mayer, C; Mazer, J; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mlynarz, J; Mohanty, B; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Naumov, N P; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Novitzky, N; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Ochirov, A; Oeschler, H; Oh, S; Oh, S K; Oleniacz, J; Oppedisano, C; Ortiz Velasquez, A; Ortona, G; Oskarsson, A; Ostrowski, P; Otwinowski, J; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Pastirčák, B; Patalakha, D I; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perez Lezama, E; Perini, D; Perrino, D; Peryt, W; Pesci, A; Peskov, V; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piyarathna, D B; Planinic, M; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polák, K; Polichtchouk, B; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puchagin, S; Puddu, G; Pulvirenti, A; Punin, V; Putiš, M; Putschke, J; Quercigh, E; Qvigstad, H; Rachevski, A; Rademakers, A; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Ramírez Reyes, A; Raniwala, S; Raniwala, R; Räsänen, S S; Rascanu, B T; Rathee, D; Read, K F; Real, J S; Redlich, K; Reichelt, P; Reicher, M; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rodrigues Fernandes Rabacal, B; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roy, P; Roy, C; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Šafařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Šándor, L; Sandoval, A; Sano, M; Sano, S; Santo, R; Santoro, R; Sarkamo, J; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Rohni, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Son, H; Song, M; Song, J; Soos, C; Soramel, F; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stan, I; Stefanek, G; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strabykin, K; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Sukhorukov, M; Sultanov, R; Šumbera, M; Susa, T; Symons, T J M; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szostak, A; Szymański, M; Takahashi, J; Tapia Takaki, J D; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Toscano, L; Trubnikov, V; Truesdale, D; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urbán, J; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; Vande Vyvre, P; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, Y; Vinogradov, A; Vinogradov, L; Virgili, T; Viyogi, Y P; Vodopyanov, A; Voloshin, S; Voloshin, K; Volpe, G; von Haller, B; Vranic, D; Øvrebekk, G; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, V; Wagner, B; Wan, R; Wang, M; Wang, D; Wang, Y; Wang, Y; Watanabe, K; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, A; Wilk, G; Williams, M C S; Windelband, B; Xaplanteris Karampatsos, L; Yaldo, C G; Yamaguchi, Y; Yang, H; Yang, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yoon, J; Yu, W; Yuan, X; Yushmanov, I; Zaccolo, V; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, X; Zhang, H; Zhou, D; Zhou, Y; Zhou, F; Zhu, J; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M
Measurements of cross sections of inelastic and diffractive processes in proton-proton collisions at LHC energies were carried out with the ALICE detector. The fractions of diffractive processes in inelastic collisions were determined from a study of gaps in charged particle pseudorapidity distributions: for single diffraction (diffractive mass M X <200 GeV/ c 2 ) [Formula: see text], and [Formula: see text], respectively at centre-of-mass energies [Formula: see text]; for double diffraction (for a pseudorapidity gap Δ η >3) σ DD / σ INEL =0.11±0.03,0.12±0.05, and [Formula: see text], respectively at [Formula: see text]. To measure the inelastic cross section, beam properties were determined with van der Meer scans, and, using a simulation of diffraction adjusted to data, the following values were obtained: [Formula: see text] mb at [Formula: see text] and [Formula: see text] at [Formula: see text]. The single- and double-diffractive cross sections were calculated combining relative rates of diffraction with inelastic cross sections. The results are compared to previous measurements at proton-antiproton and proton-proton colliders at lower energies, to measurements by other experiments at the LHC, and to theoretical models.
Garcia, Carlos B W; Zhang, Yuanming; Mahajan, Surbhi; DiSalvo, Francis; Wiesner, Ulrich
2003-11-05
In the present study poly(isoprene-block-ethylene oxide), PI-b-PEO, block copolymers are used to structure iron oxide and silica precursors into reverse mesophases, which upon dissolution of the organic matrix lead to well-defined nanoparticles of spheres, cylinders, and plates based on the original structure of the mesophase prepared. The hybrid mesophases with sphere, cylinder, and lamellar morphologies containing the inorganic components in the minority phases are characterized through a combination of small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), and electron energy loss spectroscopy (EELS). After heat treatments the respective nanoparticles on mica surfaces are characterized by scanning force microscopy (SFM). X-ray diffraction (XRD) and superconducting quantum interference device (SQUID) magnetometer measurements are performed to demonstrate that the heat treatment leads to the formation of a magnetic gamma-Fe2O3 crystalline phase within the amorphous aluminosilicate. The results pave the way to functional, i.e., magnetic nanoparticles where the size, shape, and iron oxide concentration can be controlled opening a range of possible applications.
NASA Astrophysics Data System (ADS)
Li, Ling; Shen, Yi; Wang, Zhaomei
2017-07-01
We prepared a 3D monolith by integrating graphite nanosheet encapsulated iron nanoparticles (Fe@GNS) into graphite felt (GF) supports. The structural properties of the resulting Fe@GNS/GF monolith are characterized by x-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy and N2 adsorption-desorption isotherms. The Fe@GNS/GF monoliths are utilized as a bifunctional sorbent and catalyst for water remediation. Using Congo red and methyl violet 2B as model pollutants, the sorption and catalytic performance of the Fe@GNS/GF composite are examined. The Fe@GNS/GF monolith possesses maximum sorption capacities of 177 and 142 mg g-1 for the sorption of CR and MV-2B, respectively. It also exhibits rate constants of 0.0563 and 0.0464 min-1 for the catalytic degradation of CR and MV-2B, respectively. As a proof of concept, the Fe@GNS/GF is successfully utilized to decontaminate simulated organic waste water via a combination of sorption and catalytic degradation processes.
Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature.
Huang, Yang; Bando, Yoshio; Tang, Chengchun; Zhi, Chunyi; Terao, Takeshi; Dierre, Benjamin; Sekiguchi, Takashi; Golberg, Dmitri
2009-02-25
Boron nitride (BN) microtubes were synthesized in a vertical induction furnace using Li(2)CO(3) and B reactants. Their structures and morphologies were investigated using x-ray diffraction, scanning and transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The microtubes have diameters of 1-3 microm, lengths of up to hundreds of micrometers, and well-structured ultrathin walls only approximately 50 nm thick. A mechanism combining the vapor-liquid-solid (VLS) and template self-sacrificing processes is proposed to explain the formation of these novel one-dimensional microstructures, in which the Li(2)O-B(2)O(3) eutectic reaction plays an important role. Cathodoluminescence studies show that even at room temperature the thin-walled BN microtubes can possess an intense band-edge emission at approximately 216.5 nm, which is distinct compared with other BN nanostructures. The study suggests that the thin-walled BN microtubes should be promising for constructing compact deep UV devices and find potential applications in microreactors and microfluidic and drug delivery systems.
Large MOEMS diffraction grating results providing an EC-QCL wavelength scan of 20%
NASA Astrophysics Data System (ADS)
Grahmann, Jan; Merten, André; Herrmann, Andreas; Ostendorf, Ralf; Bleh, Daniela; Drabe, Christian; Kamenz, Jörg
2015-02-01
Experimental results of a large scanning grating with a diameter of 5mm and 1 kHz scan frequency are discussed. An optical diffraction grating is fabricated on a mirror single crystal silicon plate to scan the first diffraction order in the MIR-wavelength range over a quantum cascade laser facet. Special emphasis is on the development of the grating technology module to integrate it with high accuracy and reproducibility into the IPMS AME75 process flow. The principle EC-QCL setup with the scanning grating is described and first measurement results concerning laser output power and tuning range are presented.
Fabrication, characterization and fracture study of a machinable hydroxyapatite ceramic.
Shareef, M Y; Messer, P F; van Noort, R
1993-01-01
In this study the preparation of a machinable hydroxyapatite from mixtures of a fine, submicrometer powder and either a coarse powder composed of porous aggregates up to 50 microns or a medium powder composed of dense particles of 3 microns median size is described. These were characterized using X-ray diffraction, transmission and scanning electron microscopy and infra-red spectroscopy. Test-pieces were formed by powder pressing and slip casting mixtures of various combinations of the fine, medium and coarse powders. The fired test-pieces were subjected to measurements of firing shrinkage, porosity, bulk density, tensile strength and fracture toughness. The microstructure and composition were examined using scanning electron microscopy and X-ray diffraction. For both processing methods, a uniform interconnected microporous structure was produced of a high-purity hydroxyapatite. The maximum tensile strength and fracture toughness that could be attained while retaining machinability were 37 MPa and 0.8 MPa m1/2 respectively.
Prévot, Geoffroy; Hogan, Conor; Leoni, Thomas; Bernard, Romain; Moyen, Eric; Masson, Laurence
2016-12-30
We report a combined grazing incidence x-ray diffraction (GIXD), scanning tunneling microscopy (STM), and density-functional theory (DFT) study which clearly elucidates the atomic structure of the Si nanoribbons grown on the missing-row reconstructed Ag(110) surface. Our study allows us to discriminate between the theoretical models published in the literature, including the most stable atomic configurations and those based on a missing-row reconstructed Ag(110) surface. GIXD measurements unambiguously validate the pentamer model grown on the reconstructed surface, obtained from DFT. This pentamer atomistic model accurately matches the high-resolution STM images of the Si nanoribbons adsorbed on Ag(110). Our study closes the long-debated atomic structure of the Si nanoribbons grown on Ag(110) and definitively excludes a honeycomb structure similar to that of freestanding silicene.
Sologub, Oksana; Salamakha, Leonid; Rogl, Peter; Stöger, Berthold; Bauer, Ernst; Bernardi, Johannes; Giester, Gerald; Waas, Monika; Svagera, Robert
2015-11-16
On the basis of a detailed study applying X-ray single-crystal and powder diffraction, differential scanning calorimetry, and scanning electron microscopy analysis, it was possible to resolve existing uncertainties in the Pt-rich section (≥65 atom % Pt) of the binary Pt-B phase diagram above 600 °C. The formation of a unique structure has been observed for Pt2B [X-ray single-crystal data: space group C2/m, a = 1.62717(11) nm, b = 0.32788(2) nm, c = 0.44200(3) nm, β = 104.401(4)°, RF2 = 0.030]. Within the homogeneity range of "Pt3B", X-ray powder diffraction phase analysis prompted two structural modifications as a function of temperature. The crystal structure of "hT-Pt3B" complies with the hitherto reported structure of anti-MoS2 [space group P63/mmc, a = 0.279377(2) nm, c = 1.04895(1) nm, RF = 0.075, RI = 0.090]. The structure of the new "[Formula: see text]T-Pt3B" is still unknown. The formation of previously reported Pt∼4B has not been confirmed from binary samples. Exploration of the Pt-rich section of the Pt-Cu-B system at 600 °C revealed a new ternary compound, Pt12CuB6-y [X-ray single-crystal data: space group Im3̅, a = 0.75790(2) nm, y = 3, RF2 = 0.0129], which exhibits the filled WAl12-type structure accommodating boron in the interstitial trigonal-prismatic site 12e. The isotypic platinum-aluminum-boride was synthesized and studied. The solubility of copper in binary platinum borides has been found to attain ∼7 atom % Cu for Pt2B but to be insignificant for "[Formula: see text]T-Pt3B". The architecture of the new Pt2B structure combines puckered layers of boron-filled and empty [Pt6] octahedra (anti-CaCl2-type fragment) alternating along the x axis with a double layer of boron-semifilled [Pt6] trigonal prisms interbedded with a layer of empty tetrahedra and tetragonal pyramids (B-deficient α-T[Formula: see text]I fragment). Assuming boron vacancies ordering (space group R3), the Pt12CuB6-y structure exhibits serpentine-like columns of edge-connected boron-filled [Pt6] trigonal prisms running infinitely along the z axis and embedding the icosahedrally coordinated Cu atom. Pt2B, (Pt1-yCuy)2B (y = 0.045), and Pt12CuB6-y (y = 3) behave metallically, as revealed by temperature-dependent electrical resistivity measurements.
Fan, Jiadong; Sun, Zhibin; Zhang, Jian; Huang, Qingjie; Yao, Shengkun; Zong, Yunbing; Kohmura, Yoshiki; Ishikawa, Tetsuya; Liu, Hong; Jiang, Huaidong
2015-06-16
Novel coherent diffraction microscopy provides a powerful lensless imaging method to obtain a better understanding of the microorganism at the nanoscale. Here we demonstrated quantitative imaging of intact unstained magnetotactic bacteria using coherent X-ray diffraction microscopy combined with an iterative phase retrieval algorithm. Although the signal-to-noise ratio of the X-ray diffraction pattern from single magnetotactic bacterium is weak due to low-scattering ability of biomaterials, an 18.6 nm half-period resolution of reconstructed image was achieved by using a hybrid input-output phase retrieval algorithm. On the basis of the quantitative reconstructed images, the morphology and some intracellular structures, such as nucleoid, polyβ-hydroxybutyrate granules, and magnetosomes, were identified, which were also confirmed by scanning electron microscopy and energy dispersive spectroscopy. With the benefit from the quantifiability of coherent diffraction imaging, for the first time to our knowledge, an average density of magnetotactic bacteria was calculated to be ∼1.19 g/cm(3). This technique has a wide range of applications, especially in quantitative imaging of low-scattering biomaterials and multicomponent materials at nanoscale resolution. Combined with the cryogenic technique or X-ray free electron lasers, the method could image cells in a hydrated condition, which helps to maintain their natural structure.
Cho, Bum Hwi; Ko, Weon Bae
2013-11-01
ZrO2 nanoparticles were synthesized by combining a solution containing zinconyl chloride in distilled water with a NH4OH solution under microwave irradiation. Graphene and ZrO2 nanocomposites were synthesized in an electric furnace at 700 degrees C for 2 hours. The heated graphene-ZrO2 nanocomposites were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. In addition, UV-vis spectrophotometry was used to evaluate the heated graphene-ZrO2 nanocomposites as a catalyst in the photocatalytic degradation of organic dyes. The photocatalytic effect of the heated graphene-ZrO2 nanocomposites was compared with that of unheated graphene nanoparticles, heated graphene nanoparticles, and unheated graphene-ZrO2 nanocomposites in organic dyes (methylene blue, methyl orange, and rhodamine B) under ultraviolet light at 254 nm.
Exploring transmission Kikuchi diffraction using a Timepix detector
NASA Astrophysics Data System (ADS)
Vespucci, S.; Winkelmann, A.; Mingard, K.; Maneuski, D.; O'Shea, V.; Trager-Cowan, C.
2017-02-01
Electron backscatter diffraction (EBSD) is a well-established scanning electron microscope (SEM)-based technique [1]. It allows the non-destructive mapping of the crystal structure, texture, crystal phase and strain with a spatial resolution of tens of nanometers. Conventionally this is performed by placing an electron sensitive screen, typically consisting of a phosphor screen combined with a charge coupled device (CCD) camera, in front of a specimen, usually tilted 70° to the normal of the exciting electron beam. Recently, a number of authors have shown that a significant increase in spatial resolution is achievable when Kikuchi diffraction patterns are acquired in transmission geometry; that is when diffraction patterns are generated by electrons transmitted through an electron-transparent, usually thinned, specimen. The resolution of this technique, called transmission Kikuchi diffraction (TKD), has been demonstrated to be better than 10 nm [2,3]. We have recently demonstrated the advantages of a direct electron detector, Timepix [4,5], for the acquisition of standard EBSD patterns [5]. In this article we will discuss the advantages of Timepix to perform TKD and for acquiring spot diffraction patterns and more generally for acquiring scanning transmission electron microscopy micrographs in the SEM. Particularly relevant for TKD, is its very compact size, which allows much more flexibility in the positioning of the detector in the SEM chamber. We will furthermore show recent results using Timepix as a virtual forward scatter detector, and will illustrate the information derivable on producing images through processing of data acquired from different areas of the detector. We will show results from samples ranging from gold nanoparticles to nitride semiconductor nanorods.
Wang, Peng; Behan, Gavin; Kirkland, Angus I; Nellist, Peter D; Cosgriff, Eireann C; D'Alfonso, Adrian J; Morgan, Andrew J; Allen, Leslie J; Hashimoto, Ayako; Takeguchi, Masaki; Mitsuishi, Kazutaka; Shimojo, Masayuki
2011-06-01
Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. Copyright © 2010 Elsevier B.V. All rights reserved.
New Coll-HA/BT composite materials for hard tissue engineering.
Zanfir, Andrei Vlad; Voicu, Georgeta; Busuioc, Cristina; Jinga, Sorin Ion; Albu, Madalina Georgiana; Iordache, Florin
2016-05-01
The integration of ceramic powders in composite materials for bone scaffolds can improve the osseointegration process. This work was aimed to the synthesis and characterization of new collagen-hydroxyapatite/barium titanate (Coll-HA/BT) composite materials starting from barium titanate (BT) nanopowder, hydroxyapatite (HA) nanopowder and collagen (Coll) gel. BT nanopowder was produced by combining two wet-chemical approaches, sol-gel and hydrothermal methods. The resulting materials were characterized in terms of phase composition and microstructure by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. Moreover, the biocompatibility and bioactivity of the composite materials were assessed by in vitro tests. The synthesized BT particles exhibit an average size of around 35 nm and a spherical morphology, with a pseudo-cubic or tetragonal symmetry. The diffraction spectra of Coll-HA and Coll-HA/BT composite materials indicate a pronounced interaction between Col and the mineral phases, meaning a good mineralization of Col fibres. As well, the in vitro tests highlight excellent osteoinductive properties for all biological samples, especially for Coll-HA/BT composite materials, fact that can be attributed to the ferromagnetic properties of BT. Copyright © 2016 Elsevier B.V. All rights reserved.
Preparation of carbon nanotubes/BiOBr composites with higher visible light photocatalytic activity
NASA Astrophysics Data System (ADS)
You, Y. J.; Zhang, Y. X.; Li, R. R.; Li, C. H.
2014-12-01
A novel flower-like photocatalyst CNTs/BiOBr was successfully prepared by a facile hydrothermal method. The morphology and the physicochemical properties of the prepared samples were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDX), and UV-visible diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity was evaluated by degradation of Rhodamin B (RhB) dye. It was demonstrated that CNTs/BiOBr photocatalyst could effectively photodegrade RhB under visible light (VL) irradiation.
NASA Astrophysics Data System (ADS)
Al-Wahish, Amal; Al-Binni, Usama; Bridges, C. A.; Huq, A.; Bi, Z.; Paranthaman, M. P.; Tang, S.; Kaiser, H.; Mandrus, D.
Acceptor-doped lanthanum orthophosphates are potential candidate electrolytes for proton ceramic fuel cells. We combined neutron powder diffraction (NPD) at elevated temperatures up to 800° C , X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) to investigate the crystal structure, defect structure, thermal stability and surface topography. NPD shows an average bond length distortion in the hydrated samples. We employed Quasi-Elastic Neutron Scattering (QENS) and electrochemical impedance spectroscopy (EIS) to study the proton dynamics of the rare-earth phosphate proton conductors 4.2% Sr/Ca-doped LaPO4. We determined the bulk diffusion and the self-diffusion coefficients. Our results show that QENS and EIS are probing fundamentally different proton diffusion processes. Supported by the U.S. Department of Energy.
Okamoto, Norihiko L; Tanaka, Katsushi; Yasuhara, Akira; Inui, Haruyuki
2014-04-01
The structure of the δ1p phase in the iron-zinc system has been refined by single-crystal synchrotron X-ray diffraction combined with scanning transmission electron microscopy. The large hexagonal unit cell of the δ1p phase with the space group of P63/mmc comprises more or less regular (normal) Zn12 icosahedra, disordered Zn12 icosahedra, Zn16 icosioctahedra and dangling Zn atoms that do not constitute any polyhedra. The unit cell contains 52 Fe and 504 Zn atoms so that the compound is expressed with the chemical formula of Fe13Zn126. All Fe atoms exclusively occupy the centre of normal and disordered icosahedra. Iron-centred normal icosahedra are linked to one another by face- and vertex-sharing forming two types of basal slabs, which are bridged with each other by face-sharing with icosioctahedra, whereas disordered icosahedra with positional disorder at their vertex sites are isolated from other polyhedra. The bonding features in the δ1p phase are discussed in comparison with those in the Γ and ζ phases in the iron-zinc system.
Wei, Dan; Chen, Lixin; Xu, Tingting; He, Weiqi; Wang, Yi
2016-06-21
A preceramic polymer of B,B',B''-(dimethyl)ethyl-acrylate-silyloxyethyl-borazine was synthesized by three steps from a molecular single-source precursor and characterized by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectrometry. Six-member borazine rings and acrylate groups were effectively introduced into the preceramic polymer to activate UV photo-induced polymerization. Photo-Differential Scanning Calorimetry (Photo-DSC) and real-time FTIR techniques were adapted to investigate the photo-polymerization process. The results revealed that the borazine derivative exhibited dramatic activity by UV polymerization, the double-bond conversion of which reached a maximum in 40 s. Furthermore, the properties of the pyrogenetic products were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD), which proved the ceramic annealed at 1100 °C retained the amorphous phase.
Madden, Jeremy T.; Toth, Scott J.; Dettmar, Christopher M.; Newman, Justin A.; Oglesbee, Robert A.; Hedderich, Hartmut G.; Everly, R. Michael; Becker, Michael; Ronau, Judith A.; Buchanan, Susan K.; Cherezov, Vadim; Morrow, Marie E.; Xu, Shenglan; Ferguson, Dale; Makarov, Oleg; Das, Chittaranjan; Fischetti, Robert; Simpson, Garth J.
2013-01-01
Nonlinear optical (NLO) instrumentation has been integrated with synchrotron X-ray diffraction (XRD) for combined single-platform analysis, initially targeting applications for automated crystal centering. Second-harmonic-generation microscopy and two-photon-excited ultraviolet fluorescence microscopy were evaluated for crystal detection and assessed by X-ray raster scanning. Two optical designs were constructed and characterized; one positioned downstream of the sample and one integrated into the upstream optical path of the diffractometer. Both instruments enabled protein crystal identification with integration times between 80 and 150 µs per pixel, representing a ∼103–104-fold reduction in the per-pixel exposure time relative to X-ray raster scanning. Quantitative centering and analysis of phenylalanine hydroxylase from Chromobacterium violaceum cPAH, Trichinella spiralis deubiquitinating enzyme TsUCH37, human κ-opioid receptor complex kOR-T4L produced in lipidic cubic phase (LCP), intimin prepared in LCP, and α-cellulose samples were performed by collecting multiple NLO images. The crystalline samples were characterized by single-crystal diffraction patterns, while α-cellulose was characterized by fiber diffraction. Good agreement was observed between the sample positions identified by NLO and XRD raster measurements for all samples studied. PMID:23765294
Optimal lens design and use in laser-scanning microscopy
Negrean, Adrian; Mansvelder, Huibert D.
2014-01-01
In laser-scanning microscopy often an off-the-shelf achromatic doublet is used as a scan lens which can reduce the available diffraction-limited field-of-view (FOV) by a factor of 3 and introduce chromatic aberrations that are scan angle dependent. Here we present several simple lens designs of superior quality that fully make use of high-NA low-magnification objectives, offering diffraction-limited imaging over a large FOV and wavelength range. We constructed a two-photon laser-scanning microscope with optimized custom lenses which had a near diffraction limit point-spread-function (PSF) with less than 3.6% variation over a 400 µm FOV and less than 0.5 µm lateral color between 750 and 1050 nm. PMID:24877017
In search of the elusive IrB 2: Can mechanochemistry help?
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; ...
2015-10-20
We produced hexagonal ReB 2-type IrB 2 diboride and orthorhombic IrB monoboride phases, that were previously unknown and saw them produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. Additionally, scanning electron microscopy and transmission electron microscopy were employed, along with XRD, to further characterize the microstructure of the phases produced.
In search of the elusive IrB 2: Can mechanochemistry help?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina
We produced hexagonal ReB 2-type IrB 2 diboride and orthorhombic IrB monoboride phases, that were previously unknown and saw them produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. Additionally, scanning electron microscopy and transmission electron microscopy were employed, along with XRD, to further characterize the microstructure of the phases produced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Subrata Kumar, E-mail: subratagh82@gmail.com; Bandyopadhyay, Kaushik; Saha, Partha
2014-07-01
In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO{sub 2} and B{sub 4}C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities.more » The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB{sub 2} and Al{sub 2}O{sub 3} in the composite.« less
NASA Astrophysics Data System (ADS)
Song, R.; Li, J.; Shao, J. Z.; Bai, L. L.; Chen, J. L.; Qu, C. C.
2015-11-01
The Ti2Ni/α(Ti) dual-phase coating reinforced by TiB and TiC was fabricated on the Ti6Al4V substrate by laser cladding. Phase constituents were confirmed by a theoretical prediction combined with X-ray diffraction (XRD) analyses. From the surface to the bottom of the coating, a regular evolution of the reinforcements' microstructure, namely TiCp+(TiB+TiC)e, (TiB+TiC)e and TiBp+(TiB+TiC)e (p and e were the abbreviations of primary and eutectic, respectively), was investigated by scanning electron microscopy (SEM). The coating possessed the higher microhardness than that of the substrate. An in situ dynamic method (in situ continuing tests at different time intervals) was designed to reveal wear behaviors at different wear stages. A quantitative calculation formula was established by a mathematic model to predict wear losses under different sliding time and applied loads in a definite precision. The wear mechanism was transformed from brittle debonding (at 10 N) to the joint action of brittle debonding and micro-cutting (at 20 N and 30 N) due to the microstructural evolution across the depth from the surface of the coating.
Coherent x-ray zoom condenser lens for diffractive and scanning microscopy.
Kimura, Takashi; Matsuyama, Satoshi; Yamauchi, Kazuto; Nishino, Yoshinori
2013-04-22
We propose a coherent x-ray zoom condenser lens composed of two-stage deformable Kirkpatrick-Baez mirrors. The lens delivers coherent x-rays with a controllable beam size, from one micrometer to a few tens of nanometers, at a fixed focal position. The lens is suitable for diffractive and scanning microscopy. We also propose non-scanning coherent diffraction microscopy for extended objects by using an apodized focused beam produced by the lens with a spatial filter. The proposed apodized-illumination method will be useful in highly efficient imaging with ultimate storage ring sources, and will also open the way to single-shot coherent diffraction microscopy of extended objects with x-ray free-electron lasers.
2-Dimensional beamsteering using dispersive deflectors and wavelength tuning.
Chan, Trevor; Myslivets, Evgeny; Ford, Joseph E
2008-09-15
We introduce a 2D beamscanner which is controlled by wavelength tuning. Two passive dispersive devices are aligned orthogonally to deflect the optical beam in two dimensions. We provide a proof of principle demonstration by combining an arrayed waveguide grating with a free space optical grating and using various input sources to characterize the beamscanner. This achieved a discrete 10.3 degrees by 11 degrees output field of view with attainable angles existing on an 8 by 6 grid of directions. The entire range was reached by scanning over a 40 nm wavelength range. We also analyze an improved system combining a virtually imaged phased array with a diffraction grating. This device is much more compact and produces a continuous output scan in one direction while being discrete in the other.
In search of the elusive IrB{sub 2}: Can mechanochemistry help?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Zhilin; Blair, Richard G.; Department of Physics, University of Central Florida, Orlando, FL 32816
The previously unknown hexagonal ReB{sub 2}-type IrB{sub 2} diboride and orthorhombic IrB monoboride phases were produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. In addition to XRD, scanning electron microscopy and transmission electron microscopy were employed to further characterize the microstructure of the phases produced. - Graphical abstract: ReB{sub 2}-type IrB{submore » 2} and a new IrB have been successfully synthesized for the first time using mechanochemical method. Crystal structures of IrB{sub 2} and IrB were studied by synchrotron X-ray diffraction. Microstructures of the new phases were characterized by SEM and TEM. - Highlights: • ReB{sub 2}-type IrB{sub 2} and a new IrB have been synthesized by mechanochemical method. • Crystal structures of IrB{sub 2} and IrB were studied by synchrotron XRD. • Microstructures of the new phases were characterized by SEM and TEM.« less
Riekes, Manoela K; Dereymaker, Aswin; Berben, Philippe; Augustijns, Patrick; Stulzer, Hellen K; Van den Mooter, Guy
2017-03-30
Enteric-coated fixed-dose combinations of ezetimibe and lovastatin were prepared by fluid bed coating aiming to avoid the acidic conversion of lovastatin to its hydroxyacid derivative. In a two-step process, sucrose beads were layered with a glass solution of ezetimibe, lovastatin and Soluplus ® , top-coated with an enteric layer. The impact of different bead size, enteric polymers (Eudragit L100 ® and Eudragit L100-55 ® ) and coating time was investigated. Samples were evaluated by X-ray diffraction, scanning electron microscopy, laser diffraction and in vitro studies in 0.1M HCl and phosphate buffer pH 6.8. Results showed that smaller beads tend to agglomerate and release was jeopardized in acidic conditions, most likely due to irregular coating layer. Eudragit L100-55 ® required longer processing, but thinner coating layers provided lower drug release. Both polymers showed low drug release in acidic environment and fast release at pH 6.8. The off-line measurement of the coating thickness determined the ideal coating time as 15 and 30min for Eudragit L100-55 ® and Eudragit L100 ® -based samples, respectively. Both compounds were molecularly dispersed in Soluplus ® , and Eudragit L100 ® formulations showed concave pores on the surface, presenting higher drug release in acidic conditions. Stability studies after 6 months showed unaltered physical properties and drug release. Copyright © 2017 Elsevier B.V. All rights reserved.
Observations on the Role of Hydrogen in Facet Formation in Near-alpha Titanium (Preprint)
2011-05-01
using quantitative tilt fractography and electron backscatter diffraction while facet topography was examined using ultra high resolution scanning...quantitative tilt fractography and electron backscatter diffraction while facet topography was examined using ultra high resolution scanning electron...tilt fractography / electron backscatter diffraction (EBSD) technique in which both the crystallographic orientation of the fractured grain and the
Tao, Hu-Chun; Lei, Tao; Shi, Gang; Sun, Xiao-Nan; Wei, Xue-Yan; Zhang, Li-Juan; Wu, Wei-Min
2014-01-15
Based on environmental and energetic analysis, a novel combined approach using bioelectrochemical systems (BES) followed by electrolysis reactors (ER) was tested for heavy metals removal from fly ash leachate, which contained high detectable levels of Zn, Pb and Cu according to X-ray diffraction analysis. Acetic acid was used as the fly ash leaching agent and tested under various leaching conditions. A favorable condition for the leaching process was identified to be liquid/solid ratio of 14:1 (w/w) and leaching duration 10h at initial pH 1.0. It was confirmed that the removal of heavy metals from fly ash leachate with the combination of BESs and ER is feasible. The metal removal efficiency was achieved at 98.5%, 95.4% and 98.1% for Cu(II), Zn(II), and Pb(II), respectively. Results of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) indicated that Cu(II) was reduced and recovered mainly as metal Cu on cathodes related to power production, while Zn(II) and Pb(II) were not spontaneously reduced in BESs without applied voltage and basically electrolyzed in the electrolysis reactors. Copyright © 2013 Elsevier B.V. All rights reserved.
Tungsten oxide--fly ash oxide composites in adsorption and photocatalysis.
Visa, Maria; Bogatu, Cristina; Duta, Anca
2015-05-30
A novel composite based on tungsten oxide and fly ash was hydrothermally synthetized to be used as substrate in the advanced treatment of wastewaters with complex load resulted from the textile industry. The proposed treatment consists of one single step process combining photocatalysis and adsorption. The composite's crystalline structure was investigated by X-ray diffraction and FTIR, while atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to analyze the morphology. The adsorption capacity and photocatalytic properties of the material were tested on mono- and multi-pollutants systems containing two dyes (Bemacid Blau - BB and Bemacid Rot - BR) and one heavy metal ion-Cu(2+), and the optimized process conditions were identified. The results indicate better removal efficiencies using the novel composite material in the combined adsorption and photocatalysis, as compared to the separated processes. Dyes removal was significantly enhanced in the photocatalytic process by adding hydrogen peroxide and the mechanism was presented and discussed. The pseudo second order kinetics model best fitted the experimental data, both in the adsorption and in the combined processes. The kinetic parameters were calculated and correlated with the properties of the composite substrate. Copyright © 2015 Elsevier B.V. All rights reserved.
Ultrasonic degradation of aqueous phenolsulfonphthalein (PSP) in the presence of nano-Fe/H2O2.
Ayanda, Olushola S; Nelana, Simphiwe M; Naidoo, Eliazer B
2018-10-01
In this study, nano iron (nano-Fe) was successfully synthesized by sodium borohydride reduction of ferric chloride solution to enhance the ultrasonic degradation of phenolsulfonphthalein (PSP). The nano-Fe was characterized by scanning electron microscopy - energy dispersive spectroscopy (SEM-EDX), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), attenuated total reflection - Fourier transform infrared spectroscopy (ATR-FTIR), and Brunauer, Emmett and Teller (BET) surface area determination. Experimental results demonstrated that a combined ultrasonic/nano-Fe/H 2 O 2 system was more effective for PSP removal in combination than they were individually and there was a significant difference between the combined and single processes. The ultrasonic/nano-Fe/H 2 O 2 degradation follows the Langmuir-Hinshelwood (L-H) kinetic model. The addition of nano-Fe and H 2 O 2 to the ultrasonic reactor greatly accelerated the degradation of PSP (25 mg/L) from 12.5% up to 96.5%. These findings indicated that ultrasonic degradation in the presence of nano-Fe and H 2 O 2 is a promising and efficient technique for the elimination of emerging micropollutants from aqueous solution. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dai, Zongbei; Borghetti, Patrizia; Mouchaal, Younes; Chenot, Stéphane; David, Pascal; Jupille, Jacques; Cabailh, Gregory; Lazzari, Rémi
2018-06-01
By combining Scanning Tunnelling Microscopy, Low Energy Electron Diffraction and X-ray Photoelectron Spectroscopy, it was found that the surface of A2 random alloy Fe0.85Al0.15(1 1 0) is significantly influenced by the segregation of aluminium but also of carbon bulk impurities. Below ∼ 900 K, carbon segregates in the form of self-organized protruding stripes separated by ∼ 5 nm that run along the [ 0 0 1 ] B bulk direction and cover up to 34% of the surface. Their C 1s spectroscopic signature that is dominated by graphitic carbon peaks around 900 K. Above this temperature, the surface carbon concentration decays by redissolution in the bulk, whereas an intense aluminium segregation is observed giving rise to a hexagonal superstructure. The present findings is interpreted by a competitive segregation between the two elements.
In-vacuum thermolysis of ethane 1,2-diamineborane for the synthesis of ternary borocarbonitrides
NASA Astrophysics Data System (ADS)
Massimi, Lorenzo; Grazia Betti, Maria; Caramazza, Simone; Postorino, Paolo; Mariani, Carlo; Latini, Alessandro; Leardini, Fabrice
2016-10-01
High-temperature (1000 °C) thermolytic decomposition of ethane 1,2-diamineborane (BH3NH2CH2CH2NH2BH3) deposited onto a Cu foil has been performed in an ultra-high-vacuum environment. A combined thermolytic, structural (x-ray diffraction), microscopic (scanning electron microscopy) and spectroscopic (Raman, x-ray photoemission spectroscopy) analysis, has identified a ternary borocarbonitride (BCN) compound as a result of the process. The obtained BCN compound is nanocrystalline, surrounded by crystallites of ammonium hydroxide borate hydrate. The ternary compound presents a 0.2:0.6:0.2 B:C:N composition in the bulk and 0.11:0.76:0.13 stoichiometry at the very surface, richer in C-C networks with respect to the bulk. Furthermore, the resulting BCN compound does not show oxidation at the surface due to the in-vacuum thermolysis of the single precursor.
Zhang, Ping; Wang, Tianqi; Zhang, Longlong; Wu, Daishe; Frost, Ray L
2015-12-05
Hydrocalumite (CaAl-LDH-Cl) interacted with a natural anionic surfactant, sodium hexadecyl sulfate (SHS), was performed using an intercalation method. To understand the intercalation behavior and characterize the resulting products, powder X-ray diffraction (XRD), scan electron microscopy (SEM) and mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique were used. The XRD analysis indicated that SHS was intercalated into CaAl-LDH-Cl successfully, resulting in an expansion of the interlayer (from 0.78 nm to 2.74 nm). The bands of C-H stretching vibrations of SHS were observed in the near-infrared spectra, which indicated that the resulting products were indeed CaAl-LDH-SHS. In addition, the bands of water stretching vibrations and OH groups shifted to higher wavenumbers when SHS was intercalated into CaAl-LDH-Cl interlayer space. Copyright © 2015 Elsevier B.V. All rights reserved.
In-vacuum thermolysis of ethane 1,2-diamineborane for the synthesis of ternary borocarbonitrides.
Massimi, Lorenzo; Betti, Maria Grazia; Caramazza, Simone; Postorino, Paolo; Mariani, Carlo; Latini, Alessandro; Leardini, Fabrice
2016-10-28
High-temperature (1000 °C) thermolytic decomposition of ethane 1,2-diamineborane (BH3NH2CH2CH2NH2BH3) deposited onto a Cu foil has been performed in an ultra-high-vacuum environment. A combined thermolytic, structural (x-ray diffraction), microscopic (scanning electron microscopy) and spectroscopic (Raman, x-ray photoemission spectroscopy) analysis, has identified a ternary borocarbonitride (BCN) compound as a result of the process. The obtained BCN compound is nanocrystalline, surrounded by crystallites of ammonium hydroxide borate hydrate. The ternary compound presents a 0.2:0.6:0.2 B:C:N composition in the bulk and 0.11:0.76:0.13 stoichiometry at the very surface, richer in C-C networks with respect to the bulk. Furthermore, the resulting BCN compound does not show oxidation at the surface due to the in-vacuum thermolysis of the single precursor.
Time-resolved scanning electron microscopy with polarization analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frömter, Robert, E-mail: rfroemte@physik.uni-hamburg.de; Oepen, Hans Peter; The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg
2016-04-04
We demonstrate the feasibility of investigating periodically driven magnetization dynamics in a scanning electron microscope with polarization analysis based on spin-polarized low-energy electron diffraction. With the present setup, analyzing the time structure of the scattering events, we obtain a temporal resolution of 700 ps, which is demonstrated by means of imaging the field-driven 100 MHz gyration of the vortex in a soft-magnetic FeCoSiB square. Owing to the efficient intrinsic timing scheme, high-quality movies, giving two components of the magnetization simultaneously, can be recorded on the time scale of hours.
Publications - GMC 58 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 58 Publication Details Title: X-ray diffraction and scanning electron microscopy mineral , Michael, and Core Laboratories, 1985, X-ray diffraction and scanning electron microscopy mineral analyses
NASA Astrophysics Data System (ADS)
Li, Zhen; Gao, Yilong; Wu, Jianxiang; Zhang, Wei; Tan, Yueyue; Tang, Bohejin
2016-09-01
Ni-B/Zeolitic Imidazolate Frameworks-8 (Ni-B/ZIF-8) is synthesized via a series of solvothermal, incipient wetness impregnation and chemical reduction methods. The ZIF-8 serves as the host for the growth of Ni-B forming a Ni-B/ZIF-8 composite. Characterization by X-ray diffraction and Transmission electron microscope reveals the dispersion of Ni-B in ZIF-8. As electrode materials for supercapacitors, ZIF-8, Ni-B and Ni-B/ZIF-8 electrodes exhibit specific capacitances of 147, 563 and 866 F g-1, respectively at a scan rate of 5 mV s-1 and good stability over 500 cycles. In particular, Ni-B/ZIF-8 is a promising material for supercapacitors.
NASA Astrophysics Data System (ADS)
Amonpattaratkit, P.; Jantaratana, P.; Ananta, S.
2015-09-01
In this work, the investigation of phase formation, crystal structure, microstructure, microchemical composition and magnetic properties of perovskite (1-x)PFN-xPZT (x=0.1-0.5) multiferroic ceramics derived from a combination of perovskite stabilizer PZT and a wolframite-type FeNbO4 B-site precursor was carried out by using a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analyzer and vibrating sample magnetometer (VSM) techniques. The addition of PZT phase and its concentration have been found to have pronounced effects on the perovskite phase formation, densification, grain growth and magnetic properties of the sintered ceramics. XRD spectra from these ceramics reveal transformation of the (pseudo) cubic into the tetragonal perovskite structure. When increasing PZT content, the degree of perovskite phase formation and the tetragonality value of the ceramics increase gradually accompanied with the variation of cell volume, the M-H hysteresis loops, however, become narrower accompanied by the decrease of maximum magnetization (Mmax), remanent polarization (Mr), and coercive field (HC).
High resolution EUV monochromator/spectrometer
Koike, Masako
1996-01-01
This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution.
High resolution EUV monochromator/spectrometer
Koike, Masako
1996-06-18
This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution. 10 figs.
Rhoades, Glendon W; Belev, George S; Chapman, L Dean; Wiebe, Sheldon P; Cooper, David M; Wong, Adelaine TF; Rosenberg, Alan M
2015-01-01
The objective of this project was to develop and test a new technology for imaging growing joints by means of diffraction-enhanced imaging (DEI) combined with CT and using a synchrotron radiation source. DEI–CT images of an explanted 4-wk-old piglet stifle joint were acquired by using a 40-keV beam. The series of scanned slices was later ‘stitched’ together, forming a 3D dataset. High-resolution DEI-CT images demonstrated fine detail within all joint structures and tissues. Striking detail of vasculature traversing between bone and cartilage, a characteristic of growing but not mature joints, was demonstrated. This report documents for the first time that DEI combined with CT and a synchrotron radiation source can generate more detailed images of intact, growing joints than can currently available conventional imaging modalities. PMID:26310464
Measurements and Diagnostics of Diamond Films and Coatings
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Wu, Richard L. C.
1999-01-01
The commercial potential of chemical-vapor-deposited (CVD) diamond films has been established and a number of applications have been identified through university, industry, and government research studies. This paper discusses the methodologies used for property measurement and diagnostic of CVD diamond films and coatings. Measurement and diagnostic techniques studied include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and friction examination. Each measurement and diagnostic technique provides unique information. A combination of techniques can provide the technical information required to understand the quality and properties of CVD diamond films, which are important to their application in specific component systems and environments. In this study the combination of measurement and diagnostic techniques was successfully applied to correlate deposition parameters and resultant diamond film composition, crystallinity, grain size, surface roughness, and coefficient of friction.
NASA Astrophysics Data System (ADS)
Wang, Jui-Kai; Kardon, Randy H.; Garvin, Mona K.
2015-03-01
In cases of optic-nerve-head edema, the presence of the swelling reduces the visibility of the underlying neural canal opening (NCO) within spectral-domain optical coherence tomography (SD-OCT) volumes. Consequently, traditional SD-OCT-based NCO segmentation methods often overestimate the size of the NCO. The visibility of the NCO can be improved using high-definition 2D raster scans, but such scans do not provide 3D contextual image information. In this work, we present a semi-automated approach for the segmentation of the NCO in cases of optic disc edema by combining image information from volumetric and high-definition raster SD-OCT image sequences. In particular, for each subject, five high-definition OCT B-scans and the OCT volume are first separately segmented, and then the five high-definition B-scans are automatically registered to the OCT volume. Next, six NCO points are placed (manually, in this work) in the central three high-definition OCT B-scans (two points for each central B-scans) and are automatically transferred into the OCT volume. Utilizing a combination of these mapped points and the 3D image information from the volumetric scans, a graph-based approach is used to identify the complete NCO on the OCT en-face image. The segmented NCO points using the new approach were significantly closer to expert-marked points than the segmented NCO points using a traditional approach (root mean square differences in pixels: 5.34 vs. 21.71, p < 0.001).
Structural and electrical properties of LiCo3/5Cu2/5VO4 ceramics
NASA Astrophysics Data System (ADS)
Ram, Moti
2010-05-01
The LiCo3/5Cu2/5VO4 compound is prepared by a solution-based chemical method and characterized by the techniques of X-ray diffraction, scanning electron microscopy and complex impedance spectroscopy. The X-ray diffraction study shows an orthorhombic unit cell structure of the material with lattice parameters a=13.8263 (30) Å, b=8.7051 (30) Å and c=3.1127 (30) Å. The nature of scanning electron micrographs of a sintered pellet of the material reveals that grains of unequal sizes (˜0.2-3 μm) present an average grain size with a polydisperse distribution on the surface of the sample. Complex plane diagrams indicate grain interior and grain boundary contributions to the electrical response in the material. The electrical conductivity study reveals that electrical conduction in the material is a thermally activated process. The frequency dependence of the a.c. conductivity obeys Jonscher’s universal law.
Analysis of submicron-sized niflumic acid crystals prepared by electrospray crystallization.
Ambrus, Rita; Radacsi, Norbert; Szunyogh, Tímea; van der Heijden, Antoine E D M; Ter Horst, Joop H; Szabó-Révész, Piroska
2013-03-25
Interest in submicron-sized drug particles has emerged from both laboratory and industrial perspectives in the last decade. Production of crystals in the nano size scale offers a novel way to particles for drug formulation solving formulation problems of drugs with low solubility in class II of the Biopharmaceutical Classification System. In this work niflumic acid nanoparticles with a size range of 200-800nm were produced by the novel crystallization method, electrospray crystallization. Their properties were compared to those from evaporative and anti-solvent crystallizations, using the same organic solvent, acetone. There is a remarkable difference in the product crystal size depending on the applied methods. The size and morphology were analyzed by scanning electron microscopy and laser diffraction. The structure of the samples was investigated using differential scanning calorimetry, Fourier-transformed infrared spectroscopy and X-ray powder diffraction. The particles produced using electrospray crystallization process were probably changing from amorphous to crystalline state after the procedure. Copyright © 2012 Elsevier B.V. All rights reserved.
[INVITED] Laser treatment of Inconel 718 alloy and surface characteristics
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Ali, H.; Al-Aqeeli, N.; Karatas, C.
2016-04-01
Laser surface texturing of Inconel 718 alloy is carried out under the high pressure nitrogen assisting gas. The combination of evaporation and melting at the irradiated surface is achieved by controlling the laser scanning speed and the laser output power. Morphological and metallurgical changes in the treated surface are analyzed using the analytical tools including optical, electron scanning, and atomic force microscopes, energy dispersive spectroscopy, and X-ray diffraction. Microhardnes and friction coefficient of the laser treated surface are measured. Residual stress formed in the surface region is determined from the X-ray diffraction data. Surface hydrophobicity of the laser treated layer is assessed incorporating the sessile drop method. It is found that laser treated surface is free from large size asperities including cracks and the voids. Surface microhardness increases significantly after the laser treatment process, which is attributed to the dense layer formation at the surface under the high cooling rates, dissolution of Laves phase in the surface region, and formation of nitride species at the surface. Residual stress formed is compressive in the laser treated surface and friction coefficient reduces at the surface after the laser treatment process. The combination of evaporation and melting at the irradiated surface results in surface texture composes of micro/nano-poles and pillars, which enhance the surface hydrophobicity.
Numerical investigations of the potential for laser focus sensors in micrometrology
NASA Astrophysics Data System (ADS)
Bischoff, Jörg; Mastylo, Rostyslav; Manske, Eberhard
2017-06-01
Laser focus sensors (LFS)1 attached to a scanning nano-positioning and measuring machine (NPMM) enable near diffraction limit resolution with very large measuring areas up to 200 x 200 mm1. Further extensions are planned to address wafer sizes of 8 inch and beyond. Thus, they are preferably suited for micro-metrology on large wafers. On the other hand, the minimum lateral features in state-of-the-art semiconductor industry are as small as a few nanometer and therefore far beyond the resolution limits of classical optics. New techniques such as OCD or ODP3,4 a.k.a. as scatterometry have helped to overcome these constraints considerably. However, scatterometry relies on regular patterns and therefore, the measurements have to be performed on special reference gratings or boxes rather than in-die. Consequently, there is a gap between measurement and the actual structure of interest which becomes more and more an issues with shrinking feature sizes. On the other hand, near-field approaches would also allow to extent the resolution limit greatly5 but they require very challenging controls to keep the working distance small enough to stay within the near field zone. Therefore, the feasibility and the limits of a LFS scanner system have been investigated theoretically. Based on simulations of laser focus sensor scanning across simple topographies, it was found that there is potential to overcome the diffraction limitations to some extent by means of vicinity interference effects caused by the optical interaction of adjacent topography features. We think that it might be well possible to reconstruct the diffracting profile by means of rigorous diffraction simulation based on a thorough model of the laser focus sensor optics in combination with topography diffraction 6 in a similar way as applied in OCD. The difference lies in the kind of signal itself which has to be modeled. While standard OCD is based on spectra, LFS utilizes height scan signals. Simulation results are presented for different types of topographies (dense vs. sparse, regular vs. single) with lateral features near and beyond the classical resolution limit. Moreover, the influence of topography height on the detectability is investigated. To this end, several sensor principles and polarization setups are considered such as a dual color pin hole sensor and a Foucault knife sensor. It is shown that resolution beyond the Abbe or Rayleigh limit is possible even with "classical" optical setups when combining measurements with sophisticated profile retrieval techniques and some a-priori knowledge. Finally, measurement uncertainties are derived based on perturbation simulations according to the method presented in 7.
Mihelj, Tea; Tomašić, Vlasta; Biliškov, Nikola; Liu, Feng
2014-04-24
18-crown-6 ether (18C6) complexes with the following anionic surfactants: sodium n-dodecylsulfate (18C6-NaDS), sodium 4-(1-pentylheptyl)benzenesulfonate (18C6-NaDBS); and potassium picrate (18C6-KP) were synthesized and studied in terms of their thermal and structural properties. Physico-chemical properties of new solid 1:1 coordination complexes were characterized by infrared (IR) spectroscopy, thermogravimetry and differential thermal analysis, differential scanning calorimetry, X-ray diffraction and microscopic observations. The strength of coordination between Na(+) and oxygen atoms of 18C6 ligand does not depend on anionic part of the surfactant, as established by thermodynamical parameters obtained by temperature-dependent IR spectroscopy. Each of these complexes exhibit different kinds of endothermic transitions in heating scan. Diffraction maxima obtained by SAXS and WAXS, refer the behavior of the compounds 18C6-NaDS and 18C6-NaDBS as smectic liquid crystalline. Distortion of 18C6-NaDS and 18C6-KP complexes occurs in two steps. Temperature of the decomplexation of solid crystal complex 18C6-KP is considerably higher than of mesophase complexes, 18C6-NaDS, and 18C6-NaDBS. The structural and liquid crystalline properties of novel 18-crown-ether complexes are function of anionic molecule geometry, type of chosen cation (Na(+), K(+)), as well as architecture of self-organized aggregates. A good combination of crown ether unit and amphiphile may provide a possibility for preparing new functionalized materials, opening the research field of ion complexation and of host-guest type behavior. Copyright © 2013 Elsevier B.V. All rights reserved.
Shi, Jiang W; Dai, Hong Z; Shen, Li; Ji, Yi D
2016-01-01
Objective: To assess radiation dose and image quality of chest CT examinations in low-weight children acquired at ultralow tube voltage (70 kVp) combined with Flash scan technique. Materials and methods: 30 consecutive paediatric patients (weight <20 kg) required non-contrast chest CT at 70 kVp with Flash scan mode (Group A). 30 patients for paediatric standard 80-kVp protocols with conventional spiral mode (Group B) were selected from the picture archiving and communication system. For each examination, the volume CT dose index (CTDIvol) and dose–length product (DLP), and the effective dose (adapted as 16-cm phantom) (ED16cm) were estimated. The image noise, signal-to-noise ratio (SNR), overall subjective image quality and respiratory motion artefacts were evaluated. Results: For radiation dose, CTDIvol (mGy), DLP (mGy cm) and ED16cm (mSv) of Group A were significantly lower than those of Group B [CTDIvol: 0.48 ± 0.003 mGy (Group A) vs 0.80 ± 0.005 mGy (Group B); p<0.001 DLP: 10.23 ± 1.35 mGy cm (Group A) vs 15.6 ± 2.02 mGy cm (Group B); p<0.001 ED16cm: 0.61 ± 0.91 mSv (Group A) vs 0.89 ± 0.13 mSv (Group B); p<0.001]. The mean image noise with Group A increased 28.5% (p = 0.002), and the mean SNR decreased 14.8% compared with Group B (p = 0.193). There was no statistical difference in overall subjective image quality grades, and Group A had significantly lower respiratory motion artefact grades than Group B (p < 0.001). Conclusion: Ultralow tube voltage (70 kVp) combined with the Flash scan technique of the chest can obtain images with clinically acceptable image noise and minimum respiratory motion artefacts in low-weight children, whilst reducing radiation dose significantly. Advances in knowledge: The feasibility of chest CT scan in low-weight children with ultralow tube voltage (70 kVp) combined with Flash scan technique has firstly been evaluated in our study. PMID:26781234
NASA Astrophysics Data System (ADS)
Willenweber, A.; Thomas, S.; Burnley, P. C.
2012-12-01
The Berkeley Texture Package BEARTEX is a Windows-based computer software that combines various algorithms to analyze lattice-preferred orientation in polycrystalline materials. BEARTEX was initially designed to interpret diffraction intensity data from pole figure goniometers. Recently it has been successfully used to process synthetic forsterite powder diffraction data from in-situ synchrotron X-ray diffraction taken during deformation (Bollinger et al. 2012). Our study aims to test the practicability of using BEARTEX to analyze the evolution of lattice-preferred orientation in natural polycrystalline quartz (novaculite) during deformation. In-situ X-ray diffraction data was collected during the deformation of novaculite at 2.5 GPa and up to 1000 °C in a D-DIA apparatus using the ten-element energy-dispersive detector at the NSLS beamline X17B2. Diffraction intensities are a function of crystal orientation, expressed in azimuth angle η and pole distance ψ. The latter is the angle between the normal of a given diffraction plane and the vertical direction of the D-DIA apparatus - our principal stress direction during compression. Orientation-dependent diffraction intensities were corrected for different responses of the single detectors and x-ray absorption effects of the anvils. Orientation distributions (ODs) and inverse pole figures were calculated using BEARTEX. In addition, electron backscatter diffraction (EBSD) analyses were carried out on the deformed novaculite samples. Generated pole figures were compared with those derived from BEARTEX. Textural properties of our novaculite starting material complicated the BEARTEX analyses. The relatively strong variation of grain sizes in our natural specimens caused non-random diffraction intensity distributions. Those lead to non-random distributions of crystal orientations when analyzed with BEARTEX, although pole figures from EBSD data clearly show random crystal orientations. In an attempt to solve this problem, we employed a scanning routine when recording in-situ synchrotron X-ray diffraction and so collected diffraction from multiple sample volumes rather than from one single spot. Here, we will present a comparison of pole figures derived from independent BEARTEX and EBSD analyses for a series of novaculite experiments and discuss the practicability of BEARTEX to analyze the evolution of lattice-preferred orientation in natural polycrystalline quartz. REFERENCES C. BOLLINGER, S. MERKEL AND P. RATERRON (2012): In situ quantitative analysis of stress and texture development in forsterite aggregates deformed at 6 GPa and 1373 K. J. Appl. Cryst., 45, 263-271.
Stratified Diffractive Optic Approach for Creating High Efficiency Gratings
NASA Technical Reports Server (NTRS)
Chambers, Diana M.; Nordin, Gregory P.
1998-01-01
Gratings with high efficiency in a single diffracted order can be realized with both volume holographic and diffractive optical elements. However, each method has limitations that restrict the applications in which they can be used. For example, high efficiency volume holographic gratings require an appropriate combination of thickness and permittivity modulation throughout the bulk of the material. Possible combinations of those two characteristics are limited by properties of currently available materials, thus restricting the range of applications for volume holographic gratings. Efficiency of a diffractive optic grating is dependent on its approximation of an ideal analog profile using discrete features. The size of constituent features and, consequently, the number that can be used within a required grating period restricts the applications in which diffractive optic gratings can be used. These limitations imply that there are applications which cannot be addressed by either technology. In this paper we propose to address a number of applications in this category with a new method of creating high efficiency gratings which we call stratified diffractive optic gratings. In this approach diffractive optic techniques are used to create an optical structure that emulates volume grating behavior. To illustrate the stratified diffractive optic grating concept we consider a specific application, a scanner for a space-based coherent wind lidar, with requirements that would be difficult to meet by either volume holographic or diffractive optic methods. The lidar instrument design specifies a transmissive scanner element with the input beam normally incident and the exiting beam deflected at a fixed angle from the optical axis. The element will be rotated about the optical axis to produce a conical scan pattern. The wavelength of the incident beam is 2.06 microns and the required deflection angle is 30 degrees, implying a grating period of approximately 4 microns. Creating a high efficiency volume grating with these parameters would require a grating thickness that cannot be attained with current photosensitive materials. For a diffractive optic grating, the number of binary steps necessary to produce high efficiency combined with the grating period requires feature sizes and alignment tolerances that are also unattainable with current techniques. Rotation of the grating and integration into a space-based lidar system impose the additional requirements that it be insensitive to polarization orientation, that its mass be minimized and that it be able to withstand launch and space environments.
Pradhan, Roshan; Tran, Tuan Hiep; Kim, Sung Yub; Woo, Kyu Bong; Choi, Yong Joo; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh
2016-04-11
We aimed to develop an immediate-release flurbiprofen (FLU) and esomeprazole (ESO) combination formulation with enhanced gastric aqueous solubility and dissolution rate. Aqueous solubility can be enhanced by formulating solid dispersions (SDs) with a polyvinylpyrrolidone (PVP)-K30 hydrophilic carrier, using spray-drying technique. Aqueous and gastric pH dissolution can be achieved by macro-environmental pH modulation using sodium bicarbonate (NaHCO3) and magnesium hydroxide (Mg(OH)2) as the alkaline buffer. FLU/ESO-loaded SDs (FLU/ESO-SDs) significantly improved aqueous solubility of both drugs, compared to each drug powder. Dissolution studies in gastric pH and water were compared with the microenvironmental pH modulated formulations. The optimized FLU/ESO-SD powder formulation consisted of FLU/ESO/PVP-K30/sodium carbonate (Na2CO3) in a weight ratio 1:0.22:1.5:0.3, filled in the inner capsule. The outer capsule consisted of NaHCO3 and Mg(OH)2, which created the macro-environmental pH modulation. Increased aqueous and gastric pH dissolution of FLU and ESO from the SD was attributed to the alkaline buffer effects and most importantly, to drug transformation from crystalline to amorphous SD powder, clearly revealed by scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction studies. Thus, the combined FLU and ESO SD powder can be effectively delivered as an immediate-release formulation using the macro-environmental pH modulation concept. Copyright © 2016. Published by Elsevier B.V.
Organic Dye Degradation Under Solar Irradiation by Hydrothermally Synthesized ZnS Nanospheres
NASA Astrophysics Data System (ADS)
Samanta, Dhrubajyoti; Chanu, T. Inakhunbi; Basnet, Parita; Chatterjee, Somenath
2018-02-01
The green synthesis of ZnS nanospheres using Citrus limetta (sweet lime) juice as a capping agent through a conventional hydrothermal method was studied. The particle size, morphology, chemical composition, band gap, and optical properties of the synthesized ZnS nanospheres were characterized using x-ray diffraction spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and ultraviolet-visible spectroscopy. The photocatalytic activity of the ZnS nanospheres was evaluated by degradation of rhodamine B (RhB) and methyl orange (MO) under solar irradiation. Upon 150 min of solar irradiation, the extent of degradation was 94% and 77% for RhB and MO, respectively.
Color image generation for screen-scanning holographic display.
Takaki, Yasuhiro; Matsumoto, Yuji; Nakajima, Tatsumi
2015-10-19
Horizontally scanning holography using a microelectromechanical system spatial light modulator (MEMS-SLM) can provide reconstructed images with an enlarged screen size and an increased viewing zone angle. Herein, we propose techniques to enable color image generation for a screen-scanning display system employing a single MEMS-SLM. Higher-order diffraction components generated by the MEMS-SLM for R, G, and B laser lights were coupled by providing proper illumination angles on the MEMS-SLM for each color. An error diffusion technique to binarize the hologram patterns was developed, in which the error diffusion directions were determined for each color. Color reconstructed images with a screen size of 6.2 in. and a viewing zone angle of 10.2° were generated at a frame rate of 30 Hz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormac, Kathleen; Byrd, Ian; Brannen, Rodney
We prepared highly porous Si/TiO 2 composite nanofibres using a unique sulphur-templating method combined with electrospinning. The structure, morphology, surface area, phase and composition of these nanofibres were characterized using Raman spectroscopy, scanning electron microscopy, powder X-ray diffraction, surface area analyser and thermogravimetric analyser. The specific surface area of Si/TiO 2 porous NFs is as large as 387m 2g -1, whose silicon capacity can be maintained above 1580mAhg -1 in 180 cycles.
Thermal annealing of natural, radiation-damaged pyrochlore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zietlow, Peter; Beirau, Tobias; Mihailova, Boriana
Abstract Radiation damage in minerals is caused by the α-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400–1000 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia [6.4 wt% Th, 23.1·10
Diffraction-assisted micropatterning of silicon surfaces by ns-laser irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haro-Poniatowski, E., E-mail: haro@xanum.uam.mx; Acosta-Zepeda, C.; Mecalco, G.
2014-06-14
Single-pulse (532 nm, 8 ns) micropatterning of silicon with nanometric surface modulation is demonstrated by irradiating through a diffracting pinhole. The irradiation results obtained at fluences above the melting threshold are characterized by scanning electron and scanning force microscopy and reveal a good agreement with Fresnel diffraction theory. The physical mechanism is identified and discussed on basis of both thermocapillary and chemicapillary induced material transport during the molten state of the surface.
NASA Astrophysics Data System (ADS)
Bruder, Friedrich-Karl; Fäcke, Thomas; Hagen, Rainer; Hansen, Sven; Manecke, Christel; Orselli, Enrico; Rewitz, Christian; Rölle, Thomas; Walze, Günther
2017-06-01
The main function of any augmented reality system is to seamlessly merge the real world perception of a viewer with computer generated images and information. Besides real-time head-tracking and room-scanning capabilities the combiner optics, which optically merge the natural with the artificial visual information, represent a key component for those systems. Various types of combiner optics are known to the industry, all with their specific advantages and disadvantages. Beside the well-established solutions based on refractive optics or surface gratings, volume Holographic Optical Elements (vHOEs) are a very attractive alternative in this field. The unique characteristics of these diffractive grating structures - being lightweight, thin, flat and invisible in Off Bragg conditions - make them perfectly suitable for their use in integrated and compact combiners. For any consumer application it is paramount to build unobtrusive and lightweight augmented reality displays, for which those volume holographic combiners are ideally suited. Due to processing challenges of (historic) holographic recording materials mass production of vHOE holographic combiners was not possible. Therefore vHOE based combiners found use in military applications only by now. The new Bayfol® HX instant developing holographic photopolymer film provides an ideal technology platform to optimize the performance of vHOEs in a wide range of applications. Bayfol® HX provides full color capability and adjustable diffraction efficiency as well as an unprecedented optical clarity when compared to classical holographic recording materials like silver halide emulsions (AgHX) or dichromated gelatin (DCG). Bayfol® HX film is available in industrial scale and quality. Its properties can be tailored for various diffractive performances and integration methods. Bayfol® HX film is easy to process without any need for chemical or thermal development steps, offering simplified contact-copy mass production schemes.
Husakou, A; Herrmann, J
2006-11-13
We evaluate the possibility to focus scanning light beams below the diffraction limit by using the combination of a nonlinear material with a Kerr-type nonlinearity or two-photon absorption to create seed evanescent components of the beam and a negative-refraction material to enhance them. Superfocusing to spots with a FWHM in the range of 0.2 lambda is theoretically predicted both in the context of the effective-medium theory and by the direct numerical solution of Maxwell equations for an inhomogeneous pho-tonic crystal. The evolution of the transverse spectrum and the dependence of superfocusing on the parameters of the negative-refraction material are also studied. We show that the use of a Kerr-type nonlinear layer for the creation of seed evanescent components yields focused spots with a higher intensity compared with those obtained by the application of a saturable absorber.
High-resolution photoluminescence electro-modulation microscopy by scanning lock-in
NASA Astrophysics Data System (ADS)
Koopman, W.; Muccini, M.; Toffanin, S.
2018-04-01
Morphological inhomogeneities and structural defects in organic semiconductors crucially determine the charge accumulation and lateral transport in organic thin-film transistors. Photoluminescence Electro-Modulation (PLEM) microscopy is a laser-scanning microscopy technique that relies on the modulation of the thin-film fluorescence in the presence of charge-carriers to image the spatial distribution of charges within the active organic semiconductor. Here, we present a lock-in scheme based on a scanning beam approach for increasing the PLEM microscopy resolution and contrast. The charge density in the device is modulated by a sinusoidal electrical signal, phase-locked to the scanning beam of the excitation laser. The lock-in detection scheme is achieved by acquiring a series of images with different phases between the beam scan and the electrical modulation. Application of high resolution PLEM to an organic transistor in accumulation mode demonstrates its potential to image local variations in the charge accumulation. A diffraction-limited precision of sub-300 nm and a signal to noise ratio of 21.4 dB could be achieved.
NASA Astrophysics Data System (ADS)
Askari-Paykani, Mohsen; Shahverdi, Hamid Reza; Miresmaeili, Reza
2016-11-01
In this study, the Vickers hardnesses and room-temperature uniaxial tensile behaviors of four Fe66- x CrNiB x Si ( x = 0 (0B), 0.25 (25B), 0.50 (50B), and 0.75 (75B) wt pct) advanced high-strength steels (AHSSs) in the as-hot-rolled and heat-treated (1373 K (1100 °C)/2 h + 973 K (700 °C)/20 min) conditions were investigated. Microstructural evolution after solidification, hot rolling, heat treatment, and uniaxial tensile tests of 0B, 25B, 50B, and 75B AHSSs was also characterized using field emission gun scanning electron microscopy and X-ray diffraction. The tensile behaviors of the 0B, 25B, 50B, and 75B AHSSs were manifested by an excellent combination of strength and ductility over 34.7 and 47.1 GPa pct, 36.9 and 42.3 GPa pct, 45.9 and 46.4 GPa pct, and 11.9 and 47.8 GPa pct, respectively, arising from microband-induced plasticity in the 0B, 50B, and 75B AHSSs and transformation-induced plasticity in the 25B specimens. All specimens in the as-hot-rolled and heat-treated states showed an austenitic matrix grain. Adding boron to the base alloy (0B) resulted in grain refinement, M2B dispersion, precipitation hardening, and solid solution strengthening, which led to an increase in strength. The results of the present work show promise for automotive applications that require excellent properties and reduced specific weight.
2011-09-01
glancing angle X - ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical...Emission SEM FWHM full width at half maximum GAXRD glancing angle X - ray diffraction H3COCH2CH2OH 2-methoxyethanol LiMn2O4 lithium manganese oxide...were characterized by scanning electron microscopy (SEM), X - ray diffraction (XRD), and atomic force microscopy (AFM). In addition,
Modeling of profilometry with laser focus sensors
NASA Astrophysics Data System (ADS)
Bischoff, Jörg; Manske, Eberhard; Baitinger, Henner
2011-05-01
Metrology is of paramount importance in submicron patterning. Particularly, line width and overlay have to be measured very accurately. Appropriated metrology techniques are scanning electron microscopy and optical scatterometry. The latter is non-invasive, highly accurate and enables optical cross sections of layer stacks but it requires periodic patterns. Scanning laser focus sensors are a viable alternative enabling the measurement of non-periodic features. Severe limitations are imposed by the diffraction limit determining the edge location accuracy. It will be shown that the accuracy can be greatly improved by means of rigorous modeling. To this end, a fully vectorial 2.5-dimensional model has been developed based on rigorous Maxwell solvers and combined with models for the scanning and various autofocus principles. The simulations are compared with experimental results. Moreover, the simulations are directly utilized to improve the edge location accuracy.
NASA Astrophysics Data System (ADS)
Ye, L.; Qi, B.; Lawton, T. G.; Mefford, O. T.; Rinaldi, C.; Garzon, S.; Crawford, T. M.
2013-03-01
Using the enormous magnetic field gradients (100 MT/m @ z =20 nm) present near the surface of magnetic recording media, we demonstrate the fabrication of diffraction gratings with lines consisting entirely of magnetic nanoparticles assembled from a colloidal fluid onto a disk drive medium, followed by transfer to a flexible and transparent polymer thin film. These nanomanufactured gratings have line spacings programmed with commercial magnetic recording and are inherently concave with radii of curvature controlled by varying the polymer film thickness. The diffracted intensity increases non-monotonically with the length of time the colloidal fluid remains on the disk surface. In addition to comparing longitudinal and perpendicular magnetic recording, a combination of spectral diffraction efficiency measurements, magnetometry, scanning electron microscopy and inductively coupled plasma atomic emmission spectroscopy of these gratings are employed to understand colloidal nanoparticle dynamics in this extreme gradient limit. Such experiments are necessary to optimize nanoparticle assembly and obtain uniform patterned features. This low-cost and sustainable approach to nanomanufacturing could enable low-cost, high-quality diffraction gratings as well as more complex polymer nanocomposite materials assembled with single-nanometer precision.
Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Scanning
NASA Technical Reports Server (NTRS)
Cole, H. J.; Chambers, D. M.; Dixit, S. N.; Britten, J. A.; Shore, B. W.; Kavaya, M. J.
1999-01-01
The application of specialized rectangular relief transmission gratings to coherent lidar beam scanning is presented. Two types of surface relief transmission grating approaches are studied with an eye toward potential insertion of a constant thickness, diffractive scanner where refractive wedges now exist. The first diffractive approach uses vertically oriented relief structure in the surface of an optical flat; illumination of the diffractive scanner is off-normal in nature. The second grating design case describes rectangular relief structure slanted at a prescribed angle with respect to the surface. In this case, illumination is normal to the diffractive scanner. In both cases, performance predictions for 2.0 micron, circularly polarized light at beam deflection angles of 30 or 45 degrees are presented.
Liu, Jingyue
2005-06-01
Scanning transmission electron microscopy (STEM) techniques can provide imaging, diffraction and spectroscopic information, either simultaneously or in a serial manner, of the specimen with an atomic or a sub-nanometer spatial resolution. High-resolution STEM imaging, when combined with nanodiffraction, atomic resolution electron energy-loss spectroscopy and nanometer resolution X-ray energy dispersive spectroscopy techniques, is critical to the fundamental studies of importance to nanoscience and nanotechnology. The availability of sub-nanometer or sub-angstrom electron probes in a STEM instrument, due to the use of a field emission gun and aberration correctors, ensures the greatest capabilities for studies of sizes, shapes, defects, crystal and surface structures, and compositions and electronic states of nanometer-size regions of thin films, nanoparticles and nanoparticle systems. The various imaging, diffraction and spectroscopy modes available in a dedicated STEM or a field emission TEM/STEM instrument are reviewed and the application of these techniques to the study of nanoparticles and nanostructured catalysts is used as an example to illustrate the critical role of the various STEM techniques in nanotechnology and nanoscience research.
NASA Astrophysics Data System (ADS)
Crozet, C.; Verdier, M.; Lay, S.; Antoni-Zdziobek, A.
2018-07-01
α/γ phase transformations occurring in Fe-10Cu-xNi alloys (0 ≤ x ≤ 15 in mass%) were studied using X-ray diffraction, scanning electron microscopy, electron back scattered diffraction, transmission electron microscopy and chemical analysis, combining X-ray microanalysis with energy dispersive spectrometry in the scanning electron microscope and electron microprobe analysis with wavelength dispersive spectrometry. The influence of cooling rate on the microstructure was investigated using ice-brine quenching and 2 °C/min slow cooling rate performed with dilatometry. Ni addition induces metastable transformations on cooling: massive and bainitic ferrite are formed depending on the alloy composition and cooling rate. Moreover, most of the Cu phase precipitates on cooling giving rise to a fine distribution of Cu particles in the ferrite grains. For both cooling conditions, the hardness increases with increasing Ni content and a higher hardness is obtained in the quenched alloy for each composition. The change in hardness is correlated to the effect of Ni solid solution, transformation structure and size of Cu particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Michael W. M.; Phillips, Nicholas W.; van Riessen, Grant A.
2016-08-11
Owing to its extreme sensitivity, quantitative mapping of elemental distributionsviaX-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step- and fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated.
NASA Astrophysics Data System (ADS)
Wen, Sy-Bor; Bhaskar, Arun; Zhang, Hongjie
2018-07-01
A scanning digital lithography system using computer controlled digital spatial light modulator, spatial filter, infinity correct optical microscope and high precision translation stage is proposed and examined. Through utilizing the spatial filter to limit orders of diffraction modes for light delivered from the spatial light modulator, we are able to achieve diffraction limited deep submicron spatial resolution with the scanning digital lithography system by using standard one inch level optical components with reasonable prices. Raster scanning of this scanning digital lithography system using a high speed high precision x-y translation stage and piezo mount to real time adjust the focal position of objective lens allows us to achieve large area sub-micron resolved patterning with high speed (compared with e-beam lithography). It is determined in this study that to achieve high quality stitching of lithography patterns with raster scanning, a high-resolution rotation stage will be required to ensure the x and y directions of the projected pattern are in the same x and y translation directions of the nanometer precision x-y translation stage.
NASA Astrophysics Data System (ADS)
Wang, Huan; Qiu, Xueqing; Liu, Weifeng; Yang, Dongjie
2017-12-01
In this work, a novel lignin-based carbon/ZnO (LC/ZnO) hybrid composite with excellent photocatalytic performance was prepared through a convenient and environment friendly method using alkali lignin (AL) as carbon source. The morphological, microstructure and optical properties of the as-prepared LC/ZnO hybrid composite was characterized with scanning electron microscope (SEM), X-ray diffraction (XRD), Raman and UV-vis. The resulting LC/ZnO hybrid is composed of highly dispersed ZnO nanoparticles embedded on a lignin-based carbon nanosheet, showing excellent photogenerated electrons and holes separation and migration efficiency. The photocatalytic activity of LC/ZnO was much higher than the pure ZnO. The LC/ZnO hybrid composite showed different photocatalytic mechanism for degradation of negative methyl orange (MO) and positive Rhodamine B (RhB). It showed that h+ was the main photocatalytic active group during the degradation of MO, ·O2- and ·OH were the photocatalytic active groups during degradation of RhB. This reported photocatalyst with selective degradation of positive and negative organic dyes may have a great application prospect for photoelectric conversion and catalytic materials. Results of this work were of practical importance for high-valued utilization of lignin for carbon materials.
Ovchinnikov, Nikolay L; Karasev, Nikita S; Kochkina, Nataliya E; Agafonov, Alexander V; Vinogradov, Alexandr V
2018-01-01
We report on a new approach for the synthesis of TiO2-pillared montmorillonite, where the pillars exhibit a high degree of crystallinity (nanocrystals) representing a mixture of anatase and rutile phases. The structures exhibit improved adsorption and photocatalytic activity as a result of hydrothermally activated intercalation of titanium polyhydroxo complexes (i.e., TiCl4 hydrolysis products) in a solution with a concentration close to the sol formation limit. The materials, produced at various annealing temperatures from the intercalated samples, were characterized by infrared spectroscopy, differential scanning calorimetry (DSC)/thermogravimetric analysis (TGA), X-ray diffraction, dynamic light scattering (DLS) measurements, and liquefied nitrogen adsorption/desorption. The photocatalytic activity of the TiO2-pillared materials was studied using the degradation of anionic (methyl orange, MO) and cationic (rhodamine B, RhB) dyes in water under UV irradiation. The combined effect of adsorption and photocatalysis resulted in removal of 100% MO and 97.5% RhB (with an initial concentration of 40 mg/L and a photocatalyst-sorbent concentration of 1 g/L) in about 100 minutes. The produced TiO2-pillared montmorillonite showed increased photocatalytic activity as compared to the commercially available photocatalyst Degussa P25. PMID:29515950
Anwar, Mohammed; Ahmad, Iqbal; Warsi, Musarrat H; Mohapatra, Sharmistha; Ahmad, Niyaz; Akhter, Sohail; Ali, Asgar; Ahmad, Farhan J
2015-10-01
The biomedical applications of curcumin (CUR) are limited due to its poor oral bioavailability. In this work, CUR nanoparticles were successfully prepared by combining the supercritical anti-solvent (SAS) process with Tween 80 as a solubilizing agent and permeation enhancer. Different processing parameters that can govern the mean particle size and size distribution of nanoparticles were well investigated by manipulating the types of solvents, mixing vessel pressure, mixing vessel temperature, CO2 flow rate, solution flow rate and solution concentration. Solid state characterization was done by Fourier Transform infrared spectroscopy, differential scanning calorimetry, dynamic light scattering, scanning electron microscopy, and powder X-ray diffraction study. Solubility and dissolution profile of SAS-processed CUR were found to be significantly increased in comparison with native CUR. Further, a validated ultra-performance liquid chromatographic method with quadrupole-time of flight-mass spectrometry was developed to investigate the pharmacokinetic parameters after a single oral dose (100mg/kg) administration of CUR (before/after SAS-processed) in male Wistar rats. From the plasma concentration vs. time profile graph, oral bioavailability of SAS-processed CUR was found to be increased approximately 11.6-fold (p<0.001) as compared to native CUR. Copyright © 2015 Elsevier B.V. All rights reserved.
A novel hot-melt extrusion formulation of albendazole for increasing dissolution properties.
Martinez-Marcos, Laura; Lamprou, Dimitrios A; McBurney, Roy T; Halbert, Gavin W
2016-02-29
The main aim of the research focused on the production of hot-melt extrusion (HME) formulations with increased dissolution properties of albendazole (ABZ). Therefore, HME was applied as a continuous manufacturing technique to produce amorphous solid dispersions of the poorly water soluble drug ABZ combined with the polymer matrix polyvinylpyrrolidone PVP K12. HME formulations of ABZ-PVP K12 comprised a drug content of 1%, 5% and 10% w/w. The main analytical characterisation techniques used were scanning electron microscopy (SEM), micro-computed tomography (μ-CT), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and dissolution profile studies. The application of SEM, XRPD and DSC evidenced drug physical transformation from crystalline to amorphous state and therefore, the achievement of an amorphous solid dispersion. The introduction of a novel technique, μ-CT, to characterise the internal structure of these materials revealed key information regarding materials distribution and void content. Dissolution profile studies evidenced a high increase in drug release profile compared to pure ABZ. These promising results can lead to a great enhancement of the oral bioavailability of ABZ dosage forms. Therefore, HME is a potential continuous manufacturing technique to overcome ABZ poor solubility properties and lead to a significant increase in the therapeutic effect. Copyright © 2016 Elsevier B.V. All rights reserved.
Sterren, Vanesa B; Aiassa, Virginia; Garnero, Claudia; Linck, Yamila Garro; Chattah, Ana K; Monti, Gustavo A; Longhi, Marcela R; Zoppi, Ariana
2017-11-01
Chloramphenicol is an old antibiotic agent that is re-emerging as a valuable alternative for the treatment of multidrug-resistant pathogens. However, it exhibits suboptimal biopharmaceutical properties and toxicity profiles. In this work, chloramphenicol was combined with essential amino acids (arginine, cysteine, glycine, and leucine) with the aim of improving its dissolution rate and reduce its toxicity towards leukocytes. The chloramphenicol/amino acid solid samples were prepared by freeze-drying method and characterized in the solid state by using Fourier transform infrared spectroscopy, powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and solid-state nuclear magnetic resonance. The dissolution properties, antimicrobial activity, reactive oxygen species production, and stability of the different samples were studied. The dissolution rate of all combinations was significantly increased in comparison to that of the pure active pharmaceutical ingredient. Additionally, oxidative stress production in human leukocytes caused by chloramphenicol was decreased in the chloramphenicol/amino acid combinations, while the antimicrobial activity of the antibiotic was maintained. The CAP:Leu binary combination resulted in the most outstanding solid system makes it suitable candidate for the development of pharmaceutical formulations of this antimicrobial agent with an improved safety profile.
Fast hydrogen sorption from MgH2-VO2(B) composite materials
NASA Astrophysics Data System (ADS)
Milošević, Sanja; Kurko, Sandra; Pasquini, Luca; Matović, Ljiljana; Vujasin, Radojka; Novaković, Nikola; Novaković, Jasmina Grbović
2016-03-01
The hydrogen sorption kinetics of MgH2‒VO2(B) composites synthesised by mechanical milling have been studied. The microstructural properties of composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, Scanning electron microscopy (SEM), Particle size analysis (PSD), while sorption behaviour was followed by differential scanning calorimetry (DSC) and Sievert measurements. Results have shown that although desorption temperature reduction is moderate; there is a substantial improvement in hydrogen sorption kinetics. The complete desorption of pure MgH2 at elevated temperature takes place in more than 30 min while the composite fully desorbs in less than 2 min even at lower temperatures. It has been shown that the metastable γ-MgH2 phase and the point defects have a decisive role in desorption process only in the first sorption cycle, while the second and the subsequent sorption cycles are affected by microstructural and morphological characteristics of the composite.
Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB 2
Gill, Tobias G.; Fleurence, Antoine; Warner, Ben; ...
2017-02-17
We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB 2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting tomore » the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less
NASA Astrophysics Data System (ADS)
Sun, Zhiming; Hu, Zhibo; Yan, Yang; Zheng, Shuilin
2014-09-01
TiO2/purified diatomite composite materials were prepared through a modified hydrolysis-deposition method under low temperature using titanium tetrachloride as precursor combined with a calcination crystallization process. The microstructure and crystalline phases of the obtained composites prepared under different preparation conditions were characterized by high resolution scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The photocatalytic performance of TiO2/purified diatomite composites was evaluated by Rhodamine B as the target pollutant under UV irradiation, and the optimum preparation conditions of composites were obtained. The TiO2 crystal form in composites prepared under optimum conditions was anatase, the grain size of which was 34.12 nm. The relationships between structure and property of composite materials were analyzed and discussed. It is indicated that the TiO2 nanoparticles uniformly dispersed on the surface of diatoms, and the photocatalytic performance of the composite materials was mainly determined by the dispersity and grain size of loaded TiO2 nanoparticles.
A study of degradation resistance and cytocompatibility of super-hydrophobic coating on magnesium.
Zhang, Yufen; Feyerabend, Frank; Tang, Shawei; Hu, Jin; Lu, Xiaopeng; Blawert, Carsten; Lin, Tiegui
2017-09-01
Calcium stearate based super-hydrophobic coating was deposited on plasma electrolytic oxidation (PEO) pre-treated magnesium substrate. The pre-treated magnesium and super-hydrophobic coating covered sample were characterized by scanning electron microscopy, X-ray diffraction and electrochemical corrosion measurements. The cytocompatibility and degradation resistance of magnesium, pre-treated magnesium and super-hydrophobic coating were analysed in terms of cell adhesion and osteoblast differentiation. The results indicate that the calcium stearate top coating shows super-hydrophobicity and that the surface is composed of micro/nanostructure. The super-hydrophobic coating covered sample shows higher barrier properties compared with the PEO pre-treated magnesium and bare magnesium. Human osteoblast proliferation, but not differentiation is enhanced by the PEO coating. Contrary, the super-hydrophobic coating reduces proliferation, but enhances differentiation of osteoblast, observable by the formation of hydroxyapatite. The combination of corrosion protection and cell reaction indicates that this system could be interesting for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Fu, Fenglian; Lu, Jianwei; Cheng, Zihang; Tang, Bing
2016-03-01
In this paper, the performance and application of zero-valent iron (ZVI) assisted by ultrasonic irradiation for the removal of selenite (Se(IV)) in wastewater was evaluated and reaction mechanism of Se(IV) with ZVI in such systems was investigated. A series of batch experiments were conducted to determine the effects of ultrasound power, pH, ZVI concentration, N2 and air on Se(IV) removal. ZVI before and after reaction with Se(IV) was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Results indicated that ultrasound can lead to a significant synergy in the removal of Se(IV) by ZVI because ultrasound can promote the generation of OH and accelerate the advanced Fenton process. The primary reaction products of ZVI and Se(IV) were Se(0), ferrihydrite, and Fe2O3. Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Boru; Dang, Leping; Zhang, Xiao; Fang, Wenzhi; Hou, Mengna; Liu, Tiankuo; Wang, Zhanzhong
2017-03-15
Kudzu starch was cross-linked with sodium trimetaphosphate (STMP) at different temperatures, time and of STMP concentrations in this work. The cross-linked starches (CLSs) were fractionated further into cross-linked amylose and amylopectin in order to compare the effect of cross-linking on the microstructure. According to scanning electron microscope (SEM), CLSs displayed the resemble appearance of spherical and polygonal shapes like NS. X-ray diffraction (XRD) revealed that amylose of native starch (A), NS and CLS displayed a combination of A-type and B-type structure, while that was not found in amylose of cross-linked starch (CLA). The deconvoluted fourier transform infrared (FT-IR) indicated that crystal structure of kudzu starch was losing with the proceeding of cross-linking reaction. The CLSs exhibited a higher retrogradation and freeze-thaw stability than NS. This was accompanied by a significant decrease in sedimentation, transparency, swelling power and solubility. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neutron absorption of Al-Si-Mg-B{sub 4}C composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, Yusof, E-mail: yusofabd@nuclearmalaysia.gov.my; Yusof, Mohd Reusmaazran; Ibrahim, Anis Syukriah
2016-01-22
Al-Si-Mg-B{sub 4}C composites containing 2-8 wt% of B{sub 4}C were prepared by stir casting technique. Homogenization treatment was carried out at temperatures of 540°C for 4 houra and followed by ageing at 180°C for 2 houra. Microstructure and phase identification were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD) respectively. Neutron absorption study was investigated using neutron source Am/Be{sup 241}. The result indicated that higher B{sub 4}C content improved the neutron absorption property. Meanwhile homogeneity of the composite was increased by ageing processes. This composite is potential to be used as neutron shielding material especially for nuclear reactormore » application.« less
NASA Astrophysics Data System (ADS)
Li, Xianghui; Guo, Weilin; Liu, Zhonghua; Wang, Ruiqin; Liu, Hua
2016-04-01
Fe-based metal-organic frameworks (MOFs) including MIL-101(Fe), MIL-100(Fe), MIL-53(Fe), and MIL-88B(Fe) prepared via a facile solvothermal process were introduced as both adsorbents and catalysts to generate powerful radicals from persulfate for acid orange 7 (AO7) removal in aqueous solution. Various catalysts were described and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray photoelectron spectra. Because of the high specific surface area of the materials, we studied the adsorption isotherms of the four MILs by the fitting of Langmuir adsorption isotherm. Meanwhile, the catalytic activities in persulfate oxidation system were investigated. The results showed that the sequence of the materials ability in the combination of adsorption and degradation was MIL-101(Fe) > MIL-100(Fe) > MIL-53(Fe) > MIL-88B(Fe), which had a close connection with the activity of metal ion in active site of the catalysts and their different cages in size. Moreover, the reactive species in MILs/persulfate system were identified as sulfate radicals and hydroxyl radicals. The reaction mechanism for persulfate activation over MILs was also studied.
NASA Astrophysics Data System (ADS)
Tracy, S. J.; Smith, R. F.; Wicks, J. K.; Fratanduono, D. E.; Gleason, A. E.; Bolme, C.; Speziale, S.; Appel, K.; Prakapenka, V. B.; Fernandez Panella, A.; Lee, H. J.; MacKinnon, A.; Eggert, J.; Duffy, T. S.
2017-12-01
The behavior of silicon carbide (SiC) under shock loading was investigated through a series of time-resolved pump-probe x-ray diffraction (XRD) measurements. SiC is found at impact sites and has been put forward as a possible constituent in the proposed class of extra-solar planets known as carbon planets. Previous studies have used wave profile measurements to identify a phase transition under shock loading near 1 Mbar, but crystal structure information was not obtained. We have carried out an in situ XRD study of shock-compressed SiC using the Matter in Extreme Conditions instrument of the Linac Coherent Light Source. The femtosecond time resolution of the x-ray free electron laser allows for the determination of time-dependent atomic arrangements during shock loading and release. Two high-powered lasers were used to generate ablation-driven compression waves in the samples. Time scans were performed using the same drive conditions and nominally identical targets. For each shot in a scan, XRD data was collected at a different probe time after the shock had entered the SiC. Probe times extended up to 40 ns after release. Scans were carried out for peak pressures of 120 and 185 GPa. Our results demonstrate that SiC transforms directly from the ambient tetrahedrally-coordinated phase to the octahedral B1 structure on the nanosecond timescale of laser-drive experiments and reverts to the tetrahedrally coordinated ambient phase within nanoseconds of release. The data collected at 120 GPa exhibit diffraction peaks from both compressed ambient phase and transformed B1 phase, while the data at 185 GPa show a complete transformation to the B1 phase. Densities determined from XRD peaks are in agreement with an extrapolation of previous continuum data as well as theoretical predictions. Additionally, a high degree of texture was retained in both the high-pressure phase as well as on back transformation. Two-dimensional fits to the XRD data reveal details of the orientational relationships between the low- and high-pressure phases that can be interpreted to provide information about transformation pathways between tetrahedral and octahedral coordination structures. We acknowledge support for this work from SLAC National Accelerator Laboratory, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory.
DSC and Raman studies of silver borotellurite glasses
NASA Astrophysics Data System (ADS)
Kaur, Amandeep; Khanna, Atul; Gonzàlez, Fernando
2016-05-01
Silver borotellurite glasses of composition: xAg2O-yB2O3-(100-x-y)TeO2 (x=20-mol%, y = 0, 10, 20 and 30-mol%) were prepared and characterized by density, X-ray diffraction (XRD), differential scanning calorimetry, and Raman spectroscopy. XRD confirmed the amorphous structure of all samples. Density of glasses decreases while the glass transition temperature increases with increase in B2O3 content from 10 to 30-mol%. Raman study shows that coordination number of Te with oxygen decreases steadily from 3.42 to 3.18 on adding B2O3 due to the transformation of TeO4 into TeO3 units.
Hruszkewycz, Stephan O; Holt, Martin V; Tripathi, Ash; Maser, Jörg; Fuoss, Paul H
2011-06-15
We present the framework for convergent beam Bragg ptychography, and, using simulations, we demonstrate that nanocrystals can be ptychographically reconstructed from highly convergent x-ray Bragg diffraction. The ptychographic iterative engine is extended to three dimensions and shown to successfully reconstruct a simulated nanocrystal using overlapping raster scans with a defocused curved beam, the diameter of which matches the crystal size. This object reconstruction strategy can serve as the basis for coherent diffraction imaging experiments at coherent scanning nanoprobe x-ray sources.
Spectral ophthalmoscopy based on supercontinuum
NASA Astrophysics Data System (ADS)
Cheng, Yueh-Hung; Yu, Jiun-Yann; Wu, Han-Hsuan; Huang, Bo-Jyun; Chu, Shi-Wei
2010-02-01
Confocal scanning laser ophthalmoscope (CSLO) has been established to be an important diagnostic tool for retinopathies like age-related macular degeneration, glaucoma and diabetes. Compared to a confocal laser scanning microscope, CSLO is also capable of providing optical sectioning on retina with the aid of a pinhole, but the microscope objective is replaced by the optics of eye. Since optical spectrum is the fingerprint of local chemical composition, it is attractive to incorporate spectral acquisition into CSLO. However, due to the limitation of laser bandwidth and chromatic/geometric aberration, the scanning systems in current CSLO are not compatible with spectral imaging. Here we demonstrate a spectral CSLO by combining a diffraction-limited broadband scanning system and a supercontinuum laser source. Both optical sectioning capability and sub-cellular resolution are demonstrated on zebrafish's retina. To our knowledge, it is also the first time that CSLO is applied onto the study of fish vision. The versatile spectral CSLO system will be useful to retinopathy diagnosis and neuroscience research.
NASA Astrophysics Data System (ADS)
Yasir, Muhammad; Amir, Norlaili Binti; Ahmad, Faiz; Syahirah Rodzhan, N.
2017-08-01
This research is carried out in order to study the synergistic effect of aluminium trihydrate and basalt fibres on the properties of fire resistant intumescent coatings. Intumescent fire retardant coatings were developed using different flame retardants such as ammonium polyphosphate, expandable graphite, melamine and boric acid. These flame retardants were bound together with the help of epoxy binder along with curing agent. Furthermore, individual and combinations of aluminium trihydrate and basalt fibres was incorporated in the formulations to analyse mechanical and chemical properties of the coatings. Char expansion was observed using furnace test, thermogravimetric analysis was used to determine residual weight, X-Ray Diffraction was performed to investigate compounds present in the char, shear test was conducted to determine char strength and scanning electron microscopy analysis was performed to observe morphology of the burnt char. From the microscopic investigation it was concluded that the dense structure of the char increased the char integrity by adding basalt and aluminium trihydrate as fillers. X-Ray Diffraction results shows the presence boron phosphate, and boric acid which enhanced the thermal performance of the coating up to 800°C. From the Thermogravimetric analysis it was concluded that the residual weight of the char was increased up to 34.9 % for IC-B2A4 which enhanced thermal performance of intumescent coating.
NASA Astrophysics Data System (ADS)
Larbi, T.; Ouni, B.; Gantassi, A.; Doll, K.; Amlouk, M.; Manoubi, T.
2017-12-01
Chromium oxide (Cr2O3) thin films have been synthesized on glass substrates by the spray pyrolysis technique. The structural, morphological and optical properties of the sample have been studied by X-ray diffraction (XRD), Raman spectroscopy, FTIR spectroscopy, scanning probe microscopy and UV-vis spectroscopy respectively. X-ray diffraction results reveal that as deposited film is polycrystalline with a rhombohedral corundum structure and a preferential orientation of the crystallites along the (1 0 4) direction. IR and Raman spectra were recorded in the 100-900 cm-1 range and the observed modes were analysed and assigned to different normal modes of vibration. The direct optical band gap energy value calculated from the transmittance spectra of as-deposited thin film is about 3.38 eV. We employ first principles calculations based on density functional theory (DFT) with the B3LYP hybrid functional and a coupled perturbed Hartree-Fock/Kohn-Sham approach (CPHF/KS). We study the electronic structure, optimum geometry, and IR and Raman spectra of ferromagnetically and antiferromagnetically ordered Cr2O3. The computed results are consistent with the experimental measurements, and provide complete vibrational assignment, for the characterization of Cr2O3 thin film materials which can be used in photocatalysis and gas sensors.
Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT
Hoyer, Patrick; de Medeiros, Gustavo; Balázs, Bálint; Norlin, Nils; Besir, Christina; Hanne, Janina; Kräusslich, Hans-Georg; Engelhardt, Johann; Sahl, Steffen J.; Hell, Stefan W.; Hufnagel, Lars
2016-01-01
We present a plane-scanning RESOLFT [reversible saturable/switchable optical (fluorescence) transitions] light-sheet (LS) nanoscope, which fundamentally overcomes the diffraction barrier in the axial direction via confinement of the fluorescent molecular state to a sheet of subdiffraction thickness around the focal plane. To this end, reversibly switchable fluorophores located right above and below the focal plane are transferred to a nonfluorescent state at each scanning step. LS-RESOLFT nanoscopy offers wide-field 3D imaging of living biological specimens with low light dose and axial resolution far beyond the diffraction barrier. We demonstrate optical sections that are thinner by 5–12-fold compared with their conventional diffraction-limited LS analogs. PMID:26984498
NASA Astrophysics Data System (ADS)
Ostendorf, Ralf; Butschek, Lorenz; Merten, André; Grahmann, Jan; Jarvis, Jan; Hugger, Stefan; Fuchs, Frank; Wagner, Joachim
2016-02-01
We present spectroscopic measurements performed with an EC-QCL combining a broadly tunable quantum cascade laser chip with a tuning range of more than 300 cm-1 and a resonantly driven MOEMS scanner with an integrated diffraction grating for wavelength selection in Littrow configuration. The grating geometry was optimized to provide high diffraction efficiency over the wide tuning range of the QCL, thus assuring high power density and high spectral resolution in the MIR range. The MOEMS scanner has a resonance frequency of 1 kHz, hence allowing for two full wavelength scans, one up and the other downwards, within 1 ms. The capability for real-time spectroscopic sensing based on MOEMS EC-QCLs is demonstrated by transmission measurements performed on polystyrene reference absorber sheets as well as on gaseous samples of carbon monoxide. For the latter one, a large portion of the characteristic CO absorption band containing several absorption lines in the range of 2070 cm-1 to 2280 cm-1 can be monitored in real-time.
DONG, DAO-RAN; HAO, MEI-NA; LI, CHENG; PENG, ZE; LIU, XIA; WANG, GUI-PING; MA, AN-LIN
2015-01-01
The aim of the present study was to investigate the combination of certain serological markers (Forns’ index; FI), FibroScan® and acoustic radiation force impulse elastography (ARFI) in the assessment of liver fibrosis in patients with hepatitis B, and to explore the impact of inflammatory activity and steatosis on the accuracy of these diagnostic methods. Eighty-one patients who had been diagnosed with hepatitis B were recruited and the stage of fibrosis was determined by biopsy. The diagnostic accuracy of FI, FibroScan and ARFI, as well as that of the combination of these methods, was evaluated based on the conformity of the results from these tests with those of biopsies. The effect of concomitant inflammation on diagnostic accuracy was also investigated by dividing the patients into two groups based on the grade of inflammation (G<2 and G≥2). The overall univariate correlation between steatosis and the diagnostic value of the three methods was also evaluated. There was a significant association between the stage of fibrosis and the results obtained using ARFI and FibroScan (Kruskal-Wallis; P<0.001 for all patients), and FI (t-test, P<0.001 for all patients). The combination of FI with ARFI/FibroScan increased the predictive accuracy with a fibrosis stage of S≥2 or cirrhosis. There was a significant correlation between the grade of inflammation and the results obtained using ARFI and FibroScan (Kruskal-Wallis, P<0.001 for all patients), and FI (t-test; P<0.001 for all patients). No significant correlation was detected between the measurements obtained using ARFI, FibroScan and FI, and steatosis (r=−0.100, P=0.407; r=0.170, P=0.163; and r=0.154, P=0.216, respectively). ARFI was shown to be as effective in the diagnosis of liver fibrosis as FibroScan or FI, and the combination of ARFI or FibroScan with FI may improve the accuracy of diagnosis. The presence of inflammatory activity, but not that of steatosis, may affect the diagnostic accuracy of these methods. PMID:25651500
Dong, Dao-Ran; Hao, Mei-Na; Li, Cheng; Peng, Ze; Liu, Xia; Wang, Gui-Ping; Ma, An-Lin
2015-06-01
The aim of the present study was to investigate the combination of certain serological markers (Forns' index; FI), FibroScan® and acoustic radiation force impulse elastography (ARFI) in the assessment of liver fibrosis in patients with hepatitis B, and to explore the impact of inflammatory activity and steatosis on the accuracy of these diagnostic methods. Eighty‑one patients who had been diagnosed with hepatitis B were recruited and the stage of fibrosis was determined by biopsy. The diagnostic accuracy of FI, FibroScan and ARFI, as well as that of the combination of these methods, was evaluated based on the conformity of the results from these tests with those of biopsies. The effect of concomitant inflammation on diagnostic accuracy was also investigated by dividing the patients into two groups based on the grade of inflammation (G<2 and G≥2). The overall univariate correlation between steatosis and the diagnostic value of the three methods was also evaluated. There was a significant association between the stage of fibrosis and the results obtained using ARFI and FibroScan (Kruskal‑Wallis; P<0.001 for all patients), and FI (t-test, P<0.001 for all patients). The combination of FI with ARFI/FibroScan increased the predictive accuracy with a fibrosis stage of S≥2 or cirrhosis. There was a significant correlation between the grade of inflammation and the results obtained using ARFI and FibroScan (Kruskal‑Wallis, P<0.001 for all patients), and FI (t-test; P<0.001 for all patients). No significant correlation was detected between the measurements obtained using ARFI, FibroScan and FI, and steatosis (r=‑0.100, P=0.407; r=0.170, P=0.163; and r=0.154, P=0.216, respectively). ARFI was shown to be as effective in the diagnosis of liver fibrosis as FibroScan or FI, and the combination of ARFI or FibroScan with FI may improve the accuracy of diagnosis. The presence of inflammatory activity, but not that of steatosis, may affect the diagnostic accuracy of these methods.
Search for life on Mars: Evaluation of techniques
NASA Technical Reports Server (NTRS)
Schwartz, D. E.; Mancinelli, R. L.; White, M. R.
1995-01-01
An important question for exobiology is, did life evolve on Mars? To answer this question, experiments must be conducted on the martian surface. Given current mission constraints on mass, power, and volume, these experiments can only be performed using proposed analytical techniques such as: electron microscopy, X-ray fluorescence, X-ray diffraction, a-proton backscatter, g-ray spectrometry, differential thermal analysis, differential scanning calorimetry, pyrolysis gas chromatography, mass spectrometry, and specific element detectors. Using prepared test samples consisting of 1% organic matter (bovine serum albumin) in palagonite and a mixture of palagonite, clays, iron oxides, and evaporites, it was determined that a combination of X-ray diffraction and differential thermal analysis coupled with gas chromatography provides the best insight into the chemistry, mineralogy, and geological history of the samples.
Search for life on Mars: evaluation of techniques.
Schwartz, D E; Mancinelli, R L; White, M R
1995-03-01
An important question for exobiology is, did life evolve on Mars? To answer this question, experiments must be conducted on the martian surface. Given current mission constraints on mass, power, and volume, these experiments can only be performed using proposed analytical techniques such as: electron microscopy, X-ray fluorescence, X-ray diffraction, alpha-proton backscatter, gamma-ray spectrometry, differential thermal analysis, differential scanning calorimetry, pyrolysis gas chromatography, mass spectrometry, and specific element detectors. Using prepared test samples consisting of 1% organic matter (bovine serum albumin) in palagonite and a mixture of palagonite, clays, iron oxides, and evaporites, it was determined that a combination of X-ray diffraction and differential thermal analysis coupled with gas chromatography provides the best insight into the chemistry, mineralogy, and geological history of the samples.
Study on Composition, Microstructure and Wear Behavior of Fe-B-C Wear-Resistant Surfacing Alloys
NASA Astrophysics Data System (ADS)
Zhuang, Minghui; Li, Muqin; Wang, Jun; Ma, Zhen; Yuan, Shidan
2017-12-01
Fe-B-C alloy layers with various microstructures were welded on Q235 steel plates using welding powders/H08Mn2Si and welding wires composite surfacing technology. The relationship existing between the chemical composition, microstructure and wear resistance of the surfacing alloy layers was investigated by scanning electron microscopy, x-ray diffraction, electron backscatter diffraction and wear tests. The results demonstrated that the volume fractions and morphologies of the microstructures in the surfacing alloy layers could be controlled by adjusting the boron and carbon contents in the welding powders, which could further regulate the wear resistance of the surfacing alloy layers. The typical microstructures of the Fe-B-C surfacing alloy layers included dendritic Fe, rod-like Fe2B, fishbone-like Fe2B and daisy-like Fe3(C, B). The wear resistance of the alloy layers with various morphologies differed. The wear resistance order of the different microstructures was: rod-like Fe2B > fishbone-like Fe2B > daisy-like Fe3(C, B) > dendritic Fe. A large number of rod-like Fe2B with high microhardness could be obtained at the boron content of 5.70 5.90 wt.% and the carbon content of 0.50 0.60wt.%. The highest wear resistance of the Fe-B-C alloy layers reached the value of 24.1 g-1, which demonstrates the main microscopic cutting wear mechanism of the Fe-B-C alloy layers.
Albadarin, Ahmad B; Potter, Catherine B; Davis, Mark T; Iqbal, Javed; Korde, Sachin; Pagire, Sudhir; Paradkar, Anant; Walker, Gavin
2017-10-30
The aim of this study was to evaluate a novel combination of hydroxypropyl methylcellulose phthalate (HPMCP-HP-50) and Soluplus ® polymers for enhanced physicochemical stability and solubility of the produced amorphous solid dispersions (ASDs). This was achieved using hot melt extrusion (HME) to convert the crystalline active pharmaceutical ingredient (API) into a more soluble amorphous form within the ternary systems. Itraconazole (ITZ), a Biopharmaceutics Classification System class II (BCS II) API, was selected as the model drug. The ASDs were characterized by Powder X-Ray diffraction (PXRD), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Fourier Transform Infrared (FTIR) spectroscopy, Solid State Nuclear Magnetic Resonance (ssNMR) and dissolution studies. The data showed that the ASDs were physically and chemically stable at 20°C and 50% RH over 12 months. PXRD results indicated that the ITZ in the ASDs was in the amorphous state and no recrystallization occurred. DSC scans confirmed that each formulation exhibited a single intermediate glass transition (T g ), around 96.4°C, indicating that ITZ was completely miscible in the polymeric blends of HPMCP and Soluplus ® at up to 30% (w/w) drug loading and that the two polymers were miscible with each other in the presence of ITZ. The FTIR analysis indicated the formation of strong hydrogen bonding between ITZ, HPMCP and Soluplus ® . The dissolution end-point of the ASDs was determined to be approximately 10 times greater than that of the crystalline ITZ. Copyright © 2017 Elsevier B.V. All rights reserved.
Structural analysis of bioceramic materials for denture application
NASA Astrophysics Data System (ADS)
Rauf, Nurlaela; Tahir, Dahlang; Arbiansyah, Muhammad
2016-03-01
Structural analysis has been performed on bioceramic materials for denture application by using X-ray diffraction (XRD), X-ray fluorescence (XRF), and Scanning Electron Microscopy (SEM). XRF is using for analysis chemical composition of raw materials. XRF shows the ratio 1 : 1 : 1 : 1 between feldspar, quartz, kaolin and eggshell, respectively, resulting composition CaO content of 56.78 %, which is similar with natural tooth. Sample preparation was carried out on temperature of 800 °C, 900 °C and 1000 °C. X-ray diffraction result showed that the structure is crystalline with trigonal crystal system for SiO2 (a=b=4.9134 Å and c=5.4051 Å) and CaH2O2 (a=b=3.5925 Å and c=4.9082 Å). Based on the Scherrer's equation showed the crystallite size of the highest peak (SiO2) increase with increasing the temperature preparation. The highest hardness value (87 kg/mm2) and match with the standards of dentin hardness. The surface structure was observed by using SEM also discussed.
NASA Astrophysics Data System (ADS)
Liu, Zhen; Xing, Dong; Su, Qian Peter; Zhu, Yun; Zhang, Jiamei; Kong, Xinyu; Xue, Boxin; Wang, Sheng; Sun, Hao; Tao, Yile; Sun, Yujie
2014-07-01
Imaging the location and dynamics of individual interacting protein pairs is essential but often difficult because of the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining bimolecular fluorescence complementation and photoactivated localization microscopy for super-resolution imaging and single-molecule tracking of specific protein-protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB-EF-Tu pairs as a subpopulation of total EF-Tu. The single-molecule tracking of MreB, EF-Tu and MreB-EF-Tu pairs reveals intriguing localization-dependent heterogonous dynamics and provides valuable insights to understanding the roles of MreB-EF-Tu interactions.
NASA Astrophysics Data System (ADS)
Yazici, Ziya Ozgur; Hitit, Aytekin; Yalcin, Yilmaz; Ozgul, Metin
2016-01-01
Effect of Cu and Si substitutions for Co and B on the glass forming ability (GFA) of Co(43-x)CuxFe20Ta5.5B(31.5-x)Siy (x=0-1.5 and y=5-10) were systematically investigated by X-ray diffraction, optical microscopy, scanning electron microscopy, and differential scanning calorimetry. In order to evaluate the contribution of copper and silicon, appropriate amounts of copper and silicon were individually introduced to the base alloy composition. By using the effects of copper and silicon together, significant enhancement was obtained and the critical casting thickness (CCT) of the base alloy was increased three times from 2 mm to 6 mm. Moreover, mechanical properties of the alloys were examined by compression tests and Vickers hardness measurements. The compression test results revealed that the glassy alloys having enhanced GFA shows high strength of about 3500-4000 MPa. In addition, existence of (Co,Fe)2B and (Co,Fe)20.82Ta2.18B6 crystalline phases in glassy matrix influences the hardnesses of the alloys compared to monolitic glassy structure having hardness of about 1200 Hv.
Symposium N: Materials and Devices for Thermal-to-Electric Energy Conversion
2010-08-24
X - ray diffraction, transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Thermal conductivity measurements...SEM), X - ray diffraction (XRD) measurements as well as Raman spectroscopy. The results from these techniques indicate a clear modification...was examined by using scanning electron microscope (SEM; HITACHI S-4500 model) attached with an energy dispersive x - ray spectroscopy. The electrical
NASA Astrophysics Data System (ADS)
Linderov, M. L.; Segel, C.; Weidner, A.; Biermann, H.; Vinogradov, A. Yu.
2018-04-01
Modern metastable steels with TRIP/TWIP effects have a unique set of physical-mechanical properties. They combine both high-strength and high-plasticity characteristics, which is governed by processes activated during deformation, namely, twinning, the formation of stacking faults, and martensitic transformations. To study the behavior of these phenomena in CrMnNi TRIP/TWIP steels and stainless CrNiMo steel, which does not have these effects in the temperature range under study, we used the method of acoustic emission and modern methods of signal processing, including the cluster analysis of spectral-density functions. The results of this study have been compared with a detailed microstructural analysis performed with a scanning electron microscope using electron backscatter diffraction (EBSD).
NASA Astrophysics Data System (ADS)
Xu, Lei; Peng, Jinhui; Meng, Binfang; Li, Wei; Liu, Bingguo; Luo, Huilong
2016-09-01
Amorphous nanoparticles have attracted a large amount of interest due to their superior catalytic activity and unique selectivity. The Ni-B amorphous nanoparticles were synthesized from aqueous reduction of NiSO4 by sodium borohydride in microscale interface at room temperature. The size, morphology, elemental compositions, and the chemical composition on the surface of Ni-B amorphous nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). All the results showed that the synthesized particles are Ni-B amorphous nanoparticles with uniform in size distribution and having good dispersion. The mean particle diameter of Ni-B amorphous nanoparticles was around 9 nm. The present work provides an alternative synthesis route for the Ni-B amorphous nanoparticles.
Multiple diffraction in an icosahedral Al-Cu-Fe quasicrystal
NASA Astrophysics Data System (ADS)
Fan, C. Z.; Weber, Th.; Deloudi, S.; Steurer, W.
2011-07-01
In order to reveal its influence on quasicrystal structure analysis, multiple diffraction (MD) effects in an icosahedral Al-Cu-Fe quasicrystal have been investigated in-house on an Oxford Diffraction four-circle diffractometer equipped with an Onyx™ CCD area detector and MoKα radiation. For that purpose, an automated approach for Renninger scans (ψ-scans) has been developed. Two weak reflections were chosen as the main reflections (called P) in the present measurements. As is well known for periodic crystals, it is also observed for this quasicrystal that the intensity of the main reflection may significantly increase if the simultaneous (H) and the coupling (P-H) reflections are both strong, while there is no obvious MD effect if one of them is weak. The occurrence of MD events during ψ-scans has been studied based on an ideal structure model and the kinematical MD theory. The reliability of the approach is revealed by the good agreement between simulation and experiment. It shows that the multiple diffraction effect is quite significant.
A diffraction based study of the deformation mechanisms in anomalously ductile B2 intermetallics
NASA Astrophysics Data System (ADS)
Mulay, Rupalee Prashant
For many decades, the brittle nature of most intermetallic compounds (e.g. NiAl) has been the limiting factor in their practical application. Many B2 (CsCl prototypical structure) intermetallics are known to exhibit slip on the <001>{110} slip mode, which provides only 3 independent slip systems and, hence, is unable to satisfy the von Mises (a.k.a. Taylor) criterion for polycrystalline ductility. As a result, inherent polycrystalline ductility is unexpected. Recent discovery of a number of ductile B2 intermetallics has raised questions about possible violation of the von Mises criterion by these alloys. These ductile intermetallic compounds are MR (metal (M) combined with a rare earth metal or group IV refractory metal (R)) alloys and are stoichiometric, ordered compounds. Single crystal slip trace analyses have only identified the presence of <100>{011} or <100>{010} slip systems. More than 100 other B2 MR compounds are known to exist and many of them have already been shown to be ductile (e.g., CuY, AgY, CuDy, CoZr, CoTi, etc.). Furthermore, these alloys exhibit a large Bauschinger effect. The present work uses several diffraction based techniques including electron back scattered diffraction (EBSD), X-ray diffraction (XRD) and in-situ neutron diffraction; in conjunction with scanning electron microscopy (SEM), transmission electron microscopy (TEM), mechanical testing, and crystal plasticity modeling, to elucidate the reason for ductility in select B2 alloys, explore the spread of this ductility over the B2 family, and understand the Bauschinger effect in these alloys. Several possible explanations (e.g., slip of <111> dislocations, strong texture, phase transformations and twinning) for the anomalous ductility were explored. An X-ray diffraction based analysis ruled out texture, phase purity and departure from order as explanations for the anomalous ductility in MR alloys. In-situ neutron diffraction and post deformation SEM, EBSD, and TEM were unable to detect any evidence for phase transformations in CoTi and CoZr. Also, post deformation characterization did not reveal any evidence of twinning. However, TEM based g·b analysis and EBSD based in-grain misorientation axis (IGMA) analysis showed that beyond a transition in the strain hardening behavior in CoTi, slip modes involving dislocations with <110> and <111> Burgers vectors are activated. The slip of such dislocations can reduce stress concentrations that could otherwise lead to premature fracture, thus providing a satisfying explanation for the anomalous ductility of CoTi and related compounds, like CoZr. Dislocation self-energy calculations accounting for elastic anisotropy suggest that the choice of slip direction in these alloys is mobility-, rather than source-, limited. The reach of this "ductilizing effect" over B2 alloys was explored by producing, characterizing, and testing a number of simple metal-rare earth metal compounds, namely MgY, MgNd and MgCe. MgR intermetallics with the B2 structure were found to be brittle and exhibit a cleavage type fracture indicating that the ductilizing effect is not as widespread as was initially thought. MgY and MgNd were found to primarily cleave along the {100} planes, while MgCe was found to cleave on the {111} planes. A large Bauschinger effect was observed in several of the anomalously ductile B2 compounds, such that the material actually begins to yield in the reverse direction on unloading. When only the primary slip mode <100>{011} is active in CoZr (prior to a transition in strain hardening), the buildup of intergranular stresses is large and is chiefly responsible for the observed Bauschinger effect. However, past the aforementioned transition in strain hardening, the effect of intergranular stresses diminishes. The results demonstrate that the activation of hard, secondary slip modes causes the internal strains to develop more uniformly among the grains, thus reducing the intergranular stresses which cause the Bauschinger effect. Crystal plasticity modeling, which accounts for the initial paucity of independent slip modes and allows for the activation of complementary hard slip modes, reproduces these trends in the Bauschinger effect and provides additional evidence that the experimental observations have correctly identified the cause of the anomalous ductility.
FABRICATION OF IN SITUFe-Ti-B COMPOSITE COATING BY LASER CLADDING
NASA Astrophysics Data System (ADS)
Du, Baoshuai
2013-06-01
Laser cladding was applied to deposit in situFe-Ti-B composite coatings on mild carbon steel with precursor of ferrotitanium, ferroboron and pure Fe alloy powders. The composite coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron probe microanalysis (EPMA). Wear resistance of the laser-cladded Fe-Ti-B coatings was evaluated under dry sliding condition at room temperature using block-on-ring wear tester. Results indicate that in situ reinforcements of TiB2 and Fe2B can be synthesized in the Fe-Ti-B coatings. The amount of TiB2 increases with the increase of content of ferrotitanium and ferroboron in the precursor. Reinforcements are formed through the liquid-precipitation route following the solidification path of the Fe-Ti-B system. Hardness and wear properties of the coatings improved significantly in comparison to the as-received substrate due to the presence of hard reinforcements.
Preparation and Compatibility Evaluation of Polypropylene/High Density Polyethylene Polyblends
Lin, Jia-Horng; Pan, Yi-Jun; Liu, Chi-Fan; Huang, Chien-Lin; Hsieh, Chien-Teng; Chen, Chih-Kuang; Lin, Zheng-Ian; Lou, Ching-Wen
2015-01-01
This study proposes melt-blending polypropylene (PP) and high density polyethylene (HDPE) that have a similar melt flow index (MFI) to form PP/HDPE polyblends. The influence of the content of HDPE on the properties and compatibility of polyblends is examined by using a tensile test, flexural test, Izod impact test, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), polarized light microscopy (PLM), and X-ray diffraction (XRD). The SEM results show that PP and HDPE are incompatible polymers with PP being a continuous phase and HDPE being a dispersed phase. The FTIR results show that the combination of HDPE does not influence the chemical structure of PP, indicating that the polyblends are made of a physical blending. The DSC and XRD results show that PP and HDPE are not compatible, and the combination of HDPE is not correlated with the crystalline structure and stability of PP. The PLM results show that the combination of HDPE causes stacking and incompatibility between HDPE and PP spherulites, and PP thus has incomplete spherulite morphology and a smaller spherulite size. However, according to mechanical property test results, the combination of HDPE improves the impact strength of PP. PMID:28793750
Preparation and Compatibility Evaluation of Polypropylene/High Density Polyethylene Polyblends.
Lin, Jia-Horng; Pan, Yi-Jun; Liu, Chi-Fan; Huang, Chien-Lin; Hsieh, Chien-Teng; Chen, Chih-Kuang; Lin, Zheng-Ian; Lou, Ching-Wen
2015-12-17
This study proposes melt-blending polypropylene (PP) and high density polyethylene (HDPE) that have a similar melt flow index (MFI) to form PP/HDPE polyblends. The influence of the content of HDPE on the properties and compatibility of polyblends is examined by using a tensile test, flexural test, Izod impact test, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), polarized light microscopy (PLM), and X-ray diffraction (XRD). The SEM results show that PP and HDPE are incompatible polymers with PP being a continuous phase and HDPE being a dispersed phase. The FTIR results show that the combination of HDPE does not influence the chemical structure of PP, indicating that the polyblends are made of a physical blending. The DSC and XRD results show that PP and HDPE are not compatible, and the combination of HDPE is not correlated with the crystalline structure and stability of PP. The PLM results show that the combination of HDPE causes stacking and incompatibility between HDPE and PP spherulites, and PP thus has incomplete spherulite morphology and a smaller spherulite size. However, according to mechanical property test results, the combination of HDPE improves the impact strength of PP.
Silambarasan, A; Krishna Kumar, M; Thirunavukkarasu, A; Mohan Kumar, R; Umarani, P R
2015-01-25
An organic nonlinear optical bulk single crystal, Ammonium 3-carboxy-4-hydroxy benzenesulfonate monohydrate (ACHBS) was successfully grown by solution growth technique. Single crystal X-ray diffraction study confirms that, the grown crystal belongs to P21/c space group. Powder X-ray diffraction and high resolution X-ray diffraction analyses revealed the crystallinity of the grown crystal. Infrared spectral analysis showed the vibrational behavior of chemical bonds and its functional groups. The thermal stability and decomposition stages of the grown crystal were studied by TG-DTA analysis. UV-Visible transmittance studies showed the transparency region and cut-off wavelength of the grown crystal. The third-order nonlinear optical susceptibility of the grown crystal was estimated by Z-scan technique using He-Ne laser source. The mechanical property of the grown crystal was studied by using Vicker's microhardness test. Copyright © 2014 Elsevier B.V. All rights reserved.
Auger electron diffraction study of V/Fe(100) interface formation
NASA Astrophysics Data System (ADS)
Huttel, Y.; Avila, J.; Asensio, M. C.; Bencok, P.; Richter, C.; Ilakovac, V.; Heckmann, O.; Hricovini, K.
1998-05-01
Vanadium atoms present a magnetic moment different to zero when they are part of a thin film deposited on Fe or as a bimetallic Fe-V alloy. The understanding of this phenomenon can only be achieved with a correct structural description of these types of systems. We report an Auger electron diffraction investigation of V films grown on body cubic centred (b.c.c.) Fe(100) substrates. Angular-scanned Auger electron diffraction (AED) patterns of V L 23M 23M 4 (473 eV) and Fe L 3VV (703 eV) show the formation of a well-ordered V/Fe interface even at room temperature. The AED patterns of V films in the range of vanadium submonolayer provide evidence of an isotropic Auger emission, indicating the absence of interdiffusion of V atoms into the Fe substrate and absence of cluster growth of the V film. The annealing of these films up to 400°C does not activate the substitution of the topmost Fe surface layers by V atoms.
Room Temperature Ferromagnetism of Fe Doped Indium Tin Oxide Based on Dispersed Fe3O4 Nanoparticles
NASA Astrophysics Data System (ADS)
Okada, Koichi; Kohiki, Shigemi; Nishi, Sachio; Shimooka, Hirokazu; Deguchi, Hiroyuki; Mitome, Masanori; Bando, Yoshio; Shishido, Toetsu
2007-09-01
Transmission electron microscopy revealed that Fe3O4 nanoparticles with diameter of ≈200 nm dispersed in Fe doped indium tin oxide (Fe@ITO) powders exhibiting co-occurrence of room temperature ferromagnetism and superparamagnetism. Although we observed no X-ray diffraction peak from Fe related compounds for Fe0.19@ITO (ITO: In1.9Sn0.1O3) powders, the powders showed both hysteresis loop in field dependent magnetization at 300 K and divergence of zero-field-cooled magnetization from field-cooled magnetization. Scanning transmission electron microscopy with energy dispersive X-ray spectroscopy demonstrated that the nanoparticle with diameter of ≈200 nm consists of Fe and oxygen. Transmission electron diffraction revealed that crystal structure of the nanoparticle is inverse spinel type Fe3O4. The Fe3O4 crystalline phase by electron diffraction is consistent with the saturation magnetization of 1.3 μB/Fe and magnetic anomaly at ≈110 K observed for the powders.
Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, Y., E-mail: y-hayashi@mosk.tytlabs.co.jp; Hirose, Y.; Seno, Y.
2016-07-27
A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 {sup 3} voxels was obtained.
Continuous motion scan ptychography: characterization for increased speed in coherent x-ray imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Nashed, Youssef S. G.; Chen, Si
2015-01-01
Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object's complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous "fly-scan" mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less
Continuous motion scan ptychography: characterization for increased speed in coherent x-ray imaging.
Deng, Junjing; Nashed, Youssef S G; Chen, Si; Phillips, Nicholas W; Peterka, Tom; Ross, Rob; Vogt, Stefan; Jacobsen, Chris; Vine, David J
2015-03-09
Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object's complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous "fly-scan" mode for ptychographic data collection in which the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.
Recombinant Reflectin-Based Optical Materials
2012-01-01
sili- con substrates were placed in a sealed plastic box. The RH was controlled using a Dydra electronic cigar humidifier and monitored using a Fisher...diffraction gratings to generate diffraction patterns. Nano-spheres and la- mellar microstructures of refCBA samples were observed by scanning electron ...samples were observed by scanning electron microscopy and atomic force microscopy. Despite the reduced complexity of the refCBA protein compared to natural
Ilev, Ilko; Waynant, Ronald; Gannot, Israel; Gandjbakhche, Amir
2007-09-01
A novel fiber-optic confocal approach for ultrahigh depth-resolution (
Zhang, Bing; Ni, Boli; Lü, Shaoyu; Cui, Dapeng; Liu, Mingzhu; Gong, Honghong; Han, Fei
2012-04-01
A novel substance, cationic acetylcholine potato starch (CAPS), was developed for the first time. The synthesis process had three steps: first, carboxymethyl potato starch (CMPS) was synthesized under sodium hydroxide alkaline condition and in isopropyl alcohol organic media; second, bromocholine chloride (BCC) was synthesized with sulphuric acid as a catalytic agent; finally, CAPS was synthesized by the reaction of CMPS with BCC in N,N'-dimethylformamide (DMF). The degree of substitution (DS) of CAPS was determined by ammonia gas-sensing electrode and elemental analysis. CAPS was characterized by Fourier transformed infrared (FTIR) and near infrared (FTNIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Copyright © 2012 Elsevier B.V. All rights reserved.
Cybastacines A and B: Antibiotic Sesterterpenes from a Nostoc sp. Cyanobacterium.
Cabanillas, Alfredo H; Tena Pérez, Víctor; Maderuelo Corral, Santiago; Rosero Valencia, Diego Fernando; Martel Quintana, Antera; Ortega Doménech, Montserrat; Rumbero Sánchez, Ángel
2018-02-23
Cybastacines A (1) and B (2) were discovered as a novel pentacyclic sesterterpenoid-alkaloid skeleton structure, with a guanidinium group. These molecules were isolated from a Nostoc sp. cyanobacterium collected in the Canary Islands. Their structures were elucidated primarily by a combination of spectroscopic analyses and X-ray diffraction. These compounds showed antibiotic activities against several clinically relevant bacterial strains.
Effect of pre-strain on precipitation and exfoliation corrosion resistance in an Al-Zn-Mg alloy
NASA Astrophysics Data System (ADS)
Lu, Xianghan; Du, Zhiwei; Han, Xiaolei; Li, Ting; Wang, Guojun; Lu, Liying; Bai, Xiaoxia; Zhou, Tietao
2017-12-01
To investigate the effect of pre-strain on behaviors in a specially developed Al-4.5Zn-1.2Mg alloy, transmission electron microscopy (TEM) bright field (BF) imaging combined with select area electron diffraction (SAED), Vickers-hardness tests and electrical conductivity tests was conducted for insight into precipitation in aluminum (Al) matrix during two step ageing, and standard exfoliation corrosion (EXCO) test combined with high-angle angular dark field scanning transmission electron microscopy (HAADF-STEM) and scanning electron microscopy (SEM) was carried out for corrosion behavior. Results showed that pre-strain accelerated precipitation during two step ageing as the sequence of: (i) supersaturated solid solution (SSS), GPI zones precipitations, GPI dissolution; (ii) SSS, fcc precipitates, η’ phases or η phases. And the precipitation hardening of the fcc precipitates was not effective as GPI zones. Pre-strain also accelerated EXCO developing, which was mainly attributed to the coverage ratio of η phases on high-angle grain boundaries (HAGBs) increasing as pre-strain increase.
Cricenti, Antonio; Generosi, Renato; Luce, Marco; Perfetti, Paolo; Margaritondo, Giorgio; Talley, David; Sanghera, Jas S.; Aggarwal, Ishwar D.; Tolk, Norman H.; Congiu-Castellano, Agostina; Rizzo, Mark A.; Piston, David W.
2003-01-01
The infrared (IR) absorption of a biological system can potentially report on fundamentally important microchemical properties. For example, molecular IR profiles are known to change during increases in metabolic flux, protein phosphorylation, or proteolytic cleavage. However, practical implementation of intracellular IR imaging has been problematic because the diffraction limit of conventional infrared microscopy results in low spatial resolution. We have overcome this limitation by using an IR spectroscopic version of scanning near-field optical microscopy (SNOM), in conjunction with a tunable free-electron laser source. The results presented here clearly reveal different chemical constituents in thin films and biological cells. The space distribution of specific chemical species was obtained by taking SNOM images at IR wavelengths (λ) corresponding to stretch absorption bands of common biochemical bonds, such as the amide bond. In our SNOM implementation, this chemical sensitivity is combined with a lateral resolution of 0.1 μm (≈λ/70), well below the diffraction limit of standard infrared microscopy. The potential applications of this approach touch virtually every aspect of the life sciences and medical research, as well as problems in materials science, chemistry, physics, and environmental research. PMID:14507733
Imaging cervical cytology with scanning near-field optical microscopy (SNOM) coupled with an IR-FEL.
Halliwell, Diane E; Morais, Camilo L M; Lima, Kássio M G; Trevisan, Julio; Siggel-King, Michele R F; Craig, Tim; Ingham, James; Martin, David S; Heys, Kelly A; Kyrgiou, Maria; Mitra, Anita; Paraskevaidis, Evangelos; Theophilou, Georgios; Martin-Hirsch, Pierre L; Cricenti, Antonio; Luce, Marco; Weightman, Peter; Martin, Francis L
2016-07-12
Cervical cancer remains a major cause of morbidity and mortality among women, especially in the developing world. Increased synthesis of proteins, lipids and nucleic acids is a pre-condition for the rapid proliferation of cancer cells. We show that scanning near-field optical microscopy, in combination with an infrared free electron laser (SNOM-IR-FEL), is able to distinguish between normal and squamous low-grade and high-grade dyskaryosis, and between normal and mixed squamous/glandular pre-invasive and adenocarcinoma cervical lesions, at designated wavelengths associated with DNA, Amide I/II and lipids. These findings evidence the promise of the SNOM-IR-FEL technique in obtaining chemical information relevant to the detection of cervical cell abnormalities and cancer diagnosis at spatial resolutions below the diffraction limit (≥0.2 μm). We compare these results with analyses following attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy; although this latter approach has been demonstrated to detect underlying cervical atypia missed by conventional cytology, it is limited by a spatial resolution of ~3 μm to 30 μm due to the optical diffraction limit.
Imaging cervical cytology with scanning near-field optical microscopy (SNOM) coupled with an IR-FEL
Halliwell, Diane E.; Morais, Camilo L. M.; Lima, Kássio M. G.; Trevisan, Julio; Siggel-King, Michele R. F.; Craig, Tim; Ingham, James; Martin, David S.; Heys, Kelly A.; Kyrgiou, Maria; Mitra, Anita; Paraskevaidis, Evangelos; Theophilou, Georgios; Martin-Hirsch, Pierre L.; Cricenti, Antonio; Luce, Marco; Weightman, Peter; Martin, Francis L.
2016-01-01
Cervical cancer remains a major cause of morbidity and mortality among women, especially in the developing world. Increased synthesis of proteins, lipids and nucleic acids is a pre-condition for the rapid proliferation of cancer cells. We show that scanning near-field optical microscopy, in combination with an infrared free electron laser (SNOM-IR-FEL), is able to distinguish between normal and squamous low-grade and high-grade dyskaryosis, and between normal and mixed squamous/glandular pre-invasive and adenocarcinoma cervical lesions, at designated wavelengths associated with DNA, Amide I/II and lipids. These findings evidence the promise of the SNOM-IR-FEL technique in obtaining chemical information relevant to the detection of cervical cell abnormalities and cancer diagnosis at spatial resolutions below the diffraction limit (≥0.2 μm). We compare these results with analyses following attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy; although this latter approach has been demonstrated to detect underlying cervical atypia missed by conventional cytology, it is limited by a spatial resolution of ~3 μm to 30 μm due to the optical diffraction limit. PMID:27406404
Removal of Rhodamine B from aqueous solution using magnetic NiFe nanoparticles.
Liu, Yan; Liu, Kaige; Zhang, Lin; Zhang, Zhaowen
2015-01-01
Surface-modified magnetic nano alloy particles Ni2.33Fe were prepared using a hydrothermal method and they were utilized for removing Rhodamine B (RhB) from aqueous solution. The magnetic nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy, which confirmed that the surface of the magnetic product with a face-centered cubic-type structure was successfully modified by sodium citrate. Kinetics studies were conducted. The pseudo-second-order kinetic model was used for fitting the kinetic data successfully. The Freundlich and Langmuir adsorption models were employed for the mathematical description of adsorption equilibrium. It was found that the adsorption isotherm can be very satisfactorily fitted by the Freundlich model.
DSC and Raman studies of silver borotellurite glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Amandeep; Khanna, Atul, E-mail: atul.phy@gndu.ac.in; Gonzàlez, Fernando
2016-05-23
Silver borotellurite glasses of composition: xAg{sub 2}O-yB{sub 2}O{sub 3}-(100-x-y)TeO{sub 2} (x=20-mol%, y = 0, 10, 20 and 30-mol%) were prepared and characterized by density, X-ray diffraction (XRD), differential scanning calorimetry, and Raman spectroscopy. XRD confirmed the amorphous structure of all samples. Density of glasses decreases while the glass transition temperature increases with increase in B{sub 2}O{sub 3} content from 10 to 30-mol%. Raman study shows that coordination number of Te with oxygen decreases steadily from 3.42 to 3.18 on adding B{sub 2}O{sub 3} due to the transformation of TeO{sub 4} into TeO{sub 3} units.
Value of gallbladder B-scan ultrasonography.
Tabrisky, J; Lindstrom, R R; Herman, M W; Castagna, J; Sarti, D
1975-05-01
The gallbladder B-scans of 20 patients who had subsequent surgery were separated into three categories based upon certain sonographic criteria. Our data, in this limited series, revealed gallbladder pathology in each patient who had any one or combination of the following scan characteristics: (1) internal echos, (2) irregular wall, or (3) absence of recognizable gallbladder sonolucency. The category which demonstrated a normal sonographic gallbladder, namely a smooth wall and no internal echos, contained a number of false negatives which proved to have either small stone cholelithiasis or extraphepatic ductal obstruction. Within the described limitations, the B-scan can be a valuable test in confirming the significance of a radiographically nonvisualized gallbladder or in detecting a biliary tract lesion in a patient with a disease entity that precludes radiographic visualization by conventional techniques.
Brodusch, N; Demers, H; Gauvin, R
2013-04-01
A charge-coupled device camera of an electron backscattered diffraction system in a scanning electron microscope was positioned below a thin specimen and transmission Kikuchi patterns were collected. Contrary to electron backscattered diffraction, transmission electron forward scatter diffraction provides phase identification and orientation mapping at the nanoscale. The minimum Pd particle size for which a Kikuchi diffraction pattern was detected and indexed reliably was 5.6 nm. An orientation mapping resolution of 5 nm was measured at 30 kV. The resolution obtained with transmission electron forward scatter diffraction was of the same order of magnitude than that reported in electron nanodiffraction in the transmission electron microscope. An energy dispersive spectrometer X-ray map and a transmission electron forward scatter diffraction orientation map were acquired simultaneously. The high-resolution chemical, phase and orientation maps provided at once information on the chemical form, orientation and coherency of precipitates in an aluminium-lithium 2099 alloy. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Zhou, Ying; Wen, Zhiyu; Yang, Tingyan; Lei, Hongjie
2015-11-01
Near infrared micro-spectrometer (NIRMS) as a vital detection equipment for various elements has been investigated over the last few years. Traditional MEMS NIRMS employs CCD array detectors for NIR spectrum collection and this leads to higher fabrication cost. In this paper, to ensure the higher diffraction efficiency as well as lower fabrication cost, a novel blazed grating based on MEMS scanning micro-mirror (SMM) is proposed. By our design method, the NIRMS needs only one single InGaAs detector photo diode to collect NIR spectrum and ensure the high diffraction efficiency. Our results show that the diffraction efficiency of the blazed grating is almost 50% and the peak value reaches to 90% in the range of 900-2,100 nm while the optical scanning angle is 14.2°.
Novel diffraction gratings for next generation spectrographs with high spectral dispersion
NASA Astrophysics Data System (ADS)
Ebizuka, N.; Okamoto, T.; Hosobata, T.; Yamagata, Y.; Sasaki, M.; Uomoto, M.; Shimatsu, T.; Sato, S.; Hashimoto, N.; Tanaka, I.; Hattori, T.; Ozaki, S.; Aoki, W.
2016-07-01
As a transmission grating, a surface-relief (SR) grating with sawtooth shaped ridges and volume phase holographic (VPH) grating are widely used for instruments of astronomical observations. However the SR grating is difficult to achieve high diffraction efficiency at high angular dispersion, and the VPH grating has low diffraction efficiency in high diffraction orders. We propose novel gratings that solve these problems. We introduce the hybrid grism which combines a high refractive index prism with a replicated transmission grating, which has sawtooth shaped ridges of an acute apex angle. The birefringence VPH (B-VPH) grating which contains an anisotropic medium, such as a liquid crystal, achieves diffraction efficiency up to 100% at the first diffraction order for natural polarization and for circular polarization. The quasi-Bragg (QB) grating which consists of long rectangular mirrors aligned in parallel precisely, like a window blind, achieves diffraction efficiency of 60% or more in higher than the 4th diffraction order. The volume binary (VB) grating with narrow grooves also achieves diffraction efficiency of 60% or more in higher than the 6th diffraction order. The reflector facet transmission (RFT) grating which is a SR grating with sawtooth shaped ridges of an acute apex angle achieves diffraction efficiency up to 80% in higher than the 4th diffraction order.
Monoclinic structures of niobium trisulfide
NASA Astrophysics Data System (ADS)
Bloodgood, Matthew A.; Wei, Pingrong; Aytan, Ece; Bozhilov, Krassimir N.; Balandin, Alexander A.; Salguero, Tina T.
2018-02-01
Two new polymorphs of niobium trisulfide are established by single crystal x-ray diffraction. NbS3-iv crystallizes in the monoclinic space group P21/c with lattice parameters a = 6.7515(5) Å, b = 4.9736(4) Å, c = 18.1315(13) Å, and β = 90.116(2)°. Its structure is based on chains of [NbS6] trigonal prisms containing Nb-Nb pairs with a bond length of 3.0448(8) Å; this pairing causes the chains to corrugate slightly along their axis, a feature also present in triclinic NbS3-i that leads to semiconductor properties. The stacking arrangement of chains is different in these polymorphs, however, with NbS3-i having an ABCDE repeating sequence of chain bilayers and NbS3-iv having an AB repeating sequence. HRTEM studies show the presence of topotactically-oriented intergrown zones and numerous dislocations, which result in mosaic structuring. A second new polymorph, NbS3-v, crystallizes in the monoclinic space group P21/m with lattice parameters a = 4.950(5) Å, b = 3.358(4) Å, c = 9.079(10) Å, β = 97.35(2)°. In contrast to NbS3-iv, NbS3-v maintains fixed a Nb-Nb bond distance of 3.358(4) Å along the chains, and it has an ABCDE repeating sequence of chain bilayers similar to NbS3-i. High resolution scanning transmission electron microscopy (HR-STEM) imaging of an exfoliated NbS3-v nanoribbon shows the continuous [NbS6] chains oriented along the b-axis. These results provide the first firmly established structural data for monoclinic NbS3. In addition, SEM images show the formation of NbS3 rings and cylinders, and a combination of powder x-ray diffraction and Raman spectroscopy provides a way to distinguish between NbS3 polymorphs.
Growth Mode Transition in Complex Oxide Heteroepitaxy: Atomically Resolved Studies
Tselev, Alexander; Vasudevan, Rama K.; Gianfrancesco, Anthony G.; ...
2016-04-04
Here we performed investigations of the atomic-scale surface structure of epitaxial La 5/8Ca 3/8MnO 3 thin films as a model system dependent on growth conditions in pulsed laser deposition with emphasis on film growth kinetics. Postdeposition in situ scanning tunneling microscopy was combined with in operando reflective high-energy electron diffraction to monitor the film growth and ex situ X-ray diffraction for structural analysis. We find a correlation between the out-of-plane lattice parameter and both adspecies mobility and height of the Ehrlich–Schwoebel barrier, with mobility of adatoms greater over the cationically stoichiometric terminations. We find that the data suggest that themore » out-of-plane lattice parameter is dependent on the mechanism of epitaxial strain relaxation, which is controlled by the oxidative power of the deposition environment.« less
Novel porous CuO microrods: synthesis, characterization, and their photocatalysis property
NASA Astrophysics Data System (ADS)
Huang, Jiarui; Fu, Guijun; Shi, Chengcheng; Wang, Xinyue; Zhai, Muheng; Gu, Cuiping
2014-09-01
Porous copper oxide microrods have been synthesized via calcining copper glycinate monohydrate microrod precursor which was prepared in mild conditions without any template or additive. Several techniques, such as X-ray diffraction, field emission scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller (BET) N2 adsorption-desorption analyses, were used to characterize the structure and morphology of the products. Scanning electron microscopy (SEM) analyses show that the precursor consists of a large quantity of uniform rod-like micro/nanostructures with typical lengths in the range of 25-40 μm and diameters in the range of 0.1-0.35 μm. The microrod-like precursors transformed into porous microrod products after calcination at 450 °C in flow air for 2 h. The BET surface area of the porous CuO microrods was calculated to be 8.5 m² g-1. In addition, the obtained porous CuO microrods were used as catalysts to photodegrade rhodamine B (RhB), methyl orange, methylene blue, eosin B, and p-nitrophenol. Compared with commercial CuO powders, the as-prepared porous CuO microrods exhibit superior properties on photocatalytic decomposition of RhB due to their porous hierarchical structures.
One-step electrospinning synthesis of TiO2/g-C3N4 nanofibers with enhanced photocatalytic properties
NASA Astrophysics Data System (ADS)
Tang, Qian; Meng, Xianfeng; Wang, Zhiying; Zhou, Jianwei; Tang, Hua
2018-02-01
TiO2/g-C3N4 composite nanofibers have been successfully synthesized by one-step electrospinning method, using titanium (IV) n-butoxide (TNBT) and urea as raw materials. The structure and compositions of TiO2/g-C3N4 samples are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Diffuse reflectance spectroscopy (DRS), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), X-ray photoelectron spectrometer (XPS) and Brunauer-Emmett-Teller (BET), respectively. The results show that the porous uniform TiO2/g-C3N4 composite nanofibers, with diameter of 100-150 nm, can be successfully prepared through electrospinning method combining 550 °C calcination process. The photocatalytic activity is evaluated by the degradation of rhodamine B (RhB) under simulated solar light. The enhanced catalytic activity is attributed predominantly to the heterojunction between TiO2 and g-C3N4, which promotes the transferring of carriers and prohibits their recombination. With the optimal doping amount of 0.6 g urea (corresponding to 3 g TNBT), the TiO2/g-C3N4 composite nanofibers exhibit the highest rate towards the photocatalytic degradation of RhB. A diagram is presented to explicate the mechanism of the whole catalytic experiment. This study might provide a promising future of applying green catalysts to solving water pollution problems.
Park, Jeung Hun; Pozuelo, Marta; Setiawan, Bunga P D; Chung, Choong-Heui
2016-12-01
We report the growth of vertical <111>-oriented InAs x P1-x (0.11 ≤ x ≤ 0.27) nanowires via metal-organic chemical vapor deposition in the presence of indium droplets as catalysts on InP(111)B substrates at 375 °C. Trimethylindium, tertiarybutylphosphine, and tertiarybutylarsine are used as the precursors, corresponding to P/In and As/In molar ratios of 29 and 0.01, respectively. The as-grown nanowire growth morphologies, crystallinity, composition, and optical characteristics are determined using a combination of scanning and transmission electron microscopies, electron diffraction, and X-ray photoelectron, energy dispersive X-ray, and Raman spectroscopies. We find that the InAs x P1-x nanowires are tapered with narrow tops, wider bases, and In-rich In-As alloy tips, characteristic of vapor-liquid-solid process. The wires exhibit a mixture of zinc blende and wurtzite crystal structures and a high density of structural defects such as stacking faults and twins. Our results suggest that the incorporation of As into InP wires decreases with increasing substrate temperature. The Raman spectra obtained from the In(As)P nanowires reveal a red-shift and lower intensity of longitudinal optical mode relative to both InP nanowires and InP(111)B bulk, due to the incorporation of As into the InP matrix.
The Impact Induced Demagnetization Mechanism in NdFeB Permanent Magnets
NASA Astrophysics Data System (ADS)
Li, Yan-Feng; Zhu, Ming-Gang; Li, Wei; Zhou, Dong; Lu, Feng; Chen, Lang; Wu, Jun-Ying; Qi, Yan; Du, An
2013-09-01
Compression of unmagnetized Nd2Fe14B permanent magnets is executed by using shock waves with different pressures in a one-stage light gas gun system. The microstructure, crystal structure, and magnetic properties of the magnets are examined with scanning electronic microscopy, x-ray diffraction, hysteresis loop instruments, and a vibrating sample magnetometer, respectively. The NdFeB magnets display a demagnetization phenomenon after shock wave compression. The coercivity dropped from about 21.4 kOe to 3.2 kOe. The critical pressure of irreversible demagnetization of NdFeB magnets should be less than 4.92 GPa. The coercivity of the NdFeB magnets compressed by shock waves could be recovered after annealing at 900°C and 520°C for 2 h, sequentially. The chaotic orientation of Nd2Fe14B grains in the compressed magnets is the source of demagnetization.
NASA Astrophysics Data System (ADS)
Ram Kumar, J.; Ananthakumar, S.; Moorthy Babu, S.
2017-01-01
A facile route to synthesize copper indium diselenide (CuInSe2) nanoparticles in aqueous medium was developed using mercaptoacetic acid (MAA) as capping agent. Two different mole ratios (5 and 10) of MAA were used to synthesize CuInSe2 nanoparticles at room temperature, as well as hydrothermal (high temperature) method. Powder x-ray diffraction analysis reveals that the nanoparticles exhibit chalcopyrite phase and the crystallinity increases with increasing the capping ratio. Raman analysis shows a strong band at 233 cm-1 due to the combination of B2 (E) modes. Broad absorption spectra were observed for the synthesized CuInSe2 nanoparticles. The effective surface capping by MAA on the nanoparticles surface was confirmed through attenuated total reflection-Fourier transform infrared spectral analysis. The thermal stability of the synthesized samples was analyzed through thermogravimetric analysis-differential scanning calorimetry. The change in morphology of the synthesized samples was analyzed through scanning electron microscope and it shows that the samples prepared at room temperature are spherical in shape, whereas hydrothermally synthesized samples were found to have nanorod- and nanoflake-like structures. Transmission electron microscope analysis further indicates larger grains for the hydrothermally prepared samples with 10 mol ratio of MAA. Comparative analyses were made for synthesizing CuInSe2 nanoparticles by two different methods to explore the role of ligand and influence of temperature.
Zhang, Yanzhuo; Zhi, Zhizhuang; Li, Xue; Gao, Jian; Song, Yaling
2013-09-15
The main objective of this study was to develop carboxylated ordered mesoporous carbon microparticles (c-MCMs) loaded with a poorly water-soluble drug, intended to be orally administered, able to enhance the drug loading capacity and improve the oral bioavailability. A model drug, carvedilol (CAR), was loaded onto c-MCMs via a procedure involving a combination of adsorption equilibrium and solvent evaporation. The physicochemical properties of the drug-loaded composites were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and HPLC. It was found that c-MCM has a high drug loading level up to 41.6%, and higher than that of the mesoporous silica template. Incorporation of CAR in both drug carriers enhanced the solubility and dissolution rate of the drug, compared to the pure crystalline drug. After loading CAR into c-MCMs, its oral bioavailability was compared with the marketed product in dogs. The results showed that the bioavailability of CAR was improved 179.3% compared with that of the commercial product when c-MCM was used as the drug carrier. We believe that the present study will help in the design of oral drug delivery systems for enhanced oral bioavailability of poorly water-soluble drugs. Copyright © 2013 Elsevier B.V. All rights reserved.
Preparation of chitosan/nano hydroxyapatite organic-inorganic hybrid microspheres for bone repair.
Chen, Jingdi; Pan, Panpan; Zhang, Yujue; Zhong, Shengnan; Zhang, Qiqing
2015-10-01
In this work, we encapsulated icariin (ICA) into chitosan (CS)/nano hydroxyapatite (nHAP) composite microspheres to form organic-inorganic hybrid microspheres for drug delivery carrier. The composition and morphology of composite microspheres were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and differential scanning calorimetry- thermogravimetric analysis (DSC-TGA). Moreover, we further studied the performance of swelling properties, degradation properties and drug release behavior of the microspheres. ICA, the extract of traditional Chinese medicine-epimedium, was combined to study drug release properties of the microspheres. ICA loaded microspheres take on a sustained release behavior, which can be not only ascribed to electrostatic interaction between reactive negative hydroxyl (OH) of ICA and positive amine groups (NH₂) of CS, but also depended on the homogeneous dispersion of HAP nanoparticles inside CS organic matrix. In addition, the adhesion and morphology of osteoblasts were detected by inverted fluorescence microscopy. The biocompatibility of CS/nHAP/ICA microspheres was evaluated by the MTT cytotoxicity assay, Hoechst 33258 and PI fluorescence staining. These studies demonstrate that composite microspheres provide a suitable microenvironment for osteoblast attachment and proliferation. It can be speculated that the ICA loaded CS-based organic-inorganic hybrid microspheres might have potential applications in drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Bernardi, Larissa S; Ferreira, Fábio F; Cuffini, Silvia L; Campos, Carlos E M; Monti, Gustavo A; Kuminek, Gislaine; Oliveira, Paulo R; Cardoso, Simone G
2013-12-15
Venlafaxine hydrochloride (VEN) is an antidepressant drug widely used for the treatment of depression. The purpose of this study was to carry out the preparation and solid state characterization of the pure polymorphs (Forms 1 and 2) and the polymorphic identification and quantification of four commercially-available VEN raw materials. These two polymorphic forms were obtained from different crystallization methods and characterized by X-ray Powder Diffraction (XRPD), Diffuse Reflectance Infrared Fourier Transform (DRIFT), Raman Spectroscopy (RS), liquid and solid state Nuclear Magnetic Resonance (NMR and ssNMR) spectroscopies, Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM) techniques. The main differences were observed by DSC and XRPD and the latter was chosen as the standard technique for the identification and quantification studies in combination with the Rietveld method for the commercial raw materials (VEN1-VEN4) acquired from different manufacturers. Additionally Form 1 and Form 2 can be clearly distinguished from their (13)C ssNMR spectra. Through the analysis, it was possible to conclude that VEN1 and VEN2 were composed only of Form 1, while VEN3 and VEN4 were a mixture of Forms 1 and 2. Additionally, the Rietveld refinement was successfully applied to quantify the polymorphic ratio for VEN3 and VEN4. Copyright © 2013 Elsevier B.V. All rights reserved.
Fabrication and Properties of Novel NiWFeB Amorphous Alloys
NASA Astrophysics Data System (ADS)
Zhang, Jiajia; Liu, Wensheng; Ma, Yunzhu; Ye, Xiaoshan; Wu, Yayu
2017-09-01
In this work, we reported the successful synthesis of four quaternary NiWFeB amorphous alloys (Ni53.9W4.3Fe24.2B17.6, Ni49.7W9.7Fe22.3B18.3, Ni46.2W14.1Fe20.8B18.9 and Ni42.2W19.2Fe18.9B19.7 in at.%) via melt spinning method. The synthesized amorphous alloys are characterized by x-ray diffraction, transmission electron microscopy, differential scanning calorimeter, scanning electron microscopy and Vickers indenters. The results showed that the crystallization temperatures T x1 of four amorphous alloys with increased W contents, derived from the exothermic peaks in DSC, were 705, 715, 851, and 965 K, respectively. The Vickers hardness ( H v) of the corresponding four amorphous alloys at room temperature was 8.5, 9.8, 10.3, and 11.4 GPa, respectively. The much finer shear bands in the deformation region underneath the Vickers indenter were observed as the tungsten content increases. All the results showed a tendency that the higher the tungsten content, the greater the thermal stability and hardness. The results indicated the NiWFeB amorphous alloys could be easier fabricated by continuing to increase the tungsten content, and those NiWFeB amorphous alloys would have a promising application in nuclear energies and military defenses.
Reconstruction of Laser-Induced Surface Topography from Electron Backscatter Diffraction Patterns.
Callahan, Patrick G; Echlin, McLean P; Pollock, Tresa M; De Graef, Marc
2017-08-01
We demonstrate that the surface topography of a sample can be reconstructed from electron backscatter diffraction (EBSD) patterns collected with a commercial EBSD system. This technique combines the location of the maximum background intensity with a correction from Monte Carlo simulations to determine the local surface normals at each point in an EBSD scan. A surface height map is then reconstructed from the local surface normals. In this study, a Ni sample was machined with a femtosecond laser, which causes the formation of a laser-induced periodic surface structure (LIPSS). The topography of the LIPSS was analyzed using atomic force microscopy (AFM) and reconstructions from EBSD patterns collected at 5 and 20 kV. The LIPSS consisted of a combination of low frequency waviness due to curtaining and high frequency ridges. The morphology of the reconstructed low frequency waviness and high frequency ridges matched the AFM data. The reconstruction technique does not require any modification to existing EBSD systems and so can be particularly useful for measuring topography and its evolution during in situ experiments.
Hydration products in sulfoaluminate cements: Evaluation of amorphous phases by XRD/solid-state NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gastaldi, D., E-mail: dgastaldi@buzziunicem.it; Paul, G., E-mail: geo.paul@uniupo.it; Marchese, L.
The hydration of four sulfoaluminate cements have been studied: three sulfoaluminate systems, having different content of sulfate and silicate, and one blend Portland-CSA-calcium sulfate binder. Hydration was followed up to 90 days by means of a combination of X-ray diffraction and solid state MAS-NMR; Differential scanning calorimetry and Scanning electron microscopy were also performed in order to help the interpretation of experimental data. High amount of amorphous phases were found in all the four systems: in low-sulfate cements, amorphous part is mainly ascribed to monosulfate and aluminium hydroxide, while strätlingite is observed if belite is present in the cement; inmore » the blend system, C-S-H contributes to the amorphous phase beyond monosulfate.« less
Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging
Cha, W.; Ulvestad, A.; Allain, M.; ...
2016-11-23
Here, we present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We also demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Furthermore, variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.
Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging
NASA Astrophysics Data System (ADS)
Cha, W.; Ulvestad, A.; Allain, M.; Chamard, V.; Harder, R.; Leake, S. J.; Maser, J.; Fuoss, P. H.; Hruszkewycz, S. O.
2016-11-01
We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.
Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging.
Cha, W; Ulvestad, A; Allain, M; Chamard, V; Harder, R; Leake, S J; Maser, J; Fuoss, P H; Hruszkewycz, S O
2016-11-25
We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.
High aperture efficiency symmetric reflector antennas with up to 60 deg field of view
NASA Astrophysics Data System (ADS)
Rappaport, Carey M.; Craig, William P.
1991-03-01
A microwave single-reflector scanning antenna derived from an ellipse (rather than the usual parabola) which gives a much greater field of view is presented. This reflector combines reasonable scanning in one plane with good focusing in the other, and its scanning ability is superior to the torus and other single reflectors because it has much greater aperture efficiency and is thus smaller while having the same performance. The reflector surface is derived in two steps: a fourth-order even polynomial profile curve in the scan plane is found using least squares to minimize the scanned ray errors; then even polynomial terms in x and y that minimize astigmatism for both the unscanned and maximally scanned beams are added to form the three-dimensional surface. Numerical simulations of radiation patterns for a variety of antenna diameter and field-of-view cases give excellent results. The 60 deg scan case with 30-lambda-diameter aperture has only 0.2-dB peak gain deviation from ideal and first sidelobe levels below 14 dB down from peak gain. The 17 deg, 500-lambda case has only 0.8-dB gain variation and -14 to -11 dB sidelobe levels for approximately +/-68 beamwidths of scan, with focal length to aperture diameter ratio equal to about one.
Guizard, C; Chanzy, H; Sarko, A
1985-06-05
The crystal and molecular structure of a dextran hydrate has been determined through combined electron and X-ray diffraction analysis, aided by stereochemical model refinement. A total of 65 hk0 electron diffraction intensities were measured on frozen single crystals held at the temperature of liquid nitrogen, to a resolution limit of 1.6 A. The X-ray intensities were measured from powder patterns recorded from collections of the single crystals. The structure crystallizes in a monoclinic unit cell with parameters a = 25.71 A, b = 10.21 A, c (chain axis) = 7.76 A and beta = 91.3 degrees. The space group is P2(1) with b axis unique. The unit cell contains six chains and eight water molecules, with three chains of the same polarity and four water molecules constituting the asymmetric unit. Along the chain direction the asymmetric unit is a dimer residue; however, the individual glucopyranose residues are very nearly related by a molecular 2-fold screw axis. The conformation of the chain is very similar to that in the anhydrous structure, but the chain packing differs in the two structures in that the rotational positions of the chains about the helix axes (the chain setting angles) are considerably different. The chains still pack in the form of sheets that are separated by water molecules. The difference in the chain setting angles between the anhydrous and hydrate structures corresponds to the angle between like unit cell axes observed in the diffraction diagrams recorded from hybrid crystals containing both polymorphs. Despite some beam damage effects, the structure was determined to a satisfactory degree of agreement, with the residuals R''(electron diffraction) = 0.258 and R(X-ray) = 0.127.
NASA Astrophysics Data System (ADS)
Li, Ruifeng; Li, Zhuguo; Huang, Jian; Zhu, Yanyan
2012-08-01
Ni-Fe-B-Si-Nb coatings have been deposited on mild steel substrates using high power diode laser cladding. Scanning laser beam at high speeds was followed to remelt the surface of the coatings. Different laser cladding powers in the range of 700-1000 W were used to obtain various dilution ratios in the coating. The dilution effect on the chemical characterization, phase composition and microstructure is analyzed by energy dispersive spectroscopy, X-ray diffraction and scanning-electron microscopy. The microhardness distribution of the coatings after laser processing is also measured. The results reveal that Ni-based amorphous composite coatings have successfully been fabricated on mild steel substrate at low dilution ratio when the cladding power was 700 W, 800 W and 900 W. While at high laser power of 1000 W, no amorphous phase was found. The coatings with low dilution ratio exhibit the highest microhardness of 1200 HV0.5 due to their largest volume fraction of amorphous phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souza, S. M.; Triches, D. M.; Poffo, C. M.
2011-01-01
Nanocrystalline Bi{sub 2}Te{sub 3} was produced by mechanical alloying and its properties were investigated by differential scanning calorimetry (DSC) x-ray diffraction (XRD), Raman spectroscopy (RS), and photoacoustic spectroscopy (PAS). Combining the XRD and RS results, the volume fraction of the interfacial component in as-milled and annealed samples was estimated. The PAS results suggest that the contribution of the interfacial component to the thermal diffusivity of nanostructured Bi{sub 2}Te{sub 3} is very significant.
Preparation of porous Si and TiO 2 nanofibres using a sulphur-templating method for lithium storage
McCormac, Kathleen; Byrd, Ian; Brannen, Rodney; ...
2015-02-03
We prepared highly porous Si/TiO 2 composite nanofibres using a unique sulphur-templating method combined with electrospinning. The structure, morphology, surface area, phase and composition of these nanofibres were characterized using Raman spectroscopy, scanning electron microscopy, powder X-ray diffraction, surface area analyser and thermogravimetric analyser. The specific surface area of Si/TiO 2 porous NFs is as large as 387m 2g -1, whose silicon capacity can be maintained above 1580mAhg -1 in 180 cycles.
Nanoscale interfacial mixing of Au/Bi layers using MeV ion beams
NASA Astrophysics Data System (ADS)
Prusty, Sudakshina; Siva, V.; Ojha, S.; Kabiraj, D.; Sahoo, P. K.
2017-05-01
We have studied nanoscale mixing of thermally deposited double bilayer films of Au/Bi after irradiating them by 1.5 MeV Au2+ ions. Post irradiation effects on the morphology and elemental identification in these films are studied by Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS). Glancing angle X-ray diffraction (GAXRD) of the samples indicate marginal changes in the irradiated samples due to combined effect of nuclear and electronic energy loss. The interfacial mixing is studied by Rutherford backscattering (RBS).
Structural and optical properties of electrospun MoO3 nanowires
NASA Astrophysics Data System (ADS)
Das, Arnab Kumar; Modak, Rajkumar; Srinivasan, Ananthakrishnan
2018-05-01
Nanofibers of polyvinyl alcohol (PVA) containing ammonium molybdate were prepared by a combination of sol-gel and electrospinning techniques. Heat treatment of the as-spun composite nanofibers at 500 °C yielded MoO3 nanowires with a diameter of ˜180 nm. The product was characterized by X-ray diffraction (XRD), scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. XRD and Raman spectra of the heat nanowires clearly show the formation of orthorhombic single phase MoO3 structure without any impurity phases.
Chen, Jia; Lin, Yuexin; Wang, Yu; Jia, Li
2015-06-01
Pathogenic bacteria cause significant morbidity and mortality to humans. There is a pressing need to establish a simple and reliable method to detect them. Herein, we show that magnetic particles (MPs) can be functionalized by poly(diallyl dimethylammonium chloride) (PDDA), and the particles (PDDA-MPs) can be utilized as adsorbents for capture of pathogenic bacteria from aqueous solution based on electrostatic interaction. The as-prepared PDDA-MPs were characterized by Fourier-transform infrared spectroscopy, zeta potential, vibrating sample magnetometry, X-ray diffraction spectrometry, scanning electron microscopy, and transmission electron microscopy. The adsorption equilibrium time can be achieved in 3min. According to the Langmuir adsorption isotherm, the maximum adsorption capacities for E. coli O157:H7 (Gram-negative bacteria) and L. monocytogenes (Gram-positive bacteria) were calculated to be 1.8×10(9) and 3.1×10(9)cfumg(-1), respectively. The bacteria in spiked mineral water (1000mL) can be completely captured when applying 50mg of PDDA-MPs and an adsorption time of 5min. In addition, PDDA-MPs-based magnetic separation method in combination with polymerase chain reaction and capillary electrophoresis allows for rapid detection of 10(1)cfumL(-1) bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.
Dealing with Beam Structure in PIXIE
NASA Technical Reports Server (NTRS)
Fixsen, D. J.; Kogut, Alan; Hill, Robert S.; Nagler, Peter C.; Seals, Lenward T., III; Howard, Joseph M.
2016-01-01
Measuring the B-mode polarization of the CMB radiation requires a detailed understanding of the projection of the detector onto the sky. We show how the combination of scan strategy and processing generates a cylindrical beam for the spectrum measurement. Both the instrumental design and the scan strategy reduce the cross coupling between the temperature variations and the B-modes. As with other polarization measurements some post processing may be required to eliminate residual errors.
Radioisotope scanning of brain, liver, lung and bone with a note on tumour localizing agents
Lavender, J. P.
1973-01-01
Radioisotopic scanning of brain, liver, lungs and the skeleton is briefly reviewed with a survey of recent developments of clinical significance. In brain scanning neoplasm detection rates of greater than 90% are claimed. The true figure is probably 70-80%. Autopsy data shows a number of false negatives, particularly with vascular lesions. Attempts to make scanning more specific in differentiating neoplasm from vascular lesions by rapid sequence blood flow studies are reviewed. In liver scanning by means of colloids again high success rate is claimed but small metastases are frequently missed and the false negative scan rate is probably quite high. Lung scanning still has its main place in investigating pulmonary embolic disease. Ventilation studies using Xenon 133 are useful, particularly combined with perfusion studies. The various radiopharmaceuticals for use in bone scanning are reviewed. The appearance of technetium labelled phosphate compounds will probably allow much wider use of total skeletal scanning. Research into tumour localizing agents continues, the most recent and interesting being Gallium citrate and labelled bleomycin. Neither agent is predictable however although Gallium may have a place in Hodgkins disease and bronchogenic neoplasm and both may have a place in the detection of cerebral tumours. ImagesFig. 1Fig. 2Fig. 3p452-bFig. 3bFig. 4Fig. 5Fig. 5bFig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 12c & 12dFig. 13Fig. 13 b,c,dFig. 14Fig. 14bFig. 15Fig. 15bFig. 16Fig. 17Fig. 18 PMID:4602127
NASA Astrophysics Data System (ADS)
Chen, Yongzhou; Zhang, Yong; Song, Xiaozhen; Shen, Ziqin; Zhang, Tianyuan
2018-05-01
Ferroelectric glass-ceramics, with a basic composition 90 wt.% (Ba0.65Sr0.35)TiO3-10 wt.% (B2O3-nSiO2) (n = 0.5, 1, 3, 5) were synthesized by the sol-gel method and their phase development and dielectric properties were investigated by differential thermal analysis, x-ray diffraction, field emission scanning electron microscopy, dielectric temperature curves and impedance spectroscopy. From the differential thermal analysis, glass transition and crystallization behavior can be observed. From the x-ray diffraction study, two crystalline phases (Ba,Sr)TiO3 and Ba2TiSi2O8 were formed over the entire composition range of the glass-ceramics. In addition, the main crystal phase has undergone a transformation from (Ba,Sr)TiO3 to Ba2TiSi2O8 with the increase of n. A typical structure in which the crystal phase was surrounded by a glassy matrix has been observed in the scanning electron microscope images. As a result of temperature dependent dielectric property measurements, the dielectric constant increased obviously with the increase of n from 0.5 to 1. Further increasing n led to a reduction of the dielectric constant, which is in coincidence with the variation of the intensity of (Ba,Sr)TiO3 phase with n. According to the impedance spectroscopy analysis and the activation energy calculation, the relaxation peak in both Z″ and M″ data should be attributed to the crystal-glass interface, and the change of conduction mechanism with the increase of SiO2/B2O3 ratio may be attributed to the corresponding transition of the main crystal phase.
Baeten, Dorien; Mathot, Vincent B F; Pijpers, Thijs F J; Verkinderen, Olivier; Portale, Giuseppe; Van Puyvelde, Peter; Goderis, Bart
2015-06-01
An experimental setup, making use of a Flash DSC 1 prototype, is presented in which materials can be studied simultaneously by fast scanning calorimetry (FSC) and synchrotron wide angle X-ray diffraction (WAXD). Accumulation of multiple, identical measurements results in high quality, millisecond WAXD patterns. Patterns at every degree during the crystallization and melting of high density polyethylene at FSC typical scanning rates from 20 up to 200 °C s(-1) are discussed in terms of the temperature and scanning rate dependent material crystallinities and crystal densities. Interestingly, the combined approach reveals FSC thermal lag issues, for which can be corrected. For polyamide 11, isothermal solidification at high supercooling yields a mesomorphic phase in less than a second, whereas at very low supercooling crystals are obtained. At intermediate supercooling, mixtures of mesomorphic and crystalline material are generated at a ratio proportional to the supercooling. This ratio is constant over the isothermal solidification time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Elmanov, G.; Dzhumaev, P.; Ivanitskaya, E.; Skrytnyi, V.; Ruslanov, A.
2016-04-01
This paper presents results of research of the structure and phase transformations during the multistage crystallization of the metallic glasses with the compositions Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 labeled as AWS BNi-2 according to American Welding Society. Differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX) were used as experimental research methods. The influence of the alloys chemical composition (boron, manganese and iron) on the temperatures and the exothermic heat effects of phase transformations, as well as on the phase composition of alloys at three stages of crystallization was analyzed. We present a thermodynamic explanation of the observed heat effects. It has been shown that manganese has the main influence on the phase transformations temperatures and heat effects in these two alloys. It is also assumed that at the final crystallization stage simultaneously with the formation of phases Ni3B and β1-Ni3Si should occur the nucleation of borides of CrB type with high Cr and low Si content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulima, Iwona, E-mail: isulima@up.krakow.pl
Steel-8TiB{sub 2} composites were produced by two new sintering techniques, i.e. Spark Plasma Sintering (SPS) and High Pressure-High Temperature (HP-HT) sintering. This study discusses the impact of these sintering methods on the microstructure of steel composites reinforced with TiB{sub 2} particles. Scanning electron microscopy (SEM), wavelength dispersive spectroscopy (WDS), X-ray diffraction, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) were used to analyze the microstructure evolution in steel matrix composites. The results of microscopic examinations revealed a close relationship between the composite microstructure and the methods and conditions of sintering. Substantial differences were observed in the grain size ofmore » materials sintered by HP-HT and SPS. It has been demonstrated that the composites sintered by HP-HT tend to form a chromium-iron-nickel phase in the steel matrix. In contrast, the microstructure of the composites sintered by SPS is characterized by the presence of complex borides and chromium-iron phase. - Highlights: •The steel-8TiB{sub 2} composites were fabricated by Spark Plasma Sintering (SPS) and High Pressure-High Temperature (HP-HT). •Sintering techniques has an important effect on changes in the microstructure of steel-8TiB{sub 2} composites. •New phases of different size and morphology were identified.« less
Ali, Hany S M; Hanafy, Ahmed F; El Achy, Samar N
2016-10-10
Direct delivery of sustained therapeutic levels of mesalamine (MS) via rectal systems to manage distal forms of ulcerative colitis was studied. The High molecular weight hydroxypropyl methylcellulose (HPMC K4M) polymer was combined with hydrophilic surfactants to control polymer hydration process allowing optimization of the mucoadhesive and controlled drug release properties for the rectal systems. Physical mixtures and granules of MS and HPMC K4M were prepared and in vitro characterized using scanning electron microscope, differential scanning calorimetry and X-ray diffraction techniques. Rectal formulations were prepared utilizing MS-HPMC K4M mixtures in different polyethylene glycol (PEG) combination bases. The developed rectal formulations were investigated for physical, mucoadhesion, in-vitro drug release and swelling characteristics. Results revealed acceptable physical characteristics of the prepared formulations with good content uniformity and minimum weight variation. Sustained release patterns of MS form HPMC K4M based formulations were observed. Formulations prepared using high proportions of the polymer or PEG 400 showed higher extent of mucoadhesion, swelling and greatly extended drug release time. Efficacy of an optimized formulation was assessed using the acetic acid induced colitis model in rats and compared to a reference polymer-free formulation of the drug. Clinical evaluation included bleeding from rectum, consistency of animal stool and colon/body weight ratio. Furthermore, histopathological analysis was carried out to evaluate the degree of inflammation and mucosal damage. Overall results showed a significant enhancement in the clinical pictures and colon histopathology of animals treated by the sustained release mucoadhesive formulation compared to the reference polymer free formulation and the non-treated colitis group. Copyright © 2016 Elsevier B.V. All rights reserved.
Tensile behavior of laser treated Fe-Si-B metallic glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Sameehan S.; Samimi, Peyman; Ghamarian, Iman
2015-10-28
Fe-Si-B metallic glass foils were treated with a linear laser track using a continuous wave Nd-YAG laser and its effect on the overall tensile behavior was investigated. Microstructure and phase evolutions were evaluated using X-ray diffraction, resistivity measurements, and transmission electron microscopy. Crystallization fraction was estimated via the differential scanning calorimetry technique. Metallic glass foils treated with the lower laser fluences (<0.49 J/mm{sup 2}) experienced structural relaxation, whereas higher laser fluences led to crystallization within the laser treated region. The overall tensile behavior was least impacted by structural relaxation, whereas crystallization severely reduced the ultimate tensile strength of the laser treatedmore » metallic glass foils.« less
NASA Astrophysics Data System (ADS)
Kiani, Mohammad Amin; Ahmadi, Seyed Javad; Outokesh, Mohammad; Adeli, Ruhollah; Mohammadi, Aghil
2017-12-01
In this research, the characteristics of the prepared samples in epoxy matrix by means of X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), as well as scanning electron microscope (SEM) are evaluated. Meanwhile, the obtained mechanical properties of the specimen are investigated. Thermogravimetric analysis (TGA) is also employed to evaluate the thermal degradation of manufactured nanocomposites. The thermal neutron absorption properties of nanocomposites containing 3 wt% of montmorillonite nanoclay (closite30B) have been studied experimentally, using an Am-Be point source. Mechanical tests reveal that the higher B4C concentrations, the more tensile strengths, but lower Young's modulus in all samples under consideration. TGA analysis also shows that thermal stability of the nanocomposite, increases in presence of B4C. Finally, neutron absorption analysis shows that increasing the B4C concentration leads to a nonlinearly build-up of neutron absorption cross section.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Tobias G.; Fleurence, Antoine; Warner, Ben
We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB 2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting tomore » the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less
NASA Astrophysics Data System (ADS)
Mirzayev, Matlab N.; Mehdiyeva, Ravan N.; Garibov, Ramin G.; Ismayilova, Narmin A.; Jabarov, Sakin H.
2018-05-01
In this study, compounds of B6Si were irradiated using a 60Co gamma source that have an energy line of 1.25 MeV at the absorbed dose rates from 14.6 kGy to 194.4 kGy. Surface morphology images of the sample obtained by Scanning Electron Microscope (SEM) show that the crystal structure at a high absorbed doses (D ≥ 145.8kGy) starts to be destroyed. X-ray diffraction studies revealed that with increasing radiation absorption dose, the spectrum intensity of the sample was decreased 1.96 times compared with the initial value. Thermal properties were studied by Differential scanning calorimetry (DSC) method in the temperature range of 30-1000∘C.
NASA Astrophysics Data System (ADS)
Cao, Shiwei; Jiao, Yang; Han, Weifang; Ge, Chunhua; Song, Bo; Wang, Jie; Zhang, Xiangdong
2018-02-01
4ZnO·B2O3·H2O:Ln3 + (Ln = Eu, Tb) phosphors with different morphologies have been successfully synthesized via one-step hydrothermal method through regulating the molar amount of Eu3 + and Tb3 +. Comprehensive scanning electron microscopy (SEM), X-ray diffraction (XRD) Fourier transform infrared spectrum (FT-IR) and inductively coupled plasma atomic emission spectrometer (ICP-AES) characterizations all confirm that obtained products are 4ZnO·B2O3·H2O:Ln3 + (Ln = Eu, Tb). The experimental results displayed that the morphology and photoluminescence of compounds is regularly changed with increased the molar amount of rare earth ions. For the Eu3 +-doped, Tb3 +-doped and Eu3 +/Tb3 + co-doped 4ZnO·B2O3·H2O phosphors of morphologies, the rod-like structures gradually changed to flower-like structures, fine wire-like structure and hybrid structure, respectively. To their photoluminescence, the Eu3 + shows a red emission (615 nm); the Tb3 + shows a green emission (545 nm); for the Eu3 +/Tb3 + co-doped 4ZnO·B2O3·H2O phosphors, a combination of blue (5d-4f of Eu2 +), green (5D4-7F5 of Tb3 +) and red (5D0-7F2 of Eu3 +) emissions emerges to achieve white emission. In addition, the energy transfer among Eu3 +, Eu2 + and Tb3 + ions was also discussed.
Meng, Yifei; Zuo, Jian-Min
2016-09-01
A diffraction-based technique is developed for the determination of three-dimensional nanostructures. The technique employs high-resolution and low-dose scanning electron nanodiffraction (SEND) to acquire three-dimensional diffraction patterns, with the help of a special sample holder for large-angle rotation. Grains are identified in three-dimensional space based on crystal orientation and on reconstructed dark-field images from the recorded diffraction patterns. Application to a nanocrystalline TiN thin film shows that the three-dimensional morphology of columnar TiN grains of tens of nanometres in diameter can be reconstructed using an algebraic iterative algorithm under specified prior conditions, together with their crystallographic orientations. The principles can be extended to multiphase nanocrystalline materials as well. Thus, the tomographic SEND technique provides an effective and adaptive way of determining three-dimensional nanostructures.
Cai, Xiangran; Zhou, Qingchun; Yu, Juan; Xian, Zhaohui; Feng, Youzhen; Yang, Wencai; Mo, Xukai
2014-10-01
To evaluate the impact of reduced-radiation dual-energy (DE) protocols using 320-detector row computed tomography on the differentiation of urinary calculus components. A total of 58 urinary calculi were placed into the same phantom and underwent DE scanning with 320-detector row computed tomography. Each calculus was scanned 4 times with the DE protocols using 135 kV and 80 kV tube voltage and different tube current combinations, including 100 mA and 570 mA (group A), 50 mA and 290 mA (group B), 30 mA and 170 mA (group C), and 10 mA and 60 mA (group D). The acquisition data of all 4 groups were then analyzed by stone DE analysis software, and the results were compared with x-ray diffraction analysis. Noise, contrast-to-noise ratio, and radiation dose were compared. Calculi were correctly identified in 56 of 58 stones (96.6%) using group A and B protocols. However, only 35 stones (60.3%) and 16 stones (27.6%) were correctly diagnosed using group C and D protocols, respectively. Mean noise increased significantly and mean contrast-to-noise ratio decreased significantly from groups A to D (P <.05). In addition, the effective dose decreased markedly from groups A to D at 3.78, 1.81, 1.07, and 0.37 mSv, respectively. Decreasing the DE tube currents from 100 mA and 570 mA to 50 mA and 290 mA resulted in 96.6% accuracy for urinary calculus component analysis while reducing patient radiation exposure to 1.81 mSv. Further reduction of tube currents may compromise diagnostic accuracy. Copyright © 2014 Elsevier Inc. All rights reserved.
Effect of enzymatic hydrolysis on native starch granule structure.
Blazek, Jaroslav; Gilbert, Elliot Paul
2010-12-13
Enzymatic digestion of six starches of different botanical origin was studied in real time by in situ time-resolved small-angle neutron scattering (SANS) and complemented by the analysis of native and digested material by X-ray diffraction, differential scanning calorimetry, small-angle X-ray scattering, and scanning electron microscopy with the aim of following changes in starch granule nanostructure during enzymatic digestion. This range of techniques enables coverage over five orders of length-scale, as is necessary for this hierarchically structured material. Starches studied varied in their digestibility and displayed structural differences in the course of enzymatic digestion. The use of time-resolved SANS showed that solvent-drying of digested residues does not induce any structural artifacts on the length scale followed by small-angle scattering. In the course of digestion, the lamellar peak intensity gradually decreased and low-q scattering increased. These trends were more substantial for A-type than for B-type starches. These observations were explained by preferential digestion of the amorphous growth rings. Hydrolysis of the semicrystalline growth rings was explained on the basis of a liquid-crystalline model for starch considering differences between A-type and B-type starches in the length and rigidity of amylopectin spacers and branches. As evidenced by differing morphologies of enzymatic attack among varieties, the existence of granular pores and channels and physical penetrability of the amorphous growth ring affect the accessibility of the enzyme to the substrate. The combined effects of the granule microstructure and the nanostructure of the growth rings influence the opportunity of the enzyme to access its substrate; as a consequence, these structures determine the enzymatic digestibility of granular starches more than the absolute physical densities of the amorphous growth rings and amorphous and crystalline regions of the semicrystalline growth rings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauf, Nurlaela, E-mail: n-rauf@fmipa.unhas.ac.id; Tahir, Dahlang; Arbiansyah, Muhammad
Structural analysis has been performed on bioceramic materials for denture application by using X-ray diffraction (XRD), X-ray fluorescence (XRF), and Scanning Electron Microscopy (SEM). XRF is using for analysis chemical composition of raw materials. XRF shows the ratio 1 : 1 : 1 : 1 between feldspar, quartz, kaolin and eggshell, respectively, resulting composition CaO content of 56.78 %, which is similar with natural tooth. Sample preparation was carried out on temperature of 800 °C, 900 °C and 1000 °C. X-ray diffraction result showed that the structure is crystalline with trigonal crystal system for SiO{sub 2} (a=b=4.9134 Å and c=5.4051more » Å) and CaH{sub 2}O{sub 2} (a=b=3.5925 Å and c=4.9082 Å). Based on the Scherrer’s equation showed the crystallite size of the highest peak (SiO{sub 2}) increase with increasing the temperature preparation. The highest hardness value (87 kg/mm{sup 2}) and match with the standards of dentin hardness. The surface structure was observed by using SEM also discussed.« less
Preparation, characterization and photocatalytic activities of TiO2-SrTiO3 composites
NASA Astrophysics Data System (ADS)
Wang, Yan; Zhu, Lianjie; Gao, Fubo; Xie, Hanjie
2017-01-01
Series of TiO2-SrTiO3 composites were synthesized by hydrothermal method, using TiO2 nanotube array as a precursor and Sr(OH)2 as a Sr source material. TiO2-SrTiO3 products with various composition were obtained by simply changing the reaction time. The as-synthesized products were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The optical properties were studied by means of UV-Vis absorption spectroscopy and photoluminescence (PL) spectra. Their photocatalytic activities were assessed by photodegradation of rhodamine B (RhB) solution and the photocatalytic reaction mechanism was discussed. The TiO2-SrTiO3 composites obtained at 2 h exhibits the highest activity for photodegradation of RhB.
Applications of synchrotron x-ray diffraction topography to fractography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilello, J.C.
1983-01-01
Fractographs have been taken using a variety of probes each of which produces different types of information. Methods which have been used to examine fracture surfaces include: (a) optical microscopy, particularly interference contrast methods, (b) scanning electron microscopy (SEM), (c) SEM with electron channelling, (d) SEM with selected-area electron channelling, (e) Berg-Barrett (B-B) topography, and now (f) synchrotron x-radiation fractography (SXRF). This review concentrated on the role that x-ray methods can play in such studies. In particular, the ability to nondestructively assess the subsurface microstructure associated with the fracture to depths of the order of 5 to 10 ..mu..m becomesmore » an important attribute for observations of a large class of semi-brittle metals, semiconductors and ceramics.« less
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Halbig, Michael C.
2001-01-01
In this paper the oxidation behavior of ZrB2-20 vol% SiC is examined. Samples were exposed in stagnant air in a zirconia furnace (Deltech, Inc.) at temperatures of 1327, 1627, and 1927 C for ten ten-minute cycles. Samples were removed from the furnace after one, five, and ten cycles. Oxidized material was characterized by mass change when possible, x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Oxidation kinetics, oxide scale development, and matrix recession were monitored as a function of time and temperature. Oxidation and recession rates of ZrB2 - 20 vol% SiC were adequately modeled by parabolic kinetics. Oxidation rates of this material are rapid, allowing only very short-term application in air or other high oxygen partial pressure environments.
Čerpnjak, Katja; Zvonar, Alenka; Vrečer, Franc; Gašperlin, Mirjana
2015-05-15
The purpose of this study was to prepare solid SMEDDS (sSMEDDS) particles produced by spray-drying using maltodextrin (MD), hypromellose (HPMC), and a combination of the two as a solid carrier. Naproxen (NPX) as the model drug was dissolved (at 6% concentration) or partially suspended (at 18% concentration) in a liquid SMEDDS composed of Miglyol(®) 812, Peceol™, Gelucire(®) 44/14, and Solutol(®) HS 15. Among the sSMEDDSs tested, the MD-based sSMEDDSs (with a granular, smooth-surfaced, microspherical appearance) preserved the self-microemulsifying properties of liquid SMEDDSs and exhibited dissolution profiles similar to those of liquid SMEDDSs, irrespective of the concentration of NPX. In contrast, HPMC-based sSMEDDSs (irregular-shaped microparticles) exhibited slightly prolonged release times due to the polymeric nature of the carrier. Differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and Raman mapping analysis confirmed molecularly dissolved NPX (at 6% of drug loading), whereas at 18% NPX loading drug is partially molecularly dissolved and partially in the crystalline state. Copyright © 2015. Published by Elsevier B.V.
Chemical and structural analysis of gallstones from the Indian subcontinent.
Ramana Ramya, J; Thanigai Arul, K; Epple, M; Giebel, U; Guendel-Graber, J; Jayanthi, V; Sharma, M; Rela, M; Narayana Kalkura, S
2017-09-01
Representative gallstones from north and southern parts of India were analyzed by a combination of physicochemical methods: X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), CHNS analysis, thermal analysis and Nuclear Magnetic Resonance (NMR) spectroscopy ( 1 H and 13 C). The stones from north Indian were predominantly consisting of cholesterol monohydrate and anhydrous cholesterol which was confirmed by XRD analysis. FTIR spectroscopy confirmed the presence of cholesterol and calcium bilirubinate in the south Indian gallstones. EDX spectroscopy revealed the presence of carbon, nitrogen, oxygen, calcium, sulfur, sodium and magnesium and chloride in both south Indian and north Indian gallstones. FTIR and NMR spectroscopy confirmed the occurrence of cholesterol in north Indian gallstones. The respective colour of the north Indian and south Indian gallstones was yellowish and black. The morphology of the constituent crystals of the north Indian and south Indian gallstones were platy and globular respectively. The appreciable variation in colour, morphology and composition of south and north Indian gallstones may be due to different food habit and habitat. Copyright © 2017 Elsevier B.V. All rights reserved.
Iyyappan, E; Wilson, P; Sheela, K; Ramya, R
2016-06-01
Hydroxyapatite (HA) particles were synthesized using Ca(NO3)2·4H2O and (NH4)2HPO4 as precursors with varying contents of non-ionic surfactant viz., triton X-100 (organic modifier) via co-precipitation method followed by hydrothermal treatment. The prepared HA particles have been characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), Energy Dispersive X-ray Analysis (EDX), High Resolution Scanning Electron Microscopy (HRSEM), High Resolution Transmission Electron Microscopy (HRTEM) and Nitrogen adsorption-desorption experiments. The XRD and FTIR studies indicate the formation of HA phase in all the synthesized samples. The specific roles of triton X-100 and hydrothermal treatment in dispersing and in directing the crystal growth respectively have been discussed by comparing the observations from individual experiments using triton X-100 and hydrothermal treatment with that of combined protocol involving both. The plausible mechanism for the individual roles of both triton X-100 and hydrothermal treatment have been proposed. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jatmiko, A. T. P.; Puannandra, G. P.; Hapsari, R. D.
Lunar Occultation (LO) is an event where limb of the Moon passing over a particular heavenly bodies such as stars, asteroids, or planets. In other words, during the event, stars, asteroids and planets are occulted by the Moon. When occulted objects contact the lunar limb, there will be a diffraction fringe(s) which can be measured photometrically, until the signal vanishes into noise. This event will give us a valuable information about binarities (of stars) and/or angular diameters estimation (of stars, planets, asteroids) in milliarcsecond resolution, by fitting with theoretical LO pattern. CCDs are common for LO observation because of itsmore » fast read out, and recently are developed for sub-meter class telescope. In this paper, our LO observation attempt of μ Sgr and its progress report are presented. The observation was conducted on July 30{sup th}, 2012 at Bosscha Observatory, Indonesia, using 45cm f/12 GOTO telescope combined with ST-9 XE CCD camera and Bessel B filter. We used drift-scan method to obtain light curve of the star as it was disappearing behind Moon's dark limb. Our goal is to detect binarity (or multiplicity) of this particular object.« less
NASA Astrophysics Data System (ADS)
Yi, Qinhua; Chen, Jianfeng; Le, Yuan; Wang, Jiexin; Xue, Chunyu; Zhao, Hong
2013-06-01
Dirithromycin (DIR) was crystallized from acetone solvent in the form of an acetone solvate. Its crystal structure belongs to monoclinic, space group P21, with the unit cell parameters a=14.688(3) Å, b=11.6120(12) Å, c=14.9129(12) Å, β=94.794(10)°, and Z=2. Results of X-ray diffraction (XRD) and thermogravimetry-differential scanning calorimetry (TG-DSC) indicated that the solvent molecules could enter the crystal lattice and thus the solvate is formed. The molecular dynamics (MD) simulation method was applied to study the solvent effect. It revealed that the relative growth rates of the main crystal habit faces changed a lot, which made the most morphologically important habit face shift from (001) face to (100) face due to polar groups or atoms exposure and hence a large solvent interaction. The prism habit predicted by a modified attachment energy (AE) model agreed well with the observed experimental morphology grown from the acetone solution. This prediction method may help for a solvent selection to improve the morphology in the drug crystallization process.
Zheng, Juan; Liang, Yeru; Liu, Shuqin; Jiang, Ruifen; Zhu, Fang; Wu, Dingcai; Ouyang, Gangfeng
2016-01-04
A combination of nitrogen-doped ordered mesoporous polymer (NOMP) and stainless steel wires led to highly sensitive, selective, and stable solid phase microextraction (SPME) fibers by in situ polymerization for the first time. The ordered structure of synthesized NOMP coating was illustrated by transmission electron microscopy (TEM) and X-ray diffraction (XRD), and microscopy analysis by scanning electron microscopy (SEM) confirmed a homogenous morphology of the NOMP-coated fiber. The NOMP-coated fiber was further applied for the extraction of organochlorine pesticides (OCPs) with direct-immersion solid-phase microextraction (DI-SPME) method followed by gas chromatography-mass spectrometry (GC-MS) quantification. Under the optimized conditions, low detection limits (0.023-0.77 ng L(-1)), a wide linear range (9-1500 ng L(-1)), good repeatability (3.5-8.1%, n=6) and excellent reproducibility (1.5-8.3%, n=3) were achieved. Moreover, the practical feasibility of the proposed method was evaluated by determining OCPs in environmental water samples with satisfactory recoveries. Copyright © 2015 Elsevier B.V. All rights reserved.
In-situ synchrotron wide-angle X-ray diffraction as a rapid method for cocrystal/salt screening.
Dong, Pin; Lin, Ling; Li, Yongcheng; Huang, Zhengwei; Lang, Tianqun; Wu, Chuanbin; Lu, Ming
2015-12-30
The purpose of this work was to explore in-situ synchrotron wide-angle X-ray diffraction (WAXD) as a rapid and accurate tool to screen and monitor the formation of cocrystal/salts during heating. The active pharmaceutical ingredients (caffeine, carbamazepine and lamotrigine) were respectively mixed with the coformer (saccharin), and then heated by the hot stage. Real-time process monitoring was performed using synchrotron WAXD to assess cocrystal formation and subsequently compared to differential scanning calorimetry (DSC) measurements. The effect of heating rates and cocrystal growth behavior were investigated. Synchrotron WAXD was fast and sensitive to detect cocrystal formation with the appearance of characteristic diffraction rings, even at the heating rate of 30°C/min, while DSC curves showed overlapped peaks. Unlike the indirect characterization of DSC on endo/exothermic peaks, synchrotron WAXD can directly and qualitatively determine cocrystal by diffraction peaks. The diffraction intensity-temperature curves and the corresponding first-derivative curves clearly exhibited the growth behavior of cocrystal upon heating, providing useful information to optimize the process temperature of hot melt extrusion to continuously manufacture cocrystal. The study suggests that in-situ synchrotron WAXD could provide a one-step process to screen cocrystal at high efficiency and reveal the details of cocrystal/salts growth behavior. Copyright © 2015 Elsevier B.V. All rights reserved.
Nondestructive Evaluation of Carbon-Carbon Coatings
1987-10-01
4, -4 3 2.0 17-21 15 18 21 :9." -: 4:tes: 1, Cll •easureren’. ;rown ire in Ill e::ceoI ".-ic.-ie: "-.- : .. - are hown in •iai:’l4m raw court form...scatter in the samples rather than the additional formation of cristo - balite. This was supported by later diffraction scans of material after extended...could not be avoided due to the brittle nature of the coating. , b. Coupons were then mounted in epoxy using a vacuum-oimpregnation technique. This
The effect of hydrogen on B4C coatings fabrication in inductively coupled plasma torch
NASA Astrophysics Data System (ADS)
Guo, Q. J.; Zhao, P.; Li, L.; Zhou, Q. J.; Ni, G. H.; Meng, Y. D.
2018-02-01
Boron carbide (B4C) coatings are prepared by an RF inductively coupled plasma (ICP) torch with different amounts of hydrogen introduced into the sheath gas. The effects of the added hydrogen on the characteristics of the plasma are diagnosed by optical emission spectroscopy and high speed photography. The effects on the melting of B4C particles in the plasma are studied by scanning electron microscopy (SEM). The microstructure of the B4C coatings was determined with SEM imaging and x-ray diffraction analysis. The results show that adding hydrogen to the sheath gas leads to plasma contraction, which results in higher gas temperature of plasma. It also enhances B4C particles spheroidizing and improves the compactness of B4C coatings. Plasma processing does not change the main phase of boron carbide. The obtained results on B4C coatings on Cu substrates allows for improving the B4C coatings fabrication process.
An integrated single- and two-photon non-diffracting light-sheet microscope
NASA Astrophysics Data System (ADS)
Lau, Sze Cheung; Chiu, Hoi Chun; Zhao, Luwei; Zhao, Teng; Loy, M. M. T.; Du, Shengwang
2018-04-01
We describe a fluorescence optical microscope with both single-photon and two-photon non-diffracting light-sheet excitations for large volume imaging. With a special design to accommodate two different wavelength ranges (visible: 400-700 nm and near infrared: 800-1200 nm), we combine the line-Bessel sheet (LBS, for single-photon excitation) and the scanning Bessel beam (SBB, for two-photon excitation) light sheet together in a single microscope setup. For a transparent thin sample where the scattering can be ignored, the LBS single-photon excitation is the optimal imaging solution. When the light scattering becomes significant for a deep-cell or deep-tissue imaging, we use SBB light-sheet two-photon excitation with a longer wavelength. We achieved nearly identical lateral/axial resolution of about 350/270 nm for both imagings. This integrated light-sheet microscope may have a wide application for live-cell and live-tissue three-dimensional high-speed imaging.
NASA Astrophysics Data System (ADS)
Sun, Congli
We have studied magnetic thin films for voltage controlled magnetic tunnel junctions (MTJs) by advanced scanning transmission electron microscopy (STEM) and density functional theory (DFT) simulations. MTJs are the prototypical spintronic device and manipulation of magnetism by electrical means is among the most promising approaches to novel voltage-controlled spin electronics. The voltage controlled magnetic effect can be achieved across many different materials systems, all of which depend on high-quality thin films with minimum crystallographic defects. Cr2O3 is antiferromagnetic in bulk but ferromagnetic on the (0001) surface. Bulk Cr2O3 has two degenerate antiferromagnetic states with opposite (0001) surface spin polarization. As Cr2O3 is also magnetoelectric, the degenerate antiferromagnetic states can be lifted by manipulating the free-energy gain DeltaF = aEH. Therefore, the surface ferromagnetism can be controlled by applied electric field. We have observed vertical grain boundaries in Cr2O 3/Al2O3 systems that are related with a 60° in-plane rotation by diffraction contrast TEM image. STEM as a function of scattering angle points out a simultaneous ⅓[101¯0] basal plane shift. Local boundary electron energy loss spectroscopy (EELS) shows a pre-peak on the O K-edge, indicating a reduced bandgap along the boundary that provides potential breakdown paths in Cr2O3 thin films. B doping of Cr2O3 is known to increase the Neel temperature. B was found to form either BCr4 tetrahedra or BO 3 triangles in the Cr2O3 lattice, with sigma * and pi* bonds exhibiting different energy loss features. Modeling the experimental spectra as a linear combination of simulated B K edges reproduces the experimental pi* / sigma * ratios for 12 to 43 % of the B in the sample occupying BCr 4 sites. Simulated BCr4 fraction / total B as a function of oxygen partial pressures supports the EELS results and indicates further increase of Neel temperature can be achieved by optimizing oxygen partial pressures.
de Armas, Héctor Novoa; Peeters, Oswald M; Blaton, Norbert; Van Gyseghem, Elke; Martens, Johan; Van Haele, Gerrit; Van Den Mooter, Guy
2009-01-01
Ranitidine hydrochloride (RAN-HCl), a known anti-ulcer drug, is the product of reaction between HCl and ranitidine base (RAN-B). RAN-HCl has been extensively studied; however this is not the case of the RAN-B. The solid state characterization of RAN-B polymorphs has been carried out using different analytical techniques (microscopy, thermal analysis, Fourier transform infrared spectrometry in the attenuated total reflection mode, (13)C-CPMAS-NMR spectroscopy and X-ray powder diffraction). The crystal structures of RAN-B form I and form II have been determined using conventional X-ray powder diffraction in combination with simulated annealing and whole profile pattern matching, and refined using rigid-body Rietveld refinement. RAN-B form I is a monoclinic polymorph with cell parameters: a = 7.317(2), b = 9.021(2), c = 25.098(6) A, beta = 95.690(1) degrees and space group P2(1)/c. The form II is orthorhombic: a = 31.252(4), b = 13.052(2), c = 8.0892(11) A with space group Pbca. In RAN-B polymorphs, the nitro group is involved in a strong intramolecular hydrogen bond responsible for the existence of a Z configuration in the enamine portion of the molecules. A tail to tail packing motif can be denoted via intermolecular hydrogen bonds. The crystal structures of RAN-B forms are compared to those of RAN-HCl polymorphs. RAN-B polymorphs are monotropic polymorphic pairs. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association
NASA Astrophysics Data System (ADS)
Wang, Peng; Ebeling, Carl G.; Gerton, Jordan; Menon, Rajesh
In this paper, we demonstrate hyper-spectral imaging of fluorescent microspheres in a scanning-confocal-fluorescence microscope by spatially dispersing the spectra using a novel broadband diffractive optic, and applying a nonlinear optimization technique to extract the full-incident spectra. This broadband diffractive optic has a designed optical efficiency of over 90% across the entire visible spectrum. We used this technique to create two-color images of two fluorophores and also extracted their emission spectra with good fidelity. This method can be extended to image both spatially and spectrally overlapping fluorescent samples. Full control in the number of emission spectra and the feasibility of enhanced imaging speed are demonstrated as well.
Crystallographic Characterization of Extraterrestrial Materials by Energy-Scanning X-ray Diffraction
NASA Technical Reports Server (NTRS)
Hagiya, Kenji; Mikouchi, Takashi; Ohsumi, Kazumasa; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi; Yamaguchi, Shoki; Hirata, Arashi; Kurokawa, Ayaka; Zolensky, Michael E. (Principal Investigator)
2016-01-01
We have continued our long-term project using X-ray diffraction to characterize a wide range of extraterrestrial samples. The stationary sample method with polychromatic X-rays is advantageous because the irradiated area of the sample is always same and fixed, meaning that all diffraction spots occur from the same area of the sample, however, unit cell parameters cannot be directly obtained by this method though they are very important for identification of mineral and for determination of crystal structures. In order to obtain the cell parameters even in the case of the sample stationary method, we apply energy scanning of a micro-beam of monochromatic SR at SPring-8.
High-gain (43 dB), high-power (40 W), highly efficient multipass amplifier at 995 nm in Yb:LiYF4
NASA Astrophysics Data System (ADS)
Manni, Jeffrey; Harris, Dennis; Fan, Tso Yee
2018-06-01
A simple implementation of a multipass amplifier along with the use of a cryogenic Yb:LiYF4 (YLF) gain medium has enabled the demonstration of a bulk amplifier with an unprecedented combination of large-signal gain (43 dB), efficiency (>50% optical), average output power (40 W) and a near-diffraction-limited output beam.
Davies, P A; Randle, V
2001-10-01
The main aim of this paper is to report on recent experimental developments that have succeeded in combining electron back-scatter diffraction (EBSD) with stereo-photogrammetry, compared with two other methods for study of fracture surfaces, namely visual fractography analysis in the scanning electron microscope (SEM) and EBSD directly from facets. These approaches will be illustrated with data relating to the cleavage plane orientation analysis in a ferritic and C-Mn steel. It is demonstrated that the combined use of EBSD and stereo-photogrammetry represents a significant advance in the methodology for facet crystallography analysis. The results of point counting from fractograph characterization determined that the proportions of intergranular fracture in C-Mn and ferritic steels were 10.4% and 9.4%, respectively. The crystallographic orientation was determined directly from the fracture surface of a ferritic steel sample and produced an orientation distribution with a clear trend towards the [001] plane. A stereo-photogrammetry technique was validated using the known geometry of a Vickers hardness indent. The technique was then successfully employed to measure the macroscopic orientation of individual cleavage facets in the same reference frame as the EBSD measurements. Correlating the results of these measurements indicated that the actual crystallographic orientation of every cleavage facet identified in the steel specimens is [001].
Stratified Volume Diffractive Optical Elements as Low-Mass Coherent Lidar Scanners
NASA Technical Reports Server (NTRS)
Chambers, Diana M.; Nordin, Gregory P.; Kavaya, Michael J.
1999-01-01
Transmissive scanning elements for coherent laser radar systems are typically optical wedges, or prisms, which deflect the lidar beam at a specified angle and are then rotated about the instrument optical axis to produce a scan pattern. The wedge is placed in the lidar optical system subsequent to a beam-expanding telescope, implying that it has the largest diameter of any element in the system. The combination of the wedge diameter and asymmetric profile result in the element having very large mass and, consequently, relatively large power consumption required for scanning. These two parameters, mass and power consumption, are among the instrument requirements which need to be minimized when designing a lidar for a space-borne platform. Reducing the scanner contributions in these areas will have a significant effect on the overall instrument specifications, Replacing the optical wedge with a diffraction grating on the surface of a thin substrate is a straight forward approach with potential to reduce the mass of the scanning element significantly. For example, the optical wedge that will be used for the SPAce Readiness Coherent Lidar Experiment (SPARCLE) is approximately 25 cm in diameter and is made from silicon with a wedge angle designed for 30 degree deflection of a beam operating at approx. 2 micrometer wavelength. The mass of this element could be reduced by a factor of four by instead using a fused silica substrate, 1 cm thick, with a grating fabricated on one of the surfaces. For a grating to deflect a beam with a 2 micrometer wavelength by 30 degrees, a period of approximately 4 micrometers is required. This is small enough that fabrication of appropriate high efficiency blazed or multi-phase level diffractive optical gratings is prohibitively difficult. Moreover, bulk or stratified volume holographic approaches appear impractical due to materials limitations at 2 micrometers and the need to maintain adequate wavefront quality. In order to avoid the difficulties encountered in these approaches, we have developed a new type of high-efficiency grating which we call a Stratified Volume Diffractive Optical Element (SVDOE). The features of the gratings in this approach can be easily fabricated using standard photolithography and etching techniques and the materials used in the grating can be chosen specifically for a given application, In this paper we will briefly discuss the SVDOE technique and will present an example design of a lidar scanner using this approach. We will also discuss performance predictions for the example design.
Gierlinger, Notburga
2016-01-01
Abstract Scanning probe microscopies and spectroscopies, especially AFM and Confocal Raman microscopy are powerful tools to characterize biological materials. They are both non‐destructive methods and reveal mechanical and chemical properties on the micro and nano‐scale. In the last years the interest for increasing the lateral resolution of optical and spectral images has driven the development of new technologies that overcome the diffraction limit of light. The combination of AFM and Raman reaches resolutions of about 50–150 nm in near‐field Raman and 1.7–50 nm in tip enhanced Raman spectroscopy (TERS) and both give a molecular information of the sample and the topography of the scanned surface. In this review, the mentioned approaches are introduced, the main advantages and problems for application on biological samples discussed and some examples for successful experiments given. Finally the potential of colocated AFM and Raman measurements is shown on a case study of cellulose‐lignin films: the topography structures revealed by AFM can be related to a certain chemistry by the colocated Raman scan and additionally the mechanical properties be revealed by using the digital pulsed force mode. Microsc. Res. Tech. 80:30–40, 2017. © 2016 Wiley Periodicals, Inc. PMID:27514318
A study of the phase transition behaviour of [(NH4)0.63Li0.37]2TeBr6
NASA Astrophysics Data System (ADS)
Karray, R.; Linda, D.; Van Der Lee, A.; Ben Salah, A.; Kabadou, A.
2012-02-01
The mixed hexabromotellurate [(NH4)0.63Li0.37]2TeBr6, presenting at room temperature a K2PtCl6-type structure with space group Fm bar 3 m, exhibits three anomalies at 195, 395 and 498 K in the differential scanning calorimetry diagram. Different techniques: dielectric investigation, High-temperature X-ray powder diffraction and infrared spectroscopic study, in the range temperature (300-470) K are applied to explore the phase transition around 395 K. Combining XRD, dielectric and differential scanning calorimetry (DSC) results, no phase transition leading to a super-ionic conductivity phase is found. At high temperature, [(NH4)0.63Li0.37]2TeBr6 is characterized by a medium conductivity σ453≈ 10-4 Ω-1m-1.
Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications.
Sanpo, Noppakun; Berndt, Christopher C; Wen, Cuie; Wang, James
2013-03-01
Transition metals of copper, zinc, chromium and nickel were substituted into cobalt ferrite nanoparticles via a sol-gel route using citric acid as a chelating agent. The microstructure and elemental composition were characterized using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. Phase analysis of transition metal-substituted cobalt ferrite nanoparticles was performed via X-ray diffraction. Surface wettability was measured using the water contact angle technique. The surface roughness of all nanoparticles was measured using profilometry. Moreover, thermogravimetric analysis and differential scanning calorimetry were performed to determine the temperature at which the decomposition and oxidation of the chelating agents took place. Results indicated that the substitution of transition metals influences strongly the microstructure, crystal structure and antibacterial property of the cobalt ferrite nanoparticles. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Li, Jessica J; Yip, Christopher M
2013-10-01
Direct correlation of molecular conformation with local structure is critical to studies of protein- and peptide-membrane interactions, particularly in the context of membrane-facilitated aggregation, and disruption or disordering. Infrared spectroscopy has long been a mainstay for determining molecular conformation, following folding dynamics, and characterizing reactions. While tremendous advances have been made in improving the spectral and temporal resolution of infrared spectroscopy, it has only been with the introduction of scanned-probe techniques that exploit the raster-scanning tip as either a source, scattering tool, or measurement probe that researchers have been able to obtain sub-diffraction limit IR spectra. This review will examine the history of correlated scanned-probe IR spectroscopies, from their inception to their use in studies of molecular aggregates, membrane domains, and cellular structures. The challenges and opportunities that these platforms present for examining dynamic phenomena will be discussed. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies. Copyright © 2013 Elsevier B.V. All rights reserved.
Jayakumar, S; Sudha, P N
2013-03-15
Chitosan/nylon6/polyurethane foam (CS/Ny6/PUF) ternary blend was prepared and chemically cross-linked with glutaraldehyde. Structural, thermal and morphological studies were performed for the prepared ternary blends. Characterizations of the ternary blends were investigated by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscope (SEM). The FTIR results showed that the strong intermolecular hydrogen bonds took place between CS, Ny6 and PUF. TGA and DSC studies reveal that the thermal stability of the blend is enhanced by glutaraldehyde as crosslinking agent. Results of XRD indicated that the relative crystalline of pure CS film was reduced when the polymeric network was reticulated by glutaraldehyde. Finally, the results of scanning electron microscopy (SEM) indicated that the morphology of the blend is rough and heterogeneous, further it confirms the interaction between the functional groups of the blend components. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kurbakov, A. I.; Korshunov, A. N.; Podchezertsev, S. Yu.; Malyshev, A. L.; Evstigneeva, M. A.; Damay, F.; Park, J.; Koo, C.; Klingeler, R.; Zvereva, E. A.; Nalbandyan, V. B.
2017-07-01
The magnetic structure of L i3N i2Sb O6 has been determined by low-temperature neutron diffraction, and the crystal structure has been refined by a combination of synchrotron and neutron powder diffraction. The monoclinic (C 2 /m ) symmetry, assigned previously to this pseudohexagonal layered structure, has been unambiguously proven by peak splitting in the synchrotron diffraction pattern. The structure is based on essentially hexagonal honeycomb-ordered N i2Sb O6 layers alternating with L i3 layers, all cations and anions being in an octahedral environment. The compound orders antiferromagnetically below TN=15 K , with the magnetic supercell being a 2 a ×2 b multiple of the crystal cell. The magnetic structure within the honeycomb layer consists of zigzag ferromagnetic spin chains coupled antiferromagnetically. The ordered magnetic moment amounts to 1.62 (2 ) μB/Ni , which is slightly lower than the full theoretical value. Upon cooling below TN, the spins tilt from the c axis, with a maximum tilting angle of 15 .6∘ at T =1.5 K . Our data imply non-negligible ferromagnetic interactions between the honeycomb layers. The observed antiferromagnetic resonance modes are in agreement with the two-sublattice model derived from the neutron data. Orthorhombic anisotropy shows up in zero-field splitting of Δ =198 ±4 and 218 ±4 GHz . Above TN, the electron spin resonance data imply short-range antiferromagnetic order up to about 80 K.
Meng, Yifei; Zuo, Jian -Min
2016-07-04
A diffraction-based technique is developed for the determination of three-dimensional nanostructures. The technique employs high-resolution and low-dose scanning electron nanodiffraction (SEND) to acquire three-dimensional diffraction patterns, with the help of a special sample holder for large-angle rotation. Grains are identified in three-dimensional space based on crystal orientation and on reconstructed dark-field images from the recorded diffraction patterns. Application to a nanocrystalline TiN thin film shows that the three-dimensional morphology of columnar TiN grains of tens of nanometres in diameter can be reconstructed using an algebraic iterative algorithm under specified prior conditions, together with their crystallographic orientations. The principles can bemore » extended to multiphase nanocrystalline materials as well. Furthermore, the tomographic SEND technique provides an effective and adaptive way of determining three-dimensional nanostructures.« less
Cao, Shiwei; Jiao, Yang; Han, Weifang; Ge, Chunhua; Song, Bo; Wang, Jie; Zhang, Xiangdong
2018-02-05
4ZnO·B 2 O 3 ·H 2 O:Ln 3+ (Ln=Eu, Tb) phosphors with different morphologies have been successfully synthesized via one-step hydrothermal method through regulating the molar amount of Eu 3+ and Tb 3+ . Comprehensive scanning electron microscopy (SEM), X-ray diffraction (XRD) Fourier transform infrared spectrum (FT-IR) and inductively coupled plasma atomic emission spectrometer (ICP-AES) characterizations all confirm that obtained products are 4ZnO·B 2 O 3 ·H 2 O:Ln 3+ (Ln=Eu, Tb). The experimental results displayed that the morphology and photoluminescence of compounds is regularly changed with increased the molar amount of rare earth ions. For the Eu 3+ -doped, Tb 3+ -doped and Eu 3+ /Tb 3+ co-doped 4ZnO·B 2 O 3 ·H 2 O phosphors of morphologies, the rod-like structures gradually changed to flower-like structures, fine wire-like structure and hybrid structure, respectively. To their photoluminescence, the Eu 3+ shows a red emission (615nm); the Tb 3+ shows a green emission (545nm); for the Eu 3+ /Tb 3+ co-doped 4ZnO·B 2 O 3 ·H 2 O phosphors, a combination of blue (5d-4f of Eu 2+ ), green ( 5 D 4 - 7 F 5 of Tb 3+ ) and red ( 5 D 0 - 7 F 2 of Eu 3+ ) emissions emerges to achieve white emission. In addition, the energy transfer among Eu 3+ , Eu 2+ and Tb 3+ ions was also discussed. Copyright © 2017. Published by Elsevier B.V.
X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum.
Mudgil, Deepak; Barak, Sheweta; Khatkar, B S
2012-05-01
Guar gum was hydrolyzed using cellulase from Aspergillus niger at 5.6 pH and 50°C temperature. Hydrolyzed guar gum sample was characterized using Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, dilute solution viscometry and rotational viscometry. Viscometry analysis of native guar gum showed a molecular weight of 889742.06, whereas, after enzymatic hydrolysis, the resultant product had a molecular weight of 7936.5. IR spectral analysis suggests that after enzymatic hydrolysis of guar gum there was no major transformation of functional group. Thermal analysis revealed no major change in thermal behavior of hydrolyzed guar gum. It was shown that partial hydrolysis of guar gum could be achieved by inexpensive and food grade cellulase (Aspergillus niger) having commercial importance and utilization as a functional soluble dietary fiber for food industry. Copyright © 2012 Elsevier B.V. All rights reserved.
Structural analysis and martensitic transformation in equiatomic HfPd alloy
NASA Astrophysics Data System (ADS)
Hisada, S.; Matsuda, M.; Takashima, K.; Yamabe-Mitarai, Y.
2018-02-01
We investigated the crystal structure and the martensitic transformation in equiatomic HfPd alloy. The analysis of the crystal structure by electron diffraction and Rietveld refinement using X-ray diffraction data indicates that the space group of the martensitic phase is Cmcm, and the lattice parameters are a = 0.329 nm, b = 1.021 nm, and c = 0.438 nm. Martensitic variants are composed of the plate-like morphology of several hundred nm, and the boundaries between the variants have (021)Cmcm twin relations. This (021)Cmcm twin boundary seems to be sharp without ledge and steps. Differential scanning calorimetry measurement indicates that each martensitic transformation temperature is determined to be Ms = 819 K, Mf = 794 K, As = 928 K, and Af = 954 K. Based on the dimension change using a thermo-mechanical analyzer, the expansion and shrinkage of the sample occurred with the forward and reverse martensitic transformation, respectively.
Jamrógiewicz, Marzena; Ciesielski, Aleksander
2015-03-25
This paper reports the study on applicability of Fourier transform infrared (FTIR), near-infrared (NIR) and Raman spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) for the estimation of the chemical stability and photostability of histamine H2-receptor antagonist substances. Ranitidine hydrochloride (RAN), famotidine (FAM) and cimetidine (CIM) were tested and differences in sensitivity were measured via soft independence modeling of class analogies (Simca) model. The low values of variations for FAM and CIM and high variations obtained for RAN using FTIR and NIR techniques indicated that these methods were suitable and applicable to classify the degradation of RAN. Examined methods are recommendable in the first technological stage of drug production, and the preclinical and clinical development of pharmaceuticals or their quality control. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
AlDamen, Murad A.; Juwhari, Hassan K.; Al-zuheiri, Aya M.; Alnazer, Louy A.
2017-12-01
Single crystal of Li[UO2(CH3COO)3]3[Co(H2O)6] was prepared and found to crystallize in the monoclinic crystal system in the sp. gr. C2/ c, with Z = 2, and unit cell parameters a = 22.1857(15) Å, b = 13.6477(8) Å, c = 15.6921(10) Å, β = 117.842(9)°, V = 4201.3(4) Å3. The crystal was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The single crystal X-ray diffraction analysis revealed that the crystal has a lamellar structure in which a cobalt hydrate is sandwiched within the Li[UO2(CH3COO)3]3 2- chains. Furthermore, the room temperature photoluminescence spectrum of the complex was investigated in the solid state.
Dhami, Navdeep Kaur; Reddy, M Sudhakara; Mukherjee, Abhijit
2013-12-01
Microbially induced calcium carbonate precipitation is a biomineralization process that has various applications in remediation and restoration of range of building materials. In the present study, calcifying bacteria, Bacillus megaterium SS3 isolated from calcareous soil was applied as biosealant to enhance the durability of low energy, green building materials (soil-cement blocks). This bacterial isolate produced high amounts of urease, carbonic anhydrase, extra polymeric substances and biofilm. The calcium carbonate polymorphs produced by B. megaterium SS3 were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X-ray diffraction and Fourier transmission infra red spectroscopy. These results suggested that calcite is the most predominant carbonate formed by this bacteria followed by vaterite. Application of B. megaterium SS3 as biogenic surface treatment led to 40 % decrease in water absorption, 31 % decrease in porosity and 18 % increase in compressive strength of low energy building materials. From the present investigation, it is clear that surface treatment of building materials by B. megaterium SS3 is very effective and eco friendly way of biodeposition of coherent carbonates that enhances the durability of building materials.
NASA Astrophysics Data System (ADS)
Pal, Shreyasi; Dutta, Shibsankar; De, Sukanta
2018-05-01
RGO/BiVO4 composites were synthesized by a simple hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) and surface analysis (BET). The photocatalytic activity of the as-prepared samples was evaluated by studying the degradation of model dyes rhodamine B (RhB) under visible light. The prepared rGO/BiVO4 composites exhibited higher photocatalytic activity for the degradation of RhB with a maximum removal rate of 86% under visible light irradiation under visible-light irradiation than pure BiVO4 nanoparticles (63%). This behavior could be associated to their higher specific surface area (BET), increased light absorption intensity and the degradation of electron-hole pair recombination in BiVO4 with the introduction of the rGO.
NASA Astrophysics Data System (ADS)
Yan, YiChao; Shi, Wei; Jiang, HongChuan; Cai, XianYao; Deng, XinWu; Xiong, Jie; Zhang, WanLi
2015-05-01
The energetic igniters through integrating B/Ti nano-multilayers on tantalum nitride (TaN) ignition bridge are designed and fabricated. The X-ray diffraction (XRD) and temperature coefficient of resistance (TCR) results show that nitrogen content has a great influence on the crystalline structure and TCR. TaN films under nitrogen ratio of 0.99 % exhibit a near-zero TCR value of approximately 10 ppm/°C. The scanning electron microscopy demonstrates that the layered structure of the B/Ti multilayer films is clearly visible with sharp and smooth interfaces. The electrical explosion characteristics employing a capacitor discharge firing set at the optimized charging voltage of 45 V reveal an excellent explosion performance by (B/Ti) n /TaN integration film bridge with small ignition delay time, high explosion temperature, much more bright flash of light, and much large quantities of the ejected product particles than TaN film bridge.
Magnetostructural transitions and magnetocaloric effects in Ni50Mn35In14.25B0.75 ribbons
NASA Astrophysics Data System (ADS)
Pandey, Sudip; Quetz, Abdiel; Ibarra-Gaytan, P. J.; Sánchez-Valdés, C. F.; Aryal, Anil; Dubenko, Igor; Sanchez Llamazares, Jose Luis; Stadler, Shane; Ali, Naushad
2018-05-01
The structural, thermal, and magnetic behaviors, as well as the martensitic phase transformation and related magnetocaloric response of Ni50Mn35In14.25B0.75 annealed ribbons have been investigated using room-temperature X-ray diffraction (XRD), differential scanning calorimetry (DSC), and magnetization measurements. Ni50Mn35In14.25B0.75 annealed ribbons show a sharper change in magnetization at the martensitic transition, resulting in larger magnetic entropy changes in comparison to bulk Ni50Mn35In14.25B0.75. A drastic shift in the martensitic transformation temperature (TM) of 70 K to higher temperature was observed for the annealed ribbons relative to that of the bulk (TM = 240 K). The results obtained for magnetic, thermal, structural, and magnetocaloric properties of annealed ribbons have been compared to those of the corresponding bulk alloys.
Sen, Anindito; Baxa, Ulrich; Simon, Martha N; Wall, Joseph S; Sabate, Raimon; Saupe, Sven J; Steven, Alasdair C
2007-02-23
Fungal prions are infectious filamentous polymers of proteins that are soluble in uninfected cells. In its prion form, the HET-s protein of Podospora anserina participates in a fungal self/non-self recognition phenomenon called heterokaryon incompatibility. Like other prion proteins, HET-s has a so-called "prion domain" (its C-terminal region, HET-s-(218-289)) that is responsible for induction and propagation of the prion in vivo and for fibril formation in vitro. Prion fibrils are thought to have amyloid backbones of polymerized prion domains. A relatively detailed model has been proposed for prion domain fibrils of HET-s based on a variety of experimental constraints (Ritter, C., Maddelein, M. L., Siemer, A. B., Luhrs, T., Ernst, M., Meier, B. H., Saupe, S. J., and Riek, R. (2005) Nature 435, 844-848). To test specific predictions of this model, which envisages axial stacking of beta-solenoids with two coils per subunit, we examined fibrils by electron microscopy. Electron diffraction gave a prominent meridional reflection at (0.47 nm)(-1), indicative of cross-beta structure, as predicted. STEM (scanning transmission electron microscopy) mass-per-unit-length measurements yielded 1.02 +/- 0.16 subunits per 0.94 nm, in agreement with the model prediction (1 subunit per 0.94 nm). This is half the packing density of approximately 1 subunit per 0.47 nm previously obtained for fibrils of the yeast prion proteins, Ure2p and Sup35p, whence it follows that the respective amyloid architectures are basically different.
NASA Astrophysics Data System (ADS)
Gangarapu, Manjari; Sarangapany, Saran; Suja, Devipriya P.; Arava, Vijaya Bhaskara Rao
2018-04-01
In this study, synthesis of Ag-Cu alloy bimetal nanoparticles anchored on high surface and porous ZnO using a facile, greener and low-cost aqeous bark extract of Aglaia roxburghiana for highly active, ultra-rapid and stable catalyst is performed. The nanocomposite was scrupulously characterized using UV-Vis spectrophotometer, X-ray diffraction, Raman spectrophotometer, high-resolution transmission electron microscope, selected area (electron) diffraction, scanning electron microscope with energy dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. The catalytic activity of the green synthesized Ag-Cu bimetal nanocomposite was evaluated in the reduction of 4-nitrophenol (4-NP), methylene blue (MB) and rhodamine B (Rh B) dyes. The different types of dye exhibited very high and effective catalytic activity within few seconds. The theoretical investigations reveal that the unique synergistic effect of Ag-Cu nanoparticles and immobilization over ZnO assists in the reduction of 4-NP, MB and Rh B. Loading and leaching of metal nanoparticles were obtained using inductively coupled plasma atomic emission spectroscopy. Moreover, the stable and efficient recyclability of nanocomposite by centrifugation after completion of the reaction was demonstrated. The results lead to the design different possible bimetal on ZnO with boosting and an effective catalyst for the environmental applications.
Simon, Alice; Amaro, Maria Inês; Cabral, Lucio Mendes; Healy, Anne Marie; de Sousa, Valeria Pereira
2016-03-30
The purpose of this study was to prepare engineered particles of rivastigmine hydrogen tartrate (RHT) and to characterize the physicochemical and aerodynamic properties, in comparison to a lactose carrier formulation (LCF). Microparticles were prepared from ethanol/water solutions containing RHT with and without the incorporation of L-leucine (Leu), using a spray dryer. Dry powder inhaler formulations prepared were characterized by scanning electron microscopy, powder X-ray diffraction, laser diffraction particle sizing, ATR-FTIR, differential scanning calorimetry, bulk and tapped density, dynamic vapour sorption and in vitro aerosol deposition behaviour using a next generation impactor. The smooth-surfaced spherical morphology of the spray dried microparticles was altered by adding Leu, resulting in particles becoming increasingly wrinkled with increasing Leu. Powders presented low densities. The glass transition temperature was sufficiently high (>90 °C) to suggest good stability at room temperature. As Leu content increased, spray dried powders presented lower residual solvent content, lower particle size, higher fine particle fraction (FPF<5 μm), and lower mass median aerodynamic diameter (MMAD). The LCF showed a lower FPF and higher MMAD, relative to the spray dried formulations containing more than 10% Leu. Spray dried RHT powders presented better aerodynamic properties, constituting a potential drug delivery system for oral inhalation. Copyright © 2016. Published by Elsevier B.V.
Sadeghi, Babak; Mohammadzadeh, M; Babakhani, B
2015-07-01
Various methods invented and developed for the synthesis of gold nanoparticles that increases daily consumed. According to this method, including potential environmental pollution problems and the complexity of the synthesis, in this study, the feasibility of using the leaves extract of Stevia rebaudiana (SR) for the reduction of gold ions to nanoparticles form have been studied. Stevia leaves were used to prepare the aqueous extract for this study. Gold nanoparticles were characterized with different techniques such as UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 5 to 20 nm. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary amine group (NH2), carbonyl group, OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of gold nanoparticles with size of 17 nm. The scanning electron microscopy (SEM) implies the right of forming gold nanoparticles. The results, confirm that gold nanoparticles have synthesized by the leaves extract of S. rebaudiana (SR). Copyright © 2015 Elsevier B.V. All rights reserved.
Londoño-Restrepo, Sandra M; Rincón-Londoño, Natalia; Contreras-Padilla, Margarita; Millan-Malo, Beatriz M; Rodriguez-Garcia, Mario E
2018-07-01
This work is focused on the chemical, structural, morphological, thermal, IR vibrational, and pasting characterization of isolated white, yellow, and purple Arracacha starches from Colombia. Inductive couple plasma showed that these starches are rich in potassium. Scanning Electron Microscopy (SEM) images show that the starch granules are formed by ovoid fully filled Lego-like starch microparticles, the circular cross-section has a diameter between 9 and 15μm and mayor axis between 20 and 30μm. Each one of these ovoids is formed by irregular wedge-shaped 6 to 10 isolated starch granules with an average size between 4 and 12μm. The amylose content ranged between 31 and 36%. Arracacha starches exhibited high viscosity values (between 20.000 and 28.000cP), which could be influenced by the high content of potassium ions, due to the C-H~K Van Der Waals interaction that was identified by using IR spectroscopy. According to the X-ray diffraction analysis, the starch patterns exhibited broad diffracted peaks which could be associated with the existence of nano-crystals and lamellae; the Differential Scanning calorimetry (DSC) result showed starches with a low gelatinization temperature of about 60°C. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Nouhi, A.; Radhakrishnan, G.; Katz, J.; Koliwad, K.
1988-01-01
Epitaxial CdTe has been grown on both (100)GaAs/Si and (111)GaAs/Si substrates. A combination of molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) has been employed for the first time to achieve this growth: the GaAs layers are grown on Si substrates by MBE and the CdTe film is subsequently deposited on GaAs/Si by MOCVD. The grown layers have been characterized by X-ray diffraction, scanning electron microscopy, and photoluminescence.
On the structural origins of ferroelectricity in HfO{sub 2} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Xiahan; Grimley, Everett D.; LeBeau, James M.
2015-04-20
Here, we present a structural study on the origin of ferroelectricity in Gd doped HfO{sub 2} thin films. We apply aberration corrected high-angle annular dark-field scanning transmission electron microscopy to directly determine the underlying lattice type using projected atom positions and measured lattice parameters. Furthermore, we apply nanoscale electron diffraction methods to visualize the crystal symmetry elements. Combined, the experimental results provide unambiguous evidence for the existence of a non-centrosymmetric orthorhombic phase that can support spontaneous polarization, resolving the origin of ferroelectricity in HfO{sub 2} thin films.
Nance, Erin; Ayalon, Omri; Yang, Steven
2016-06-01
We present a series of eight patients who underwent wrist arthroscopy for presumed solitary tears of the triangular fibrocartilage (TFC) and were, instead, found to have combined 1A (central tear) and 1B (ulnar avulsion) tears. The Palmer Classification does not currently categorize this combined pattern. All but one patient had a traumatic injury. Each subject had preoperative radiographs and MRI scans. TFC tears were evident on all MRI scans, though only one was suggestive of a combined tear pat - tern. Surgical management included arthroscopic central tear debridement and ulnar peripheral repair. Average follow-up was 22 months. Grip strength in the affected hand improved from 16% deficit as compared to the unaffected side, to 3.5% deficit postoperatively (p = 0.003), and visual analog scores (VAS) decreased from an average of 7.1/10 preoperatively to 2.3/10 postoperatively (p < 0.001). There was no statistically significant change in wrist range of motion (ROM), however. Arthroscopic debridement of the central perforation (1A lesion) with concomitant repair of the ulnar detachment (1B lesion) resulted in functional and symptomatic improvement. This combined 1A/1B TFC injury is not reliably diagnosed preoperatively and should be considered a new subset in the Palmer classification, as this will raise awareness of its presence and assist in preoperative planning of such lesions.
Miniaturized diffraction based interferometric distance measurement sensor
NASA Astrophysics Data System (ADS)
Kim, Byungki
In this thesis, new metrology hardware is designed, fabricated, and tested to provide improvements over current MEMS metrology. The metrology system is a micromachined scanning interferometer (muSI) having a sub-nm resolution in a compact design. The proposed microinterferometer forms a phase sensitive diffraction grating with interferomeric sensitivity, while adding the capability of better lateral resolution by focusing the laser to a smaller spot size. A detailed diffraction model of the microinterferometer was developed to simulate the device performance and to suggest the location of photo detectors for integrated optoelectronics. A particular device is fabricated on a fused silica substrate using aluminum to form the deformable diffraction grating fingers and AZ P4620 photo resist (PR) for the microlens. The details of the fabrication processes are presented. The structure also enables optoelectronics to be integrated so that the interferometer with photo detectors can fit in an area that is 1 mm x 1 mm. The scanning results using a fixed grating muSI demonstrated that it could measure vibration profile as well as static vertical (less than a half wave length) and lateral dimension of MEMS. The muSI, which is integrated with photo diodes, demonstrated its operation by scanning a cMUT. The PID control has been tested and resulted in improvement in scanned images. The integrated muSI demonstrated that the deformable grating could be used to tune the measurement keep the interferometer in quadrature for highest sensitivity.
Anisotropic x-ray scattering and orientation fields in cardiac tissue cells
NASA Astrophysics Data System (ADS)
Bernhardt, M.; Nicolas, J.-D.; Eckermann, M.; Eltzner, B.; Rehfeldt, F.; Salditt, T.
2017-01-01
X-ray diffraction from biomolecular assemblies is a powerful technique which can provide structural information about complex architectures such as the locomotor systems underlying muscle contraction. However, in its conventional form, macromolecular diffraction averages over large ensembles. Progress in x-ray optics has now enabled to probe structures on sub-cellular scales, with the beam confined to a distinct organelle. Here, we use scanning small angle x-ray scattering (scanning SAXS) to probe the diffraction from cytoskeleton networks in cardiac tissue cells. In particular, we focus on actin-myosin composites, which we identify as the dominating contribution to the anisotropic diffraction patterns, by correlation with optical fluorescence microscopy. To this end, we use a principal component analysis approach to quantify direction, degree of orientation, nematic order, and the second moment of the scattering distribution in each scan point. We compare the fiber orientation from micrographs of fluorescently labeled actin fibers to the structure orientation of the x-ray dataset and thus correlate signals of two different measurements: the native electron density distribution of the local probing area versus specifically labeled constituents of the sample. Further, we develop a robust and automated fitting approach based on a power law expansion, in order to describe the local structure factor in each scan point over a broad range of the momentum transfer {q}{{r}}. Finally, we demonstrate how the methodology shown for freeze dried cells in the first part of the paper can be translated to alive cell recordings.
Two-Photon Imaging with Diffractive Optical Elements
Watson, Brendon O.; Nikolenko, Volodymyr; Yuste, Rafael
2009-01-01
Two-photon imaging has become a useful tool for optical monitoring of neural circuits, but it requires high laser power and serial scanning of each pixel in a sample. This results in slow imaging rates, limiting the measurements of fast signals such as neuronal activity. To improve the speed and signal-to-noise ratio of two-photon imaging, we introduce a simple modification of a two-photon microscope, using a diffractive optical element (DOE) which splits the laser beam into several beamlets that can simultaneously scan the sample. We demonstrate the advantages of DOE scanning by enhancing the speed and sensitivity of two-photon calcium imaging of action potentials in neurons from neocortical brain slices. DOE scanning can easily improve the detection of time-varying signals in two-photon and other non-linear microscopic techniques. PMID:19636390
Structure of a zinc oxide ultra-thin film on Rh(100)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuhara, J.; Kato, D.; Matsui, T.
The structural parameters of ultra-thin zinc oxide films on Rh(100) are investigated using low-energy electron diffraction intensity (LEED I–V) curves, scanning tunneling microscopy (STM), and first-principles density functional theory (DFT) calculations. From the analysis of LEED I–V curves and DFT calculations, two optimized models A and B are determined. Their structures are basically similar to the planer h-BN ZnO(0001) structure, although some oxygen atoms protrude from the surface, associated with an in-plane shift of Zn atoms. From a comparison of experimental STM images and simulated STM images, majority and minority structures observed in the STM images represent the two optimizedmore » models A and B, respectively.« less
Synthesis and visible-light photocatalytic performance of flower-like porous Bi5O7I
NASA Astrophysics Data System (ADS)
Yao, Lizhu; Shi, Lei; Wang, Fangxiao
2018-04-01
Flower-like porous Bi5O7I was successfully synthesized through an easy thermal decomposition of flower-like BiOI. And its chemical structure, morphology and optical property were thoroughly analyzed by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscope, energydispersive spectrometry elements mapping, transmission electron microscopy, N2 adsorption-desorption isotherm, BET, and UV–vis diffuse reflectance spectra. The visible-light photocatalytic elimination of rhodamine B (RhB) was investigated. The experimental results indicated that flower-like porous Bi5O7I exhibited enhanced photocatalytic activity for degrading RhB in comparsion of flower-like BiOI, g-C3N4 and N-doped TiO2. Additionally, the as-prepared flower-like porous Bi5O7I possessed catalytic stability after recycles.
Reconfigurable Antennas for High Data Rate Multi-beam Communication Systems
NASA Technical Reports Server (NTRS)
Bernhard, Jennifer T.; Michielssen, Eric
2005-01-01
High-speed (2-100 Mb/sec) wireless data communication - whether land- or satellite-based - faces a major challenge: high error rates caused by interference and unpredictable environments. A planar antenna system that can be reconfigured to respond to changing conditions has the potential to dramatically improve data throughput and system reliability. Moreover, new planar antenna designs that reduce array size, weight, and cost can have a significant impact on terrestrial and satellite communication system performance. This research developed new individually-reconfigurable planar antenna array elements that can be adjusted to provide multiple beams while providing increased scan angles and higher aperture efficiency than traditional diffraction-limited arrays. These new elements are microstrip spiral antennas with specialized tuning mechanisms that provide adjustable radiation patterns. We anticipate that these new elements can be used in both large and small arrays for inter-satellite communication as well as tracking of multiple mobile surface-based units. Our work has developed both theoretical descriptions as well as experimental prototypes of the antennas in both single element and array embodiments. The technical summary of the results of this work is divided into six sections: A. Cavity model for analysis and design of pattern reconfigurable antennas; B. Performance of antenna in array configurations for broadside and endfire operation; C. Performance of antenna in array configurations for beam scanning operation; D. Simulation of antennas in infinite phased arrays; E. Demonstration of antenna with commercially-available RF MEMS switches; F. Design of antenna MEMS switch combinations for direct simultaneous fabrication.
Ultrasonic imaging of materials under unconventional circumstances
NASA Astrophysics Data System (ADS)
Declercq, Nico Felicien; McKeon, Peter; Slah, Yaacoubi; Liu, Jingfei; Shaw, Anurupa
2015-03-01
This paper reflects the contents of the plenary talk given by Nico Felicien Declercq. "Ultrasonic Imaging of materials" covers a wide technological area with main purpose to look at and to peek inside materials. In an ideal world one would manage to examine materials like a clairvoyant. Fortunately this is impossible hence nature has offered sufficient challenges to mankind to provoke curiosity and to develop science and technology. Here we focus on the appearance of certain undesired physical effects that prohibit direct imaging of materials in ultrasonic C-scans. Furthermore we try to make use of these effects to obtain indirect images of materials and therefore make a virtue of necessity. First we return to one of the oldest quests in the progress of mankind: how thick is ice? Our ancestors must have faced this question early on during migration to Northern Europe and to the America's and Asia. If a physicist or engineer is not provided with helpful tools such as a drill or a device based on ultrasound, it is difficult to determine the ice thickness. Guided waves, similar to those used for nondestructive testing of thin plates in structural health monitoring can be used in combination with the human ear to determine the thickness of ice. To continue with plates, if an image of its interior is desired high frequency ultrasonic pulses can be applied. It is known by the physicist that the resolution depends on the wavelength and that high frequencies usually result in undesirably high damping effects inhibiting deep penetration into the material. To the more practical oriented engineer it is known that it is advantageous to polish surfaces before examination because scattering and diffraction of sound lowers the image resolution. Random scatterers cause some blurriness but cooperating scatters, causing coherent diffraction effects similar to the effects that cause DVD's to show rainbow patterns under sunlight, can cause spooky images and erroneous measurements of material properties. However when properly understood, diffraction effects, for instance if one has no other options but to work with frequencies that are fortuitously very effectively diffracted by the surface structure of a material under investigation, can be used to obtain high contract images or to obtain information that would normally be hidden from standard C-scan techniques. Similar contrast enhancement is also obtained for oblique C-scans of composites.
Ultrasonic imaging of materials under unconventional circumstances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Declercq, Nico Felicien, E-mail: declercqdepatin@gatech.edu; McKeon, Peter, E-mail: declercqdepatin@gatech.edu; Liu, Jingfei
2015-03-31
This paper reflects the contents of the plenary talk given by Nico Felicien Declercq. “Ultrasonic Imaging of materials” covers a wide technological area with main purpose to look at and to peek inside materials. In an ideal world one would manage to examine materials like a clairvoyant. Fortunately this is impossible hence nature has offered sufficient challenges to mankind to provoke curiosity and to develop science and technology. Here we focus on the appearance of certain undesired physical effects that prohibit direct imaging of materials in ultrasonic C-scans. Furthermore we try to make use of these effects to obtain indirectmore » images of materials and therefore make a virtue of necessity. First we return to one of the oldest quests in the progress of mankind: how thick is ice? Our ancestors must have faced this question early on during migration to Northern Europe and to the America’s and Asia. If a physicist or engineer is not provided with helpful tools such as a drill or a device based on ultrasound, it is difficult to determine the ice thickness. Guided waves, similar to those used for nondestructive testing of thin plates in structural health monitoring can be used in combination with the human ear to determine the thickness of ice. To continue with plates, if an image of its interior is desired high frequency ultrasonic pulses can be applied. It is known by the physicist that the resolution depends on the wavelength and that high frequencies usually result in undesirably high damping effects inhibiting deep penetration into the material. To the more practical oriented engineer it is known that it is advantageous to polish surfaces before examination because scattering and diffraction of sound lowers the image resolution. Random scatterers cause some blurriness but cooperating scatters, causing coherent diffraction effects similar to the effects that cause DVD’s to show rainbow patterns under sunlight, can cause spooky images and erroneous measurements of material properties. However when properly understood, diffraction effects, for instance if one has no other options but to work with frequencies that are fortuitously very effectively diffracted by the surface structure of a material under investigation, can be used to obtain high contract images or to obtain information that would normally be hidden from standard C-scan techniques. Similar contrast enhancement is also obtained for oblique C-scans of composites.« less
Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar
2018-04-01
Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.
Li, Yongxiao; Montague, Samantha J; Brüstle, Anne; He, Xuefei; Gillespie, Cathy; Gaus, Katharina; Gardiner, Elizabeth E; Lee, Woei Ming
2018-02-28
In this study, we introduce two key improvements that overcome limitations of existing polygon scanning microscopes while maintaining high spatial and temporal imaging resolution over large field of view (FOV). First, we proposed a simple and straightforward means to control the scanning angle of the polygon mirror to carry out photomanipulation without resorting to high speed optical modulators. Second, we devised a flexible data sampling method directly leading to higher image contrast by over 2-fold and digital images with 100 megapixels (10 240 × 10 240) per frame at 0.25 Hz. This generates sub-diffraction limited pixels (60 nm per pixels over the FOV of 512 μm) which increases the degrees of freedom to extract signals computationally. The unique combined optical and digital control recorded fine fluorescence recovery after localized photobleaching (r ~10 μm) within fluorescent giant unilamellar vesicles and micro-vascular dynamics after laser-induced injury during thrombus formation in vivo. These new improvements expand the quantitative biological-imaging capacity of any polygon scanning microscope system. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of splitting convergent beam electron diffraction (SCBED).
Houdellier, Florent; Röder, Falk; Snoeck, Etienne
2015-12-01
Using a combination of condenser electrostatic biprism with dedicated electron optic conditions for sample illumination, we were able to split a convergent beam electron probe focused on the sample in two half focused probes without introducing any tilt between them. As a consequence, a combined convergent beam electron diffraction pattern is obtained in the back focal plane of the objective lens arising from two different sample areas, which could be analyzed in a single pattern. This splitting convergent beam electron diffraction (SCBED) pattern has been tested first on a well-characterized test sample of Si/SiGe multilayers epitaxially grown on a Si substrate. The SCBED pattern contains information from the strained area, which exhibits HOLZ lines broadening induced by surface relaxation, with fine HOLZ lines observed in the unstrained reference part of the sample. These patterns have been analyzed quantitatively using both parts of the SCBED transmitted disk. The fine HOLZ line positions are used to determine the precise acceleration voltage of the microscope while the perturbed HOLZ rocking curves in the stained area are compared to dynamical simulated ones. The combination of these two information leads to a precise evaluation of the sample strain state. Finally, several SCBED setups are proposed to tackle fundamental physics questions as well as applied materials science ones and demonstrate how SCBED has the potential to greatly expand the range of applications of electron diffraction and electron holography. Copyright © 2015 Elsevier B.V. All rights reserved.
Near-Field Diffraction Imaging from Multiple Detection Planes
NASA Astrophysics Data System (ADS)
Loetgering, L.; Golembusch, M.; Hammoud, R.; Wilhein, T.
2017-06-01
We present diffraction imaging results obtained from multiple near-field diffraction constraints. An iterative phase retrieval algorithm was implemented that uses data redundancy achieved by measuring near-field diffraction intensities at various sample-detector distances. The procedure allows for reconstructing the exit surface wave of a sample within a multiple constraint satisfaction framework neither making use of a priori knowledge as enforced in coherent diffraction imaging (CDI) nor exact scanning grid knowledge as required in ptychography. We also investigate the potential of the presented technique to deal with polychromatic radiation as important for potential application in diffraction imaging by means of tabletop EUV and X-ray sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haishuang; Krysiak, Yaşar; Hoffmann, Kristin
The crystal structure and disorder phenomena of Al{sub 4}B{sub 2}O{sub 9}, an aluminum borate from the mullite-type family, were studied using automated diffraction tomography (ADT), a recently established method for collection and analysis of electron diffraction data. Al{sub 4}B{sub 2}O{sub 9}, prepared by sol-gel approach, crystallizes in the monoclinic space group C2/m. The ab initio structure determination based on three-dimensional electron diffraction data from single ordered crystals reveals that edge-connected AlO{sub 6} octahedra expanding along the b axis constitute the backbone. The ordered structure (A) was confirmed by TEM and HAADF-STEM images. Furthermore, disordered crystals with diffuse scattering along themore » b axis are observed. Analysis of the modulation pattern implies a mean superstructure (AAB) with a threefold b axis, where B corresponds to an A layer shifted by ½a and ½c. Diffraction patterns simulated for the AAB sequence including additional stacking disorder are in good agreement with experimental electron diffraction patterns. - Graphical abstract: Crystal structure and disorder phenomena of B-rich Al{sub 4}B{sub 2}O{sub 9} studied by automated electron diffraction tomography (ADT) and described by diffraction simulation using DISCUS. - Highlights: • Ab-initio structure solution by electron diffraction from single nanocrystals. • Detected modulation corresponding mainly to three-fold superstructure. • Diffuse diffraction streaks caused by stacking faults in disordered crystals. • Observed streaks explained by simulated electron diffraction patterns.« less
NASA Astrophysics Data System (ADS)
Kahl, Wolf-Achim; Hidas, Károly; Dilissen, Nicole; Garrido, Carlos J.; López-Sánchez Vizcaíno, Vicente; Jesús Román-Alpiste, Manuel
2017-04-01
The complete reconstruction of the microstructure of rocks requires, among others, a full description of the shape preferred orientation (SPO) and crystal preferred orientation (CPO) of the constituent mineral phases. New advances in instrumental analyses, particularly electron backscatter diffraction (EBSD) coupled to focused ion beam-scanning electron microscope (FIB-SEM), allows a complete characterization of SPO and CPO in rocks at the micron scale [1-2]. Unfortunately, the large grain size of many crystalline rocks, such as peridotite, prevents a representative characterization of the CPO and SPO of their constituent minerals by this technique. Here, we present a new approach combining X-ray micro computed tomography (µ-CT) and EBSD to reconstruct the geographically oriented, 3-D SPO and CPO of cm- to mm-sized olivine crystals in two contrasting fabric types of chlorite harzburgites (Almírez ultramafic massif, SE Spain). The semi-destructive sample treatment involves drilling of geographically oriented micro drills in the field and preparation of oriented thin sections from µ-CT scanned cores. This allows for establishing the link among geological structures, macrostructure, fabric, and 3-D SPO-CPO at the thin section scale. Based on EBSD analyses, different CPO groups of olivine crystals can be discriminated in the thin sections and allocated to 3-D SPO in the µ-CT volume data. This approach overcomes the limitations of both methods (i.e., no crystal orientation data in µ-CT and no spatial information in EBSD), hence 3-D orientation of the crystallographic axes of olivines from different orientation groups could be correlated with the crystal shapes of olivine grains. This combined µ-CT and EBSD technique enables the correlation of both SPO and CPO and representative grain size, and is capable to characterize the 3-D microstructure of olivine-bearing rocks at the hand specimen scale. REFERENCES 1. Zaefferer, S., Wright, S.I., Raabe, D., 2008. Three-Dimensional orientation microscopy in a focused ion beam-scanning electron microscope: A new dimension of microstructure characterization. Metallurgical and Materials Transactions A 39, 374-389. 2. Burnett, T.L., Kelley, R., Winiarski, B., Contreras, L., Daly, M., Gholinia, A., Burke, M.G., Withers, P.J., 2016. Large volume serial section tomography by Xe Plasma FIB dual beam microscopy. Ultramicroscopy 161, 119-129.
de Armas, Héctor Novoa; Peeters, Oswald M; Van den Mooter, Guy; Blaton, Norbert
2007-05-01
A new polymorphic form of Alprazolam (Xanax), 8-chloro-1-methyl-6-phenyl-4H-[1,2,4]triazolo-[4,3-alpha][1,4]benzodiazepine, C(17)H(13)ClN(4), has been investigated by means of X-ray powder diffraction (XRPD), single crystal X-ray diffraction, and differential scanning calorimetry (DSC). This polymorphic form (form III) was obtained during DSC experiments after the exothermic recrystallization of the melt of form I. The crystal unit cell dimensions for form III were determined from diffractometer methods. The monoclinic unit cell found for this polymorph using XRPD after indexing the powder diffractogram was confirmed by the cell parameters obtained from single crystal X-ray diffractometry on a crystal isolated from the DSC pans. The single crystal unit cell parameters are: a = 28.929(9), b = 13.844(8), c = 7.361(3) angstroms, beta = 92.82(3) degrees , V = 2944(2) angstroms(3), Z = 8, space group P2(1) (No.4), Dx = 1.393 Mg/m(3). The structure obtained from single crystal X-ray diffraction was used as initial model for Rietveld refinement on the powder diffraction data of form III. The temperature phase transformations of alprazolam were also studied using high temperature XRPD. A review of the different phases available in the Powder Diffraction File (PDF) database for this drug is described bringing some clarification and corrections. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.
Diffraction-Unlimited Fluorescence Imaging with an EasySTED Retrofitted Confocal Microscope.
Klauss, André; Hille, Carsten
2017-01-01
The easySTED technology provides the means to retrofit a confocal microscope to a diffraction-unlimited stimulated emission depletion (STED) microscope.Although commercial STED systems are available today, for many users of confocal laser scanning microscopes the option of retrofitting their confocal system to a STED system ready for diffraction-unlimited imaging may present an attractive option. The easySTED principle allowing for a joint beam path of excitation and depletion light promises some advantages concerning technical complexity and alignment effort for such an STED upgrade. In the one beam path design of easySTED the use of a common laser source, either a supercontinuum source or two separate lasers coupled into the same single-mode fiber, becomes feasible. The alignment of the focal light distribution of the STED beam relative to that of the excitation beam in all three spatial dimensions is therefore omitted respectively reduced to coupling the STED laser into the common single-mode fiber. Thus, only minor modifications need to be applied to the beam path in the confocal microscope to be upgraded. Those comprise adding polarization control elements and the easySTED waveplate, and adapting the beamsplitter to the excitation/STED wavelength combination.
Structural studies of crystalline forms of triamterene with carboxylic acid, GRAS and API molecules
Rehman, Abida
2018-01-01
Pharmaceutical salt solvates (dimethyl sulfoxide, DMSO) of the drug triamterene with the coformers acetic, succinic, adipic, pimelic, azelaic and nicotinic acid and ibuprofen are prepared by liquid-assisted grinding and solvent-evaporative crystallization. The modified ΔpK a rule as proposed by Cruz-Cabeza [(2012 ▸). CrystEngComm, 14, 6362–6365] is in close agreement with the results of this study. All adducts were characterized by X-ray diffraction and thermal analytical techniques, including single-crystal X-ray diffraction, powder X-ray diffraction, differential scanning calorimetry and thermal gravimetric analysis. Hydrogen-bonded motifs combined to form a variety of extended tapes and sheets. Analysis of the crystal structures showed that all adducts existed as salt solvates and contained the aminopyridinium–carboxylate heterodimer, except for the solvate containing triamterene, ibuprofen and DMSO, as a result of the presence of a strong and stable hemitriamterenium duplex. A search of the Cambridge Structural Database (CSD 5.36, Version 1.18) to determine the frequency of occurrence of the putative supramolecular synthons found in this study showed good agreement with previous work. PMID:29755747
NASA Astrophysics Data System (ADS)
Wells-Gray, Elaine M.; Choi, Stacey S.; Zawadzki, Robert J.; Finn, Susanna C.; Greiner, Cherry; Werner, John S.; Doble, Nathan
2018-03-01
We have designed and implemented a dual-mode adaptive optics (AO) imaging system that combines spectral domain optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) for in vivo imaging of the human retina. The system simultaneously acquires SLO frames and OCT B-scans at 60 Hz with an OCT volume acquisition time of 4.2 s. Transverse eye motion measured from the SLO is used to register the OCT B-scans to generate three-dimensional (3-D) volumes. Key optical design considerations include: minimizing system aberrations through the use of off-axis relay telescopes, conjugate pupil plane requirements, and the use of dichroic beam splitters to separate and recombine the OCT and SLO beams around the nonshared horizontal scanning mirrors. To demonstrate system performance, AO-OCT-SLO images and measurements are taken from three normal human subjects ranging in retinal eccentricity from the fovea out to 15-deg temporal and 20-deg superior. Also presented are en face OCT projections generated from the registered 3-D volumes. The ability to acquire high-resolution 3-D images of the human retina in the midperiphery and beyond has clinical importance in diseases, such as retinitis pigmentosa and cone-rod dystrophy.
NASA Astrophysics Data System (ADS)
Iyer, Vijay; Saggau, Peter
2003-10-01
In laser-scanning microscopy, acousto-optic (AO) deflection provides a means to quickly position a laser beam to random locations throughout the field-of-view. Compared to conventional laser-scanning using galvanometer-driven mirrors, this approach increases the frame rate and signal-to-noise ratio, and reduces time spent illuminating sites of no interest. However, random-access AO scanning has not yet been combined with multi-photon microscopy, primarily because the femtosecond laser pulses employed are subject to significant amounts of both spatial and temporal dispersion upon propagation through common AO materials. Left uncompensated, spatial dispersion reduces the microscope"s spatial resolution while temporal dispersion reduces the multi-photon excitation efficacy. In previous work, we have demonstrated, 1) the efficacy of a single diffraction grating scheme which reduces the spatial dispersion at least 3-fold throughout the field-of-view, and 2) the use of a novel stacked-prism pre-chirper for compensating the temporal dispersion of a pair of AODs using a shorter mechanical path length (2-4X) than standard prism-pair arrangements. In this work, we demonstrate for the first time the use of these compensation approaches with a custom-made large-area slow-shear TeO2 AOD specifically suited for the development of a high-resolution 2-D random-access AO scanning multi-photon laser-scanning microscope (AO-MPLSM).
The Ni-rich part of the Al–Ge–Ni phase diagram
Jandl, Isabella; Reichmann, Thomas L.; Richter, Klaus W.
2013-01-01
The Ni-rich part of the ternary system Al–Ge–Ni (xNi > 50 at.%) was investigated by means of optical microscopy, powder X-ray diffraction (XRD), differential thermal analysis (DTA) and scanning electron microscopy (SEM). The two isothermal sections at 550 °C and 700 °C were determined. Within these two sections a new ternary phase, designated as τ4, AlyGe9−yNi13±x (hP66, Ga3Ge6Ni13-type) was detected and investigated by single crystal X-ray diffraction. Another ternary low temperature phase, τ5, was found only in the isothermal section at 550 °C around the composition AlGeNi4. This compound was found to crystallise in the Co2Si type structure (oP12, Pnma). The structure was identified by Rietveld refinement of powder data. The NiAs type (B8) phase based on binary Ge3Ni5 revealed an extended solid solubility of Al and the two isotypic compounds AlNi3 and GeNi3 form a complete solid solution. Based on DTA results, six vertical sections at 55, 60, 70, 75 and 80 at.% Ni and at a constant Al:Ni ratio of 1:3 were constructed. Furthermore, the liquidus surface projection and the reaction scheme (Scheil diagram) were completed by combining our results with previous results from the Ni-poor part of the phase diagram. Six invariant ternary reactions were identified in the Ni-rich part of the system. PMID:27087754
Lu, Tianshu; Sun, Yinghua; Ding, Dawei; Zhang, Qi; Fan, Rui; He, Zhonggui; Wang, Jing
2017-02-01
The purpose of this study was to develop a combination method of wet milling and spray-drying technologies to prepare the solid dispersion and improve the dissolution rate of poorly water-soluble drug candidates. Azilsartan (AZL) was selected as the model drug for its poor water solubility. In the study, AZL-loaded solid dispersion was prepared with polyethylene glycol 6000 (PEG6000) and hydroxypropyl cellulose with super low viscosity (HPC-SL) as stabilizers by using combination of wet grinding and spray-drying methods. The high AZL loading solid dispersion was then characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). Besides, dissolution test was carried out by the paddle method and stability investigation was also conducted. As a result, the dissolution rate of the solid dispersion tablets was found to be greater than conventional tablets, but in close agreement with market tablets. Furthermore, the formulation was shown to be stable at 40 ± 2°C and 75 ± 5% for at least 6 months, owing to its decreased particle size, morphology, and its crystal form. It was concluded that the combination of wet milling and spray-drying approaches to prepare solid dispersion would be a prospective method to improve the dissolution rate of poorly water-soluble drugs.
Image reconstruction of IRAS survey scans
NASA Technical Reports Server (NTRS)
Bontekoe, Tj. Romke
1990-01-01
The IRAS survey data can be used successfully to produce images of extended objects. The major difficulties, viz. non-uniform sampling, different response functions for each detector, and varying signal-to-noise levels for each detector for each scan, were resolved. The results of three different image construction techniques are compared: co-addition, constrained least squares, and maximum entropy. The maximum entropy result is superior. An image of the galaxy M51 with an average spatial resolution of 45 arc seconds is presented, using 60 micron survey data. This exceeds the telescope diffraction limit of 1 minute of arc, at this wavelength. Data fusion is a proposed method for combining data from different instruments, with different spacial resolutions, at different wavelengths. Data estimates of the physical parameters, temperature, density and composition, can be made from the data without prior image (re-)construction. An increase in the accuracy of these parameters is expected as the result of this more systematic approach.
Spray Drying as a Reliable Route to Produce Metastable Carbamazepine Form IV.
Halliwell, Rebecca A; Bhardwaj, Rajni M; Brown, Cameron J; Briggs, Naomi E B; Dunn, Jaclyn; Robertson, John; Nordon, Alison; Florence, Alastair J
2017-07-01
Carbamazepine (CBZ) is an active pharmaceutical ingredient used in the treatment of epilepsy that can form at least 5 polymorphic forms. Metastable form IV was originally discovered from crystallization with polymer additives; however, it has not been observed from subsequent solvent-only crystallization efforts. This work reports the reproducible formation of phase pure crystalline form IV by spray drying of methanolic CBZ solution. Characterization of the material was carried out using diffraction, scanning electron microscopy, and differential scanning calorimetry. In situ Raman spectroscopy was used to monitor the spray-dried product during the spray drying process. This work demonstrates that spray drying provides a robust method for the production of form IV CBZ, and the combination of high supersaturation and rapid solid isolation from solution overcomes the apparent limitation of more traditional solution crystallization approaches to produce metastable crystalline forms. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Thermo-structural analysis and electrical conductivity behavior of epoxy/metals composites
NASA Astrophysics Data System (ADS)
Boumedienne, N.; Faska, Y.; Maaroufi, A.; Pinto, G.; Vicente, L.; Benavente, R.
2017-05-01
This paper reports on the elaboration and characterization of epoxy resin filled with metallic particles powder (aluminum, tin and zinc) composites. The scanning electron microscopy (SEM) pictures, density measurements and x-ray diffraction analysis (DRX) showed a homogeneous phase of obtained composites. The differential scanning calorimetry revealed a good adherence at matrix-filler interfaces, confirming the SEM observations. The measured glass transition temperatures depend on composites fillers' nature. Afterwards, the electrical conductivity of composites versus their fillers' contents has been investigated. The obtained results depict a nonlinear behavior, indicating an insulator to conductor phase transition at a conduction threshold; with high contrast of ten decades. Hence, the elaborated materials give a possibility to obtain dielectric or electrically conducting phases, which can to be interesting in the choice of desired applications. Finally, the obtained results have been successfully simulated on the basis of different percolation models approach combined with structural characterization inferences.
Study on the hydration and microstructure of Portland cement containing diethanol-isopropanolamine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Suhua, E-mail: yc982@163.com; Li, Weifeng; Zhang, Shenbiao
2015-01-15
Diethanol-isopropanolamine (DEIPA) is a tertiary alkanolamine used in the formulation of cement grinding-aid additives and concrete early-strength agents. In this research, isothermal calorimetry was used to study the hydration kinetics of Portland cement with DEIPA. A combination of X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC)–thermogravimetric (TG) analysis and micro-Raman spectroscopy was used to investigate the phase development in the process of hydration. Mercury intrusion porosimetry was used to study the pore size distribution and porosity. The results indicate that DEIPA promotes the formation of ettringite (AFt) and enhances the second hydration rate of the aluminatemore » and ferrite phases, the transformation of AFt into monosulfoaluminate (AFm) and the formation of microcrystalline portlandite (CH) at early stages. At later stages, DEIPA accelerates the hydration of alite and reduces the pore size and porosity.« less
Preparation of epitaxial TlBa2Ca2Cu3O9 high Tc thin films on LaAlO3 (100) substrates
NASA Astrophysics Data System (ADS)
Piehler, A.; Reschauer, N.; Spreitzer, U.; Ströbel, J. P.; Schönberger, R.; Renk, K. F.; Saemann-Ischenko, G.
1994-09-01
Epitaxial TlBa2Ca2Cu3O9 high Tc thin films were prepared on LaAlO3 (100) substrates by a combination of laser ablation and thermal evaporation of thallium oxide. X-ray diffraction patterns of θ-2θ scans showed that the films consisted of highly c axis oriented TlBa2Ca2Cu3O9. φ scan measurements revealed an epitaxial growth of the TlBa2Ca2Cu3O9 thin films on the LaAlO3 (100) substrates. Ac inductive measurements indicated the onset of superconductivity at 110 K. At 6 K, the critical current density was 4×106 A/cm2 in zero magnetic field and 6×105 A/cm2 at a magnetic field of 3 T parallel to the c axis.
Mao, Chang-Jie; Wang, Dan-Chen; Pan, Hong-Cheng; Zhu, Jun-Jie
2011-03-01
Well-defined Alq(3) nanoflowers were fabricated via a facile and fast sonochemical route. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and shape of the as-prepared product. The results showed that the resulting Alq(3) was composed of nanobelts with thickness about 50 nm, average widths of 200 nm, and length up to 10 μm. The Alq(3) nanoflowers exhibited good electrogenerated chemiluminescence behavior. Copyright © 2010 Elsevier B.V. All rights reserved.
Spectroscopic characterization of nanohydroxyapatite synthesized by molten salt method.
Gopi, D; Indira, J; Kavitha, L; Kannan, S; Ferreira, J M F
2010-10-01
Hydroxyapatite (HAP) nanopowders were synthesized by molten salt method at 260 degrees C. The as-prepared powders were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM) and thermo gravimetric analysis (TGA). With the aid of the obtained results the effect of calcining time on the crystallinity, size and morphology of HAP nanopowders is presented. The HAP nanopowders synthesized by molten salt method consist of pure phase of HAP without any impurities and showed the rod-like morphology without detectable decomposition up to 1100 degrees C. Copyright 2010 Elsevier B.V. All rights reserved.
Thermosensitive chitosan gels containing calcium glycerophosphate.
Skwarczynska, Agata L; Kuberski, Slawomir; Maniukiewicz, Waldemar; Modrzejewska, Zofia
2018-08-05
In this paper the properties of thermosensitive chitosan hydrogels, formulated with chitosan chloride with β-glycerophosphate disodium salt hydrate and chitosan chloride with β-glycerophosphate disodium salt hydrate enriched with calcium glycerophosphate, are presented. The study focused on the determination of the hydrogel structure after conditioning in water. The structure of the gels was investigated by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The crystallinity of the gel structure was determined by X-ray diffraction analysis (XRD) and the thermal effects were determined based on DSC thermograms. Copyright © 2018 Elsevier B.V. All rights reserved.
Status of the Neutron Imaging and Diffraction Instrument IMAT
NASA Astrophysics Data System (ADS)
Kockelmann, Winfried; Burca, Genoveva; Kelleher, Joe F.; Kabra, Saurabh; Zhang, Shu-Yan; Rhodes, Nigel J.; Schooneveld, Erik M.; Sykora, Jeff; Pooley, Daniel E.; Nightingale, Jim B.; Aliotta, Francesco; Ponterio, Rosa C.; Salvato, Gabriele; Tresoldi, Dario; Vasi, Cirino; McPhate, Jason B.; Tremsin, Anton S.
A cold neutron imaging and diffraction instrument, IMAT, is currently being constructed at the ISIS second target station. IMAT will capitalize on time-of-flight transmission and diffraction techniques available at a pulsed neutron source. Analytical techniques will include neutron radiography, neutron tomography, energy-selective neutron imaging, and spatially resolved diffraction scans for residual strain and texture determination. Commissioning of the instrument will start in 2015, with time-resolving imaging detectors and two diffraction detector prototype modules. IMAT will be operated as a user facility for material science applications and will be open for developments of time-of-flight imaging methods.
Electrically-programmable diffraction grating
Ricco, Antonio J.; Butler, Michael A.; Sinclair, Michael B.; Senturia, Stephen D.
1998-01-01
An electrically-programmable diffraction grating. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers).
Recovery of Crystallographic Texture in Remineralized Dental Enamel
Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon
2014-01-01
Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain structural integrity. PMID:25360532
Recovery of crystallographic texture in remineralized dental enamel.
Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon
2014-01-01
Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain structural integrity.
Predicting scattering scanning near-field optical microscopy of mass-produced plasmonic devices
NASA Astrophysics Data System (ADS)
Otto, Lauren M.; Burgos, Stanley P.; Staffaroni, Matteo; Ren, Shen; Süzer, Özgün; Stipe, Barry C.; Ashby, Paul D.; Hammack, Aeron T.
2018-05-01
Scattering scanning near-field optical microscopy enables optical imaging and characterization of plasmonic devices with nanometer-scale resolution well below the diffraction limit. This technique enables developers to probe and understand the waveguide-coupled plasmonic antenna in as-fabricated heat-assisted magnetic recording heads. In order to validate and predict results and to extract information from experimental measurements that is physically comparable to simulations, a model was developed to translate the simulated electric field into expected near-field measurements using physical parameters specific to scattering scanning near-field optical microscopy physics. The methods used in this paper prove that scattering scanning near-field optical microscopy can be used to determine critical sub-diffraction-limited dimensions of optical field confinement, which is a crucial metrology requirement for the future of nano-optics, semiconductor photonic devices, and biological sensing where the near-field character of light is fundamental to device operation.
Leng, Donglei; Chen, Hongming; Li, Guangjing; Guo, Mengran; Zhu, Zhaolu; Xu, Lu; Wang, Yongjun
2014-09-10
The main purpose of this study was to develop and compare the pharmacokinetic behavior of two paliperidone palmitate (PP) nanosuspensions with different particle size after intramuscular (i.m.) administration. PP nanosuspensions were prepared by wet media milling method and the mean particle size of nanosuspension was controlled as 1,041 ± 6 nm (A) and 505 ± 9 nm (B), respectively. The morphology of nanosuspensions was observed by scanning electron microscope (SEM). Differential scanning calorimeter (DSC) and powder X-ray diffraction (PXRD) confirmed the crystallinity of PP in nanosuspensions. The physical and chemical stabilities of nanosuspensions A and B were investigated by particle analyzer and HPLC after storage for 2 months at 25°C, 4°C and mechanical shaking condition. No obvious change in particle size and chemical degradation of drug were observed. Following single-dose i.m. administration to beagle dogs, the release of paliperidone lasted for nearly 1 month. The Tmax of nanosuspensions A and B was 6 (d) and 10 (d). The AUC0-t and Cmax of nanosuspensions A was 2.0-fold and 1.8-fold higher than nanosuspensions B (p<0.05). The results demonstrated that PP nanosuspensions formulation had long-acting effect. Nanosuspension A with a larger particle size performed better than nanosuspension B. As a result, it is important to design appropriate particle size of nanosuspensions for i.m. administration in order to produce larger therapeutic effect. Copyright © 2014 Elsevier B.V. All rights reserved.
Phase Constituents and Microstructure of Ti3Al/Fe3Al + TiN/TiB2 Composite Coating on Titanium Alloy
NASA Astrophysics Data System (ADS)
Li, Jianing; Chen, Chuanzhong; Zhang, Cuifang
Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be used to improve the Fe3Al + B4C/TiN laser-cladded coating on the Ti-6Al-4V alloy. Furthermore, during the cladding process, C consumed the oxygen in Fe3Al + B4C /TiN + Al2O3 molten pool, which retarded the productions of the redundant metal oxides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong Dongge; Han Xue; Chu Wei
Co-B flowers with mesoporous structure were first prepared via reduction of cobalt acetate by potassium borohydride in the presence of complexing agent ethylenediamine. The as-prepared Co-B flowers were characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma atomic emission spectroscopy, X-ray photoelectron spectroscopy, N{sub 2} adsorption-desorption, and magnetic performance test. The Co-B flowers exhibited enhanced coercivity, and weakened saturation magnetization and remanet magnetization as compared with the regular Co-B. During the hydrolysis of KBH{sub 4}, the Co-B flowers exhibited higher catalytic activity than the regular Co-B. It is attributed to themore » larger specific surface area and mesoporous channels. During the successive reactions, the conversion of KBH{sub 4} over Co-B flowers was about 97%. The average H{sub 2} generation rate of Co-B flowers was 4620 mL/min/g-catalyst in 1.5 wt% NaOH + 15 wt% KBH{sub 4} solution, which may give a successive H{sub 2} supply for a 748 W polymer electrolyte membrane fuel cell (PEMFC) at 100% H{sub 2} utilization.« less
High-purity Cu nanocrystal synthesis by a dynamic decomposition method.
Jian, Xian; Cao, Yu; Chen, Guozhang; Wang, Chao; Tang, Hui; Yin, Liangjun; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Wu, Sixin; Zeng, Qing; Wang, Fei; Zhang, Chengui
2014-12-01
Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential scanning calorimetry and thermogravimetric analysis using Flynn-Wall-Ozawa, Kissinger, and Starink methods. The growth was found to be influenced by the factors of reaction temperature, protective gas, and time. And microstructural and thermal characterizations were performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Decomposition of cupric tartrate at different temperatures was simulated by density functional theory calculations under the generalized gradient approximation. High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar. This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.
High-purity Cu nanocrystal synthesis by a dynamic decomposition method
NASA Astrophysics Data System (ADS)
Jian, Xian; Cao, Yu; Chen, Guozhang; Wang, Chao; Tang, Hui; Yin, Liangjun; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Wu, Sixin; Zeng, Qing; Wang, Fei; Zhang, Chengui
2014-12-01
Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential scanning calorimetry and thermogravimetric analysis using Flynn-Wall-Ozawa, Kissinger, and Starink methods. The growth was found to be influenced by the factors of reaction temperature, protective gas, and time. And microstructural and thermal characterizations were performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Decomposition of cupric tartrate at different temperatures was simulated by density functional theory calculations under the generalized gradient approximation. High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar. This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.
Reflective afocal broadband adaptive optics scanning ophthalmoscope
Dubra, Alfredo; Sulai, Yusufu
2011-01-01
A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other. PMID:21698035
Reflective afocal broadband adaptive optics scanning ophthalmoscope.
Dubra, Alfredo; Sulai, Yusufu
2011-06-01
A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other.
Besserer, Hans-Bernward; Gerstein, Gregory; Maier, Hans Jürgen; Nürnberger, Florian
2016-04-01
To investigate ductile damage in parts made by cold sheet-bulk metal forming a suited specimen preparation is required to observe the microstructure and defects such as voids by electron microscopy. By means of ion beam slope cutting both a targeted material removal can be applied and mechanical or thermal influences during preparation avoided. In combination with scanning electron microscopy this method allows to examine voids in the submicron range and thus to analyze early stages of ductile damage. In addition, a relief structure is formed by the selectivity of the ion bombardment, which depends on grain orientation and microstructural defects. The formation of these relief structures is studied using scanning electron microscopy and electron backscatter diffraction and the use of this side effect to interpret the microstructural mechanisms of voids formation by plastic deformation is discussed. A comprehensive investigation of the suitability of ion beam milling to analyze ductile damage is given at the examples of a ferritic deep drawing steel and a dual phase steel. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Mao, Gaojun; Cao, Rui; Guo, Xili; Jiang, Yong; Chen, Jianhong
2017-12-01
The kinetic processes of nucleation and growth of bainite laths in reheated weld metals are observed and analyzed by a combination of a laser confocal scanning microscope and an electron backscattering diffraction with a field emission scanning electron microscope. The results indicate that the surface relief induced by phase transformation is able to reveal the real microstructural morphologies of bainite laths when viewed from various angles. Five nucleation modes and six types of growth behaviors of bainite laths are revealed. The bainite lath growth rates are measured to vary over a wide range, from 2 μm/s to higher than 2000 μm/s. The orientations of the bainite laths within a prior austenite grain are examined and denoted as different variants. On the basis of variant identification, the reason is analyzed for various growth rates which are demonstrated to be affected by (1) the density of the high-angle misorientation in it, (2) the included angle between habit planes of different variants, and (3) the direction of lath growth with respect to the free (polished) surface.
NASA Astrophysics Data System (ADS)
Zhang, Yangpeng; Zhan, Dongping; Qi, Xiwei; Jiang, Zhouhua; Zhang, Huishu
2018-05-01
In this study, approximately 0.35% Ti and two different Y contents were added to China low-activation martensitic (CLAM) steel during melting in a vacuum induction melting furnace. Scanning electron microscopy, transmission electron microscopy, x-ray diffraction, tensile tests, and Charpy impact tests were used to investigate the effects of the combined addition of Y and Ti on the second phase and mechanical properties. The results indicated that Y and Fe formed the large intermetallic compound Fe-Y; the compound easily aggregated in the grain boundaries and exhibited the strength of CLAM steel. Ti did not combine with Y to form the Y-Ti-O phase; however, it could combine with Ta and W to form MC precipitates, which were generally in the 20-50 nm size range. The CLAM steel with a higher Y content exhibited lower yield and tensile strengths at room temperature, with both steels yielding almost identical strengths at 600 °C.
NASA Astrophysics Data System (ADS)
Zhang, Yangpeng; Zhan, Dongping; Qi, Xiwei; Jiang, Zhouhua; Zhang, Huishu
2018-04-01
In this study, approximately 0.35% Ti and two different Y contents were added to China low-activation martensitic (CLAM) steel during melting in a vacuum induction melting furnace. Scanning electron microscopy, transmission electron microscopy, x-ray diffraction, tensile tests, and Charpy impact tests were used to investigate the effects of the combined addition of Y and Ti on the second phase and mechanical properties. The results indicated that Y and Fe formed the large intermetallic compound Fe-Y; the compound easily aggregated in the grain boundaries and exhibited the strength of CLAM steel. Ti did not combine with Y to form the Y-Ti-O phase; however, it could combine with Ta and W to form MC precipitates, which were generally in the 20-50 nm size range. The CLAM steel with a higher Y content exhibited lower yield and tensile strengths at room temperature, with both steels yielding almost identical strengths at 600 °C.
Li, Chen; Li, Jian-Bin
2017-12-01
A novel drug delivery system based on chitosan derivatives was prepared by introducting ferulic acid to chitosan adopting a free radical-induced grafting procedure. This paper used an ascorbic acid/hydrogen peroxide redox pair as radical initiator. The chitosan derivative was characterized by Fourier transformed infrared (FTIR), Ultraviolet-visible spectrum (UV), Differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Electron microscopic scanning (SEM). What is more, preparing microcapsules with the chitosan conjugate as wall material, the drug release propertie of chitosan conjugates were compared with that of a blank chitosan, which treated in the same conditions but in the absence of ferulic acid. The study clearly demonstrates that free radical-induced grafting procedure was an effective reaction methods and chitosan-ferulic acid is a potential functionalized carrier material for drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.
Physicochemical and mechanical properties of paracetamol cocrystal with 5-nitroisophthalic acid.
Hiendrawan, Stevanus; Veriansyah, Bambang; Widjojokusumo, Edward; Soewandhi, Sundani Nurono; Wikarsa, Saleh; Tjandrawinata, Raymond R
2016-01-30
We report novel pharmaceutical cocrystal of a popular antipyretic drug paracetamol (PCA) with coformer 5-nitroisophhthalic acid (5NIP) to improve its tabletability. The cocrystal (PCA-5NIP at molar ratio of 1:1) was synthesized by solvent evaporation technique using methanol as solvent. The physicochemical properties of cocrystal were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), fourier transform infrared spectroscopy (FTIR), hot stage polarized microscopy (HSPM) and scanning electron microscopy (SEM). Stability of the cocrystal was assessed by storing them at 40°C/75% RH for one month. Compared to PCA, the cocrystal displayed superior tableting performance. PCA-5NIP cocrystal showed a similar dissolution profile as compared to PCA and exhibited good stability. This study showed the utility of PCA-5NIP cocrystal for improving mechanical properties of PCA. Copyright © 2015 Elsevier B.V. All rights reserved.
Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah
2016-03-01
Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times. Copyright © 2015 Elsevier B.V. All rights reserved.
Munir, Hira; Shahid, Muhammad; Anjum, Fozia; Mudgil, Deepak
2016-03-01
Dalbergia sissoo gum was purified by ethanol precipitation. The purified gum was modified and hydrolyzed. Gum was modified by performing polyacrylamide grafting and carboxymethylation methods. The hydrolysis was carried out by using mannanase, barium hydroxide and trifluoroacetic acid. The modified and hydrolyzed gums were characterized using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The decrease in viscosity was studied by performing the flow test. The modified and hydrolyzed gums were thermally stable as compared to crude gum. There was increase in crystallinity after modification and hydrolysis, determined through XRD. FTIR analysis exhibits no major transformation of functional group, only there was change in the intensity of transmittance. It is concluded that the modified and hydrolyzed gum can be used for pharmaceutical and food industry. Copyright © 2015 Elsevier B.V. All rights reserved.
Novel preparation and characterization of human hair-based nanofibers using electrospinning process.
Park, Mira; Shin, Hye Kyoung; Panthi, Gopal; Rabbani, Mohammad Mahbub; Alam, Al-Mahmnur; Choi, Jawun; Chung, Hea-Jong; Hong, Seong-Tshool; Kim, Hak-Yong
2015-05-01
Human hair-based biocomposite nanofibers (NFs) have been fabricated by an electrospinning technique. Aqueous keratin extracted from human hair was successfully blended with poly(vinyl alcohol) (PVA). The focus here is on transforming into keratin/PVA nanofibrous membranes and insoluble property of electrospun NFs. The resulting hair-based NFs were characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning colorimetry (DSC), and thermogravimetric analysis (TGA). Toward the potential use of these NFs after cross-linking with various weight fractions of glyoxal, its physicochemical properties, such as morphology, mechanical strength, crystallinity, and chemical structure were investigated. Keratin/PVA ratio of 2/1 NFs with 6 wt%-glyoxal showed good uniformity in fiber morphology and suitable mechanical properties, and excellent antibacterial activity providing a potential application of hair-based NFs in biomedical field. Copyright © 2015 Elsevier B.V. All rights reserved.
Prasad, Krishnamurthy; Pinjari, D V; Pandit, A B; Mhaske, S T
2011-09-01
Nanostructured zirconium dioxide was synthesized from zirconyl nitrate using both conventional and ultrasound assisted precipitation in alkaline medium. The synthesized samples were calcinated at temperatures ranging from 400°C to 900°C in steps of 100°C. The ZrO(2) specimens were characterized using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The thermal characteristics of the samples were studied via Differential Scanning Calorimetry-Thermo-Gravimetry Analysis (DSC-TGA). The influence of the calcination temperature on the phase transformation process from monoclinic to tetragonal to cubic zirconia and its consequent effect on the crystallite size and % crystallinity of the synthesized ZrO(2) was studied and interpreted. It was observed that the ultrasound assisted technique helped to hasten to the phase transformation and also at some point resulted in phase stabilization of the synthesized zirconia. Copyright © 2011 Elsevier B.V. All rights reserved.
Effects of instrument imperfections on quantitative scanning transmission electron microscopy.
Krause, Florian F; Schowalter, Marco; Grieb, Tim; Müller-Caspary, Knut; Mehrtens, Thorsten; Rosenauer, Andreas
2016-02-01
Several instrumental imperfections of transmission electron microscopes are characterized and their effects on the results of quantitative scanning electron microscopy (STEM) are investigated and quantified using simulations. Methods to either avoid influences of these imperfections during acquisition or to include them in reference calculations are proposed. Particularly, distortions inflicted on the diffraction pattern by an image-aberration corrector can cause severe errors of more than 20% if not accounted for. A procedure for their measurement is proposed here. Furthermore, afterglow phenomena and nonlinear behavior of the detector itself can lead to incorrect normalization of measured intensities. Single electrons accidentally impinging on the detector are another source of error but can also be exploited for threshold-less calibration of STEM images to absolute dose, incident beam current determination and measurement of the detector sensitivity. Copyright © 2015 Elsevier B.V. All rights reserved.
Magnetostructural transition in Fe{sub 5}SiB{sub 2} observed with neutron diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cedervall, Johan, E-mail: johan.cedervall@kemi.uu.se; Kontos, Sofia; Hansen, Thomas C.
2016-03-15
The crystal and magnetic structure of Fe{sub 5}SiB{sub 2} has been studied by a combination of X-ray and neutron diffraction. Also, the magnetocrystalline anisotropy energy constant has been estimated from magnetisation measurements. High quality samples have been prepared using high temperature synthesis and subsequent heat treatment protocols. The crystal structure is tetragonal within the space group I4/mcm and the compound behaves ferromagnetically with a Curie temperature of 760 K. At 172 K a spin reorientation occurs in the compound and the magnetic moments go from aligning along the c-axis (high T) down to the ab-plane (low T). The magnetocrystalline anisotropymore » energy constant has been estimated to 0.3 MJ/m{sup 3} at 300 K. - Highlights: • The crystal and magnetic structure of Fe{sub 5}SiB{sub 2} has been studied by diffraction. • At 172 K a spin reorientation occurs in the compound. • The magnetic moments are aligned along the c-axis at high T. • The magnetic moments are aligned in the ab-plane at low T. • The magnetocrystalline anisotropy energy constant has been estimated to 0.3 MJ/m{sup 3}.« less
NASA Technical Reports Server (NTRS)
Wiesner, Valerie L.; Youngblood, Jeffrey; Trice, Rodney
2014-01-01
Room-temperature injection molding is proposed as a novel, low-cost and more energy efficient manufacturing process capable of forming complex-shaped zirconium diboride (ZrB2) parts. This innovative processing method utilized aqueous suspensions with high powder loading and a minimal amount (5 vol.) of water-soluble polyvinylpyrrolidone (PVP), which was used as a viscosity modifier. Rheological characterization was performed to evaluate the room-temperature flow properties of ZrB2-PVP suspensions. ZrB2 specimens were fabricated with high green body strength and were machinable prior to binder removal despite their low polymer content. After binder burnout and pressureless sintering, the bulk density and microstructure of specimens were characterized using Archimedes technique and scanning electron microscopy. X-Ray Diffraction was used to determine the phase compositions present in sintered specimens. Ultimate strength of sintered specimens will be determined using ASTM C1323-10 compressive C-ring test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajesh, D., E-mail: ratnakaramsvu@gmail.com; Ratnakaram, Y. C., E-mail: ratnakaramsvu@gmail.com
2014-04-24
Keeping in view of the recent increased interest towards phosphor materials and its applications, an attempt has been made in the present paper to analyze the new NaPbB{sub 5}O{sub 9}:Dy{sub 3+} phosphor with different Dy{sub 3+} concentrations. Special attention is paid to investigate their crystal structure, morphology and luminescence properties. X-ray diffraction (XRD) results confirm the formation of NaPbB{sub 5}O{sub 9}:Dy{sub 3+} phosphor powder. The scanning electron microscope (SEM) images show that the grains are in micrometer range. Photoluminescence spectra are recorded with different excitation wavelengths for the investigated phosphor and analyzed the variation of intensity of emission bands withmore » Dy{sub 3+} ion concentration. Color co-ordinates are calculated and are used to characterize the color of the phosphor.« less
NASA Astrophysics Data System (ADS)
Girón, L.; Aperador, W.; Tirado, L.; Franco, F.; Caicedo, J. C.
2017-08-01
The anodized AZ31B magnesium alloys were synthesized via electrodeposition processes. The aim of this work was to determine the electrochemical behavior of magnesium alloys by using anodized alloys as a protective coating. The anodized alloys were characterized by x-ray diffraction, exhibiting the crystallography orientation for Mg and MgO phases. The x-ray photoelectron spectroscopy was used to determine the chemical composition of anodized magnesium alloys. By using electrochemical impedance spectroscopy and Tafel curves, it was possible to estimate the electrochemical behavior of anodized AZ31B magnesium alloys in Hank's balanced salt solution (HBSS). Scanning electron microscopy was performed to analyze chemical changes and morphological surface changes on anodized Mg alloys due to the reaction in HBSS/anodized magnesium surface interface. Electrochemical behavior in HBSS indicates that the coatings may be a promising material for biomedical industry.
Preparation and characterization of 'green' hybrid clay-dye nanopigments
NASA Astrophysics Data System (ADS)
Kaya, Mehmet; Onganer, Yavuz; Tabak, Ahmet
2015-03-01
We obtained a low cost and abundant nanopigment material composed of Rhodamine B (Rh-B) organic dye compound and Unye bentonite (UB) clay from Turkey. The characterization of the nanopigment was investigated using scanning electron microscopy (SEM), particle size distribution, powder X-ray diffraction (PXRD), Fourier transformed infra-red spectroscopy (FT-IR) and thermal analysis techniques. According to the result of texture analyses, we showed that the particle size distribution (d: 0.5-mean distribution) of Rh-B/UB nanopigment material was around 100 nm diameter. It was also demonstrated that the samples had a particle size around nm diameter in SEM images. As seen in the PXRD and thermal analysis, there is a difference in basal spacing by 1.46° (2θ) and a higher mass loss by 7.80% in the temperature range 200-500 °C compared to the raw bentonite.
NASA Astrophysics Data System (ADS)
Ban, Jin-jin; Xu, Guan-cheng; Zhang, Li; Lin, He; Sun, Zhi-peng; Lv, Yan; Jia, Dian-zeng
2017-12-01
A cube-like porous ZnO architecture was synthesized by direct two-step thermolysis of a zinc-based metal-organic framework [(CH3)2NH2][Zn(HCOO)3]. The obtained ZnO microcube was characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption and desorption isotherms. The mesoporous ZnO microcube was comprised by many nanoparticles, and inherited the cube shape from [(CH3)2NH2][Zn(HCOO)3] precursor. With large surface area and mesoporous structure, the ZnO microcube exhibits excellent photocatalytic activities against methyl orange (MO) and rhodamine B (RhB) under UV irradiation, and the degradation rates reached 99.7% and 98.1% within 120 min, respectively.
Khashaba, Rania M.; Moussa, Mervet; Koch, Christopher; Jurgensen, Arthur R.; Missimer, David M.; Rutherford, Ronny L.; Chutkan, Norman B.; Borke, James L.
2011-01-01
Aim. Physicochemical mechanical and in vitro biological properties of novel formulations of polymeric calcium phosphate cements (CPCs) were investigated. Methods. Monocalcium phosphate, calcium oxide, and synthetic hydroxyapatite were combined with either modified polyacrylic acid, light activated polyalkenoic acid, or polymethyl vinyl ether maleic acid to obtain Types I, II, and III CPCs. Setting time, compressive and diametral strength of CPCs was compared with zinc polycarboxylate cement (control). Specimens were characterized using X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. In vitro cytotoxicity of CPCs and control was assessed. Results. X-ray diffraction analysis showed hydroxyapatite, monetite, and brushite. Acid-base reaction was confirmed by the appearance of stretching peaks in IR spectra of set cements. SEM revealed rod-like crystals and platy crystals. Setting time of cements was 5–12 min. Type III showed significantly higher strength values compared to control. Type III yielded high biocompatibility. Conclusions. Type III CPCs show promise for dental applications. PMID:21941551
NASA Astrophysics Data System (ADS)
de Souza Pinto, Simone; Machado, João Paulo Barros; Gomes, Newton A. S.; Rezende, Mirabel Cerqueira
2018-03-01
This study aims to combine dielectric and magnetic properties of different materials in an unique composite. For this, poly(o-methoxyaniline), POMA, was chemically synthesized in situ on magnetic metallic filaments (MF). The obtained composite was inserted into an epoxy resin matrix in the proportions of 40, 50 and 70%, in weight (wt%). The samples were characterized by scanning electron microscopy (SEM), X ray diffraction (XRD) and electromagnetic measurements. On the last case, the measurements considered the reflectivity and the complex parameters of electrical permittivity and magnetic permeability in the frequency range of 8.2-12.4 GHz (X-band). Specimens with different thicknesses were evaluated by reflectivity. XRD results show that the filaments are based on Fe-α steel and SEM analyses show the good incorporation of POMA/MF in the epoxy resin composite. The complex parameters show that the real component of permittivity shows the largest variation with the POMA/MF concentration increasing in epoxy resin and the loss tangent indicates that the magnetic losses are preponderant on dielectric ones. The reflectivity measurements show that the 5 mm-specimen with 50 wt% of POMA/MF presents the best result of attenuation (-21.5 dB, i.e. above 99% of attenuation). Already, the sample containing 70 wt% shows the worst performance (up to -9.0 dB). The increase of POMA/MF concentration in epoxy resin confers maximum attenuation values for less thick specimens. The results show that the combination of dielectric and magnetic materials in a composite contributes for the improvement of microwave absorbing performance, and extends the possibilities of RAM processing with different characteristics.
NASA Astrophysics Data System (ADS)
Zhang, Z. T.; Sohn, I. R.; Pettit, F. S.; Meier, G. H.; Sridhar, S.
2009-08-01
The present study is an investigation of the surface and subsurface oxidation of Mn solid-solution-strengthened interstitial-free (IF) steels with the objective of elucidating the surface evolution before coating. Thermogravimetric (TG) analysis was carried out under 95 vol pct Ar + 5 vol pct (H2 + H2O) atmospheres with P_{{{text{H}}2 {text{O}}}} /P_{{{text{H}}2 }} ranging from 0.01 to 0.13 and temperatures ranging from 800 °C to 843 °C. Post-exposure characterization was carried out through scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and glancing-angle X-ray diffraction (XRD) to study the external and internal oxide evolution. The oxidation proceeds as a combination of the internal and external formation of Mn oxides. Decreasing the P_{{{text{H}}2 {text{O}}}} /P_{{{text{H}}2 }} ratios or temperature has the effect of decreasing the amount of oxidation, which is a combination of internal and external oxidation controlled by solid-state oxygen and manganese diffusion, respectively. External oxides are not continuous; they are instead concentrated near the intersection of alloy grain boundaries with the external surface. Internal oxides are concentrated along the grain boundaries. The effects of Sb (0.03 wt pct), B (10 ppm), P (0.04 and 0.08 wt pct), and Si (0.06 to 1.5 wt pct) on the oxidation were investigated. It is found that small amounts of Sb and B have a significant effect on decreasing both the external and internal oxidation, whereas Si and P increase the external and internal oxidation.
Water-Immersible MEMS scanning mirror designed for wide-field fast-scanning photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Yao, Junjie; Huang, Chih-Hsien; Martel, Catherine; Maslov, Konstantin I.; Wang, Lidai; Yang, Joon-Mo; Gao, Liang; Randolph, Gwendalyn; Zou, Jun; Wang, Lihong V.
2013-03-01
By offering images with high spatial resolution and unique optical absorption contrast, optical-resolution photoacoustic microscopy (OR-PAM) has gained increasing attention in biomedical research. Recent developments in OR-PAM have improved its imaging speed, but have sacrificed either the detection sensitivity or field of view or both. We have developed a wide-field fast-scanning OR-PAM by using a water-immersible MEMS scanning mirror (MEMS-ORPAM). Made of silicon with a gold coating, the MEMS mirror plate can reflect both optical and acoustic beams. Because it uses an electromagnetic driving force, the whole MEMS scanning system can be submerged in water. In MEMS-ORPAM, the optical and acoustic beams are confocally configured and simultaneously steered, which ensures uniform detection sensitivity. A B-scan imaging speed as high as 400 Hz can be achieved over a 3 mm scanning range. A diffraction-limited lateral resolution of 2.4 μm in water and a maximum imaging depth of 1.1 mm in soft tissue have been experimentally determined. Using the system, we imaged the flow dynamics of both red blood cells and carbon particles in a mouse ear in vivo. By using Evans blue dye as the contrast agent, we also imaged the flow dynamics of lymphatic vessels in a mouse tail in vivo. The results show that MEMS-OR-PAM could be a powerful tool for studying highly dynamic and time-sensitive biological phenomena.
Electroless silver plating on PET fabric initiated by in situ reduction of polyaniline
NASA Astrophysics Data System (ADS)
Mu, Shipeng; Xie, Huayang; Wang, Wei; Yu, Dan
2015-10-01
Novel electroless silver plating poly(ethylene terephthalate) (PET) fabric was prepared by a two-step procedure. In the first step, the in situ polymerized polyaniline (PANI) occurred on the fabric surface in the presence of ammonium persulfate (APS). Then, Ag(0) species reduced from silver nitrate (AgNO3) by in situ reduction of PANI were used as catalyst to initiate electroless silver plating. Hence, this composite material was prepared by conductive polymer combined with electroless plating. The silver layer on PET fabric surface was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDX) as well as X-ray photoelectron spectroscopy (XPS). The results showed that the silver layer was plated uniformly and compactly with surface resistance about 0.1 Ω/sq on average. The shielding effectiveness (SE) of silver-plated PET fabric was around 50-90 dB, which was considered to have potential applications in electromagnetic shielding materials. Thermogravimetric (TG) analysis was carried out to study thermal stability. The antibacterial tests demonstrated that the silver-plated fabric exhibited excellent antibacterial activity against Staphylococcus aureus and Escherichia coli both with 100%.
Development of solid dispersions of artemisinin for transdermal delivery.
Shahzad, Yasser; Sohail, Sadia; Arshad, Muhammad Sohail; Hussain, Talib; Shah, Syed Nisar Hussain
2013-11-30
Solid dispersions of the poorly soluble drug artemisinin were developed using polymer blends of polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) with the aim of enhancing solubility and in vitro permeation of artemisinin through skin. Formulations were characterised using a combination of molecular dynamics (MD) simulations, differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Solubility of artemisinin was determined in two solvents: de-ionised water and phosphate buffered saline (PBS; pH 7.4), while in vitro drug permeation studies were carried out using rabbit skin as a model membrane. MD simulations revealed miscibility between the drug and polymers. DSC confirmed the molecular dispersion of the drug in the polymer blend. Decrease in crystallinity of artemisinin with respect to polymer content and the absence of specific drug-polymer interactions were confirmed using XRD and FT-IR, respectively. The solubility of artemisinin was dramatically enhanced for the solid dispersions, as was the permeation of artemisinin from saturated solid-dispersion vehicles relative to that from saturated solutions of the pure drug. The study suggests that high energy solid forms of artemisinin could possibly enable transdermal delivery of artemisinin. Copyright © 2013 Elsevier B.V. All rights reserved.
Low modulus and bioactive Ti/α-TCP/Ti-mesh composite prepared by spark plasma sintering.
Guo, Yu; Tan, Yanni; Liu, Yong; Liu, Shifeng; Zhou, Rui; Tang, Hanchun
2017-11-01
A titanium mesh scaffold composite filled with Ti/α-TCP particles was prepared by spark plasma sintering (SPS). The microstructures and interfacial reactions of the composites were investigated by scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The compressive strength and elastic modulus were also measured. In vitro bioactivity and biocompatibility was evaluated by using simulated body fluid and cells culture, respectively. After high temperature sintering, Ti oxides, Ti x P y and CaTiO 3 were formed. The formation of Ti oxides and Ti x P y were resulted from the diffusion of O and P elements from α-TCP to Ti. CaTiO 3 was the reaction product of Ti and α-TCP. The composite of 70Ti/α-TCP incorporated with Ti mesh showed a high compressive strength of 589MPa and a low compressive modulus of 30GPa. The bioactivity test showed the formation of a thick apatite layer on the composite and well-spread cells attachment. A good combination of mechanical properties and bioactivity indicated a high potential application of Ti/α-TCP/Ti-mesh composite for orthopedic implants. Copyright © 2017. Published by Elsevier B.V.
Formation of TiO2 nanostructure by plasma electrolytic oxidation for Cr(VI) reduction
NASA Astrophysics Data System (ADS)
Torres, D. A.; Gordillo-Delgado, F.; Plazas-Saldaña, J.
2017-01-01
Plasma electrolytic oxidation (PEO) is an environmentally friendly technique that allows the growth of ceramic coatings without organic solvents and non-toxic residues. This method was applied to ASME SB-265 titanium (Ti) plates (2×2×0.1cm) using voltage pulses from a switching power supply (340V) for 10 minutes at frequency of 1000Hz changing duty cycle at 10, 60 and 90% and the electrolytes were Na3PO4 and NaOH. The treated sheets surfaces were analysed by X-ray diffraction and scanning electron microscopy. According to the diffractograms, the duty cycle increase produces amorphous TiO2 coating on Ti sheets and the thickness increases. After sintering at 900°C during 1 hour, the 10% duty cycle generated a combination of anatase and rutile phases at the sample surface with weight percentages of 13.3 and 86.6% and particle sizes of 32.461±0.009nm and 141.14±0.03 nm, respectively. With this sample, the total reduction of hexavalent chromium was reached at 50 minutes for 1ppm solution. This photocatalytic activity was measured following the colorimetric method ASTM-3500-Cr B.
Optical properties of Sr3B2O6:Dy3+/PMMA polymer nanocomposites
NASA Astrophysics Data System (ADS)
Khursheed, Sumara; Kumar, Vinay; Singh, Vivek K.; Sharma, Jitendra; Swart, H. C.
2018-04-01
The paper presents a facile way to synthesize luminescent polymer nanocomposite (PNC) films consisting of nanophosphors (NPs) of rare earth ions doped alkaline earth borates (Sr3B2O6:Dy3+) dispersed in a polymer (PMMA) matrix via a solution casting method and the results of their detailed structural and optical properties measurements. The PNC films were characterized using X-ray diffraction (XRD), Photoluminescence (PL), and differential scanning calorimetry (DSC). The crystallinity of the dispersed NPs did not suffer on account of being dispersed in the PMMA. The Rhombohedral structure and the formation of a single phase of Sr3B2O6:Dy3+ were confirmed by the XRD data of both the NP powders and the PNC films with an average particle size of 43 nm. Also, the observed PL emission and excitation spectra of the PNC films amply suggested that embedding of the nanophosphors in the PMMA matrix preserves their typical luminescence emission. The chromaticity coordinates (x = 0.37, y = 0.39) of the PNC films also validated the yellowish white emission of the nanophosphor. DSC scans on the PMMA only and the Sr3B2O6:Dy3+/PMMA films suggested an increase in the thermal stability of the PNC films as compared to pure PMMA although no significant change in the glass transition temperature was observed.
Continuous motion scan ptychography: Characterization for increased speed in coherent x-ray imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Nashed, Youssef S. G.; Chen, Si
Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object’s complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous “fly-scan” mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less
Continuous motion scan ptychography: Characterization for increased speed in coherent x-ray imaging
Deng, Junjing; Nashed, Youssef S. G.; Chen, Si; ...
2015-02-23
Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object’s complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous “fly-scan” mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less
NASA Astrophysics Data System (ADS)
Li, Pengyang; Wang, Shubin; Liu, Jianggao; Feng, Mengjie; Yang, Xinwang
2015-11-01
Borosilicate glass-ceramics precursors with varying compositional ratios in the CaO-SiO2-B2O3 (CBS) system were synthesized by sol-gel method. The precursors were calcined at 1200 °C for 2 h to form glass powders. The glass-ceramics were prepared by overlaying glass slurries on the substrates before sintering at different temperatures. The as-prepared glasses and glass-ceramics were characterized by differential scanning calorimetry and X-ray diffraction. The crystallization activation energies (Ec) were calculated using the Kissinger method from DSC results. The morphology and crystallization behavior of the glass-ceramics were monitored by scanning electron microscopy. Both glass transition and crystallization temperatures decreased, however, the metastable zone increased. The Ec values of CBS glasses and glass-ceramics were 254.1, 173.2 and 164.4 kJ/mol with increasing B2O3 content, whereas that of the calcined G3 glass was 104.9 kJ/mol. Finally, the coatings were prepared at a low temperature (700 °C). The crystals that grew on the surface of multilayer coatings demonstrated heterogeneous surface nucleation and crystallization after heat-treatment from 700 °C to 850 °C for 4 h.
In-vivo digital wavefront sensing using swept source OCT
Kumar, Abhishek; Wurster, Lara M.; Salas, Matthias; Ginner, Laurin; Drexler, Wolfgang; Leitgeb, Rainer A.
2017-01-01
Sub-aperture based digital adaptive optics is demonstrated in a fiber based point scanning optical coherence tomography system using a 1060 nm swept source laser. To detect optical aberrations in-vivo, a small lateral field of view of ~150×150 μm2 is scanned on the sample at a high volume rate of 17 Hz (~1.3 kHz B-scan rate) to avoid any significant lateral and axial motion of the sample, and is used as a “guide star” for the sub-aperture based DAO. The proof of principle is demonstrated using a micro-beads phantom sample, wherein a significant root mean square wavefront error (RMS WFE) of 1.48 waves (> 1μm) is detected. In-vivo aberration measurement with a RMS WFE of 0.33 waves, which is ~5 times higher than the Marechal’s criterion of 1/14 waves for the diffraction limited performance, is shown for a human retinal OCT. Attempt has been made to validate the experimental results with the conventional Shack-Hartmann wavefront sensor within reasonable limitations. PMID:28717573
Gold coated metal nanostructures grown by glancing angle deposition and pulsed electroplating
NASA Astrophysics Data System (ADS)
Grüner, Christoph; Reeck, Pascal; Jacobs, Paul-Philipp; Liedtke, Susann; Lotnyk, Andriy; Rauschenbach, Bernd
2018-05-01
Nickel based nanostructures are grown by glancing angle deposition (GLAD) on flat and pre-patterned substrates. These fabricated porous thin films were subsequently coated by pulsed electroplating with gold. The morphology and conformity of the gold coating were investigated by scanning electron microscopy and X-ray diffraction. Controlled growth of closed gold layers on the nanostructures could be achieved, while the open-pore structure of the nanosculptured thin films was preserved. Such gold coated nanostructures are a candidate for optical sensing and catalysis applications. The demonstrated method can be applied for numerous material combinations, allowing to provide GLAD thin films with new surface properties.
Li, Lei; Raji, Abdul-Rahman O; Fei, Huilong; Yang, Yang; Samuel, Errol L G; Tour, James M
2013-07-24
A facile and cost-effective approach to the fabrication of a nanocomposite material of polyaniline (PANI) and graphene nanoribbons (GNRs) has been developed. The morphology of the composite was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron microscopy, and X-ray diffraction analysis. The resulting composite has a high specific capacitance of 340 F/g and stable cycling performance with 90% capacitance retention over 4200 cycles. The high performance of the composite results from the synergistic combination of electrically conductive GNRs and highly capacitive PANI. The method developed here is practical for large-scale development of pseudocapacitor electrodes for energy storage.
Schroth, Philipp; Jakob, Julian; Feigl, Ludwig; Mostafavi Kashani, Seyed Mohammad; Vogel, Jonas; Strempfer, Jörg; Keller, Thomas F; Pietsch, Ullrich; Baumbach, Tilo
2018-01-10
We report on a growth study of self-catalyzed GaAs nanowires based on time-resolved in situ X-ray structure characterization during molecular-beam-epitaxy in combination with ex situ scanning-electron-microscopy. We reveal the evolution of nanowire radius and polytypism and distinguish radial growth processes responsible for tapering and side-wall growth. We interpret our results using a model for diameter self-stabilization processes during growth of self-catalyzed GaAs nanowires including the shape of the liquid Ga-droplet and its evolution during growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedrizzi, A., E-mail: anna.fedrizzi@ing.unitn.it; Pellizzari, M.; Zadra, M.
2013-12-15
Hot work tool steels are characterized by good toughness and high hot hardness but are less wear resistant than other tooling materials, such as high speed steel. Metal matrix composites show improved tribological behavior, but not much work has been done in the field of hot work tool steels. In this paper TiB{sub 2}-reinforced hot work tool steel matrix composites were produced by spark plasma sintering (SPS). Mechanical alloying (MA) was proposed as a suited process to improve the composite microstructure. Density measurements and microstructure confirmed that MA promotes sintering and produces a fine and homogeneous dispersion of reinforcing particles.more » X-ray diffraction patterns of the sintered composites highlighted the formation of equilibrium Fe{sub 2}B and TiC, as predicted by thermodynamic calculations using Thermo-Calc® software. Scanning electron microscopy as well as scanning Kelvin probe force microscopy highlighted the reaction of the steel matrix with TiB{sub 2} particles, showing the formation of a reaction layer at the TiB{sub 2}-steel interface. Phase investigations pointed out that TiB{sub 2} is not chemically stable in steel matrix because of the presence of carbon even during short time SPS. - Highlights: • TiB{sub 2} reinforced steel matrix composites were produced by spark plasma sintering. • TiB{sub 2} was successfully dispersed in the steel matrix by mechanical alloying. • Steel and TiB{sub 2} react during sintering forming equilibrium Fe{sub 2}B and TiC. • The new phases were investigated by means of AFM, Volta potential and XRD analyses.« less
Electrically-programmable diffraction grating
Ricco, A.J.; Butler, M.A.; Sinclair, M.B.; Senturia, S.D.
1998-05-26
An electrically-programmable diffraction grating is disclosed. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers). 14 figs.
Quantitative flaw characterization with scanning laser acoustic microscopy
NASA Technical Reports Server (NTRS)
Generazio, E. R.; Roth, D. J.
1986-01-01
Surface roughness and diffraction are two factors that have been observed to affect the accuracy of flaw characterization with scanning laser acoustic microscopy. In accuracies can arise when the surface of the test sample is acoustically rough. It is shown that, in this case, Snell's law is no longer valid for determining the direction of sound propagation within the sample. The relationship between the direction of sound propagation within the sample, the apparent flaw depth, and the sample's surface roughness is investigated. Diffraction effects can mask the acoustic images of minute flaws and make it difficult to establish their size, depth, and other characteristics. It is shown that for Fraunhofer diffraction conditions the acoustic image of a subsurface defect corresponds to a two-dimensional Fourier transform. Transforms based on simulated flaws are used to infer the size and shape of the actual flaw.
Characterization of calcium crystals in Abelia using x-ray diffraction and electron microscopes
USDA-ARS?s Scientific Manuscript database
Localization, chemical composition, and morphology of calcium crystals in leaves and stems of Abelia mosanensis and A. ×grandiflora were analyzed with a variable pressure scanning electron microscope (VP-SEM) equipped with an X-ray diffraction system, low temperature SEM (LT-SEM) and a transmission ...
NASA Astrophysics Data System (ADS)
Yoshimura, Fumitaka; Yamane, Hisanori; Nagasako, Makoto
2017-07-01
Single crystals of Ba5B2Al4Si32N52:Eu were grown on the wall of a boron nitride crucible by heating a starting mixture of binary nitrides at 2050 °C and a N2 pressure of 0.85 MPa. The fundamental reflections of X-ray diffraction (XRD) for the crystals were indexed with triclinic cell parameters, a=9.7879(11) Å, b=9.7920(11) Å, c=12.7226(15) Å, α=96.074(4)°, β=112.330(3)°, and γ=94.080(4)°. Streak lines were observed between the fundamental reflections in the direction of the c* axis in the oscillation XRD images and selected area electron diffraction (SAED) patterns, indicating stacking faults in the structure. The atomic images of stacking faults with a slip system of (0 0 1)[-1 1 0]/3, and displacement of a Ba atom layer with (0 0 1)[-1 -1 0]/6 were observed with a scanning transmission electron microscope (STEM). The models of the basic (normal-stacking) structure with space group P1 and local structures of the stacking faults are herein presented. The single crystals emitted blue light with a peak wavelength of 472 nm and a full width at half maximum of 78 nm under 365 nm excitation.
Zhang, Yushu; Zhang, Chuanlian; Liu, Kemiao; Zhu, Xia; Liu, Fang; Ge, Xiaofen
2018-05-01
The aim of the present study is to develop novel approach for the green synthesis of titanium oxide nanoparticles (TiO 2 NPs) using Eichhornia crassipes extract and calcined at different temperatures for evaluate the wound healing activity in the femoral fracture. The synthesized TiO 2 are formed different (plate and rod-like) nanostructures at various calcination temperatures. These samples were characterized by X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), Field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). Microscopic studies of TiO 2 NPs revealed that the synthesized TiO 2 NPs are formed well-defined rod-like structures at 400 °C with size ranged from 200 nm to 500 nm. The characterized plate and rod-like TiO 2 NPs are combined with human morphogenetic protein (HbMP) to improving its wound healing activity and osteoblast properties on femoral fractures. The biocompatibility was tested by using human bone marrow mesenchymal stem cells (BMSC) cells and antibacterial efficacy analyzed using human pathogenica bacteria Staphylococcus aureus and Escherichia coli through agar well diffusion assay. The green synthesized rod-like TiO 2 NPs combined with HbMP has been exhibited effective bone fusion behaviors with biomechanical properties and also improved antibacterial activity against pathogenic bacteria. From this study results, it is suggested that green synthesized TiO 2 NPs could be used effectively in biomedical application. Copyright © 2018. Published by Elsevier B.V.
Quantification of febuxostat polymorphs using powder X-ray diffraction technique.
Qiu, Jing-bo; Li, Gang; Sheng, Yue; Zhu, Mu-rong
2015-03-25
Febuxostat is a pharmaceutical compound with more than 20 polymorphs of which form A is most widely used and usually exists in a mixed polymorphic form with form G. In the present study, a quantification method for polymorphic form A and form G of febuxostat (FEB) has been developed using powder X-ray diffraction (PXRD). Prior to development of a quantification method, pure polymorphic form A and form G are characterized. A continuous scan with a scan rate of 3° min(-1) over an angular range of 3-40° 2θ is applied for the construction of the calibration curve using the characteristic peaks of form A at 12.78° 2θ (I/I0100%) and form G at 11.72° 2θ (I/I0100%). The linear regression analysis data for the calibration plots shows good linear relationship with R(2)=0.9985 with respect to peak area in the concentration range 10-60 wt.%. The method is validated for precision, recovery and ruggedness. The limits of detection and quantitation are 1.5% and 4.6%, respectively. The obtained results prove that the method is repeatable, sensitive and accurate. The proposed developed PXRD method can be applied for the quantitative analysis of mixtures of febuxostat polymorphs (forms A and G). Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Weitian; Sica, Christopher T; Meyer, Craig H
2008-11-01
Off-resonance effects can cause image blurring in spiral scanning and various forms of image degradation in other MRI methods. Off-resonance effects can be caused by both B0 inhomogeneity and concomitant gradient fields. Previously developed off-resonance correction methods focus on the correction of a single source of off-resonance. This work introduces a computationally efficient method of correcting for B0 inhomogeneity and concomitant gradients simultaneously. The method is a fast alternative to conjugate phase reconstruction, with the off-resonance phase term approximated by Chebyshev polynomials. The proposed algorithm is well suited for semiautomatic off-resonance correction, which works well even with an inaccurate or low-resolution field map. The proposed algorithm is demonstrated using phantom and in vivo data sets acquired by spiral scanning. Semiautomatic off-resonance correction alone is shown to provide a moderate amount of correction for concomitant gradient field effects, in addition to B0 imhomogeneity effects. However, better correction is provided by the proposed combined method. The best results were produced using the semiautomatic version of the proposed combined method.
Quantification of pleural effusion on CT by simple measurement.
Hazlinger, Martin; Ctvrtlik, Filip; Langova, Katerina; Herman, Miroslav
2014-01-01
To find the simplest method for quantifying pleural effusion volume from CT scans. Seventy pleural effusions found on chest CT examination in 50 consecutive adult patients with the presence of free pleural effusion were included. The volume of pleural effusion was calculated from a three-dimensional reconstruction of CT scans. Planar measurements were made on CT scans and their two-dimensional reconstructions in the sagittal plane and at three levels on transversal scans. Individual planar measurements were statistically compared with the detected volume of pleural effusion. Regression equations, averaged absolute difference between observed and predicted values and determination coefficients were found for all measurements and their combinations. A tabular expression of the best single planar measurement was created. The most accurate correlation between the volume and a single planar measurement was found in the dimension measured perpendicular to the parietal pleura on transversal scan with the greatest depth of effusion. Conversion of this measurement to the appropriate volume is possible by regression equation: Volume = 0.365 × b(3) - 4.529 × b(2) + 159.723 × b - 88.377. We devised a simple method of conversion of a single planar measurement on CT scan to the volume of pleural effusion. The tabular expression of our equation can be easily and effectively used in routine practice.
Boron monosulfide: Equation of state and pressure-induced phase transition
NASA Astrophysics Data System (ADS)
Cherednichenko, K. A.; Kruglov, I. A.; Oganov, A. R.; Le Godec, Y.; Mezouar, M.; Solozhenko, V. L.
2018-04-01
Quasi-hydrostatic compression of rhombohedral boron monosulfide (r-BS) has been studied up to 50 GPa at room temperature using diamond-anvil cells and angle-dispersive synchrotron X-ray diffraction. A fit of the experimental P-V data to the Vinet equation of state yields the bulk modulus B0 of 42.2(1.4) GPa and its first pressure derivative B0' of 7.6(2) that are in excellent agreement with our ab initio calculations. Formation of a new high-pressure phase of boron monosulfide (hp-BS) has been observed above 35 GPa. According to ab initio evolutionary crystal structure predictions combined with Rietveld refinement of high-pressure X-ray diffraction data, the structure of hp-BS has trigonal symmetry and belongs to the space group P-3m1. As it follows from the electron density of state calculations, the phase transformation is accompanied by an insulator-metal transition.
Liu, Zhen; Xing, Dong; Su, Qian Peter; Zhu, Yun; Zhang, Jiamei; Kong, Xinyu; Xue, Boxin; Wang, Sheng; Sun, Hao; Tao, Yile; Sun, Yujie
2014-01-01
Imaging the location and dynamics of individual interacting protein pairs is essential but often difficult because of the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining bimolecular fluorescence complementation and photoactivated localization microscopy for super-resolution imaging and single-molecule tracking of specific protein–protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB–EF-Tu pairs as a subpopulation of total EF-Tu. The single-molecule tracking of MreB, EF-Tu and MreB–EF-Tu pairs reveals intriguing localization-dependent heterogonous dynamics and provides valuable insights to understanding the roles of MreB–EF-Tu interactions. PMID:25030837
Abidi, Syed Sibte Asghar; Azim, Yasser; Khan, Shahper Nazeer; Khan, Asad U
2018-02-05
Sulfaguanidine (SG), belongs to the class of sulfonamide drug used as an effective antibiotic. In the present work, using crystal engineering approach two novel cocrystals of SG were synthesized (SG-TBA and SG-PT) with thiobarbutaric acid (TBA) and 1,10-phenanthroline (PT), characterized by solid state techniques viz., powder X-ray diffraction (PXRD), fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and the crystal structures were determined by single crystal X-ray diffraction studies. A comparative antibacterial activity and hemolytic potential was done on SG drug, coformers and their cocrystals. The tested cocrystals formulations showed almost two fold higher antibacterial activity against the tested strains of bacteria Gram-positive bacteria (S. mutans and E. faecalis) and Gram-negative bacteria (E. coli, K. pneumonia and E. clocae) over SG alone and their coformers. Cocrystal SG-TBA showed better antibacterial activity and reduced hemolysis, thereby, reduced cytotoxicity than SG-PT. Copyright © 2017 Elsevier B.V. All rights reserved.
New techniques for imaging and analyzing lung tissue.
Roggli, V L; Ingram, P; Linton, R W; Gutknecht, W F; Mastin, P; Shelburne, J D
1984-01-01
The recent technological revolution in the field of imaging techniques has provided pathologists and toxicologists with an expanding repertoire of analytical techniques for studying the interaction between the lung and the various exogenous materials to which it is exposed. Analytical problems requiring elemental sensitivity or specificity beyond the range of that offered by conventional scanning electron microscopy and energy dispersive X-ray analysis are particularly appropriate for the application of these newer techniques. Electron energy loss spectrometry, Auger electron spectroscopy, secondary ion mass spectrometry, and laser microprobe mass analysis each offer unique advantages in this regard, but also possess their own limitations and disadvantages. Diffraction techniques provide crystalline structural information available through no other means. Bulk chemical techniques provide useful cross-checks on the data obtained by microanalytical approaches. It is the purpose of this review to summarize the methodology of these techniques, acknowledge situations in which they have been used in addressing problems in pulmonary toxicology, and comment on the relative advantages and disadvantages of each approach. It is necessary for an investigator to weigh each of these factors when deciding which technique is best suited for any given analytical problem; often it is useful to employ a combination of two or more of the techniques discussed. It is anticipated that there will be increasing utilization of these technologies for problems in pulmonary toxicology in the decades to come. Images FIGURE 3. A FIGURE 3. B FIGURE 3. C FIGURE 3. D FIGURE 4. FIGURE 5. FIGURE 7. A FIGURE 7. B FIGURE 8. A FIGURE 8. B FIGURE 8. C FIGURE 9. A FIGURE 9. B FIGURE 10. PMID:6090115
Mirror-based broadband scanner with minimized aberration
NASA Astrophysics Data System (ADS)
Yu, Jiun-Yann; Tzeng, Yu-Yi; Huang, Chen-Han; Chui, Hsiang-Chen; Chu, Shi-Wei
2009-02-01
To obtain specific biochemical information in optical scanning microscopy, labeling technique is routinely required. Instead of the complex and invasive sample preparation procedures, incorporating spectral acquisition, which commonly requires a broadband light source, provides another mechanism to enhance molecular contrast. But most current optical scanning system is lens-based and thus the spectral bandwidth is limited to several hundred nanometers due to anti-reflection coating and chromatic aberration. The spectral range of interest in biological research covers ultraviolet to infrared. For example, the absorption peak of water falls around 3 μm, while most proteins exhibit absorption in the UV-visible regime. For imaging purpose, the transmission window of skin and cerebral tissues fall around 1300 and 1800 nm, respectively. Therefore, to extend the spectral bandwidth of an optical scanning system from visible to mid-infrared, we propose a system composed of metallic coated mirrors. A common issue in such a mirror-based system is aberrations induced by oblique incidence. We propose to compensate astigmatism by exchanging the sagittal and tangential planes of the converging spherical mirrors in the scanning system. With the aid of an optical design software, we build a diffraction-limited broadband scanning system with wavefront flatness better than λ/4 at focal plane. Combined with a mirror-based objective this microscopic system will exhibit full spectral capability and will be useful in microscopic imaging and therapeutic applications.
Crystal structure determination of new antimitotic agent bis(p-fluorobenzyl)trisulfide.
An, Haoyun; Hu, Xiurong; Gu, Jianming; Chen, Linshen; Xu, Weiming; Mo, Xiaopeng; Xu, Wanhong; Wang, Xiaobo; Xu, Xiao
2008-01-01
The purpose of this research was to investigate the physical characteristics and crystalline structure of bis(p-fluorobenzyl)trisulfide, a new anti-tumor agent. Methods used included X-ray single crystal diffraction, X-ray powder diffraction (XRPD), Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetric (DSC) and thermogravimetric (TG) analyses. The findings obtained with X-ray single crystal diffraction showed that a monoclinic unit cell was a = 12.266(1) A, b = 4.7757(4) A, c = 25.510(1) A, beta = 104.25(1) degrees ; cell volume = 1,448.4(2) A(3), Z = 4, and space group C2/c. The XRPD studies of the four crystalline samples, obtained by recrystallization from four different solvents, indicated that they had the same diffraction patterns. The diffraction pattern stimulated from the crystal structure data is in excellent agreement with the experimental results. In addition, the identical FT-IR spectra of the four crystalline samples revealed absorption bands corresponding to S-S and C-S stretching as well as the characteristic aromatic substitution. Five percent weight loss at 163.3 degrees C was observed when TG was used to study the decomposition process in the temperature range of 20-200 degrees C. DSC also allowed for the determination of onset temperatures at 60.4(1)-60.7(3) degrees C and peak temperatures at 62.1(3)-62.4(3) degrees C for the four crystalline samples studied. The results verified that the single crystal structure shared the same crystal form with the four crystalline samples investigated.
Cheng, Hui-Pin; Huang, Yao-Hui; Lee, Changha
2011-04-15
The photocatalytic activity of a brick grain-supported iron oxide (denoted as B1) was tested for its activity to degrade Reactive Black 5 (RB5) in the presence of oxalic acid. B1 was obtained as a solid waste from a wastewater treatment plant, and characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and N(2) adsorption/desorption isotherm analyses. The decolorization experiments were performed in a fluidized bed reactor with aeration under UV-A irradiation (λ = 365 nm). The effects of various factors such as solution pH, concentration of oxalic acid and dissolved oxygen on the decolorization of RB5 were evaluated considering the contributions of adsorption and photo-catalytic degradation. The role of dissolved iron in the removal of RB5 and the stability of B1 were also examined. In addition, the removal of TOC during the photo-catalytic reaction was monitored. Copyright © 2011 Elsevier B.V. All rights reserved.
Yan, YiChao; Shi, Wei; Jiang, HongChuan; Cai, XianYao; Deng, XinWu; Xiong, Jie; Zhang, WanLi
2015-12-01
The energetic igniters through integrating B/Ti nano-multilayers on tantalum nitride (TaN) ignition bridge are designed and fabricated. The X-ray diffraction (XRD) and temperature coefficient of resistance (TCR) results show that nitrogen content has a great influence on the crystalline structure and TCR. TaN films under nitrogen ratio of 0.99 % exhibit a near-zero TCR value of approximately 10 ppm/°C. The scanning electron microscopy demonstrates that the layered structure of the B/Ti multilayer films is clearly visible with sharp and smooth interfaces. The electrical explosion characteristics employing a capacitor discharge firing set at the optimized charging voltage of 45 V reveal an excellent explosion performance by (B/Ti) n /TaN integration film bridge with small ignition delay time, high explosion temperature, much more bright flash of light, and much large quantities of the ejected product particles than TaN film bridge.
Removal of heavy metals using bentonite supported nano-zero valent iron particles
NASA Astrophysics Data System (ADS)
Zarime, Nur Aishah; Yaacob, Wan Zuhari Wan; Jamil, Habibah
2018-04-01
This study reports the composite nanoscale zero-valent iron (nZVI) which was successfully synthesized using low cost natural clay (bentonite). Bentonite composite nZVI (B-nZVI) was introduced to reduce the agglomeration of nZVI particles, thus will used for heavy metals treatment. The synthesized material was analyzed using physical, mineralogy and morphology analysis such as Brunnaer-Emmett-Teller (BET) surface area, Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and X-ray Photoelectron Spectroscopy (XPS). The batch adsorption test of Bentonite and B-nZVI with heavy metals solutions (Pb, Cu, Cd, Co, Ni and Zn) was also conducted to determine their effectiveness in removing heavy metals. Through Batch test, B-nZVI shows the highest adsorption capacity (qe= 50.25 mg/g) compared to bentonite (qe= 27.75 mg/g). This occurred because B-nZVI can reduce aggregation of nZVI, dispersed well in bentonite layers thus it can provide more sites for adsorbing heavy metals.
Liu, Hanghang; Fu, Paixian; Liu, Hongwei; Li, Dianzhong
2018-01-01
The strength-toughness combination and hardness uniformity in large cross-section 718H pre-hardened mold steel from a 20 ton ingot were investigated with three different heat treatments for industrial applications. The different microstructures, including tempered martensite, lower bainite, and retained austenite, were obtained at equivalent hardness. The microstructures were characterized by using metallographic observations, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electron back-scattered diffraction (EBSD). The mechanical properties were compared by tensile, Charpy U-notch impact and hardness uniformity tests at room temperature. The results showed that the test steels after normalizing-quenching-tempering (N-QT) possessed the best strength-toughness combination and hardness uniformity compared with the conventional quenched-tempered (QT) steel. In addition, the test steel after austempering-tempering (A-T) demonstrated the worse hardness uniformity and lower yield strength while possessing relatively higher elongation (17%) compared with the samples after N-QT (14.5%) treatments. The better ductility of A-T steel mainly depended on the amount and morphology of retained austenite and thermal/deformation-induced twined martensite. This work elucidates the mechanisms of microstructure evolution during heat treatments and will highly improve the strength-toughness-hardness trade-off in large cross-section steels. PMID:29642642
One-Dimensional Scanning Approach to Shock Sensing
NASA Technical Reports Server (NTRS)
Tokars, Roger; Adamovsky, Girgory; Floyd, Bertram
2009-01-01
Measurement tools for high speed air flow are sought both in industry and academia. Particular interest is shown in air flows that exhibit aerodynamic shocks. Shocks are accompanied by sudden changes in density, pressure, and temperature. Optical detection and characterization of such shocks can be difficult because the medium is normally transparent air. A variety of techniques to analyze these flows are available, but they often require large windows and optical components as in the case of Schlieren measurements and/or large operating powers which precludes their use for in-flight monitoring and applications. The one-dimensional scanning approach in this work is a compact low power technique that can be used to non-intrusively detect shocks. The shock is detected by analyzing the optical pattern generated by a small diameter laser beam as it passes through the shock. The optical properties of a shock result in diffraction and spreading of the beam as well as interference fringes. To investigate the feasibility of this technique a shock is simulated by a 426 m diameter optical fiber. Analysis of results revealed a direct correlation between the optical fiber or shock location and the beam s diffraction pattern. A plot of the width of the diffraction pattern vs. optical fiber location reveals that the width of the diffraction pattern was maximized when the laser beam is directed at the center of the optical fiber. This work indicates that the one-dimensional scanning approach may be able to determine the location of an actual shock. Near and far field effects associated with a small diameter laser beam striking an optical fiber used as a simulated shock are investigated allowing a proper one-dimensional scanning beam technique.
NASA Astrophysics Data System (ADS)
Mustafa, Ghulam; Islam, M. U.; Zhang, Wenli; Anwar, Abdul Waheed; Jamil, Yasir; Murtaza, Ghulam; Ali, Ihsan; Hussain, Mudassar; Ali, Akbar; Ahmad, Mukhtar
2015-08-01
A series of the divalent and trivalent co-substituted Mg0.5-xCdxCo0.5Cr0.04TbyFe1.96-yO4 spinel ferrite systems (where x=0-0.5 in steps of 0.1 and y=0.00-0.10 in steps 0.02) are synthesized by sol-gel auto combustion method. The product materials were characterized by the thermo gravimetric analysis and differential scanning calorimetry (TGA/DSC), Fourier transform infrared spectra (FTIR), nitrogen adsorption (BET), X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM) and vibrating sample magnetometer (VSM). The X-ray diffraction patterns and Fourier transform infrared spectroscopy confirm spinel nanocrystalline phase. The crystallite size is determined by Scherer's formula from 36.6 to 69.4 nm. The X-ray density is found in the range of 5.09-6.43 (g/cm3). The morphological features are studied using scanning electron microscope and AFM. Saturation magnetization (Ms) and remanence (Mr) magnetization extracted from M-H loops exhibit the decreasing trends 21.4-16 emu/g and 9.1-6.3 emu/g, respectively. A significant decrease in the intrinsic parameters is observed in the prepared samples due to the weakening of the A-B interaction as iron enters into the tetrahedral A-site. The coercivity lies in the range of 300-869 Oe as a function of co-substitution contents. The coercivity of the sample with x=0.1, y=0.02 was found maximum i.e. 869 Oe. The obtained results suggest that the investigated materials may be potential candidates for high density recording media applications.
NASA Astrophysics Data System (ADS)
Shin, Eunhye; Jin, Saera; Kim, Jiyoon; Chang, Sung-Jin; Jun, Byung-Hyuk; Park, Kwang-Won; Hong, Jongin
2016-08-01
K-doped TiO2 nanowire networks were prepared by the corrosion reaction of Ti nanoparticles in an alkaline (potassium hydroxide: KOH) solution. The prepared nanostructures were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD) and photoluminescence (PL) spectra. Their sunlight-driven photocatalytic activity was also investigated with differently charged dye molecules, such as methylene blue, rhodamine B and methyl orange. The adsorption of the dye molecules on the photocatalyst surface would play a critical role in their selective photodegradation under sunlight illumination.
NASA Astrophysics Data System (ADS)
Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr
2015-12-01
Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.
Control of microbiological corrosion on carbon steel with sodium hypochlorite and biopolymer.
Oliveira, Sara H; Lima, Maria Alice G A; França, Francisca P; Vieira, Magda R S; Silva, Pulkra; Urtiga Filho, Severino L
2016-07-01
In the present work, the interaction of a mixture of a biocide, sodium hypochlorite (NaClO), and a biopolymer, xanthan, with carbon steel coupons exposed to seawater in a turbulent flow regime was studied. The cell concentrations, corrosion rates, biomasses, and exopolysaccharides (EPSs) produced on the coupon surfaces with the various treatments were quantified. The corrosion products were evaluated using X-ray diffraction (XRD), and the surfaces of steels were analysed by scanning electron microscopy (SEM). The results indicated that xanthan and the hypochlorite-xanthan mixture reduced the corrosion rate of steel. Copyright © 2016. Published by Elsevier B.V.
Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr
2015-12-01
Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.
Iron single crystal growth from a lithium-rich melt
NASA Astrophysics Data System (ADS)
Fix, M.; Schumann, H.; Jantz, S. G.; Breitner, F. A.; Leineweber, A.; Jesche, A.
2018-03-01
α -Fe single crystals of rhombic dodecahedral habit were grown from a Li84N12Fe∼3 melt. Crystals of several millimeter along a side form at temperatures around T ≈ 800 ° C. Upon further cooling the growth competes with the formation of Fe-doped Li3N. The b.c.c. structure and good sample quality of α -Fe single crystals were confirmed by X-ray and electron diffraction as well as magnetization measurements and chemical analysis. A nitrogen concentration of 90 ppm was detected by means of carrier gas hot extraction. Scanning electron microscopy did not reveal any sign of iron nitride precipitates.
Corrosion behavior of surface films on boron-implanted high purity iron and stainless steels
NASA Technical Reports Server (NTRS)
Kim, H. J.; Carter, W. B.; Hochman, R. F.; Meletis, E. I.
1985-01-01
Boron (dose, 2 x 10 to the 17th ions/sq cm) was implanted into high purity iron, AISI 316 austenitic stainless steel, and AISI 440C martensitic stainless steel, at 40 keV. The film structure of implanted samples was examined and characterized by contrast and diffraction analyses utilizing transmission electron microscopy. The effect of B(+) ion implantation on the corrosion behavior was studied using the potentiodynamic polarization technique. Tests were performed in deaerated 1 N H2SO4 and 0.1 M NaCl solutions. Scanning electron microscopy was used to examine the morphology of the corroded surfaces after testing.
Room Temperature Elastic Moduli and Vickers Hardness of Hot-Pressed LLZO Cubic Garnet
2012-01-01
polishing compounds, Leco, St. Joseph, MI). X - ray diffraction and scanning electron microscopy (SEM) The microstructure of the hot-pressed specimens...was examined on uncoated fracture surfaces by SEM with an accelerating voltage of 1 and 3 kV. Phase purity was evaluated from X - ray diffraction data...the micro- structure appeared to be homogenous for the two hot- pressed LLZO specimens included in this study (Fig. 1). X - ray diffraction confirmed that
Hydrothermal treatment of titanium alloys for the enhancement of osteoconductivity.
Zuldesmi, Mansjur; Waki, Atsushi; Kuroda, Kensuke; Okido, Masazumi
2015-04-01
The surface wettability of implants is a crucial factor in their osteoconductivity because it influences the adsorption of cell-attached proteins onto the surface. In this study, a single-step hydrothermal surface treatment using distilled water at a temperature of 180°C for 3h was applied to titanium (Ti) and its alloys (Ti-6Al-4V, Ti-6Al-7Nb, Ti-29Nb-13Ta-4.6Zr, Ti-13Cr-1Fe-3Al; mass%) and compared with as-polished Ti implants and with implants produced by anodizing Ti in 0.1M of H3PO4 with applied voltages from 0V to 150V at a scanning rate of 0.1Vs(-1). The surface-treated samples were stored in a five time phosphate buffered saline (×5 PBS(-)) solution to prevent increasing the water contact angle (WCA) with time. The surface characteristics were evaluated using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Auger electron spectroscopy, surface roughness, and contact angle measurement using a 2μL droplet of distilled water. The relationship between WCA and osteoconductivity at various surface modifications was examined using in vivo tests. The results showed that a superhydrophilic surface with a WCA≤10° and a high osteoconductivity (RB-I) of up to 50% in the cortical bone part, about four times higher than the as-polished Ti and Ti alloys, were provided by the combination of the hydrothermal surface treatment and storage in ×5 of PBS(-). Copyright © 2015 Elsevier B.V. All rights reserved.
Different amorphous solid-state forms of roxithromycin: A thermodynamic and morphological study.
Milne, Marnus; Liebenberg, Wilna; Aucamp, Marique Elizabeth
2016-02-10
The striking impact that different preparation methods have on the characteristics of amorphous solid-state forms has attracted considerable attention during the last two decades. The pursuit of more extensive knowledge regarding polyamorphism therefore continues. The aim of this study was firstly, to investigate the influence of different preparation techniques to obtain amorphous solid-state forms for the same active pharmaceutical ingredient, namely roxithromycin. The preparation techniques also report on a method utilizing hot air, which although it is based on a melt intermediary step, is considered a novel preparation method. Secondly, to conduct an in-depth investigation into any physico-chemical differences between the resulting amorphous forms and thirdly, to bring our findings into context with that of previous work done, whilst simultaneously discussing a well-defined interpretation for the term polyamorphism and propose a discernment between true polyamorphism and pseudo-polyamorphism/atypical-polyamorphism. The preparation techniques included melt, solution, and a combination of solution-mechanical disruption as intermediary steps. The resulting amorphous forms were investigated using differential scanning calorimetry, X-ray powder diffraction, hot-stage microscopy, scanning electron microscopy, and vapor sorption. Clear and significant thermodynamic differences were determined between the four amorphous forms. It was also deduced from this study that different preparation techniques have a mentionable impact on the morphological properties of the resulting amorphous roxithromycin powders. Thermodynamic properties as well as the physical characteristics of the amorphous forms greatly governed other physico-chemical properties i.e. solubility and dissolution. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ye, Li; Junfang, Chen; Junhui, Ma; Lifen, Zhou
2016-02-01
Cu-Zn-Sn (CZT) precursors were successfully prepared on glass substrate with the introduction of the assistant technology ICP (inductively coupled plasma) based on the conventional co-evaporation process. The deposition was performed with the substrate temperature at 220 °C and the chamber pressure at 6.5 × 10-2 Pa. Argon plasma was investigated with a Langmuir probe. The plasma density and the electron temperature increased with the increasing of the discharge power. The impact of ICP discharge power on the structural and morphological properties of the CZT film were investigated with energy dispersive X-ray spectrometers (EDS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). XRD and EDS were combined to investigate the structure of the film. The results show that Zn loss exists during the evaporation and the loss can be reduced by increasing the ICP discharge power. From the observation on the scanning electron microscope, the grain size becomes larger with argon plasma's assistance. The preparation of the Cu2ZnSnS4 (CZTS) film and the measured properties demonstrate that the ICP would optimize the growth of the film. Project supported by the Natural Science Foundation of Guangdong Province, China (No. S2013010012548), the Natural Science Foundation of Guangdong Province, China (No. 10151063101000048), the Key Program of the National Natural Science Foundation of China (No. 61072028), the Guangdong Provincial Natural Science Foundation of China (No. 2014A030313441), and the Guangdong Province and Chinese Ministry of Education Cooperation Project of Industry, Education and Academy (No. 2013B090600063).
Oelerich, Jan Oliver; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D; Volz, Kerstin
2017-06-01
We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space. Copyright © 2017 Elsevier B.V. All rights reserved.
Holographic Optical Elements as Scanning Lidar Telescopes
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.
2005-01-01
We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. For example, rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed and tested transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.
Li, Zhuoyan; Shen, Jin H.; Kozub, John A.; Prasad, Ratna; Lu, Pengcheng; Joos, Karen M.
2014-01-01
Background and Objective Investigations have shown that pulsed lasers tuned to 6.1 μm in wavelength are capable of ablating ocular and neural tissue with minimal collateral damage. This study investigated whether a miniature B-scan forward-imaging optical coherence tomography (OCT) probe can be combined with the laser to provide real-time visual feedback during laser incisions. Study Design/Methods and Materials A miniature 25-gauge B-scan forward-imaging OCT probe was developed and combined with a 250 μm hollow-glass waveguide to permit delivery of 6.1 μm laser energy. A gelatin mixture and both porcine corneal and retinal tissues were simultaneously imaged and lased (6.1 μm, 10 Hz, 0.4-0.7 mJ) through air. The ablation studies were observed and recorded in real time. The crater dimensions were measured using OCT imaging software (Bioptigen, Durham, NC). Histological analysis was performed on the ocular tissues. Results The combined miniature forward-imaging OCT and mid-infrared laser-delivery probe successfully imaged real-time tissue ablation in gelatin, corneal tissue, and retinal tissue. Application of a constant number of 60 pulses at 0.5 mJ/pulse to the gelatin resulted in a mean crater depth of 123 ± 15 μm. For the corneal tissue, there was a significant correlation between the number of pulses used and depth of the lased hole (Pearson correlation coefficient = 0.82; P = 0.0002). Histological analysis of the cornea and retina tissues showed discrete holes with minimal thermal damage. Conclusions A combined miniature OCT and laser -delivery probe can monitor real-time tissue laser ablation. With additional testing and improvements, this novel instrument has the future possibility of effectively guiding surgeries by simultaneously imaging and ablating tissue. PMID:24648326
NASA Astrophysics Data System (ADS)
Hagiya, K.; Ohsumi, K.; Komatsu, M.; Mikouchi, T.; Zolensky, M. E.; Hirata, A.; Yamaguchi, S.; Kurokawa, A.
2016-08-01
Crystallographic study of Itokawa particle, RA-QD02-0127 by using new X-ray diffraction method was performed. The purpose of this study is to understand better the metamorphic and impact shock history of asteroid Itokawa, and other S-class asteroids.
NASA Astrophysics Data System (ADS)
Burger, A.; Morgan, S.; Jiang, H.; Silberman, E.; Schieber, M.; Van Den Berg, L.; Keller, L.; Wagner, C. N. J.
1989-11-01
High-temperature studies of mercuric iodide (HgI2) involving differential scanning calorimetry (DSC), Raman spectroscopy and X-ray powder diffraction have failed to confirm the existence of a red-colored tetragonal high-temperature phase called α'-HgI2 reported by S.N. Toubektsis et al. [J. Appl. Phys. 58 (1988) 2070] using DSC measurements. The multiple DSC peaks near melting reported by Toubektsis are found by the present authors only if the sample is heated in a stainless-steel container. Using a Pyrex container or inserting a platinum foil between the HgI2 and the stainless-steel container yields only one sharp, single DSC peak at the melting point. The nonexistence of the α' phase is confirmed by high-temperature X-ray diffraction and Raman spectroscopy performed in the vicinity of the melting point. These methods clearly, indicate the existence of only the yellow orthorhombic β-HgI2 phase. The experimental high-temperature DSC, Raman and X-ray diffraction data are presented and discussed.
Croker, Denise M; Hennigan, Michelle C; Maher, Anthony; Hu, Yun; Ryder, Alan G; Hodnett, Benjamin K
2012-04-07
Diffraction and spectroscopic methods were evaluated for quantitative analysis of binary powder mixtures of FII(6.403) and FIII(6.525) piracetam. The two polymorphs of piracetam could be distinguished using powder X-ray diffraction (PXRD), Raman and near-infrared (NIR) spectroscopy. The results demonstrated that Raman and NIR spectroscopy are most suitable for quantitative analysis of this polymorphic mixture. When the spectra are treated with the combination of multiplicative scatter correction (MSC) and second derivative data pretreatments, the partial least squared (PLS) regression model gave a root mean square error of calibration (RMSEC) of 0.94 and 0.99%, respectively. FIII(6.525) demonstrated some preferred orientation in PXRD analysis, making PXRD the least preferred method of quantification. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kyutt, R. N.
2018-04-01
The three-wave X-ray diffraction in strongly disordered epitaxial layers of GaN and ZnO is experimentally investigated. The charts of the intensity distribution in the reciprocal space are plotted in coordinates q θ and q ϕ for the most intensive three-wave combination (1010)/(1011) by means of subsequent θ- and ϕ-scanning. A nontrivial shape of the θ-sections of these contours at a distance from the ϕ center of reflection is revealed; it is different for different samples. For the θ-curves at the center of reflection, we observed a common peak that may be approximated by the Voigt function with a power-low decrease in the intensity at the wings; the decrease law (from-4.5 to-5.0) is found to be considerably greater than that for the similar curves of two-wave diffraction and not depending on the dislocation density and distribution in layers. In some films we observed a coarse-block structure; in addition, it follows from the distribution in the reciprocal space that these blocks are turned with respect to each other around a normal to the surface, which allows us to suggest the existence of low-angle boundaries between them, consisting exclusively of edge dislocations.
NASA Astrophysics Data System (ADS)
Bastos, Isadora T. S.; Costa, Fanny N.; Silva, Tiago F.; Barreiro, Eliezer J.; Lima, Lídia M.; Braz, Delson; Lombardo, Giuseppe M.; Punzo, Francesco; Ferreira, Fabio F.; Barroso, Regina C.
2017-10-01
LASSBio-1755 is a new cycloalkyl-N-acylhydrazone parent compound designed for the development of derivatives with antinociceptive and anti-inflammatory activities. Although single crystal X-ray diffraction has been considered as the golden standard in structure determination, we successfully used X-ray powder diffraction data in the structural determination of new synthesized compounds, in order to overcome the bottle-neck due to the difficulties experienced in harvesting good quality single crystals of the compounds. We therefore unequivocally assigned the relative configuration (E) to the imine double bond and a s-cis conformation of the amide function of the N-acylhydrazone compound. These features are confirmed by a computational analysis performed on the basis of molecular dynamics calculations, which are extended not only to the structural characteristics but also to the analysis of the anisotropic atomic displacement parameters, a further information - missed in a typical powder diffraction analysis. The so inferred data were used to perform additional cycles of refinement and eventually generate a new cif file with additional physical information. Furthermore, crystal morphology prediction was performed, which is in agreement with the experimental images acquired by scanning electron microscopy, thus providing useful information on possible alternative paths for better crystallization strategies.
Miao, Xiaoqing; Sun, Changshan; Jiang, Tongying; Zheng, Li; Wang, Tianyi; Wang, Siling
2011-01-01
The aim of this study was to develop cilostazol (CLT) nanocrystals intended to improve its dissolution rate and enhance its bioavailability. In this study, CLT nanosuspension was prepared by the anti-solvent and high-pressure homogenization method. The effects of the production parameters, such as the stabilizer concentration, pressure and number of cycles, were investigated. Characterization of the product was performed by scanning electron microscopy (SEM), Nitrogen adsorption, differential scanning calorimetry (DSC), X-ray powder diffraction analysis (XRPD), X-ray Photoelectron Spectroscopy (XPS), particle size analysis and dissolution testing. Additionally, the comparison studies of oral bioavailability in beagle dogs of three type tables were performed. The images of SEM showed a spherical smooth CLT powder, and Nitrogen adsorption test revealed spray dried powder were porous with high BET surface area compared with that of raw CLT. DSC and XRPD results demonstrated that the combination of preferred polymorph B and C of CLT were prepared successfully, the saturation solubility of the nanosized crystalline powder is about 5 fold greater than that of raw CLT, and the dissolution rate was enhanced 4 fold than that of raw CLT. The Cmax and AUC0-48h of CLT nanosized crystalline tablets were 2.1 fold and 1.9 fold, and 3.0 fold and 2.3 fold compared with those of the nanosized tablets and commercial tablets, respectively. The anti-solvent-high-pressure homogenization technique was employed successfully to produce cilostazol nanosuspensions. The bioavailability of CLT tablets prepared using spray dried nanosized crystalline powder after oral administration to dogs was markedly increased compared with that produced by nanosized tablets and commercial tablets, because of its greater dissolution rate owing to its transition of the crystalline state to form C and form B, reduced particle size and porous structure with increased surface area.
NASA Astrophysics Data System (ADS)
Murray, Ian B.; Densmore, Victor; Bora, Vaibhav; Pieratt, Matthew W.; Hibbard, Douglas L.; Milster, Tom D.
2011-06-01
Coatings of various metalized patterns are used for heating and electromagnetic interference (EMI) shielding applications. Previous work has focused on macro differences between different types of grids, and has shown good correlation between measurements and analyses of grid diffraction. To advance this work, we have utilized the University of Arizona's OptiScan software, which has been optimized for this application by using the Babinet Principle. When operating on an appropriate computer system, this algorithm produces results hundreds of times faster than standard Fourier-based methods, and allows realistic cases to be modeled for the first time. By using previously published derivations by Exotic Electro-Optics, we compare diffraction performance of repeating and randomized grid patterns with equivalent sheet resistance using numerical performance metrics. Grid patterns of each type are printed on optical substrates and measured energy is compared against modeled energy.
Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO
Braaf, Boy; Vienola, Kari V.; Sheehy, Christy K.; Yang, Qiang; Vermeer, Koenraad A.; Tiruveedhula, Pavan; Arathorn, David W.; Roorda, Austin; de Boer, Johannes F.
2012-01-01
In phase-resolved OCT angiography blood flow is detected from phase changes in between A-scans that are obtained from the same location. In ophthalmology, this technique is vulnerable to eye motion. We address this problem by combining inter-B-scan phase-resolved OCT angiography with real-time eye tracking. A tracking scanning laser ophthalmoscope (TSLO) at 840 nm provided eye tracking functionality and was combined with a phase-stabilized optical frequency domain imaging (OFDI) system at 1040 nm. Real-time eye tracking corrected eye drift and prevented discontinuity artifacts from (micro)saccadic eye motion in OCT angiograms. This improved the OCT spot stability on the retina and consequently reduced the phase-noise, thereby enabling the detection of slower blood flows by extending the inter-B-scan time interval. In addition, eye tracking enabled the easy compounding of multiple data sets from the fovea of a healthy volunteer to create high-quality eye motion artifact-free angiograms. High-quality images are presented of two distinct layers of vasculature in the retina and the dense vasculature of the choroid. Additionally we present, for the first time, a phase-resolved OCT angiogram of the mesh-like network of the choriocapillaris containing typical pore openings. PMID:23304647
Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R
2017-11-01
The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues.
La 3+ doping of the Sr 2CoWO 6 double perovskite: A structural and magnetic study
NASA Astrophysics Data System (ADS)
López, C. A.; Viola, M. C.; Pedregosa, J. C.; Carbonio, R. E.; Sánchez, R. D.; Fernández-Díaz, M. T.
2008-11-01
La-doped Sr 2CoWO 6 double perovskites have been prepared in air in polycrystalline form by solid-state reaction. These materials have been studied by X-ray powder diffraction (XRPD), neutron powder diffraction (NPD) and magnetic susceptibility. The structural refinement was performed from combined XRPD and NPD data (D2B instrument, λ=1.594 Å). At room temperature, the replacement of Sr 2+ by La 3+ induces a change of the tetragonal structure, space group I4/ m of the undoped Sr 2CoWO 6 into the distorted monoclinic crystal structure, space group P2 1/ n, Z=2. The structure of La-doped phases contains alternating CoO 6 and (Co/W)O 6 octahedra, almost fully ordered. On the other hand, the replacement of Sr 2+ by La 3+ induces a partial replacement of W 6+ by Co 2+ into the B sites, i.e. Sr 2-xLa xCoW 1-yCo yO 6 ( y= x/4) with segregation of SrWO 4. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below TN=24 K independently of the La-substitution.
NASA Astrophysics Data System (ADS)
Kaur, Gurbinder; Pickrell, G.; Kimsawatde, G.; Homa, D.; Allbee, H. A.; Sriranganathan, N.
2014-03-01
CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses were prepared via an optimized sol-gel method. The current investigation was focused on producing novel zinc based calcium phosphoborosilicate glasses and to evaluate their mechanical, rheological, and biocompatible properties. The morphology and composition of these glasses were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The particle size, mechanical and flexural strength was also determined. Furthermore, the zeta potential of all the glasses were determined to estimate their flocculation tendency. The thermal analysis and weight loss measurements were carried out using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) respectively. For assessing the in-vitro bioactive character of synthesized glasses, the ability for apatite formation on their surface upon their immersion in simulated body fluid (SBF) was checked using SEM and pH measurements. MTS assay cytotoxicity assay and live-dead cell viability test were conducted on J774A.1 cells murine macrophage cells for different glass concentrations.
Visible-light-driven Bi 2 O 3 /WO 3 composites with enhanced photocatalytic activity
Adhikari, Shiba P.; Dean, Hunter; Hood, Zachary D.; ...
2015-10-19
Semiconductor heterojunctions (composites) have been shown to be effective photocatalytic materials to overcome the drawbacks of low photocatalytic efficiency that results from electron–hole recombination and narrow photo-response range. We prepared a novel visible-light-driven Bi 2O 3/WO 3 composite photocatalyst by hydrothermal synthesis. The composite was characterized by scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area, Raman spectroscopy, photoluminescence spectroscopy (PL) and electrochemical impedance spectroscopy (EIS) to better understand the structures, compositions, morphologies and optical properties. Bi 2O 3/WO 3 heterojunction was found to exhibit significantly higher photocatalyticmore » activity towards the decomposition of Rhodamine B (RhB) and 4-nitroaniline (4-NA) under visible light irradiation compared to that of Bi 2O 3 and WO 3. A tentative mechanism for the enhanced photocatalytic activity of the heterostructured composite is discussed based on observed activity, band position calculations, photoluminescence, and electrochemical impedance data. Our study provides a new strategy for the design of composite materials with enhanced visible light photocatalytic performance.« less
Kaur, Gurbinder; Pickrell, G; Kimsawatde, G; Homa, D; Allbee, H A; Sriranganathan, N
2014-03-18
CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses were prepared via an optimized sol-gel method. The current investigation was focused on producing novel zinc based calcium phosphoborosilicate glasses and to evaluate their mechanical, rheological, and biocompatible properties. The morphology and composition of these glasses were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The particle size, mechanical and flexural strength was also determined. Furthermore, the zeta potential of all the glasses were determined to estimate their flocculation tendency. The thermal analysis and weight loss measurements were carried out using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) respectively. For assessing the in-vitro bioactive character of synthesized glasses, the ability for apatite formation on their surface upon their immersion in simulated body fluid (SBF) was checked using SEM and pH measurements. MTS assay cytotoxicity assay and live-dead cell viability test were conducted on J774A.1 cells murine macrophage cells for different glass concentrations.
Kaur, Gurbinder; Pickrell, G.; Kimsawatde, G.; Homa, D.; Allbee, H. A.; Sriranganathan, N.
2014-01-01
CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses were prepared via an optimized sol–gel method. The current investigation was focused on producing novel zinc based calcium phosphoborosilicate glasses and to evaluate their mechanical, rheological, and biocompatible properties. The morphology and composition of these glasses were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The particle size, mechanical and flexural strength was also determined. Furthermore, the zeta potential of all the glasses were determined to estimate their flocculation tendency. The thermal analysis and weight loss measurements were carried out using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) respectively. For assessing the in-vitro bioactive character of synthesized glasses, the ability for apatite formation on their surface upon their immersion in simulated body fluid (SBF) was checked using SEM and pH measurements. MTS assay cytotoxicity assay and live-dead cell viability test were conducted on J774A.1 cells murine macrophage cells for different glass concentrations. PMID:24637634
Gazder, Azdiar A; Al-Harbi, Fayez; Spanke, Hendrik Th; Mitchell, David R G; Pereloma, Elena V
2014-12-01
Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Isbaner, Sebastian; Hähnel, Dirk; Gregor, Ingo; Enderlein, Jörg
2017-02-01
Confocal Spinning Disk Systems are widely used for 3D cell imaging because they offer the advantage of optical sectioning at high framerates and are easy to use. However, as in confocal microscopy, the imaging resolution is diffraction limited, which can be theoretically improved by a factor of 2 using the principle of Image Scanning Microscopy (ISM) [1]. ISM with a Confocal Spinning Disk setup (CSDISM) has been shown to improve contrast as well as lateral resolution (FWHM) from 201 +/- 20 nm to 130 +/- 10 nm at 488 nm excitation. A minimum total acquisition time of one second per ISM image makes this method highly suitable for 3D live cell imaging [2]. Here, we present a multicolor implementation of CSDISM for the popular Micro-Manager Open Source Microscopy platform. Since changes in the optical path are not necessary, this will allow any researcher to easily upgrade their standard Confocal Spinning Disk system at remarkable low cost ( 5000 USD) with an ISM superresolution option. [1]. Müller, C.B. and Enderlein, J. Image Scanning Microscopy. Physical Review Letters 104, (2010). [2]. Schulz, O. et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proceedings of the National Academy of Sciences of the United States of America 110, 21000-5 (2013).
Synthesis, characterization and antistructure modeling of Ni nano ferrite
NASA Astrophysics Data System (ADS)
Kane, S. N.; Raghuvanshi, S.; Satalkar, M.; Reddy, V. R.; Deshpande, U. P.; Tatarchuk, T. R.; Mazaleyrat, F.
2018-05-01
We report the role played by cation distribution in determining magnetic properties by comparing dry gel, thermally annealed Ni ferrite prepared by sol-gel auto-combustion technique. X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Mössbauer spectroscopy were used to characterize the samples. Both XRD and Mössbauer measurements validate the formation of spinel phase with grain diameter 39.13-45.53 nm. First time antistructural modeling for Ni ferrite is reported to get information on active surface centers. Decrease of Debye temperature θD in annealed sample shows enhancement of lattice vibrations. With thermal annealing experimental and Néel magnetic moment (nBe, nBN) increases, suggesting migration of Ni2+ from B to A site with concurrent migration of Fe3+ from A to B site (non-equilibrium cationic distribution), affecting magnetic properties.
Synthesis and Characterization of Gd and Nd Nanoparticles
NASA Astrophysics Data System (ADS)
Romero, Dulce G.; Ho, Pei-Chun; Attar, Saeed
2009-03-01
Due to the reduced dimensionality, nano-sized materials have physical properties significantly different from the bulk material, such as, superparamagnetic behavior, enhanced magnetization, and self-organization [1-3]. Nano-sized materials have great potential for technical applications, for example, magnetic information storage, imaging, medical devices, and magnetic refrigeration. In this report, we will present the growth and filtration of rare-earth Gd and Nd nanoparticles by the inverse micelle technique [4]. The results of the characterization of these clusters by X- ray diffraction, scanning electron microscope, and energy-dispersive x-ray spectroscopy will be presented. [1] D.C. Douglass, et al. Phys. Rev. B. 47, 19 (1993). [2] J.P. Chen, et al. Phys. Rev. B. 51, 11527 (1995). [3] C. Petit, et al. Advanced Materials. 10, 259 (1998). [4] X.M. Lin, et al. Langmuir. 14, 7140 (1998).
NASA Astrophysics Data System (ADS)
Filarowski, A.; Kochel, A.; Koll, A.; Bator, G.; Mukherjee, S.
2006-03-01
The crystal structures of two ortho-hydroxy aryl ketones (5-chloro-3-nitro-2-hydroxyacetophenone, 5-methyl-3-nitro-2-hydroxyacetophenone and the complex 5-chloro-3-nitro-2-hydroxyacetophenone with 2-aminobenzoic acid (anthranilic acid)) were determined by X-ray diffraction. The existence of an intramolecular hydrogen bond of enol character between the hydroxyl and acetyl groups was found by the X-ray method. The enol character was also confirmed by DFT (B3LYP/6-31+G(d,p)) calculations. A phase transition was found at 138 K in 5-chloro-3-nitro-2-hydroxyacetophenone. This phase transition was investigated by differential scanning calorimetry (DSC), dilatometry, and the dielectric method. A study of the nitro-group dynamics in the ortho-hydroxy acetophenones was carried out with DFT (B3LYP/6-31+G(d,p)) calculations.
Synthesis, characterization, and photocatalytic properties of Ni12P5 hollow microspheres
NASA Astrophysics Data System (ADS)
Liu, Shuling; Han, Xiaoli; Zhang, Hongzhe; Liu, Hui
2017-05-01
Ni12P5 hollow microspheres were prepared by a simple mixed cetyltrimethyl ammonium bromide/sodium dodecyl sulfate surfactant-assisted hydrothermal route. The as-prepared Ni12P5 microstructures were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). It was interesting to find that cetyltrimethyl ammonium bromide/sodium dodecyl sulfate could form a micro-reactor by the mixed micelles in the aqueous solution, which served as a soft template for Ni12P5 hollow microspheres with a diameter of 2 6 μm. Moreover, the as-prepared Ni12P5 hollow microspheres exhibited a good photocatalytic degradation activity for some organic dyes (such as Rhodamine B, Methylene Blue, Pyronine B, and Safranine T), and the degradation ratio could achieve more than 80%.
Evidence for the suppression of incident beam effects in Auger electron diffraction
NASA Astrophysics Data System (ADS)
Davoli, I.; Gunnella, R.; Bernardini, R.; De Crescenzi, M.
1998-01-01
Auger electron diffraction (AED) of the Cu(100) surface has been studied through the anisotropy of the elastic backdiffused beam electrons, the L 2,3M 4,5M 4,5 (LVV) and the M 2,3M 4,5M 4,5 (MVV) transitions in polar scan along the two main directions [001], [011] and in azimuth scan at normal emission. The intensity anisotropies of the low and high kinetic energy Auger lines are in antiphase to each other as in experiments in which these transitions are excited by X-ray photons. This behaviour has been exploited to single out the origin of the physical mechanisms accompanying the diffraction of the emitted electrons. Incident beam effects appear to be sizeable only when the collection of the AED spectra are made with an angle integrating electron analyser (cylindrical mirror analyser or low electron energy diffraction apparatus), but they appear negligible when electron collection is performed through a small solid-angle detector. The conclusions reached by our measurements are supported by good agreement with experimental and theoretical X-ray photoelectron diffraction data and demonstrate that, when the incident beam energy is sufficiently higher than the kinetic energy of the Auger electron detected, the influence of the incident beam on AED is negligible.
Advancements in non-contact metrology of asphere and diffractive optics
NASA Astrophysics Data System (ADS)
DeFisher, Scott
2017-11-01
Advancements in optical manufacturing technology allow optical designers to implement steep aspheric or high departure surfaces into their systems. Measuring these surfaces with profilometers or CMMs can be difficult due to large surface slopes or sharp steps in the surface. OptiPro has developed UltraSurf to qualify the form and figure of steep aspheric and diffractive optics. UltraSurf is a computer controlled, non-contact coordinate measuring machine. It incorporates five air-bearing axes, linear motors, high-resolution feedback, and a non-contact probe. The measuring probe is scanned over the optical surface while maintaining perpendicularity and a constant focal offset. Multiple probe technologies are available on UltraSurf. Each probe has strengths and weaknesses relative to the material properties, surface finish, and figure error of an optical component. The measuring probes utilize absolute distance to resolve step heights and diffractive surface patterns. The non-contact scanning method avoids common pitfalls with stylus contact instruments. Advancements in measuring speed and precision has enabled fast and accurate non-contact metrology of diffractive and steep aspheric surfaces. The benefits of data sampling with twodimensional profiles and three-dimensional topography maps will be presented. In addition, accuracy, repeatability, and machine qualification will be discussed with regards to aspheres and diffractive surfaces.
High Power Optical Coatings by Atomic Layer Deposition and Signatures of Laser-Induced Damage
2012-08-28
diffraction angle 0 into crystal lattice spacing d by the Bragg condition, mX = 2d sin 0. Here X is the x - ray wavelength... angle x - ray diffraction (GAXRD) measurements, which were made at a fixed shallow incidence angle of 0.5°. Detector scans were done to measure the...was finished with 200 hafnia cycles m the fmal half period rather than 400. Crystallinity was measured by x - ray diffraction (XRD) with
NASA Astrophysics Data System (ADS)
Wang, Bao-guang; Yang, Wen-hui; Gao, Hong-ye; Tian, Wen-huai
2018-05-01
A hypoeutectic 60Te-40Bi alloy in mass percent was designed as a tellurium atom evaporation source instead of pure tellurium for an ultraviolet detection photocathode. The alloy was prepared by slow solidification at about 10-2 K·s-1. The microstructure, crystal structure, chemical composition, and crystallographic orientation of each phase in the as-prepared alloy were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. The experimental results suggest that the as-prepared 60Te-40Bi alloy consists of primary Bi2Te3 and eutectic Bi2Te3/Te phases. The primary Bi2Te3 phase has the characteristics of faceted growth. The eutectic Bi2Te3 phase is encased by the eutectic Te phase in the eutectic structure. The purity of the eutectic Te phase reaches 100wt% owing to the slow solidification. In the eutectic phases, the crystallographic orientation relationship between Bi2Te3 and Te is confirmed as {[0001]_{B{i_2}T{e_3}}}//{[1\\bar 21\\bar 3]_{Te}} and the direction of Te phase parallel to {[11\\bar 20]_{B{i_2}T{e_3}}} is deviated by 18° from Te N{(2\\bar 1\\bar 11)_{Te}}.
Miyazaki, Yuta; Aruga, Naoki; Kadota, Kazunori; Tozuka, Yuichi; Takeuchi, Hirofumi
2017-08-07
A budesonide (BDS) suspension was obtained via advanced supercritical carbon dioxide (scCO 2 ) processing. Thereafter, the suspension was freeze-dried (FD) to produce BDS particles for dry powder inhaler formulations (scCO 2 /FD processing). The scCO 2 /FD processed BDS powder showed low crystallinity by powder X-ray diffraction and a rough surface by scanning electron microscopy. The respirable fraction of BDS was assessed using a twin impinger and revealed that the amount of the scCO 2 /FD processed sample that reached stage 2 was 4-fold higher than that of the supplied powder. To extend the utility of scCO 2 processing, BDS particles for dry powder inhalers were fabricated by combining the scCO 2 system with various additives. When BDS was processed via scCO 2 /FD in the presence of the novel additive, namely, monoglyceride stearate (MGS), the residual BDS/MGS particles remaining in the capsule and devices decreased, followed by an increase in the respirable fraction of BDS 6-fold higher than with the supplied powder. The scCO 2 /FD processed BDS/MGS particles had a smooth surface, in contrast to the scCO 2 /FD processed BDS particles. A combination of BDS and an appropriate additive in scCO 2 treatment may induce changes in particle surface morphology, leading to an improvement in the inhalation properties of BDS. Copyright © 2017 Elsevier B.V. All rights reserved.
Xia, Lian; Liu, Lijie; Lv, Xiaoxia; Qu, Fei; Li, Guoliang; You, Jinmao
2017-06-02
A magnetic, mesoporous core/shell structured Fe 3 O 4 @JUC-48 nanocomposite was synthesized and employed as a magnetic solid phase extraction (MSPE) sorbent for the determination of trace sulfonamides (SAs) in meat samples. The synthesized nanocomposite was characterized by X-ray diffraction, Fourier transform infrared spectra, transmission electron microscopy, scanning electron microscopy, Brunner-Emmet-Teller, and vibrating sample magnetometry; the Fe 3 O 4 @JUC-48 nanocomposite exhibited a distinctive morphology, large surface area, high magnetism, open adsorption sites, and high chemical stability. By combining the optimized MSPE conditions with high performance liquid chromatography diode array detection, an accurate and sensitive method for the determination of 5 SAs, including sulfadiazine (SDZ), sulfathiazole (STZ), sulfamerazine (SMR), sulfamethazine (SMZ), and sulfamethoxypyridazine (SMP), was developed. The method exhibited good linearity in the range of 3.97-1000ng/g with R ranging from 0.9991 to 0.9994, high sensitivity with LODs ranging from 1.73 to 5.23ng/g, adequate recoveries between 76.1 and 102.6% with low relative standard deviations ranging from 2.1 to 6.4%, and high precision with RSD<4.5%. The Fe 3 O 4 @JUC-48 magnetic nanocomposite is a promising sorbent for the rapid and efficient extraction of SAs from complex biological samples such as chicken, pork, and shrimp. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Varol, T.; Canakci, A.
2013-06-01
In the present work, the effect of milling parameters on the morphology and microstructure of nanostructure Al2024-B4C composite powders obtained by mechanical alloying (MA) was studied. The effects of milling time and B4C content on the morphology, microstructure and particle size of nanostructure Al2024-B4C composite powders have been investigated. Different amounts of B4C particles (0, 5, 10 and 20 wt.%) were mixed with Al2024 powders and milled in a planetary ball mill for 30, 60, 120, 300, 420 and 600 min. Al 2024-B4C composite powders were characterized using a scanning electron microscope (SEM), laser particle-size analyzer, X-ray diffraction analysis (XRD) and the Vickers microhardness test. The results showed that the nanostructure Al2024-B4C composite powders were produced when they were milled for 600 min. The size of composite powder in the milled powder mixture was affected by the milling time and content of B4C particles. Moreover, it was observed that when MA reached a steady state, the properties of composite powders were stabilized.
Radiation damage to macromolecules: kill or cure?
Garman, Elspeth F; Weik, Martin
2015-03-01
Radiation damage induced by X-ray beams during macromolecular diffraction experiments remains an issue of concern in structural biology. While advances in our understanding of this phenomenon, driven in part by a series of workshops in this area, undoubtedly have been and are still being made, there are still questions to be answered. Eight papers in this volume give a flavour of ongoing investigations, addressing various issues. These range over: a proposed new metric derived from atomic B-factors for identifying potentially damaged amino acid residues, a study of the relative damage susceptibility of protein and DNA in a DNA/protein complex, a report of an indication of specific radiation damage to a protein determined from data collected using an X-ray free-electron laser (FEL), an account of the challenges in FEL raw diffraction data analysis, an exploration of the possibilities of using radiation damage induced phasing to solve structures using FELs, simulations of radiation damage as a function of FEL temporal pulse profiles, results on the influence of radiation damage during scanning X-ray diffraction measurements and, lastly, consideration of strategies for minimizing radiation damage during SAXS experiments. In this short introduction, these contributions are briefly placed in the context of other current work on radiation damage in the field.
Liu, Pengfei; Wang, Rui; Kang, Xuemin; Cui, Bo; Yu, Bin
2018-06-01
To investigate the effect of ultrasonic treatment on the properties of sweet potato starch and sweet potato starch-based films, the complexing index, thermograms and diffractograms of the sweet potato starch-lauric acid composite were tested, and light transmission, microstructure, and mechanical and moisture barrier properties of the films were measured. The results indicated that the low power density ultrasound was beneficial to the formation of an inclusion complex. In thermograms, the gelatinization enthalpies of the ultrasonically treated starches were lower than those of the untreated sample. With the ultrasonic amplitude increased from 40% to 70%, the melting enthalpy (ΔH) of the inclusion complex gradually decreased. X-ray diffraction revealed that the diffraction intensity of the untreated samples was weaker than that of the ultrasonically treated samples. When the ultrasonic amplitude was above 40%, the diffraction intensity and relative crystallinity of inclusion complex gradually decreased. The scanning electronic microscope showed that the surface of the composite films became smooth after being treated by ultrasonication. Ultrasonication led to a reduction in film surface roughness under atomic force microscopy analysis. The films with ultrasonic treatment exhibited higher light transmission, lower elongation at break, higher tensile strength and better moisture barrier property than those without ultrasonic treatment. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bülbül, Ferhat; Altun, Hikmet; Küçük, Özkan; Ezirmik, Vefa
2012-08-01
This study aims to evaluate the tribological and corrosion properties of the electroless Ni-B coating deposited on AISI 304 stainless steels. The microstructure of the coating was characterized using x-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectrometry (SEM-EDS). XRD analysis revealed that the prepared coating possessed an amorphous character. SEM-EDS investigation also indicated that a non-stoichiometric Ni-B coating was deposited with a columnar growth mechanism on the stainless steel substrate and the morphology of the growth surface was blackberry-like. The hardness and tribological properties were characterized by microhardness and a pin-on-disc wear test. The electroless Ni-B coated sample had a higher degree of hardness, a lower friction coefficient and a lower wear rate than the uncoated substrate. The electrochemical potentiodynamic polarization method was used to evaluate the corrosion resistance of the coating. The electroless Ni-B coating offered cathodic protection on the substrate by acting as a sacrificial anode although it was electrochemically more reactive than the stainless steel substrate.
Energy transfer from Pr3+ to Gd3+ ions in BaB8O13 phosphor for phototherapy lamps
NASA Astrophysics Data System (ADS)
Tamboli, Sumedha; Nair, Govind B.; Dhoble, S. J.; Burghate, D. K.
2018-04-01
A series of BaB8O13 phosphors doped with different concentrations of Gd3+ ions and co-doped with Pr3+ ions were synthesized by solid state synthesis method. X-ray powder diffraction (XRD) analysis confirmed the formation of the compound in a crystalline and homogeneous form. Scanning Electron Microscopy (SEM) was performed to study the surface morphology of the compound and Fourier Transform Infrared (FT-IR) spectroscopy measurements determined the nature of bonding between elements of the compounds. The photoluminescence (PL) excitation spectra of BaB8O13:Gd3+ phosphor showed excitation peaks at 246 nm, 252 nm and 274 nm. The prominent emission peak was observed at 313 nm which is in narrow band ultraviolet B (NB-UVB) range. Energy transfer was achieved by co-doping Pr3+ ions with Gd3+ ions. PL decay time was also measured for BaB8O13: Gd3+, Pr3+ phosphor. Emission at 313 nm can be used for the treatment of skin diseases.
Niobium boride layers deposition on the surface AISI D2 steel by a duplex treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kon, O., E-mail: okon42@htotmail.com; Pazarlioglu, S.; Sen, S.
2015-03-30
In this paper, we investigated the possibility of deposition of niobium boride layers on the surface of AISI D2 steel by a duplex treatment. At the first step of duplex treatment, boronizing was performed on AISI D2 steel samples at 1000{sup o}C for 2h and then pre-boronized samples niobized at 850°C, 900°C and 950°C using thermo-reactive deposition method for 1–4 h. The presence of the niobium boride layers such as NbB, NbB{sub 2} and Nb{sub 3}B{sub 4} and also iron boride phases such as FeB, Fe{sub 2}B were examined by X-ray diffraction analysis. Scanning electron microscope (SEM) and micro-hardness measurementsmore » were realized. Experimental studies showed that the depth of the coating layers increased with increasing temperature and times and also ranged from 0.42 µm to 2.43 µm, depending on treatment time and temperature. The hardness of the niobium boride layer was 2620±180 HV{sub 0.005}.« less
Elastic properties, thermal stability, and thermodynamic parameters of MoAlB
NASA Astrophysics Data System (ADS)
Kota, Sankalp; Agne, Matthias; Zapata-Solvas, Eugenio; Dezellus, Olivier; Lopez, Diego; Gardiola, Bruno; Radovic, Miladin; Barsoum, Michel W.
2017-04-01
MoAlB is the first and, so far, the only transition-metal boride that forms alumina when heated in air and is thus potentially useful for high-temperature applications. Herein, the thermal stability in argon and vacuum atmospheres and the thermodynamic parameters of bulk polycrystalline MoAlB were investigated experimentally. At temperatures above 1708 K, in vacuum and inert atmospheres, this compound incongruently melts into the binary MoB and liquid aluminum metal as confirmed by differential thermal analysis, quenching experiments, x-ray diffraction, and scanning electron microscopy. Making use of that information together with heat-capacity measurements in the 4-1000-K temperature range—successfully modeled as the sum of lattice, electronic, and dilation contributions—the standard enthalpy, entropy, and free energy of formation are computed and reported for the full temperature range. The standard enthalpy of formation of MoAlB at 298 K was found to be -132 ±3.2 kJ/mol. Lastly, the thermal conductivity values are computed and modeled using a variation of the Slack model in the 300-1600-K temperature range.
NASA Astrophysics Data System (ADS)
Sukkha, Usa; Muanghlua, Rangson; Niemcharoen, Surasak; Boonchoma, Banjong; Vittayakorn, Naratip
2010-08-01
The combination of antiferroelectric PbZrO3 (PZ) and relaxor ferroelectric Pb(Zn1/3Nb2/3)O3 was prepared via the columbite precursor method. The basic characterizations were performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), linear thermal expansion, differential scanning calorimetry (DSC) techniques, dielectric spectroscopy, and hysteresis measurement. The XRD result indicated that the solid solubility limit of the (1- x)PZ- xPZN system was about x=0.40. The crystal structure of (1- x)PZ- xPZN transformed from orthorhombic to rhombohedral symmetry when the concentration of PZN was increased. A ferroelectric intermediate phase began to appear between the paraelectric and antiferroelectric phases of pure PZ, with increasing PZN content. In addition, the temperature range of the ferroelectric phase increased with increasing PZN concentration. The morphotropic phase boundary (MPB) in this system was located close to the composition, x=0.20.
Surface structures of L10-MnGa (001) by scanning tunneling microscopy and first-principles theory
NASA Astrophysics Data System (ADS)
Corbett, J. P.; Guerrero-Sanchez, J.; Richard, A. L.; Ingram, D. C.; Takeuchi, N.; Smith, A. R.
2017-11-01
We report on the surface reconstructions of L10-ordered MnGa (001) thin films grown by molecular beam epitaxy on a 50 nm Mn3N2 (001) layer freshly grown on a magnesium oxide (001) substrate. Scanning tunneling microscopy, Auger electron spectroscopy, and reflection high energy electron diffraction are combined with first-principles density functional theory calculations to determine the reconstructions of the L10-ordered MnGa (001) surface. We find two lowest energy reconstructions of the MnGa (001) face: a 1 × 1 Ga-terminated structure and a 1 × 2 structure with a Mn replacing a Ga in the 1 × 1 Ga-terminated surface. The 1 × 2 reconstruction forms a row structure along [100]. The manganese:gallium stoichiometry within the surface based on theoretical modeling is in good agreement with experiment. Magnetic moment calculations for the two lowest energy structures reveal important surface and bulk effects leading to oscillatory total magnetization for ultra-thin MnGa (001) films.
Dehydration of trehalose dihydrate at low relative humidity and ambient temperature.
Jones, Matthew D; Hooton, Jennifer C; Dawson, Michelle L; Ferrie, Alan R; Price, Robert
2006-04-26
The physico-chemical behaviour of trehalose dihydrate during storage at low relative humidity and ambient temperature was investigated, using a combination of techniques commonly employed in pharmaceutical research. Weight loss, water content determinations, differential scanning calorimetry and X-ray powder diffraction showed that at low relative humidity (0.1% RH) and ambient temperature (25 degrees C) trehalose dihydrate dehydrates forming the alpha-polymorph. Physical examination of trehalose particles by scanning electron microscopy and of the dominant growth faces of trehalose crystals by environmentally controlled atomic force microscopy revealed significant changes in surface morphology upon partial dehydration, in particular the formation of cracks. These changes were not fully reversible upon complete rehydration at 50% RH. These findings should be considered when trehalose dihydrate is used as a pharmaceutical excipient in situations where surface properties are key to behaviour, for example as a carrier in a dry powder inhalation formulations, as morphological changes under common processing or storage conditions may lead to variations in formulation performance.
Combined control of morphology and polymorph in spray drying of mannitol for dry powder inhalation
NASA Astrophysics Data System (ADS)
Lyu, Feng; Liu, Jing J.; Zhang, Yang; Wang, Xue Z.
2017-06-01
The morphology and polymorphism of mannitol particles were controlled during spray drying with the aim of improving the aerosolization properties of inhalable dry powders. The obtained microparticles were characterized using scanning electron microscopy, infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction and inhaler testing with a next generation impactor. Mannitol particles of varied α-mannitol content and surface roughness were prepared via spray drying by manipulating the concentration of NH4HCO3 in the feed solution. The bubbles produced by NH4HCO3 led to the formation of spheroid particles with a rough surface. Further, the fine particle fraction was increased by the rough surface of carriers and the high α-mannitol content. Inhalable dry powders with a 29.1 ± 2.4% fine particle fraction were obtained by spray-drying using 5% mannitol (w/v)/2% NH4HCO3 (w/v) as the feed solution, proving that this technique is an effective method to engineer particles for dry powder inhalation.
Wang, Hua-Mei; Fu, Ting-Ming; Guo, Li-Wei
2013-02-01
To prepare panax notoginseng saponins-tanshinone II(A) composite particles for pulmonary delivery, in order to explore a dry powder particle preparation method ensuring synchronized arrival of multiple components of traditional Chinese medicine compounds at absorption sites. Panax notoginseng saponins-tanshinone II(A) composite particles were prepared with spray-drying method, and characterized by scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), X-ray diffraction (XRD), infrared analysis (IR), dry laser particle size analysis, high performance liquid chromatography (HPLC) and the aerodynamic behavior was evaluated by a Next Generation Impactor (NGI). The dry powder particles produced had narrow particle size distribution range and good aerodynamic behavior, and could realize synchronized administration of multiple components. The spray-drying method is used to combine traditional Chinese medicine components with different physical and chemical properties in the same particle, and product into traditional Chinese medicine compound particles in line with the requirements for pulmonary delivery.
Enhanced materials from nature: nanocellulose from citrus waste.
Mariño, Mayra; Lopes da Silva, Lucimara; Durán, Nelson; Tasic, Ljubica
2015-04-03
Nanocellulose is a relatively inexpensive, highly versatile bio-based renewable material with advantageous properties, including biodegradability and nontoxicity. Numerous potential applications of nanocellulose, such as its use for the preparation of high-performance composites, have attracted much attention from industry. Owing to the low energy consumption and the addition of significant value, nanocellulose extraction from agricultural waste is one of the best alternatives for waste treatment. Different techniques for the isolation and purification of nanocellulose have been reported, and combining these techniques influences the morphology of the resultant fibers. Herein, some of the extraction routes for obtaining nanocellulose from citrus waste are addressed. The morphology of nanocellulose was determined by Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM), while cellulose crystallinity indexes (CI) from lyophilized samples were determined using solid-state Nuclear Magnetic Resonance (NMR) and X-Ray Diffraction (XRD) measurements. The resultant nanofibers had 55% crystallinity, an average diameter of 10 nm and a length of 458 nm.
NASA Astrophysics Data System (ADS)
Hu, Liandong; Kong, Dongqian; Hu, Qiaofeng; Gao, Na; Pang, Saixi
2015-10-01
This paper focused on formulating high-performance curcumin spray-dried powders for inhalation (curcumin-DPIs) to achieve a high lung concentration. Curcumin-DPIs were produced using wet milling combined with the spray drying method. The effects of different milling times on particle size and aerodynamic performance were investigated. The curcumin-DPIs were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and in vitro dissolution. Furthermore, the in vivo pharmacokinetic behavior and tissue distribution after pulmonary administration were also evaluated. Results showed that the drug dissolution was significantly enhanced by processing into curcumin-DPIs. The aerodynamic results indicated that the DPIs displayed a good aerosol performance. The plasma curcumin concentration was obviously enhanced by inhalation, and most of the curcumin-DPIs were deposited in the lung. This study demonstrated that inhalation was an effective way to carry drug to the lung, and curcumin-DPIs were hopeful for lung cancer treatment in the future.
NASA Astrophysics Data System (ADS)
Pfeiffer, Franz
2018-01-01
X-ray ptychographic microscopy combines the advantages of raster scanning X-ray microscopy with the more recently developed techniques of coherent diffraction imaging. It is limited neither by the fabricational challenges associated with X-ray optics nor by the requirements of isolated specimen preparation, and offers in principle wavelength-limited resolution, as well as stable access and solution to the phase problem. In this Review, we discuss the basic principles of X-ray ptychography and summarize the main milestones in the evolution of X-ray ptychographic microscopy and tomography over the past ten years, since its first demonstration with X-rays. We also highlight the potential for applications in the life and materials sciences, and discuss the latest advanced concepts and probable future developments.
Mn-silicide nanostructures aligned on massively parallel silicon nano-ribbons
NASA Astrophysics Data System (ADS)
De Padova, Paola; Ottaviani, Carlo; Ronci, Fabio; Colonna, Stefano; Olivieri, Bruno; Quaresima, Claudio; Cricenti, Antonio; Dávila, Maria E.; Hennies, Franz; Pietzsch, Annette; Shariati, Nina; Le Lay, Guy
2013-01-01
The growth of Mn nanostructures on a 1D grating of silicon nano-ribbons is investigated at atomic scale by means of scanning tunneling microscopy, low energy electron diffraction and core level photoelectron spectroscopy. The grating of silicon nano-ribbons represents an atomic scale template that can be used in a surface-driven route to control the combination of Si with Mn in the development of novel materials for spintronics devices. The Mn atoms show a preferential adsorption site on silicon atoms, forming one-dimensional nanostructures. They are parallel oriented with respect to the surface Si array, which probably predetermines the diffusion pathways of the Mn atoms during the process of nanostructure formation.
High-entropy alloys in hexagonal close-packed structure
Gao, Michael C.; Zhang, B.; Guo, S. M.; ...
2015-08-28
The microstructures and properties of high-entropy alloys (HEAs) based on the face-centered cubic and body-centered cubic structures have been studied extensively in the literature, but reports on HEAs in the hexagonal close-packed (HCP) structure are very limited. Using an efficient strategy in combining phase diagram inspection, CALPHAD modeling, and ab initio molecular dynamics simulations, a variety of new compositions are suggested that may hold great potentials in forming single-phase HCP HEAs that comprise rare earth elements and transition metals, respectively. Lastly, experimental verification was carried out on CoFeReRu and CoReRuV using X-ray diffraction, scanning electron microscopy, and energy dispersion spectroscopy.
Fabrication of composite films containing zirconia and cationic polyelectrolytes.
Pang, Xin; Zhitomirsky, Igor
2004-03-30
Composite films were prepared by electrophoretic deposition of poly(ethylenimine) or poly(allylamine hydrochloride) combined with cathodic precipitation of zirconia. Films of up to several micrometers thick were obtained on Ni, Pt, stainless-steel, graphite, and carbon-felt substrates. When the concentration of polyelectrolytes in solutions and the deposition time were varied, the amount of the deposited material and its composition can be varied. The electrochemical intercalation of yttria-stabilized zirconia particles into the composite films has been demonstrated. Obtained results pave the way for the electrodeposition of other polymer-ceramic composites. The deposits were studied by thermogravimetric analysis, X-ray diffraction analysis, scanning electron microscopy, and atomic force microscopy. The mechanisms of deposition are discussed.
Mn-silicide nanostructures aligned on massively parallel silicon nano-ribbons.
De Padova, Paola; Ottaviani, Carlo; Ronci, Fabio; Colonna, Stefano; Olivieri, Bruno; Quaresima, Claudio; Cricenti, Antonio; Dávila, Maria E; Hennies, Franz; Pietzsch, Annette; Shariati, Nina; Le Lay, Guy
2013-01-09
The growth of Mn nanostructures on a 1D grating of silicon nano-ribbons is investigated at atomic scale by means of scanning tunneling microscopy, low energy electron diffraction and core level photoelectron spectroscopy. The grating of silicon nano-ribbons represents an atomic scale template that can be used in a surface-driven route to control the combination of Si with Mn in the development of novel materials for spintronics devices. The Mn atoms show a preferential adsorption site on silicon atoms, forming one-dimensional nanostructures. They are parallel oriented with respect to the surface Si array, which probably predetermines the diffusion pathways of the Mn atoms during the process of nanostructure formation.
NASA Astrophysics Data System (ADS)
Springholz, G.; Frank, N.; Bauer, G.
1994-05-01
Heteroepitaxial growth of 2% lattice-mismatched EuTe on PbTe (111) by molecular beam epitaxy is investigated in the two-dimensional layer-by-layer growth regime combining in situ reflection high-energy electron diffraction and scanning tunneling microscopy (STM). At the critical layer thickness a distinct surface roughening is observed. The quantitative analysis of STM images yields an increase of the root mean square roughness by a factor of 4 at this roughening transition. Strong evidence is presented that for the used growth conditions this roughening is not caused by strain induced coherent islanding but by misfit dislocations at the onset of strain relaxation.
NASA Astrophysics Data System (ADS)
Liu, Xiaomeng; Lu, Shaoxiang; Xu, Hanghui; Ren, Lili
2018-07-01
Molybdenum phosphide (MoP), modified by polyethylene glycol (PEG) and citric acid (CA), exhibited 2 to 3 times superior activity than the MoP modified by CA alone. And the optimal activity temperature was reduced from 500 to 450oC. The catalyst was fully characterized by a variety of techniques including X-ray diffraction (XRD), N2 adsorption-desorption isotherm, scanning electron microscopy (SEM), transmission electron microscopy (TEM). The results showed that the addition of PEG and CA increased the surface area of MoP and decreased the particle size of MoP. Furthermore, the reaction mechanism also has been discussed by combining the activity data and characterization results.
Evolution of magnetic properties and microstructure of Hf2Co11B alloys
McGuire, Michael A.; Rios, Orlando
2015-02-05
Amorphous Hf 2Co 11B alloys produced by melt-spinning have been crystallized by annealing at 500-800 °C, and the products have been investigated using magnetization measurements, x-ray diffraction, and scanning electron microscopy. The results reveal the evolution of the phase fractions, microstructure, and magnetic properties with both annealing temperature and time. Crystallization of the phase denoted HfCo 7, which is associated with the development of coercivity, occurs slowly at 500 °C. Annealing at intermediate temperatures produces mixed phase samples containing some of the HfCo 7 phase with the highest values of remanent magnetization and coercivity. The equilibrium structure at 800 °Cmore » contains HfCo3B 2, Hf 6Co 23 and Co, and displays soft ferromagnetism. Maximum values for the remanent magnetization, intrinsic coercivity, and magnetic energy product among the samples are approximately 5.2 kG, 2.0 kOe, and 3.1 MGOe, respectively, which indicates that the significantly higher values observed in crystalline, melt-spun Hf 2Co 11B ribbons are a consequence of the non-equilibrium solidification during the melt-spinning process. Application of high magnetic fields during annealing is observed to strongly affect the microstructural evolution, which may provide access to higher performance materials in Zr/Hf-Co hard ferromagnets. The crystal structure of HfCo 7 and the related Zr analogues is unknown, and without knowledge of atomic positions powder diffraction cannot distinguish among proposed unit cells and symmetries found in the literature.« less
NASA Astrophysics Data System (ADS)
Selmane, Naceur; Cheknane, Ali; Gabouze, Nourddine; Maloufi, Nabila; Aillerie, Michel
2017-11-01
ZnO films deposited on silicon porous substrates (PS) were prepared by electro-deposition anodization on n type (100) silicon wafer. This ZnO/PS structure combines substrates having specific structural and optical properties (IR emission), with nano-composites of ZnO potentially interesting due to their functional properties (UV emission) to be integrated as constitutive elements of devices in various optoelectronic applications mainly in blue light emitters. With this combined structure, the blue shift in the PL peak is possible and easy to obtain (467nm). The vibration modes of PS and ZnO films on PS substrates (ZnO /PS) were investigated by infrared (FTIR) measurements and their behaviors were analyzed and discussed by considering the structural properties characterized by X-ray diffraction (DRX) and scanning electronic microscopy (MEB).
Hwang, Hyun-Jun; Oh, Kyung-Hwan; Kim, Hak-Sung
2016-01-01
We developed an ultra-high speed photonic sintering method involving flash white light (FWL) combined with near infrared (NIR) and deep UV light irradiation to produce highly conductive copper nano-ink film. Flash white light irradiation energy and the power of NIR/deep UV were optimized to obtain high conductivity Cu films. Several microscopic and spectroscopic characterization techniques such as scanning electron microscopy (SEM), a x-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy were employed to characterize the Cu nano-films. Optimally sintered Cu nano-ink films produced using a deep UV-assisted flash white light sintering technique had the lowest resistivity (7.62 μΩ·cm), which was only 4.5-fold higher than that of bulk Cu film (1.68 μΩ•cm). PMID:26806215
Hwang, Hyun-Jun; Oh, Kyung-Hwan; Kim, Hak-Sung
2016-01-25
We developed an ultra-high speed photonic sintering method involving flash white light (FWL) combined with near infrared (NIR) and deep UV light irradiation to produce highly conductive copper nano-ink film. Flash white light irradiation energy and the power of NIR/deep UV were optimized to obtain high conductivity Cu films. Several microscopic and spectroscopic characterization techniques such as scanning electron microscopy (SEM), a x-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy were employed to characterize the Cu nano-films. Optimally sintered Cu nano-ink films produced using a deep UV-assisted flash white light sintering technique had the lowest resistivity (7.62 μΩ·cm), which was only 4.5-fold higher than that of bulk Cu film (1.68 μΩ•cm).
NASA Astrophysics Data System (ADS)
Piehler, A.; Löw, R.; Betz, J.; Schönberger, R.; Renk, K. F.
1993-11-01
TlBa2Ca2Cu3O9±δ high Tc thin films were prepared on MgO <100> surfaces by a combination of laser ablation from a stoichiometric Ba2Ca2Cu3Ox target and the thermal evaporation of thallium oxide. X-ray diffraction measurements showed that the films consisted of predominantly c axis oriented TlBa2Ca2Cu3O9±δ, and scanning electron microscopy revealed that the surfaces had a flat, platelike morphology. The ac inductive measurements indicated that the onset of superconductivity occurred at 117 K with a transition width (10%-90%) of ˜3 K. Zero resistivity was reached at 120 K. The critical current density was ˜3×104 A/cm2 at 110 K.
Strain mapping in TEM using precession electron diffraction
Taheri, Mitra Lenore; Leff, Asher Calvin
2017-02-14
A sample material is scanned with a transmission electron microscope (TEM) over multiple steps having a predetermined size at a predetermined angle. Each scan at a predetermined step and angle is compared to a template, wherein the template is generated from parameters of the material and the scanning. The data is then analyzed using local mis-orientation mapping and/or Nye's tensor analysis to provide information about local strain states.
Oxidation of ZrB2-and HfB2-Based Ultra-High Temperature Ceramics: Effects of Ta Additions
NASA Technical Reports Server (NTRS)
Opila, Elizabeth; Levine, Stanley; Lorinez, Jonathan
2003-01-01
Several compositions of ZrB2- and HfB2-based Ultra-High Temperature Ceramics (UHTC) were oxidized in stagnant air at 1627 C in ten minute cycles for times up to 100 minutes. These compositions include: ZrB2 - 20v% SiC, HfB2 - 20v% SiC, ZrB2 - 20v% SiC - 20v% TaSi2, ZrB2 - 33v% SiC, HfB2 - 20v% SiC - 20v% TaSi2, and ZrB2 - 20v% SiC - 20v% TaC. The weight change due to oxidation was recorded. The ZrB2 - 20v% SiC - 20v% TaSi2 composition was also oxidized in stagnant air at 1927 C and in an arc jet atmosphere. Samples were analyzed after oxidation by x-ray diffraction, field emission scanning electron microscopy, and energy dispersive spectroscopy to determine the reaction products and to observe the microstructure. The ZrB2 - 20v% SiC - 20v% TaSi2 showed the lowest oxidation rate at 1627 C, but performed poorly under the more extreme tests due to liquid phase formation. Effects of Ta-additions on the oxidation of the diboride-based UHTC are discussed.
NASA Astrophysics Data System (ADS)
Nakamura, N.; Anno, K.; Kono, S.
1991-10-01
A single-domain Si(111)4 × 1-In surface has been studied by μ-probe reflection high-energy electron diffraction (RHEED) to elucidate the symmetry of the 4 × 1 surface. Azimuthal diffraction patterns of In MNN Auger electron have been obtained by a μ-probe Auger electron diffraction (AED) apparatus from the single-domain Si(111)4 × 1-In surface. On the basis of information from scanning tunneling microscopy [J. Microsc. 152 (1988) 727] and under the assumption that the 4 × 1 surface is composed of In-overlayers, the μ-probe AED patterns were kinematically analyzed to reach a concrete model of indium arrangement.
Electroconductive Composites from Polystyrene Block Copolymers and Cu–Alumina Filler
Nadeem, QuratulAin; Fatima, Tasneem; Prinsen, Pepijn; ur Rehman, Aziz; Gill, Rohama; Mahmood, Rashid; Luque, Rafael
2016-01-01
Technological advancements and development of new materials may lead to the manufacture of sustainable energy-conducting devices used in the energy sector. This research attempts to fabricate novel electroconductive and mechanically stable nanocomposites via an electroless deposition (ELD) technique using electrically insulating materials. Metallic Cu is coated onto Al2O3 by ELD, and the prepared filler is then integrated (2–14 wt %) into a matrix of polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene-graft-maleic anhydride (PS-b-(PE-r-B)-b-PS-g-MA). Considerable variations in composite phases with filler inclusion exist. The Cu crystallite growth onto Al2O3 was evaluated by X-ray diffraction (XRD) analysis and energy dispersive spectrometry (EDS). Scanning electron microscopy (SEM) depicts a uniform Cu coating on Al2O3, while homogeneous filler dispersion is exhibited in the case of composites. The electrical behavior of composites is enhanced drastically (7.7 × 10−5 S/cm) upon incorporation of Cu–Al2O3 into an insulating polymer matrix (4.4 × 10−16 S/cm). Moreover, mechanical (Young’s modulus, tensile strength and % elongation at break) and thermal (thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC)) properties of the nanocomposites also improve substantially. These composites are likely to meet the demands of modern high-strength electroconductive devices. PMID:28774110
Liu, Xin; Wang, Mengmeng; Yin, Fucheng; Ouyang, Xuemei; Li, Zhi
2017-01-01
The effects of tungsten addition on the microstructure and corrosion resistance of Fe-3.5B alloys in a liquid zinc bath at 520 °C were investigated by means of scanning electron microscopy, X-ray diffraction and electron probe micro-analysis. The microstructure evolution in different alloys is analyzed and discussed using an extrapolated Fe-B-W ternary phase diagram. Experimental results show that there are three kinds of borides, the reticular (Fe, W)2B, the rod-like (Fe, W)3B and flower-like FeWB. The addition of tungsten can refine the microstructure and improve the stability of the reticular borides. Besides, it is beneficial to the formation of the metastable (Fe, W)3B phase. The resultant Fe-3.5B-11W (wt %) alloy possesses excellent corrosion resistance to liquid zinc. When tungsten content exceeds 11 wt %, the formed flower-like FeWB phase destroys the integrity of the reticular borides and results in the deterioration of the corrosion resistance. Also, the corrosion failure resulting from the spalling of borides due to the initiation of micro-cracks in the grain boundary of borides is discussed in this paper. PMID:28772759
NASA Astrophysics Data System (ADS)
Iatsyuk, I. V.; Lemesheva, M. V.; Kiryukhantsev-Korneev, Ph V.; Levashov, E. A.
2018-04-01
The ceramic ZrB2, ZrSiB, and ZrAlSiB cathodes were manufactured by means of self-propagating high-temperature synthesis (SHS). The parameters of SHS process including dependence of the combustion temperature and rate on the initial temperature of the reaction mixtures, as well as values of effective activation energy were estimated. Cathodes were subjected to the magnetron sputtering in the argon atmosphere. The structure and properties of cathodes and coatings were studied by means of X-ray diffraction, scanning electron microscopy, energy-dispersive and glow discharge optical emission spectroscopy. Bulk ceramic samples and coatings were characterised in terms of their hardness, elastic modulus, elastic recovery, density, and residual porosity. Results obtained shows that cathodes posses homogeneous structure with low porosity level in range 2-6% and hardness between 10 and 17 GPa. Coatings demonstrate dense defect-free structure and contain nanocrystallites of h-ZrB2 phase. The grain size and hardness decrease from 8 down to 2 nm and from 37 down to 16 GPa with the addition of the silicon and aluminum dopes.
Galactose-functionalized multi-responsive nanogels for hepatoma-targeted drug delivery
NASA Astrophysics Data System (ADS)
Lou, Shaofeng; Gao, Shan; Wang, Weiwei; Zhang, Mingming; Zhang, Ju; Wang, Chun; Li, Chen; Kong, Deling; Zhao, Qiang
2015-02-01
We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-d-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using a combination of enzymatic transesterification and emulsion copolymerization for intracellular drug delivery. The nanogel exhibited redox, pH and temperature-responsive properties, which can be adjusted by varying the monomer feeding ratio. Furthermore, the volume phase transition temperature (VPTT) of the nanogels was close to body temperature and can result in rapid thermal gelation at 37 °C. Scanning electron microscopy also revealed that the P(ODGal-VCL-MAA) nanogel showed uniform spherical monodispersion. With pyrene as a probe, the fluorescence excitation spectra demonstrated nanogel degradation in response to glutathione (GSH). X-ray diffraction (XRD) showed an amorphous property of DOX within the nanogel, which was used in this study as a model anti-cancer drug. Drug-releasing characteristics of the nanogel were examined in vitro. The results showed multi-responsiveness of DOX release by the variation of environmental pH values, temperature or the availability of GSH, a biological reductase. An in vitro cytotoxicity assay showed a higher anti-tumor activity of the galactose-functionalized DOX-loaded nanogels against human hepatoma HepG2 cells, which was, at least in part, due to specific binding between the galactose segments and the asialoglycoprotein receptors (ASGP-Rs) in hepatic cells. Confocal laser scanning microscopy (CLSM) and flow cytometric profiles further confirmed elevated cellular uptake of DOX by the galactose-functionalised nanogels. Thus, we report here a multi-responsive P(ODGal-VCL-MAA) nanogel with a hepatoma-specific targeting ability for anti-cancer drug delivery.We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-d-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using a combination of enzymatic transesterification and emulsion copolymerization for intracellular drug delivery. The nanogel exhibited redox, pH and temperature-responsive properties, which can be adjusted by varying the monomer feeding ratio. Furthermore, the volume phase transition temperature (VPTT) of the nanogels was close to body temperature and can result in rapid thermal gelation at 37 °C. Scanning electron microscopy also revealed that the P(ODGal-VCL-MAA) nanogel showed uniform spherical monodispersion. With pyrene as a probe, the fluorescence excitation spectra demonstrated nanogel degradation in response to glutathione (GSH). X-ray diffraction (XRD) showed an amorphous property of DOX within the nanogel, which was used in this study as a model anti-cancer drug. Drug-releasing characteristics of the nanogel were examined in vitro. The results showed multi-responsiveness of DOX release by the variation of environmental pH values, temperature or the availability of GSH, a biological reductase. An in vitro cytotoxicity assay showed a higher anti-tumor activity of the galactose-functionalized DOX-loaded nanogels against human hepatoma HepG2 cells, which was, at least in part, due to specific binding between the galactose segments and the asialoglycoprotein receptors (ASGP-Rs) in hepatic cells. Confocal laser scanning microscopy (CLSM) and flow cytometric profiles further confirmed elevated cellular uptake of DOX by the galactose-functionalised nanogels. Thus, we report here a multi-responsive P(ODGal-VCL-MAA) nanogel with a hepatoma-specific targeting ability for anti-cancer drug delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06714b
Chen, Weitian; Sica, Christopher T.; Meyer, Craig H.
2008-01-01
Off-resonance effects can cause image blurring in spiral scanning and various forms of image degradation in other MRI methods. Off-resonance effects can be caused by both B0 inhomogeneity and concomitant gradient fields. Previously developed off-resonance correction methods focus on the correction of a single source of off-resonance. This work introduces a computationally efficient method of correcting for B0 inhomogeneity and concomitant gradients simultaneously. The method is a fast alternative to conjugate phase reconstruction, with the off-resonance phase term approximated by Chebyshev polynomials. The proposed algorithm is well suited for semiautomatic off-resonance correction, which works well even with an inaccurate or low-resolution field map. The proposed algorithm is demonstrated using phantom and in vivo data sets acquired by spiral scanning. Semiautomatic off-resonance correction alone is shown to provide a moderate amount of correction for concomitant gradient field effects, in addition to B0 imhomogeneity effects. However, better correction is provided by the proposed combined method. The best results were produced using the semiautomatic version of the proposed combined method. PMID:18956462
A new soluble and bioactive polymorph of praziquantel.
Zanolla, Debora; Perissutti, Beatrice; Passerini, Nadia; Chierotti, Michele R; Hasa, Dritan; Voinovich, Dario; Gigli, Lara; Demitri, Nicola; Geremia, Silvano; Keiser, Jennifer; Cerreia Vioglio, Paolo; Albertini, Beatrice
2018-06-01
Praziquantel is the only available drug to treat Schistosomiasis. However, its utilization is limited by many drawbacks, including the high therapeutic dose needed, resulting in large tablets and capsules difficult to be swallowed, especially from pediatric patients. In this study, an alternative option to overcome these disadvantages is proposed: to switch to a novel crystalline polymorph of racemic compound praziquantel. The preparation of the crystalline polymorph was realized via a neat grinding process in a vibrational mill. The new phase (Form B) was chemically identical to the starting material (as proved by HPLC, 1 H NMR, and polarimetry), but showed different physical properties (as evaluated by SEM, differential scanning calorimetry, thermogravimetry, ATR-FTIR spectroscopy, X-ray powder diffraction, and solid-state NMR). Furthermore, the crystal structure of the new phase was solved from the powder synchrotron X-ray diffraction pattern, resulting in a monoclinic C2/c cell and validated by DFT-D calculation. Moreover the simulated solid-state NMR 13 C chemical shifts were in excellent agreement with the experimental data. The conversion of original praziquantel into Form B showed to affect positively the water solubility and the intrinsic dissolution rate of praziquantel. Both the in vitro and in vivo activity against Schistosoma mansoni were maintained. Our findings suggest that the new phase, that proved to be physically stable for at least one year, is a promising product for designing a new praziquantel formulation. Copyright © 2018 Elsevier B.V. All rights reserved.
Recent developments in melt processed Gd-123 and MgB2 materials at RTRI
NASA Astrophysics Data System (ADS)
Muralidhar, M.; Fukumoto, Y.; Ishihara, A.; Suzuki, K.; Tomita, M.; Koblischka, M. R.; Yamamoto, A.; Kishio, K.
2014-01-01
In this contribution we will report on the current status, recent developments in GdBa2Cu3Oy "Gd-123" and MgB2 material processing, characterization, and applications at the Railway Technical Research Institute (RTRI). Batch-processing of Gd-123 bulk material grown in air was performed using novel thin film Nd-123 seeds grown on MgO crystals. In this way, we are able to fabricate materials with good quality, and uniform performance. We examined the technology of the uniform performance of the large 45 mm diameter, single grain Gd-123 bulks for use in application of NMR. For this purpose, four 5 mm thick pieces are cut vertically from a single grain Gd-123 material and the magnetic field distribution is measured using a scanning hall sensor. We found that all four pieces are single domain and exhibit a quite uniform field distribution. Furthermore, the batch-processed bulk materials are used for the construction of a chilled Maglev vehicle. On the other hand, to optimize the trapped field performance of bulk MgB2 material, several samples were prepared by solid state reaction at different temperatures ranging from 750 to 950 °C in pure argon atmosphere. X-ray diffraction results indicated that single phase and homogenous MgB2 bulks are produced when sintering them around 775 °C. Further, atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicated that an uniform grain size results by controlling the processing temperature. So, higher trapped fields can be achieved in sintered MgB2 material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseev, Evgeny V., E-mail: e.alekseev@fz-juelich.de; Institut für Kristallographie, RWTH Aachen, Jägerstraße 17–19 D-52066 Aachen; Felbinger, Olivier
K[AsW{sub 2}O{sub 9}], prepared by high-temperature solid-state reaction, is the first member of the arsenate–tungsten bronze family. The structure of K[AsW{sub 2}O{sub 9}] is based on a 3-dimensional (3D) oxotungstate–arsenate framework with the non-centrosymmetric P2{sub 1}2{sub 1}2{sub 1} space group, a=4.9747(3) Å, b=9.1780(8) Å, c=16.681(2) Å. The material was characterized using X-ray diffraction, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Raman and infrared (IR) spectroscopic techniques. The results of DSC demonstrate that this phase is stable up to 1076 K. Second harmonic generation (SHG) measurements performed on a powder sample demonstrate noticeable (0.1 of LiIO{sub 3}) non-linear optical (NLO)more » activity. - Graphical abstract: K[AsW{sub 2}O{sub 9}], the first member of arsenate–tungsten bronze family exhibit new three dimensional structure type, significant thermal stability and NLO properties. Highlights: • K[AsW{sub 2}O{sub 9}], the first member of the arsenate–tungsten bronze family was synthesized with solid state reaction technique. • Structure of this phase was investigated with X-ray diffraction, IR and Raman spectroscopy and electron microscopy. • Thermal stability of the phase was determinate with DSC techniques. • NLO properties were investigated.« less
Chen, Pei; Wang, Kai; Kuang, Qirong; Zhou, Sumei; Wang, Dazheng; Liu, Xingxun
2016-06-01
Regulating the starch gastrointestinal digestion rate by control of its aggregation structure is an effective way, but the mechanism is still not clear. Multi-scale structure of waxy and normal wheat starches were studied by confocal laser scanning and scanning electron microscopes, as well as wide-angle and small-angle X-ray techniques in this study. In vitro digestion kinetics of those two starches and structure-digestion relationship were also discussed. Both waxy and normal starches show A-type diffraction pattern, but waxy variety shows a slightly higher crystallinity. Small-angle X-ray scattering results show that waxy wheat starch has higher scattering peak intensity (Imax) and a larger crystallinity lamellar repeat distance (Lp) compared with the normal wheat starch. We suggested that the higher digestion rate of waxy starch at initial stage is mainly due to more small-size particles, but the higher crystallinity and the larger crystalline lamellar size limit the digestion extent. Copyright © 2016 Elsevier B.V. All rights reserved.
Perumal, Govindaraj; Pappuru, Sreenath; Chakraborty, Debashis; Maya Nandkumar, A; Chand, Dillip Kumar; Doble, Mukesh
2017-07-01
This study is aimed to develop curcumin (Cur) incorporated electrospun nanofibers of a blend of poly (lactic acid) (PLA) and hyperbranched polyglycerol (HPG) for wound healing applications. Both the polymers are synthesized and fabricated by electrospinning technique. The produced nanofibers were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Colorimetry (DSC) and Thermogravimetric Analysis (TGA). Electrospun scaffolds (PLA/HPG/Cur) exhibits very high hydrophilicity, high swelling and drug uptake and promotes better cell viability, adhesion and proliferation when compared to PLA/Cur electrospun nanofibers. Biodegradation study revealed that the morphology of the nanofibers were unaffected even after 14days immersion in Phosphate Buffered Saline. In vitro scratch assay indicates that migration of the cells in the scratch treated with PLA/HPG/Cur is complete within 36h. These results suggest that PLA/HPG/Cur nanofibers can be a potential wound patch dressing for acute and chronic wound applications. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, M. D.; Fralick, D. T.; Cockrell, C. R.; Beck, F. B.
1996-01-01
Radiation pattern prediction analysis of elliptically polarized cavity-backed aperture antennas in a finite ground plane is performed using a combined Finite Element Method/Method of Moments/Geometrical Theory of Diffraction (FEM/MoM/GTD) technique. The magnetic current on the cavity-backed aperture in an infinite ground plane is calculated using the combined FEM/MoM analysis. GTD, including the slope diffraction contribution, is used to calculate the diffracted fields caused by both soft and hard polarizations at the edges of the finite ground plane. Explicit expressions for regular diffraction coefficients and slope diffraction coefficients are presented. The slope of the incident magnetic field at the diffraction points is derived and analytical expressions are presented. Numerical results for the radiation patterns of a cavity-backed circular spiral microstrip patch antenna excited by a coaxial probe in a finite rectangular ground plane are computed and compared with experimental results.
NASA Technical Reports Server (NTRS)
Johnson, Roy R.; Russell, P.; Dunagan, S.; Redemann, J.; Shinozuka, Y.; Segal-Rosenheimer, M.; LeBlanc, S.; Flynn, C.; Schmid, B.; Livingston, J.
2014-01-01
The objectives of this task in the AITT (Airborne Instrument Technology Transition) Program are to (1) upgrade the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument to its full science capability of measuring (a) direct-beam sun transmission to derive aerosol optical depth spectra, (b) sky radiance vs scattering angle to retrieve aerosol absorption and type (via complex refractive index spectra, shape, and mode-resolved size distribution), (c) zenith radiance for cloud properties, and (d) hyperspectral signals for trace gas retrievals, and (2) demonstrate its suitability for deployment in challenging NASA airborne multiinstrument campaigns. 4STAR combines airborne sun tracking, sky scanning, and zenith pointing with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution, radiant energy budgets (hence climate), and remote measurements of Earth's surfaces. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements are intended to tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. 4STAR test flights, as well as science flights in the 2012-13 TCAP (Two-Column Aerosol Project) and 2013 SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) have demonstrated that the following are essential for 4STAR to achieve its full science potential: (1) Calibration stability for both direct-beam irradiance and sky radiance, (2) Improved light collection and usage, and (3) Improved flight operability and reliability. A particular challenge for the AITT-4STAR project has been conducting it simultaneously with preparations for, and execution of, ARISE (Arctic Radiation - IceBridge Sea&Ice Experiment), a NASA airborne science deployment (unplanned when AITT-4STAR was selected for funding) in which 4STAR will deploy to Thule, Greenland, and Fairbanks, Alaska, on the NASA C- 130. This presentation describes progress to date in accomplishing AITT-4STAR goals, and plans for project completion.
Effects of moiré lattice structure on electronic properties of graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lunan; Wu, Yun; Hershberger, M. T.
Here, we study structural and electronic properties of graphene grown on silicone carbide (SiC) substrate using a scanning tunneling microscope, spot-profile-analysis low-energy electron diffraction, and angle-resolved photoemission spectroscopy. We find several new replicas of Dirac cones in the Brillouin zone. Their locations can be understood in terms of a combination of basis vectors linked to SiC 6 × 6 and graphene 6√3×6√3 reconstruction. Therefore, these new features originate from the moiré caused by the lattice mismatch between SiC and graphene. More specifically, Dirac cone replicas are caused by underlying weak modulation of the ionic potential by the substrate that ismore » then experienced by the electrons in the graphene. We also demonstrate that this effect is equally strong in single- and trilayer graphene; therefore, the additional Dirac cones are intrinsic features rather than the result of photoelectron diffraction. These new features in the electronic structure are very important for the interpretation of recent transport measurements and can assist in tuning the properties of graphene for practical applications.« less
Microstructural modification of pure Mg for improving mechanical and biocorrosion properties.
Ahmadkhaniha, D; Järvenpää, A; Jaskari, M; Sohi, M Heydarzadeh; Zarei-Hanzaki, A; Fedel, M; Deflorian, F; Karjalainen, L P
2016-08-01
In this study, the effect of microstructural modification on mechanical properties and biocorrosion resistance of pure Mg was investigated for tailoring a load-bearing orthopedic biodegradable implant material. This was performed utilizing the friction stir processing (FSP) in 1-3 passes to refine the grain size. Microstructure was examined in an optical microscope and scanning electron microscope with an electron backscatter diffraction unit. X-ray diffraction method was used to identify the texture. Mechanical properties were measured by microhardness and tensile testing. Electrochemical impedance spectroscopy was applied to evaluate corrosion behavior. The results indicate that even applying a single pass of FSP refined the grain size significantly. Increasing the number of FSP passes further refined the structure, increased the mechanical strength and intensified the dominating basal texture. The best combination of mechanical properties and corrosion resistance were achieved after three FSP passes. In this case, the yield strength was about six times higher than that of the as-cast Mg and the corrosion resistance was also improved compared to that in the as-cast condition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wan, Caichao; Li, Jian
2016-08-01
Green porous and lightweight cellulose aerogels have been considered as promising candidates to substitute some petrochemical host materials to support various nanomaterials. In this work, waste wheat straw was collected as feedstock to fabricate cellulose hydrogels, and a green inexpensive NaOH/polyethylene glycol solution was used as cellulose solvent. Prior to freeze-drying treatment, the cellulose hydrogels were integrated with polypyrrole and silver nanoparticles by easily-operated in-situ oxidative polymerization of pyrrole using silver ions as oxidizing agent. The tri-component hybrid aerogels were characterized by scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectroscopy, selected area electron diffraction, X-ray photoelectron spectroscopy, and X-ray diffraction. Moreover, the antibacterial activity of the hybrid aerogels against Escherichia coli (Gram-negative), Staphylococcus aureus (Gram-positive) and Listeria monocytogenes (intracellular bacteria) was qualitatively and quantitatively investigated by parallel streak method and determination of minimal inhibitory concentration, respectively. This work provides an example of combining cellulose aerogels with nanomaterials, and helps to develop novel forms of cellulose-based functional materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Squeezing clathrate cages to host trivalent rare-earth guests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian; He, Yuping; Mordvinova, Natalia E.
Strike difference of the trivalent rare-earth cations from their alkali and alkaline-earth peers is in the presence of localized 4f-electrons and strong spin-orbit coupling. Placing trivalent rare-earth cations inside the fullerene molecules or in between the blocks of itinerant magnetic intermetallics gave rise to plethora of fascinating properties and materials. A long-time missing but hardly desired piece is the semiconducting or metallic compound where rare-earth cations are situated inside the oversized polyhedral cages of three-dimensional framework. In this work we present a synthesis of such compounds, rare-earth containing clathrates Ba 8-xR xCu 16P 30. The unambiguous proofs of their compositionmore » and crystal structure were achieved by a combination of synchrotron powder diffraction, time-of-flight neutron powder diffraction, scanning-transmission electron microscopy, and electron energy-loss spectroscopy. Our quantum-mechanical calculations and experimental characterizations show that the incorporation of the rare-earth cations significantly enhances the hole mobility and concentration which results in the drastic increase in the thermoelectric performance.« less
Effects of moiré lattice structure on electronic properties of graphene
NASA Astrophysics Data System (ADS)
Huang, Lunan; Wu, Yun; Hershberger, M. T.; Mou, Daixiang; Schrunk, Benjamin; Tringides, Michael C.; Hupalo, Myron; Kaminski, Adam
2017-07-01
We study structural and electronic properties of graphene grown on silicone carbide (SiC) substrate using a scanning tunneling microscope, spot-profile-analysis low-energy electron diffraction, and angle-resolved photoemission spectroscopy. We find several new replicas of Dirac cones in the Brillouin zone. Their locations can be understood in terms of a combination of basis vectors linked to SiC 6 × 6 and graphene 6 √{3 }×6 √{3 } reconstruction. Therefore, these new features originate from the moiré caused by the lattice mismatch between SiC and graphene. More specifically, Dirac cone replicas are caused by underlying weak modulation of the ionic potential by the substrate that is then experienced by the electrons in the graphene. We also demonstrate that this effect is equally strong in single- and trilayer graphene; therefore, the additional Dirac cones are intrinsic features rather than the result of photoelectron diffraction. These new features in the electronic structure are very important for the interpretation of recent transport measurements and can assist in tuning the properties of graphene for practical applications.
Effects of moiré lattice structure on electronic properties of graphene
Huang, Lunan; Wu, Yun; Hershberger, M. T.; ...
2017-07-10
Here, we study structural and electronic properties of graphene grown on silicone carbide (SiC) substrate using a scanning tunneling microscope, spot-profile-analysis low-energy electron diffraction, and angle-resolved photoemission spectroscopy. We find several new replicas of Dirac cones in the Brillouin zone. Their locations can be understood in terms of a combination of basis vectors linked to SiC 6 × 6 and graphene 6√3×6√3 reconstruction. Therefore, these new features originate from the moiré caused by the lattice mismatch between SiC and graphene. More specifically, Dirac cone replicas are caused by underlying weak modulation of the ionic potential by the substrate that ismore » then experienced by the electrons in the graphene. We also demonstrate that this effect is equally strong in single- and trilayer graphene; therefore, the additional Dirac cones are intrinsic features rather than the result of photoelectron diffraction. These new features in the electronic structure are very important for the interpretation of recent transport measurements and can assist in tuning the properties of graphene for practical applications.« less
NASA Astrophysics Data System (ADS)
Liu, Zhisen; Li, Dehao; Li, Zesheng; Liu, Zhenghui; Zhang, Zhiyuan
2017-11-01
A facile strategy for the fabrication of a nitrogen-doped 3D reduced graphene oxide (N-3D-rGO) macroporous structure is proposed in this paper. The proposed strategy used polystyrene microspheres as the templates and melamine as the nitrogen source. Using β-MnO2 as the oxidant, the as-prepared N-3D-rGO was then composited with polyaniline (PANI) nanowires (denoted as N-3D-rGO/PANI-B). The structure, morphology, and electrochemical properties of the composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller analysis, scanning electron microscopy, transmission electron microscopy, cyclic voltammetry, charge-discharge test, and electrochemical impedance spectroscopy. Results revealed that the N-3D-rGO/PANI-B composite has a better specific capacity than the composites prepared with 3D-rGO as the support material and peroxydisulfate as the oxidant. These results suggested that N-3D-rGO/PANI-B has potential applications in supercapacitors.
NASA Astrophysics Data System (ADS)
Mahajan, Dhiraj S.; Deshpande, Tushar; Bari, Mahendra L.; Patil, Ujwal D.; Narkhede, Jitendra S.
2018-04-01
In the present study, we prepared zinc borates using aqueous phase synthesis under moderate pressures (MP) (<150 psi) with ethanol as a co-solvent in the presence of a quaternary ammonium surfactant-Cetyltrimethylammonium bromide (CTAB). 3D morphologies of self-assembled zinc borate (Zn(H2O)B2O4 · 0.12 H2O, Zn3B6O12 · 3.5H2O, ZnB2O4) resembling flower-like structures were obtained by varying temperature under moderate pressure conditions. Synthesized zinc borates’ florets were morphologically characterized by Field Emission Scanning Electron Microscopy. The x-ray diffractions of borate species reveal rhombohydra, monoclinic and cubic phases of zinc borate crystals as a function of process temperature. Additionally, thermal analysis confirms excellent dehydration/degradation behavior for the zinc borate crystals synthesized at moderate pressures and elevated temperatures and could be utilized as potential flame retardant fillers in the polymer matrices.
NASA Astrophysics Data System (ADS)
Zou, Binglin; Tao, Shunyan; Huang, Wenzhi; Khan, Zuhair S.; Fan, Xizhi; Gu, Lijian; Wang, Ying; Xu, Jiaying; Cai, Xiaolong; Ma, Hongmei; Cao, Xueqiang
2013-01-01
TiC-TiB2 composite coatings were successfully synthesized using the technique of reactive plasma spraying (RPS) on a magnesium alloy. Phase composition, microstructure and wear resistance of the coatings were characterized by using X-ray diffraction, scanning electron microscopy and pin-on-disk wear test, respectively. The results showed that the resultant product in the RPS coatings was composed of TiC and TiB2. Depending on the ignition of self-propagating high-temperature synthesis reaction in the agglomerate particles, the RPS coatings displayed porous and dense microstructures. The porosity of the RPS coatings, to some extent, decreased when the feed powders were plasma sprayed with Ni powders. The RPS coatings provided good wear resistance for the substrate under various loads. For high loads (e.g., ≥15 N), the wear resistance could be significantly improved by the proper addition of Ni into the RPS coatings.
NASA Astrophysics Data System (ADS)
Yang, Liuqing; Li, Zhiyong; Zhang, Yingqiao; Wei, Shouzheng; Liu, Fuqiang
2018-03-01
Al + (Ti + B4C) composite coating was cladded on AZ91D magnesium alloy by a low power pulsed Nd-YAG laser. The Ti+B4C mixed powder is with the ratio of Ti: B4C = 5:1, which was then mixed with Al powder by weight fraction of 10%, 15% and 20%, respectively. Scanning electron microscopy, energy dispersive spectrometer and X-ray diffraction were used to study the microstructure, chemical composition and phase composition of the coating. Results showed that the coating had satisfied metallurgical bonding with the magnesium substrate. Al3Mg2, Al12Mg17, Al3Ti and TiC were formed by in-situ reaction. The coatings have micro-hardness of 348HV, which is about 5-6 times higher than that of AZ91D. The wear resistance and corrosion resistance of the coatings are enhanced with the addition of the mixed powder.
Physical and Microstructure Properties of MgAl2C2 Matrix Composite Coating on Titanium
NASA Astrophysics Data System (ADS)
Li, Peng
2014-12-01
This work is based on the dry sliding wear of the MgAl2C2-TiB2-FeSi composite coating deposited on a pure Ti using a laser cladding technique. Scanning electron microscope images indicate that the nanocrystals and amorphous phases are produced in such coating. X-ray diffraction result indicated that such coating mainly consists of MgAl2C2, Ti-B, Ti-Si, Fe-Al, Ti3SiC2, TiC and amorphous phases. The high resolution transmission electron microscope image indicated that the TiB nanorods were produced in the coating, which were surrounded by other fine precipitates, favoring the formation of a fine microstructure. With increase of the laser power from 0.85 kW to 1.00 kW, the micro-hardness decreased from 1350 1450 HV0.2 to 1200 1300 HV0.2. The wear volume loss of the laser clad coating was 1/7 of pure Ti.
Dynamic X-ray diffraction sampling for protein crystal positioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less
Dynamic X-ray diffraction sampling for protein crystal positioning
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; ...
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less
Dynamic X-ray diffraction sampling for protein crystal positioning
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; Kissick, David J.; Zhang, Shijie; Newman, Justin A.; Sheedlo, Michael J.; Chowdhury, Azhad U.; Fischetti, Robert F.; Das, Chittaranjan; Buzzard, Gregery T.; Bouman, Charles A.; Simpson, Garth J.
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations. PMID:28009558
Dynamic X-ray diffraction sampling for protein crystal positioning.
Scarborough, Nicole M; Godaliyadda, G M Dilshan P; Ye, Dong Hye; Kissick, David J; Zhang, Shijie; Newman, Justin A; Sheedlo, Michael J; Chowdhury, Azhad U; Fischetti, Robert F; Das, Chittaranjan; Buzzard, Gregery T; Bouman, Charles A; Simpson, Garth J
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.
NASA Astrophysics Data System (ADS)
Chang, Y.; Zhou, D.; Wang, Y. L.; Huang, H. H.
2016-12-01
This study investigated the repulsive interaction of sulfide layers on compressor impeller blades remanufactured through plasma spray welding (PSW). Sulfide layers on the blades made of FV(520)B steel were prepared through multifarious corrosion experiments, and PSW was utilized to remanufacture blade specimens. The specimens were evaluated through optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, 3D surface topography, x-ray diffraction, ImageJ software analysis, Vicker's micro-hardness test and tensile tests. Results showed a large number of sulfide inclusions in the fusion zone generated by sulfide layers embodied into the molten pool during PSW. These sulfide inclusions seriously degraded the mechanical performance of the blades remanufactured through PSW.
Bajpai, S K; Jadaun, Mamta; Bajpai, M; Jyotishi, Pooja; Shah, Farhan Ferooz; Tiwari, Seema
2017-11-01
In the present work, Doxycycline loaded gum acacia (GA)/poly(sodium acrylate) (SA) hydrogels were prepared for the oral drug delivery of model drug Doxycycline. The hydrogels were characterized by X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR) scanning electron microscopy (SEM) and Zeta potential. The dynamic release of Doxycycline was investigated in the physiological fluids at 37°C. Various kinetic models such as Power function model, Schott model and Higuchi model were applied to interpret the release data. Schott model was found to be most fitted. The Doxycycline loaded hydrogels were tested for their antibacterial action against E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.
Synthesis and formation mechanism of pinnoite by the phase transition process
NASA Astrophysics Data System (ADS)
Lin, Feng; Dong, Yaping; Peng, Jiaoyu; Wang, Liping; Li, Wu
2016-06-01
Pinnoite (MgB2O(OH)6) for the first time was synthesized using the solid-liquid-solid conversion method. The effects of reaction time, pH value and concentrations of magnesium and borate were investigated. Pinnoite was synthesized under the optimum condition of 8 mmol hungtsaoite and 1% boric acid solution at 80 °C. The products were determined using X-ray diffraction, Fourier-transform infrared spectroscopy, TG-DSC and a UV-vis spectrometer. The change processes of the surface morphology of pinnoite were investigated using scanning electron microscopy. In addition, the formation mechanism of pinnoite was discussed according to the changes in the content of precipitation and pH value.
Composition, structure, and properties of iron-rich nontronites of different origins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palchik, N. A., E-mail: nadezhda@igm.nsc.ru; Grigorieva, T. N.; Moroz, T. N.
2013-03-15
The composition, structure, and properties of smectites of different origins have been studied by X-ray diffraction, IR spectroscopy, scanning electron microscopy, and microprobe analysis. The results showed that nontronites of different origins differ in composition, properties, morphology, and IR spectroscopic characteristics. Depending on the degree of structural order and the negative charge of iron-silicate layers in nontronites, the shift of the 001 reflection to smaller angles as a result of impregnation with ethylene glycol (this shift is characteristic of the smectite group) occurs differently. The calculated values of the parameter b (from 9.11 to 9.14A) are valid for the extrememore » terms of dioctahedral smectite representatives: nontronites.« less
NASA Astrophysics Data System (ADS)
Nasr, Mahmoud; El Radaf, I. M.; Mansour, A. M.
2018-04-01
In this study, a crystalline n-PbTe/p-GaP heterojunction was fabricated using the electron beam deposition technique. The structural properties of the prepared heterojunction were examined by X-ray diffraction and scanning electron microscopy. The dark current-voltage characteristics of the heterojunction were investigated at different temperatures ranging from 298 to 398 K. The rectification factor, series resistance, shunt resistance, diode ideality factor, and effective barrier height (ϕb) were determined. The photovoltaic parameters were identified based on the current density-voltage characteristics under illumination. The capacitance-voltage characteristics showed that the junction was abrupt in nature.
Sethia, Sundeep; Squillante, Emilio
2002-09-01
Solid dispersions of carbamazepine (CBZ) were formulated by supercritical fluid processing (SCP) and conventional solvent evaporation in polyethylene glycol (PEG) 8000 with either Gelucire 44/14 or vitamin E TPGS NF (d-alpha-tocopheryl PEG 1000 succinate). Formulations were evaluated by dissolution, scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry, and excipient cytotoxicity in Caco-2 cells by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] assay. CBZ release was enhanced from supercritical fluid-treated CBZ and the CBZ/PEG 8000 (1:5), CBZ/PEG 8000/TPGS or Gelucire 44/14 (1:4:1) solid dispersions. The radically altered morphologies of SCP samples seen by scanning electron microscopy suggested polymorphic change that was confirmed by the X-ray diffraction and differential scanning calorimetry. Disappearance of the characteristic CBZ melting peak indicated that CBZ was dissolved inside the carrier system. Polymorphic change of CBZ during SCP led to faster dissolution. Therefore, SCP provides advantages over solid dispersions prepared by conventional processes. Copyright 2002 Wiley-Liss Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Michael R.; Selby, Thomas L.
2012-10-30
A recombinant metal-dependent phosphatidylinositol-specific phospholipase C (PI-PLC) fromStreptomyces antibioticushas been crystallized by the hanging-drop method with and without heavy metals. The native crystals belonged to the orthorhombic space groupP222, with unit-cell parametersa= 41.26,b= 51.86,c = 154.78 Å. The X-ray diffraction results showed significant differences in the crystal quality of samples soaked with heavy atoms. Additionally, drop pinning, which increases the surface area of the drops, was also used to improve crystal growth and quality. The combination of heavy-metal soaks and drop pinning was found to be critical for producing high-quality crystals that diffracted to 1.23 Å resolution.
NASA Astrophysics Data System (ADS)
Shu, D.; Liu, W.; Kearney, S.; Anton, J.; Tischler, J. Z.
2015-09-01
The 3-D X-ray diffraction microscope is a new nondestructive tool for the three-dimensional characterization of mesoscopic materials structure. A flexural-pivot-based precision linear stage has been designed to perform a wire scan as a differential aperture for the 3-D diffraction microscope at the Advanced Photon Source, Argonne National Laboratory. The mechanical design and finite element analyses of the flexural stage, as well as its initial mechanical test results with laser interferometer are described in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liaw, Peter; Zhang, Fan; Zhang, Chuan
2016-07-30
To create and design novel structural materials with enhanced creep-resistance, fundamental studies have been conducted on high-entropy alloys (HEAs), using (1) thermodynamic calculations, (2) mechanical tests, (3) neutron diffraction, (4) characterization techniques, and (5) crystal-plasticity finite-element modeling (CPFEM), to explore future candidates for next-generation power plants. All the constituent binary and ternary systems of the Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr-Fe-Ni systems were thermodynamically modeled within the whole composition range. Comparisons between the calculated phase diagrams and literature data are in good agreement. Seven types of HEAs were fabricated from Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr-Fe-Ni systems. The Al xCrCuFeMnNi HEAs have disordered [face-centered cubic (FCC)more » + body-centered cubic (BCC)] crystal structures, not FCC or BCC single structure. Excessive alloying of the Al element results in the change of both microstructural and mechanical properties in Al xCoCrFeNi HEAs. There are mainly three structural features in Al xCoCrFeNi: (1) the morphology, (2) the volume fractions of the constitute phases, and (3) existing temperatures of all six phases. After homogenization, the Al 0.3CoCrFeNi material is a pure FCC solid solution. After aging at 700 °C for 500 hours, the optimal microstructure combinations, the FCC matrix, needle-like B2 phase within grains, and granular σ phase along grain boundary, is achieved for Al 0.3CoCrFeNi. The cold-rolling process is utilized to reduce the grain size of Al 0.1CoCrFeNi and Al 0.3CoCrFeNi. The chemical elemental partitioning of FCC, BCC, B2, and σphases at different temperatures, before and after mechanical tests, in Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr-Fe-Ni systems are quantitatively characterized by both synchrotron X-ray diffraction, neutron diffraction with levitation, scanning electron microscopy (SEM), advanced atom probe tomography (APT), and transmission electron microscopy (TEM). In-situ neutron diffraction experiments were conducted to study the strengthening effect of B2 phase on tensile properties of Al 0.3CoCrFeNi HEAs directly. The results shows the creep behavior of Al 0.3CoCrFeNi is superior to conventional alloys, and the heat treatment introduces secondary B2 phase into the FCC matrix, which increase the yielding strength, decrease the ductility, diminish the serrated flow during compression tests at high temperatures. In summary, the outcomes of the development of the HEAs with creep resistance include: (1) Suitable candidates, for the application to boilers and steam and gas turbines at temperatures above 760 °C and a stress of 35 MPa. (2) Fundamental understanding on the precipitate stability and deformation mechanisms of both single-phase and precipitate-strengthened alloys at room and elevated temperatures, and (3) The demonstration of an integrated approach, coupling modeling [thermodynamic calculations and crystal-plasticity finite-element modeling (CPFEM)] and focused experiments, to identify HEAs that outperform conventional alloys for high-temperature applications, which will be applicable for the discovery and development of other high-temperature materials in the power-generating industry.« less
Brodusch, Nicolas; Demers, Hendrix; Trudeau, Michel; Gauvin, Raynald
2013-01-01
Transmission electron forward scatter diffraction (t-EFSD) is a new technique providing crystallographic information with high resolution on thin specimens by using a conventional electron backscatter diffraction (EBSD) system in a scanning electron microscope. In this study, the impact of tilt angle, working distance, and detector distance on the Kikuchi pattern quality were investigated in a cold-field emission scanning electron microscope (CFE-SEM). We demonstrated that t-EFSD is applicable for tilt angles ranging from -20° to -40°. Working distance (WD) should be optimized for each material by choosing the WD for which the EBSD camera screen illumination is the highest, as the number of detected electrons on the screen is directly dependent on the scattering angle. To take advantage of the best performances of the CFE-SEM, the EBSD camera should be close to the sample and oriented towards the bottom to increase forward scattered electron collection efficiency. However, specimen chamber cluttering and beam/mechanical drift are important limitations in the CFE-SEM used in this work. Finally, the importance of t-EFSD in materials science characterization was illustrated through three examples of phase identification and orientation mapping. © Wiley Periodicals, Inc.
Patra, Jayanta Kumar; Baek, Kwang-Hyun
The aim of this study was to compare the biological synthesis of gold nanoparticles (AuNPs) generated using the aqueous extracts of outer oriental melon peel (OMP) and peach. The synthesized OMP-AuNPs and peach extract (PE)-AuNPs were characterized by ultraviolet-visible spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis, X-ray powder diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The surface plasmon resonance spectra were obtained at 545 nm and 540 nm for OMP-AuNPs and PE-AuNPs, respectively. The estimated absolute crystallite size of the synthesized AuNPs was calculated to be 78.11 nm for OMP-AuNPs and 39.90 nm for PE-AuNPs based on the Scherer equation of the X-ray powder diffraction peaks. Fourier transform infrared spectroscopy results revealed the involvement of bioactive compounds present in OMP and peach extracts in the synthesis and stabilization of synthesized AuNPs. Both the OMP-AuNPs and PE-AuNPs showed a strong antibacterial synergistic activity when combined with kanamycin (9.38-20.45 mm inhibition zones) and rifampicin (9.52-25.23 mm inhibition zones), and they also exerted a strong synergistic anticandidal activity (10.09-15.47 mm inhibition zones) when combined with amphotericin B against five pathogenic Candida species. Both the OMP-AuNPs and PE-AuNPs exhibited a strong antioxidant potential in terms of 1,1-diphenyl-2-picrylhydraxyl radical scavenging, nitric oxide scavenging, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging, and a reducing power, along with a strong proteasome inhibitory potential that could be useful in cancer drug delivery and cancer treatments. The PE-AuNPs showed comparatively higher activity than OMP-AuNPs, which could be attributed to the presence of rich bioactive compounds in the PE that acted as reducing and capping agents in the synthesis of PE-AuNPs. Overall, the results of the current investigation highlighted a novel green technology for the synthesis of AuNPs using food waste materials and their potential applications in the biomedical, pharmaceutical, and cosmetic industries.
Guargum and Eudragit ® coated curcumin liquid solid tablets for colon specific drug delivery.
S Kumar, Vrinda; Rijo, John; M, Sabitha
2018-04-15
Colorectal cancer, also known as bowel cancer, is the uncontrolled cell growth in the colon or rectum (parts of the large intestine), or in the appendix. The colon specific drug delivery would alleviate the systemic side effects and would assure the safe therapy for colonic disorders with minimum dose and duration of therapy. The liquisolid technique refers to solubilisation of drug in a non-volatile solvent combined with inclusion of appropriate carrier and coating agent required for tableting. Colon specific degradation of natural polymer, guar gum and pH dependant degradative (pH-7) property of eudragit L100 restricts the delivery of curcumin in gastric and intestinal pH. Formulated curcumin liquisolid powder was evaluated for the micrometric properties, solubility and by differential thermal analysis, X ray powder diffraction and scanning electron microscopy. Curcumin loaded liquisolid tablet showed more anticancer activity against HCT-15 compared with free curcumin. Bioavailability study of the coated and uncoated liquisolid tablets were performed using Newzealand white rabbits. The present study concludes that liquisolid technique is a promising alternative for improving oral bioavailability and dissolution rate of water insoluble drug and coating liquisolid tablet with colon sensitive polymers showed site specific release of drug in the colon. Copyright © 2018 Elsevier B.V. All rights reserved.
Photocatalytic performance of Ag doped SnO2 nanoparticles modified with curcumin
NASA Astrophysics Data System (ADS)
Vignesh, K.; Hariharan, R.; Rajarajan, M.; Suganthi, A.
2013-07-01
Visible light active Ag doped SnO2 nanoparticles modified with curcumin (Cur-Ag-SnO2) have been prepared by a combined precipitation and chemical impregnation route. The optical properties, phase structures and morphologies of the as-prepared nanoparticles were characterized using UV-visible diffuse reflectance spectra (UV-vis-DRS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The surface area was measured by Brunauer. Emmett. Teller (B.E.T) analysis. Compared to bare SnO2, the surface modified photocatalysts (Ag-SnO2 and Cur-Ag-SnO2) showed a red shift in the visible region. The photocatalytic activity was monitored via the degradation of rose bengal (RB) dye and the results revealed that Cur-Ag-SnO2 shows better photocatalytic activity than that of Ag-SnO2 and SnO2. The superior photocatalytic activity of Cur-Ag-SnO2 could be attributed to the effective electron-hole separation by surface modification. The effect of photocatalyst concentration, initial dye concentration and electron scavenger on the photocatalytic activity was examined in detail. Furthermore, the antifungal activity of the photocatalysts and the reusability of Cur-Ag-SnO2 were tested.
Samouhos, Michail; Taxiarchou, Maria; Tsakiridis, Petros E; Potiriadis, Konstantinos
2013-06-15
The present research work is focused on the development of an alternative microwave reductive roasting process of red mud using lignite (30.15 wt.%Cfix), followed by wet magnetic separation, in order to produce a raw material suitable for sponge or cast iron production. The reduction degree of iron was controlled by both the reductive agent content and the microwave heating time. The reduction followed the Fe₂O₃ → Fe₃O₄ → FeO → Fe sequence. The dielectric constants [real (ε') and imaginary (ε″) permittivities] of red mud-lignite mixture were determined at 2.45 GHz, in the temperature range of 25-1100 °C. The effect of parameters such as temperature, intensity of reducing conditions, intensity of magnetic field and dispersing agent addition rate on the result of both processes was investigated. The phase's transformations in reduction process with microwave heating were determined by X-ray diffraction analysis (XRD) in combination with thermogravimetric/differential thermal analysis (TGA/DTA). The microstructural and morphological characterization of the produced calcines was carried out by scanning electron microscopy (SEM). At the optimum conditions a magnetic concentrate with total iron concentration of 35.15 and 69.3 wt.% metallization degree was obtained. Copyright © 2013 Elsevier B.V. All rights reserved.
Engineering a light-emitting planar defect within three-dimensional photonic crystals
Liu, Guiqiang; Chen, Yan; Ye, Zhiqing
2009-01-01
Sandwich structures, constructed from a planar defect of rhodamine-B (RhB)-doped titania (TiO2) and two photonic crystals, were synthesized via the self-assembly method combined with spin-coating. The modification of the spontaneous emission of RhB molecules in such structures was investigated experimentally. The spontaneous emission of RhB-doped TiO2 film with photonic crystals was reduced by a factor of 5.5 over a large bandwidth of 13% of the first-order Bragg diffraction frequency when compared with that of RhB-doped TiO2 film without photonic crystals. The angular dependence of the modification and the photoluminescence lifetime of RhB molecules demonstrate that the strong and wide suppression of the spontaneous emission of the RhB molecules is due to the presence of the photonic band gap. PMID:27877309
Enose, Arno A.; Dasan, Priya K.; Sivaramakrishnan, H.; Shah, Sanket M.
2014-01-01
Solid dispersion is molecular dispersion of drug in a polymer matrix which leads to improved solubility and hence better bioavailability. Solvent evaporation technique was employed to prepare films of different combinations of polymers, plasticizer, and a modal drug sulindac to narrow down on a few polymer-plasticizer-sulindac combinations. The sulindac-polymer-plasticizer combination that was stable with good film forming properties was processed by hot melt mixing, a technique close to hot melt extrusion, to predict its behavior in a hot melt extrusion process. Hot melt mixing is not a substitute to hot melt extrusion but is an aid in predicting the formation of molecularly dispersed form of a given set of drug-polymer-plasticizer combination in a hot melt extrusion process. The formulations were characterized by advanced techniques like optical microscopy, differential scanning calorimetry, hot stage microscopy, dynamic vapor sorption, and X-ray diffraction. Subsequently, the best drug-polymer-plasticizer combination obtained by hot melt mixing was subjected to hot melt extrusion process to validate the usefulness of hot melt mixing as a predictive tool in hot melt extrusion process. PMID:26556187
Synchrotron X-Ray Diffraction Studies of Olivine from Comet Wild 2
NASA Technical Reports Server (NTRS)
2008-01-01
We have analyzed a collection of the Comet Wild 2 coma grains returned by the NASA Stardust Mission, using micro-area Laue diffraction equipment. The purpose of the diffraction experiment is to permit the structure refinement of olivine including site occupancies. In addition to the intrinsic importance of the olivine structures for revealing the thermal history of Wild 2 materials, we wish to test reports that olivine recovered after hypervelocity capture in silica aerogel has undergone a basic structural change due to capture heating [1]. The diffraction equipment placed at beam line BL- 4B1 of PF, KEK was developed with a micropinhole and an imaging plate (Fuji Co. Ltd.) using the Laue method combined with polychromatic X-ray of synchrotron radiation operated at energy of 2.5 GeV. The incident beam is limited to 1.6 m in diameter by a micropinhole set just upstream of the sample [2, 3]. It is essential to apply a microbeam to obtain diffracted intensities with high signal to noise ratios. This equipment has been successfully applied to various extraterrestrial materials, including meteorites and interplanetary dust particles [4]. The Laue pattern of the sample C2067,1,111,4 (Fig. 1) was successfully taken on an imaging plate after a 120 minute exposure (Fig. 2).
Novel band gap-tunable K-Na co-doped graphitic carbon nitride prepared by molten salt method
NASA Astrophysics Data System (ADS)
Zhao, Jiannan; Ma, Lin; Wang, Haoying; Zhao, Yanfeng; Zhang, Jian; Hu, Shaozheng
2015-03-01
Novel band gap-tunable K-Na co-doped graphitic carbon nitride was prepared by molten salt method using melamine, KCl, and NaCl as precursor. X-ray diffraction (XRD), N2 adsorption, Scanning electron microscope (SEM), UV-vis spectroscopy, Photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared catalysts. The CB and VB potentials of graphitic carbon nitride could be tuned from -1.09 and +1.55 eV to -0.29 and +2.25 eV by controlling the weight ratio of eutectic salts to melamine. Besides, ions doping inhibited the crystal growth of graphitic carbon nitride, enhanced the surface area, and increased the separation rate of photogenerated electrons and holes. The visible-light-driven Rhodamine B (RhB) photodegradation and mineralization performances were significantly improved after K-Na co-doping.
Ma, Peiyan; Chen, Anliang; Wu, Yan; Fu, Zhengyi; Kong, Wei; Che, Liyuan; Ma, Ruifang
2014-03-01
A cost-effective Ag(I)-bovine serum albumin (BSA) supramolecular hydrosol strategy was utilized to assemble Ag3PO4 nanospheres onto reduced graphene oxide (rGO) sheets. The obtained composites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy and Fourier transform infrared spectroscopy. Compared with the pure Ag3PO4 crystals and Ag3PO4 particles prepared with Ag(I)-BSA hydrosol as precursor, the Ag3PO4/rGO composites obtained with different content of graphene oxide indicated improved visible-light-driven photocatalysis activity for the decomposition of Rhodamine B aqueous solution. The results pointed to the possibility of synthesizing graphene-based photocatalysts by metal ion-BSA hydrosol. Copyright © 2013 Elsevier Inc. All rights reserved.
PMN-PT-PZT composite films for high frequency ultrasonic transducer applications.
Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K Kirk
2012-06-01
We have successfully fabricated x (0.65PMN-0.35PT)-(1 - x )PZT ( x PMN-PT-(1 - x )PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol-gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of x PMN-PT-(1 - x )PZT films show better ferroelectric properties. A representative 0.9PMN-PT-0.1PZT thick film transducer is built. It has 200 MHz center frequency with a -6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB.
PMN-PT–PZT composite films for high frequency ultrasonic transducer applications
Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K. Kirk
2013-01-01
We have successfully fabricated x(0.65PMN-0.35PT)–(1 − x)PZT (xPMN-PT–(1 − x)PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol–gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of xPMN-PT–(1 − x)PZT films show better ferroelectric properties. A representative 0.9PMN-PT–0.1PZT thick film transducer is built. It has 200 MHz center frequency with a −6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB. PMID:23750072
Synthesis and characterization of nanocrystalline Co-Fe-Nb-Ta-B alloy
NASA Astrophysics Data System (ADS)
Raanaei, Hossein; Fakhraee, Morteza
2017-09-01
In this research work, structural and magnetic evolution of Co57Fe13Nb8Ta4B18 alloy, during mechanical alloying process, have been investigated by using, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, electron dispersive X-ray spectroscopy, differential thermal analysis and also vibrating sample magnetometer. It is observed that at 120 milling time, the crystallite size reaches to about 7.8 nm. Structural analyses show that, the solid solution of the initial powder mixture occurs at160 h milling time. The coercivity behavior demonstrates a rise, up to 70 h followed by decreasing tendency up to final stage of milling process. Thermal analysis of 160 h milling time sample reveals two endothermic peaks. The characterization of annealed milled sample for 160 h milling time at 427 °C shows crystallite size growth accompanied by increasing in saturation magnetization.
NASA Technical Reports Server (NTRS)
Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.
1977-01-01
The oxidation at 900 and 1,000 C of four nickel-base superalloys in 1 atmosphere of slowly flowing oxygen was investigated. Thermogravimetric rate data were obtained for periods to 100 hours. The morphology and composition of the oxide scales formed after 100 hours were studied by optical microscopy, X-ray diffraction, electron microprobe, scanning electron microscopy, and X-ray photoelectron spectroscopy (ESCA). Alloys B-1900 and VIA were found to be primarily alumina formers, though probably 25 percent of their surface was covered by CR2O3-containing oxides at 900 C. Alloys 713C and IN-738 were primarily chromia formers, though the surface of 713C at 1,000 C was covered with NiO, and the surface of IN-738 at both temperatures was covered with a thin layer of TiO2.
Structural study of dehydration mechanisms of NH4Th(NO3)5·9H2O
NASA Astrophysics Data System (ADS)
Knyazev, A. V.; Komshina, M. E.; Baranov, E. V.; Savushkin, I. A.; Nipruk, O. V.; Lukoyanov, A. Yu.
2017-12-01
The new pentanitrate thorium compounds NH4Th(NO3)5·nH2O were synthesized and their crystal structures were determined by X-ray diffraction analysis: space group P21/n, a = 10.5476(5), b = 14.0444(7), c = 15.5287(8) Å, β = 109.4999(7)°, Z = 4; R = 0.0246 (NH4Th(NO3)5·9H2O); space group P212121, a = 8.7039(4), b = 11.9985(6), c = 16.3531(8) Å, Z = 4; R = 0.0259 (NH4Th(NO3)5·5H2O). Features of structural changes in the dehydration were revealed. Conditions of thermal decomposition of the thorium compound were established using differential scanning calorimetry. The compound was investigated by IR spectroscopy and its bands are assigned.
Surfactant-free Synthesis of CuO with Controllable Morphologies and Enhanced Photocatalytic Property
NASA Astrophysics Data System (ADS)
Wang, Xing; Yang, Jiao; Shi, Liuxue; Gao, Meizhen
2016-03-01
A green synthesis for nanoleave, nanosheet, spindle-like, rugby-like, dandelion-like and flower-like CuO nanostructures (from 2D to 3D) is successfully achieved through simply hydrothermal synthetic method without the assistance of surfactant. The morphology of CuO nanostructures can be easily tailored by adjusting the amount of ammonia and the source of copper. By designing a time varying experiment, it is verified that the flower- and dandelion-like CuO structures are synthesized by the self-assembly and Ostwald ripening mechanism. Structural and morphological evolutions are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible diffuse reflectance spectra. Additionally, the CuO nanostructures with different morphologies could serve as a potential photocatalyst on the photodecomposition of rhodamine B (RhB) aqueous solutions in the presence of H2O2 under visible light irradiation.
NASA Astrophysics Data System (ADS)
Lu, Shaowei; Bai, Yaoyao; Wang, Jijie; Zhang, Lu; Tian, Caijiao; Ma, Keming; Wang, Xiaoqiang
2018-03-01
Flexible and high-performance electromagnetic absorbing materials of multi-walled carbon nanotube (MWCNT) buckypapers with Mn nanoparticles (NPSs) interlayer were fabricated via monodisperse solutions through layer by layer vacuum filtration method. The morphology and element composition of buckypapers were characterized by scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction. The formation of flexible MWCNT buckypapers with Mn NPS (0-30 wt. %) interlayer was attributed to nanostructure and morphology of the samples. When the blended Mn NPS content in buckypapers is 20 wt. %, there are evidently two larger absorption peaks (-13.2 dB at 3.41 GHz, -15.6 dB at 3.52 GHz) of the buckypaper with an absorbing thickness of 0.1 mm. The fundamental microwave absorption mechanism of the buckypapers is discussed. This work opens a new pathway towards tuning microwave absorbers performance and this method can be extended to exploit other excellent microwave absorbers with interlayer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zieliński, W., E-mail: wiziel@inmat.pw.edu.pl; Płociński, T.; Kurzydłowski, K.J.
2015-06-15
We present a study of the efficiency of the utility of scanning electron microscope (SEM)-based transmission methods for characterizing grain structure in thinned bulk metals. Foils of type 316 stainless steel were prepared by two methods commonly used for transmission electron microscopy — double-jet electropolishing and focused ion beam milling. A customized holder allowed positioning of the foils in a configuration appropriate for both transmission electron forward scatter diffraction, and for transmission imaging by the use of a forescatter detector with two diodes. We found that both crystallographic orientation maps and dark-field transmitted images could be obtained for specimens preparedmore » by either method. However, for both methods, preparation-induced artifacts may affect the quality or accuracy of transmission SEM data, especially those acquired by the use of transmission Kikuchi diffraction. Generally, the quality of orientation data was better for specimens prepared by electropolishing, due to the absence of ion-induced damage. - Highlights: • The transmission imaging and diffraction techniques are emerging in scanning electron microscopy (SEM) as promising new field of materials characterization. • The manuscript titled: “Transmission Kikuchi Diffraction and Transmission Electron Forescatter Imaging of Electropolished and FIB Manufactured TEM Specimens” documents how different specimen thinning procedures can effect efficiency of transmission Kikuchi diffraction and transmission electron forescatter imaging. • The abilities to make precision crystallographic orientation maps and dark-field images in transmission was studied on electropolished versus focus ion beam manufactured TEM specimens. • Depending on the need, electropolished and focused ion beam technique may produce suitable specimens for transmission imaging and diffraction in SEM.« less
Luminescent properties under X-ray excitation of Ba(1-x)PbxWO4 disordered solid solution
NASA Astrophysics Data System (ADS)
Bakiz, B.; Hallaoui, A.; Taoufyq, A.; Benlhachemi, A.; Guinneton, F.; Villain, S.; Ezahri, M.; Valmalette, J.-C.; Arab, M.; Gavarri, J.-R.
2018-02-01
A series of polycrystalline barium-lead tungstate Ba1-xPbxWO4 with 0 ≤ x ≤ 1 was synthesized using a classical solid-state method with thermal treatment at 1000 °C. These materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Raman (FT-Raman) spectroscopy. X-ray diffraction profile analyses were performed using Rietveld method. These materials crystallized in the scheelite tetragonal structure and behaved as quasi ideal solid solution. Raman spectroscopy confirmed the formation of the solid solution. Structural distortions were evidenced in X-ray diffraction profiles and in vibration Raman spectra. The scanning electron microscopy experiments showed large and rounded irregular grains. Luminescence experiments were performed under X-ray excitation. The luminescence emission profiles have been interpreted in terms of four Gaussian components, with a major contribution of blue emission. The integrated intensity of luminescence reached a maximum value in the composition range x = 0.3-0.6, in relation with distortions of crystal lattice.
Free-space wavelength-multiplexed optical scanner.
Yaqoob, Z; Rizvi, A A; Riza, N A
2001-12-10
A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam.
Photocatalytic self-cleaning transparent 2Bi2O3-B2O3 glass ceramics
NASA Astrophysics Data System (ADS)
Sharma, Sumeet Kumar; Singh, V. P.; Chauhan, Vishal S.; Kushwaha, H. S.; Vaish, Rahul
2017-09-01
Photocatalytic response of as-quenched and heat-treated 2Bi2O3-B2O3 glasses was studied. X ray diffraction reveals that the controlled heat treatment of glasses at 380 °C for 1 h, 2 h, and 3 h shows the formation of Bi4B2O9 crystals embedded in 2Bi2O3-B2O3 the host glass matrix. Scanning electron microscopic images reveal the presence of nanocrystallization in as-quenched glass. Significant photocatalytic activities were observed in as-quenched transparent glass. Photocatalytic activities were studied using the degradation of Resazurin as well as pharmaceutical 17 β-Estradiol under UV irradiation. Measurement of contact angle shows enhanced hydrophilicity with the increase in crystallization of the samples. Further, for as quenched 2Bi2O3-B2O3 glass ceramic, under UV irradiation, the water contact angle decreased from 92.7° to 39.5° and the sample surface transformed from hydrophobic to hydrophilic. Effective photocatalytic performance along with photoinduced hydrophilicity promotes 2Bi2O3-B2O3 glass ceramics in self-cleaning applications.
Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R.
2017-01-01
The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues. PMID:29188089
Electron imaging with an EBSD detector.
Wright, Stuart I; Nowell, Matthew M; de Kloe, René; Camus, Patrick; Rampton, Travis
2015-01-01
Electron Backscatter Diffraction (EBSD) has proven to be a useful tool for characterizing the crystallographic orientation aspects of microstructures at length scales ranging from tens of nanometers to millimeters in the scanning electron microscope (SEM). With the advent of high-speed digital cameras for EBSD use, it has become practical to use the EBSD detector as an imaging device similar to a backscatter (or forward-scatter) detector. Using the EBSD detector in this manner enables images exhibiting topographic, atomic density and orientation contrast to be obtained at rates similar to slow scanning in the conventional SEM manner. The high-speed acquisition is achieved through extreme binning of the camera-enough to result in a 5 × 5 pixel pattern. At such high binning, the captured patterns are not suitable for indexing. However, no indexing is required for using the detector as an imaging device. Rather, a 5 × 5 array of images is formed by essentially using each pixel in the 5 × 5 pixel pattern as an individual scattered electron detector. The images can also be formed at traditional EBSD scanning rates by recording the image data during a scan or can also be formed through post-processing of patterns recorded at each point in the scan. Such images lend themselves to correlative analysis of image data with the usual orientation data provided by and with chemical data obtained simultaneously via X-Ray Energy Dispersive Spectroscopy (XEDS). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
RESTORATION OF ATMOSPHERICALLY DEGRADED IMAGES. VOLUME 3.
AERIAL CAMERAS, LASERS, ILLUMINATION, TRACKING CAMERAS, DIFFRACTION, PHOTOGRAPHIC GRAIN, DENSITY, DENSITOMETERS, MATHEMATICAL ANALYSIS, OPTICAL SCANNING, SYSTEMS ENGINEERING, TURBULENCE, OPTICAL PROPERTIES, SATELLITE TRACKING SYSTEMS.
NASA Astrophysics Data System (ADS)
Cano-Lara, Miroslava; Severiano-Carrillo, Israel; Trejo-Durán, Mónica; Alvarado-Méndez, Edgar
2017-09-01
In this work, we present a study of non-linear optical response in thin films elaborated with Gelite Bloom and extract of Hibiscus Sabdariffa. Non-linear refraction and absorption effects were studied experimentally (Z-scan technique) and numerically, by considering the transmittance as non-linear absorption and refraction contribution. We observe large phase shifts to far field, and diffraction due to self-phase modulation of the sample. Diffraction and self-diffraction effects were observed as time function. The aim of studying non-linear optical properties in thin films is to eliminate thermal vortex effects that occur in liquids. This is desirable in applications such as non-linear phase contrast, optical limiting, optics switches, etc. Finally, we find good agreement between experimental and theoretical results.
A new route for the synthesis of submicron-sized LaB{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lihong, Bao; Wurentuya,; Wei, Wei
Submicron crystalline LaB{sub 6} has been successfully synthesized by a solid-state reaction of La{sub 2}O{sub 3} with NaBH{sub 4} at 1200 °C. The effects of reaction temperature on the crystal structure, grain size and morphology were investigated by X-ray diffraction, scanning electron microscope and transmission electron microscope. It is found that when the reaction temperature is in the range of 1000–1100 °C, there are ultrafine nanoparticles and nanocrystals that coexist. When the reaction temperature elevated to 1200 °C, the grain morphology transformed from ultrafine nanoparticle to submicron crystals completely. High resolution transmission electron microscope images fully confirm the formation ofmore » LaB{sub 6} cubic structure. - Highlights: • Single-phased LaB{sub 6} have been synthesized by a solid-state reaction in a continuous evacuating process. • The reaction temperature has a important effect on the phase composition. • The grain size increase from nano-size to submicron with increasing reaction temperature.« less
Preparation of MgO/B₂O₃ coatings by plasma spraying on SUS304 surface and effects of heat-resistant.
Song, Bo; Zhou, Ningning; Ju, Dongying
2013-12-01
This study mainly deals with the preparation of MgO/B2O3 coatings by plasma spraying on the SUS304 surface and the effects of heat-resistant. The power materials of low thermal conductivity were selected to control the heat divergent performance of high temperature parts. The reticular micro-structure between the cover thermal layer and the substrate was prepared by using the plasma spraying method. The powder mixture of MgO and B2O3 were selected as spraying materials and the SUS304 was used as the substrate material. The MgO/B2O3 coating was prepared on the surface of the SUS304 to provide better cover thermal performance. The properties of the microstructures and the morphologies were studied by Optical Microscope, Scanning Electron Microscope, Electron Probe Microanalyzer, and X-ray Diffraction. The results showed that the cover thermal performance has been improved. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Saritha Devi, H. V.; Swapna, M. S.; Ambadas, G.; Sankararaman, S.
2018-04-01
Boron carbide (B4C) is a prominent semiconducting material that finds applications in the field of science and technology. The excellent physical, thermal and electronic properties make it suitable as ceramic armor, wear-resistant, lens polisher and neutron absorber in the nuclear industry. The existing methods of synthesis of boron carbide involve the use of toxic chemicals that adversely affect the environment. In the present work, we report for the first time the use of the hydrothermal method, for converting the cellulose from Pandanus leaves as the carbon precursor for the synthesis of B4C. The carbon precursor is changed into porous functionalized carbon by treating with sodium borohydride (NaBH4), followed by treating with boric acid to obtain B4C. The samples are characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared, Raman, photoluminescent and Ultraviolet-Visible absorption spectroscopy. The formation of B4C from natural carbon source— Pandanus presents an eco-friendly, economic and non-toxic approach for the synthesis of refractory carbides.
NASA Astrophysics Data System (ADS)
Li, Xiaojuan; Jin, Bo; Huang, Jingwen; Zhang, Qingchun; Peng, Rufang; Chu, Shijin
2018-06-01
In this study, novel ternary Fe2O3/ZnO/ZnFe2O4 (ZFO) composites were successfully prepared through a simple hydrothermal reaction with subsequent thermal treatment. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis, Barrett-Joyner-Halenda (BJH) measurement, and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic degradation of rhodamine B (Rh B) under visible light irradiation indicated that the ZFO composites calcined at 500 °C has the best photocatalytic activity (the photocatalytic degradation efficiency can reach up to 95.7% within 60 min) and can maintain a stable photocatalytic degradation efficiency for at least three cycles. In addition, the photocatalytic activity of ZFO composites toward dye decomposition follows the order cationic Rh B > anionic methyl orange. Finally, using different scavengers, superoxide and hydroxyl radicals were identified as the primary active species during the degradation reaction of Rh B.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Corey; Holmes, Joshua; Nibler, Joseph W.
2013-05-16
Combined high-resolution spectroscopic, electron-diffraction, and quantum theoretical methods are particularly advantageous for small molecules of high symmetry and can yield accurate structures that reveal subtle effects of electron delocalization on molecular bonds. The smallest of the radialene compounds, trimethylenecyclopropane, [3]-radialene, has been synthesized and examined in the gas phase by these methods. The first high-resolution infrared spectra have been obtained for this molecule of D3h symmetry, leading to an accurate B0 rotational constant value of 0.1378629(8) cm-1, within 0.5% of the value obtained from electronic structure calculations (density functional theory (DFT) B3LYP/cc-pVTZ). This result is employed in an analysis ofmore » electron-diffraction data to obtain the rz bond lengths (in Å): C-H = 1.072 (17), C-C = 1.437 (4), and C=C = 1.330 (4). The analysis does not lead to an accurate value of the HCH angle; however, from comparisons of theoretical and experimental angles for similar compounds, the theoretical prediction of 117.5° is believed to be reliable to within 2°. The effect of electron delocalization in radialene is to reduce the single C-C bond length by 0.07 Å compared to that in cyclopropane.« less
NASA Astrophysics Data System (ADS)
Goharipour, Muhammad; Khanpour, Hamzeh; Guzey, Vadim
2018-04-01
We present GKG18-DPDFs, a next-to-leading order (NLO) QCD analysis of diffractive parton distribution functions (diffractive PDFs) and their uncertainties. This is the first global set of diffractive PDFs determined within the xFitter framework. This analysis is motivated by all available and most up-to-date data on inclusive diffractive deep inelastic scattering (diffractive DIS). Heavy quark contributions are considered within the framework of the Thorne-Roberts (TR) general mass variable flavor number scheme (GM-VFNS). We form a mutually consistent set of diffractive PDFs due to the inclusion of high-precision data from H1/ZEUS combined inclusive diffractive cross sections measurements. We study the impact of the H1/ZEUS combined data by producing a variety of determinations based on reduced data sets. We find that these data sets have a significant impact on the diffractive PDFs with some substantial reductions in uncertainties. The predictions based on the extracted diffractive PDFs are compared to the analyzed diffractive DIS data and with other determinations of the diffractive PDFs.
NASA Astrophysics Data System (ADS)
Reddy, C. V.; Rao, L. V. Krishna; Satish, D. V.; Shim, J.; Ravikumar, R. V. S. S. N.
2015-11-01
The mild and simple solution method was used for the synthesis of Co2+- and Ni2+-doped CdO powders at room temperature. The prepared powders were characterized using powder X-ray diffraction, scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), optical absorption, and Fourier transform infrared spectroscopy (FTIR). From the powder X-ray diffraction patterns, it has been observed that the prepared Co2+ and Ni2+ ion-doped CdO powders belong to the cubic phase, and the evaluated average crystalline sizes of the powders are 20 and 14 nm, respectively. The SEM images and the EDS spectra show that the prepared powders are distributed over different sizes in the grain boundaries. Optical absorption studies allow determination of site symmetry of the metal ion with its ligands. The crystal field (Dq) and inter-electronic repulsion (B and C) parameters have been evaluated from the optical absorption spectra. The FTIR spectra show the characteristic fundamental vibrations of the metal oxide and CdO.
Shrestha, Sachin L; Breen, Andrew J; Trimby, Patrick; Proust, Gwénaëlle; Ringer, Simon P; Cairney, Julie M
2014-02-01
The identification and quantification of the different ferrite microconstituents in steels has long been a major challenge for metallurgists. Manual point counting from images obtained by optical and scanning electron microscopy (SEM) is commonly used for this purpose. While classification systems exist, the complexity of steel microstructures means that identifying and quantifying these phases is still a great challenge. Moreover, point counting is extremely tedious, time consuming, and subject to operator bias. This paper presents a new automated identification and quantification technique for the characterisation of complex ferrite microstructures by electron backscatter diffraction (EBSD). This technique takes advantage of the fact that different classes of ferrite exhibit preferential grain boundary misorientations, aspect ratios and mean misorientation, all of which can be detected using current EBSD software. These characteristics are set as criteria for identification and linked to grain size to determine the area fractions. The results of this method were evaluated by comparing the new automated technique with point counting results. The technique could easily be applied to a range of other steel microstructures. © 2013 Published by Elsevier B.V.
Interfacial microstructure in a B{sub 4}C/Al composite fabricated by pressureless infiltration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Z.; Song, Y.; Zhang, S.
In this work, B{sub 4}C particulate-reinforced Al composite was fabricated by a pressureless infiltration technique, and its interfacial microstructure was studied in detail by X-ray diffraction as well as by scanning and transmission electron microscopy. The B{sub 4}C phase was unstable in Al melt during the infiltration process, forming AlB{sub 10}-type AlB{sub 24}C{sub 4} or Al{sub 2.1}B{sub 51}C{sub 8} as a major reactant phase. The Al matrix was large grains (over 10 {micro}m), which had no definite orientation relationships (ORs) with the randomly orientated B{sub 4}C or its reactant particles, except for possible nucleation sites with {l_brace}011{r_brace}{sub B{sub 4}C} almostmore » parallel to {l_brace}111{r_brace}{sub Al} at a deviation angle of 1.5 deg. Both B{sub 4}C-Al and reactant-Al interfaces are semicoherent and free of other phases. A comparison was made with the SiC/Al composite fabricated similarly by the pressureless infiltration. It was suggested that the lack of ORs between the Al matrix and reinforced particles, except for possible nucleation sites, is the common feature of the composites prepared by the infiltration method.« less
An evaluation of a combined scanning probe and optical microscope for lunar regolith studies
NASA Astrophysics Data System (ADS)
Yang, S.; Pike, W. T.; Staufer, U.; Claus, D.; Rodenburg, J. M.
2011-12-01
The microscopic properties of the lunar regolith such as the shape, the surface texture and the size distribution are required for an understanding of both past surface processes and potential hazards for future human exploration [1]. To reveal the particle morphology at the sub micrometer scale, scanning-probe microscopy (SPM), first used on the 2008 Phoenix mission [1], is a proven approach; however, there are two main challenges for the measurement of lunar particles. Firstly, the SPM tip is liable to move particles during scanning, even when using the lower contact forces of the dynamic-mode imaging. Hence the particles need to be stabilised during imaging. Secondly, typically the AFM tip extends about 10 μm from its cantilever, so larger particles protruding more than this height above their substrates cannot be scanned completely. To immobilize particles and eliminate large particles during SPM scanning, micromachined Si substrates, which have been successfully applied in the Phoenix project for Mars investigation in 2008 [2], have been investigated for lunar analogue material. On these substrates micrometer pits are patterned and serve as traps to enhance the stability of the AFM scanning by grasping the particles. In addition, the diameter of pits can determine the size of dusts to be captured and reduce the adhesion for the larger dust and so eliminate the oversized particles. To extend the imaging range and assist in selecting scan areas for the SPM, we use a type of lensless optical imaging (LOM) which uses ptychographic diffractive imaging [3] to eliminate the restrictions and performance limitations of conventional focusing devices. As a reference, scanning electron microscopy (SEM) which minimizes particle-probe interactions and has the advantage of an extended depth of field, is employed to image the same particle fields at resolutions covering both the SPM and LOM. By comparing the differences and the similarities between SEM and LOM images, the ability of LOM for illuminating the details about the lunar particles sample, is demonstrated. The analysis of SEM and SPM images of the same particles of JSC-LunarA analogue soil reveals the potential of the SPM to obtain reliable microscopic images of lunar dusts including detailed morphology with the help of the micromachined Si substrates. [1] J. D. Carpenter, O. Angerer, M. Durante, D. Linnarson, W. T. Pike, "Life Sciences Investigations for ESA's First Lunar Lander," Earth, Moon, and Planets, Vol.107, pp. 11-23, 2010. [2] S. Vijendran, H.Sykulska, and W. T. Pike, "AFM investigation of Martian soil simulant on micromachined Si substrates," Journal of Microscopy, Vol.227, pp.236-245, Sep. 2007. [3] J.M. Rodenburg, "Ptychography and related diffractive imaging techniques," Advances in Imaging and Electron Physics, Vol.150, pp. 87-184, 2008
Adaptable Diffraction Gratings With Wavefront Transformation
NASA Technical Reports Server (NTRS)
Iazikov, Dmitri; Mossberg, Thomas W.; Greiner, Christoph M.
2010-01-01
Diffraction gratings are optical components with regular patterns of grooves, which angularly disperse incoming light by wavelength. Traditional diffraction gratings have static planar, concave, or convex surfaces. However, if they could be made so that they can change the surface curvature at will, then they would be able to focus on particular segments, self-calibrate, or perform fine adjustments. This innovation creates a diffraction grating on a deformable surface. This surface could be bent at will, resulting in a dynamic wavefront transformation. This allows for self-calibration, compensation for aberrations, enhancing image resolution in a particular area, or performing multiple scans using different wavelengths. A dynamic grating gives scientists a new ability to explore wavefronts from a variety of viewpoints.