Sample records for diffraction lens telescope

  1. Eyeglass: A Very Large Aperture Diffractive Space Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyde, R; Dixit, S; Weisberg, A

    2002-07-29

    Eyeglass is a very large aperture (25-100 meter) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope's large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently fieldable (lightweight and flat, hence packagable and deployable) and virtually eliminates the traditional, very tight, surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by correctivemore » optics in the telescope's eyepiece. The Eyeglass can provide diffraction-limited imaging with either single-band, multiband, or continuous spectral coverage. Broadband diffractive telescopes have been built at LLNL and have demonstrated diffraction-limited performance over a 40% spectral bandwidth (0.48-0.72 {micro}m). As one approach to package a large aperture for launch, a foldable lens has been built and demonstrated. A 75 cm aperture diffractive lens was constructed from 6 panels of 1 m thick silica; it achieved diffraction-limited performance both before and after folding. This multiple panel, folding lens, approach is currently being scaled-up at LLNL. We are building a 5 meter aperture foldable lens, involving 72 panels of 700 {micro}m thick glass sheets, diffractively patterned to operate as coherent f/50 lens.« less

  2. Stray light characteristics of the diffractive telescope system

    NASA Astrophysics Data System (ADS)

    Liu, Dun; Wang, Lihua; Yang, Wei; Wu, Shibin; Fan, Bin; Wu, Fan

    2018-02-01

    Diffractive telescope technology is an innovation solution in construction of large light-weight space telescope. However, the nondesign orders of diffractive optical elements (DOEs) may affect the imaging performance as stray light. To study the stray light characteristics of a diffractive telescope, a prototype was developed and its stray light analysis model was established. The stray light characteristics including ghost, point source transmittance, and veiling glare index (VGI) were analyzed. During the star imaging test of the prototype, the ghost images appeared around the star image as the exposure time of the charge-coupled device improving, consistent with the simulation results. The test result of VGI was 67.11%, slightly higher than the calculated value 57.88%. The study shows that the same order diffraction of the diffractive primary lens and correcting DOE is the main factor that causes ghost images. The stray light sources outside the field of view can illuminate the image plane through nondesign orders diffraction of the primary lens and contributes to more than 90% of the stray light flux on the image plane. In summary, it is expected that these works will provide some guidance for optimizing the imaging performance of diffractive telescopes.

  3. Large aperture diffractive space telescope

    DOEpatents

    Hyde, Roderick A.

    2001-01-01

    A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.

  4. International Lens Design Conference, Monterey, CA, June 11-14, 1990, Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, G.N.

    1990-01-01

    The present conference on lens design encompasses physical and geometrical optics, diffractive optics, the optimization of optical design, software packages, ray tracing, the use of artificial intelligence, the achromatization of materials, zoom optics, microoptics and GRIN lenses, and IR lens design. Specific issues addressed include diffraction-performance calculations in lens design, the optimization of the optical transfer function, a rank-down method for automatic lens design, applications of quadric surfaces, the correction of aberrations by using HOEs in UV and visible imaging systems, and an all-refractive telescope for intersatellite communications. Also addressed are automation techniques for optics manufacturing, all-reflective phased-array imaging telescopes,more » the thermal aberration analysis of a Nd:YAG laser, the analysis of illumination systems, athermalized FLIR optics, and the design of array systems using shared symmetry.« less

  5. Diffractive optics for precision alignment of Euclid space telescope optics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Asfour, Jean-Michel; Weidner, Frank; Bodendorf, Christof; Bode, Andreas; Poleshchuk, Alexander G.; Nasyrov, Ruslan K.; Grupp, Frank; Bender, Ralf

    2017-09-01

    We present a method for precise alignment of lens elements using specific Computer Generated Hologram (CGH) with an integrated Fizeau reference flat surface and a Fizeau interferometer. The method is used for aligning the so called Camera Lens Assembly for ESAs Euclid telescope. Each lens has a corresponding annular area on the diffractive optics, which is used to control the position of each lens. The lenses are subsequently positioned using individual annular rings of the CGH. The overall alignment accuracy is below 1 µm, the alignment sensitivity is in the range of 0.1 µm. The achieved alignment accuracy of the lenses relative to each other is mainly depending on the stability in time of the alignment tower. Error budgets when using computer generated holograms and physical limitations are explained. Calibration measurements of the alignment system and the typically reached alignment accuracies will be shown and discussed.

  6. Finite Element Analysis of the LOLA Receiver Telescope Lens

    NASA Technical Reports Server (NTRS)

    Matzinger, Elizabeth

    2007-01-01

    This paper presents the finite element stress and distortion analysis completed on the Receiver Telescope lens of the Lunar Orbiter Laser Altimeter (LOLA). LOLA is one of six instruments on the Lunar Reconnaissance Orbiter (LRO), scheduled to launch in 2008. LOLA's main objective is to produce a high-resolution global lunar topographic model to aid in safe landings and enhance surface mobility in future exploration missions. The Receiver Telescope captures the laser pulses transmitted through a diffractive optical element (DOE) and reflected off the lunar surface. The largest lens of the Receiver Telescope, Lens 1, is a 150 mm diameter aspheric lens originally designed to be made of BK7 glass. The finite element model of the Receiver Telescope Lens 1 is comprised of solid elements and constrained in a manner consistent with the behavior of the mounting configuration of the Receiver Telescope tube. Twenty-one temperature load cases were mapped to the nodes based on thermal analysis completed by LOLA's lead thermal analyst, and loads were applied to simulate the preload applied from the ring flexure. The thermal environment of the baseline design (uncoated BK7 lens with no baffle) produces large radial and axial gradients in the lens. These large gradients create internal stresses that may lead to part failure, as well as significant bending that degrades optical performance. The high stresses and large distortions shown in the analysis precipitated a design change from BK7 glass to sapphire.

  7. Second generation crystals for Laue lens applications

    NASA Astrophysics Data System (ADS)

    Barrière, N.; von Ballmoos, P.; Bastie, P.; Courtois, P.; Abrosimov, N. V.; Andersen, K.; Halloin, H.; Skinner, G.; Smither, R. K.

    2006-06-01

    A Laue lens gamma-ray telescope represents an exciting concept for a future high-energy mission. The feasibility of such a lens has been demonstrated by the CLAIRE lens prototype; since then various mission concepts featuring a Laue lens are being developed. The latest, which is also the most ambitious, is the European Gamma-Ray Imager (GRI). However, advancing from the CLAIRE prototype to a scientifically exploitable Laue lens requires still substantial research and development. First and foremost, diffracting elements (crystals) that constitute the Laue lens have to be optimized to offer the best efficiency and imaging capabilities for the resulting telescope. The characteristics of selected candidate crystals were measured at the European Synchrotron Radiation Facility on the high-energy beamline ID 15A using a beam tuned at 292 keV. The studied low mosaicity copper crystals have shown absolute reflectivity reaching 30%. These crystals are promising for the realization of a Laue lens, despite the fact that they produce a diffracted beam featuring a Gaussian intensity profile, which contributes to the spread of the focal spot. A composition gradient Si 1-x-Ge x crystal has been investigated as well, which showed a diffraction efficiency reaching 50% (disregarding absorption) - half of the theoretical maximum - that represents an absolute reflectivity around 39 %, the best that we measured at this energy to date. This gradient crystal also showed a square-shaped rocking curve that is almost the best case to minimize the spread of the focal spot. We also show that bending a gradient crystal could still enhance the focusing. Thanks to the better focusing, a factor of 2 in sensitivity improvement may be achieved.

  8. Eyeglass Large Aperture, Lightweight Space Optics FY2000 - FY2002 LDRD Strategic Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyde, R

    2003-02-10

    A series of studies by the Air Force, the National Reconnaissance Office and NASA have identified the critical role played by large optics in fulfilling many of the space related missions of these agencies. Whether it is the Next Generation Space Telescope for NASA, high resolution imaging systems for NRO, or beam weaponry for the Air Force, the diameter of the primary optic is central to achieving high resolution (imaging) or a small spot size on target (lethality). While the detailed requirements differ for each application (high resolution imaging over the visible and near-infrared for earth observation, high damage thresholdmore » but single-wavelength operation for directed energy), the challenges of a large, lightweight primary optic which is space compatible and operates with high efficiency are the same. The advantage of such large optics to national surveillance applications is that it permits these observations to be carried-out with much greater effectiveness than with smaller optics. For laser weapons, the advantage is that it permits more tightly focused beams which can be leveraged into either greater effective range, reduced laser power, and/or smaller on-target spot-sizes; weapon systems can be made either much more effective or much less expensive. This application requires only single-wavelength capability, but places an emphasis upon robust, rapidly targetable optics. The advantages of large aperture optics to astronomy are that it increases the sensitivity and resolution with which we can view the universe. This can be utilized either for general purpose astronomy, allowing us to examine greater numbers of objects in more detail and at greater range, or it can enable the direct detection and detailed examination of extra-solar planets. This application requires large apertures (for both light-gathering and resolution reasons), with broad-band spectral capability, but does not emphasize either large fields-of-view or pointing agility. Despite differences in their requirements and implementations, the fundamental difficulty in utilizing large aperture optics is the same for all of these applications: It is extremely difficult to design large aperture space optics which are both optically precise and can meet the practical requirements for launch and deployment in space. At LLNL we have developed a new concept (Eyeglass) which uses large diffractive optics to solve both of these difficulties; greatly reducing both the mass and the tolerance requirements for large aperture optics. During previous LDRD-supported research, we developed this concept, built and tested broadband diffractive telescopes, and built 50 cm aperture diffraction-limited diffractive lenses (the largest in the world). This work is fully described in UCRL-ID-136262, Eyeglass: A Large Aperture Space Telescope. However, there is a large gap between optical proof-of-principle with sub-meter apertures, and actual 50 meter space telescopes. This gap is far too large (both in financial resources and in spacecraft expertise) to be filled internally at LLNL; implementation of large aperture diffractive space telescopes must be done externally using non-LLNL resources and expertise. While LLNL will never become the primary contractor and integrator for large space optical systems, our natural role is to enable these devices by developing the capability of producing very large diffractive optics. Accordingly, the purpose of the Large Aperture, Lightweight Space Optics Strategic Initiative was to develop the technology to fabricate large, lightweight diffractive lenses. The additional purpose of this Strategic Initiative was, of course, to demonstrate this lens-fabrication capability in a fashion compellingly enough to attract the external support necessary to continue along the path to full-scale space-based telescopes. During this 3 year effort (FY2000-FY2002) we have developed the capability of optically smoothing and diffractively-patterning thin meter-sized sheets of glass into lens panels. We have also developed alignment and seaming techniques which allow individual lens panels to be assembled together, forming a much larger, segmented, diffractive lens. The capabilities provided by this LDRD-supported developmental effort were then demonstrated by the fabrication and testing of a lightweight, 5 meter aperture, diffractive lens.« less

  9. Super-resolution optical telescopes with local light diffraction shrinkage

    PubMed Central

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820

  10. Atmospheric dispersion corrector for the Large Sky Area Multi-Object Fibre Spectroscopic Telescope

    NASA Astrophysics Data System (ADS)

    Su, Ding-Qiang; Jia, Peng; Liu, Genrong

    2012-02-01

    The Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) is the largest, wide field-of-view (FOV) telescope (with an aperture of 4 m), and it is equipped with the highest number (4000) of optical fibres in the world. For the LAMOST North and the LAMOST South, the FOVs are 5° and 3.5°, respectively, and the linear diameters are 1.75 m and 1.22 m, respectively. A new type of atmospheric dispersion corrector (ADC) is put forward and designed for LAMOST. It is a segmented lens, which consists of many lens-prism strips. Although it is very large, its thickness is only 12 mm. Thus, the difficulty of obtaining a large optical glass is avoided, and the aberration caused by the ADC is small. By moving this segmented lens along the optical axis, different dispersions can be obtained. We discuss the effects of ADC's slits on the diffraction energy distribution and on the obstruction of light. We calculate and discuss the aberration caused by the ADC. All these results are acceptable. Such an ADC could also be used for other optical fibre spectroscopic telescopes, especially those which a have very large FOV.

  11. Construction, characterization, and environmental testing of a Laue lens prototype using Fe and Al crystals

    NASA Astrophysics Data System (ADS)

    Wade, C.; Barrière, N. M.; Tomsick, J. A.; Hanlon, L.; Boggs, S. E.; Lowell, A.; von Ballmoos, P.; Massahi, S.

    2018-07-01

    Laue lenses use Bragg diffraction to concentrate soft γ-rays onto a detector. This decoupling of the collecting area from the detector volume can generate a significant increase in sensitivity for applications in astrophysics and nuclear medicine. A demonstrator lens was constructed at the UC Berkeley's Space Sciences Laboratory in 2014 by gluing 48 Fe and Al diffracting crystals to an aluminium substrate. The goal was to demonstrate a fast and accurate assembly technique that is compatible with the large number of crystals required to fabricate a Laue lens telescope for astronomical observations. We present here the lens design, the assembly technique we used, and the results of measurements of the angular misalignments before and after curing of the glue and during environmental testing (thermal, vacuum, and vibration). We conclude that our alignment technique is fast enough to assemble a full lens made of several thousand crystals. The achieved alignment accuracy had an average of 32.7‧‧ and a standard deviation of 44.1‧‧. The accuracy could be improved by using an alternative glue or by having better control over the asymmetry angle resulting from the crystal cut.

  12. Manufacture of a combined primary and tertiary mirror for the Large Synoptic Survey Telescope

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Burge, J. H.; Cuerden, B.; Davison, W. B.; Kingsley, J. S.; Lutz, R. D.; Miller, S. M.; Tuell, M.

    2008-07-01

    The Large Synoptic Survey Telescope uses a unique optomechanical design that places the primary and tertiary mirrors on a single glass substrate. The honeycomb sandwich mirror blank was formed in March 2008 by spin-casting. The surface is currently a paraboloid with a 9.9 m focal length matching the primary. The deeper curve of the tertiary mirror will be produced when the surfaces are generated. Both mirrors will be lapped and polished using stressed laps and other tools on an 8.4 m polishing machine. The highly aspheric primary mirror will be measured through a refractive null lens, and a computer-generated hologram will be used to validate the null lens. The tertiary mirror will be measured through a diffractive null corrector, also validated with a separate hologram. The holograms for the two tests provide alignment references that will be used to make the axes of the two surfaces coincide.

  13. Holographic telescope

    NASA Astrophysics Data System (ADS)

    Odhner, Jefferson E.

    2016-07-01

    Holographic optical elements (HOEs) work on the principal of diffraction and can in some cases replace conventional optical elements that work on the principal of refraction. An HOE can be thinner, lighter, can have more functionality, and can be lower cost than conventional optics. An HOE can serve as a beam splitter, spectral filter, mirror, and lens all at the same time. For a single wavelength system, an HOE can be an ideal solution but they have not been widely accepted for multispectral systems because they suffer from severe chromatic aberration. A refractive optical system also suffers from chromatic aberration but it is generally not as severe. To color correct a conventional refractive optical system, a flint glass and a crown glass are placed together such that the color dispersion of the flint and the crown cancel each other out making an achromatic lens (achromat) and the wavelengths all focus to the same point. The color dispersion of refractive lenses and holographic lenses are opposite from each other. In a diffractive optical system, long wavelengths focus closer (remember for HOEs: RBM "red bends more") than nominal focus while shorter wavelengths focus further out. In a refractive optical system, it is just the opposite. For this reason, diffractives can be incorporated into a refractive system to do the color correction and often cut down on the number of optical elements used [1.]. Color correction can also be achieved with an all-diffractive system by combining a holographic optical element with its conjugate. In this way the color dispersion of the first holographic optical element can be cancelled by the color dispersion of the second holographic optic. It is this technique that will be exploited in this paper to design a telescope made entirely of holographic optical elements. This telescope could be more portable (for field operations) the same technique could be used to make optics light enough for incorporation into a UAV.

  14. Gamma-ray lens development status for a European gamma-ray imager

    NASA Astrophysics Data System (ADS)

    Frontera, F.; Pisa, A.; Carassiti, V.; Evangelisti, F.; Loffredo, G.; Pellicciotta, D.; Andersen, K. H.; Courtois, P.; Amati, L.; Caroli, E.; Franceschini, T.; Landini, G.; Silvestri, S.; Stephen, J. B.

    2006-06-01

    A breakthrough in the sensitivity level of the hard X-/gamma-ray telescopes, which today are based on detectors that view the sky through (or not) coded masks, is expected when focusing optics will be available also in this energy range. Focusing techniques are now in an advanced stage of development. To date the most efficient technique to focus hard X-rays with energies above 100 keV appears to be the Bragg diffraction from crystals in transmission configuration (Laue lenses). Crystals with mosaic structure appear to be the most suitable to build a Laue lens with a broad passband, even though other alternative structures are being investigated. The goal of our project is the development of a broad band focusing telescope based on gamma-ray lenses for the study of the continuum emission of celestial sources from 60 keV up to >600 keV. We will report details of our project, its development status and results of our assessment study of a lens configuration for the European Gamma Ray Imager (GRI) mission now under study for the ESA plan Cosmic Vision 2015-2025.

  15. [Design of a Component and Transmission Imaging Spectrometer].

    PubMed

    Sun, Bao-peng; Zhang, Yi; Yue, Jiang; Han, Jing; Bai, Lian-fa

    2015-05-01

    In the reflection-based imaging spectrometer, multiple reflection(diffraction) produces stray light and it is difficult to assemble. To address that, a high performance transmission spectral imaging system based on general optical components was developed. On the basis of simple structure, the system is easy to assemble. And it has wide application and low cost compared to traditional imaging spectrometers. All components in the design can be replaced according to different application situations, having high degree of freedom. In order to reduce the influence of stray light, a method based on transmission was introduced. Two sets of optical systems with different objective lenses were simulated; the parameters such as distortion, MTF and aberration.were analyzed and optimized in the ZEMAX software. By comparing the performance of system with different objective len 25 and 50 mm, it can be concluded that the replacement of telescope lens has little effect on imaging quality of whole system. An imaging spectrometer is developed successfully according design parameters. The telescope lens uses double Gauss structures, which is beneficial to reduce field curvature and distortion. As the craftsmanship of transmission-type plane diffraction grating is mature, it can be used without modification and it is easy to assemble, so it is used as beam-split. component of the imaging spectrometer. In addition, the real imaging spectrometer was tested for spectral resolution and distortion. The result demonstrates that the system has good ability in distortion control, and spectral resolution is 2 nm. These data satisfy the design requirement, and obtained spectrum of deuterium lamp through calibrated system are ideal results.

  16. QUASAR PG1115+080 AND GRAVITATIONAL LENS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Left: The light from the single quasar PG 1115+080 is split and distorted in this infrared image. PG 1115+080 is at a distance of about 8 billion light years in the constellation Leo, and it is viewed through an elliptical galaxy lens at a distance of 3 billion light years. The NICMOS frame is taken at a wavelength of 1.6 microns and it shows the four images of the quasar (the two on the left are nearly merging) surrounding the galaxy that causes the light to be lensed. The quasar is a variable light source and the light in each image travels a different path to reach the Earth. The time delay of the variations allows the distance scale to be measured directly. The linear streaks on the image are diffraction artifacts in the NICMOS instrument (NASA/Space Telescope Science Institute). Right: In this NICMOS image, the four quasar images and the lens galaxy have been subtracted, revealing a nearly complete ring of infrared light. This ring is the stretched and amplified starlight of the galaxy that contains the quasar, some 8 billion light years away. (NASA/Space Telescope Science Institute). Credit: Christopher D. Impey (University of Arizona)

  17. Astronomy (communication arising): black holes, fleas and microlithography.

    PubMed

    Skinner, Gerry; Gorenstein, Paul

    2003-11-20

    Fresnel lenses allow almost perfect imaging in widely different circumstances, but their focus is perfect only for a single wavelength. Wang et al. have shown how the effective bandpass may be widened for X-ray microscopy by using a compound diffractive/refractive lens near to an absorption edge. A compound lens has also been proposed for high-energy astronomy, working well above all absorption edges. Although the scale is very different, we point out here that the principle is the same. Ever since Galileo constructed an astronomical telescope that he was able to reconfigure to study fleas and gnats, astronomy and microscopy have relied on optics that are closely related, but different in detail.

  18. GISMO, an ELT in space: a giant (30-m) far-infrared and submillimeter space observatory

    NASA Astrophysics Data System (ADS)

    Hawarden, Timothy G.; Johnstone, Callum; Johnstone, Graeme

    2004-07-01

    We describe GISMO, a concept for a 30-m class achromatic diffractive Fesnel space telescope operating in the far-IR and submillimeter from ~20 μm to ~700 μm. The concept is based on the precepts of Hyde (1999). It involves two units, the Lens and Instrument spacecraft, 3 km apart in a halo orbit around the Earth-Sun L2 point. The primary lens, L1, is a 30.1-m, 32-zone f/100 Fresnel lens, fabricated from ultra-high molecular-weight polyethylene (UHMW-PE). It is 1.0 to 3.4 mm thick (the features are 2.4 mm high for a "design wavelength" of 1.2 mm) and made in 5 strips linked by fabric hinges. It is stowed for launch by folding and rolling. It is deployed warm, unrolled by pneumatic or mechanical means, unfolded by carbon-fiber struts with Shape Memory Alloy hinges and stiffened until cold by a peripheral inflatable ring. Re-oriented edgeways-on to the Sun behind a 5-layer sunshade, L1 will then cool by radiation to space, approaching ~10K after 200 - 300 days. The low equilibrium temperature occurs because the lens is very thin and has a huge view factor to space but a small one to the sunshade. The Instrument spacecraft resembles a smaller, colder (~4K) version of the James Webb Space Telescope and shares features of a concept for the SAFIR mission. A near-field Ritchey-Chretien telescope with a 3-segment off-axis 6m x 3m primary acts as field lens, re-imaging L1 on a 30-cm f/1 Fresnel Corrector lens of equal and opposite dispersion, producing an achromatic beam which is directed to a focal plane equipped with imaging and spectroscopic instruments. The "design wavelength" of the telescope is 1.2 mm and it is employed at its second and higher harmonics. The shortest wavelength, ~20μm, is set by the transmission properties of the lens material (illustrated here) and determines the design tolerances of the optical system. The overall mass is estimated at ~5 tonnes and the stowed length around 14 m. Technical challenges and areas of uncertainty for the design concept are highlighted. An assessment of the likely performance suggests that, if these can be resolved, GISMO will address most science goals in these crucial wavelength ranges at least as well as any other proposed mission in this wavelength range, and may well be achievable at a lower cost and on a shorter timescale.

  19. Shack-Hartmann Phasing of Segmented Telescopes: Systematic Effects from Lenslet Arrays

    NASA Technical Reports Server (NTRS)

    Troy, Mitchell; Chanan, Gary; Roberts, Jennifer

    2010-01-01

    The segments in the Keck telescopes are routinely phased using a Shack-Hartmann wavefront sensor with sub-apertures that span adjacent segments. However, one potential limitation to the absolute accuracy of this technique is that it relies on a lenslet array (or a single lens plus a prism array) to form the subimages. These optics have the potential to introduce wavefront errors and stray reflections at the subaperture level that will bias the phasing measurement. We present laboratory data to quantify this effect, using measured errors from Keck and two other lenslet arrays. In addition, as part of the design of the Thirty Meter Telescope Alignment and Phasing System we present a preliminary investigation of a lenslet-free approach that relies on Fresnel diffraction to form the subimages at the CCD. Such a technique has several advantages, including the elimination of lenslet aberrations.

  20. The use of contact lens telescopic systems in low vision rehabilitation.

    PubMed

    Vincent, Stephen J

    2017-06-01

    Refracting telescopes are afocal compound optical systems consisting of two lenses that produce an apparent magnification of the retinal image. They are routinely used in visual rehabilitation in the form of monocular or binocular hand held low vision aids, and head or spectacle-mounted devices to improve distance visual acuity, and with slight modifications, to enhance acuity for near and intermediate tasks. Since the advent of ground glass haptic lenses in the 1930's, contact lenses have been employed as a useful refracting element of telescopic systems; primarily as a mobile ocular lens (the eyepiece), that moves with the eye. Telescopes which incorporate a contact lens eyepiece significantly improve the weight, comesis, and field of view compared to traditional spectacle-mounted telescopes, in addition to potential related psycho-social benefits. This review summarises the underlying optics and use of contact lenses to provide telescopic magnification from the era of Descartes, to Dallos, and the present day. The limitations and clinical challenges associated with such devices are discussed, along with the potential future use of reflecting telescopes incorporated within scleral lenses and tactile contact lens systems in low vision rehabilitation. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  1. Optical system design, analysis, and production for advanced technology systems; Proceedings of the Meeting, Innsbruck, Austria, Apr. 15-17, 1986

    NASA Technical Reports Server (NTRS)

    Fischer, Robert E. (Editor); Rogers, Philip J. (Editor)

    1986-01-01

    The present conference considers topics in the fields of optical systems design software, the design and analysis of optical systems, illustrative cases of advanced optical system design, the integration of optical designs into greater systems, and optical fabrication and testing techniques. Attention is given to an extended range diffraction-based merit function for lens design optimization, an assessment of technologies for stray light control and evaluation, the automated characterization of IR systems' spatial resolution, a spectrum of design techniques based on aberration theory, a three-field IR telescope, a large aperture zoom lens for 16-mm motion picture cameras, and the use of concave holographic gratings as monochomators. Also discussed are the use of aspherics in optical systems, glass choice procedures for periscope design, the fabrication and testing of unconventional optics, low mass mirrors for large optics, and the diamond grinding of optical surfaces on aspheric lens molds.

  2. Lightweight Inexpensive Ozone Lidar Telescope Using a Plastic Fresnel Lens

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Notari, Anthony; Carrion, William; Pliutau, Denis

    2014-01-01

    An inexpensive lightweight ozone lidar telescope was designed, constructed and operated during an ozone lidar field campaign. This report summarizes the design parameters and performance of the plastic Fresnel lens telescope and shows the ozone lidar performance compared to Zemax calculations.

  3. Fresnel Lenses for Wide-Aperture Optical Receivers

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    2004-01-01

    Wide-aperture receivers for freespace optical communication systems would utilize Fresnel lenses instead of conventional telescope lenses, according to a proposal. Fresnel lenses weigh and cost much less than conventional lenses having equal aperture widths. Plastic Fresnel lenses are commercially available in diameters up to 5 m large enough to satisfy requirements for aperture widths of the order of meters for collecting sufficient light in typical long-distance free-space optical communication systems. Fresnel lenses are not yet suitable for high-quality diffraction-limited imaging, especially in polychromatic light. However, optical communication systems utilize monochromatic light, and there is no requirement for high-quality imaging; instead, the basic requirement for an optical receiver is to collect the incoming monochromatic light over a wide aperture and concentrate the light onto a photodetector. Because of lens aberrations and diffraction, the light passing through any lens is focused to a blur circle rather than to a point. Calculations for some representative cases of wide-aperture non-diffraction-limited Fresnel lenses have shown that it should be possible to attain blur-circle diameters of less than 2 mm. Preferably, the blur-circle diameter should match the width of the photodetector. For most high-bandwidth communication applications, the required photodetector diameters would be about 1 mm. In a less-preferable case in which the blur circle was wider than a single photodetector, it would be possible to occupy the blur circle with an array of photodetectors. As an alternative to using a single large Fresnel lens, one could use an array of somewhat smaller lenses to synthesize the equivalent aperture area. Such a configuration might be preferable in a case in which a single Fresnel lens of the requisite large size would be impractical to manufacture, and the blur circle could not be made small enough. For example one could construct a square array of four 5-m-diameter Fresnel lenses to obtain the same light-collecting area as that of a single 10-m-diameter lens. In that case (see figure), the light collected by each Fresnel lens could be collimated, the collimated beams from the four Fresnel lenses could be reflected onto a common offaxis paraboloidal reflector, and the paraboloidal reflector would focus the four beams onto a single photodetector. Alternatively, detected signal from each detector behind each lens would be digitized before summing the signals.

  4. Maksutov, Dmitri Dmitievich (1896-1964)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Soviet optician and telescope maker. After fighting in the Russian Revolution and the First World War, he worked on astronomical optics at Odessa, Moscow and Pulkovo, and invented the Maksutov telescope. The design is a development of the Schmidt telescope, replacing the aspheric lens with a negative meniscus lens with spherical surfaces which are easier to make. The telescope tube is also m...

  5. Ultrathin zoom telescopic objective.

    PubMed

    Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua

    2016-08-08

    We report an ultrathin zoom telescopic objective that can achieve continuous zoom change and has reduced compact volume. The objective consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens undertakes the main part of the focal power of the lens system. Due to a multiple-fold design, the optical path is folded in a lens with the thickness of ~1.98mm. The electrowetting liquid lenses constitute a zoom part. Based on the proposed objective, an ultrathin zoom telescopic camera is demonstrated. We analyze the properties of the proposed objective. The aperture of the proposed objective is ~15mm. The total length of the system is ~18mm with a tunable focal length ~48mm to ~65mm. Compared with the conventional zoom telescopic objective, the total length has been largely reduced.

  6. Catadioptric Optics for laser Doppler velocimeter applications

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.

    1989-01-01

    In the design of a laser velocimeter system, attention must be given to the performance of the optical elements in their two principal tasks: focusing laser radiation into the probe volume, and collecting the scattered light. For large aperture applications, custom lens design and fabrication costs, long optical path requirements, and chromatic aberration (for two color operation) can be problematic. The adaptation of low cost Schmidt-Cassegrain astronomical telescopes to perform these laser beam manipulation and scattered light collection tasks is examined. A generic telescope design is analyzed using ray tracing and Gaussian beam propagation theory, and a simple modification procedure for converting from infinite to near unity conjugate ratio operation with image quality near the diffraction limit was identified. Modification requirements and performance are predicted for a range of geometries. Finally, a 200-mm-aperture telescope was modified for f/10 operation; performance data for this modified optic for both laser beam focusing and scattered light collection tasks agree well with predictions.

  7. PROSPECTS FOR CHARACTERIZING HOST STARS OF THE PLANETARY SYSTEM DETECTIONS PREDICTED FOR THE KOREAN MICROLENSING TELESCOPE NETWORK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Calen B., E-mail: henderson@astronomy.ohio-state.edu

    2015-02-10

    I investigate the possibility of constraining the flux of the lens (i.e., host star) for the types of planetary systems the Korean Microlensing Telescope Network is predicted to find. I examine the potential to obtain lens flux measurements by (1) imaging the lens once it is spatially resolved from the source, (2) measuring the elongation of the point-spread function of the microlensing target (lens+source) when the lens and source are still unresolved, and (3) taking prompt follow-up photometry. In each case I simulate the observing programs for a representative example of current ground-based adaptive optics (AO) facilities (specifically NACO onmore » the Very Large Telescope), future ground-based AO facilities (GMTIFS on the Giant Magellan Telescope, GMT), and future space telescopes (NIRCAM on the James Webb Space Telescope, JWST). Given the predicted distribution of relative lens-source proper motions, I find that the lens flux could be measured to a precision of σ{sub H{sub ℓ}}≤0.1 for ≳60% of planet detections ≥5 yr after each microlensing event for a simulated observing program using GMT, which images resolved lenses. NIRCAM on JWST would be able to carry out equivalently high-precision measurements for ∼28% of events Δt = 10 yr after each event by imaging resolved lenses. I also explore the effects various blend components would have on the mass derived from prompt follow-up photometry, including companions to the lens, companions to the source, and unassociated interloping stars. I find that undetected blend stars would cause catastrophic failures (i.e., >50% fractional uncertainty in the inferred lens mass) for ≲ (16 · f {sub bin})% of planet detections, where f {sub bin} is the binary fraction, with the majority of these failures occurring for host stars with mass ≲0.3 M {sub ☉}.« less

  8. Coherent x-ray zoom condenser lens for diffractive and scanning microscopy.

    PubMed

    Kimura, Takashi; Matsuyama, Satoshi; Yamauchi, Kazuto; Nishino, Yoshinori

    2013-04-22

    We propose a coherent x-ray zoom condenser lens composed of two-stage deformable Kirkpatrick-Baez mirrors. The lens delivers coherent x-rays with a controllable beam size, from one micrometer to a few tens of nanometers, at a fixed focal position. The lens is suitable for diffractive and scanning microscopy. We also propose non-scanning coherent diffraction microscopy for extended objects by using an apodized focused beam produced by the lens with a spatial filter. The proposed apodized-illumination method will be useful in highly efficient imaging with ultimate storage ring sources, and will also open the way to single-shot coherent diffraction microscopy of extended objects with x-ray free-electron lasers.

  9. Angular and linear fields of view of Galilean telescopes and telemicroscopes.

    PubMed

    Katz, Milton

    2007-06-01

    The calculation of the angular fields of view (FOVs) of Galilean telescopes generally necessitates the calculation of the pupils and ports. This, in turn, requires knowledge of the optical design of the telescope, in particular, the focal lengths or powers of the objective and ocular lenses. Equations for finding the FOV that obviate the need to calculate pupils and ports, or even to know the lens powers of the telescope, are presented in this article. The equations can be used to find the FOVs in image space of real Galilean telescopes of known magnification, merely by measuring the distance between the objective and ocular lenses and the diameter of the objective lens. The equations include the effects of eye pupil diameter and eye relief. Linear FOVs (LFOVs) of Galilean telemicroscopes are similarly determined. Two image space angular FOV equations were derived: (1) an equation to determine the angular FOVs of a telescope with various amounts of vignetting and eye relief; and (2) an equivalent equation for the LFOVs of telescopes fitted with lens caps for near vision. The FOV increases linearly with increasing vignetting. Increasing the eye relief results in a nonlinear decrease in the FOV, shown as a fraction of the normalized value for zero eye relief. Decrements in the FOVs with increasing eye relief as a fraction of the normalized field angle when the eye relief = 0 are shown to be constant regardless of the vignetting level. A transition of the objective lens from field stop to aperture stop occurs when the eye pupil diameter exceeds the diameter of the objective lens divided by the magnification. Equations have been derived for Galilean telescopes and telemicroscopes that make it unnecessary to find pupils and ports, or to know the powers of the lenses. They provide a direct and simple evaluation of angular and LFOVs as functions of magnification, objective lens diameter, eye pupil diameter, eye relief, and vignetting, and enable comparisons of actual telescopes.

  10. A Telescope at the Solar Gravitational Lens: Problems and Solutions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2017-01-01

    Due to the bending of light by gravity, the gravity of sun forms a lens. In principle, a spacecraft sent to the distance of the solar gravitational focus could be used as a gravitational lens telescope. One example of such a mission would be to use the gravitational lens to image an extrasolar planet around a nearby star. The practical difficulties with this concept are discussed, and some approaches to mitigating these difficulties suggested.

  11. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1991-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed.

  12. Design of tracking and detecting lens system by diffractive optical method

    NASA Astrophysics Data System (ADS)

    Yang, Jiang; Qi, Bo; Ren, Ge; Zhou, Jianwei

    2016-10-01

    Many target-tracking applications require an optical system to acquire the target for tracking and identification. This paper describes a new detecting optical system that can provide automatic flying object detecting, tracking and measuring in visible band. The main feature of the detecting lens system is the combination of diffractive optics with traditional lens design by a technique was invented by Schupmann. Diffractive lens has great potential for developing the larger aperture and lightweight lens. First, the optical system scheme was described. Then the Schupmann achromatic principle with diffractive lens and corrective optics is introduced. According to the technical features and requirements of the optical imaging system for detecting and tracking, we designed a lens system with flat surface Fresnel lens and cancels the optical system chromatic aberration by another flat surface Fresnel lens with effective focal length of 1980mm, an F-Number of F/9.9 and a field of view of 2ωω = 14.2', spatial resolution of 46 lp/mm and a working wavelength range of 0.6 0.85um. At last, the system is compact and easy to fabricate and assembly, the diffuse spot size and MTF function and other analysis provide good performance.

  13. History and development of the apodized diffractive intraocular lens.

    PubMed

    Davison, James A; Simpson, Michael J

    2006-05-01

    The ReSTOR intraocular lens presents a unique apodized diffractive design within a refractive foldable acrylic optic, which makes an unprecedented level of mulifocal optical performance available. We describe the history and principles of diffractive optics used in the development of this refractive-diffractive IOL.

  14. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1993-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described.

  15. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, N.M.; Hawryluk, A.M.; London, R.A.; Seppala, L.G.

    1993-10-26

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described. 21 figures.

  16. Compact imaging spectrometer utilizing immersed gratings

    DOEpatents

    Lerner, Scott A.

    2005-12-20

    A compact imaging spectrometer comprising an entrance slit for directing light, lens means for receiving the light, refracting the light, and focusing the light; an immersed diffraction grating that receives the light from the lens means and defracts the light, the immersed diffraction grating directing the detracted light back to the lens means; and a detector that receives the light from the lens means.

  17. A space bourne crystal diffraction telescope for the energy range of nuclear transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Ballmoos, P.; Naya, J.E.; Albernhe, F.

    1995-10-01

    Recent experimental work of the Toulouse-Argonne collaboration has opened for perspective of a focusing gamma-ray telescope operating in the energy range of nuclear transitions, featuring unprecedented sensitivity, angular and energy resolution. The instrument consists of a tunable crystal diffraction lens situated on a stabilized spacecraft, focusing gamma-rays onto a small array of Germanium detectors perched on an extendible boom. While the weight of such an instrument is less than 500 kg, it features an angular resolution of 15 in., an energy resolution of 2 keV and a 3 {sigma} narrow line sensitivity of a few times 10{sup {minus}7} photons s{supmore » {minus}1} cm{sup {minus}2} (10{sup 6} sec observation). This instrumental concept permits observation of any identified source at any selected line-energy in a range of typically 200 keV to 1300 keV. The resulting ``sequential`` operation mode makes sites of explosive nucleosynthesis natural scientific objectives for such a telescope: the nuclear lines of extragalactic supernovae ({sup 56}Ni, {sup 44}Ti, {sup 60}Fe) and galactic novae (p{sup {minus}}p{sup +} line, {sup 7}Be) are accessible to observation, one at a time, due to the erratic appearance and the sequence of half-lifes of these events. Other scientific objectives, include the narrow 511 keV line from galactic broad class annihilators (such as 1E1740-29, nova musca) and possible redshifted annihilation lines from AGN`s.« less

  18. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, Jr., David N.; Simpson, Marc L.

    1997-01-01

    A miniature lens system that corrects for imaging and chromatic aberrations, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components.

  19. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, D.N. Jr.; Simpson, M.L.

    1997-10-21

    A miniature lens system that corrects for imaging and chromatic aberrations is disclosed, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components. 2 figs.

  20. Method and apparatus for a multibeam beacon laser assembly for optical communications

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit (Inventor); Sanji, Babak (Inventor); Wright, Malcolm W. (Inventor); Page, Norman Alan (Inventor)

    2005-01-01

    An optical beacon is comprised of a telescope having a primary focal plane or Coud? focal plane, a plurality of fiber coupled laser sources for generating a plurality of beams, a collimator for collimating the plurality of beams, and optics for combining and focusing the plurality of collimated beams onto the primary or Coud? focal plane of the telescope. The telescope propagates the optical beacon, which is arranged into a ring of incoherent plurality of collimated beams. The apparatus further comprises fiber splitters coupled to each laser source to provide at least eight beams from at least four laser sources. The optics comprises a prism assembly, a combiner lens, a focusing lens and a field lens for focusing the plurality of collimated beams onto the primary focal plane or Coud? focal plane of the telescope.

  1. Comparison of Visual Data Collection Techniques on Mizar: The Barlow Lens

    NASA Astrophysics Data System (ADS)

    Bensel, Holly; Peard, Nolan; Peccia, Dashton; Scimeca, David

    2013-01-01

    Since turning their eyes to the heavens and gazing at the celestial bodies therein, mankind has been restricted and limited in his knowledge of the cosmos by the resolving power of first, the naked-eye, and later, the telescope. It has been the goal of astronomers worldwide to create larger and more powerful telescopes with higher resolving capabilities. Such large telescopes are not an option, however, for amateur astronomers and as such they must rely on other instruments and tools to achieve greater precision. One of these tools is the Barlow lens, used to increase the magnification power of a telescope by increasing its focal length. This magnification can assist in precision and accuracy of observations, especially when measuring the angular separation. Continuing their previous work in double star research (Bensel, Peard, Peccia, Scimeca, et al.), a contingent from St. Mary's School in Medford, Oregon compared the usage of a 2X Barlow lens with their usual telescope configuration and discuss the advantages and disadvantages they experienced with each.

  2. Multiconjugate adaptive optics applied to an anatomically accurate human eye model.

    PubMed

    Bedggood, P A; Ashman, R; Smith, G; Metha, A B

    2006-09-04

    Aberrations of both astronomical telescopes and the human eye can be successfully corrected with conventional adaptive optics. This produces diffraction-limited imagery over a limited field of view called the isoplanatic patch. A new technique, known as multiconjugate adaptive optics, has been developed recently in astronomy to increase the size of this patch. The key is to model atmospheric turbulence as several flat, discrete layers. A human eye, however, has several curved, aspheric surfaces and a gradient index lens, complicating the task of correcting aberrations over a wide field of view. Here we utilize a computer model to determine the degree to which this technology may be applied to generate high resolution, wide-field retinal images, and discuss the considerations necessary for optimal use with the eye. The Liou and Brennan schematic eye simulates the aspheric surfaces and gradient index lens of real human eyes. We show that the size of the isoplanatic patch of the human eye is significantly increased through multiconjugate adaptive optics.

  3. [Hyperopic Laser-in-situ-Keratomileusis after trifocal intraocular lens implantation : Aberration-free femto-Laser-in-situ-Keratomileusis treatment after implantation of a diffractive, multifocal, toric intraocular lens-case analysis].

    PubMed

    Hemkeppler, E; Böhm, M; Kohnen, T

    2018-05-29

    A 52-year-old highly myopic female patient was implanted with a multifocal, diffractive, toric intraocular lens because of the wish to be independent of eyeglasses. Despite high-quality, extensive preoperative examinations, a hyperopic refractive error remained postoperatively, which led to the patient's dissatisfaction. This error was treated with Laser-in-situ-Keratomileusis (LASIK). After corneal LASIK treatment and implantation of a diffractive toric multifocal intraocular lens the patient showed a good postoperative visual result without optical phenomena.

  4. Methods and Devices for Space Optical Communications Using Laser Beams

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    2018-01-01

    Light is used to communicate between objects separated by a large distance. Light beams are received in a telescopic lens assembly positioned in front of a cat's-eye lens. The light can thereby be received at various angles to be output by the cat's-eye lens to a focal plane of the cat's-eye lens, the position of the light beams upon the focal plane corresponding to the angle of the beam received. Lasers and photodetectors are distributed along this focal plane. A processor receives signals from the photodetectors, and selectively signal lasers positioned proximate the photodetectors detecting light, in order to transmit light encoding data through the cat's-eye lens and also through a telescopic lens back in the direction of the received light beams, which direction corresponds to a location upon the focal plane of the transmitting lasers.

  5. Processes for manufacturing multifocal diffractive-refractive intraocular lenses

    NASA Astrophysics Data System (ADS)

    Iskakov, I. A.

    2017-09-01

    Manufacturing methods and design features of modern diffractive-refractive intraocular lenses are discussed. The implantation of multifocal intraocular lenses is the most optimal method of restoring the accommodative ability of the eye after removal of the natural lens. Diffractive-refractive intraocular lenses are the most widely used implantable multifocal lenses worldwide. Existing methods for manufacturing such lenses implement various design solutions to provide the best vision function after surgery. The wide variety of available diffractive-refractive intraocular lens designs reflects the demand for this method of vision correction in clinical practice and the importance of further applied research and development of new technologies for designing improved lens models.

  6. R and D progress on second-generation crystals for Laue lens applications

    NASA Astrophysics Data System (ADS)

    Barrière, N.; von Ballmoos, P.; Bastie, P.; Courtois, P.; Abrosimov, N. V.; Andersen, K.; Buslaps, T.; Camus, T.; Halloin, H.; Jentschel, M.; Knödlseder, J.; Roudil, G.; Serre, D.; Skinner, G.

    2007-09-01

    The concept of a gamma-ray telescope based on a Laue lens offers the possibility to increase the sensitivity by more than an order of magnitude with respect to existing instruments. Laue lenses have been developed by our collaboration for several years : the main achievement of this R&D program was the CLAIRE lens prototype, which has successfully demonstrated the feasibility of the concept in astrophysical conditions. Since then, the endeavour has been oriented towards the development of efficient diffracting elements (crystal slabs) in order to increase both the effective area and the width of the energy bandpass focused, the aim being to step from a technological Laue lens to a scientifically exploitable lens. The latest mission concept featuring a gamma-ray lens is the European Gamma- Ray Imager (GRI) which intends to make use of the Laue lens to cover energies from 200 keV to 1300 keV. Investigations of two promising materials, low mosaicity copper and gradient concentration silicongermanium are presented in this paper. The measurements have been performed during three runs: 6 + 4 days at the European Synchrotron Radiation Facility (Grenoble, France), on beamline ID15A, using a 500 keV monochromatic beam, and 14 days on the GAMS 4 instrument of the Institute Laue Langevin (Grenoble, France) featuring a highly monochromatic beam of 517 keV. Despite it was not perfectly homogeneous, the presented copper crystal has exhibited peak reflectivity of 25 % in accordance with theoretical predictions, and a mosaicity around 26 arcsec, the ideal range for the realization of a Laue lens such as GRI. Silicon-germanium featuring a constant gradient have been measured for the very first time at 500 keV. Two samples showed a quite homogeneous reflectivity reaching 26%, which is far from the 48 % already observed in experimental crystals but a very encouraging beginning. The measured results have been used to estimate the performance of the GRI Laue lens design.

  7. Optical design of free-form surface two-mirror telescopic objective with ultrawide field of view

    NASA Astrophysics Data System (ADS)

    Liu, Qinghan; Zhou, Zhengping; Jin, Yangming; Shen, Weimin

    2016-10-01

    Compact off-axial two-mirror fore objective with an ultra wide ground coverage and for spaceborne pushbroom imaging spectrometers is studied and designed. Based on Gaussian optics and Young's formulas, the approach to determine its initial structural parameters is presented. In order to meet the required performance, freeform surfaces are used to increase the degree of freedom of our optimization. And the impact of various X-Y polynomials on its pupil aberration is analyzed for elimination of too large smile effect. As an example, an off-axis two-mirror fore telescopic objective with field of view of 108° across-pushbroom direction, F number of 10, focal length of 34 mm and working wavelength range from 0.27 to 2.4 μm is optimally designed, which both the primary and the secondary mirrors have freeform surface. The designed lens has many advantages of simple and compact structure, imagery telecentricity, near diffraction-limited imaging quality, and small smile effect.

  8. Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) Slit-Jaw Imaging System

    NASA Astrophysics Data System (ADS)

    Wilkerson, P.; Champey, P. R.; Winebarger, A. R.; Kobayashi, K.; Savage, S. L.

    2017-12-01

    The Marshall Grazing Incidence X-ray Spectrometer is a NASA sounding rocket payload providing a 0.6 - 2.5 nm spectrum with unprecedented spatial and spectral resolution. The instrument is comprised of a novel optical design, featuring a Wolter1 grazing incidence telescope, which produces a focused solar image on a slit plate, an identical pair of stigmatic optics, a planar diffraction grating and a low-noise detector. When MaGIXS flies on a suborbital launch in 2019, a slit-jaw camera system will reimage the focal plane of the telescope providing a reference for pointing the telescope on the solar disk and aligning the data to supporting observations from satellites and other rockets. The telescope focuses the X-ray and EUV image of the sun onto a plate covered with a phosphor coating that absorbs EUV photons, which then fluoresces in visible light. This 10-week REU project was aimed at optimizing an off-axis mounted camera with 600-line resolution NTSC video for extremely low light imaging of the slit plate. Radiometric calculations indicate an intensity of less than 1 lux at the slit jaw plane, which set the requirement for camera sensitivity. We selected a Watec 910DB EIA charge-coupled device (CCD) monochrome camera, which has a manufacturer quoted sensitivity of 0.0001 lux at F1.2. A high magnification and low distortion lens was then identified to image the slit jaw plane from a distance of approximately 10 cm. With the selected CCD camera, tests show that at extreme low-light levels, we achieve a higher resolution than expected, with only a moderate drop in frame rate. Based on sounding rocket flight heritage, the launch vehicle attitude control system is known to stabilize the instrument pointing such that jitter does not degrade video quality for context imaging. Future steps towards implementation of the imaging system will include ruggedizing the flight camera housing and mounting the selected camera and lens combination to the instrument structure.

  9. Matching optics for Gaussian beams

    NASA Technical Reports Server (NTRS)

    Gunter, William D. (Inventor)

    1991-01-01

    A system of matching optics for Gaussian beams is described. The matching optics system is positioned between a light beam emitter (such as a laser) and the input optics of a second optics system whereby the output from the light beam emitter is converted into an optimum input for the succeeding parts of the second optical system. The matching optics arrangement includes the combination of a light beam emitter, such as a laser with a movable afocal lens pair (telescope) and a single movable lens placed in the laser's output beam. The single movable lens serves as an input to the telescope. If desired, a second lens, which may be fixed, is positioned in the beam before the adjustable lens to serve as an input processor to the movable lens. The system provides the ability to choose waist diameter and position independently and achieve the desired values with two simple adjustments not requiring iteration.

  10. Laboratory demonstration of image reconstruction for coherent optical system of modular imaging collectors (COSMIC)

    NASA Technical Reports Server (NTRS)

    Traub, W. A.

    1984-01-01

    The first physical demonstration of the principle of image reconstruction using a set of images from a diffraction-blurred elongated aperture is reported. This is an optical validation of previous theoretical and numerical simulations of the COSMIC telescope array (coherent optical system of modular imaging collectors). The present experiment utilizes 17 diffraction blurred exposures of a laboratory light source, as imaged by a lens covered by a narrow-slit aperture; the aperture is rotated 10 degrees between each exposure. The images are recorded in digitized form by a CCD camera, Fourier transformed, numerically filtered, and added; the sum is then filtered and inverse Fourier transformed to form the final image. The image reconstruction process is found to be stable with respect to uncertainties in values of all physical parameters such as effective wavelength, rotation angle, pointing jitter, and aperture shape. Future experiments will explore the effects of low counting rates, autoguiding on the image, various aperture configurations, and separated optics.

  11. X-ray nanofocusing by kinoform lenses: A comparative study using different modeling approaches

    NASA Astrophysics Data System (ADS)

    Yan, Hanfei

    2010-02-01

    We conduct a comparative study on various kinoform lenses (KLs) for x-ray nanofocusing by using the geometrical theory, the dynamical diffraction theory, and the beam propagation method. This study shows that the geometrical theory becomes invalid to describe the performance of a KL for nanofocusing. The strong edge diffraction effect from individual lens element, which distorts the desired wave field, leads to a reduction in the effective numerical aperture and imposes a limit on how small a focus a KL can achieve. Because this effect is associated with a finite thickness of a lens, larger lens thickness depicts a stronger distortion. We find that a short KL where all lens elements are folded back to a single plane shows an illumination preference: if the illuminating geometry is in favor of the Bragg diffraction for a focusing order, its performance is enhanced and vice versa. We also find that a short KL usually outperforms its long version where all lens elements do not lie in a single plane because the short one suffers less the wave field distortion due to the edge diffraction. Simulation results suggest that for a long KL, an adaptive lens design is needed to correct the wave field distortion in order to achieve a better performance.

  12. LWIR hyperspectral imager based on a diffractive optics lens

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam

    2009-05-01

    A diffractive optics lens based longwave infrared hyperspectral imager has been used to collect laboratory and outdoor field test data. The imager uses a specially designed diffractive optics Ge lens with a 320×256 HgCdTe focal plane array (FPA) cooled with a Sterling-cooler. The imager operates in 8-10.5 μm (long wave IR, LWIR) spectral region and an image cube with 50 to 200 bands can be acquired rapidly. Spectral images at different wavelengths are obtained by moving the lens along its optical axis. An f/2.38 diffractive lens is used with a focal length of 70 mm at 8 μm. The IFOV is 0.57 mrad which corresponds to an FOV of 10.48°. The spectral resolution of the imager is 0.034 μm at 9 μm. The pixel size is 40×40 μm2 in the FPA. In post processing of image cube data contributions due to wavelengths other than the focused one are removed and a correction to account for the change in magnification due to the motion of the lens is applied to each spectral image. A brief description of the imager, data collection and analysis to characterize the performance of the imager will be presented in this paper.

  13. Opto-mechanical design and development of a 460mm diffractive transmissive telescope

    NASA Astrophysics Data System (ADS)

    Qi, Bo; Wang, Lihua; Cui, Zhangang; Bian, Jiang; Xiang, Sihua; Ma, Haotong; Fan, Bin

    2018-01-01

    Using lightweight, replicated diffractive optics, we can construct extremely large aperture telescopes in space.The transmissive primary significantly reduces the sensitivities to out of plane motion as compared to reflective systems while reducing the manufacturing time and costs. This paper focuses on the design, fabrication and ground demonstration of a 460mm diffractive transmissive telescope the primary F/# is 6, optical field of view is 0.2° imagine bandwidth is 486nm 656nm.The design method of diffractive optical system was verified, the ability to capture a high-quality image using diffractive telescope collection optics was tested.The results show that the limit resolution is 94lp/mm, the diffractive system has a good imagine performance with broad bandwidths. This technology is particularly promising as a means to achieve extremely large optical primaries from compact, lightweight packages.

  14. Lens correction algorithm based on the see-saw diagram to correct Seidel aberrations employing aspheric surfaces

    NASA Astrophysics Data System (ADS)

    Rosete-Aguilar, Martha

    2000-06-01

    In this paper a lens correction algorithm based on the see- saw diagram developed by Burch is described. The see-saw diagram describes the image correction in rotationally symmetric systems over a finite field of view by means of aspherics surfaces. The algorithm is applied to the design of some basic telescopic configurations such as the classical Cassegrain telescope, the Dall-Kirkham telescope, the Pressman-Camichel telescope and the Ritchey-Chretien telescope in order to show a physically visualizable concept of image correction for optical systems that employ aspheric surfaces. By using the see-saw method the student can visualize the different possible configurations of such telescopes as well as their performances and also the student will be able to understand that it is not always possible to correct more primary aberrations by aspherizing more surfaces.

  15. Diffraction Effects in the SOFIA Telescope and Cavity Door

    NASA Astrophysics Data System (ADS)

    Erickson, E. F.; Haas, M. R.; Davis, P. K.

    2005-12-01

    Calculations of diffraction phenomena for SOFIA (the Stratospheric Observatory for Infrared Astronomy) are described. The analyses establish the diffraction-limited point-spread function for the planned central obscuration of the telescope, confirm the specification for the oversized primary mirror diameter, evaluate spider diffraction effects, and determine the variation in focal-plane flux with position of the telescope relative to the cavity door. The latter is a concern because motion between the door aperture and the telescope can vary the flux from a point source and the sky background by diffraction (even when the door aperture does not physically obstruct the geometrical beam). We find all these effects to be acceptable in terms of observatory performance, with the possible exception of fractional background variations 3E-3 at wavelengths 1mm. Fractional background variations larger than 1E-6 can exceed photon shot noise in one second for broad-band, background-limited infrared detectors systems. However, we expect that synchronous signal demodulation using the telescope's chopping secondary mirror will obviate this effect, assuming modulation of the diffracted sky radiation by the relative motion of the door and telescope occurs at frequencies well below the chopoper frequency. This work is supported by the National Aeronautics and Space Administration.

  16. High-power direct diode laser output by spectral beam combining

    NASA Astrophysics Data System (ADS)

    Tan, Hao; Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao

    2018-03-01

    We demonstrate a spectral beam combining scheme based on multiple mini-bar stacks, which have more diode laser combining elements, to increase the combined diode laser power and realize equal beam quality in both the fast and slow axes. A spectral beam combining diode laser output of 1130 W is achieved with an operating current of 75 A. When a 9.6 X de-magnifying telescope is introduced between the output mirror and the diffraction grating, to restrain cross-talk among diode laser emitters, a 710 W spectral beam combining diode laser output is achieved at the operating current of 70 A, and the beam quality on the fast and slow axes of the combined beam is about 7.5 mm mrad and 7.3 mm mrad respectively. The power reduction is caused by the existence of a couple resonator between the rear facet of the diode laser and the fast axis collimation lens, and it should be eliminated by using diode laser chips with higher front facet transmission efficiency and a fast axis collimation lens with lower residual reflectivity.

  17. Diffractive optics for quasi-direct space-to-time pulse shaping.

    PubMed

    Mínguez-Vega, Gladys; Mendoza-Yero, Omel; Lancis, Jesús; Gisbert, Rafael; Andrés, Pedro

    2008-10-13

    The strong chromatic behavior associated with a conventional diffractive lens is fully exploited to propose a novel optical device for pulse shaping in the femtosecond regime. This device consists of two optical elements: a spatially patterned circularly symmetric mask and a kinoform diffractive lens, which are facing each other. The system performs a mapping between the spatial position of the masking function expressed in the squared radial coordinate and the temporal position in the output waveform. This space-to-time conversion occurs at the chromatic focus of the diffractive lens, and makes it possible to tailor the output central wavelength along the axial location of the output point. Inspection of the validity of our device is performed by means of computer simulations involving the generation of femtosecond optical packets.

  18. Electron diffraction covering a wide angular range from Bragg diffraction to small-angle diffraction.

    PubMed

    Nakajima, Hiroshi; Kotani, Atsuhiro; Harada, Ken; Mori, Shigeo

    2018-04-09

    We construct an electron optical system to investigate Bragg diffraction (the crystal lattice plane, 10-2 to 10-3 rad) with the objective lens turned off by adjusting the current in the intermediate lenses. A crossover was located on the selected-area aperture plane. Thus, the dark-field imaging can be performed by using a selected-area aperture to select Bragg diffraction spots. The camera length can be controlled in the range of 0.8-4 m without exciting the objective lens. Furthermore, we can observe the magnetic-field dependence of electron diffraction using the objective lens under weak excitation conditions. The diffraction mode for Bragg diffraction can be easily switched to a small-angle electron diffraction mode having a camera length of more than 100 m. We propose this experimental method to acquire electron diffraction patterns that depict an extensive angular range from 10-2 to 10-7 rad. This method is applied to analyze the magnetic microstructures in three distinct magnetic materials, i.e. a uniaxial magnetic structure of BaFe10.35Sc1.6Mg0.05O19, a martensite of a Ni-Mn-Ga alloy, and a helical magnetic structure of Ba0.5Sr1.5Zn2Fe12O22.

  19. World atlas of large optical telescopes

    NASA Technical Reports Server (NTRS)

    Meszaros, S. P.

    1979-01-01

    By 1980 there will be approximately 100 large optical telescopes in the world with mirror or lens diameters of one meter (39 inches) and larger. This atlas gives information on these telescopes and shows their locations on continent-sized maps. Observatory locations considered suitable for the construction of future large telescopes are also shown.

  20. Starshade Deployed at JPL

    NASA Image and Video Library

    2016-08-09

    is image shows a deployed half-scale starshade with four petals at NASA's Jet Propulsion Laboratory, Pasadena, California in 2014. The full-scale of this starshade (not shown) will measure at 111 feet (34 meters). The flower-like petals of the starshade are designed to diffract bright starlight away from telescopes seeking the dim light of exoplanets. The starshade was re-designed from earlier models to allow these petals to furl, or wrap around the spacecraft, for launch into space. Each petal is covered in a high-performance plastic film that resembles gold foil. On a starshade ready for launch, the thermal gold foil will only cover the side of the petals facing away from the telescope, with black on the other, so as not to reflect other light sources such as the Earth into its lens. The starshade is light enough for space and cannot support its own weight on Earth. Is it shown offloaded with counterweights, much like an elevator. Starlight-blocking technologies such as the starshade are being developed to help image exoplanets, with a focus on Earth-sized, habitable worlds. http://photojournal.jpl.nasa.gov/catalog/PIA20909

  1. Starshade Deployment

    NASA Image and Video Library

    2016-08-09

    This image shows the deployment of a half-scale starshade with four petals at NASA's Jet Propulsion Laboratory in Pasadena, California, in 2014. The full scale of this starshade (not shown) will measure at 34 meters, or approximately 111 feet. The flower-like petals of the starshade are designed to diffract bright starlight away from telescopes seeking the dim light of exoplanets. The starshade was re-designed from earlier models to allow these petals to furl, or wrap around the spacecraft, for launch into space. Once in space, the starshade will need to expand from its tightly-packed launch shape to become large and umbrella-like, ideal for blocking starlight. Each petal is covered in a high-performance plastic film that resembles gold foil. On a starshade ready for launch, the thermal gold foil will only cover the side of the petals facing away from the telescope, with black on the other, so as not to reflect other light sources such as the Earth into its lens. Starlight-blocking technologies such as the starshade are being developed to help image exoplanets, with a focus on Earth-sized, habitable worlds. http://photojournal.jpl.nasa.gov/catalog/PIA20907

  2. Slot-grating flat lens for telecom wavelengths.

    PubMed

    Pugh, Jonathan R; Stokes, Jamie L; Lopez-Garcia, Martin; Gan, Choon-How; Nash, Geoff R; Rarity, John G; Cryan, Martin J

    2014-07-01

    We present a stand-alone beam-focusing flat lens for use in the telecommunications wavelength range. Light incident on the back surface of the lens propagates through a subwavelength aperture and is heavily diffracted on exit and partially couples into a surface plasmon polariton and a surface wave propagating along the surface of the lens. Interference between the diffracted wave and re-emission from a grating patterned on the surface produces a highly collimated beam. We show for the first time a geometry at which a lens of this type can be used at telecommunication wavelengths (λ=1.55 μm) and identify the light coupling and re-emission mechanisms involved. Measured beam profile results at varying incident wavelengths show excellent agreement with Lumerical FDTD simulation results.

  3. An Improved Solution for Integrated Array Optics in Quasi-Optical mm and Submm Receivers: the Hybrid Antenna

    NASA Technical Reports Server (NTRS)

    Buttgenbach, Thomas H.

    1993-01-01

    The hybrid antenna discussed here is defined as a dielectric lens-antenna as a special case of an extended hemi-spherical dielectric lens that is operated in the diffraction limited regime. It is a modified version of the planar antenna on a lens scheme developed by Rutledge. The dielectric lens-antenna is fed by a planar-structure antenna, which is mounted on the flat side of the dielectric lens-antenna using it as a substrate, and the combination is termed a hybrid antenna. Beam pattern and aperture efficiency measurements were made at millimeter and submillimeter wavelengths as a function of extension of the hemi- spherical lens and different lens sizes. An optimum extension distance is found experimentally and numerically for which excellent beam patterns and simultaneously high aperture efficiencies can be achieved. At 115 GHz the aperture efficiency was measured to be (76 4 +/- 6) % for a diffraction limited beam with sidelobes below -17 dB. Results of a single hybrid antenna with an integrated Superconductor-Insulator-Superconductor (SIS) detector and a broad-band matching structure at submillimeter wavelengths are presented. The hybrid antenna is diffraction limited, space efficient in an array due to its high aperture efficiency, and is easily mass produced, thus being well suited for focal plane heterodyne receiver arrays.

  4. Experimental study on acoustic subwavelength imaging of holey-structured metamaterials by resonant tunneling.

    PubMed

    Su, Haijing; Zhou, Xiaoming; Xu, Xianchen; Hu, Gengkai

    2014-04-01

    A holey-structured metamaterial is proposed for near-field acoustic imaging beyond the diffraction limit. The structured lens consists of a rigid slab perforated with an array of cylindrical holes with periodically modulated diameters. Based on the effective medium approach, the structured lens is characterized by multilayered metamaterials with anisotropic dynamic mass, and an analytic model is proposed to evaluate the transmission properties of incident evanescent waves. The condition is derived for the resonant tunneling, by which evanescent waves can completely transmit through the structured lens without decaying. As an advantage of the proposed lens, the imaging frequency can be modified by the diameter modulation of internal holes without the change of the lens thickness in contrast to the lens due to the Fabry-Pérot resonant mechanism. In this experiment, the lens is assembled by aluminum plates drilled with cylindrical holes. The imaging experiment demonstrates that the designed lens can clearly distinguish two sources separated in the distance below the diffraction limit at the tunneling frequency.

  5. Active optics and modified-Rumsey wide-field telescopes: MINITRUST demonstrators with vase- and tulip-form mirrors

    NASA Astrophysics Data System (ADS)

    Lemaître, Gérard R.; Montiel, Pierre; Joulié, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2005-12-01

    Wide-field astronomy requires the development of larger aperture telescopes. The optical properties of a three-mirror modified-Rumsey design provide significant advantages when compared to other telescope designs: (i) at any wavelength, the design has a flat field and is anastigmatic; (ii) the system is extremely compact, i.e., it is almost four times shorter than a Schmidt. Compared to the equally compact flat-field Ritchey-Chrétien with a doublet-lens corrector, as developed for the Sloan digital sky survey - and which requires the polishing of six optical surfaces - the proposed modified-Rumsey design requires only a two-surface polishing and provides a better imaging quality. All the mirrors are spheroids of the hyperboloid type. Starting from the classical Rumsey design, it is shown that the use of all eight available free parameters allows the simultaneous aspherization of the primary and tertiary mirrors by active optics methods from a single deformable substrate. The continuity conditions between the primary and the tertiary hyperbolizations are achieved by an intermediate narrow ring of constant thickness that is not optically used. After the polishing of a double vase form in a spherical shape, the primary-tertiary hyperbolizations are achieved by in situ stressing. The tulip-form secondary is hyperbolized by stress polishing. Other active optics alternatives are possible for a space telescope. The modified-Rumsey design is of interest for developing large space- and ground-based survey telescopes in UV, visible, or IR ranges, such as currently demonstrated with the construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° field of view. Double-pass optical tests show diffraction-limited images.

  6. Achromatic shearing phase sensor for generating images indicative of measure(s) of alignment between segments of a segmented telescope's mirrors

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip (Inventor); Walker, Chanda Bartlett (Inventor)

    2006-01-01

    An achromatic shearing phase sensor generates an image indicative of at least one measure of alignment between two segments of a segmented telescope's mirrors. An optical grating receives at least a portion of irradiance originating at the segmented telescope in the form of a collimated beam and the collimated beam into a plurality of diffraction orders. Focusing optics separate and focus the diffraction orders. Filtering optics then filter the diffraction orders to generate a resultant set of diffraction orders that are modified. Imaging optics combine portions of the resultant set of diffraction orders to generate an interference pattern that is ultimately imaged by an imager.

  7. Near-infrared images of MG 1131+0456 with the W. M. Keck telescope: Another dusty gravitational lens?

    NASA Technical Reports Server (NTRS)

    Larkin, J. E.; Matthews, K.; Lawrence, C. R.; Graham, J. R.; Harrison, W.; Jernigan, G.; Lin, S.; Nelson, J.; Neugebauer, G.; Smith, G.

    1994-01-01

    Images of the gravitational lens system MG 1131+0456 taken with the near-infrared camera on the W. M. Keck telescope in the J and K(sub s) bands show that the infrared counterparts of the compact radio structure are exceedingly red, with J - K greater than 4.2 mag. The J image reveals only the lensing galaxy, while the K(sub s) image shows both the lens and the infrared counterparts of the compact radio components. After subtracting the lensing galaxy from the K(sub s) image, the position and orientation of the compact components agree with their radio counterparts. The broad-band spectrum and observed brightness of the lens suggest a giant galaxy at a redshift of approximately 0.75, while the color of the quasar images suggests significant extinction by dust in the lens. There is a significant excess of faint objects within 20 sec of MG 1131+0456. Depending on their mass and redshifts, these objects could complicate the lensing potential considerably.

  8. An engineered design of a diffractive mask for high precision astrometry [Modeling a diffractive mask that calibrates optical distortions

    DOE PAGES

    Dennison, Kaitlin; Ammons, S. Mark; Garrel, Vincent; ...

    2016-06-26

    AutoCAD, Zemax Optic Studio 15, and Interactive Data Language (IDL) with the Proper Library are used to computationally model and test a diffractive mask (DiM) suitable for use in the Gemini Multi-Conjugate Adaptive Optics System (GeMS) on the Gemini South Telescope. Systematic errors in telescope imagery are produced when the light travels through the adaptive optics system of the telescope. DiM is a transparent, flat optic with a pattern of miniscule dots lithographically applied to it. It is added ahead of the adaptive optics system in the telescope in order to produce diffraction spots that will encode systematic errors inmore » the optics after it. Once these errors are encoded, they can be corrected for. DiM will allow for more accurate measurements in astrometry and thus improve exoplanet detection. Furthermore, the mechanics and physical attributes of the DiM are modeled in AutoCAD. Zemax models the ray propagation of point sources of light through the telescope. IDL and Proper simulate the wavefront and image results of the telescope. Aberrations are added to the Zemax and IDL models to test how the diffraction spots from the DiM change in the final images. Based on the Zemax and IDL results, the diffraction spots are able to encode the systematic aberrations.« less

  9. An Investigation of the Eighteenth-Century Achromatic Telescope

    ERIC Educational Resources Information Center

    Jaecks, Duane H.

    2010-01-01

    The optical quality and properties of over 200 telescopes residing in museums and private collections have been measured and tested with the goal of obtaining new information about the early development of the achromatic lens (1757-1770). Quantitative measurements of the chromatic and spherical aberration of telescope objective lenses were made…

  10. Optimal lens design and use in laser-scanning microscopy

    PubMed Central

    Negrean, Adrian; Mansvelder, Huibert D.

    2014-01-01

    In laser-scanning microscopy often an off-the-shelf achromatic doublet is used as a scan lens which can reduce the available diffraction-limited field-of-view (FOV) by a factor of 3 and introduce chromatic aberrations that are scan angle dependent. Here we present several simple lens designs of superior quality that fully make use of high-NA low-magnification objectives, offering diffraction-limited imaging over a large FOV and wavelength range. We constructed a two-photon laser-scanning microscope with optimized custom lenses which had a near diffraction limit point-spread-function (PSF) with less than 3.6% variation over a 400 µm FOV and less than 0.5 µm lateral color between 750 and 1050 nm. PMID:24877017

  11. Image contrast of diffraction-limited telescopes for circular incoherent sources of uniform radiance

    NASA Technical Reports Server (NTRS)

    Shackleford, W. L.

    1980-01-01

    A simple approximate formula is derived for the background intensity beyond the edge of the image of uniform incoherent circular light source relative to the irradiance near the center of the image. The analysis applies to diffraction-limited telescopes with or without central beam obscuration due to a secondary mirror. Scattering off optical surfaces is neglected. The analysis is expected to be most applicable to spaceborne IR telescopes, for which diffraction can be the major source of off-axis response.

  12. Synthetic aperture radar correlator phase histories

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This report supplements the design of the following subsystems: (1) zoom azimuth telescope, zooming range from 3X to 6X. (2) range curvature correcting lenses. (3) Sphero-cylindrical shift lens. (4) Auxiliary lenses (tilted cylinder and matching lens).

  13. Fabrication of large diffractive optical elements in thick film on a concave lens surface.

    PubMed

    Xie, Yongjun; Lu, Zhenwu; Li, Fengyou

    2003-05-05

    We demonstrate experimentally the technique of fabricating large diffractive optical elements (DOEs) in thick film on a concave lens surface (mirrors) with precise alignment by using the strategy of double exposure. We adopt the method of double exposure to overcome the difficulty of processing thick photoresist on a large curved substrate. A uniform thick film with arbitrary thickness on a concave lens can be obtained with this technique. We fabricate a large concentric circular grating with a 10-ìm period on a concave lens surface in film with a thickness of 2.0 ìm after development. It is believed that this technique can also be used to fabricate larger DOEs in thicker film on the concave or convex lens surface with precise alignment. There are other potential applications of this technique, such as fabrication of micro-optoelectromechanical systems (MOEMS) or microelectromechanical systems (MEMS) and fabrication of microlens arrays on a large concave lens surface or convex lens surface with precise alignment.

  14. An engineered design of a diffractive mask for high precision astrometry

    NASA Astrophysics Data System (ADS)

    Dennison, Kaitlin; Ammons, S. Mark; Garrel, Vincent; Marin, Eduardo; Sivo, Gaetano; Bendek, Eduardo; Guyon, Oliver

    2016-07-01

    AutoCAD, Zemax Optic Studio 15, and Interactive Data Language (IDL) with the Proper Library are used to computationally model and test a diffractive mask (DiM) suitable for use in the Gemini Multi-Conjugate Adaptive Optics System (GeMS) on the Gemini South Telescope. Systematic errors in telescope imagery are produced when the light travels through the adaptive optics system of the telescope. DiM is a transparent, flat optic with a pattern of miniscule dots lithographically applied to it. It is added ahead of the adaptive optics system in the telescope in order to produce diffraction spots that will encode systematic errors in the optics after it. Once these errors are encoded, they can be corrected for. DiM will allow for more accurate measurements in astrometry and thus improve exoplanet detection. The mechanics and physical attributes of the DiM are modeled in AutoCAD. Zemax models the ray propagation of point sources of light through the telescope. IDL and Proper simulate the wavefront and image results of the telescope. Aberrations are added to the Zemax and IDL models to test how the diffraction spots from the DiM change in the final images. Based on the Zemax and IDL results, the diffraction spots are able to encode the systematic aberrations.

  15. HUBBLE'S TOP TEN GRAVITATIONAL LENSES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NASA Hubble Space Telescope serendipitous survey of the sky has uncovered exotic patterns, rings, arcs and crosses that are all optical mirages produced by a gravitational lens, nature's equivalent of having giant magnifying glass in space. Shown are the top 10 lens candidates uncovered in the deepest 100 Hubble fields. Hubble's sensitivity and high resolution allow it to see faint and distant lenses that cannot be detected with ground-based telescopes whose images are blurred by Earth's atmosphere. [Top Left] - HST 01248+0351 is a lensed pair on either side of the edge-on disk lensing galaxy. [Top Center] - HST 01247+0352 is another pair of bluer lensed source images around the red spherical elliptical lensing galaxy. Two much fainter images can be seen near the detection limit which might make this a quadruple system. [Top Right] - HST 15433+5352 is a very good lens candidate with a bluer lensed source in the form of an extended arc about the redder elliptical lensing galaxy. [Middle Far Left] - HST 16302+8230 could be an 'Einstein ring' and the most intriguing lens candidate. It has been nicknamed the 'the London Underground' since it resembles that logo. [Middle Near Left] - HST 14176+5226 is the first, and brightest lens system discovered in 1995 with the Hubble telescope. This lens candidate has now been confirmed spectroscopically using large ground-based telescopes. The elliptical lensing galaxy is located 7 billion light-years away, and the lensed quasar is about 11 billion light-years distant. [Middle Near Right] - HST 12531-2914 is the second quadruple lens candidate discovered with Hubble. It is similar to the first, but appears smaller and fainter. [Middle Far Right] - HST 14164+5215 is a pair of bluish lensed images symmetrically placed around a brighter, redder galaxy. [Bottom Left] - HST 16309+8230 is an edge-on disk-like galaxy (blue arc) which has been significantly distorted by the redder lensing elliptical galaxy. [Bottom Center] - HST 12368+6212 is a blue arc in the Hubble Deep Field (HDF). [Bottom Right] - HST 18078+4600 is a blue arc caused by the gravitational potential of a small group of 4 galaxies. Credit: Kavan Ratnatunga (Carnegie Mellon Univ.) and NASA

  16. Covariance of lucky images for increasing objects contrast: diffraction-limited images in ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Cagigal, Manuel P.; Valle, Pedro J.; Colodro-Conde, Carlos; Villó-Pérez, Isidro; Pérez-Garrido, Antonio

    2016-01-01

    Images of stars adopt shapes far from the ideal Airy pattern due to atmospheric density fluctuations. Hence, diffraction-limited images can only be achieved by telescopes without atmospheric influence, e.g. spatial telescopes, or by using techniques like adaptive optics or lucky imaging. In this paper, we propose a new computational technique based on the evaluation of the COvariancE of Lucky Images (COELI). This technique allows us to discover companions to main stars by taking advantage of the atmospheric fluctuations. We describe the algorithm and we carry out a theoretical analysis of the improvement in contrast. We have used images taken with 2.2-m Calar Alto telescope as a test bed for the technique resulting that, under certain conditions, telescope diffraction limit is clearly reached.

  17. Quasi-mosaicity of (311) planes in silicon and its use in a Laue lens with high-focusing power

    NASA Astrophysics Data System (ADS)

    Camattari, Riccardo; Paternò, Gianfranco; Bellucci, Valerio; Guidi, Vincenzo

    2014-12-01

    (311) curved planes can be exploited for efficiently focus hard X-rays. With this purpose, a self-standing bent crystal was manufactured at the Sensor and Semiconductor Laboratory of Ferrara (Italy). The crystal was designed as an optical component for a X-ray concentrator such as a Laue lens. The curvature of (311) planes was obtained through the quasi-mosaic effect. The diffraction efficiency of the sample was tested at the Institut Laue Langevin of Grenoble (France) by using a collimated monochromatic X-ray beam. This was the first prove of the diffraction properties of (311) quasi-mosaic planes. Diffraction efficiency resulted 35 % with a 182 keV X-ray beam, in agreement with the theoretical expectation. It corresponded to a reflectivity of 33 %. While the chosen orientation is not the most performing lying of planes, it can be used, in addition to smaller-index planes, in order to raise the total effective area of a Laue lens. To quantify it, a Laue lens based on quasi-mosaic silicon and germanium crystals, exploiting (111), (422) and (311) diffracting planes, was achieved and simulated with the LaueGen code.

  18. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system.

    PubMed

    Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie

    2015-10-20

    In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.

  19. SpUpNIC (Spectrograph Upgrade: Newly Improved Cassegrain) on the South African Astronomical Observatory's 74-inch telescope

    NASA Astrophysics Data System (ADS)

    Crause, Lisa A.; Carter, Dave; Daniels, Alroy; Evans, Geoff; Fourie, Piet; Gilbank, David; Hendricks, Malcolm; Koorts, Willie; Lategan, Deon; Loubser, Egan; Mouries, Sharon; O'Connor, James E.; O'Donoghue, Darragh E.; Potter, Stephen; Sass, Craig; Sickafoose, Amanda A.; Stoffels, John; Swanevelder, Pieter; Titus, Keegan; van Gend, Carel; Visser, Martin; Worters, Hannah L.

    2016-08-01

    SpUpNIC (Spectrograph Upgrade: Newly Improved Cassegrain) is the extensively upgraded Cassegrain Spectrograph on the South African Astronomical Observatory's 74-inch (1.9-m) telescope. The inverse-Cassegrain collimator mirrors and woefully inefficient Maksutov-Cassegrain camera optics have been replaced, along with the CCD and SDSU controller. All moving mechanisms are now governed by a programmable logic controller, allowing remote configuration of the instrument via an intuitive new graphical user interface. The new collimator produces a larger beam to match the optically faster Folded-Schmidt camera design and nine surface-relief diffraction gratings offer various wavelength ranges and resolutions across the optical domain. The new camera optics (a fused silica Schmidt plate, a slotted fold flat and a spherically figured primary mirror, both Zerodur, and a fused silica field-flattener lens forming the cryostat window) reduce the camera's central obscuration to increase the instrument throughput. The physically larger and more sensitive CCD extends the available wavelength range; weak arc lines are now detectable down to 325 nm and the red end extends beyond one micron. A rear-of-slit viewing camera has streamlined the observing process by enabling accurate target placement on the slit and facilitating telescope focus optimisation. An interactive quick-look data reduction tool further enhances the user-friendliness of SpUpNI

  20. Aureole lidar: Design, operation, and comparison with in-situ measurements

    NASA Astrophysics Data System (ADS)

    Hooper, William P.; Jensen, D. R.

    1992-07-01

    In 1986, H. Berber and Hooper examined the signals that could be detected by an airborne lidar flying above the marine boundary layer (MBL). One signal (aureole) formed from laser light returned to the receiver after a reflect off the ocean and forward scatter off the aerosol particles appeared to be both detectable and related to the optical depth of the MBL. Now, research has been directed towards developing a practical instrument to measure the aureole and finding an algorithm to use the information. Unlike the lidar backscatter which typically requires a telescope with a narrow field of view (0.5 mrad), the aureole signal occurs over a wide field of view (50 mrad). To accommodate the totally different needs, a standard commercial Cassegrainian telescope was modified to yield a telescope with two focal planes. The secondary mirror was replaced by a lens, whose front surface was half silvered and curved to match the replaced mirror. Light reflecting off the lens focused behind the primary mirror. The back lens surface was curved to allow unreflected light to focus at the natural focus of the primary mirror. This focal plane which is behind the lens has a wide field of view. To calculate an extinction profile, the aureole optical depth estimate is combined with the lidar backscatter profile.

  1. Aureole lidar: Design, operation, and comparison with in-situ measurements

    NASA Technical Reports Server (NTRS)

    Hooper, William P.; Jensen, D. R.

    1992-01-01

    In 1986, H. Berber and Hooper examined the signals that could be detected by an airborne lidar flying above the marine boundary layer (MBL). One signal (aureole) formed from laser light returned to the receiver after a reflect off the ocean and forward scatter off the aerosol particles appeared to be both detectable and related to the optical depth of the MBL. Now, research has been directed towards developing a practical instrument to measure the aureole and finding an algorithm to use the information. Unlike the lidar backscatter which typically requires a telescope with a narrow field of view (0.5 mrad), the aureole signal occurs over a wide field of view (50 mrad). To accommodate the totally different needs, a standard commercial Cassegrainian telescope was modified to yield a telescope with two focal planes. The secondary mirror was replaced by a lens, whose front surface was half silvered and curved to match the replaced mirror. Light reflecting off the lens focused behind the primary mirror. The back lens surface was curved to allow unreflected light to focus at the natural focus of the primary mirror. This focal plane which is behind the lens has a wide field of view. To calculate an extinction profile, the aureole optical depth estimate is combined with the lidar backscatter profile.

  2. Modified cataract surgery with telescopic magnification for patients with age-related macular degeneration.

    PubMed

    Iizuka, Megumi; Gorfinkel, John; Mandelcorn, Mark; Lam, Wai-Ching; Devenyi, Robert; Markowitz, Samuel N

    2007-12-01

    The most desirable effect following cataract surgery in the presence of age-related macular degeneration (AMD) is to obtain an improvement in distance resolution acuity, and the only optical solution to this is the use of telescopic magnification. The purpose of the study was to develop and verify the clinical utility of inducing low-grade telescopic magnification (<33%) at the time of cataract surgery by the choice of an appropriate intraocular lens power and spectacle glasses in patients with AMD and cataract. The design was a prospective, nonrandomized, interventional case series involving 6 patients aged 74-86 (mean 80; SD 4) years with AMD and cataract. Participants were males and females, equal in number, who had visual acuity of less than 20/400 in the weaker eye. Standard cataract surgery was performed in the weaker eye. The power of the intraocular lens was derived from the reduced Gullstrand model of the eye in such a way that at the intraocular lens plane a minus lens was created, which, together with a plus lens in matching glasses, formed a Galilean telescopic system with magnification of up to 33%. Outcome measures were visual acuity, contrast sensitivity, and activities of daily living (ADL) scores. The mean power of the implanted intraocular lenses was 6.31 (SD 2.42) diopters and, according to the theoretical derivations, achieved magnification between 20% and 30% (mean 26%; SD 4.92%). Visual acuity improved for the group from a mean of 20/525 (logMAR 1.48; SD 0.13) to a mean of 20/290 (logMAR 1.20; SD 0.21). Contrast sensitivity improved significantly (p < 0.001) only in the lower spatial frequencies. Postoperatively, ADL scores improved significantly in all patients except one. At the end of the follow-up period, 3 patients reported that they would like to proceed with similar surgery for the other eye. An optimal surgical telescopic device based on low-grade telescopic magnification may improve functional vision for usage in all tasks in AMD patients. All patients from this study were satisfied following surgery and viewed study outcomes as positive and beneficial, and some patients responded with enthusiasm. Surgeons are encouraged to use this modified technique of cataract surgery in low-vision patients with AMD and cataract.

  3. Quality of image of grating target placed in vitreous of isolated pig eyes photographed through different implanted multifocal intraocular lenses.

    PubMed

    Inoue, Makoto; Noda, Toru; Ohnuma, Kazuhiko; Bissen-Miyajima, Hiroko; Hirakata, Akito

    2011-11-01

    To determine the quality of the image of a grating target placed in the vitreous of isolated pig eyes and photographed through implanted refractive and diffractive multifocal intraocular lenses (IOL). Refractive multifocal (NXG1, PY60MV), diffractive multifocal (ZM900, SA60D3) and monofocal (SA60AT, ZA9003) IOL were implanted in the capsular bag of isolated pig eyes. A grating target was placed in the vitreous and photographed through a flat or a wide-field viewing contact lens. The contrast of the grating targets of different spatial frequencies was measured. With the flat corneal contact lens, the gratings appeared clear and not distorted when viewed through the optics of the NXG1 and PY60MV for far vision but were distorted with reduced contrast when viewed through the optical zone for near vision. The images through the diffractive zone of the ZM900 and SA60D3 were more defocused than with the monofocal IOL (p < 0.005). Ghost images oriented centrifugally of the original image were seen with the ZM900 resulting in lower contrast at higher spatial frequencies than with the SA60D3 with less defocused images only in the central area. With the wide-field viewing contact lens, the images were less defocused and the contrast was comparable to both refractive and diffractive multifocal IOL. Both refractive and diffractive multifocal IOL reduced the contrast of the retinal image when viewed through a flat corneal contact lens but less defocused when viewed through a wide-field viewing contact lens. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.

  4. The Sloan Lens ACS Survey. XIII. Discovery of 40 New Galaxy-scale Strong Lenses

    NASA Astrophysics Data System (ADS)

    Shu, Yiping; Brownstein, Joel R.; Bolton, Adam S.; Koopmans, Léon V. E.; Treu, Tommaso; Montero-Dorta, Antonio D.; Auger, Matthew W.; Czoske, Oliver; Gavazzi, Raphaël; Marshall, Philip J.; Moustakas, Leonidas A.

    2017-12-01

    We present the full sample of 118 galaxy-scale strong-lens candidates in the Sloan Lens ACS (SLACS) Survey for the Masses (S4TM) Survey, which are spectroscopically selected from the final data release of the Sloan Digital Sky Survey. Follow-up Hubble Space Telescope (HST) imaging observations confirm that 40 candidates are definite strong lenses with multiple lensed images. The foreground-lens galaxies are found to be early-type galaxies (ETGs) at redshifts 0.06–0.44, and background sources are emission-line galaxies at redshifts 0.22–1.29. As an extension of the SLACS Survey, the S4TM Survey is the first attempt to preferentially search for strong-lens systems with relatively lower lens masses than those in the pre-existing strong-lens samples. By fitting HST data with a singular isothermal ellipsoid model, we find that the total projected mass within the Einstein radius of the S4TM strong-lens sample ranges from 3 × 1010 M ⊙ to 2 × 1011 M ⊙. In Shu et al., we have derived the total stellar mass of the S4TM lenses to be 5 × 1010 M ⊙ to 1 × 1012 M ⊙. Both the total enclosed mass and stellar mass of the S4TM lenses are on average almost a factor of 2 smaller than those of the SLACS lenses, which also represent the typical mass scales of the current strong-lens samples. The extended mass coverage provided by the S4TM sample can enable a direct test, with the aid of strong lensing, for transitions in scaling relations, kinematic properties, mass structure, and dark-matter content trends of ETGs at intermediate-mass scales as noted in previous studies. Based on observations made with the NASA/ESA Hubble Space Telescope (HST), obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. These observations are associated with HST program #12210.

  5. Revisiting the Microlensing Event OGLE 2012-BLG-0026: A Solar Mass Star with Two Cold Giant Planets

    NASA Technical Reports Server (NTRS)

    Beaulieu, J.-P.; Bennett, D. P.; Batista, V.; Fukui, A.; Marquette, J.-B.; Brillant, S.; Cole, A. A.; Rogers, L. A.; Sumi, T.; Abe, F.

    2016-01-01

    Two cold gas giant planets orbiting a G-type main-sequence star in the galactic disk were previously discovered in the high-magnification microlensing event OGLE-2012-BLG-0026. Here, we present revised host star flux measurements and a refined model for the two-planet system using additional light curve data. We performed high angular resolution adaptive optics imaging with the Keck and Subaru telescopes at two epochs while the source star was still amplified. We detected the lens flux, H = 16.39 +/- 0.08. The lens, a disk star, is brighter than predicted from the modeling in the original study. We revisited the light curve modeling using additional photometric data from the B and C telescope in New Zealand and CTIO 1.3 m H-band light curve. We then include the Keck and Subaru adaptive optic observation constraints. The system is composed of an approximately 4-9 Gyr lens star of M(sub lens) = 1.06 +/- 0.05 solar mass at a distance of D(sub lens) = 4.0 +/- 0.3 kpc, orbited by two giant planets of 0.145 +/- 0.008 M(sub Jup) and 0.86 +/- 0.06 M(sub Jup), with projected separations of 4.0 +/- 0.5 au and 4.8 +/- 0.7 au, respectively. Because the lens is brighter than the source star by 16 +/- 8% in H, with no other blend within one arcsec, it will be possible to estimate its metallicity using subsequent IR spectroscopy with 8-10 m class telescopes. By adding a constraint on the metallicity it will be possible to refine the age of the system.

  6. REVISITING THE MICROLENSING EVENT OGLE 2012-BLG-0026: A SOLAR MASS STAR WITH TWO COLD GIANT PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaulieu, J.-P.; Batista, V.; Marquette, J.-B., E-mail: beaulieu@iap.fr, E-mail: batista@iap.fr, E-mail: marquett@iap.fr

    2016-06-20

    Two cold gas giant planets orbiting a G-type main-sequence star in the galactic disk were previously discovered in the high-magnification microlensing event OGLE-2012-BLG-0026. Here, we present revised host star flux measurements and a refined model for the two-planet system using additional light curve data. We performed high angular resolution adaptive optics imaging with the Keck and Subaru telescopes at two epochs while the source star was still amplified. We detected the lens flux, H = 16.39 ± 0.08. The lens, a disk star, is brighter than predicted from the modeling in the original study. We revisited the light curve modelingmore » using additional photometric data from the B and C telescope in New Zealand and CTIO 1.3 m H -band light curve. We then include the Keck and Subaru adaptive optic observation constraints. The system is composed of a ∼4–9 Gyr lens star of M {sub lens} = 1.06 ± 0.05 M {sub ⊙} at a distance of D {sub lens} = 4.0 ± 0.3 kpc, orbited by two giant planets of 0.145 ± 0.008 M {sub Jup} and 0.86 ± 0.06 M {sub Jup}, with projected separations of 4.0 ± 0.5 au and 4.8 ± 0.7 au, respectively. Because the lens is brighter than the source star by 16 ± 8% in H, with no other blend within one arcsec, it will be possible to estimate its metallicity using subsequent IR spectroscopy with 8–10 m class telescopes. By adding a constraint on the metallicity it will be possible to refine the age of the system.« less

  7. Intraocular camera for retinal prostheses: Refractive and diffractive lens systems

    NASA Astrophysics Data System (ADS)

    Hauer, Michelle Christine

    The focus of this thesis is on the design and analysis of refractive, diffractive, and hybrid refractive/diffractive lens systems for a miniaturized camera that can be surgically implanted in the crystalline lens sac and is designed to work in conjunction with current and future generation retinal prostheses. The development of such an intraocular camera (IOC) would eliminate the need for an external head-mounted or eyeglass-mounted camera. Placing the camera inside the eye would allow subjects to use their natural eye movements for foveation (attention) instead of more cumbersome head tracking, would notably aid in personal navigation and mobility, and would also be significantly more psychologically appealing from the standpoint of personal appearances. The capability for accommodation with no moving parts or feedback control is incorporated by employing camera designs that exhibit nearly infinite depth of field. Such an ultracompact optical imaging system requires a unique combination of refractive and diffractive optical elements and relaxed system constraints derived from human psychophysics. This configuration necessitates an extremely compact, short focal-length lens system with an f-number close to unity. Initially, these constraints appear highly aggressive from an optical design perspective. However, after careful analysis of the unique imaging requirements of a camera intended to work in conjunction with the relatively low pixellation levels of a retinal microstimulator array, it becomes clear that such a design is not only feasible, but could possibly be implemented with a single lens system.

  8. Quality of image of grating target placed in model of human eye with corneal aberrations as observed through multifocal intraocular lenses.

    PubMed

    Inoue, Makoto; Noda, Toru; Mihashi, Toshifumi; Ohnuma, Kazuhiko; Bissen-Miyajima, Hiroko; Hirakata, Akito

    2011-04-01

    To evaluate the quality of the image of a grating target placed in a model eye viewed through multifocal intraocular lenses (IOLs). Laboratory investigation. Refractive (NXG1 or PY60MV) or diffractive (ZM900 or SA60D3) multifocal IOLs were placed in a fluid-filled model eye with human corneal aberrations. A United States Air Force resolution target was placed on the posterior surface of the model eye. A flat contact lens or a wide-field contact lens was placed on the cornea. The contrasts of the gratings were evaluated under endoillumination and compared to those obtained through a monofocal IOL. The grating images were clear when viewed through the flat contact lens and through the central far-vision zone of the NXG1 and PY60MV, although those through the near-vision zone were blurred and doubled. The images observed through the central area of the ZM900 with flat contact lens were slightly defocused but the images in the periphery were very blurred. The contrast decreased significantly in low frequencies (P<.001). The images observed through the central diffractive zone of the SA60D3 were slightly blurred, although the images in the periphery were clearer than that of the ZM900. The images were less blurred in all of the refractive and diffractive IOLs with the wide-field contact lens. Refractive and diffractive multifocal IOLs blur the grating target but less with the wide-angle viewing system. The peripheral multifocal optical zone may be more influential on the quality of the images with contact lens system. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Imaging Spectrometer Designs Utilizing Immersed Gratings With Accessible Entrance Slit

    DOEpatents

    Chrisp, Michael P.; Lerner, Scott A.

    2006-03-21

    A compact imaging spectrometer comprises an entrance slit, a catadioptric lens with a mirrored surface, a grating, and a detector array. The entrance slit directs light to the mirrored surface of the catadioptric lens; the mirrored surface reflects the light back through the lens to the grating. The grating receives the light from the catadioptric lens and diffracts the light to the lens away from the mirrored surface. The lens transmits the light and focuses it onto the detector array.

  10. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave

    PubMed Central

    Chen, Gang; Wu, Zhi-xiang; Yu, An-ping; Zhang, Zhi-hai; Wen, Zhong-quan; Zhang, Kun; Dai, Lu-ru; Jiang, Sen-lin; Li, Yu-yan; Chen, Li; Wang, Chang-tao; Luo, Xian-gang

    2016-01-01

    The generation of a sub-diffraction optical hollow ring is of great interest in various applications, such as optical microscopy, optical tweezers, and nanolithography. Azimuthally polarized light is a good candidate for creating an optical hollow ring structure. Various of methods have been proposed theoretically for generation of sub-wavelength hollow ring by focusing azimuthally polarized light, but without experimental demonstrations, especially for sub-diffraction focusing. Super-oscillation is a promising approach for shaping sub-diffraction optical focusing. In this paper, a planar sub-diffraction diffractive lens is proposed, which has an ultra-long focal length of 600 λ and small numerical aperture of 0.64. A sub-diffraction hollow ring is experimentally created by shaping an azimuthally polarized wave. The full-width-at-half-maximum of the hollow ring is 0.61 λ, which is smaller than the lens diffraction limit 0.78 λ, and the observed largest sidelobe intensity is only 10% of the peak intensity. PMID:27876885

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, C. B.; Gould, A.; Gaudi, B. S.

    The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unrelated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic bulge with high relative lens-source proper motion that are therefore good candidatesmore » for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 to 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with μ ≳ 8 mas yr{sup –1}. Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA-2005-BLG-36, OGLE-2012-BLG-0211, OGLE-2012-BLG-0456, MOA-2012-BLG-532, and MOA-2013-BLG-029. In ≲12 yr from the time of each event the lens and source of each event will be sufficiently separated for ground-based telescopes with AO systems or space telescopes to resolve each component and further characterize the lens system. Furthermore, for the most recent events, comparison of the lens flux estimates from images taken immediately to those estimated from images taken when the lens and source are resolved can be used to empirically check the robustness of the single-epoch method currently being used to estimate lens masses for many events.« less

  12. Telescopes, Mounts and Control Systems

    NASA Astrophysics Data System (ADS)

    Mobberley, M.; Murdin, P.

    2003-04-01

    The amateur astronomer used to have a relatively basic choice of equipment: a refractor (see REFRACTING TELESCOPES), or a Newtonian reflector (see REFLECTING TELESCOPES); there were few other options. The refractor has always been the stereotype astronomer's instrument: a spy glass, with a lens at one end and an eyepiece at the other. However, in practice, the reflector has always been better aper...

  13. VLT adaptive optics search for luminous substructures in the lens galaxy towards SDSS J0924+0219

    NASA Astrophysics Data System (ADS)

    Faure, C.; Sluse, D.; Cantale, N.; Tewes, M.; Courbin, F.; Durrer, P.; Meylan, G.

    2011-12-01

    The anomalous flux ratios between quasar images are suspected of being caused by substructures in lens galaxies. We present new deep and high-resolution H and Ks imaging of the strongly lensed quasar SDSS J0924+0219 obtained using the ESO VLT with adaptive optics and the laser guide star system. SDSS J0924+0219 is particularly interesting because the observed flux ratio between the quasar images vastly disagree with the predictions from smooth mass models. With our adaptive optics observations we find a luminous object, Object L, located ~0.3'' to the north of the lens galaxy, but we show that it cannot be responsible for the anomalous flux ratios. Object L as well as a luminous extension of the lens galaxy to the south are seen in the archival HST/ACS image in the F814W filter. This suggests that Object L is part of a bar in the lens galaxy, as also supported by the presence of a significant disk component in the light profile of the lens galaxy. Finally, we find no evidence of any other luminous substructure that may explain the quasar images flux ratios. However, owing to the persistence of the flux ratio anomaly over time (~7 years), a combination of microlensing and millilensing is the favorite explanation for the observations. Based on observations obtained with the ESO VLT at Paranal observatory (Prog ID 084.A-0762(A); PI: Meylan). Also based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with the CASTLES (Cfa-Arizona Space Telescope LEns Survey) survey (ID: 9744, PI: C. S. Kochanek).

  14. Automated Micro-Object Detection for Mobile Diagnostics Using Lens-Free Imaging Technology

    PubMed Central

    Roy, Mohendra; Seo, Dongmin; Oh, Sangwoo; Chae, Yeonghun; Nam, Myung-Hyun; Seo, Sungkyu

    2016-01-01

    Lens-free imaging technology has been extensively used recently for microparticle and biological cell analysis because of its high throughput, low cost, and simple and compact arrangement. However, this technology still lacks a dedicated and automated detection system. In this paper, we describe a custom-developed automated micro-object detection method for a lens-free imaging system. In our previous work (Roy et al.), we developed a lens-free imaging system using low-cost components. This system was used to generate and capture the diffraction patterns of micro-objects and a global threshold was used to locate the diffraction patterns. In this work we used the same setup to develop an improved automated detection and analysis algorithm based on adaptive threshold and clustering of signals. For this purpose images from the lens-free system were then used to understand the features and characteristics of the diffraction patterns of several types of samples. On the basis of this information, we custom-developed an automated algorithm for the lens-free imaging system. Next, all the lens-free images were processed using this custom-developed automated algorithm. The performance of this approach was evaluated by comparing the counting results with standard optical microscope results. We evaluated the counting results for polystyrene microbeads, red blood cells, HepG2, HeLa, and MCF7 cells lines. The comparison shows good agreement between the systems, with a correlation coefficient of 0.91 and linearity slope of 0.877. We also evaluated the automated size profiles of the microparticle samples. This Wi-Fi-enabled lens-free imaging system, along with the dedicated software, possesses great potential for telemedicine applications in resource-limited settings. PMID:27164146

  15. Achromatic diffractive lens written onto a liquid crystal display.

    PubMed

    Márquez, A; Iemmi, C; Campos, J; Yzuel, M J

    2006-02-01

    We propose a programmable diffractive lens written onto a liquid crystal display (LCD) that is able to provide equal focal lengths for several wavelengths simultaneously. To achieve this goal it is necessary that the LCD operate in the phase-only regime simultaneously for the different wavelengths. We design the appropriate lens for each wavelength, and then the lenses are spatially multiplexed onto the LCD. Various multiplexing schemes have been analyzed, and the random scheme shows the best performance. We further show the possibility of finely tuning the chromaticity of the focal spot by changing the relative weights of the multiplexing among the various wavelengths.

  16. High resolution telescope

    DOEpatents

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennison, Kaitlin; Ammons, S. Mark; Garrel, Vincent

    AutoCAD, Zemax Optic Studio 15, and Interactive Data Language (IDL) with the Proper Library are used to computationally model and test a diffractive mask (DiM) suitable for use in the Gemini Multi-Conjugate Adaptive Optics System (GeMS) on the Gemini South Telescope. Systematic errors in telescope imagery are produced when the light travels through the adaptive optics system of the telescope. DiM is a transparent, flat optic with a pattern of miniscule dots lithographically applied to it. It is added ahead of the adaptive optics system in the telescope in order to produce diffraction spots that will encode systematic errors inmore » the optics after it. Once these errors are encoded, they can be corrected for. DiM will allow for more accurate measurements in astrometry and thus improve exoplanet detection. Furthermore, the mechanics and physical attributes of the DiM are modeled in AutoCAD. Zemax models the ray propagation of point sources of light through the telescope. IDL and Proper simulate the wavefront and image results of the telescope. Aberrations are added to the Zemax and IDL models to test how the diffraction spots from the DiM change in the final images. Based on the Zemax and IDL results, the diffraction spots are able to encode the systematic aberrations.« less

  18. Study on High Resolution Membrane-Based Diffractive Optical Imaging on Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Jiao, J.; Wang, B.; Wang, C.; Zhang, Y.; Jin, J.; Liu, Z.; Su, Y.; Ruan, N.

    2017-05-01

    Diffractive optical imaging technology provides a new way to realize high resolution earth observation on geostationary orbit. There are a lot of benefits to use the membrane-based diffractive optical element in ultra-large aperture optical imaging system, including loose tolerance, light weight, easy folding and unfolding, which make it easy to realize high resolution earth observation on geostationary orbit. The implementation of this technology also faces some challenges, including the configuration of the diffractive primary lens, the development of high diffraction efficiency membrane-based diffractive optical elements, and the correction of the chromatic aberration of the diffractive optical elements. Aiming at the configuration of the diffractive primary lens, the "6+1" petal-type unfold scheme is proposed, which consider the compression ratio, the blocking rate and the development complexity. For high diffraction efficiency membrane-based diffractive optical element, a self-collimating method is proposed. The diffraction efficiency is more than 90 % of the theoretical value. For the chromatic aberration correction problem, an optimization method based on schupmann is proposed to make the imaging spectral bandwidth in visible light band reach 100 nm. The above conclusions have reference significance for the development of ultra-large aperture diffractive optical imaging system.

  19. A Metalens with a Near-Unity Numerical Aperture

    NASA Astrophysics Data System (ADS)

    Paniagua-Domínguez, Ramón; Yu, Ye Feng; Khaidarov, Egor; Choi, Sumin; Leong, Victor; Bakker, Reuben M.; Liang, Xinan; Fu, Yuan Hsing; Valuckas, Vytautas; Krivitsky, Leonid A.; Kuznetsov, Arseniy I.

    2018-03-01

    The numerical aperture (NA) of a lens determines its ability to focus light and its resolving capability. Having a large NA is a very desirable quality for applications requiring small light-matter interaction volumes or large angular collections. Traditionally, a large NA lens based on light refraction requires precision bulk optics that ends up being expensive and is thus also a specialty item. In contrast, metasurfaces allow the lens designer to circumvent those issues producing high NA lenses in an ultra-flat fashion. However, so far, these have been limited to numerical apertures on the same order of traditional optical components, with experimentally reported values of NA <0.9. Here we demonstrate, both numerically and experimentally, a new approach that results in a diffraction limited flat lens with a near-unity numerical aperture (NA>0.99) and sub-wavelength thickness (~{\\lambda}/3), operating with unpolarized light at 715 nm. To demonstrate its imaging capability, the designed lens is applied in a confocal configuration to map color centers in sub-diffractive diamond nanocrystals. This work, based on diffractive elements able to efficiently bend light at angles as large as 82{\\deg}, represents a step beyond traditional optical elements and existing flat optics, circumventing the efficiency drop associated to the standard, phase mapping approach.

  20. Adaptive Optics Imaging of the CLASS Gravitational Lens System B1359+154 with the Canada-France-Hawaii Telescope.

    PubMed

    Rusin; Hall; Nichol; Marlow; Richards; Myers

    2000-04-20

    We present adaptive optics imaging of the CLASS gravitational lens system B1359+154 obtained with the Canada-France-Hawaii Telescope (CFHT) in the infrared K band. The observations show at least three brightness peaks within the ring of lensed images, which we identify as emission from multiple lensing galaxies. The results confirm the suspected compound nature of the lens, as deduced from preliminary mass modeling. The detection of several additional nearby galaxies suggests that B1359+154 is lensed by the compact core of a small galaxy group. We attempted to produce an updated lens model based on the CFHT observations and new 5 GHz radio data obtained with the MERLIN array, but there are too few constraints to construct a realistic model at this time. The uncertainties inherent with modeling compound lenses make B1359+154 a challenging target for Hubble constant determination through the measurement of differential time delays. However, time delays will offer additional constraints to help pin down the mass model. This lens system therefore presents a unique opportunity to directly measure the mass distribution of a galaxy group at intermediate redshift.

  1. Is Magnification Consistent?

    ERIC Educational Resources Information Center

    Graney, Christopher M.

    2010-01-01

    Is the phenomenon of magnification by a converging lens inconsistent and therefore unreliable? Can a lens magnify one part of an object but not another? Physics teachers and even students familiar with basic optics would answer "no," yet many answer "yes." Numerous telescope users believe that magnification is not a reliable phenomenon in that it…

  2. HST image of Gravitational Lens G2237 + 305 or 'Einstein Cross'

    NASA Technical Reports Server (NTRS)

    1990-01-01

    European Space Agency (ESA) Faint Object Camera (FOC) science image was taken from the Hubble Space Telescope (HST) of Gravitational Lens G2237 + 305 or 'Einstein Cross'. The gravitational lens G2237 + 305 or 'Einstein Cross' shows four images of a very distant quasar which has been multiple-imaged by a relatively nearby galaxy acting as a gravitational lens. The angular separation between the upper and lower images is 1.6 arc seconds. Photo was released from Goddard Space Flight Center (GSFC) 09-12-90.

  3. Linearization of an annular image by using a diffractive optic

    NASA Technical Reports Server (NTRS)

    Matthys, Donald R.

    1996-01-01

    The goal for this project is to develop the algorithms for fracturing the zones defined by the mapping transformation, and to actually produce the binary optic in an appropriate setup. In 1984 a side-viewing panoramic viewing system was patented, consisting of a single piece of glass with spherical surfaces which produces a 360 degree view of the region surrounding the lens which extends about 25 degrees in front of and 20 degrees behind the lens. The system not only produces images of good quality, it is also afocal, i.e., images stay in focus for objects located right next to the lens as well as those located far from the lens. The lens produced a panoramic view in an annular shaped image, and so the lens was called a PAL (panoramic annular lens). When applying traditional measurements to PAL images, it is found advantageous to linearize the annular image. This can easily be done with a computer and such a linearized image can be produced within about 40 seconds on current microcomputers. However, this process requires a frame-grabber and a computer, and is not real-time. Therefore, it was decided to try to perform this linearization optically by using a diffractive optic.

  4. Copper crystal lens for medical imaging: first results

    NASA Astrophysics Data System (ADS)

    Roa, Dante E.; Smither, Robert K.

    2001-06-01

    A copper crystal lens designed to focus gamma ray energies of 100 to 200 keV has been assembled at Argonne National Laboratory. In particular, the lens has been optimized to focus the 140.6 keV gamma rays from technetium-99 m typically used in radioactive tracers. This new approach to medical imaging relies on crystal diffraction to focus incoming gamma rays in a manner similar to a simple convex lens focusing visible light. The lens is envisioned to be part of an array of lenses that can be used as a complementary technique to gamma cameras for localized scans of suspected tumor regions in the body. In addition, a 2- lens array can be used to scan a woman's breast in search of tumors with no discomfort to the patient. The incoming gamma rays are diffracted by a set of 828 copper crystal cubes arranged in 13 concentric rings, which focus the gamma rays into a very small area on a well-shielded NaI detector. Experiments performance with technetium-99 m and cobalt 57 radioactive sources indicate that a 6-lens array should be capable of detecting sources with (mu) Ci strength.

  5. Objective Lens Optimized for Wavefront Delivery, Pupil Imaging, and Pupil Ghosting

    NASA Technical Reports Server (NTRS)

    Olzcak, Gene

    2009-01-01

    An interferometer objective lens (or diverger) may be used to transform a collimated beam into a diverging or converging beam. This innovation provides an objective lens that has diffraction-limited optical performance that is optimized at two sets of conjugates: imaging to the objective focus and imaging to the pupil. The lens thus provides for simultaneous delivery of a high-quality beam and excellent pupil resolution properties.

  6. Curved crystals for high-resolution focusing of X and gamma rays through a Laue lens

    NASA Astrophysics Data System (ADS)

    Guidi, Vincenzo; Bellucci, Valerio; Camattari, Riccardo; Neri, Ilaria

    2013-08-01

    Crystals with curved diffracting planes have been investigated as high-efficiency optical components for the realization of a Laue lens for satellite-borne experiments in astrophysics. At Sensor and Semiconductor Laboratory (Ferrara, Italy) a research and development plan to implement Si and Ge curved crystals by surface grooving technique has been undertaken. The method of surface grooving allows obtaining Si and Ge curved crystals with self-standing curvature, i.e., with no need for external bending device, which is a mandatory issue in satellite-borne experiments. Si and Ge grooved crystals have been characterized by X-ray diffraction at ESRF and ILL to prove their functionality for a high-reflectivity Laue lens.

  7. Design of Off-Axis PIAACMC Mirrors

    NASA Technical Reports Server (NTRS)

    Pluzhnik, Eugene; Guyon, Olivier; Belikov, Ruslan; Kern, Brian; Bendek, Eduardo

    2015-01-01

    The Phase-Induced Amplitude Apodization Complex Mask Coronagraph (PIAACMC) provides an efficient way to control diffraction propagation effects caused by the central obstruction/segmented mirrors of the telescope. PIAACMC can be optimized in a way that takes into account both chromatic diffraction effects caused by the telescope obstructed aperture and tip/tilt sensitivity of the coronagraph. As a result, unlike classic PIAA, the PIAACMC mirror shapes are often slightly asymmetric even for an on-axis configuration and require more care in calculating off-axis shapes when an off-axis configuration is preferred. A method to design off-axis PIAA mirror shapes given an on-axis mirror design is presented. The algorithm is based on geometrical ray tracing and is able to calculate off-axis PIAA mirror shapes for an arbitrary geometry of the input and output beams. The method is demonstrated using the third generation PIAACMC design for WFIRST-AFTA (Wide Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets) telescope. Geometrical optics design issues related to the off-axis diffraction propagation effects are also discussed.

  8. Design and simulation of a superposition compound eye system based on hybrid diffractive-refractive lenses.

    PubMed

    Zhang, Shuqing; Zhou, Luyang; Xue, Changxi; Wang, Lei

    2017-09-10

    Compound eyes offer a promising field of miniaturized imaging systems. In one application of a compound eye, superposition of compound eye systems forms a composite image by superposing the images produced by different channels. The geometric configuration of superposition compound eye systems is achieved by three micro-lens arrays with different pitches and focal lengths. High resolution is indispensable for the practicability of superposition compound eye systems. In this paper, hybrid diffractive-refractive lenses are introduced into the design of a compound eye system for this purpose. With the help of ZEMAX, two superposition compound eye systems with and without hybrid diffractive-refractive lenses were separately designed. Then, we demonstrate the effectiveness of using a hybrid diffractive-refractive lens to improve the image quality.

  9. High resolution telescope including an array of elemental telescopes aligned along a common axis and supported on a space frame with a pivot at its geometric center

    DOEpatents

    Norbert, M.A.; Yale, O.

    1992-04-28

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employes speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by a electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes. 15 figs.

  10. High resolution telescope including an array of elemental telescopes aligned along a common axis and supported on a space frame with a pivot at its geometric center

    DOEpatents

    Norbert, Massie A.; Yale, Oster

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employes speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by a electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  11. Salvaging an Abused Lens or How a 4½ inch Brashear lens came unglued before I did!

    NASA Astrophysics Data System (ADS)

    Koester, Jack

    The author's newly-acquired Brashear telescope has a "fogged lens" that was stuck in its cell. After getting advice from several ATS members, the author visits Richard A. Buchroeder, the professional optical designer, who heats the mirror and cell in order to soften the binding substance by floating the cell in a pot filled with heated cooking oil. The process worked, and the two lenses were removed.

  12. Diffractive Alvarez lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, Ian M.; Dixit, Sham N.; Summers, Leslie J.

    2000-01-01

    A diffractive Alvarez lens is demonstrated that consists of two separate phase plates, each having complementary 16-level surface-relief profiles that contain cubic phase delays. Translation of these two components in the plane of the phase plates is shown to produce a variable astigmatic focus. Both spherical and cylindrical phase profiles are demonstrated with good accuracy, and the discrete surface-relief features are shown to cause less than {lambda}/10 wave-front aberration in the transmitted wave front over a 40 mmx80 mm region. (c) 2000 Optical Society of America.

  13. Self-addressed diffractive lens schemes for the characterization of LCoS displays

    NASA Astrophysics Data System (ADS)

    Zhang, Haolin; Lizana, Angel; Iemmi, Claudio; Monroy-Ramírez, Freddy A.; Marquez, Andrés.; Moreno, Ignacio; Campos, Juan

    2018-02-01

    We proposed a self-calibration method to calibrate both the phase-voltage look-up table and the screen phase distribution of Liquid Crystal on Silicon (LCoS) displays by implementing different lens configurations on the studied device within a same optical scheme. On the one hand, the phase-voltage relation is determined from interferometric measurements, which are obtained by addressing split-lens phase distributions on the LCoS display. On the other hand, the surface profile is retrieved by self-addressing a diffractive micro-lens array to the LCoS display, in a way that we configure a Shack-Hartmann wavefront sensor that self-determines the screen spatial variations. Moreover, both the phase-voltage response and the surface phase inhomogeneity of the LCoS are measured within the same experimental set-up, without the necessity of further adjustments. Experimental results prove the usefulness of the above-mentioned technique for LCoS displays characterization.

  14. Research of the relationships between light dispersion and contrast of the registered image at different background brightness

    NASA Astrophysics Data System (ADS)

    Stoyanov, Stiliyan; Mardirossian, Garo

    2012-10-01

    The light diffraction is for telescope apparatuses an especially important characteristic which has an influence on the record image contrast from the eye observer. The task of the investigation is to determine to what degree the coefficient of light diffraction influences the record image brightness. The object of the theoretical research are experimental results provided from a telescope system experiment in the process of observation of remote objects with different brightness of the background in the fixed light diffraction coefficients and permanent contrast of the background in respect to the object. The received values and the ratio of the image contrast to the light diffraction coefficient is shown in a graphic view. It's settled that with increasing of the value of background brightness in permanent background contrast in respect to the object, the image contrast sharply decrease. The relationship between the increase of the light diffraction coefficient and the decrease of the brightness of the project image from telescope apparatuses can be observed.

  15. Comparison of visual outcomes after bilateral implantation of a diffractive trifocal intraocular lens and blended implantation of an extended depth of focus intraocular lens with a diffractive bifocal intraocular lens

    PubMed Central

    de Medeiros, André Lins; de Araújo Rolim, André Gustavo; Motta, Antonio Francisco Pimenta; Ventura, Bruna Vieira; Vilar, César; Chaves, Mário Augusto Pereira Dias; Carricondo, Pedro Carlos; Hida, Wilson Takashi

    2017-01-01

    Purpose The purpose of this study was to compare the visual outcomes and subjective visual quality between bilateral implantation of a diffractive trifocal intraocular lens, Alcon Acrysof IQ® PanOptix® TNFT00 (group A), and blended implantation of an extended depth of focus lens, J&J Tecnis Symfony® ZXR00 with a diffractive bifocal intraocular lens, J&J Vision Tecnis® ZMB00 (group B). Methods This prospective, nonrandomized, consecutive, comparative study included the assessment of 40 eyes in 20 patients implanted with multifocal intraocular lens. Exclusion criteria were existence of any corneal, retina, or optic nerve disease, previous eye surgery, illiteracy, previous refractive surgery, high axial myopia, expected postoperative corneal astigmatism of >1.00 cylindrical diopter (D), and intraoperative or postoperative complications. Binocular visual acuity was tested in all cases. Ophthalmological evaluation included the measurement of uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), uncorrected near visual acuity (UNVA), and uncorrected intermediate visual acuity (UIVA), with the analysis of contrast sensitivity (CS), and visual defocus curve. Results Postoperative UDVA was 0.01 and −0.096 logMAR (p<0.01) in groups A and B, respectively; postoperative CDVA was −0.07 and −0.16 logMAR (p<0.01) in groups A and B, respectively; UIVA was 0.14 and 0.20 logMAR (p<0.01) in groups A and B, respectively; UNVA was −0.03 and 0.11 logMAR (p<0.01) in groups A and B, respectively. Under photopic conditions group B had better CS at low frequencies with and without glare. Conclusion Both groups promoted good quality of vision for long, intermediate, and short distances. Group B exhibited a better performance for very short distances and for intermediate and long distances ≥−1.50 D of vergence. Group A exhibited a better performance for UIVA at 60 cm and for UNVA at 40 cm. PMID:29138533

  16. The Full-Scale Prototype for the Fluorescence Detector Array of Single-Pixel Telescopes

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Malacari, M.; Bellido, J. A.; Farmer, J.; Galimova, A.; Horvath, P.; Hrabovsky, M.; Mandat, D.; Matalon, A.; Matthews, J. N.; Merolle, M.; Ni, X.; Nozka, L.; Palatka, M.; Pech, M.; Privitera, P.; Schovanek, P.; Thomas, S. B.; Travnicek, P.

    The Fluorescence detector Array of Single-pixel Telescopes (FAST) is a design concept for the next generation of ultrahigh-energy cosmic ray (UHECR) observatories, addressing the requirements for a large-area, low-cost detector suitable for measuring the properties of the highest energy cosmic rays. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. Motivated by the successful detection of UHECRs using a prototype comprised of a single 200 mm photomultiplier-tube and a 1 m2 Fresnel lens system, we have developed a new "full-scale" prototype consisting of four 200 mm photomultiplier-tubes at the focus of a segmented mirror of 1.6 m in diameter. We report on the status of the full-scale prototype, including test measurements made during first light operation at the Telescope Array site in central Utah, U.S.A.

  17. Optical aperture synthesis with electronically connected telescopes

    PubMed Central

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.

    2015-01-01

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705

  18. Dispersion-compensated fresnel lens

    DOEpatents

    Johnson, Kenneth C.

    1992-01-01

    A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4.multidot.10.sup.-5 inch and a profile width of at least 10.sup.-3 inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight.

  19. Dispersion-compensated Fresnel lens

    DOEpatents

    Johnson, K.C.

    1992-11-03

    A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4[times]10[sup [minus]5] inch and a profile width of at least 10[sup [minus]3] inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight. 10 figs.

  20. Diffraction analysis and evaluation of several focus- and track-error detection schemes for magneto-optical disk systems

    NASA Technical Reports Server (NTRS)

    Bernacki, Bruce E.; Mansuripur, M.

    1992-01-01

    A commonly used tracking method on pre-grooved magneto-optical (MO) media is the push-pull technique, and the astigmatic method is a popular focus-error detection approach. These two methods are analyzed using DIFFRACT, a general-purpose scalar diffraction modeling program, to observe the effects on the error signals due to focusing lens misalignment, Seidel aberrations, and optical crosstalk (feedthrough) between the focusing and tracking servos. Using the results of the astigmatic/push-pull system as a basis for comparison, a novel focus/track-error detection technique that utilizes a ring toric lens is evaluated as well as the obscuration method (focus error detection only).

  1. Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens

    DOE PAGES

    Dennis, Brian S.; Czaplewski, David A.; Haftel, Michael I.; ...

    2015-08-12

    Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron- and focused-ion- beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-couplermore » slits.« less

  2. Light field measurement based on the single-lens coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Shen, Cheng; Tan, Jiubin; Liu, Zhengjun

    2018-01-01

    Plenoptic camera and holography are popular light field measurement techniques. However, the low resolution or the complex apparatus hinders their widespread application. In this paper, we put forward a new light field measurement scheme. The lens is introduced into coherent diffraction imaging to operate an optical transform, extended fractional Fourier transform. Combined with the multi-image phase retrieval algorithm, the scheme is proved to hold several advantages. It gets rid of the support requirement and is much easier to implement while keeping a high resolution by making full use of the detector plane. Also, it is verified that our scheme has a superiority over the direct lens focusing imaging in amplitude measurement accuracy and phase retrieval ability.

  3. Invited Review Article: Development of crystal lenses for energetic photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smither, Robert K.

    2014-08-15

    This paper follows the development of crystal diffraction lenses designed to focus energetic photons. It begins with the search for a solution to the astrophysics problem of how to detect weak astrophysics sources of gamma rays and x-rays. This led to the basic designs for a lens and to the understanding of basic limitations of lens design. The discussion of the development of crystal diffraction lenses is divided into two parts: lenses using crystals with mosaic structure, and lenses that use crystals with curved crystal planes. This second group divides into two sub-groups: (1) Curved crystals that are used tomore » increase the acceptance angle of the diffraction of a monochromatic beam and to increase the energy bandwidth of the diffraction. (2) Curved crystals used to focus gamma ray beams. The paper describes how these two types of crystals affect the design of the corresponding crystal lenses in different fields: astrophysics, medical imaging, detection of weak, distant, gamma-ray sources, etc. The designs of crystal lenses for these applications are given in enough detail to allow the reader to design a lens for his own application.« less

  4. Precision lens molding of asphero diffractive surfaces in chalcogenide materials

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Scordato, M.; Schwertz, K.; Bagwell, J.

    2015-10-01

    Finished lens molding, and the similar process of precision lens molding, have long been practiced for high volume, accurate replication of optical surfaces on oxide glass. The physics surrounding these processes are well understood, and the processes are capable of producing high quality optics with great fidelity. However, several limitations exist due to properties inherent with oxide glasses. Tooling materials that can withstand the severe environmental conditions of oxide glass molding cannot easily be machined to produce complex geometries such as diffractive surfaces, lens arrays, and off axis features. Current machining technologies coupled with a limited selection of tool materials greatly limits the type of structures that can be molded into the finished optic. Tooling for chalcogenide glasses are not bound by these restrictions since the molding temperatures required are much lower than for oxide glasses. Innovations in tooling materials and manufacturing techniques have enabled the production of complex geometries to optical quality specifications and have demonstrated the viability of creating tools for molding diffractive surfaces, off axis features, datums, and arrays. Applications for optics having these features are found in automotive, defense, security, medical, and industrial domains. This paper will discuss results achieved in the study of various molding techniques for the formation of positive diffractive features on a concave spherical surface molded from As2Se3 chalcogenide glass. Examples and results of molding with tools having CTE match with the glass and non CTE match will be reviewed. The formation of stress within the glass during molding will be discussed, and methods of stress management will also be demonstrated and discussed. Results of process development methods and production of good diffractive surfaces will be shown.

  5. Diffraction properties of multilayer Laue lenses with an aperture of 102 µm and WSi 2/Al bilayers

    DOE PAGES

    Kubec, Adam; Kujala, Naresh; Conley, Raymond; ...

    2015-01-01

    Here, we report on the characterization of a multilayer Laue lens (MLL) with large acceptance, made of a novel WSi2/Al bilayer system. Fabrication of multilayers with large deposition thickness is required to obtain MLL structures with sufficient apertures capable of accepting the full lateral coherence length of x-rays at typical nanofocusing beamlines. To date, the total deposition thickness has been limited by stress-buildup in the multilayer. We were able to grow WSi2/Al with low grown-in stress, and asses the degree of stress reduction. X-ray diffraction experiments were conducted at beamline 1-BM at the Advanced Photon Source. We used monochromatic x-raysmore » with a photon energy of 12 keV and a bandwidth of ΔE/E=5.4 ∙ 10 -4. The MLL was grown with parallel layer interfaces, and was designed to have a large focal length of 9.6 mm. The mounted lens was 2.7 mm in width. We found and quantified kinks and bending of sections of the MLL. Sections with bending were found to partly have a systematic progression in the interface angles. We also observed kinking in some, but not all, areas. The measurements are compared with dynamic diffraction calculations made with Coupled Wave Theory. Finally our data are plotted showing the diffraction efficiency as a function of the external tilting angle of the entire mounted lens. This way of plotting the data was found to provide an overview into the diffraction properties of the whole lens, and enabled the following layer tilt analyses.« less

  6. The original method for imaging of biological tissues in optical coherence tomography with usage of hyperchromatic lens

    NASA Astrophysics Data System (ADS)

    Egorov, D. I.

    2017-06-01

    Our study focuses on an analysis of the original method of investigation biological tissues in the spectral OCT (optical coherence tomography) with usage hyperchromatic lenses. Using hyperchromatic lens, i.e. the lens with uncorrected longitudinal color allows scanning in the depth of the object by changing the wavelength of the emitter. In this case, the depth of the scan will be determined not by the microlens depth of field, but the value of axial color. In our study, we demonstrated the advantages of this method of research on biological tissues existing. Spectral OCT schemes with the hyperchromatic lens could increase the depth of spectral scanning, eliminate the use of multi-channel systems with a set of microscope objectives, reduce the time of measurement. In our paper, we show the developed method of calculation of hyperchromatic lenses and hybrid hyperchromatic lens consisting of a diffractive and refractive component in spectral OCT systems. We also demonstrate the results of aberration calculation designed microscope lenses. We show examples of developed hyperchromatic lenses with the diffractive element and without it.

  7. The Life and Work of Joseph Fraunhofer (1787-1826)

    ERIC Educational Resources Information Center

    Leitner, Alfred

    1975-01-01

    Describes Fraunhofer's scientific career as a glass and lens maker, a discoverer of dark lines in the solar spectrum, a corrector of lens aberration, and investigator of diffraction. Gives biographical data and anecdotes. Includes a bibliography, mainly of German sources. (GH)

  8. Application of the polychromatic defocus transfer function to multifocal lenses.

    PubMed

    Schwiegerling, Jim; Choi, Junoh

    2008-11-01

    To model the performance of multifocal lenses in polychromatic lighting. The defocus transfer function (DTF) is a mathematical technique for illustrating the optical transfer function for all levels of defocus at a given wavelength. A polychromatic version of the DTF is developed that accounts for changes in cutoff frequency, reduction in diffraction efficiency, ocular chromatic aberration, and photoreceptor spectral sensitivity. The differences between the monochromatic and polychromatic DTF are illustrated with a diffractive multifocal intraocular lens. Polychromatic analysis shows an increase in depth of field of diffractive lenses relative to assessment at a single wavelength. The polychromatic DTF is a useful tool for analyzing presbyopia treatments under "white-light" viewing conditions and provides feedback to lens designers on anticipated performance.

  9. Ultrafast and versatile spectroscopy by temporal Fourier transform

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Wei, Xiaoming; Marhic, Michel E.; Wong, Kenneth K. Y.

    2014-06-01

    One of the most remarkable and useful properties of a spatially converging lens system is its inherent ability to perform the Fourier transform; the same applies for the time-lens system. At the back focal plane of the time-lens, the spectral information can be instantaneously obtained in the time axis. By implementing temporal Fourier transform for spectroscopy applications, this time-lens-based architecture can provide orders of magnitude improvement over the state-of-art spatial-dispersion-based spectroscopy in terms of the frame rate. On the other hand, in addition to the single-lens structure, the multi-lens structures (e.g. telescope or wide-angle scope) will provide very versatile operating conditions. Leveraging the merit of instantaneous response, as well as the flexible lens structure, here we present a 100-MHz frame rate spectroscopy system - the parametric spectro-temporal analyzer (PASTA), which achieves 17 times zoom in/out ratio for different observation ranges.

  10. The Top 10 List of Gravitational Lens Candidates from the HUBBLE SPACE TELESCOPE Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Ratnatunga, Kavan U.; Griffiths, Richard E.; Ostrander, Eric J.

    1999-05-01

    A total of 10 good candidates for gravitational lensing have been discovered in the WFPC2 images from the Hubble Space Telescope (HST) Medium Deep Survey (MDS) and archival primary observations. These candidate lenses are unique HST discoveries, i.e., they are faint systems with subarcsecond separations between the lensing objects and the lensed source images. Most of them are difficult objects for ground-based spectroscopic confirmation or for measurement of the lens and source redshifts. Seven are ``strong lens'' candidates that appear to have multiple images of the source. Three are cases in which the single image of the source galaxy has been significantly distorted into an arc. The first two quadruply lensed candidates were reported by Ratnatunga et al. We report on the subsequent eight candidates and describe them with simple models based on the assumption of singular isothermal potentials. Residuals from the simple models for some of the candidates indicate that a more complex model for the potential will probably be required to explain the full structural detail of the observations once they are confirmed to be lenses. We also discuss the effective survey area that was searched for these candidate lens objects.

  11. Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, Brian S.; Czaplewski, David A.; Haftel, Michael I.

    2015-01-01

    Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron-and focused-ion-beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-coupler slits. (C)more » 2015 Optical Society of America« less

  12. Chromatic confocal microscope using hybrid aspheric diffractive lenses

    NASA Astrophysics Data System (ADS)

    Rayer, Mathieu; Mansfield, Daniel

    2014-05-01

    A chromatic confocal microscope is a single point non-contact distance measurement sensor. For three decades the vast majority of the chromatic confocal microscope use refractive-based lenses to code the measurement axis chromatically. However, such an approach is limiting the range of applications. In this paper the performance of refractive, diffractive and Hybrid aspheric diffractive are compared. Hybrid aspheric diffractive lenses combine the low geometric aberration of a diffractive lens with the high optical power of an aspheric lens. Hybrid aspheric diffractive lenses can reduce the number of elements in an imaging system significantly or create large hyper- chromatic lenses for sensing applications. In addition, diffractive lenses can improve the resolution and the dynamic range of a chromatic confocal microscope. However, to be suitable for commercial applications, the diffractive optical power must be significant. Therefore, manufacturing such lenses is a challenge. We show in this paper how a theoretical manufacturing model can demonstrate that the hybrid aspheric diffractive configuration with the best performances is achieved by step diffractive surface. The high optical quality of step diffractive surface is then demonstrated experimentally. Publisher's Note: This paper, originally published on 5/10/14, was replaced with a corrected/revised version on 5/19/14. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.

  13. Cosmological parameter constraints with the Deep Lens Survey using galaxy-shear correlations and galaxy clustering properties

    NASA Astrophysics Data System (ADS)

    Yoon, Mijin; Jee, Myungkook James; Tyson, Tony

    2018-01-01

    The Deep Lens Survey (DLS), a precursor to the Large Synoptic Survey Telescope (LSST), is a 20 sq. deg survey carried out with NOAO’s Blanco and Mayall telescopes. The strength of the survey lies in its depth reaching down to ~27th mag in BVRz bands. This enables a broad redshift baseline study and allows us to investigate cosmological evolution of the large-scale structure. In this poster, we present the first cosmological analysis from the DLS using galaxy-shear correlations and galaxy clustering signals. Our DLS shear calibration accuracy has been validated through the most recent public weak-lensing data challenge. Photometric redshift systematic errors are tested by performing lens-source flip tests. Instead of real-space correlations, we reconstruct band-limited power spectra for cosmological parameter constraints. Our analysis puts a tight constraint on the matter density and the power spectrum normalization parameters. Our results are highly consistent with our previous cosmic shear analysis and also with the Planck CMB results.

  14. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.

    PubMed

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J; Sarunic, Marinko V

    2015-08-24

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images.

  15. Phase-Scrambler Plate Spreads Point Image

    NASA Technical Reports Server (NTRS)

    Edwards, Oliver J.; Arild, Tor

    1992-01-01

    Array of small prisms retrofit to imaging lens. Phase-scrambler plate essentially planar array of small prisms partitioning aperture of lens into many subapertures, and prism at each subaperture designed to divert relatively large diffraction spot formed by that subaperture to different, specific point on focal plane.

  16. Diamond sensors and polycapillary lenses for X-ray absorption spectroscopy.

    PubMed

    Ravel, B; Attenkofer, K; Bohon, J; Muller, E; Smedley, J

    2013-10-01

    Diamond sensors are evaluated as incident beam monitors for X-ray absorption spectroscopy experiments. These single crystal devices pose a challenge for an energy-scanning experiment using hard X-rays due to the effect of diffraction from the crystalline sensor at energies which meet the Bragg condition. This problem is eliminated by combination with polycapillary lenses. The convergence angle of the beam exiting the lens is large compared to rocking curve widths of the diamond. A ray exiting one capillary from the lens meets the Bragg condition for any reflection at a different energy from the rays exiting adjacent capillaries. This serves to broaden each diffraction peak over a wide energy range, allowing linear measurement of incident intensity over the range of the energy scan. Extended X-ray absorption fine structure data are measured with a combination of a polycapillary lens and a diamond incident beam monitor. These data are of comparable quality to data measured without a lens and with an ionization chamber monitoring the incident beam intensity.

  17. Solar Rejection Filter for Large Telescopes

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Lesh, James

    2009-01-01

    To reject solar radiation photons at the front aperture for large telescopes, a mosaic of large transmission mode filters is placed in front of the telescope or at the aperture of the dome. Filtering options for effective rejection of sunlight include a smaller filter down-path near the focus of the telescope, and a large-diameter filter located in the front of the main aperture. Two types of large filters are viable: reflectance mode and transmittance mode. In the case of reflectance mode, a dielectric coating on a suitable substrate (e.g. a low-thermal-expansion glass) is arranged to reflect only a single, narrow wavelength and to efficiently transmit all other wavelengths. These coatings are commonly referred to as notch filter. In this case, the large mirror located in front of the telescope aperture reflects the received (signal and background) light into the telescope. In the case of transmittance mode, a dielectric coating on a suitable substrate (glass, sapphire, clear plastic, membrane, and the like) is arranged to transmit only a single wavelength and to reject all other wavelengths (visible and near IR) of light. The substrate of the large filter will determine its mass. At first glance, a large optical filter with a diameter of up to 10 m, located in front of the main aperture, would require a significant thickness to avoid sagging. However, a segmented filter supported by a structurally rugged grid can support smaller filters. The obscuration introduced by the grid is minimal because the total area can be made insignificant. This configuration can be detrimental to a diffraction- limited telescope due to diffraction effects at the edges of each sub-panel. However, no discernable degradation would result for a 20 diffraction-limit telescope (a photon bucket). Even the small amount of sagging in each subpanel should have minimal effect in the performance of a non-diffraction limited telescope because the part has no appreciable optical power. If the front aperture filter is integrated with the telescope dome, it will reject heat from the dome and will significantly reduce dome temperature regulation requirements and costs. Also, the filter will protect the telescope optics from dust and other contaminants in the atmosphere. It will be simpler to clean or replace this filter than the telescope primary mirror. It may be necessary to paint the support grid with a highly reflective material to avoid overheating.

  18. High spatial resolution with zoomable saw-tooth refractive lenses?

    NASA Astrophysics Data System (ADS)

    Jark, Werner

    2011-09-01

    Refractive x-ray lenses can be assembled from two opposing saw-tooth structures, when they are inclined with respect to each other and almost touch at one end. An incident plane wave will then traverse a varying number of triangular prisms, which direct the beam towards the optical axis and focus it. Optically speaking the plane wave traverses a parabolic lens profile, which is approximated by trapezoidal segments. The parabolic profile will focus ideally, when a lens can be discussed in the "thin lens" approximation. Now the saw-tooth refractive lens is found to be too "thick". The residual aberrations limit the focusing capability to just submicrometer focusing, significantly above the limit in diffraction limited focusing. It is shown that the aberrations can be removed by introducing a variation into the originally constant saw-tooth angle. After this modification the lens can be operated in the diffraction limited regime. Spot sizes even below 0.1 micrometer are then feasible. This performance in terms of spatial resolution is found to be limited to focusing to microspots and is not available, when the saw-tooth refractive lens is used in an imaging setup. In this case the spatial resolution deteriorates rapidly with increasing off axis distance of the object to be imaged.

  19. Improvement of spectral and axial resolutions in modified coded aperture correlation holography (COACH) imaging system

    NASA Astrophysics Data System (ADS)

    Vijayakumar, A.; Rosen, Joseph

    2017-05-01

    Coded aperture correlation holography (COACH) is a recently developed incoherent digital holographic technique. In COACH, two holograms are recorded: the object hologram for the object under study and another hologram for a point object called PSF hologram. The holograms are recorded by interfering two beams, both diffracted from the same object point, but only one of them passes through a random-like coded phase mask (CPM). The same CPM is used for recording the object as well as the PSF holograms. The image is reconstructed by correlating the object hologram with a processed version of the PSF hologram. The COACH holographic technique exhibits the same transverse and axial resolution of the regular imaging, but with the unique capability of storing 3D information. The basic COACH configuration consists of a single spatial light modulator (SLM) used for displaying the CPM. In this study, the basic COACH configuration has been advanced by employing two spatial light modulators (SLMs) in the setup. The refractive lens used in the basic COACH setup for collecting and collimating the light diffracted by the object is replaced by an SLM on which an equivalent diffractive lens is displayed. Unlike a refractive lens, the diffractive lens displayed on the first SLM focuses light with different wavelengths to different axial planes, which are separated by distances larger than the axial correlation lengths of the CPM for any visible wavelength. This characteristic extends the boundaries of COACH from three-dimensional to four-dimensional imaging with the wavelength as its fourth dimension.

  20. Long-baseline optical intensity interferometry. Laboratory demonstration of diffraction-limited imaging

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.

    2015-08-01

    Context. A long-held vision has been to realize diffraction-limited optical aperture synthesis over kilometer baselines. This will enable imaging of stellar surfaces and their environments, and reveal interacting gas flows in binary systems. An opportunity is now opening up with the large telescope arrays primarily erected for measuring Cherenkov light in air induced by gamma rays. With suitable software, such telescopes could be electronically connected and also used for intensity interferometry. Second-order spatial coherence of light is obtained by cross correlating intensity fluctuations measured in different pairs of telescopes. With no optical links between them, the error budget is set by the electronic time resolution of a few nanoseconds. Corresponding light-travel distances are approximately one meter, making the method practically immune to atmospheric turbulence or optical imperfections, permitting both very long baselines and observing at short optical wavelengths. Aims: Previous theoretical modeling has shown that full images should be possible to retrieve from observations with such telescope arrays. This project aims at verifying diffraction-limited imaging experimentally with groups of detached and independent optical telescopes. Methods: In a large optics laboratory, artificial stars (single and double, round and elliptic) were observed by an array of small telescopes. Using high-speed photon-counting solid-state detectors and real-time electronics, intensity fluctuations were cross-correlated over up to 180 baselines between pairs of telescopes, producing coherence maps across the interferometric Fourier-transform plane. Results: These interferometric measurements were used to extract parameters about the simulated stars, and to reconstruct their two-dimensional images. As far as we are aware, these are the first diffraction-limited images obtained from an optical array only linked by electronic software, with no optical connections between the telescopes. Conclusions: These experiments serve to verify the concepts for long-baseline aperture synthesis in the optical, somewhat analogous to radio interferometry.

  1. Photon sieve telescope

    NASA Astrophysics Data System (ADS)

    Andersen, Geoff; Tullson, Drew

    2006-06-01

    In designing next-generation, ultra-large (>20m) apertures for space, many current concepts involve compactable, curved membrane reflectors. Here we present the idea of using a flat diffractive element that requires no out-of-plane deformation and so is much simpler to deploy. The primary is a photon sieve - a diffractive element consisting of a large number of precisely positioned holes distributed according to an underlying Fresnel Zone Plate (FZP) geometry. The advantage of the photon sieve over the FZP is that all the regions are connected, so the membrane substrate under simple tension can avoid buckling. Also, the hole distribution can be varied to generate any conic or apodization for specialized telescope requirements such as exo-solar planet detection. We have designed and tested numerous photon sieves as telescope primaries. Some of these have over 10 million holes in a 0.1 m diameter aperture and all of them give diffraction limited imaging. While photon sieves are diffractive elements and thus suffer from dispersion, we will present two successful solutions to this problem.

  2. Characteristic of laser diode beam propagation through a collimating lens.

    PubMed

    Xu, Qiang; Han, Yiping; Cui, Zhiwei

    2010-01-20

    A mathematical model of a laser diode beam propagating through a collimating lens is presented. Wave propagation beyond the paraxial approximation is studied. The phase delay of the laser diode wave in passing through the lens is analyzed in detail. The propagation optical field after the lens is obtained from the diffraction integral by the stationary phase method. The model is employed to predict the light intensity at various beam cross sections, and the computed intensity distributions are in a good agreement with the corresponding measurements.

  3. Fresnel Lens

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Scott, Steve; Lamb, David; Zimmerman, Joe E. (Technical Monitor)

    2001-01-01

    Fresnel lenses span the full range of sizes from lens a few micrometers in diameter to lens several meters in diameter. These lenses are utilized in various fields including optical communication, theatrical lighting, office equipment, video entertainment systems, solar concentrators, and scientific research instruments. These lenses function either as diffractive or refractive optical elements depending on the geometrical feature size of the lens. The basic functions of these lenses is described followed by an overview of fabrication methods. A summary of applications is then provided illustrating the rich variety of applications for which fresnel lenses may be designed to fulfill.

  4. 9401028

    NASA Image and Video Library

    2016-11-18

    Space Shuttle mission STS-61 onboard view taken by a fish-eyed camera lens showing astronauts Story Musgrave and Jeffrey Hoffman's Extra Vehicular Activity (EVA) to repair the Hubble Space Telescope (HST).

  5. Diffraction limited gamma-ray optics using Fresnel lenses for micro-arc second angular resolution

    NASA Astrophysics Data System (ADS)

    Skinner, G.; von Ballmoos, P.; Gehrels, N.; Krzmanic, J.

    2003-03-01

    Refractive indices at gamma-ray wavelengths are such that material thicknesses of the order of millimeters allow the phase of a wavefront to be changed by up to 2π . Thus a phase Fresnel lens can be made from a simple profiled thin disk of, for example, aluminium or plastic. Such a lens can easily have a collecting area of several square meters and an efficiency >90%. Ordinary engineering tolerances allow the manufacture of a lens which can be diffraction limited in the pico-meter wavelength band (up to ˜MeV) and thus provides a simple optical system with angular resolution better than a micro arc second i.e. the resolution necessary to resolve structures on the scale of the event horizon of super-massive black holes in AGN. However the focal length of such a lens is very long - up to a million km. Nevertheless studies have shown that a mission `Fresnel' using a detector and a phase Fresnel lens on two station-keeping spacecraft separated by such a distance is feasible. Results from these studies and work on other proof of concept studies are presented.

  6. Surface-treated self-standing curved crystals as high-efficiency elements for X- and γ-ray optics: theory and experiment.

    PubMed

    Bonnini, Elisa; Buffagni, Elisa; Zappettini, Andrea; Doyle, Stephen; Ferrari, Claudio

    2015-06-01

    The efficiency of a Laue lens for X- and γ-ray focusing in the energy range 60-600 keV is closely linked to the diffraction efficiency of the single crystals composing the lens. A powerful focusing system is crucial for applications like medical imaging and X-ray astronomy where wide beams must be focused. Mosaic crystals with a high density, such as Cu or Au, and bent crystals with curved diffracting planes (CDPs) are considered for the realization of a focusing system for γ-rays, owing to their high diffraction efficiency in a predetermined angular range. In this work, a comparison of the efficiency of CDP crystals and Cu and Au mosaic crystals was performed on the basis of the theory of X-ray diffraction. Si, GaAs and Ge CDP crystals with optimized thicknesses and moderate radii of curvature of several tens of metres demonstrate comparable or superior performance with respect to the higher atomic number mosaic crystals generally used. In order to increase the efficiency of the lens further, a stack of several CDP crystals is proposed as an optical element. CDP crystals were obtained by a surface-damage method, and a stack of two surface-damaged bent Si crystals was prepared and tested. Rocking curves of the stack were performed with synchrotron radiation at 19 keV to check the lattice alignment: they exhibited only one diffraction peak.

  7. Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, De-Qin; School of Science, Tianjin University of Technology and Education, Tianjin 300222; Song, Xin-Bing

    It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √(N)-fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical predictionmore » in the two-photon quantum imaging regime.« less

  8. Development of the multiwavelength monolithic integrated fiber optics terminal

    NASA Technical Reports Server (NTRS)

    Chubb, C. R.; Bryan, D. A.; Powers, J. K.; Rice, R. R.; Nettle, V. H.; Dalke, E. A.; Reed, W. R.

    1982-01-01

    This paper describes the development of the Multiwavelength Monolithic Integrated Fiber Optic Terminal (MMIFOT) for the NASA Johnson Space Center. The program objective is to utilize guided wave optical technology to develop wavelength-multiplexing and -demultiplexing units, using a single mode optical fiber for transmission between terminals. Intensity modulated injection laser diodes, chirped diffraction gratings and thin film lenses are used to achieve the wavelength-multiplexing and -demultiplexing. The video and audio data transmission test of an integrated optical unit with a Luneburg collimation lens, waveguide diffraction grating and step index condensing lens is described.

  9. Micron-scale lens array having diffracting structures

    DOEpatents

    Goldberg, Kenneth A

    2013-10-29

    A novel micron-scale lens, a microlens, is engineered to concentrate light efficiently onto an area of interest, such as a small, light-sensitive detector element in an integrated electronic device. Existing microlens designs imitate the form of large-scale lenses and are less effective at small sizes. The microlenses described herein have been designed to accommodate diffraction effects, which dominate the behavior of light at small length scales. Thus a new class of light-concentrating optical elements with much higher relative performance has been created. Furthermore, the new designs are much easier to fabricate than previous designs.

  10. Biconcave micro-optofluidic lens with low-refractive-index liquids.

    PubMed

    Song, Chaolong; Nguyen, Nam-Trung; Asundi, Anand Krishna; Low, Cassandra Lee-Ngo

    2009-12-01

    One of the current problems of micro-optofluidics is the choice of a suitable liquid with a high refractive index (RI). We report the use of a low-RI liquid in a biconcave liquid-core liquid-cladding lens for focusing light. For the characterization of the lens, a telescope system was constructed from polydimethylsiloxane lenses to collimate and expand a light beam emitted from an optical fiber. The tunable optofluidic biconcave lens focuses the parallel beam. Fluorescent dye diluted in an index-matching liquid was used for the visualization of the light rays in a beam-tracing chamber. The focused beam is tuned by adjusting the flow rate ratio between core and cladding streams.

  11. Interstellar communication. II. Application to the solar gravitational lens

    NASA Astrophysics Data System (ADS)

    Hippke, Michael

    2018-01-01

    We have shown in paper I of this series [1] that interstellar communication to nearby (pc) stars is possible at data rates of bits per second per Watt between a 1 m sized probe and a large receiving telescope (E-ELT, 39 m), when optimizing all parameters such as frequency at 300-400 nm. We now apply our framework of interstellar extinction and quantum state calculations for photon encoding to the solar gravitational lens (SGL), which enlarges the aperture (and thus the photon flux) of the receiving telescope by a factor of >109 . For the first time, we show that the use of the SGL for communication purposes is possible. This was previously unclear because the Einstein ring is placed inside the solar coronal noise, and contributing factors are difficult to determine. We calculate point-spread functions, aperture sizes, heliocentric distance, and optimum communication frequency. The best wavelength for nearby (< 100 pc) interstellar communication is limited by current technology to the UV and optical band. To suppress coronal noise, an advanced coronograph is required, alternatively an occulter could be used which would require a second spacecraft in formation flight 78 km from the receiver, and ≈ 10 m in size. Data rates scale approximately linear with the SGL telescope size and with heliocentric distance. Achievable (receiving) data rates from α Cen are of order 10 Mbits per second per Watt for a pair of meter-sized telescopes, an improvement of 107 compared to using the same receiving telescope without the SGL. A 1 m telescope in the SGL can receive data at rates comparable to a km-class "normal" telescope.

  12. Fabrication of wedged multilayer Laue lenses

    DOE PAGES

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; ...

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack.more » This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.« less

  13. Exploring Hitherto Uncharted Planet Territory with Lucky-imaging Microlensing Observations

    NASA Astrophysics Data System (ADS)

    Dominik, Martin; Jørgensen, U. G.; Hessman, F. V.; Horne, K.; Harpsøe, K.; Skottfelt, J.; MiNDSTEp Consortium

    2011-09-01

    Leading the agenda for pushing the planet sensitivity limit towards the mass of the Moon, we will report first results from our 2011 MiNDSTEp (Microlensing Network for the Detection of Small Terrestrial Exoplanets) lucky-imaging microlensing follow-up campaign with the Danish 1.54m at ESO La Silla. It serves as a precursor to observations with a global network comprising the LCOGT/SUPAscope, SONG, and MONET 1m-class robotic telescope networks gradually deployed from 2011 to 2014. As for observations from space, the lucky-imaging technique allows us to get around the atmospheric image blurring and to obtain a resolution near the diffraction limit. This enables high-precision photometry on considerably fainter (smaller) stars in the crowded fields towards the Galactic bulge than obtainable from ground-based surveys. Monitoring smaller source stars in turn provides sensitivity to planets with smaller masses orbiting the lens star. M.D. is supported by a Royal Society University Research Fellowship

  14. CMU DeepLens: deep learning for automatic image-based galaxy-galaxy strong lens finding

    NASA Astrophysics Data System (ADS)

    Lanusse, François; Ma, Quanbin; Li, Nan; Collett, Thomas E.; Li, Chun-Liang; Ravanbakhsh, Siamak; Mandelbaum, Rachel; Póczos, Barnabás

    2018-01-01

    Galaxy-scale strong gravitational lensing can not only provide a valuable probe of the dark matter distribution of massive galaxies, but also provide valuable cosmological constraints, either by studying the population of strong lenses or by measuring time delays in lensed quasars. Due to the rarity of galaxy-scale strongly lensed systems, fast and reliable automated lens finding methods will be essential in the era of large surveys such as Large Synoptic Survey Telescope, Euclid and Wide-Field Infrared Survey Telescope. To tackle this challenge, we introduce CMU DeepLens, a new fully automated galaxy-galaxy lens finding method based on deep learning. This supervised machine learning approach does not require any tuning after the training step which only requires realistic image simulations of strongly lensed systems. We train and validate our model on a set of 20 000 LSST-like mock observations including a range of lensed systems of various sizes and signal-to-noise ratios (S/N). We find on our simulated data set that for a rejection rate of non-lenses of 99 per cent, a completeness of 90 per cent can be achieved for lenses with Einstein radii larger than 1.4 arcsec and S/N larger than 20 on individual g-band LSST exposures. Finally, we emphasize the importance of realistically complex simulations for training such machine learning methods by demonstrating that the performance of models of significantly different complexities cannot be distinguished on simpler simulations. We make our code publicly available at https://github.com/McWilliamsCenter/CMUDeepLens.

  15. Manufacturing and certification of a diffraction corrector for controlling the surface shape of the six-meter main mirror of the Big Azimuthal Telescope of the Russian Academy of Sciences

    NASA Astrophysics Data System (ADS)

    Nasyrov, R. K.; Poleshchuk, A. G.

    2017-09-01

    This paper describes the development and manufacture of diffraction corrector and imitator for the interferometric control of the surface shape of the 6-m main mirror of the Big Azimuthal Telescope of the Russian Academy of Sciences. The effect of errors in manufacture and adjustment on the quality of the measurement wavefront is studied. The corrector is controlled with the use of an off-axis diffraction imitator operating in a reflection mode. The measured error is smaller than 0.0138λ (RMS).

  16. The LBT experience of adaptive secondary mirror operations for routine seeing- and diffraction-limited science operations

    NASA Astrophysics Data System (ADS)

    Guerra, J. C.; Brusa, G.; Christou, J.; Miller, D.; Ricardi, A.; Xompero, M.; Briguglio, R.; Wagner, M.; Lefebvre, M.; Sosa, R.

    2013-09-01

    The Large Binocular Telescope (LBT) is unique in that it is currently the only large telescope (2 x 8.4m primary mirrors) with permanently mounted adaptive secondary mirrors (ASMs). These ASMs have been used for regular observing since early 2010 on the right side and since late 2011 on the left side. They are currently regularly used for seeing-limited observing as well as for selective diffraction-limited observing and are required to be fully operational every observing night. By comparison the other telescopes using ASMs, the Multi Mirrot Telescope (MMT) and more recently Magellan, use fixed secondaries of seeing-limited observing and switch in the ASMs for diffraction-limited observing. We will discuss the night-to-night operational requirements for ASMs specifically for seeing-limited but also for diffraction-limited observations based on the LBT experience. These will include preparation procedures for observing (mirror flattening and resting as examples); hardware failure statistics and how to deal with them such as for the actuators; observing protocols for; and current limitations of use due to the ASM technology such as the minimum elevation limit (25 degrees) and the hysteresis of the gravity-vector induced astigmatism. We will also discuss the impact of ASM maintenance and preparation

  17. X-ray characterization of curved crystals for hard x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Buffagni, Elisa; Bonnini, Elisa; Ferrari, Claudio; Virgilli, Enrico; Frontera, Filippo

    2015-05-01

    Among the methods to focus photons the diffraction in crystals results as one of the most effective for high energy photons. An assembling of properly oriented crystals can form a lens able to focus x-rays at high energy via Laue diffraction in transmission geometry; this is a Laue lens. The x-ray diffraction theory provides that the maximum diffraction efficiency is achieved in ideal mosaic crystals, but real mosaic crystals show diffraction efficiencies several times lower than the ideal case due to technological problems. An alternative and convenient approach is the use of curved crystals. We have recently optimized an efficient method based on the surface damage of crystals to produce self-standing uniformly curved Si, GaAs and Ge tiles of thickness up to 2-3 mm and curvature radii R down to a few meters. We show that, for curved diffracting planes, such crystals have a diffraction efficiency nearly forty times higher than the diffraction efficiency of perfect similar flat crystals, thus very close to that of ideal mosaic crystals. Moreover, in an alternative configuration where the diffracting planes are perpendicular to the curved ones, a focusing effect occurs and will be shown. These results were obtained for several energies between 17 and 120 keV with lab sources or at high energy facilities such as LARIX at Ferrara (Italy), ESRF at Grenoble (France), and ANKA at Karlsruhe (Germany).

  18. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens

    PubMed Central

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2015-01-01

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images. PMID:26368169

  19. Instrument Performance of GISMO, a 2 Millimeter TES Bolometer Camera used at the IRAM 30 m Telescope

    NASA Technical Reports Server (NTRS)

    Staguhn, Johannes

    2008-01-01

    In November of 2007 we demonstrated a monolithic Backshort-Under-Grid (BUG) 8x16 array in the field using our 2 mm wavelength imager GISMO (Goddard IRAM Superconducting 2 Millimeter Observer) at the IRAM 30 m telescope in Spain for astronomical observations. The 2 mm spectral range provides a unique terrestrial window enabling ground-based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. The optical design incorporates a 100 mm diameter silicon lens cooled to 4 K, which provides the required fast beam yielding 0.9 lambda/D pixels. With this spatial sampling, GISMO will be very efficient at detecting sources serendipitously in large sky surveys, while the capability for diffraction limited imaging is preserved. The camera provides significantly greater detection sensitivity and mapping speed at this wavelength than has previously been possible. The instrument will fill in the spectral energy distribution of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Here1 will we present early results from our observing run with the first fielded BUG bolometer array. We have developed key technologies to enable highly versatile, kilopixel, infrared through millimeter wavelength bolometer arrays. The Backshort-Under-Grid (BUG) array consists of three components: 1) a transition-edge-sensor (TES) based bolometer array with background-limited sensitivity and high filling factor, 2) a quarter-wave reflective backshort grid providing high optical efficiency, and 3) a superconducting bump-bonded large format Superconducting Quantum Interference Device (SQUID) multiplexer readout. The array is described in more detail elsewhere (Allen et al., this conference). In November of 2007 we demonstrated a monolithic 8x 16 array with 2 mm-pitch detectors in the field using our 2 mm wavelength imager GISMO (Goddard IRAM Superconducting 2 Millimeter Observer) at the IRAM 30 m telescope in Spain for astronomical observations. The 2 mm spectral range provides a unique terrestrial window enabling ground-based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. The optical design incorporates a 100 mm diameter silicon lens cooled to 4 K, which provides the required fast beam yielding 0.9 lambda1D pixels. With this spatial sampling, GISMO will be very efficient at detecting sources serendipitously in large sky surveys, while the capability for diffraction limited imaging is preserved. The camera provides significantly greater detection sensitivity and mapping speed at this wavelength than has previously been possible. The instrument will fill in the spectral energy distribution of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Here I will we present early results from our observing run with the first fielded BUG bolometer array.

  20. Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chun-Yueh; Chang, Wei-Tse; Chen, Yi-Sheng

    2016-03-15

    In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This workmore » demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.« less

  1. Energy Efficiency of a New Trifocal Intraocular Lens

    NASA Astrophysics Data System (ADS)

    Vega, F.; Alba-Bueno, F.; Millán, M. S.

    2014-01-01

    The light distribution among the far, intermediate and near foci of a new trifocal intraocular lens (IOL) is experimentally determined, as a function of the pupil size, from image analysis. The concept of focus energy efficiency is introduced because, in addition to the theoretical diffraction efficiency of the focus, it accounts for other factors that are naturally presented in the human eye such as the level of spherical aberration (SA) upon the IOL, light scattering at the diffractive steps or the depth of focus. The trifocal IOL is tested in-vitro in two eye models: the aberration-free ISO model, and a so called modified-ISO one that uses an artificial cornea with positive spherical SA in instead. The SA upon the IOL is measured with a Hartmann-Shack sensor and compared to the values of theoretical eye models. The results show, for large pupils, a notorious reduction of the energy efficiency of the far and near foci of the trifocal IOL due to two facts: the level of SA upon the IOL is larger than the value the lens is able to compensate for and there is significant light scattering at the diffractive steps. On the other hand, the energy efficiency of the intermediate focus for small pupils is enhanced by the contribution of the extended depth of focus of the near and far foci. Thus, while IOLs manufacturers tend to provide just the theoretical diffraction efficiency of the foci to show which would be the performance of the lens in terms of light distribution among the foci, our results put into evidence that this is better described by using the energy efficiency of the foci.

  2. Scanning Kirkpatrick-Baez X-ray telescope to maximize effective area and eliminate spurious images - Design

    NASA Technical Reports Server (NTRS)

    Kast, J. W.

    1975-01-01

    We consider the design of a Kirkpatrick-Baez grazing-incidence X-ray telescope to be used in a scan of the sky and analyze the distribution of both properly reflected rays and spurious images over the field of view. To obtain maximum effective area over the field of view, it is necessary to increase the spacing between plates for a scanning telescope as compared to a pointing telescope. Spurious images are necessarily present in this type of lens, but they can be eliminated from the field of view by adding properly located baffles or collimators. Results of a computer design are presented.

  3. Design of Multi-Order Diffractive THz Lenses

    DTIC Science & Technology

    2012-09-23

    surface. This makes the fabrication process easier and more accurate, thereby improving optical quality. A CNC lathe can be used to carve the lens out...for low-end THz operation (200-800 GHz). The lens was fabricated in Teflon with a small CNC lathe and can be seen in Fig. 3. With only 4 zones...excellent THz transparency and is readily available. Once the CNC turning was complete, the lens was separated from its substrate with a band-saw and

  4. Development of acousto-optic spatial light modulator unit for effective control of light beam intensity and diffraction angle in 3D holographic display applications

    NASA Astrophysics Data System (ADS)

    Kondalkar, Vijay V.; Ryu, Geonhee; Lee, Yongbeom; Lee, Keekeun

    2018-07-01

    An acousto-optic (AO) based holographic display unit was developed using surface acoustic wave (SAW) with different wavelength to modulate the diffraction angles, intensities, and phases of light. The new configurations were employed to control two beams simultaneously by using a single chirp inter-digital transducer (IDT), and a micro-lens array was integrated at the end of the waveguide layer to focus the diffracted light on to the screen. Two incident light beams were simultaneously modulated by using different refractive grating periods generated from chirp IDT. A diffraction angle of about 5° was obtained by using a SAW with a frequency of 430 MHz. The increase in the SAW input power enhances the diffraction efficiency of the light beam at the exit. The obtained maximum diffraction efficiency is ~70% at a frequency of 430 MHz. The sloped shape of the waveguide entrance and a tall rounded Ni poles help in coupling the incident light to the waveguide layer. The diffracted beam was collected through the lens, which increased the intensity of light in the viewing plane. COMSOL multi-physics and coupling of mode (COM) modeling were performed to predict the device performance and compared with the experimental results.

  5. Time-resolved measurements with streaked diffraction patterns from electrons generated in laser plasma wakefield

    NASA Astrophysics Data System (ADS)

    He, Zhaohan; Nees, John; Hou, Bixue; Krushelnick, Karl; Thomas, Alec; Beaurepaire, Benoît; Malka, Victor; Faure, Jérôme

    2013-10-01

    Femtosecond bunches of electrons with relativistic to ultra-relativistic energies can be robustly produced in laser plasma wakefield accelerators (LWFA). Scaling the electron energy down to sub-relativistic and MeV level using a millijoule laser system will make such electron source a promising candidate for ultrafast electron diffraction (UED) applications due to the intrinsic short bunch duration and perfect synchronization with the optical pump. Recent results of electron diffraction from a single crystal gold foil, using LWFA electrons driven by 8-mJ, 35-fs laser pulses at 500 Hz, will be presented. The accelerated electrons were collimated with a solenoid magnetic lens. By applying a small-angle tilt to the magnetic lens, the diffraction pattern can be streaked such that the temporal evolution is separated spatially on the detector screen after propagation. The observable time window and achievable temporal resolution are studied in pump-probe measurements of photo-induced heating on the gold foil.

  6. Ring lens focusing and push-pull tracking scheme for optical disk systems

    NASA Technical Reports Server (NTRS)

    Gerber, R.; Zambuto, J.; Erwin, J. K.; Mansuripur, M.

    1993-01-01

    An experimental comparison of the ring lens and the astigmatic techniques of generating focus-error-signal (FES) in optical disk systems reveals that the ring lens generates a FES over two times steeper than that produced by the astigmat. Partly due to this large slope and, in part, because of its diffraction-limited behavior, the ring lens scheme exhibits superior performance characteristics. In particular the undesirable signal known as 'feedthrough' (induced on the FES by track-crossings during the seek operation) is lower by a factor of six compared to that observed with the astigmatic method. The ring lens is easy to align and has reasonable tolerance for positioning errors.

  7. Impact of Heparan Sulfate Chains and Sulfur-Mediated Bonds on the Mechanical Properties of Bovine Lens Capsule

    PubMed Central

    Dyksterhuis, L.D.; White, J.F.; Hickey, M.; Kirby, N.; Mudie, S.; Hawley, A.; Vashi, A.; Nigro, J.; Werkmeister, J.A.; Ramshaw, J.A.M.

    2011-01-01

    We assessed the importance of glycosaminoglycans and sulfur-mediated bonds for the mechanical properties of lens capsules by comparing the stress-strain responses from control and treated pairs of bovine source. No significant change in mechanical properties was observed upon reduction of disulfide bonds. However, removal of glycosaminoglycan chains resulted in a significantly stiffer lens capsule, whereas high concentrations of reducing agent, which is expected to reduce the recently reported sulfilimine bond of collagen IV, resulted in a significantly less stiff lens capsule. A comparison of the diffraction patterns of the control and strongly reduced lens capsules indicated structural rearrangements on a nanometer scale. PMID:21539774

  8. Integration of nanostructured planar diffractive lenses dedicated to near infrared detection for CMOS image sensors.

    PubMed

    Lopez, Thomas; Massenot, Sébastien; Estribeau, Magali; Magnan, Pierre; Pardo, Fabrice; Pelouard, Jean-Luc

    2016-04-18

    This paper deals with the integration of metallic and dielectric nanostructured planar lenses into a pixel from a silicon based CMOS image sensor, for a monochromatic application at 1.064 μm. The first is a Plasmonic Lens, based on the phase delay through nanoslits, which has been found to be hardly compatible with current CMOS technology and exhibits a notable metallic absorption. The second is a dielectric Phase-Fresnel Lens integrated at the top of a pixel, it exhibits an Optical Efficiency (OE) improved by a few percent and an angle of view of 50°. The third one is a metallic diffractive lens integrated inside a pixel, which shows a better OE and an angle of view of 24°. The last two lenses exhibit a compatibility with a spectral band close to 1.064 μm.

  9. Spatial light modulator array with heat minimization and image enhancement features

    DOEpatents

    Jain, Kanti [Briarcliff Manor, NY; Sweatt, William C [Albuquerque, NM; Zemel, Marc [New Rochelle, NY

    2007-01-30

    An enhanced spatial light modulator (ESLM) array, a microelectronics patterning system and a projection display system using such an ESLM for heat-minimization and resolution enhancement during imaging, and the method for fabricating such an ESLM array. The ESLM array includes, in each individual pixel element, a small pixel mirror (reflective region) and a much larger pixel surround. Each pixel surround includes diffraction-grating regions and resolution-enhancement regions. During imaging, a selected pixel mirror reflects a selected-pixel beamlet into the capture angle of a projection lens, while the diffraction grating of the pixel surround redirects heat-producing unused radiation away from the projection lens. The resolution-enhancement regions of selected pixels provide phase shifts that increase effective modulation-transfer function in imaging. All of the non-selected pixel surrounds redirect all radiation energy away from the projection lens. All elements of the ESLM are fabricated by deposition, patterning, etching and other microelectronic process technologies.

  10. Optical study of a spectrum splitting solar concentrator based on a combination of a diffraction grating and a Fresnel lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, Céline, E-mail: cmichel@ulg.ac.be; Habraken, Serge; Hololab, University of Liège, Allée du 6 Août, 17

    2015-09-28

    This paper presents recent improvements of our new solar concentrator design for space application. The concentrator is based on a combination of a diffraction grating (blazed or lamellar) coupled with a Fresnel lens. Thanks to this diffractive/refractive combination, this optical element splits spatially and spectrally the light and focus approximately respectively visible light and IR light onto electrically independent specific cells. It avoid the use of MJs cells and then also their limitations like current matching and lattice matching conditions, leading theoretically to a more tolerant system. The concept is reminded, with recent optimizations, ideal and more realistic results, andmore » the description of an experimental realization highlighting the feasibility of the concept and the closeness of theoretical and experimental results.« less

  11. Resolution and Kinematics of Molecular Gas Surrounding the Cloverleaf Quasar at Z = 2.6 Using the Gravitational Lens

    NASA Astrophysics Data System (ADS)

    Yun, M. S.; Scoville, N. Z.; Carrasco, J. J.; Blandford, R. D.

    1997-04-01

    Gravitational lenses have long been advertised as primitive telescopes, capable of magnifying cosmologically distant sources. In this Letter we present new, 0.9" resolution CO (7-6) observations of the z = 2.56 Cloverleaf quasar (H1413+117) and spatially resolved images. By modeling the gravitational lens, we infer a size scale of 0.3" (~1 kpc) for the molecular gas structure surrounding the quasar, and the gas has a kinematic structure roughly consistent with a rotating disk. The observed properties of the CO-emitting gas are similar to the nuclear starburst complexes found in the infrared luminous galaxies in the local universe, and metal enrichment by vigorous star formation within this massive nuclear gas complex can explain the abundance of carbon and oxygen in the interstellar medium of this system observed when the universe was only a few billion years old. Obtaining corresponding details in an unlensed object at similar distances would be well beyond the reach of current instruments, and this study highlights the less exploited yet powerful use of a gravitational lens as a natural telescope.

  12. Spiders in Lyot Coronagraphs

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, Anand; Lloyd, James P.

    2005-11-01

    In principle, suppression of on-axis stellar light by a coronagraph is easier on an unobscured aperture telescope than on one with an obscured aperture. Recent designs such as the apodized pupil Lyot coronagraph, the ``band-limited'' Lyot coronagraph, and several variants of phase-mask coronagraphs work best on unobscured circular aperture telescopes. These designs were developed to enable the discovery and characterization of nearby Jovian or even terrestrial exoplanets. All of today's major space-based and adaptive optics-equipped ground-based telescopes are obscured-aperture systems with a secondary mirror held in place by secondary support ``spider'' vanes. The presence of a secondary obscuration can be dealt with by ingenious coronagraph designs, but the spider vanes themselves cause diffracted light, which can hamper the search for Jovian exoplanets around nearby stars. We look at the problem of suppressing spider vane diffraction in Lyot coronagraphs, including apodized pupil and band-limited designs. We show how spider vane diffraction can be reduced drastically and in fact contained in the final coronagraphic image, within one resolution element of the geometric image of the focal plane mask's occulting spot. This makes adaptive optics coronagraphic searches for exojupiters possible with the next generation of adaptive optics systems being developed for 8-10 m class telescopes such as Gemini and the Very Large Telescopes.

  13. Development of integrated photonic-dicers for reformatting the point-spread-function of a telescope

    NASA Astrophysics Data System (ADS)

    MacLachlan, David G.; Harris, Robert; Choudhury, Debaditya; Arriola, Alexander; Brown, Graeme; Allington-Smith, Jeremy; Thomson, Robert R.

    2014-07-01

    Spectroscopy is a technique of paramount importance to astronomy, as it enables the chemical composition, distances and velocities of celestial objects to be determined. As the diameter of a ground-based telescope increases, the pointspread- function (PSF) becomes increasingly degraded due to atmospheric seeing. A degraded PSF requires a larger spectrograph slit-width for efficient coupling and current spectrographs for large telescopes are already on the metre scale. This presents numerous issues in terms of manufacturability, cost and stability. As proposed in 2010 by Bland-Hawthorn et al, one approach which may help to improve spectrograph stability is a guided wave transition, known as a "photonic-lantern". These devices enable the low-loss reformatting of a multimode PSF into a diffraction-limited source (in one direction). This pseudo-slit can then be used as the input to a traditional spectrograph operating at the diffraction limit. In essence, this approach may enable the use of diffractionlimited spectrographs on large telescopes without an unacceptable reduction in throughput. We have recently demonstrated that ultrafast laser inscription can be used to realize "integrated" photoniclanterns, by directly writing three-dimensional optical waveguide structures inside a glass substrate. This paper presents our work on developing ultrafast laser inscribed devices capable of reformatting a multimode telescope PSF into a diffraction-limited slit.

  14. Quasar Lenses

    NASA Image and Video Library

    2012-03-16

    NASA Hubble Space Telescope sharp view was used to look for gravitational arcs and rings which are produced when one galaxy acts as a lens to magnify and distort the appearance of another galaxy behind it.

  15. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications.

    PubMed

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter, we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.68), which enables efficient light focusing even inside other media, such as water or an adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping, and fiber probes.

  16. Off-axis holographic lens spectrum-splitting photovoltaic system for direct and diffuse solar energy conversion.

    PubMed

    Vorndran, Shelby D; Chrysler, Benjamin; Wheelwright, Brian; Angel, Roger; Holman, Zachary; Kostuk, Raymond

    2016-09-20

    This paper describes a high-efficiency, spectrum-splitting photovoltaic module that uses an off-axis volume holographic lens to focus and disperse incident solar illumination to a rectangular shaped high-bandgap indium gallium phosphide cell surrounded by strips of silicon cells. The holographic lens design allows efficient collection of both direct and diffuse illumination to maximize energy yield. We modeled the volume diffraction characteristics using rigorous coupled-wave analysis, and simulated system performance using nonsequential ray tracing and PV cell data from the literature. Under AM 1.5 illumination conditions the simulated module obtained a 30.6% conversion efficiency. This efficiency is a 19.7% relative improvement compared to the more efficient cell in the system (silicon). The module was also simulated under a typical meteorological year of direct and diffuse irradiance in Tucson, Arizona, and Seattle, Washington. Compared to a flat panel silicon module, the holographic spectrum splitting module obtained a relative improvement in energy yield of 17.1% in Tucson and 14.0% in Seattle. An experimental proof-of-concept volume holographic lens was also fabricated in dichromated gelatin to verify the main characteristics of the system. The lens obtained an average first-order diffraction efficiency of 85.4% across the aperture at 532 nm.

  17. A Metalens with a Near-Unity Numerical Aperture.

    PubMed

    Paniagua-Domínguez, Ramón; Yu, Ye Feng; Khaidarov, Egor; Choi, Sumin; Leong, Victor; Bakker, Reuben M; Liang, Xinan; Fu, Yuan Hsing; Valuckas, Vytautas; Krivitsky, Leonid A; Kuznetsov, Arseniy I

    2018-03-14

    The numerical aperture (NA) of a lens determines its ability to focus light and its resolving capability. Having a large NA is a very desirable quality for applications requiring small light-matter interaction volumes or large angular collections. Traditionally, a large NA lens based on light refraction requires precision bulk optics that ends up being expensive and is thus also a specialty item. In contrast, metasurfaces allow the lens designer to circumvent those issues producing high-NA lenses in an ultraflat fashion. However, so far, these have been limited to numerical apertures on the same order of magnitude as traditional optical components, with experimentally reported NA values of <0.9. Here we demonstrate, both numerically and experimentally, a new approach that results in a diffraction-limited flat lens with a near-unity numerical aperture (NA > 0.99) and subwavelength thickness (∼λ/3), operating with unpolarized light at 715 nm. To demonstrate its imaging capability, the designed lens is applied in a confocal configuration to map color centers in subdiffractive diamond nanocrystals. This work, based on diffractive elements that can efficiently bend light at angles as large as 82°, represents a step beyond traditional optical elements and existing flat optics, circumventing the efficiency drop associated with the standard, phase mapping approach.

  18. Effect of multiple circular holes Fraunhofer diffraction for the infrared optical imaging

    NASA Astrophysics Data System (ADS)

    Lu, Chunlian; Lv, He; Cao, Yang; Cai, Zhisong; Tan, Xiaojun

    2014-11-01

    With the development of infrared optics, infrared optical imaging systems play an increasingly important role in modern optical imaging systems. Infrared optical imaging is used in industry, agriculture, medical, military and transportation. But in terms of infrared optical imaging systems which are exposed for a long time, some contaminations will affect the infrared optical imaging. When the contamination contaminate on the lens surface of the optical system, it would affect diffraction. The lens can be seen as complementary multiple circular holes screen happen Fraunhofer diffraction. According to Babinet principle, you can get the diffraction of the imaging system. Therefore, by studying the multiple circular holes Fraunhofer diffraction, conclusions can be drawn about the effect of infrared imaging. This paper mainly studies the effect of multiple circular holes Fraunhofer diffraction for the optical imaging. Firstly, we introduce the theory of Fraunhofer diffraction and Point Spread Function. Point Spread Function is a basic tool to evaluate the image quality of the optical system. Fraunhofer diffraction will affect Point Spread Function. Then, the results of multiple circular holes Fraunhofer diffraction are given for different hole size and hole spacing. We choose the hole size from 0.1mm to 1mm and hole spacing from 0.3mm to 0.8mm. The infrared wavebands of optical imaging are chosen from 1μm to 5μm. We use the MATLAB to simulate light intensity distribution of multiple circular holes Fraunhofer diffraction. Finally, three-dimensional diffraction maps of light intensity are given to contrast.

  19. Bilateral reading performance of 4 multifocal intraocular lens models and a monofocal intraocular lens under bright lighting conditions.

    PubMed

    Rasp, Max; Bachernegg, Alexander; Seyeddain, Orang; Ruckhofer, Josef; Emesz, Martin; Stoiber, Josef; Grabner, Günther; Dexl, Alois K

    2012-11-01

    To compare changes in reading performance parameters after implantation of 4 multifocal intraocular lens (IOL) models and a monofocal IOL. Department of Ophthalmology, Paracelsus Medical University, Salzburg, Austria. Prospective randomized controlled clinical trial. Patients with bilateral cataract without additional ocular pathology were scheduled for bilateral implantation of Acri.Smart 48S monofocal, Acrysof Restor SN6AD3 apodized multifocal, AT LISA 366D diffractive multifocal, Tecnis ZMA00 diffractive multifocal, or Rezoom refractive multifocal IOLs. Bilateral corrected and uncorrected reading acuity, reading distance, mean and maximum reading speeds, and smallest log-scaled print size of a Radner reading chart were evaluated under bright lighting conditions (500 lux) using the Salzburg Reading Desk. Pupil size was not measured throughout the trial. The minimum follow-up was 12 months. The diffractive multifocal groups had significantly better uncorrected reading acuity and uncorrected smallest print size than the monofocal and refractive multifocal groups 1, 6, and 12 months postoperatively. The diffractive IOL groups had comparable uncorrected reading distance of approximately 32 cm, which was larger in the monofocal group (38.9 ± 8.4 cm) and refractive multifocal group (37.1 ± 7.3 cm) at the last visit. Patients with diffractive IOLs could read print sizes of approximately 0.74 to 0.87 mm, which was much better than in the monofocal and refractive multifocal groups. The diffractive AT LISA IOL provided the best reading speed values (mean and maximum, corrected and uncorrected). Multifocal IOLs with a diffractive component provided good reading performance that was significantly better than that obtained with a refractive multifocal or monofocal IOL. Drs. Grabner and Dexl were patent owners of the Salzburg Reading Desk technology (now owned by SRD-Vision, LLC). No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  20. Star Formation at z = 2.481 in the Lensed Galaxy SDSS J1110 = 6459. I. Lens Modeling and Source Reconstruction

    NASA Astrophysics Data System (ADS)

    Johnson, Traci L.; Sharon, Keren; Gladders, Michael D.; Rigby, Jane R.; Bayliss, Matthew B.; Wuyts, Eva; Whitaker, Katherine E.; Florian, Michael; Murray, Katherine T.

    2017-07-01

    Using the combined resolving power of the Hubble Space Telescope and gravitational lensing, we resolve star-forming structures in a z˜ 2.5 galaxy on scales much smaller than the usual kiloparsec diffraction limit of HST. SGAS J111020.0+645950.8 is a clumpy, star-forming galaxy lensed by the galaxy cluster SDSS J1110+6459 at z=0.659, with a total magnification ˜ 30× across the entire arc. We use a hybrid parametric/non-parametric strong lensing mass model to compute the deflection and magnification of this giant arc, reconstruct the light distribution of the lensed galaxy in the source plane, and resolve the star formation into two dozen clumps. We develop a forward-modeling technique to model each clump in the source plane. We ray-trace the model to the image plane, convolve with the instrumental point-spread function (PSF), and compare with the GALFIT model of the clumps in the image plane, which decomposes clump structure from more extended emission. This technique has the advantage, over ray-tracing, of accounting for the asymmetric lensing shear of the galaxy in the image plane and the instrument PSF. At this resolution, we can begin to study star formation on a clump-by-clump basis, toward the goal of understanding feedback mechanisms and the buildup of exponential disks at high redshift. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program # 13003.

  1. Throughput of diffraction-limited field optics systems for infrared and millimetric telescopes

    NASA Technical Reports Server (NTRS)

    Hildebrand, R. H.; Winston, R.

    1982-01-01

    Telescopes for submillimeter wavelengths have point spread functions some millimeters or centimeters in diameter, but the detectors may be only fractions of a millimeter in size. Thus a field aperture and collecting optics are needed. Optimizing the aperture by a calculation of the effects of diffraction on signal and resolution as a function of size of the collecting aperture is shown. Calculations are compared to experimental results from observations of Mars at submillimeter wavelengths.

  2. Device and method for creating Gaussian aberration-corrected electron beams

    DOEpatents

    McMorran, Benjamin; Linck, Martin

    2016-01-19

    Electron beam phase gratings have phase profiles that produce a diffracted beam having a Gaussian or other selected intensity profile. Phase profiles can also be selected to correct or compensate electron lens aberrations. Typically, a low diffraction order produces a suitable phase profile, and other orders are discarded.

  3. Inverting Image Data For Optical Testing And Alignment

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Redding, David; Yu, Jeffrey W.; Dumont, Philip J.

    1993-01-01

    Data from images produced by slightly incorrectly figured concave primary mirror in telescope processed into estimate of spherical aberration of mirror, by use of algorithm finding nonlinear least-squares best fit between actual images and synthetic images produced by multiparameter mathematical model of telescope optical system. Estimated spherical aberration, in turn, converted into estimate of deviation of reflector surface from nominal precise shape. Algorithm devised as part of effort to determine error in surface figure of primary mirror of Hubble space telescope, so corrective lens designed. Modified versions of algorithm also used to find optical errors in other components of telescope or of other optical systems, for purposes of testing, alignment, and/or correction.

  4. A Prospective Split-Face Study of the Picosecond Alexandrite Laser With Specialized Lens Array for Facial Photoaging in Chinese.

    PubMed

    Ge, Yiping; Guo, Lifang; Wu, Qiuju; Zhang, Mengli; Zeng, Rong; Lin, Tong

    2016-11-01

    A 755nm picosecond alexandrite laser with a diffractive lens array has been reported for the treatment of acne scar and photoaging with clinical ef cacy. In this study, we evaluated the application of the 755nm picosecond alexandrite laser with a diffractive lens array for facial photoaging in Chinese. Ten subjects with moderate facial photoaging were enrolled in a prospective, evaluator-blinded, open-label, and split-face trial to assess the ef cacy and safety of the 755nm picosecond alexandrite laser with a diffractive lens array for facial photoaging. Each subject received a series of four treatment sessions on the right side of the face at two-week intervals. The left side of the face served as the control side. Blinded evaluation of baseline, pre-treatment, and two-month follow-up visit was performed by two independent dermatologists on a 5-point global photoaging scale (GPS) and a 6/8-point Asian photographic scale (APS). Adverse events and discomfort associated with the treatment were also assessed. Signi cant improvement in photoaged tissue was observed on the treated side of the face, with a mean GPS score decrease from 2.67 to 1.44 at the two-month follow-up visit. A greater improvement in wrinkles was observed (2.78 vs 1.89; P less than 0.05) when com- pared to the improvement in pigmentation (2.67 vs 2.11; P less than 0.05). No changes were observed on the control side. Treatment results improved gradually throughout the treatment program and continued to the two-month follow up. In addition, skin tightening was perceived in all subjects, and shallower nasolabial folds were observed in 60% of the subjects on the treated side of face. Moderate pain and transient erythema were observed as the two main discomforts associated with the treatment. The 755nm picosecond alexandrite laser with a diffractive lens array is efficacious and safe for rejuvenation of photodamaged facial tissue in Chinese. J Drugs Dermatol. 2016;15(11):1390-1396..

  5. Holographic Optical Elements as Scanning Lidar Telescopes

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2005-01-01

    We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. For example, rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed and tested transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.

  6. A collimated focused ultrasound beam of high acoustic transmission and minimum diffraction achieved by using a lens with subwavelength structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zhou; Tu, Juan; Cheng, Jianchun

    An acoustic focusing lens incorporated with periodically aligned subwavelength grooves corrugated on its spherical surface has been developed. It is demonstrated theoretically and experimentally that acoustic focusing achieved by using the lens can suppress the relative side-lobe amplitudes, enhance the focal gain, and minimize the shifting of the focus. Use of the lens coupled with a planar ultrasound transducer can generate an ultrasound beam with enhanced acoustic transmission and collimation effect, which offers the capability of improving the safety, efficiency, and accuracy of targeted surgery implemented by high intensity focused ultrasound.

  7. The inner mass power spectrum of galaxies using strong gravitational lensing: beyond linear approximation

    NASA Astrophysics Data System (ADS)

    Chatterjee, Saikat; Koopmans, Léon V. E.

    2018-02-01

    In the last decade, the detection of individual massive dark matter sub-haloes has been possible using potential correction formalism in strong gravitational lens imaging. Here, we propose a statistical formalism to relate strong gravitational lens surface brightness anomalies to the lens potential fluctuations arising from dark matter distribution in the lens galaxy. We consider these fluctuations as a Gaussian random field in addition to the unperturbed smooth lens model. This is very similar to weak lensing formalism and we show that in this way we can measure the power spectrum of these perturbations to the potential. We test the method by applying it to simulated mock lenses of different geometries and by performing an MCMC analysis of the theoretical power spectra. This method can measure density fluctuations in early type galaxies on scales of 1-10 kpc at typical rms levels of a per cent, using a single lens system observed with the Hubble Space Telescope with typical signal-to-noise ratios obtained in a single orbit.

  8. Primary Objective Grating Astronomical Telescope

    NASA Technical Reports Server (NTRS)

    Ditto, Thomas D.

    2007-01-01

    It has been 370 years since a seventeenth century French mathematician, Mersenne, presciently sketched out an astronomical telescope based on dual parabolic reflectors. Since that time the concept of the primary objective has been virtually unchanged. Now a new class of astronomical telescope with a primary objective grating (POG) has been studied as an alternative. The POG competes with mirrors, in part, because diffraction gratings provide the very chromatic dispersion that mirrors defeat. The resulting telescope deals effectively with long-standing restrictions on multiple object spectroscopy (MOS). Other potential benefits include unprecedented apertures and collection areas. The new design also favors space deployment as a gossamer membrane. The inventor, Tom Ditto, first discovered that higher-order diffraction images contain hidden depth cues, for which he was granted a seminal range finding patent in 1987. Subsequently, he invented and patented 3D localizers, profilometers and microscopes using POGs. The POG telescope was placed in the public domain to expedite research. The function of a telescopes primary objective is to collect flux and to deliver images. Both functions dictate that size matters, and bigger is better. For that reason, there has been a steady push over the past century to ramp up the size of the primary mirror. However, for every doubling of mirror diameter, the elapsed time between initial effort and first light has also doubled. Meanwhile, costs escalated beyond the mirror alone, because larger instruments required larger enclosures and better pointing mechanisms. One key catalog of observation, spectrographic data, is far more difficult to amass than two-dimensional imagery. While the number of observable objects has increased with mirror size, the capacity to take spectra has not increased proportionately. In the best of circumstances, spectrograms are available for one per cent of the all objects surveyed. Spectroscopy was a historical afterthought introduced in the nineteenth century shortly after the invention of the diffraction grating and over a century after Newtons 1670 telescope. Spectroscopy is generally accomplished using a diffraction grating as the disperser in the secondary. The light being delivered to the spectrograph is first captured by a primary mirror which provides no chromatic magnification by itself. Sizeable spectrographs could not be deployed while diffraction gratings were rare commodities scribed using mechanical ruling engines that produced one grating line at a time. Today diffraction gratings are commonplace. Their recent availability is a product of both the invention of holography and the mass replication of surface microstructures. Holography permits all lines in a grating to be made simultaneously in a single photographic exposure. Holograms can then be reproduced by embossing processes. The improvement in replication is analogous to how Gutenberg changed the availability of books. The masters may be expensive, but the copies are not. Computer science is another technology that emerged in the second half of the twentieth century without which our proposed spectrographic instrument could not function due to the complexity of image processing required in data reduction. The employment of very large diffraction gratings as primary objectives for astronomical telescopes requires a novel

  9. VizieR Online Data Catalog: Stellar mass of brightest cluster galaxies (Bellstedt+, 2016)

    NASA Astrophysics Data System (ADS)

    Bellstedt, S.; Lidman, C.; Muzzin, A.; Franx, M.; Guatelli, S.; Hill, A. R.; Hoekstra, H.; Kurinsky, N.; Labbe, I.; Marchesini, D.; Marsan, Z. C.; Safavi-Naeini, M.; Sifon, C.; Stefanon, M.; van de Sande, J.; van Dokkum, P.; Weigel, C.

    2017-11-01

    We utilize a sample of 98 newly imaged galaxy clusters from the RELICS (REd Lens Infrared Cluster Survey) survey within this study. The data were collected during six observing runs on three instruments over a period spanning from 2013 October to 2015 March. The instruments utilized were the SofI2 camera on the New Technology Telescope at the European Southern Observatory (ESO) La Silla Observatory in Chile, WHIRC3 on the WIYN telescope at the Kitt Peak National Observatory and LIRIS4 on the William Herschel Telescope (WHT) in La Palma, Spain. (2 data files).

  10. Effective increase in beam emittance by phase-space expansion using asymmetric Bragg diffraction.

    PubMed

    Chu, Chia-Hung; Tang, Mau-Tsu; Chang, Shih-Lin

    2015-08-24

    We propose an innovative method to extend the utilization of the phase space downstream of a synchrotron light source for X-ray transmission microscopy. Based on the dynamical theory of X-ray diffraction, asymmetrically cut perfect crystals are applied to reshape the position-angle-wavelength space of the light source, by which the usable phase space of the source can be magnified by over one hundred times, thereby "phase-space-matching" the source with the objective lens of the microscope. The method's validity is confirmed using SHADOW code simulations, and aberration through an optical lens such as a Fresnel zone plate is examined via matrix optics for nano-resolution X-ray images.

  11. The scale of the Fourier transform: a point of view of the fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Jimenez, C. J.; Vilardy, J. M.; Salinas, S.; Mattos, L.; Torres, C. O.

    2017-01-01

    In this paper using the Fourier transform of order fractional, the ray transfer matrix for the symmetrical optical systems type ABCD and the formulae by Collins for the diffraction, we obtain explicitly the expression for scaled Fourier transform conventional; this result is the great importance in optical signal processing because it offers the possibility of scaling the size of output the Fourier distribution of the system, only by manipulating the distance of the diffraction object toward the thin lens, this research also emphasizes on practical limits when a finite spherical converging lens aperture is used. Digital simulation was carried out using the numerical platform of Matlab 7.1.

  12. Wafer-level fabrication of arrays of glass lens doublets

    NASA Astrophysics Data System (ADS)

    Passilly, Nicolas; Perrin, Stéphane; Albero, Jorge; Krauter, Johann; Gaiffe, Olivier; Gauthier-Manuel, Ludovic; Froehly, Luc; Lullin, Justine; Bargiel, Sylwester; Osten, Wolfgang; Gorecki, Christophe

    2016-04-01

    Systems for imaging require to employ high quality optical components in order to dispose of optical aberrations and thus reach sufficient resolution. However, well-known methods to get rid of optical aberrations, such as aspherical profiles or diffractive corrections are not easy to apply to micro-optics. In particular, some of these methods rely on polymers which cannot be associated when such lenses are to be used in integrated devices requiring high temperature process for their further assembly and separation. Among the different approaches, the most common is the lens splitting that consists in dividing the focusing power between two or more optical components. In here, we propose to take advantage of a wafer-level technique, devoted to the generation of glass lenses, which involves thermal reflow in silicon cavities to generate lens doublets. After the convex lens sides are generated, grinding and polishing of both stack sides allow, on the first hand, to form the planar lens backside and, on the other hand, to open the silicon cavity. Nevertheless, silicon frames are then kept and thinned down to form well-controlled and auto-aligned spacers between the lenses. Subsequent accurate vertical assembly of the glass lens arrays is performed by anodic bonding. The latter ensures a high level of alignment both laterally and axially since no additional material is required. Thanks to polishing, the generated lens doublets are then as thin as several hundreds of microns and compatible with micro-opto-electro-systems (MOEMS) technologies since they are only made of glass and silicon. The generated optical module is then robust and provide improved optical performances. Indeed, theoretically, two stacked lenses with similar features and spherical profiles can be almost diffraction limited whereas a single lens characterized by the same numerical aperture than the doublet presents five times higher wavefront error. To demonstrate such assumption, we fabricated glass lens doublets and compared them to single lenses of equivalent focusing power. For similar illumination, the optical aberrations are significantly reduced.

  13. World Atlas of large optical telescopes (second edition)

    NASA Technical Reports Server (NTRS)

    Meszaros, S. P.

    1986-01-01

    By early 1986 there will be over 120 large optical telescopes in the world engaged in astronomical research with mirror or lens diameters of one meter (39-inches) and larger. This atlas gives information on these telescopes and shows their observatory sites on continent sized maps. Also shown are observatory locations considered suitable for the construction of future large telescopes. Of the 126 major telescopes listed in this atlas, 101 are situated in the Northern Hemisphere and 25 are located in the Southern Hemisphere. The totals by regions are as follows: Europe (excluding the USSR), 30; Soviet Union, 9; Asia (excluding the USSR), 5; Africa, 9; Australia, 6; The Pacific, 4 (all on Hawaii); South America, 17; North America, 46 (the continental US has 38 of these). In all, the United States has 42 of the world's major telescopes on its territory (continental US plus Hawaii) making it by far the leading nation in astronomical instrumentation.

  14. World Atlas of large optical telescopes (second edition)

    NASA Astrophysics Data System (ADS)

    Meszaros, S. P.

    1986-04-01

    By early 1986 there will be over 120 large optical telescopes in the world engaged in astronomical research with mirror or lens diameters of one meter (39-inches) and larger. This atlas gives information on these telescopes and shows their observatory sites on continent sized maps. Also shown are observatory locations considered suitable for the construction of future large telescopes. Of the 126 major telescopes listed in this atlas, 101 are situated in the Northern Hemisphere and 25 are located in the Southern Hemisphere. The totals by regions are as follows: Europe (excluding the USSR), 30; Soviet Union, 9; Asia (excluding the USSR), 5; Africa, 9; Australia, 6; The Pacific, 4 (all on Hawaii); South America, 17; North America, 46 (the continental US has 38 of these). In all, the United States has 42 of the world's major telescopes on its territory (continental US plus Hawaii) making it by far the leading nation in astronomical instrumentation.

  15. Learning neuroendoscopy with an exoscope system (video telescopic operating monitor): Early clinical results.

    PubMed

    Parihar, Vijay; Yadav, Y R; Kher, Yatin; Ratre, Shailendra; Sethi, Ashish; Sharma, Dhananjaya

    2016-01-01

    Steep learning curve is found initially in pure endoscopic procedures. Video telescopic operating monitor (VITOM) is an advance in rigid-lens telescope systems provides an alternative method for learning basics of neuroendoscopy with the help of the familiar principle of microneurosurgery. The aim was to evaluate the clinical utility of VITOM as a learning tool for neuroendoscopy. Video telescopic operating monitor was used 39 cranial and spinal procedures and its utility as a tool for minimally invasive neurosurgery and neuroendoscopy for initial learning curve was studied. Video telescopic operating monitor was used in 25 cranial and 14 spinal procedures. Image quality is comparable to endoscope and microscope. Surgeons comfort improved with VITOM. Frequent repositioning of scope holder and lack of stereopsis is initial limiting factor was compensated for with repeated procedures. Video telescopic operating monitor is found useful to reduce initial learning curve of neuroendoscopy.

  16. Optical Manipulation along Optical Axis with Polarization Sensitive Meta-lens.

    PubMed

    Markovich, Hen; Shishkin, Ivan; Hendler, Netta; Ginzburg, Pavel

    2018-06-27

    The ability to manipulate small objects with focused laser beams opens a broad spectrum of opportunities in fundamental and applied studies, where a precise control over mechanical path and stability is required. While conventional optical tweezers are based on bulky diffractive optical elements, developing compact integrable within a fluid cell trapping devices is highly demanded. Here, plasmonic polarization sensitive metasurface-based lens, embedded within a fluid, is demonstrated to provide several stable trapping centers along the optical axis. The position of a particle is controlled with the polarization of the incident light, interacting with plasmonic nanoscale patch antennas, organized within overlapping Fresnel zones of the lens. While standard diffractive optical elements face challenges to trap objects in lateral direction outside the depth of focus, bi-focal Fresnel meta-lens demonstrates the capability to manipulate a bead along 4 micrometers line. Additional fluorescent module, incorporated within the optical trapping setup, was implemented and enabled accurate mapping of optical potential via a particle tracking algorithm. Auxiliary micro- and nano- structures, integrated within fluidic devices, provide numerous opportunities to achieve flexible optomechanical manipulation, including, transport, trapping and sorting, which are highly demanded in lab-on-a-chip applications and many others.

  17. Primordial black hole detection through diffractive microlensing

    NASA Astrophysics Data System (ADS)

    Naderi, T.; Mehrabi, A.; Rahvar, S.

    2018-05-01

    Recent observations of gravitational waves motivate investigations for the existence of primordial black holes (PBHs). We propose the observation of gravitational microlensing of distant quasars for the range of infrared to the submillimeter wavelengths by sublunar PBHs as lenses. The advantage of observations in the longer wavelengths, comparable to the Schwarzschild radius of the lens (i.e., Rsch≃λ ) is the detection of the wave optics features of the gravitational microlensing. The observation of diffraction pattern in the microlensing light curve of a quasar can break the degeneracy between the lens parameters and determine directly the lens mass as well as the distance of the lens from the observer. We estimate the wave optics optical-depth, also calculate the rate of ˜0.1 to ˜0.3 event per year per a quasar, assuming that hundred percent of dark matter is made of sublunar PBHs. Also, we propose a long-term survey of quasars with the cadence of almost one hour to few days to resolve the wave optics features of the light curves to discover PBHs and determine the fraction of dark matter made of sublunar PBHs as well as their mass function.

  18. Intensity Interferometry: Imaging Stars with Kilometer Baselines

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis

    2018-04-01

    Microarcsecond imaging will reveal stellar surfaces but requires kilometer-scale interferometers. Intensity interferometry circumvents atmospheric turbulence by correlating intensity fluctuations between independent telescopes. Telescopes connect only electronically, and the error budget relates to electronic timescales of nanoseconds (light-travel distances on the order of a meter), enabling the use of imperfect optics in a turbulent atmosphere. Once pioneered by Hanbury Brown and Twiss, digital versions have now been demonstrated in the laboratory, reconstructing diffraction-limited images from hundreds of optical baselines. Arrays of Cherenkov telescopes (primarily erected for gamma-ray studies) will extend over a few km, enabling an optical equivalent of radio interferometers. Resolutions in the tens of microarcseconds will resolve rotationally flattened stars with their circumstellar disks and winds, or possibly even the silhouettes of transiting exoplanets. Applying the method to mirror segments in extremely large telescopes (even with an incompletely filled main mirror, poor seeing, no adaptive optics), the diffraction limit in the blue may be reached.

  19. Efficiency of a multilayer-Laue-lens with a 102 μm aperture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macrander, Albert T., E-mail: atm@anl.gov; Wojcik, Michael; Maser, Jorg

    2015-08-24

    A multilayer-Laue-lens (MLL) comprised of WSi{sub 2}/Al layers stacked to a full thickness of 102 μm was characterized for its diffraction efficiency and dynamical diffraction properties by x-ray measurements made in the far field. The achieved aperture roughly doubles the previous maximum reported aperture for an MLL, thereby doubling the working distance. Negative and positive first orders were found to have 14.2% and 13.0% efficiencies, respectively. A section thickness of 9.6 μm was determined from Laue-case thickness fringes in the diffraction data. A background gas consisting of 90% Ar and 10% N{sub 2} was used for sputtering. This material system wasmore » chosen to reduce grown-in stress as the multilayer is deposited. Although some regions of the full MLL exhibited defects, the presently reported results were obtained for a region devoid of defects. The data compare well to dynamical diffraction calculations with Coupled Wave Theory (CWT) which provided confirmation of the optical constants and densities assumed for the CWT calculations.« less

  20. Efficiency of a multilayer-Laue-lens with a 102 μm aperture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macrander, Albert T.; Kubec, Adam; Conley, Raymond

    2015-08-25

    A multilayer-Laue-lens (MLL) comprised of WSi 2/Al layers stacked to a full thickness of 102 microns was characterized for its diffraction efficiency and dynamical diffraction properties by x-ray measurements made in the far field. The achieved aperture roughly doubles the previous maximum reported aperture for an MLL, thereby doubling the working distance. Negative and positive first orders were found to have 14.2 % and 13.0 % efficiencies, respectively. A section thickness of 9.6 μm was determined from Laue-case thickness fringes in the diffraction data. A background gas consisting of 90 % Ar and 10 % N 2 was used formore » sputtering. This material system was chosen to reduce grown-in stress as the multilayer is deposited. Although some regions of the full MLL exhibited defects, the presently reported results were obtained for a region devoid of defects. The data compare well to dynamical diffraction calculations with Coupled Wave Theory (CWT) which provided confirmation of the optical constants and densities assumed for the CWT calculations.« less

  1. Binocular function to increase visual outcome in patients implanted with a diffractive trifocal intraocular lens.

    PubMed

    Kretz, Florian T A; Müller, Matthias; Gerl, Matthias; Gerl, Ralf H; Auffarth, Gerd U

    2015-08-21

    To evaluate binocular visual outcome for near, intermediate and distance compared to monocular visual outcome at the same distances in patients implanted with a diffractive trifocal intraocular lens (IOL). The study comprised of 100 eyes of 50 patients that underwent bilateral refractive lens exchange or cataract surgery with implantation of a multifocal diffractive IOL (AT LISA tri 839MP, Carl Zeiss Meditech, Germany). A complete ophthalmological examination was performed preoperatively and 3 month postoperatively. The main outcome measures were monocular and binocular uncorrected distance (UDVA), corrected distance (CDVA), uncorrected intermediate (UIVA), and uncorrected near visual acuities (UNVA), keratometry, and manifest refraction. The mean age was 59.28 years ± 9.6 [SD] (range 44-79 years), repectively. There was significant improvement in UDVA, UIVA, UNVA and CDVA. Comparing the monocular results to the binocular results there was a statistical significant better binocular outcome in all distances (UDVA p = 0.036; UIVA p < 0.0001; UNVA p = 0.001). The postoperative manifest refraction was in 86 % of patients within ± 0.50 [D]. The trifocal IOL improved near, intermediate, and distance vision compared to preoperatively. In addition a statistical significant increase for binocular visual function in all distances could be found. German Clinical Trials Register (DRKS) DRKS00007837.

  2. Reaching the Diffraction Limit - Differential Speckle and Wide-Field Imaging for the WIYN Telescope

    NASA Technical Reports Server (NTRS)

    Scott, Nic J.; Howell, Steve; Horch, Elliott

    2016-01-01

    Speckle imaging allows telescopes to achieve diffraction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, effectively 'freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the diffraction limit of the telescope. These new instruments are based on the successful performance and design of the Differential Speckle Survey Instrument (DSSI).The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA, K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide-field mode and standard SDSS filters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations will remain around 13-14th at WIYN and 16-17th at Gemini, while wide-field, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.

  3. Evolutionary optimization of compact dielectric lens for farfield sub-wavelength imaging

    PubMed Central

    Zhang, Jingjing

    2015-01-01

    The resolution of conventional optical lenses is limited by diffraction. For decades researchers have made various attempts to beat the diffraction limit and realize subwavelength imaging. Here we present the approach to design modified solid immersion lenses that deliver the subwavelength information of objects into the far field, yielding magnified images. The lens is composed of an isotropic dielectric core and anisotropic or isotropic dielectric matching layers. It is designed by combining a transformation optics forward design with an inverse design scheme, where an evolutionary optimization procedure is applied to find the material parameters for the matching layers. Notably, the total radius of the lens is only 2.5 wavelengths and the resolution can reach λ/6. Compared to previous approaches based on the simple discretized approximation of a coordinate transformation design, our method allows for much more precise recovery of the information of objects, especially for those with asymmetric shapes. It allows for the far-field subwavelength imaging at optical frequencies with compact dielectric devices. PMID:26017657

  4. Precision cosmology with time delay lenses: High resolution imaging requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xiao -Lei; Treu, Tommaso; Agnello, Adriano

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration ofmore » the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ tot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will only be of order a few minutes per system, thus making the follow-up of hundreds of systems a practical and efficient cosmological probe.« less

  5. Precision cosmology with time delay lenses: high resolution imaging requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xiao-Lei; Liao, Kai; Treu, Tommaso

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ''Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration ofmore » the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ{sub tot}∝ r{sup −γ'} for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will only be of order a few minutes per system, thus making the follow-up of hundreds of systems a practical and efficient cosmological probe.« less

  6. Visual performance after the implantation of a new trifocal intraocular lens

    PubMed Central

    Vryghem, Jérôme C; Heireman, Steven

    2013-01-01

    Purpose To evaluate the subjective and objective visual results after the implantation of a new trifocal diffractive intraocular lens. Methods A new trifocal diffractive intraocular lens was designed combining two superimposed diffractive profiles: one with +1.75 diopters (D) addition for intermediate vision and the other with +3.50 D addition for near vision. Fifty eyes of 25 patients that were operated on by one surgeon are included in this study. The uncorrected and best distance-corrected monocular and binocular, near, intermediate, and distance visual acuities, contrast sensitivity, and defocus curves were measured 6 months postoperatively. In addition to the standard clinical follow-up, a questionnaire evaluating individual satisfaction and quality of life was submitted to the patients. Results The mean age of patients at the time of surgery was 70 ± 10 years. The mean uncorrected and corrected monocular distance visual acuity (VA) were LogMAR 0.06 ± 0.10 and LogMAR 0.00 ± 0.08, respectively. The outcomes for the binocular uncorrected distance visual acuity were almost the same (LogMAR −0.04 ± 0.09). LogMAR −010 ± 0.15 and 0.02 ± 0.06 were measured for the binocular uncorrected intermediate and near VA, respectively. The distance-corrected visual acuity was maintained in mesopic conditions. The contrast sensitivity was similar to that obtained after implantation of a bifocal intraocular lens and did not decrease in mesopic conditions. The binocular defocus curve confirms good VA even in the intermediate distance range, with a moderate decrease of less than LogMAR 0.2 at −1.5 D, with respect to the best distance VA at 0 D defocus. Patient satisfaction was high. No discrepancy between the objective and subjective outcomes was evidenced. Conclusion The introduction of a third focus in diffractive multifocal intraocular lenses improves the intermediate vision with minimal visual discomfort for the patient. PMID:24124348

  7. Opto-mechanical design and gravity-deformation analysis on optical telescope in laser communication system

    NASA Astrophysics Data System (ADS)

    Fu, Sen; Du, Jindan; Song, Yiwei; Gao, Tianyu; Zhang, Daqing; Wang, Yongzhi

    2017-11-01

    In space laser communication, optical antennas are one of the main components and the precision of optical antennas is very high. In this paper, it is based on the R-C telescope and it is carried out that the design and simulation of optical lens and supporting truss, according to the parameters of the systems. And a finite element method (FEM) was used to analyze the deformation of the optical lens. Finally, the Zernike polynomial was introduced to fit the primary mirror with a diameter of 250mm. The objective of this study is to determine whether the wave-front aberration of the primary mirror can meet the imaging quality. The results show that the deterioration of the imaging quality caused by the gravity deformation of primary and secondary mirrors. At the same time, the optical deviation of optical antenna increase with the diameter of the pupil.

  8. Generation of dark hollow beam by focusing a sine-Gaussian beam using a cylindrical lens and a focusing lens

    NASA Astrophysics Data System (ADS)

    Tang, Huiqin; Zhu, Kaicheng

    2013-12-01

    Based on the generalized Huygens-Fresnel diffraction integral, a closed-form propagation equation related to sine-Gaussian beams through a cylindrical lens and a focusing lens is derived and illustrated with numerical methods. It is found that a sine-Gaussian beam through such a system may be converted into a dark hollow beam (DHB) with topological charge index one and its bright enclosure is approximately an elongated ellipse with very high ellipticity. Moreover, the parameter values at which the DHBs have perfect intensity patterns are designed. The optimal relative orientation between the dislocation line of the input sine-Gaussian beam and the axial orientation of the cylindrical lens is specified. And the ellipticity of the elliptical DHBs is mainly defined by the focal length of the cylindrical lens and the Fresnel number of the optical system.

  9. Far Sidelobes Measurement of the Atacama Cosmology Telescope

    NASA Technical Reports Server (NTRS)

    Duenner, Rolando; Gallardo, Patricio; Wollack, Ed; Henriquez, Fernando; Jerez-Hanckes, Carlos

    2012-01-01

    The Atacama Cosmology Telescope (ACT) is a 6m telescope designed to map the Cosmic Microwave Background (CMB) simultaneously at 145GHz, 220 GHz and 280 GHz. Its off-axis Gregorian design is intended to minimize and control the off-axis sidelobe response, which is critical for scientific purposes. The expected sidelobe level for this kind of design is less than -50 dB and can be challenging to measure. Here we present a measurement of the 145 GHz far sidelobes of ACT done on the near-field of the telescope. We used a 1 mW microwave source placed 13 meters away from the telescope and a chopper wheel to produce a varying signal that could be detected by the camera for different orientations of the telescope. The source feed was designed to produce a wide beam profile. Given that the coupling is expected to be dominated by diffraction over the telescope shielding structure, when combined with a measurements of the main beam far field response, these measurement can be used to validate elements of optical design and constrain the level of spurious coupling at large angles. Our results show that the diffractive coupling beyond the ground screen is consistently below -75 dB, satisfying the design expectations.

  10. Dimensional stability. [of glass and glass-ceramic materials in diffraction telescopes

    NASA Technical Reports Server (NTRS)

    Hochen, R.; Justie, B.

    1976-01-01

    The temporal stability of glass and glass-ceramic materials is important to the success of a large diffraction-limited telescope. The results are presented of an experimental study of the dimensional stability of glasses and glass ceramics being considered for substrates of massive diffraction-limited mirrors designed for several years of service in earth orbit. The purpose of the study was to measure the relative change in length of the candidate substrate materials, to the order of 5 parts in 10 to the 8th power, as a function of several years time. The development of monolithic test etalons, the development and improvement of two types of ultra-high precision interferometers, and certain aspects of tests data presently achieved are discussed.

  11. Zoned near-zero refractive index fishnet lens antenna: Steering millimeter waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacheco-Peña, V., E-mail: victor.pacheco@unavarra.es; Orazbayev, B., E-mail: b.orazbayev@unavarra.es; Beaskoetxea, U., E-mail: unai.beaskoetxea@unavarra.es

    2014-03-28

    A zoned fishnet metamaterial lens is designed, fabricated, and experimentally demonstrated at millimeter wavelengths to work as a negative near-zero refractive index lens suitable for compact lens antenna configurations. At the design frequency f = 56.7 GHz (λ{sub 0} = 5.29 mm), the zoned fishnet metamaterial lens, designed to have a focal length FL = 9λ{sub 0}, exhibits a refractive index n = −0.25. The focusing performance of the diffractive optical element is briefly compared with that of a non-zoned fishnet metamaterial lens and an isotropic homogeneous zoned lens made of a material with the same refractive index. Experimental and numerically-computed radiation diagrams of the fabricated zoned lens are presentedmore » and compared in detail with that of a simulated non-zoned lens. Simulation and experimental results are in good agreement, demonstrating an enhancement generated by the zoned lens of 10.7 dB, corresponding to a gain of 12.26 dB. Moreover, beam steering capability of the structure by shifting the feeder on the xz-plane is demonstrated.« less

  12. Lensfree diffractive tomography for the imaging of 3D cell cultures

    NASA Astrophysics Data System (ADS)

    Berdeu, Anthony; Momey, Fabien; Dinten, Jean-Marc; Gidrol, Xavier; Picollet-D'hahan, Nathalie; Allier, Cédric

    2017-02-01

    New microscopes are needed to help reaching the full potential of 3D organoid culture studies by gathering large quantitative and systematic data over extended periods of time while preserving the integrity of the living sample. In order to reconstruct large volumes while preserving the ability to catch every single cell, we propose new imaging platforms based on lens-free microscopy, a technic which is addressing these needs in the context of 2D cell culture, providing label-free and non-phototoxic acquisition of large datasets. We built lens-free diffractive tomography setups performing multi-angle acquisitions of 3D organoid cultures embedded in Matrigel and developed dedicated 3D holographic reconstruction algorithms based on the Fourier diffraction theorem. Nonetheless, holographic setups do not record the phase of the incident wave front and the biological samples in Petri dish strongly limit the angular coverage. These limitations introduce numerous artefacts in the sample reconstruction. We developed several methods to overcome them, such as multi-wavelength imaging or iterative phase retrieval. The most promising technic currently developed is based on a regularised inverse problem approach directly applied on the 3D volume to reconstruct. 3D reconstructions were performed on several complex samples such as 3D networks or spheroids embedded in capsules with large reconstructed volumes up to 25 mm3 while still being able to identify single cells. To our knowledge, this is the first time that such an inverse problem approach is implemented in the context of lens-free diffractive tomography enabling to reconstruct large fully 3D volumes of unstained biological samples.

  13. Search for Near-Earth Objects with Small Aphelion Distances

    NASA Technical Reports Server (NTRS)

    Tholen, David J.

    2003-01-01

    An essential component of our ability to efficiently find NEOs at small solar elongation is a focal reducer, whose construction is being separately funded by a grant from NSF. This focal reducer will increase the field of view of the 8k CCD mosaic camera from 19 arc min to about 32 arc min at the Cassegrain focus of the University of Hawaii 2.24-m telescope. As of January, all but one of the lenses for the focal reducer were in hand. The final lens had been delayed due to problems with the availability of the rather exotic material out of which the manufacturer was to fabricate the lens. Perhaps as a result of their rush to deliver that final lens, it developed a crack during the annealing process at the manufacturer, thus they had to start over. The total delay in delivery of that last lens was nearly ten months, and therefore the focal reducer was not completed on schedule and could not be used on the telescope this semester. A postdoctoral research associate was recruited to handle the day-to-day operations. The closing date for applications was 2002 December 3 1, and seven were received. One applicant was not qualified, and two were marginal. Of the four qualified candidates, Fabrizio Bernardi stood out as being best qualified. He was a student of Andrea Carusi and had worked on the CINEOS project in Italy, which includes a component of searching for NEOs at small solar elongations.

  14. Imaging of the gravitational lens system PG 1115+080 with the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Kristian, Jerome; Groth, Edward J.; Shaya, Edward J.; Schneider, Donald P.; Holtzman, Jon A.; Baum, William A.; Campbell, Bel; Code, Arthur; Currie, Douglas G.; Danielson, G. E.

    1993-01-01

    This paper is the first of a series presenting observations of gravitational lenses and lens candidates, taken with the Wide Field/Planetary Camera of the HST. We have resolved the gravitational lens system PG 1115+080 into four point sources and a red, extended object that is presumably the lens galaxy; we present accurate relative intensities, colors, and positions of the four images, and lower accuracy intensity and position of the lens galaxy, all at the epoch 1991.2. Comparison with earlier data shows no compelling evidence for relative intensity variations between the QSO components having so far been observed. The new data agree with earlier conclusions that the system is rather simple, and can be produced by the single observed galaxy. The absence of asymmetry in the HST images implies that the emitting region of the quasar itself has an angular radius smaller than about 10 milliarcsec (100 pc for H0 = 50, q0 = 0.5).

  15. Far-field characteristics of the square grooved-dielectric lens antenna for the terahertz band.

    PubMed

    Pan, Wu; Zeng, Wei

    2016-09-10

    In order to improve the gain and directionality of a terahertz antenna, a square grooved-dielectric lens antenna based on a Fresnel zone plate is proposed. First, a diagonal horn, which is adopted as the primary feed antenna, is designed. Then, the far-field characteristics of the lens antenna are studied by using Fresnel-Kirchhoff diffraction theory and the paraxial approximation. The effects of the full-wave period, the focus diameter ratio, the subregion, and the dielectric substrate thickness on radiation characteristics are studied. The experimental results show that the proposed lens antenna has axisymmetric radiation patterns. The gain is over 26.1 dB, and the 3 dB main lobe beam width is lower than 5.6° across the operation band. The proposed lens antenna is qualified for applications in terahertz wireless communication systems.

  16. Coherent diffraction imaging by moving a lens.

    PubMed

    Shen, Cheng; Tan, Jiubin; Wei, Ce; Liu, Zhengjun

    2016-07-25

    A moveable lens is used for determining amplitude and phase on the object plane. The extended fractional Fourier transform is introduced to address the single lens imaging. We put forward a fast algorithm for the transform by convolution. Combined with parallel iterative phase retrieval algorithm, it is applied to reconstruct the complex amplitude of the object. Compared with inline holography, the implementation of our method is simple and easy. Without the oversampling operation, the computational load is less. Also the proposed method has a superiority of accuracy over the direct focusing measurement for the imaging of small size objects.

  17. Achromatic triplet and athermalized lens assembly for both midwave and longwave infrared spectra

    NASA Astrophysics Data System (ADS)

    Kuo, Chih-Wei

    2014-02-01

    Analytic solutions for finding the achromatic triplet in the midwave and longwave infrared spectra simultaneously are explored. The relationship between the combination of promising refractive materials and the system's optical power is also formulated. The principles for stabilizing the effective focal length of an air-spaced lens group with respect to temperature are explored, and the thermal properties of the optical component and mechanical elements mutually counterbalanced. An optical design based on these achromatic and athermal theories is demonstrated, and the image quality of the lens assembly seems to approach the diffractive limitation.

  18. Current developments in optical engineering and diffraction phenomena; Proceedings of the Meeting, San Diego, CA, Aug. 21, 22, 1986

    NASA Astrophysics Data System (ADS)

    Fischer, Robert E.; Smith, Warren J.; Harvey, James

    1986-01-01

    Papers dealing with current materials for gradient-index optics, an intelligent data-base system for optical designers; tilted mirror systems; a null-lens design approach for centrally obscured components; the use of the vector aberration theory to optimize an unobscured optical system; multizone bifocal contact lens design; and the concentric meniscus element are presented. Topics discussed include optical manufacturing in the Far East; the optical performance of molded-glass lenses for optical memory applications; through-wafer optical interconnects for multiwafer wafer-scale integrated architecture; optical thin-flim monitoring using optical fibers; aerooptical testing; optical inspection; and a system analysis program for a 32K microcomputer. Consideration is given to various theories, algorithms, and applications of diffraction, a vector formulation of a ray-equivalent method for Gaussian beam propagation; Fourier optical analysis of aberrations in focused laser beams; holography and moire interferometry; and phase-conjugate optical correctors for diffraction-limited applications.

  19. Diffraction-Limited Plenoptic Imaging with Correlated Light

    NASA Astrophysics Data System (ADS)

    Pepe, Francesco V.; Di Lena, Francesco; Mazzilli, Aldo; Edrei, Eitan; Garuccio, Augusto; Scarcelli, Giuliano; D'Angelo, Milena

    2017-12-01

    Traditional optical imaging faces an unavoidable trade-off between resolution and depth of field (DOF). To increase resolution, high numerical apertures (NAs) are needed, but the associated large angular uncertainty results in a limited range of depths that can be put in sharp focus. Plenoptic imaging was introduced a few years ago to remedy this trade-off. To this aim, plenoptic imaging reconstructs the path of light rays from the lens to the sensor. However, the improvement offered by standard plenoptic imaging is practical and not fundamental: The increased DOF leads to a proportional reduction of the resolution well above the diffraction limit imposed by the lens NA. In this Letter, we demonstrate that correlation measurements enable pushing plenoptic imaging to its fundamental limits of both resolution and DOF. Namely, we demonstrate maintaining the imaging resolution at the diffraction limit while increasing the depth of field by a factor of 7. Our results represent the theoretical and experimental basis for the effective development of promising applications of plenoptic imaging.

  20. Diffraction-Limited Plenoptic Imaging with Correlated Light.

    PubMed

    Pepe, Francesco V; Di Lena, Francesco; Mazzilli, Aldo; Edrei, Eitan; Garuccio, Augusto; Scarcelli, Giuliano; D'Angelo, Milena

    2017-12-15

    Traditional optical imaging faces an unavoidable trade-off between resolution and depth of field (DOF). To increase resolution, high numerical apertures (NAs) are needed, but the associated large angular uncertainty results in a limited range of depths that can be put in sharp focus. Plenoptic imaging was introduced a few years ago to remedy this trade-off. To this aim, plenoptic imaging reconstructs the path of light rays from the lens to the sensor. However, the improvement offered by standard plenoptic imaging is practical and not fundamental: The increased DOF leads to a proportional reduction of the resolution well above the diffraction limit imposed by the lens NA. In this Letter, we demonstrate that correlation measurements enable pushing plenoptic imaging to its fundamental limits of both resolution and DOF. Namely, we demonstrate maintaining the imaging resolution at the diffraction limit while increasing the depth of field by a factor of 7. Our results represent the theoretical and experimental basis for the effective development of promising applications of plenoptic imaging.

  1. Methods and apparatus for vertical coupling from dielectric waveguides

    DOEpatents

    Yaacobi, Ami; Cordova, Brad Gilbert

    2014-06-17

    A frequency-chirped nano-antenna provides efficient sub-wavelength vertical emission from a dielectric waveguide. In one example, this nano-antenna includes a set of plasmonic dipoles on the opposite side of a SiYV.sub.4 waveguide from a ground plane. The resulting structure, which is less than half a wavelength long, emits a broadband beam (e.g., >300 nm) that can be coupled into an optical fiber. In some embodiments, a diffractive optical element with unevenly shaped regions of high- and low-index dielectric material collimates the broadband beam for higher coupling efficiency. In some cases, a negative lens element between the nano-antenna and the diffractive optical element accelerates the emitted beam's divergence (and improves coupling efficiency), allowing for more compact packaging. Like the diffractive optical element, the negative lens element includes unevenly shaped regions of high- and low-index dielectric material that can be designed to compensate for aberrations in the beam emitted by the nano-antenna.

  2. Integrated multidisciplinary analysis of segmented reflector telescopes

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.; Needels, Laura

    1992-01-01

    The present multidisciplinary telescope-analysis approach, which encompasses thermal, structural, control and optical considerations, is illustrated for the case of an IR telescope in LEO; attention is given to end-to-end evaluations of the effects of mechanical disturbances and thermal gradients in measures of optical performance. Both geometric ray-tracing and surface-to-surface diffraction approximations are used in the telescope's optical model. Also noted is the role played by NASA-JPL's Integrated Modeling of Advanced Optical Systems computation tool, in view of numerical samples.

  3. Fermi LAT detection of a GeV flare from the gravitationally lensed blazar S3 0218+35

    NASA Astrophysics Data System (ADS)

    Ciprini, S.

    2012-08-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed gamma-ray flaring activity from a source positionally consistent with the blazar S3 0218+35 (also known as 2FGL J0221.0+3555, Nolan et al. 2012, ApJS, 199, 31, and B2 0218+35, OD 330, lens B0218+357) placed at radio coordinates R.A.: 35.27279 deg, Dec: +35.93715 deg.

  4. Measurements of doubles stars made with a 12" telescope at courpiac observatory (French Title: Mesures d'étoiles doubles faites au télescope de 12 pouces de l'observatoire de courpiac)

    NASA Astrophysics Data System (ADS)

    Soulié, G.

    2007-09-01

    This paper contains 403 measures of double stars.These measures have been made with a 12",F/10 Meade LX 200 telescope and an X2 Barlow lens giving an effective focal length of about 5.5 meters. The calibration is calculated with measures of standard pairs. Frames have been obtained with a CCD camera MX516.

  5. Astronomers Discover Six-Image Gravitational Lens

    NASA Astrophysics Data System (ADS)

    2001-08-01

    An international team of astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope and NASA's Hubble Space Telescope (HST) to discover the first gravitational lens in which the single image of a very distant galaxy has been split into six different images. The unique configuration is produced by the gravitational effect of three galaxies along the line of sight between the more-distant galaxy and Earth. Optical and Radio Images of Gravitational Lens "This is the first gravitational lens with more than four images of the background object that is produced by a small group of galaxies rather than a large cluster of galaxies," said David Rusin, who just received his Ph.D. from the University of Pennsylvania. "Such systems are expected to be extremely rare, so this discovery is an important stepping stone. Because this is an intermediate case between gravitational lenses produced by single galaxies and lenses produced by large clusters of galaxies, it will give us insights we can't get from other types of lenses," Rusin added. The gravitational lens, called CLASS B1359+154, consists of a galaxy more than 11 billion light-years away in the constellation Bootes, with a trio of galaxies more than 7 billion light-years away along the same line of sight. The more-distant galaxy shows signs that it contains a massive black hole at its core and also has regions in which new stars are forming. The gravitational effect of the intervening galaxies has caused the light and radio waves from the single, more-distant galaxy to be "bent" to form six images as seen from Earth. Four of these images appear outside the triangle formed by the three intermediate galaxies and two appear inside that triangle. "This lens system is a very interesting case to study because it is more complicated than lenses produced by single galaxies, and yet simpler than lenses produced by clusters of numerous galaxies," said Chris Kochanek of the Harvard-Smithsonian Center for Astrophysics (CfA). "When we understand this system, we will have a much clearer picture of how galaxies are changed by being part of a bigger cluster of galaxies," he added. B1359+154 was discovered in 1999 by the Cosmic Lens All-Sky Survey, an international collaboration of astronomers who use radio telescopes to search the sky for gravitational lenses. Images made by the NSF's Very Large Array in New Mexico and by Britain's MERLIN radio telescope showed six objects suspected of being gravitational-lens images, but the results were inconclusive. Rusin and his team used the VLBA and HST in 1999 and 2000 to make more-detailed studies of B1359+154. The combination of data from the VLBA and HST convinced the astronomers that B1359+154 actually consists of six lensed images of a single background galaxy. The VLBA images were made from data collected during observations at a radio frequency of 1.7 GHz. "This is a great example of modern, multi-wavelength astronomy," said Rusin. "We need the radio telescopes to detect the gravitational lenses in the first place, then we need the visible-light information from Hubble to show us additional detail about the structure of the system." Armed with the combined VLBA and HST data about the positions and brightnesses of the six images of the background galaxy as well as the positions of the three intermediate galaxies, the astronomers did computer simulations to show how the gravitation of the three galaxies could produce the lens effect. They were able to design a computer model of the system that, in fact, produces the six images seen in B1359+154. "Our computer model certainly is not perfect, and we need to do more observations of this system to refine it, but we have clearly demonstrated that the three galaxies we see can produce a six-image lens system," said Martin Norbury, a graduate student at Jodrell Bank Observatory in Britain. "We think this work will give us an excellent tool for studying much-denser clusters of galaxies and the relationships of the individual cluster galaxies to the 'halo' of dark matter in which they are embedded," he added. Clusters of galaxies are known to produce gravitational lenses with up to eight images of a single background object. However, the number of galaxies in such a cluster makes it difficult for astronomers to decipher just how their gravitational effects have combined to produce the multiple images. Researchers hope to be able to understand the lensing effect well enough to use the lenses to show them how galaxies, gas and unseen dark matter in clusters are distributed. A system such as B1359+154, with only three galaxies involved in the lensing, can help astronomers learn how complex gravitational lenses work. "The next big step is to use HST to see the pattern of rings produced by the galaxy surrounding the black hole. We already see hints of them, but with the upgrades to HST in the next servicing mission we should be able to trace it completely both to pin down the structure of the lens and to have an enormously magnified image for studying the distant host galaxy," Kochanek said. In addition to Rusin, Kochanek and Norbury, the researchers are: Emilio Falco of the CfA; Chris Impey of Steward Observatory at the University of Arizona; Joseph Lehar of the CfA; Brian McLeod of the CfA; Hans-Walter Rix of the Max Planck Institute for Astronomy in Germany; Chuck Keeton of Steward Observatory; Jose Munoz of the Astrophysical Institute of the Canaries in Tenerife, Spain; and Chien Peng of Steward Observatory. The team published its results in the Astrophysical Journal. The VLBA is a system of 10 radio-telescope antennas that work together as a single astronomical instrument. The antennas are spread across the United States, from Hawaii in the west to the U.S. Virgin Islands in the east. A radio telescope system more than 5,000 miles across, the VLBA produces extremely detailed images. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA,, under contract with the Goddard Space Flight Center, Greenbelt, MD. The Hubble Space Telescope is a project of international Cooperation between NASA and the European Space Agency.

  6. Comparison of holographic lens and filter systems for lateral spectrum splitting

    NASA Astrophysics Data System (ADS)

    Vorndran, Shelby; Chrysler, Benjamin; Kostuk, Raymond K.

    2016-09-01

    Spectrum splitting is an approach to increasing the conversion efficiency of a photovoltaic (PV) system. Several methods can be used to perform this function which requires efficient spatial separation of different spectral bands of the incident solar radiation. In this paper several of holographic methods for implementing spectrum splitting are reviewed along with the benefits and disadvantages associated with each approach. The review indicates that a volume holographic lens has many advantages for spectrum splitting in terms of both power conversion efficiency and energy yield. A specific design for a volume holographic spectrum splitting lens is discussed for use with high bandgap InGaP and low bandgap silicon PV cells. The holographic lenses are modeled using rigorous coupled wave analysis, and the optical efficiency is evaluated using non-sequential raytracing. A proof-of-concept off-axis holographic lens is also recorded in dichromated gelatin film and the spectral diffraction efficiency of the hologram is measured with multiple laser sources across the diffracted spectral band. The experimental volume holographic lens (VHL) characteristics are compared to an ideal spectrum splitting filter in terms of power conversion efficiency and energy yield in environments with high direct normal incidence (DNI) illumination and high levels of diffuse illumination. The results show that the experimental VHL can achieve 62.5% of the ideal filter power conversion efficiency, 64.8% of the ideal filter DNI environment energy yield, and 57.7% of the ideal diffuse environment energy yield performance.

  7. Broadband Integrated Lens for Illuminating Reflector Antenna With Constant Aperture Efficiency

    NASA Astrophysics Data System (ADS)

    Fernandes, Carlos A.; Lima, Eduardo B.; Costa, Jorge R.

    2010-12-01

    A new integrated shaped lens antenna configuration is described with frequency stable radiation pattern and phase center position across a broad 1:3 frequency band, which can be used for focal plane reflector feeding in quasi-optical radio telescope systems. The lens is compatible with the integration of ultrawideband uniplanar printed feeds at its base and equally broadband mixing devices, like the Hot Electron Bolometer (HEB), although these are not used in the present work. Measurements on a scaled mm-wave lab prototype have confirmed stable performance versus frequency, with only dB directivity variation, and better than 94% Gaussicity, thanks to the possibility to impose a predefined output radiation pattern template. Simulations were performed to test the illumination of an off-set parabolic reflector by the lens radiation pattern, which confirmed reasonably constant aperture efficiency in the order of 78% across the 100% bandwidth.

  8. Direct view zoom scope with single focal plane and adaptable reticle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagwell, Brett

    A direct view telescopic sight includes objective lens, eyepiece, and prism erector assemblies. The objective lens assembly is mounted to receive light of an image from an object direction and direct the light along an optical path. The eyepiece assembly is mounted to receive the light along the optical path and to emit the light of the image along an eye-ward direction. The prism erector assembly is positioned between the objective lens and eyepiece assemblies and includes first and second prism elements through which the optical path passes. The first and second prism elements invert the image. A reticle elementmore » is disposed on or adjacent to a surface of one of the first or second prism elements to combine a reticle on the image. The image is brought into focus at only a single focal plane between the objective lens and eyepiece assemblies at a given time.« less

  9. Clinical Outcomes after Binocular Implantation of a New Trifocal Diffractive Intraocular Lens

    PubMed Central

    Kretz, Florian T. A.; Breyer, Detlev; Diakonis, Vasilios F.; Klabe, Karsten; Henke, Franziska; Auffarth, Gerd U.; Kaymak, Hakan

    2015-01-01

    Purpose. To evaluate visual, refractive, and contrast sensitivity outcomes, as well as the incidence of pseudophakic photic phenomena and patient satisfaction after bilateral diffractive trifocal intraocular lens (IOL) implantation. Methods. This prospective nonrandomized study included consecutive patients undergoing cataract surgery with bilateral implantation of a diffractive trifocal IOL (AT LISA tri 839MP, Carl Zeiss Meditec). Distance, intermediate, and near visual outcomes were evaluated as well as the defocus curve and the refractive outcomes 3 months after surgery. Photopic and mesopic contrast sensitivity, patient satisfaction, and halo perception were also evaluated. Results. Seventy-six eyes of 38 patients were included; 90% of eyes showed a spherical equivalent within ±0.50 diopters 3 months after surgery. All patients had a binocular uncorrected distance visual acuity of 0.00 LogMAR or better and a binocular uncorrected intermediate visual acuity of 0.10 LogMAR or better, 3 months after surgery. Furthermore, 85% of patients achieved a binocular uncorrected near visual acuity of 0.10 LogMAR or better. Conclusions. Trifocal diffractive IOL implantation seems to provide an effective restoration of visual function for far, intermediate, and near distances, providing high levels of visual quality and patient satisfaction. PMID:26301104

  10. Vortex coronagraphs for the Habitable Exoplanet Imaging Mission concept: theoretical performance and telescope requirements

    NASA Astrophysics Data System (ADS)

    Ruane, Garreth; Mawet, Dimitri; Mennesson, Bertrand; Jewell, Jeffrey; Shaklan, Stuart

    2018-01-01

    The Habitable Exoplanet Imaging Mission concept requires an optical coronagraph that provides deep starlight suppression over a broad spectral bandwidth, high throughput for point sources at small angular separation, and insensitivity to temporally varying, low-order aberrations. Vortex coronagraphs are a promising solution that performs optimally on off-axis, monolithic telescopes and may also be designed for segmented telescopes with minor losses in performance. We describe the key advantages of vortex coronagraphs on off-axis telescopes such as (1) unwanted diffraction due to aberrations is passively rejected in several low-order Zernike modes relaxing the wavefront stability requirements for imaging Earth-like planets from <10 to >100 pm rms, (2) stars with angular diameters >0.1 λ / D may be sufficiently suppressed, (3) the absolute planet throughput is >10 % , even for unfavorable telescope architectures, and (4) broadband solutions (Δλ / λ > 0.1) are readily available for both monolithic and segmented apertures. The latter make use of grayscale apodizers in an upstream pupil plane to provide suppression of diffracted light from amplitude discontinuities in the telescope pupil without inducing additional stroke on the deformable mirrors. We set wavefront stability requirements on the telescope, based on a stellar irradiance threshold set at an angular separation of 3 ± 0.5λ / D from the star, and discuss how some requirements may be relaxed by trading robustness to aberrations for planet throughput.

  11. Fresnel Lens Characterization for Potential Use in an Unpiloted Atmospheric Vehicle DIAL Receiver System

    NASA Technical Reports Server (NTRS)

    Fastig, Shlomo; Deoung, Russell J.

    1998-01-01

    Acrylic plastic Fresnel lenses are very light and can have large diameters. Such lenses could be used in lidar telescope receivers if the focal spot is not too large or distorted. This research effort characterizes the focal spot diameter produced by a Fresnel lens with a diameter of 30.5 cm (12 in.). It was found that the focal spot diameter varied from 1.2 mm at 750 nm to 1.6 mm at 910 nm. The focal spot was irregular and not easily described by a Gaussian profile.

  12. Overview of diffraction gratings technologies for spaceflight satellites and ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Cotel, A.; Liard, A.; Desserouer, F.; Pichon, P.

    2017-11-01

    The diffraction gratings are widely used in Space-flight satellites for spectrograph instruments or in ground-based telescopes in astronomy. The diffraction gratings are one of the key optical components of such systems and have to exhibit very high optical performances. HORIBA Jobin Yvon S.A.S. (part of HORIBA Group) is in the forefront of such gratings development for more than 40 years. During the past decades, HORIBA Jobin Yvon (HJY) has developed a unique expertise in diffraction grating design and manufacturing processes for holographic, ruled or etched gratings. We will present in this paper an overview of diffraction grating technologies especially designed for space and astronomy applications. We will firstly review the heritage of the company in this field with the space qualification of different grating types. Then, we will describe several key grating technologies developed for specific space or astronomy projects: ruled blazed low groove density plane reflection grating, high-groove density holographic toroidal and spherical grating, and finally transmission Fused Silica Etched (FSE) grism-assembled grating. We will not present the Volume Phase Holographic (VPHG) grating type which is used in Astronomy.

  13. Experimental method for testing diffraction properties of reflection waveguide holograms.

    PubMed

    Xie, Yi; Kang, Ming-Wu; Wang, Bao-Ping

    2014-07-01

    Waveguide holograms' diffraction properties include peak wavelength and diffraction efficiency, which play an important role in determining their display performance. Based on the record and reconstruction theory of reflection waveguide holograms, a novel experimental method for testing diffraction properties is introduced and analyzed in this paper, which uses a plano-convex lens optically contacted to the surface of the substrate plate of the waveguide hologram, so that the diffracted light beam can be easily detected. Then an experiment is implemented. The designed reconstruction wavelength of the test sample is 530 nm, and its diffraction efficiency is 100%. The experimental results are a peak wavelength of 527.7 nm and a diffraction efficiency of 94.1%. It is shown that the tested value corresponds well with the designed value.

  14. Solar Adaptive Optics.

    PubMed

    Rimmele, Thomas R; Marino, Jose

    Adaptive optics (AO) has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO) and Ground-Layer AO (GLAO) will be given. Supplementary material is available for this article at 10.12942/lrsp-2011-2.

  15. Various view with fish-eye lens of STS-103 crew on aft flight deck

    NASA Image and Video Library

    2000-01-28

    STS103-375-027 (19 - 27 December 1999).--- Astronaut Jean-Francois Clervoy, mission specialist representing the European Space Agency (ESA), controls Discovery's remote manipulator system (RMS) robot arm during operations.with the Hubble Space Telescope (HST).

  16. Can Jupiters be found by monitoring Galactic bulge microlensing events from northern sites?

    NASA Astrophysics Data System (ADS)

    Tsapras, Yiannis; Street, Rachel A.; Horne, Keith; Penny, Alan; Clarke, Fraser; Deeg, Hans; Garzon, Francisco; Kemp, Simon; Zapatero Osorio, Maria Rosa; Oscoz, Alejandro Abad; Sanchez, Santiago Madruga; Eiroa, Carlos; Mora, Alcione; Alberdi, Antxon; Collier Cameron, Andrew; Davies, John K.; Ferlet, Roger; Grady, Carol; Harris, Allan W.; Palacios, Javier; Quirrenbach, Andreas; Rauer, Heike; Schneider, Jean; de Winter, Dolf; Merin, Bruno; Solano, Enrique

    2001-08-01

    In 1998 the EXPORT team monitored microlensing event light curves using a charge-coupled device (CCD) camera on the IACQ4 0.8-m telescope on Tenerife to evaluate the prospect of using northern telescopes to find microlens anomalies that reveal planets orbiting the lens stars. The high airmass and more limited time available for observations of Galactic bulge sources make a northern site less favourable for microlensing planet searches. However, there are potentially a large number of northern 1-m class telescopes that could devote a few hours per night to monitor ongoing microlensing events. Our IAC observations indicate that accuracies sufficient to detect planets can be achieved despite the higher airmass.

  17. The partial coherence modulation transfer function in testing lithography lens

    NASA Astrophysics Data System (ADS)

    Huang, Jiun-Woei

    2018-03-01

    Due to the lithography demanding high performance in projection of semiconductor mask to wafer, the lens has to be almost free in spherical and coma aberration, thus, in situ optical testing for diagnosis of lens performance has to be established to verify the performance and to provide the suggesting for further improvement of the lens, before the lens has been build and integrated with light source. The measurement of modulation transfer function of critical dimension (CD) is main performance parameter to evaluate the line width of semiconductor platform fabricating ability for the smallest line width of producing tiny integrated circuits. Although the modulation transfer function (MTF) has been popularly used to evaluation the optical system, but in lithography, the contrast of each line-pair is in one dimension or two dimensions, analytically, while the lens stand along in the test bench integrated with the light source coherent or near coherent for the small dimension near the optical diffraction limit, the MTF is not only contributed by the lens, also by illumination of platform. In the study, the partial coherence modulation transfer function (PCMTF) for testing a lithography lens is suggested by measuring MTF in the high spatial frequency of in situ lithography lens, blended with the illumination of partial and in coherent light source. PCMTF can be one of measurement to evaluate the imperfect lens of lithography lens for further improvement in lens performance.

  18. Optical fiber plasmonic lens for near-field focusing fabricated through focused ion beam

    NASA Astrophysics Data System (ADS)

    Sloyan, Karen; Melkonyan, Henrik; Moreira, Paulo; Dahlem, Marcus S.

    2017-02-01

    We report on numerical simulations and fabrication of an optical fiber plasmonic lens for near-field focusing applications. The plasmonic lens consists of an Archimedean spiral structure etched through a 100 nm-thick Au layer on the tip of a single-mode SM600 optical fiber operating at a wavelength of 632:8 nm. Three-dimensional finite-difference time-domain computations show that the relative electric field intensity of the focused spot increases 2:1 times when the number of turns increases from 2 to 12. Furthermore, a reduction of the intensity is observed when the initial inner radius is increased. The optimized plasmonic lens focuses light into a spot with a full-width at half-maximum of 182 nm, beyond the diffraction limit. The lens was fabricated by focused ion beam milling, with a 200nm slit width.

  19. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. IV. OBSERVATIONS OF KEPLER, CoRoT, AND HIPPARCOS STARS FROM THE GEMINI NORTH TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horch, Elliott P.; Howell, Steve B.; Everett, Mark E.

    2012-12-01

    We present the results of 71 speckle observations of binary and unresolved stars, most of which were observed with the DSSI speckle camera at the Gemini North Telescope in 2012 July. The main purpose of the run was to obtain diffraction-limited images of high-priority targets for the Kepler and CoRoT missions, but in addition, we observed a number of close binary stars where the resolution limit of Gemini was used to better determine orbital parameters and/or confirm results obtained at or below the diffraction limit of smaller telescopes. Five new binaries and one triple system were discovered, and first orbitsmore » are calculated for other two systems. Several systems are discussed in detail.« less

  20. Space optics; Proceedings of the Seminar, Huntsville, Ala., May 22-24, 1979

    NASA Technical Reports Server (NTRS)

    Wyman, C. L.

    1979-01-01

    The seminar focused on infrared systems, the space telescope, new design for space astronomy, future earth resources systems, and planetary systems. Papers were presented on infrared astronomy satellite, infrared telescope on Spacelab 2, design alternatives for the Shuttle Infrared Telescope Facility, Spacelab 2 infrared telescope cryogenic system, geometrical theory of diffraction and telescope stray-light analysis, Space Telescope scientific instruments, faint-object spectrograph for the Space Telescope, light scattering from multilayer optics, bidirectional reflectance distribution function measurements of stray light suppression coatings for the Space Telescope, optical fabrication of a 60-in. mirror, interferogram analysis for space optics, nuclear-pumped lasers for space application, geophysical fluid flow experiment, coherent rays for optical astronomy in space, optical system with fiber-optical elements, and Pioneer-Venus solar flux radiometer.

  1. Catadioptric optics for laser Doppler velocimeter applications

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.

    1989-01-01

    This paper examines the adaptation of low-cost Schmidt-Cassegrain astronomical telescopes to perform the laser-beam-focusing and scattered-light collection tasks associated with dual-beam laser Doppler velocimetry. A generic telescope design is analyzed using ray-tracing methods and Gaussian beam-propagation theory. A straightforward modification procedure to convert from infinite to near unity conjugate-ratio operation with very low residual aberration is identified and tested with a 200-mm-aperture telescope modified for f/10 operation. Performance data for this modified telescope configuration are near the diffraction limit and agree well with predictions.

  2. Ground-Based Telescope Parametric Cost Model

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  3. High channel density wavelength division multiplexer with defined diffracting means positioning

    DOEpatents

    Jannson, Tomasz P.; Jannson, Joanna L.; Yeung, Peter C.

    1990-01-01

    A wavelength division multiplexer/demultiplexer having optical path lengths between a fiber array and a Fourier transform lens, and between a dispersion grating and the lens equal to the focal length of the lens. The optical path lengths reduce losses due to angular acceptance mismatch in the multiplexer. Close orientation of the fiber array about the optical axis and the use of a holographic dispersion grating reduces other losses in the system. Multi-exposure holographic dispersion gratings enable the multiplexer/demultiplexer for extremely broad-band simultaneous transmission and reflection operation. Individual Bragg plane sets recorded in the grating are dedicated to and operate efficiently on discrete wavelength ranges.

  4. Low Probability of Intercept Laser Range Finder

    DTIC Science & Technology

    2017-07-19

    time of arrival, and it may also include wavelength, pulse width, and pulse repetition frequency (PRF). Second photodetector 38 in conjunction with... conjunction with lens 32 and telescope 36 that can correct for turbulence along the free space path. [0024] In all embodiments, the time interval

  5. Finding strong lenses in CFHTLS using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Jacobs, C.; Glazebrook, K.; Collett, T.; More, A.; McCarthy, C.

    2017-10-01

    We train and apply convolutional neural networks, a machine learning technique developed to learn from and classify image data, to Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) imaging for the identification of potential strong lensing systems. An ensemble of four convolutional neural networks was trained on images of simulated galaxy-galaxy lenses. The training sets consisted of a total of 62 406 simulated lenses and 64 673 non-lens negative examples generated with two different methodologies. An ensemble of trained networks was applied to all of the 171 deg2 of the CFHTLS wide field image data, identifying 18 861 candidates including 63 known and 139 other potential lens candidates. A second search of 1.4 million early-type galaxies selected from the survey catalogue as potential deflectors, identified 2465 candidates including 117 previously known lens candidates, 29 confirmed lenses/high-quality lens candidates, 266 novel probable or potential lenses and 2097 candidates we classify as false positives. For the catalogue-based search we estimate a completeness of 21-28 per cent with respect to detectable lenses and a purity of 15 per cent, with a false-positive rate of 1 in 671 images tested. We predict a human astronomer reviewing candidates produced by the system would identify 20 probable lenses and 100 possible lenses per hour in a sample selected by the robot. Convolutional neural networks are therefore a promising tool for use in the search for lenses in current and forthcoming surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope.

  6. Test method for telescopes using a point source at a finite distance

    NASA Technical Reports Server (NTRS)

    Griner, D. B.; Zissa, D. E.; Korsch, D.

    1985-01-01

    A test method for telescopes that makes use of a focused ring formed by an annular aperture when using a point source at a finite distance is evaluated theoretically and experimentally. The results show that the concept can be applied to near-normal, as well as grazing incidence. It is particularly suited for X-ray telescopes because of their intrinsically narrow annular apertures, and because of the largely reduced diffraction effects.

  7. A comparative study with a 755 nm picosecond Alexandrite laser with a diffractive lens array and a 532 nm/1064 nm Nd:YAG with a holographic optic.

    PubMed

    Tanghetti Md, Emil; Jennings, John

    2018-01-01

    This study was performed to better understand the cutaneous effects of using a fractional picosecond laser at 755 nm with a diffractive lens array and a picosecond Nd:YAG laser at 532 mn and 1064 nm with a holographic optic. We characterized the injuries created by these devices on skin clinically and histologically over 24 hours. With this information we modeled the effects of these devices on a cutaneous target. Eight patients, representing Fitzpatrick skin types I-VI, were treated on their backs with a picosecond Alexandrite laser with a diffractive lens array, as well as a picosecond Nd:YAG laser at 532 nm and 1064 nm with a holographic optic. Photographs were taken 15 minutes and 24 hours after treatments. Punch biopsies were obtained at 24 hours and examined histologically. Treatment with the picosecond Nd:YAG laser at both 532 nm and 1064 nm with the holographic optic revealed erythema and small scatted areas of petechial hemorrhage areas immediately and in many cases at 24 hours after treatment. The 755 nm picosecond Alexandrite laser with diffractive lens array produced erythema immediately after treatment, which largely dissipated 24 hours later. Histologies revealed intra-epidermal vacuoles with all three wavelengths. Fractional picosecond Nd:YAG laser at 532 nm and 1064 nm with the holographic optic showed focal areas of dermal and intra-epidermal hemorrhage with areas of vascular damage in some patients. This study demonstrates that both fractional picosecond devices produce vacuoles in the skin, which are most likely due to areas of laser induced optical breakdown (LIOB). In the patients (skin type II-IV) we observed scatter areas of hemorrhage in the skin, due to vascular damage with the 532 nm and 1064 nm, but not with 755 nm wavelengths. Lasers Surg. Med. 50:37-44, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. H0LiCOW – II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE 0435-1223

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sluse, D.; Sonnenfeld, A.; Rumbaugh, N.

    Galaxies located in the environment or on the line of sight towards gravitational lenses can significantly affect lensing observables, and can lead to systematic errors on the measurement of H 0 from the time-delay technique. We present the results of a systematic spectroscopic identi cation of the galaxies in the field of view of the lensed quasar HE0435-1223 using the W. M. Keck, Gemini and ESO-Very Large telescopes. Our new catalog triples the number of known galaxy redshifts in the direct vicinity of the lens, expanding to 102 the number of measured redshifts for galaxies separated by less than 30more » from the lens. We complement our catalog with literature data to gather redshifts up to 150 from the lens, and search for galaxy groups or clusters projected towards HE0435-1223. We con rm that the lens is a member of a small group that includes at least 12 galaxies, and nd 8 other group candidates near the line of sight of the lens. The flexion shift, namely the shift of lensed images produced by high order perturbation of the lens potential, is calculated for each galaxy/group and used to identify which objects produce the largest perturbation of the lens potential. This analysis demonstrates that i) at most three of the five brightest galaxies projected within 1200 of the lens need to be explicitly used in the lens models, and ii) the groups can be treated in the lens model as an external tidal field (shear) contribution.« less

  9. H0LiCOW – II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE 0435-1223

    DOE PAGES

    Sluse, D.; Sonnenfeld, A.; Rumbaugh, N.; ...

    2017-06-15

    Galaxies located in the environment or on the line of sight towards gravitational lenses can significantly affect lensing observables, and can lead to systematic errors on the measurement of H 0 from the time-delay technique. We present the results of a systematic spectroscopic identi cation of the galaxies in the field of view of the lensed quasar HE0435-1223 using the W. M. Keck, Gemini and ESO-Very Large telescopes. Our new catalog triples the number of known galaxy redshifts in the direct vicinity of the lens, expanding to 102 the number of measured redshifts for galaxies separated by less than 30more » from the lens. We complement our catalog with literature data to gather redshifts up to 150 from the lens, and search for galaxy groups or clusters projected towards HE0435-1223. We con rm that the lens is a member of a small group that includes at least 12 galaxies, and nd 8 other group candidates near the line of sight of the lens. The flexion shift, namely the shift of lensed images produced by high order perturbation of the lens potential, is calculated for each galaxy/group and used to identify which objects produce the largest perturbation of the lens potential. This analysis demonstrates that i) at most three of the five brightest galaxies projected within 1200 of the lens need to be explicitly used in the lens models, and ii) the groups can be treated in the lens model as an external tidal field (shear) contribution.« less

  10. Space missions for SETI.

    PubMed

    Drake, F

    1999-01-01

    Radio Telescopes for SETI searches are less demanding than general purpose astronomical radio telescopes. This provides an opportunity to exploit economical approaches in designing SETI systems. Radio Telescopes in low Earth orbit offer no discernible advantages to SETI; indeed, they probably would perform more poorly than a telescope in any other location. Telescopes in geosynchronous orbits would be sufficiently far from Earth to mitigate greatly the deleterious effect of human radio transmissions. Telescopes on the far side of the moon would be superb both from a radio interference standpoint, and from a civil engineering standpoint. Single-reflector telescopes as large as 50 kilometers in diameter could be constructed with conventional materials. However, their costs appear prohibitive. The asteroid belt and the outer solar system are unpromising places to place a large radio telescope. Perhaps the ultimate radio telescope would utilize the sun as a gravitational lens, focusing radiation on free-flying 10-meter class or possibly larger radio telescopes located at distances of the order of 1000 A.U. from the sun. Such a combination has an energy collecting area at 10 centimeters wavelength equivalent to that of a radio telescope about 11 kilometers in diameter, or of the order of 3000 Arecibo radio telescopes. Such a system could detect transmitters with EIRP of the order of a gigawatt at a distance of the order of the distance to the galactic center.

  11. A parametric study of various synthetic aperture telescope configurations for coherent imaging applications

    NASA Technical Reports Server (NTRS)

    Harvey, James E.; Wissinger, Alan B.; Bunner, Alan N.

    1986-01-01

    The comparative advantages of synthetic aperture telescopes (SATs) of segmented primary mirror and common secondary mirror type, on the one hand, and on the other those employing an array of independent telescopes, are discussed. The diffraction-limited optical performance of both redundant and nonredundant subaperture configurations are compared in terms of point spread function characteristics and encircled energy plots. Coherent imaging with afocal telescope SATs involves a pupil-mapping operation followed by a Fourier transform one. A quantitative analysis of the off-axis optical performance degradation due to pupil-mapping errors is presented, together with the field-dependent effects of residual design aberrations of independent telescopes.

  12. DETECTION OF A COMPANION LENS GALAXY USING THE MID-INFRARED FLUX RATIOS OF THE GRAVITATIONALLY LENSED QUASAR H1413+117

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, Chelsea L.; Agol, Eric; Kochanek, Christopher S.

    2009-07-10

    We present the first resolved mid-infrared (IR) (11 {mu}m) observations of the four-image quasar lens H1413+117 using the Michelle camera on Gemini North. All previous observations (optical, near-IR, and radio) of this lens show a 'flux anomaly', where the image flux ratios cannot be explained by a simple, central lens galaxy. We attempt to reproduce the mid-IR flux ratios, which are insensitive to extinction and microlensing, by modeling the main lens as a singular isothermal ellipsoid. This model fails to reproduce the flux ratios. However, we can explain the flux ratios simply by adding to the model a nearby galaxymore » detected in the H band by the Hubble Space Telescope. This perturbing galaxy lies 4.''0 from the main lens and it has a critical radius of 0.''63 {+-} 0.''02 which is similar to that of the main lens, as expected from their similar H-band fluxes. More remarkably, this galaxy is not required to obtain a good fit to the system astrometry, so this represents the first clear detection of an object through its effect on the image fluxes of a gravitational lens. This is a parallel to the detections of visible satellites from astrometric anomalies, and provides a proof of the concept of searching for substructure in galaxies using anomalous flux ratios.« less

  13. Optical elements formed by compressed gases: Analysis and potential applications

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1986-01-01

    Spherical, cylindrical, and conical shock waves are optically analogous to gas lenses. The geometrical optics of these shock configurations are analyzed as they pertain to flow visualization instruments, particularly the rainbow schlieren apparatus and single-pass interferometers. It is proposed that a lens or mirror formed by gas compressed between plastic sheets has potential as a fluid visualization test object; as the objective mirror in a very large space-based telescope, communication antenna, or energy collector; as the objective mirror in inexpensive commercial telescopes; and as a component in fluid visualization apparatuses.

  14. DSLR Double Star Astrometry Using an Alt-Az Telescope

    NASA Astrophysics Data System (ADS)

    Frey, Thomas; Haworth, David

    2014-07-01

    The goal of this project was to determine if the double star's angular separation and position angle measurements could be successfully measured with a motor driven, alt-azimuth Dobsonian-mounted Newtonian telescope (without a field rotator), and a digital single-lens reflex (DSLR) camera. Additionally, the project was constrained by using as much existing equipment as much as possible, including an Apple MacBook Pro laptop and a Canon T2i camera. This project was additionally challenging because the first author had no experience with astrophotography.

  15. Management Of Optical Projects

    NASA Astrophysics Data System (ADS)

    Young, Peter S.; Olson, David R.

    1981-03-01

    This paper discusses the management of optical projects from the concept stage, beginning with system specifications, through design, optical fabrication and test tasks. Special emphasis is placed on effective coupling of design engineering with fabrication development and utilization of available technology. Contrasts are drawn between accepted formalized management techniques, the realities of dealing with fragile components and the necessity of an effective project team which integrates the special characteristics of highly skilled optical specialists including lens designers, optical engineers, opticians, and metrologists. Examples are drawn from the HEAO-2 X-Ray Telescope and Space Telescope projects.

  16. Hard x-ray broad band Laue lenses (80-600 keV): building methods and performances

    NASA Astrophysics Data System (ADS)

    Virgilli, E.; Frontera, F.; Rosati, P.; Liccardo, V.; Squerzanti, S.; Carassiti, V.; Caroli, E.; Auricchio, N.; Stephen, J. B.

    2015-09-01

    We present the status of the LAUE project devoted to develop a technology for building a 20 meter long focal length Laue lens for hard X-/soft gamma-ray astronomy (80-600 keV). The Laue lens is composed of bent crystals of Gallium Arsenide (GaAs, 220) and Germanium (Ge, 111), and, for the first time, the focusing property of bent crystals has been exploited for this field of applications. We show the preliminary results concerning the adhesive employed to fix the crystal tiles over the lens support, the positioning accuracy obtained and possible further improvements. The Laue lens petal that will be completed in a few months has a pass band of 80-300 keV and is a fraction of an entire Laue lens capable of focusing x-rays up to 600 keV, possibly extendable down to ~20-30 keV with suitable low absorption crystal materials and focal length. The final goal is to develop a focusing optics that can improve the sensitivity over current telescopes in this energy band by 2 orders of magnitude.

  17. OGLE-2017-BLG-1130: The First Binary Gravitational Microlens Detected from Spitzer Only

    NASA Astrophysics Data System (ADS)

    Wang, Tianshu; Calchi Novati, S.; Udalski, A.; Gould, A.; Mao, Shude; Zang, W.; Beichman, C.; Bryden, G.; Carey, S.; Gaudi, B. S.; Henderson, C. B.; Shvartzvald, Y.; Yee, J. C.; Spitzer Team; Mróz, P.; Poleski, R.; Skowron, J.; Szymański, M. K.; Soszyński, I.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M.; OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Han, C.; Hwang, K.-H.; Jung, Y. K.; Ryu, Y.-H.; Shin, I.-G.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration

    2018-06-01

    We analyze the binary gravitational microlensing event OGLE-2017-BLG-1130 (mass ratio q ∼ 0.45), the first published case in which the binary anomaly was detected only by the Spitzer Space Telescope. This event provides strong evidence that some binary signals can be missed by observations from the ground alone but detected by Spitzer. We therefore invert the normal procedure, first finding the lens parameters by fitting the space-based data and then measuring the microlensing parallax using ground-based observations. We also show that the normal four-fold space-based degeneracy in the single-lens case can become a weak eight-fold degeneracy in binary-lens events. Although this degeneracy is resolved in event OGLE-2017-BLG-1130, it might persist in other events.

  18. A simple method for evaluating the wavefront compensation error of diffractive liquid-crystal wavefront correctors.

    PubMed

    Cao, Zhaoliang; Mu, Quanquan; Hu, Lifa; Lu, Xinghai; Xuan, Li

    2009-09-28

    A simple method for evaluating the wavefront compensation error of diffractive liquid-crystal wavefront correctors (DLCWFCs) for atmospheric turbulence correction is reported. A simple formula which describes the relationship between pixel number, DLCWFC aperture, quantization level, and atmospheric coherence length was derived based on the calculated atmospheric turbulence wavefronts using Kolmogorov atmospheric turbulence theory. It was found that the pixel number across the DLCWFC aperture is a linear function of the telescope aperture and the quantization level, and it is an exponential function of the atmosphere coherence length. These results are useful for people using DLCWFCs in atmospheric turbulence correction for large-aperture telescopes.

  19. The New Worlds Observer: A New Approach to Observing Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Cash, W.; Wilkinson, E.; Green, J.; Kasdin, J.; Spergel, D.; Turner, E.; Vanderbei, R.; Seager, S.; Stern, A.; Kilston, S.; Leiber, J.

    2003-12-01

    Direct observation of planets around other stars has been hindered primarily by the spatial proximity of their parent stars. Diffraction and scattering swamp the signal from the planet, which is typically billions of times fainter. We present an approach which has the potential to sidestep these problems. The New Worlds Observer was proposed to NASA last summer for a concept study as a Life Finder Mission to perform spectroscopy of terrestrial planets at 10pc. It consists of two spacecraft separated by 180,00km. The first craft, the starshade, features a deployable dark sheet hundreds of meters across and an aperture approximately 10m in diameter, specially shaped to suppress diffraction. At the focal plane of this pinhole camera flies a 10m diameter, one arcsecond quality Cassegrain telescope. If the telescope is placed where the pinhole image of a planet falls, the diffracted light from the star is suppressed, so only planet light enters the telescope. This system will allow sensitive observations anywhere from the far ultraviolet to the near infrared. Accompanying posters at this meeting will present science simulations and more details on the starshade design.

  20. Adaptive slit beam shaping for direct laser written waveguides.

    PubMed

    Salter, P S; Jesacher, A; Spring, J B; Metcalf, B J; Thomas-Peter, N; Simmonds, R D; Langford, N K; Walmsley, I A; Booth, M J

    2012-02-15

    We demonstrate an improved method for fabricating optical waveguides in bulk materials by means of femtosecond laser writing. We use an LC spatial light modulator (SLM) to shape the beam focus by generating adaptive slit illumination in the pupil of the objective lens. A diffraction grating is applied in a strip across the SLM to simulate a slit, with the first diffracted order mapped onto the pupil plane of the objective lens while the zeroth order is blocked. This technique enables real-time control of the beam-shaping parameters during writing, facilitating the fabrication of more complicated structures than is possible using nonadaptive methods. Waveguides are demonstrated in fused silica with a coupling loss to single-mode fibers in the range of 0.2 to 0.5 dB and propagation loss <0.4 dB/cm.

  1. Coronagraphic Imaging with HST and STIS

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Proffitt, C.; Malumuth, E.; Woodgate, B. E.; Gull, T. R.; Bowers, C. W.; Heap, S. R.; Kimble, R. A.; Lindler, D.; Plait, P.

    2002-01-01

    Revealing faint circumstellar nebulosity and faint stellar or substellar companions to bright stars typically requires use of techniques for rejecting the direct, scattered, and diffracted light of the star. One such technique is Lyot coronagraphy. We summarize the performance of the white-light coronagraphic capability of the Space Telescope Imaging spectrograph, on board the Hubble Space Telescope.

  2. Jovian Planet Finder optical system

    NASA Astrophysics Data System (ADS)

    Krist, John E.; Clampin, Mark; Petro, Larry; Woodruff, Robert A.; Ford, Holland C.; Illingworth, Garth D.; Ftaclas, Christ

    2003-02-01

    The Jovian Planet Finder (JPF) is a proposed NASA MIDEX mission to place a highly optimized coronagraphic telescope on the International Space Station (ISS) to image Jupiter-like planets around nearby stars. The optical system is an off-axis, unobscured telescope with a 1.5 m primary mirror. A classical Lyot coronagraph with apodized occulting spots is used to reduce diffracted light from the central star. In order to provide the necessary contrast for detection of a planet, scattered light from mid-spatial-frequency errors is reduced by using super-smooth optics. Recent advances in polishing optics for extreme-ultraviolet lithography have shown that a factor of >30 reduction in midfrequency errors relative to those in the Hubble Space Telescope is possible (corresponding to a reduction in scattered light of nearly 1000x). The low level of scattered and diffracted light, together with a novel utilization of field rotation introduced by the alt-azimuth ISS telescope mounting, will provide a relatively low-cost facility for not only imaging extrasolar planets, but also circumstellar disks, host galaxies of quasars, and low-mass substellar companions such as brown dwarfs.

  3. Multivariable Parametric Cost Model for Ground Optical Telescope Assembly

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2005-01-01

    A parametric cost model for ground-based telescopes is developed using multivariable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction-limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature are examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e., multi-telescope phased-array systems). Additionally, single variable models Based on aperture diameter are derived.

  4. Hubble Frontier Fields view of MACSJ0717.5+3745

    NASA Image and Video Library

    2015-10-22

    This image from the NASA/ESA Hubble Space Telescope shows the galaxy cluster MACSJ0717.5+3745. This is one of six being studied by the Hubble Frontier Fields programme, which together have produced the deepest images of gravitational lensing ever made. Due to the huge mass of the cluster it is bending the light of background objects, acting as a magnifying lens. It is one of the most massive galaxy clusters known, and it is also the largest known gravitational lens. Of all of the galaxy clusters known and measured, MACS J0717 lenses the largest area of the sky.

  5. Various view with fish-eye lens of STS-103 crew on aft flight deck

    NASA Image and Video Library

    2000-01-28

    STS103-375-019 (19-27 December 1999) ---.Six members of the STS-103 crew are seen in this "fish-eye" lens scene taken on Discovery's flight deck during the deployment of the Hubble Space Telescope (HST). From left are astronauts Jean-Francois Clervoy, C. Michael Foale, Claude Nicollier, Curtis L. Brown, Jr., John M. Grunsfeld and Scott J. Kelly. Brown and Kelly are commander and pilot, respectively. All the others are mission specialists, with international MS Nicollier and Clervoy representing the European Space Agency (ESA). Astronaut Steven L. Smith, payload commander, took the photo.

  6. Interference testing methods of large astronomical mirrors base on lenses and CGH wavefront correctors

    NASA Astrophysics Data System (ADS)

    Abdulkadyrov, Magomed A.; Belousov, Sergey P.; Patrikeev, Vladimir E.; Semenov, Alexandr P.

    2010-07-01

    Since last years and at present days LZOS, JSC has been producing a range of primary mirrors of astronomical telescopes with diameter more than 1m under contracts with foreign companies. Simultaneous testing of an aspherical surface figure by means of a lens corrector and CGH (computer generated hologram) corrector, testing of the corrector using the CGH allow challenging the task of definite testing of the mirrors surfaces figure. The results of successful figuring of the mirrors with diameter up to 4m like VISTA Project (Southern European Observatory), TNT (Thai National telescope, Australia - Thailand), LCO telescopes (Las Cumbres Observatory, USA; Russian national projects and meeting these mirrors specifications' requirements are all considered as the sufficient evidence.

  7. Nanostructure Secondary-Mirror Apodizing Mask for Transmitter Signal Suppression in a Duplex Telescope

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Livas, Jeffrey; Shiri, Shahram; Getty, Stephanie; Tveekrem, June; Butler, James

    2012-01-01

    A document discusses a nanostructure apodizing mask, made of multi-walled carbon nanotubes, that is applied to the centers (or in and around the holes) of the secondary mirrors of telescopes that are used to interferometrically measure the strain of space-time in response to gravitational waves. The shape of this ultra-black mask can be adjusted to provide a smooth transition to the clear aperture of the secondary mirror to minimize diffracted light. Carbon nanotubes grown on silicon are a viable telescope mirror substrate, and can absorb significantly more light than other black treatments. The hemispherical reflectance of multi-walled carbon nanotubes grown at GSFC is approximately 3 to 10 times better than a standard aerospace paint used for stray light control. At the LISA (Laser Interferometer Space Antenna) wavelength of 1 micron, the advantage over paint is a factor of 10. Primarily, in the center of the secondary mirror (in the region of central obscuration, where no received light is lost) a black mask is applied to absorb transmitted light that could be reflected back into the receiver. In the LISA telescope, this is in the center couple of millimeters. The shape of this absorber is critical to suppress diffraction at the edge. By using the correct shape, the stray light can be reduced by approximately 10 to the 9 orders of magnitude versus no center mask. The effect of the nanotubes has been simulated in a stray-light model. The effect of the apodizing mask has been simulated in a near-field diffraction model. Specifications are geometry-dependent, but the baseline design for the LISA telescope has been modeled as well. The coatings are somewhat fragile, but work is continuing to enhance adhesion.

  8. High-contrast imaging with an arbitrary aperture: active correction of aperture discontinuities

    NASA Astrophysics Data System (ADS)

    Pueyo, Laurent; Norman, Colin; Soummer, Rémi; Perrin, Marshall; N'Diaye, Mamadou; Choquet, Elodie

    2013-09-01

    We present a new method to achieve high-contrast images using segmented and/or on-axis telescopes. Our approach relies on using two sequential Deformable Mirrors to compensate for the large amplitude excursions in the telescope aperture due to secondary support structures and/or segment gaps. In this configuration the parameter landscape of Deformable Mirror Surfaces that yield high contrast Point Spread Functions is not linear, and non-linear methods are needed to find the true minimum in the optimization topology. We solve the highly non-linear Monge-Ampere equation that is the fundamental equation describing the physics of phase induced amplitude modulation. We determine the optimum configuration for our two sequential Deformable Mirror system and show that high-throughput and high contrast solutions can be achieved using realistic surface deformations that are accessible using existing technologies. We name this process Active Compensation of Aperture Discontinuities (ACAD). We show that for geometries similar to JWST, ACAD can attain at least 10-7 in contrast and an order of magnitude higher for future Extremely Large Telescopes, even when the pupil features a missing segment" . We show that the converging non-linear mappings resulting from our Deformable Mirror shapes actually damp near-field diffraction artifacts in the vicinity of the discontinuities. Thus ACAD actually lowers the chromatic ringing due to diffraction by segment gaps and strut's while not amplifying the diffraction at the aperture edges beyond the Fresnel regime and illustrate the broadband properties of ACAD in the case of the pupil configuration corresponding to the Astrophysics Focused Telescope Assets. Since details about these telescopes are not yet available to the broader astronomical community, our test case is based on a geometry mimicking the actual one, to the best of our knowledge.

  9. Field lens multiplexing in holographic 3D displays by using Bragg diffraction based volume gratings

    NASA Astrophysics Data System (ADS)

    Fütterer, G.

    2016-11-01

    Applications, which can profit from holographic 3D displays, are the visualization of 3D data, computer-integrated manufacturing, 3D teleconferencing and mobile infotainment. However, one problem of holographic 3D displays, which are e.g. based on space bandwidth limited reconstruction of wave segments, is to realize a small form factor. Another problem is to provide a reasonable large volume for the user placement, which means to provide an acceptable freedom of movement. Both problems should be solved without decreasing the image quality of virtual and real object points, which are generated within the 3D display volume. A diffractive optical design using thick hologram gratings, which can be referred to as Bragg diffraction based volume gratings, can provide a small form factor and high definition natural viewing experience of 3D objects. A large collimated wave can be provided by an anamorphic backlight unit. The complex valued spatial light modulator add local curvatures to the wave field he is illuminated with. The modulated wave field is focused onto to the user plane by using a volume grating based field lens. Active type liquid crystal gratings provide 1D fine tracking of approximately +/- 8° deg. Diffractive multiplex has to be implemented for each color and for a set of focus functions providing coarse tracking. Boundary conditions of the diffractive multiplexing are explained. This is done in regards to the display layout and by using the coupled wave theory (CWT). Aspects of diffractive cross talk and its suppression will be discussed including longitudinal apodized volume gratings.

  10. MANN: A program to transfer designs for diffractive optical elements to a MANN photolithographic mask generator

    NASA Technical Reports Server (NTRS)

    Matthys, Donald R.

    1994-01-01

    There are two basic areas of interest for diffractive optics. In the first, the property of wavefront division is exploited for achieving optical fanout, analogous to the more familiar electrical fanout of electronic circuitry. The basic problem here is that when using a simple uniform diffraction grating the energy input is divided unevenly among the output beams. The other area of interest is the use of diffractive elements to replace or supplement standard refractive elements such as lenses. Again, local grating variations can be used to control the amount of bending imparted to optical rays, and the efficiency of the diffractive element will depend on how closely the element can be matched to the design requirements. In general, production restrictions limit how closely the element approaches the design, and for the common case of photolithographic production, a series of binary masks is required to achieve high efficiency. The actual design process is much more involved than in the case of elements for optical fanout, as the desired phase of the optical wavefront over some reference plane must be specified and the phase alteration to be introduced at each point by the diffraction element must be known. This generally requires the utilization of a standard optical design program. Two approaches are possible. In the first approach, the diffractive element is treated as a special type of lens and the ordinary optical design equations are used. Optical design programs tend to follow a second approach, namely, using the equations of optical interference derived from holographic theory and then allowing the introduction of phase front corrections in the form of polynomial equations. By using either of these two methods, diffractive elements can be used not only to compensate for distortions such as chromatic or spherical aberration, but also to perform the work of a variety of other optical elements such as null correctors, beam shapers, etc. The main focus of the project described in this report is how the design information from the lens design program is incorporated into the photolithographic process. It is shown that the MANN program, a photolithographic mask generator, fills the need for a link between lens design programs and mask generation controllers.The generated masks can be used to expose a resist-coated substrate which is etched and then must be re-coated, re-exposed, and re-etched for making copies, just as in the electronics industry.

  11. Binary star speckle measurements during 1992-1997 from the SAO 6-m and 1-m telescopes in Zelenchuk

    NASA Astrophysics Data System (ADS)

    Balega, I. I.; Balega, Y. Y.; Maksimov, A. F.; Pluzhnik, E. A.; Shkhagosheva, Z. U.; Vasyuk, V. A.

    1999-12-01

    We present the results of speckle interferometric measurements of binary stars made with the television photon-counting camera at the 6-m Big Azimuthal Telescope (BTA) and 1-m telescope of the Special Astrophysical Observatory (SAO) between August 1992 and May 1997. The data contain 89 observations of 62 star systems on the large telescope and 21 on the smaller one. For the 6-m aperture 18 systems remained unresolved. The measured angular separation ranged from 39 mas, two times above the BTA diffraction limit, to 1593 mas.

  12. Optical fabrication of large area photonic microstructures by spliced lens

    NASA Astrophysics Data System (ADS)

    Jin, Wentao; Song, Meng; Zhang, Xuehua; Yin, Li; Li, Hong; Li, Lin

    2018-05-01

    We experimentally demonstrate a convenient approach to fabricate large area photorefractive photonic microstructures by a spliced lens device. Large area two-dimensional photonic microstructures are optically induced inside an iron-doped lithium niobate crystal. The experimental setups of our method are relatively compact and stable without complex alignment devices. It can be operated in almost any optical laboratories. We analyze the induced triangular lattice microstructures by plane wave guiding, far-field diffraction pattern imaging and Brillouin-zone spectroscopy. By designing the spliced lens appropriately, the method can be easily extended to fabricate other complex large area photonic microstructures, such as quasicrystal microstructures. Induced photonic microstructures can be fixed or erased and re-recorded in the photorefractive crystal.

  13. In-line FINCH super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens.

    PubMed

    Brooker, Gary; Siegel, Nisan; Rosen, Joseph; Hashimoto, Nobuyuki; Kurihara, Makoto; Tanabe, Ayano

    2013-12-15

    We report a new optical arrangement that creates high-efficiency, high-quality Fresnel incoherent correlation holography (FINCH) holograms using polarization sensitive transmission liquid crystal gradient index (TLCGRIN) diffractive lenses. In contrast, current universal practice in the field employs a reflective spatial light modulator (SLM) to separate sample and reference beams. Polarization sensitive TLCGRIN lenses enable a straight optical path, have >90% transmission efficiency, are not pixilated, and are free of many limitations of reflective SLM devices. For each sample point, two spherical beams created by a glass lens in combination with a polarization sensitive TLCGRIN lens interfere and create a hologram and resultant super resolution image.

  14. High channel density wavelength division multiplexer with defined diffracting means positioning

    DOEpatents

    Jannson, T.P.; Jannson, J.L.; Yeung, P.C.

    1990-05-15

    A wavelength division multiplexer/demultiplexer is disclosed having optical path lengths between a fiber array and a Fourier transform lens, and between a dispersion grating and the lens equal to the focal length of the lens. The optical path lengths reduce losses due to angular acceptance mismatch in the multiplexer. Close orientation of the fiber array about the optical axis and the use of a holographic dispersion grating reduces other losses in the system. Multi-exposure holographic dispersion gratings enable the multiplexer/demultiplexer for extremely broad-band simultaneous transmission and reflection operation. Individual Bragg plane sets recorded in the grating are dedicated to and operate efficiently on discrete wavelength ranges. 11 figs.

  15. Holographic optical element for laser soldering

    NASA Astrophysics Data System (ADS)

    Nakahara, Sumio; Hayashi, Tatsuya; Sudou, Noriyuki; Hisada, Shigeyoshi; Fujita, Takeyoshi

    2002-02-01

    Experimental studies on the characteristics of holographic lens were carried out, aiming at the simultaneous soldering of multi-spots in electronic assembly by the use of YAG laser. Holograms were recorded on the commercial available photographic plates, and converted into transparent phase type holographic lens by chemical processing. The dependencies of the diffraction efficiency on the recording conditions and two chemical treatment methods of silver halide sensitized gelatin and rehalogenating bleaching were examined in CW YAG laser system ((lambda) equals 1.06 micrometers ).

  16. Wavefront measurement of plastic lenses for mobile-phone applications

    NASA Astrophysics Data System (ADS)

    Huang, Li-Ting; Cheng, Yuan-Chieh; Wang, Chung-Yen; Wang, Pei-Jen

    2016-08-01

    In camera lenses for mobile-phone applications, all lens elements have been designed with aspheric surfaces because of the requirements in minimal total track length of the lenses. Due to the diffraction-limited optics design with precision assembly procedures, element inspection and lens performance measurement have become cumbersome in the production of mobile-phone cameras. Recently, wavefront measurements based on Shack-Hartmann sensors have been successfully implemented on injection-molded plastic lens with aspheric surfaces. However, the applications of wavefront measurement on small-sized plastic lenses have yet to be studied both theoretically and experimentally. In this paper, both an in-house-built and a commercial wavefront measurement system configured on two optics structures have been investigated with measurement of wavefront aberrations on two lens elements from a mobile-phone camera. First, the wet-cell method has been employed for verifications of aberrations due to residual birefringence in an injection-molded lens. Then, two lens elements of a mobile-phone camera with large positive and negative power have been measured with aberrations expressed in Zernike polynomial to illustrate the effectiveness in wavefront measurement for troubleshooting defects in optical performance.

  17. Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses

    DOEpatents

    Sommargren, Gary E.; Campbell, Eugene W.

    2004-03-09

    To measure a convex mirror, a reference beam and a measurement beam are both provided through a single optical fiber. A positive auxiliary lens is placed in the system to give a converging wavefront onto the convex mirror under test. A measurement is taken that includes the aberrations of the convex mirror as well as the errors due to two transmissions through the positive auxiliary lens. A second, measurement provides the information to eliminate this error. A negative lens can also be measured in a similar way. Again, there are two measurement set-ups. A reference beam is provided from a first optical fiber and a measurement beam is provided from a second optical fiber. A positive auxiliary lens is placed in the system to provide a converging wavefront from the reference beam onto the negative lens under test. The measurement beam is combined with the reference wavefront and is analyzed by standard methods. This measurement includes the aberrations of the negative lens, as well as the errors due to a single transmission through the positive auxiliary lens. A second measurement provides the information to eliminate this error.

  18. Application Of The Phase Shifting Diffraction Interferometer For Measuring Convex Mirrors And Negative Lenses

    DOEpatents

    Sommargren, Gary E.; Campbell, Eugene W.

    2005-06-21

    To measure a convex mirror, a reference beam and a measurement beam are both provided through a single optical fiber. A positive auxiliary lens is placed in the system to give a converging wavefront onto the convex mirror under test. A measurement is taken that includes the aberrations of the convex mirror as well as the errors due to two transmissions through the positive auxiliary lens. A second measurement provides the information to eliminate this error. A negative lens can also be measured in a similar way. Again, there are two measurement set-ups. A reference beam is provided from a first optical fiber and a measurement beam is provided from a second optical fiber. A positive auxiliary lens is placed in the system to provide a converging wavefront from the reference beam onto the negative lens under test. The measurement beam is combined with the reference wavefront and is analyzed by standard methods. This measurement includes the aberrations of the negative lens, as well as the errors due to a single transmission through the positive auxiliary lens. A second measurement provides the information to eliminate this error.

  19. The Adaptive Optics Lucky Imager: Diffraction limited imaging at visible wavelengths with large ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Crass, Jonathan; Mackay, Craig; King, David; Rebolo-López, Rafael; Labadie, Lucas; Puga, Marta; Oscoz, Alejandro; González Escalera, Victor; Pérez Garrido, Antonio; López, Roberto; Pérez-Prieto, Jorge; Rodríguez-Ramos, Luis; Velasco, Sergio; Villó, Isidro

    2015-01-01

    One of the continuing challenges facing astronomers today is the need to obtain ever higher resolution images of the sky. Whether studying nearby crowded fields or distant objects, with increased resolution comes the ability to probe systems in more detail and advance our understanding of the Universe. Obtaining these high-resolution images at visible wavelengths however has previously been limited to the Hubble Space Telescope (HST) due to atmospheric effects limiting the spatial resolution of ground-based telescopes to a fraction of their potential. With HST now having a finite lifespan, it is prudent to investigate other techniques capable of providing these kind of observations from the ground. Maintaining this capability is one of the goals of the Adaptive Optics Lucky Imager (AOLI).Achieving the highest resolutions requires the largest telescope apertures, however, this comes at the cost of increased atmospheric distortion. To overcome these atmospheric effects, there are two main techniques employed today: adaptive optics (AO) and lucky imaging. These techniques individually are unable to provide diffraction limited imaging in the visible on large ground-based telescopes; AO currently only works at infrared wavelengths while lucky imaging reduces in effectiveness on telescopes greater than 2.5 metres in diameter. The limitations of both techniques can be overcome by combing them together to provide diffraction limited imaging at visible wavelengths on the ground.The Adaptive Optics Lucky Imager is being developed as a European collaboration and combines AO and lucky imaging in a dedicated instrument for the first time. Initially for use on the 4.2 metre William Herschel Telescope, AOLI uses a low-order adaptive optics system to reduce the effects of atmospheric turbulence before imaging with a lucky imaging based science detector. The AO system employs a novel type of wavefront sensor, the non-linear Curvature Wavefront Sensor (nlCWFS) which provides significant sky-coverage using natural guide-stars alone.Here we present an overview of the instrument design, results from the first on-sky and laboratory testing and on-going development work of the instrument and its adaptive optics system.

  20. High-resolution imaging of the Pluto-Charon system with the Faint Object Camera of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Albrecht, R.; Barbieri, C.; Adorf, H.-M.; Corrain, G.; Gemmo, A.; Greenfield, P.; Hainaut, O.; Hook, R. N.; Tholen, D. J.; Blades, J. C.

    1994-01-01

    Images of the Pluto-Charon system were obtained with the Faint Object Camera (FOC) of the Hubble Space Telescope (HST) after the refurbishment of the telescope. The images are of superb quality, allowing the determination of radii, fluxes, and albedos. Attempts were made to improve the resolution of the already diffraction limited images by image restoration. These yielded indications of surface albedo distributions qualitatively consistent with models derived from observations of Pluto-Charon mutual eclipses.

  1. Multivariable Parametric Cost Model for Ground Optical: Telescope Assembly

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature were examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter were derived.

  2. High convergence efficiency design of flat Fresnel lens with large aperture

    NASA Astrophysics Data System (ADS)

    Ke, Jieyao; Zhao, Changming; Guan, Zhe

    2018-01-01

    This paper designed a circle-shaped Fresnel lens with large aperture as part of the solar pumped laser design project. The Fresnel lens designed in this paper simulate in size 1000mm×1000mm, focus length 1200mm and polymethyl methacrylate (PMMA) material in order to conduct high convergence efficiency. In the light of design requirement of concentric ring with same width of 0.3mm, this paper proposed an optimized Fresnel lens design based on previous sphere design and conduct light tracing simulation in Matlab. This paper also analyzed the effect of light spot size, light intensity distribution, optical efficiency under four conditions, monochromatic parallel light, parallel spectrum light, divergent monochromatic light and sunlight. Design by 550nm wavelength and under the condition of Fresnel reflection, the results indicated that the designed lens could convergent sunlight in diffraction limit of 11.8mm with a 78.7% optical efficiency, better than the sphere cutting design results of 30.4%.

  3. Infrared Testing of the Wide-field Infrared Survey Telescope Grism Using Computer Generated Holograms

    NASA Technical Reports Server (NTRS)

    Dominguez, Margaret Z.; Content, David A.; Gong, Qian; Griesmann, Ulf; Hagopian, John G.; Marx, Catherine T; Whipple, Arthur L.

    2017-01-01

    Infrared Computer Generated Holograms (CGHs) were designed, manufactured and used to measure the performance of the grism (grating prism) prototype which includes testing Diffractive Optical Elements (DOE). The grism in the Wide Field Infrared Survey Telescope (WFIRST) will allow the surveying of a large section of the sky to find bright galaxies.

  4. Lens models and magnification maps of the six Hubble Frontier Fields clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Traci L.; Sharon, Keren; Bayliss, Matthew B.

    2014-12-10

    We present strong-lensing models as well as mass and magnification maps for the cores of the six Hubble Space Telescope (HST) Frontier Fields galaxy clusters. Our parametric lens models are constrained by the locations and redshifts of multiple image systems of lensed background galaxies. We use a combination of photometric redshifts and spectroscopic redshifts of the lensed background sources obtained by us (for A2744 and AS1063), collected from the literature, or kindly provided by the lensing community. Using our results, we (1) compare the derived mass distribution of each cluster to its light distribution, (2) quantify the cumulative magnification powermore » of the HST Frontier Fields clusters, (3) describe how our models can be used to estimate the magnification and image multiplicity of lensed background sources at all redshifts and at any position within the cluster cores, and (4) discuss systematic effects and caveats resulting from our modeling methods. We specifically investigate the effect of the use of spectroscopic and photometric redshift constraints on the uncertainties of the resulting models. We find that the photometric redshift estimates of lensed galaxies are generally in excellent agreement with spectroscopic redshifts, where available. However, the flexibility associated with relaxed redshift priors may cause the complexity of large-scale structure that is needed to account for the lensing signal to be underestimated. Our findings thus underline the importance of spectroscopic arc redshifts, or tight photometric redshift constraints, for high precision lens models. All products from our best-fit lens models (magnification, convergence, shear, deflection field) and model simulations for estimating errors are made available via the Mikulski Archive for Space Telescopes.« less

  5. Lens Systems for Sky Surveys and Space Surveillance

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; McGraw, J.; Zimmer, P.

    2013-09-01

    Since the early days of astrophotography, lens systems have played a key role in capturing images of the night sky. The first images were attempted with visual-refractors. These were soon followed with color-corrected refractors and finally specially designed photo-refractors. Being telescopes, these instruments were of long-focus and imaged narrow fields of view. Simple photographic lenses were soon put into service to capture wide-field images. These lenses also had the advantage of requiring shorter exposure times than possible using large refractors. Eventually, lenses were specifically designed for astrophotography. With the introduction of the Schmidt-camera and related catadioptric systems, the popularity of astrograph lenses declined, but surprisingly, a few remained in use. Over the last 30 years, as small CCDs have displaced large photographic plates, lens systems have again found favor for their ability to image great swaths of sky in a relatively small and simple package. In this paper, we follow the development of lens-based astrograph systems from their beginnings through the current use of both commercial and custom lens systems for sky surveys and space surveillance. Some of the optical milestones discussed include the early Petzval-type portrait lenses, the Ross astrographic lens and the current generation of optics such as the commercial 200mm camera lens by Canon, and the Russian VT-53e in service with ISON.

  6. Direct Laser Writing of Nanophotonic Structures on Contact Lenses.

    PubMed

    AlQattan, Bader; Yetisen, Ali K; Butt, Haider

    2018-04-24

    Contact lenses are ubiquitous biomedical devices used for vision correction and cosmetic purposes. Their application as quantitative analytical devices is highly promising for point-of-care diagnostics. However, it is a challenge to integrate nanoscale features into commercial contact lenses for application in low-cost biosensors. A neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (1064 nm, 3 ns pulse, 240 mJ) in holographic interference patterning mode was utilized to produce optical nanostructures over the surface of a hydrogel contact lens. One-dimensional (925 nm) and two-dimensional (925 nm × 925 nm) nanostructures were produced on contact lenses and analyzed by spectroscopy and angle-resolve measurements. The holographic properties of these nanostructures were tested in ambient moisture, fully hydrated, and artificial tear conditions. The measurements showed a rapid tuning of optical diffraction from these nanostructures from 41 to 48°. The nanostructures were patterned near the edges of the contact lens to avoid any interference and obstruction to the human vision. The formation of 2D nanostructures on lenses increased the diffraction efficiency by more than 10%. The versatility of the holographic laser ablation method was demonstrated by producing four different 2D nanopattern geometries on contact lenses. Hydrophobicity of the contact lens was characterized by contact angle measurements, which increased from 59.0° at pristine condition to 62.5° at post-nanofabrication. The holographic nanostructures on the contact lens were used to sense the concentration of Na + ions. Artificial tear solution was used to simulate the conditions in dry eye syndrome, and nanostructures on the contact lenses were used to detect the electrolyte concentration changes (±47 mmol L -1 ). Nanopatterns on a contact lens may be used to sense other ocular diseases in early stages at point-of-care settings.

  7. OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens

    NASA Astrophysics Data System (ADS)

    Yoo, Jaiyul; DePoy, D. L.; Gal-Yam, A.; Gaudi, B. S.; Gould, A.; Han, C.; Lipkin, Y.; Maoz, D.; Ofek, E. O.; Park, B.-G.; Pogge, R. W.; Mu-Fun Collaboration; Udalski, A.; Soszyński, I.; Wyrzykowski, Ł.; Kubiak, M.; Szymański, M.; Pietrzyński, G.; Szewczyk, O.; Żebruń, K.; OGLE Collaboration

    2004-03-01

    We analyze OGLE-2003-BLG-262, a relatively short (tE=12.5+/-0.1 day) microlensing event generated by a point-mass lens transiting the face of a K giant source in the Galactic bulge. We use the resulting finite-source effects to measure the angular Einstein radius, θE=195+/-17 μas, and so constrain the lens mass to the FWHM interval 0.08

  8. Starshade Prototype

    NASA Image and Video Library

    2016-08-09

    This image shows the bare bones of the first prototype starshade by NASA's Jet Propulsion Laboratory, Pasadena, California. The prototype was shown in technology partner Astro Aerospace/Northrup Grumman's facility in Santa Barbara, California in 2013. In order for the petals of the starshade to diffract starlight away from the camera of a space telescope, they must be deployed with accuracy once the starshade reaches space. The four petals pictured in the image are being measured for this positional accuracy with a laser. As shown by this 66-foot (20-meter) model, starshades can come in many shapes and sizes. This design shows petals that are more extreme in shape which properly diffracts starlight for smaller telescopes. http://photojournal.jpl.nasa.gov/catalog/PIA20903

  9. Historical challenge of large lenses

    NASA Astrophysics Data System (ADS)

    Johnson, Kevin L.

    2002-02-01

    To present a full account of the developments in the manufacture of large lenses one needs to address wider issues rather than just provide a catalogue of technological progress. The advances in glass manufacture and improvement in optical techniques have to be considered in relation to the cultural, social and economic factors that have determined where, how and why large lens manufacture developed in specific countries. The challenge facing historians trying to tackle this technological theme, is that it is often poorly documented and little is preserved in the historical records. Until relatively recent times, opticians have concealed their methods, trade secrecy being an important economic strategy. To provide an example, it should be noted that although William Herschel produced the best optics and telescopes of the day, he published practically nothing about his methods. What has been gleaned of his techniques has only been uncovered by careful study of surviving manuscript sources and measurement of his surviving optics. Such was William's personal knowledge, that his son John had to take instruction from his father to refurbish William Herschel's 20-foot telescope. This training gave John tacit knowledge of William's methods and allowed him to successfully undertake his cape observations in the Southern Hemisphere. In spite of the shortcomings of the historical record, historians can give a measured account of the developments of lens optics by studying surviving telescopes and their optics.

  10. Simulation of light propagation in the thin-film waveguide lens

    NASA Astrophysics Data System (ADS)

    Malykh, M. D.; Divakov, D. V.; Sevastianov, L. A.; Sevastianov, A. L.

    2018-04-01

    In this paper we investigate the solution of the problem of modeling the propagation of electromagnetic radiation in three-dimensional integrated optical structures, such as waveguide lenses. When propagating through three-dimensional waveguide structures the waveguide modes can be hybridized, so the mathematical model of their propagation must take into account the connection of TE- and TM-mode components. Therefore, an adequate consideration of hybridization of the waveguide modes is possible only in vector formulation of the problem. An example of three-dimensional structure that hybridizes waveguide modes is the Luneburg waveguide lens, which also has focusing properties. If the waveguide lens has a radius of the order of several tens of wavelengths, its variable thickness at distances of the order of several wavelengths is almost constant. Assuming in this case that the electromagnetic field also varies slowly in the direction perpendicular to the direction of propagation, one can introduce a small parameter characterizing this slow varying and decompose the solution in powers of the small parameter. In this approach, in the zeroth approximation, scalar diffraction problems are obtained, the solution of which is less resource-consuming than the solution of vector problems. The calculated first-order corrections of smallness describe the connection of TE- and TM-modes, so the solutions obtained are weakly-hybridized modes. The formulation of problems and methods for their numerical solution in this paper are based on the authors' research on waveguide diffraction on a lens in a scalar formulation.

  11. Hyperchromatic lens for recording time-resolved phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frayer, Daniel K.

    A method and apparatus for the capture of a high number of quasi-continuous effective frames of 2-D data from an event at very short time scales (from less than 10.sup.-12 to more than 10.sup.-8 seconds) is disclosed which allows for short recording windows and effective number of frames. Active illumination, from a chirped laser pulse directed to the event creates a reflection where wavelength is dependent upon time and spatial position is utilized to encode temporal phenomena onto wavelength. A hyperchromatic lens system receives the reflection and maps wavelength onto axial position. An image capture device, such as holography ormore » plenoptic imaging device, captures the resultant focal stack from the hyperchromatic lens system in both spatial (imaging) and longitudinal (temporal) axes. The hyperchromatic lens system incorporates a combination of diffractive and refractive components to maximally separate focal position as a function of wavelength.« less

  12. High numerical aperture multilayer Laue lenses

    DOE PAGES

    Morgan, Andrew J.; Prasciolu, Mauro; Andrejczuk, Andrzej; ...

    2015-06-01

    The ever-increasing brightness of synchrotron radiation sources demands improved X-ray optics to utilise their capability for imaging and probing biological cells, nanodevices, and functional matter on the nanometer scale with chemical sensitivity. Here we demonstrate focusing a hard X-ray beam to an 8 nm focus using a volume zone plate (also referred to as a wedged multilayer Laue lens). This lens was constructed using a new deposition technique that enabled the independent control of the angle and thickness of diffracting layers to microradian and nanometer precision, respectively. This ensured that the Bragg condition is satisfied at each point along themore » lens, leading to a high numerical aperture that is limited only by its extent. We developed a phase-shifting interferometric method based on ptychography to characterise the lens focus. The precision of the fabrication and characterisation demonstrated here provides the path to efficient X-ray optics for imaging at 1 nm resolution.« less

  13. Instrumentation development for space debris optical observation system in Indonesia: Preliminary results

    NASA Astrophysics Data System (ADS)

    Dani, Tiar; Rachman, Abdul; Priyatikanto, Rhorom; Religia, Bahar

    2015-09-01

    An increasing number of space junk in orbit has raised their chances to fall in Indonesian region. So far, three debris of rocket bodies have been found in Bengkulu, Gorontalo and Lampung. LAPAN has successfully developed software for monitoring space debris that passes over Indonesia with an altitude below 200 km. To support the software-based system, the hardware-based system has been developed based on optical instruments. The system has been under development in early 2014 which consist of two systems: the telescopic system and wide field system. The telescopic system uses CCD cameras and a reflecting telescope with relatively high sensitivity. Wide field system uses DSLR cameras, binoculars and a combination of CCD with DSLR Lens. Methods and preliminary results of the systems will be presented.

  14. Gamma-Ray Telescope and Uncertainty Principle

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2012-01-01

    Heisenberg's Uncertainty Principle is one of the important basic principles of quantum mechanics. In most of the books on quantum mechanics, this uncertainty principle is generally illustrated with the help of a gamma ray microscope, wherein neither the image formation criterion nor the lens properties are taken into account. Thus a better…

  15. Occultation studies of the Solar System

    NASA Technical Reports Server (NTRS)

    Millis, Robert L.

    1987-01-01

    The planetary occultation program began at Lowell Observatory in 1973 with a worldwide campaign to observe mutual occultations and eclipses of the Galilean Satellites. Then the temperature profile of the Martian atmosphere was measured from data taken during the occultation of epsilon Geminorum, the Rings of Uranus were discovered as they occulted SAO 158687, and the dimensions of Pallas were measured when that minor planet occulted SAO 85009. In 1979 the present grant was initiated, providing funds for portable photometric instrumentation used to observe occultations by asteroids as well as by Uranus and Neptune. Software for predicting occultations of catalog stars by asteroids, planets, and comets was written in 1983. Lowell currently provides most of the available predictions for asteroid occultations. Realizing in 1983 that the lack of a high-quality astrometric telescope dedicated to occultation work was limiting progress, an 18-inch, F/8 lens was acquired and adapted to an existing mounting at Lowell. Although acquisition of the lens and implementation of the new telescope has been accomplished primarily with non-grant funds, the instrument makes a major contribution to occultation research.

  16. Dark matter dynamics in Abell 3827: new data consistent with standard cold dark matter

    NASA Astrophysics Data System (ADS)

    Massey, Richard; Harvey, David; Liesenborgs, Jori; Richard, Johan; Stach, Stuart; Swinbank, Mark; Taylor, Peter; Williams, Liliya; Clowe, Douglas; Courbin, Frédéric; Edge, Alastair; Israel, Holger; Jauzac, Mathilde; Joseph, Rémy; Jullo, Eric; Kitching, Thomas D.; Leonard, Adrienne; Merten, Julian; Nagai, Daisuke; Nightingale, James; Robertson, Andrew; Romualdez, Luis Javier; Saha, Prasenjit; Smit, Renske; Tam, Sut-Ieng; Tittley, Eric

    2018-06-01

    We present integral field spectroscopy of galaxy cluster Abell 3827, using Atacama Large Millimetre Array (ALMA) and Very Large Telescope/Multi-Unit Spectroscopic Explorer. It reveals an unusual configuration of strong gravitational lensing in the cluster core, with at least seven lensed images of a single background spiral galaxy. Lens modelling based on Hubble Space Telescope imaging had suggested that the dark matter associated with one of the cluster's central galaxies may be offset. The new spectroscopic data enable better subtraction of foreground light, and better identification of multiple background images. The inferred distribution of dark matter is consistent with being centred on the galaxies, as expected by Λ cold dark matter. Each galaxy's dark matter also appears to be symmetric. Whilst, we do not find an offset between mass and light (suggestive of self-interacting dark matter) as previously reported, the numerical simulations that have been performed to calibrate Abell 3827 indicate that offsets and asymmetry are still worth looking for in collisions with particular geometries. Meanwhile, ALMA proves exceptionally useful for strong lens image identifications.

  17. WHAT? A Large Reflective Schmidt Telescope for the Antarctic Plateau

    NASA Astrophysics Data System (ADS)

    Saunders, W.; McGrath, A. J.

    We present a design concept for WHAT the Wide-field Antarctic Horizontal Telescope to take advantage of the unique possibilities of Antarctica for both optical and near infrared astronomy. The design is an 8 metre, wide-field, fixed-axis, all-reflective, f/4 Schmidt telescope. Prime and Cassegrain (or Gregorian) foci are provided, giving plate scales 150-1500 μ m/'', over fields of view 3'-3circ. Diffraction limited, NGSAO-corrected K_dark images are possible over arc-minute sized fields, over most of the sky. The sensitivity, resolution, field of view and cost all compare favourably with current or proposed space or ground-based telescopes.

  18. Achieving the resolution of the spectrograph of the 6m large Azimuthal telescope

    NASA Astrophysics Data System (ADS)

    Sazonenko, Dmitrii; Kukushkin, Dmitrii; Bakholdin, Alexey; Valyavin, Gennady

    2016-08-01

    Special Astrophysical Observatory of Russian Academy of Sciences (SAO RAS) creates a spectrograph with high spectral resolution for the 6-meter telescope. The spectrograph consists of a mobile unit located at the focus of the telescope's main mirror, a stationary part located under the telescope and optical fibers which transmit light from the mobile part to the stationary one. The spectral resolution of the stationary part should be R=100000. To achieve such a value, the scheme has two spectral elements, with cross-dispersion. The main spectral element is an echelle grating. The second spectral element is a prism with a diffraction grating on one facet.

  19. Adaptive optics for array telescopes using piston-and-tilt wave-front sensing

    NASA Technical Reports Server (NTRS)

    Wizinowich, P.; Mcleod, B.; Lloyd-Yhart, M.; Angel, J. R. P.; Colucci, D.; Dekany, R.; Mccarthy, D.; Wittman, D.; Scott-Fleming, I.

    1992-01-01

    A near-infrared adaptive optics system operating at about 50 Hz has been used to control phase errors adaptively between two mirrors of the Multiple Mirror Telescope by stabilizing the position of the interference fringe in the combined unresolved far-field image. The resultant integrated images have angular resolutions of better than 0.1 arcsec and fringe contrasts of more than 0.6. Measurements of wave-front tilt have confirmed the wavelength independence of image motion. These results show that interferometric sensing of phase errors, when combined with a system for sensing the wave-front tilt of the individual telescopes, will provide a means of achieving a stable diffraction-limited focus with segmented telescopes or arrays of telescopes.

  20. Diffraction-limited imaging with very large telescopes; Proceedings of the NATO Advanced Study Institute, Cargese, France, Sept. 13-23, 1988

    NASA Astrophysics Data System (ADS)

    Alloin, D. M.; Mariotti, J.-M.

    Recent advances in optics and observation techniques for very large astronomical telescopes are discussed in reviews and reports. Topics addressed include Fourier optics and coherence, optical propagation and image formation through a turbulent atmosphere, radio telescopes, continuously deformable telescopes for optical interferometry (I), amplitude estimation from speckle I, noise calibration of speckle imagery, and amplitude estimation from diluted-array I. Consideration is given to first-order imaging methods, speckle imaging with the PAPA detector and the Knox-Thompson algorithm, phase-closure imaging, real-time wavefront sensing and adaptive optics, differential I, astrophysical programs for high-angular-resolution optical I, cophasing telescope arrays, aperture synthesis for space observatories, and lunar occultations for marcsec resolution.

  1. Optical design of CCAT

    NASA Astrophysics Data System (ADS)

    Cortés-Medellín, Germán; Herter, Terry

    2006-06-01

    The Cornell Caltech Atacama Telescope (CCAT) is a 25m-class sub-millimeter radio telescope capable of operating from 300GHz up to 1.5 THz. The CCAT optical design is an f/8 Ritchey-Chretien (RC) system in a dual Nasmyth focus configuration and a 20 arc-min FOV (diffraction limited imaging performance better than 0.31" at the edge of the field). The large FOV is capable to accommodate up to 1200x1200 (Nyquist Sampled) Pixels at 200 microns, with better than 96% Strehl ratio. The telescope pedestal assembly is a counterbalanced elevation over azimuth design. The main reflector surface is segmented and actively controlled to attain diffraction-limited operation up to 200 microns. A flat Mirror located behind the main reflector vertex provides the optical path relay to either of the two Nasmyth platforms and to a bent-Cassegrain focus for surface calibration. We present the imaging characteristics of the CCAT over the 20arc-min FOV at 200 microns at the Nasmyth focal plane, as well as the positioning sensitivity analysis of CCAT's 3.2m-diameter sub-reflector given in terms of the telescope optical performance, antenna pointing requirements and sub-reflector chopping characteristics.

  2. The pinwheel pupil discovery: exoplanet science & improved processing with segmented telescopes

    NASA Astrophysics Data System (ADS)

    Breckinridge, James Bernard

    2018-01-01

    In this paper, we show that by using a “pinwheel” architecture for the segmented primary mirror and curved supports for the secondary mirror, we can achieve a near uniform diffraction background in ground and space large telescope systems needed for high SNR exoplanet science. Also, the point spread function will be nearly rotationally symmetric, enabling improved digital image reconstruction. Large (>4-m) aperture space telescopes are needed to characterize terrestrial exoplanets by direct imaging coronagraphy. Launch vehicle volume constrains these apertures are segmented and deployed in space to form a large mirror aperture that is masked by the gaps between the hexagonal segments and the shadows of the secondary support system. These gaps and shadows over the pupil result in an image plane point spread function that has bright spikes, which may mask or obscure exoplanets.These telescope artifact mask faint exoplanets, making it necessary for the spacecraft to make a roll about the boresight and integrate again to make sure no planets are missed. This increases integration time, and requires expensive space-craft resources to do bore-sight roll.Currently the LUVOIR and HabEx studies have several significant efforts to develop special purpose A/O technology and to place complex absorbing apodizers over their Hex pupils to shape the unwanted diffracted light. These strong apodizers absorb light, decreasing system transmittance and reducing SNR. Implementing curved pupil obscurations will eliminate the need for the highly absorbing apodizers and thus result in higher SNR.Quantitative analysis of diffraction patterns that use the pinwheel architecture are compared to straight hex-segment edges with a straight-line secondary shadow mask to show a gain of over a factor of 100 by reducing the background. For the first-time astronomers are able to control and minimize image plane diffraction background “noise”. This technology will enable 10-m segmented apertures to perform nearly the same as a 10-meter monolith filled aperture. The pinwheel pupil will enable a significant gain in exoplanet SNR.

  3. Simulated Guide Stars: Adapting the Robo-AO Telescope Simulator to UH 88”

    NASA Astrophysics Data System (ADS)

    Ashcraft, Jaren; Baranec, Christoph

    2018-01-01

    Robo-AO is an autonomous adaptive optics system that is in development for the UH 88” Telescope on the Mauna Kea Observatory. This system is capable of achieving near diffraction limited imaging for astronomical telescopes, and has seen successful deployment and use at the Palomar and Kitt Peak Observatories previously. A key component of this system, the telescope simulator, will be adapted from the Palomar Observatory design to fit the UH 88” Telescope. The telescope simulator will simulate the exit pupil of the UH 88” telescope so that the greater Robo-AO system can be calibrated before observing runs. The system was designed in Code V, and then further improved upon in Zemax for later development. Alternate design forms were explored for the potential of adapting the telescope simulator to the NASA Infrared Telescope Facility, where simulating the exit pupil of the telescope proved to be more problematic. A proposed design composed of solely catalog optics was successfully produced for both telescopes, and they await assembly as time comes to construct the new Robo-AO system.

  4. Laser diode assembly including a cylindrical lens

    DOEpatents

    Snyder, James J.; Reichert, Patrick

    1992-01-01

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing.

  5. Point symmetric design approach to a wide-field wide-wavelength cat's eye retro-reflector anastigmat

    NASA Astrophysics Data System (ADS)

    Liepmann, Till W.

    2009-08-01

    A point symmetric design approach for creating a practical cat's eye retro-reflector (CERR) anastigmat lens with a wide field of regard (FOR), uniform reflectance and wide wavelength range is described. An anastigmat design is presented that demonstrates the performance capability of the design approach. The lens design is diffraction limited in double pass at F/3, has a "working distance" between lens and reflector, wide wavelength range of operation, and uniform reflectivity over a 120 deg FOR. An anastigmat fabricated from the design is presented; however, the design approach is generally useful for any application requiring a high performance retro-reflector. The design uses only spherical surfaces, thereby avoiding the fabrication expense of aspheric surfaces.

  6. Elimination of coherent noise in a coherent light imaging system

    NASA Technical Reports Server (NTRS)

    Grebowsky, G. J.; Hermann, R. L.; Paull, H. B.; Shulman, A. R.

    1970-01-01

    Optical imaging systems using coherent light introduce objectionable noise into the output image plane. Dust and bubbles on and in lenses cause most of the noise in the output image. This noise usually appears as bull's-eye diffraction patterns in the image. By rotating the lens about the optical axis these diffraction patterns can be essentially eliminated. The technique does not destroy the spatial coherence of the light and permits spatial filtering of the input plane.

  7. Quantitative measurements of magnetic vortices using position resolved diffraction in Lorentz STEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaluzec, N. J.

    2002-03-05

    A number of electron column techniques have been developed over the last forty years to permit visualization of magnetic fields in specimens. These include: Fresnel imaging, Differential Phase Contrast, Electron Holography and Lorentz STEM. In this work we have extended the LSTEM methodology using Position Resolved Diffraction (PRD) to quantitatively measure the in-plane electromagnetic fields of thin film materials. The experimental work reported herein has been carried out using the ANL AAEM HB603Z 300 kV FEG instrument 5. In this instrument, the electron optical column was operated in a zero field mode, at the specimen, where the objective lens ismore » turned off and the probe forming lens functions were reallocated to the C1, C2, and C3 lenses. Post specimen lenses (P1, P2, P3, P4) were used to magnify the transmitted electrons to a YAG screen, which was then optically transferred to a Hamamatsu ORCA ER CCD array. This CCD was interfaced to an EmiSpec Data Acquisition System and the data was subsequently transferred to an external computer system for detailed quantitative analysis. In Position Resolved Diffraction mode, we digitally step a focused electron probe across the region of interest of the specimen while at the same time recording the complete diffraction pattern at each point in the scan.« less

  8. Synthetic light-needle photoacoustic microscopy for extended depth of field (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Jiamiao; Gong, Lei; Xu, Xiao; Hai, Pengfei; Suzuki, Yuta; Wang, Lihong V.

    2017-03-01

    Photoacoustic microscopy (PAM) has been extensively applied in biomedical study because of its ability to visualize tissue morphology and physiology in vivo in three dimensions (3D). However, conventional PAM suffers from a rapidly decreasing resolution away from the focal plane because of the limited depth of focus of an objective lens, which deteriorates the volumetric imaging quality inevitably. Here, we propose a novel method to synthesize an ultra-long light needle to extend a microscope's depth of focus beyond its physical limitations with wavefront engineering method. Furthermore, it enables an improved lateral resolution that exceeds the diffraction limit of the objective lens. The virtual light needle can be flexibly synthesized anywhere throughout the imaging volume without mechanical scanning. Benefiting from these advantages, we developed a synthetic light needle photoacoustic microscopy (SLN-PAM) to achieve an extended depth of field (DOF), sub-diffraction and motionless volumetric imaging. The DOF of our SLN-PAM system is up to 1800 µm, more than 30-fold improvement over that gained by conventional PAM. Our system also achieves the lateral resolution of 1.8 µm (characterized at 532 nm and 0.1 NA objective), about 50% higher than the Rayleigh diffraction limit. Its superior imaging performance was demonstrated by 3D imaging of both non-biological and biological samples. This extended DOF, sub-diffraction and motionless 3D PAM will open up new opportunities for potential biomedical applications.

  9. Efficient photonic reformatting of celestial light for diffraction-limited spectroscopy

    NASA Astrophysics Data System (ADS)

    MacLachlan, D. G.; Harris, R. J.; Gris-Sánchez, I.; Morris, T. J.; Choudhury, D.; Gendron, E.; Basden, A. G.; Spaleniak, I.; Arriola, A.; Birks, T. A.; Allington-Smith, J. R.; Thomson, R. R.

    2017-02-01

    The spectral resolution of a dispersive astronomical spectrograph is limited by the trade-off between throughput and the width of the entrance slit. Photonic guided wave transitions have been proposed as a route to bypass this trade-off, by enabling the efficient reformatting of incoherent seeing-limited light collected by the telescope into a linear array of single modes: a pseudo-slit which is highly multimode in one axis but diffraction-limited in the dispersion axis of the spectrograph. It is anticipated that the size of a single-object spectrograph fed with light in this manner would be essentially independent of the telescope aperture size. A further anticipated benefit is that such spectrographs would be free of `modal noise', a phenomenon that occurs in high-resolution multimode fibre-fed spectrographs due to the coherent nature of the telescope point spread function (PSF). We seek to address these aspects by integrating a multicore fibre photonic lantern with an ultrafast laser inscribed three-dimensional waveguide interconnect to spatially reformat the modes within the PSF into a diffraction-limited pseudo-slit. Using the CANARY adaptive optics (AO) demonstrator on the William Herschel Telescope, and 1530 ± 80 nm stellar light, the device exhibits a transmission of 47-53 per cent depending upon the mode of AO correction applied. We also show the advantage of using AO to couple light into such a device by sampling only the core of the CANARY PSF. This result underscores the possibility that a fully optimized guided-wave device can be used with AO to provide efficient spectroscopy at high spectral resolution.

  10. Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions

    NASA Astrophysics Data System (ADS)

    Factor, Samuel M.; Kraus, Adam L.

    2017-01-01

    Direct detection of close in companions (exoplanets or binary systems) is notoriously difficult. While coronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast. Non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, though the mask discards ˜95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM to a diffraction limited image utilizing the full aperture. Instead of non-redundant closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I have developed my own faint companion detection pipeline which utilizes an Bayesian analysis of kernel-phases. I have used this pipeline to search for new companions in archival images from HST/NICMOS in order to constrain planet and binary formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical λ/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. This technique can easily be applied to archival data as no mask is needed and will thus make the detection of close in companions cheap and simple as no additional observations are needed. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time.

  11. Extended depth of focus intraocular lens: Chromatic performance

    PubMed Central

    Millán, Maria S.; Vega, Fidel

    2017-01-01

    We describe a first-and-second-diffractive-order intraocular lens ((1st,2nd)DIOL) within the class of hybrid refractive-diffractive designs for intraocular lenses (IOLs) and analyse its properties of focus extension and compensation of longitudinal chromatic aberration (LCA), particularly for lenses with low addition. Power, energy efficiency and their wavelength dependence are extended from monofocal IOL and conventional bifocal zeroth-and-first-diffractive-order IOL ((0th,1st)DIOL) to (1st,2nd)DIOL of low addition. Compensation of LCA is experimentally assessed in optical bench through the through-focus energy efficiency of three Tecnis IOLs with red, green and blue illuminations: ZA9003 (monofocal), ZKB00 (bifocal (0th,1st)DIOL with + 2.75 D add) and Symfony ZXR00. We prove Tecnis Symfony ZXR00 IOL can be considered an example of (1st,2nd)DIOL design of low addition, with LCA compensation in both the distance and intermediate foci, whereas the bifocal (0th,1st)DIOL does not compensate in the distance focus. However, the energy efficiency of (1st,2nd)DIOL for wavelengths other than the design wavelength is markedly more asymmetric. PMID:28966865

  12. Diffraction-limited lucky imaging with a 12" commercial telescope

    NASA Astrophysics Data System (ADS)

    Baptista, Brian J.

    2014-08-01

    Here we demonstrate a novel lucky imaging camera which is designed to produce diffraction-limited imaging using small telescopes similar to ones used by many academic institutions for outreach and/or student training. We present a design that uses a Meade 12" SCT paired with an Andor iXon fast readout EMCCD. The PSF of the telescope is matched to the pixel size of the EMCCD by adding a simple, custom-fabricated, intervening optical system. We demonstrate performance of the system by observing both astronomical and terrestrial targets. The astronomical application requires simpler data reconstruction techniques as compared to the terrestrial case. We compare different lucky imaging registration and reconstruction algorithms for use with this imager for both astronomical and terrestrial targets. We also demonstrate how this type of instrument would be useful for both undergraduate and graduate student training. As an instructional aide, the instrument can provide a hands-on approach for teaching instrument design, standard data reduction techniques, lucky imaging data processing, and high resolution imaging concepts.

  13. Accessing High Spatial Resolution in Astronomy Using Interference Methods

    NASA Astrophysics Data System (ADS)

    Carbonel, Cyril; Grasset, Sébastien; Maysonnave, Jean

    2018-04-01

    In astronomy, methods such as direct imaging or interferometry-based techniques (Michelson stellar interferometry for example) are used for observations. A particular advantage of interferometry is that it permits greater spatial resolution compared to direct imaging with a single telescope, which is limited by diffraction owing to the aperture of the instrument as shown by Rueckner et al. in a lecture demonstration. The focus of this paper, addressed to teachers and/or students in high schools and universities, is to easily underline both an application of interferometry in astronomy and stress its interest for resolution. To this end very simple optical experiments are presented to explain all the concepts. We show how an interference pattern resulting from the combined signals of two telescopes allows us to measure the distance between two stars with a resolution beyond the diffraction limit. Finally this work emphasizes the breathtaking resolution obtained in state-of-the-art instruments such as the VLTi (Very Large Telescope interferometer).

  14. Discovery of a Strong Lensing Galaxy Embedded in a Cluster at z = 1.62

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth C.; Tran, Kim-Vy H.; Suyu, Sherry H.; Momcheva, Ivelina G.; Brammer, Gabriel B.; Brodwin, Mark; Gonzalez, Anthony H.; Halkola, Aleksi; Kacprzak, Glenn G.; Koekemoer, Anton M.; Papovich, Casey J.; Rudnick, Gregory H.

    2014-07-01

    We identify a strong lensing galaxy in the cluster IRC 0218 (also known as XMM-LSS J02182-05102) that is spectroscopically confirmed to be at z = 1.62, making it the highest-redshift strong lens galaxy known. The lens is one of the two brightest cluster galaxies and lenses a background source galaxy into an arc and a counterimage. With Hubble Space Telescope (HST) grism and Keck/LRIS spectroscopy, we measure the source redshift to be z S = 2.26. Using HST imaging in ACS/F475W, ACS/F814W, WFC3/F125W, and WFC3/F160W, we model the lens mass distribution with an elliptical power-law profile and account for the effects of the cluster halo and nearby galaxies. The Einstein radius is θ _E=0.38+0.02-0.01 arcsec (3.2-0.1+0.2 kpc) and the total enclosed mass is M _tot (< θ _E)=1.8+0.2-0.1× 1011 M⊙ . We estimate that the cluster environment contributes ~10% of this total mass. Assuming a Chabrier initial mass function (IMF), the dark matter fraction within θE is f_DMChab = 0.3-0.3+0.1, while a Salpeter IMF is marginally inconsistent with the enclosed mass (f_DMSalp = -0.3-0.5+0.2). The total magnification of the source is μ _tot=2.1-0.3+0.4. The source has at least one bright compact region offset from the source center. Emission from Lyα and [O III] are likely to probe different regions in the source. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program No. 12590.

  15. Using ISS Telescopes for Electromagnetic Follow-up of Gravitational Wave Detections of NS-NS and NS-BH Mergers

    NASA Technical Reports Server (NTRS)

    Camp, J.; Barthelmy, S.; Blackburn, L.; Carpenter, K. G.; Gehrels, N.; Kanner, J.; Marshall, F. E.; Racusin, J. L.; Sakamoto, T.

    2013-01-01

    The International Space Station offers a unique platform for rapid and inexpensive deployment of space telescopes. A scientific opportunity of great potential later this decade is the use of telescopes for the electromagnetic follow-up of ground-based gravitational wave detections of neutron star and black hole mergers. We describe this possibility for OpTIIX, an ISS technology demonstration of a 1.5 m diffraction limited optical telescope assembled in space, and ISS-Lobster, a wide-field imaging X-ray telescope now under study as a potential NASA mission. Both telescopes will be mounted on pointing platforms, allowing rapid positioning to the source of a gravitational wave event. Electromagnetic follow-up rates of several per year appear likely, offering a wealth of complementary science on the mergers of black holes and neutron stars.

  16. Spider Silk: Mother Nature's Bio-Superlens

    NASA Astrophysics Data System (ADS)

    Monks, James N.; Yan, Bing; Hawkins, Nicholas; Vollrath, Fritz; Wang, Zengbo

    2016-09-01

    This paper demonstrates a possible new microfiber bio near field lens that uses minor ampullate spider silk,spun from the Nephila edulis spider, to create a real time image of a surface using near field optical techniques. The microfiber bio lens is the world's first natural superlens created by exploring biological materials. The resolution of the surface image overcomes the diffraction limit, with the ability to resolve patterns at 100 nm under a standard white light source in reflection mode. This resolution offers further developments in superlens technology and paves the way for new bio optics.

  17. Fabrication of Fiber Optic Grating Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Wang, Ying (Inventor); Sharma, Anup (Inventor); Grant, Joseph (Inventor)

    2005-01-01

    An apparatus and method for forming a Bragg grating on an optical fiber using a phase mask to diffract a beam of coherent energy and a lens combined with a pair of mirrors to produce two symmetrical virtual point sources of coherent energy in the plane of the optical fiber. The two virtual light sources produce an interference pattern along the optical fiber. In a further embodiment, the period of the pattern and therefore the Bragg wavelength grating applied to the fiber is varied with the position of the optical fiber relative the lens.

  18. Color waveguide transparent screen using lens array holographic optical element

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Sun, Peng; Wang, Chang; Zheng, Zhenrong

    2017-11-01

    A color transparent screen was designed in this paper, a planar glass was used as a waveguide structure and the lens array holographic optical element (HOE) was used as a display unit. The lens array HOE was exposed by two coherent beams. One was the reference wave which directly illuminated on the holographic material and the other was modulated by the micro lens array. The lens array HOE can display the images with see-through abilities. Unlike the conventional lens array HOE, a planar glass was adopted as the waveguide in the experiment. The projecting light was totally internal-reflected in the planar glass to eliminate the undesired zero-order diffracted light. By using waveguide, it also brings advantage of compact structure. Colorful display can be realized in our system as the holographic materials were capable for multi-wavelength display. In this paper, a color transparent screen utilizing the lens array HOE and waveguide were designed. Experiment results showed a circular display area on the transparent screen. The diameter of the area is 20 mm and it achieved the pixel resolution of 100 μm. This simple and effective method could be an alternative in the augment reality (AR) applications, such as transparent phone and television.

  19. A lazy way to design infrared lens

    NASA Astrophysics Data System (ADS)

    Qiu, RongSheng; Wu, JianDong; Chen, LongJiang; Yu, Kun; Pang, HaoJun; Hu, BaiZhen

    2017-08-01

    We designed a compact middle-wave infrared (MWIR) lens with a large focal length ratio (about 1.5:1), used in the 3.7 to 4.8 μm range. The lens is consisted of a compact front group and a re-imaging group. Thanks to the compact front group configuration, it is possible to install a filter wheel mechanism in such a tight space. The total track length of the lens is about 50mm, which includes a 2mm thick protective window and a cold shield of 12mm. The full field of view of the lens is about 3.6°, and F number is less than 1.6, the image circle is about 4.6mm in diameter. The design performance of the lens reaches diffraction limitation, and doesn't change a lot during a temperature range of -40°C +60°C. This essay proposed a stepwise design method of infrared optical system guided by the qualitative approach. The method fully utilize the powerful global optimization ability, with a little effort to write code snippet in optical design software, frees optical engineer from tedious calculation of the original structure.

  20. Dynamics of focused femtosecond laser pulse during photodisruption of crystalline lens

    NASA Astrophysics Data System (ADS)

    Gupta, Pradeep Kumar; Singh, Ram Kishor; Sharma, R. P.

    2018-04-01

    Propagation of laser pulses of femtosecond time duration (focused through a focusing lens inside the crystalline lens) has been investigated in this paper. Transverse beam diffraction, group velocity dispersion, graded refractive index structure of the crystalline lens, self-focusing, and photodisruption in which plasma is formed due to the high intensity of laser pulses through multiphoton ionization have been taken into account. The model equations are the modified nonlinear Schrödinger equation along with a rate equation that takes care of plasma generation. A close analysis of model equations suggests that the femtosecond laser pulse duration is critical to the breakdown in the lens. Our numerical simulations reveal that the combined effect of self-focusing and multiphoton ionization provides the breakdown threshold. During the focusing of femtosecond laser pulses, additional spatial pulse splitting arises along with temporal splitting. This splitting of laser pulses arises on account of self-focusing, laser induced breakdown, and group velocity distribution, which modifies the shape of laser pulses. The importance of the present study in cavitation bubble generation to improve the elasticity of the eye lens has also been discussed in this paper.

  1. Optimal power distribution for minimizing pupil walk in a 7.5X afocal zoom lens

    NASA Astrophysics Data System (ADS)

    Song, Wanyue; Zhao, Yang; Berman, Rebecca; Bodell, S. Yvonne; Fennig, Eryn; Ni, Yunhui; Papa, Jonathan C.; Yang, Tianyi; Yee, Anthony J.; Moore, Duncan T.; Bentley, Julie L.

    2017-11-01

    An extensive design study was conducted to find the best optimal power distribution and stop location for a 7.5x afocal zoom lens that controls the pupil walk and pupil location through zoom. This afocal zoom lens is one of the three components in a VIS-SWIR high-resolution microscope for inspection of photonic chips. The microscope consists of an afocal zoom, a nine-element objective and a tube lens and has diffraction limited performance with zero vignetting. In this case, the required change in object (sample) size and resolution is achieved by the magnification change of the afocal component. This creates strict requirements for both the entrance and exit pupil locations of the afocal zoom to couple the two sides successfully. The first phase of the design study looked at conventional four group zoom lenses with positive groups in the front and back and the stop at a fixed location outside the lens but resulted in significant pupil walk. The second phase of the design study focused on several promising unconventional four-group power distribution designs with moving stops that minimized pupil walk and had an acceptable pupil location (as determined by the objective and tube lens).

  2. Quasar lenses and pairs in the VST-ATLAS and Gaia

    NASA Astrophysics Data System (ADS)

    Agnello, A.; Schechter, P. L.; Morgan, N. D.; Treu, T.; Grillo, C.; Malesani, D.; Anguita, T.; Apostolovski, Y.; Rusu, C. E.; Motta, V.; Rojas, K.; Chehade, B.; Shanks, T.

    2018-04-01

    We report on discovery results from a quasar lens search in the ATLAS-DR3 public footprint. Spectroscopic follow-up campaigns, conducted at the 2.6 m Nordic Optical Telescope (La Palma) and 3.6 m New Technology Telescope (La Silla) in 2016, yielded seven pairs of quasars exhibiting the same lines at the same redshift and monotonic flux ratios with wavelength (hereafter NIQs, nearly identical quasar pairs). Magellan spectra of A0140-1152 (01h40m03{^s.}0-11d52m19{^s.}0, zs = 1.807) confirm it as a lens with deflector at zl = 0.277 and Einstein radius θE = (0.73 ± 0.02) arcsec. Follow-up imaging of the NIQ A2213-2652 (22h13m38{^s.}4-26d52m27{^s.}1) reveals the deflector galaxy and confirms it as a lens. We show the use of spatial resolution from the Gaia mission to select lenses and list additional systems from a WISE-Gaia-ATLAS search, yielding three additional lenses (02h35m27{^s.}4-24d33m13{^s.}2, 02h59m33s-23d38m01{^s.}8, 01h46m32{^s.}9-11d33m39{^s.}0). The overall sample consists of 11 lenses/NIQs, plus three lenses known before 2016, over the ATLAS-DR3 footprint (≈3500 deg2). Finally, we discuss future prospects for objective classification of pair/NIQ/contaminant spectra.

  3. Discovery of a Very Bright and Intrinsically Very Luminous, Strongly Lensed Lyα Emitting Galaxy at z = 2.82 in the BOSS Emission-Line Lens Survey

    NASA Astrophysics Data System (ADS)

    Marques-Chaves, Rui; Pérez-Fournon, Ismael; Shu, Yiping; Martínez-Navajas, Paloma I.; Bolton, Adam S.; Kochanek, Christopher S.; Oguri, Masamune; Zheng, Zheng; Mao, Shude; Montero-Dorta, Antonio D.; Cornachione, Matthew A.; Brownstein, Joel R.

    2017-01-01

    We report the discovery of a very bright (r = 20.16), highly magnified, and yet intrinsically very luminous Lyα emitter (LAE) at z=2.82. This system comprises four images in the observer plane with a maximum separation of ˜ 6\\prime\\prime and it is lensed by a z=0.55 massive early-type galaxy. It was initially identified in the Baryon Oscillation Spectroscopic Survey Emission-Line Lens Survey for GALaxy-Lyα EmitteR sYstems survey, and follow-up imaging and spectroscopic observations using the Gran Telescopio Canarias and William Herschel Telescope confirmed the lensing nature of this system. A lens model using a singular isothermal ellipsoid in an external shear field reproduces the main features of the system quite well, yielding an Einstein radius of 2.″95 ± 0.″10, and a total magnification factor for the LAE of 8.8 ± 0.4. This LAE is one of the brightest and most luminous galaxy-galaxy strong lenses known. We present initial imaging and spectroscopy showing the basic physical and morphological properties of this lensed system. Based on observations made with the Gran Telescopio Canarias (GTC) and William Herschel Telescope (WHT), in the Spanish Observatorio del Roque de los Muchachos of the IAC, under Directors Discretionary Time (DDT programs IDs: GTC2016-054 and DDT2016-077).

  4. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer.

    PubMed

    Liu, Changming; Wei, Xuli; Niu, Liting; Wang, Kejia; Yang, Zhengang; Liu, Jinsong

    2016-06-13

    We present an efficient method to discriminate orbital angular momentum (OAM) of the terahertz (THz) vortex beam using a diffractive mode transformer. The mode transformer performs a log-polar coordinate transformation of the input THz vortex beam, which consists of two 3D-printed diffractive elements. A following lens separates each transformed OAM mode to a different lateral position in its focal plane. This method enables a simultaneous measurement over multiple OAM modes of the THz vortex beam. We experimentally demonstrate the measurement of seven individual OAM modes and two multiplexed OAM modes, which is in good agreement with simulations.

  5. THE BOSS EMISSION-LINE LENS SURVEY. IV. SMOOTH LENS MODELS FOR THE BELLS GALLERY SAMPLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Yiping; Bolton, Adam S.; Montero-Dorta, Antonio D.

    We present Hubble Space Telescope F606W-band imaging observations of 21 galaxy-Ly α emitter lens candidates in the Baryon Oscillation Spectroscopic Survey Emission-Line Lens Survey (BELLS) for the GALaxy-Ly α EmitteR sYstems (BELLS GALLERY) survey. Seventeen systems are confirmed to be definite lenses with unambiguous evidence of multiple imaging. The lenses are primarily massive early-type galaxies (ETGs) at redshifts of approximately 0.55, while the lensed sources are Ly α emitters (LAEs) at redshifts from two to three. Although most of the lens systems are well fit by smooth lens models consisting of singular isothermal ellipsoids in an external shear field, a thoroughmore » exploration of dark substructures in the lens galaxies is required. The Einstein radii of the BELLS GALLERY lenses are, on average, 60% larger than those of the BELLS lenses because of the much higher source redshifts. This will allow for a detailed investigation of the radius evolution of the mass profile in ETGs. With the aid of the average ∼13× lensing magnification, the LAEs are frequently resolved into individual star-forming knots with a wide range of properties. They have characteristic sizes from less than 100 pc to several kiloparsecs, rest-frame far-UV apparent AB magnitudes from 29.6 to 24.2, and typical projected separations of 500 pc to 2 kpc.« less

  6. SPACE WARPS- II. New gravitational lens candidates from the CFHTLS discovered through citizen science

    NASA Astrophysics Data System (ADS)

    More, Anupreeta; Verma, Aprajita; Marshall, Philip J.; More, Surhud; Baeten, Elisabeth; Wilcox, Julianne; Macmillan, Christine; Cornen, Claude; Kapadia, Amit; Parrish, Michael; Snyder, Chris; Davis, Christopher P.; Gavazzi, Raphael; Lintott, Chris J.; Simpson, Robert; Miller, David; Smith, Arfon M.; Paget, Edward; Saha, Prasenjit; Küng, Rafael; Collett, Thomas E.

    2016-01-01

    We report the discovery of 29 promising (and 59 total) new lens candidates from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) based on about 11 million classifications performed by citizen scientists as part of the first SPACE WARPS lens search. The goal of the blind lens search was to identify lens candidates missed by robots (the RINGFINDER on galaxy scales and ARCFINDER on group/cluster scales) which had been previously used to mine the CFHTLS for lenses. We compare some properties of the samples detected by these algorithms to the SPACE WARPS sample and find them to be broadly similar. The image separation distribution calculated from the SPACE WARPS sample shows that previous constraints on the average density profile of lens galaxies are robust. SPACE WARPS recovers about 65 per cent of known lenses, while the new candidates show a richer variety compared to those found by the two robots. This detection rate could be increased to 80 per cent by only using classifications performed by expert volunteers (albeit at the cost of a lower purity), indicating that the training and performance calibration of the citizen scientists is very important for the success of SPACE WARPS. In this work we present the SIMCT pipeline, used for generating in situ a sample of realistic simulated lensed images. This training sample, along with the false positives identified during the search, has a legacy value for testing future lens-finding algorithms. We make the pipeline and the training set publicly available.

  7. The first detection of neutral hydrogen in emission in a strong spiral lens

    NASA Astrophysics Data System (ADS)

    Lipnicky, Andrew; Chakrabarti, Sukanya; Wright, Melvyn C. H.; Blitz, Leo; Heiles, Carl; Cotton, William; Frayer, David; Blandford, Roger; Shu, Yiping; Bolton, Adam S.

    2018-05-01

    We report H I observations of eight spiral galaxies that are strongly lensing background sources. Our targets were selected from the Sloan WFC (Wide Field Camera) Edge-on Late-type Lens Survey (SWELLS) using the Arecibo, Karl G. Jansky Very Large Array, and Green Bank telescopes. We securely detect J1703+2451 at z = 0.063 with a signal-to-noise ratio of 6.7 and W50 = 79 ± 13 km s-1, obtaining the first detection of H I emission in a strong spiral lens. We measure a mass of M_{H I} = (1.77± 0.06^{+0.35}_{-0.75})× 10^9 M_{⊙} for this source. We find that this lens is a normal spiral, with observable properties that are fairly typical of spiral galaxies. For three other sources, we did not secure a detection; however, we are able to place strong constraints on the H I masses of those galaxies. The observations for four of our sources were rendered unusable due to strong radio frequency interference.

  8. Three-reflections telescope proposal as flat-field anastigmat for wide field observations at Dome C

    NASA Astrophysics Data System (ADS)

    Ferrari, M.; Lemaître, G.; Viotti, R.; La Padula, C.; Comte, G.; Blanc, M.; Boer, M.

    It is now evident that the exceptional seeing at Dome C will allow, in the next years, to pursue astronomical programs with conditions better than at any other observatory in the world, and very close to space experiments. Considering a new type of wide-field telescope, particular astronomical programs could be well optimized for observations at Dome C such as surveys for the discovery and follow up of near-Earth asteroids, search for extra-solar planets using transit or micro-lensing events, and stellar luminosity variations. We propose to build a 1.5 2m class three-reflections telescope, with 1 1.5degree FOV, four times shorter than an equivalent Schmidt telescope, and providing a flat field without requiring a triplet- or quadruplet-lens corrector since its design is anastigmatic. We present the preliminary optical tests of such designs: MINITRUST1 and 2 are two 45cm identical prototypes based in France and Italy, and manufactured using active optics techniques.

  9. Electrowetting-based optics

    NASA Astrophysics Data System (ADS)

    Kuiper, S.; Hendriks, B. H. W.; Hayes, R. A.; Feenstra, B. J.; Baken, J. M. E.

    2005-09-01

    Electrowetting is electrostatic manipulation of liquids. It can be used to displace and deform volumes of polar liquids. A very promising application area is optics. The surface of a volume of liquid can be used as a tunable lens and displacement of the liquid can change the refraction, diffraction or transmission of light when passing through the liquid. In this paper we describe a selection of various tunable optical components that make use of electrowetting, ranging from refractive and diffractive lenses to diaphragms and displays.

  10. Adjusting Curvatures Of Large Mirrors And Lenses

    NASA Technical Reports Server (NTRS)

    Birnbaum, Morris M.

    1992-01-01

    Actuators apply stresses to generate distortions counteracting undesired distortions in technique for adjusting curvature of large focusing mirror or lens. Motor-and-gear assemblies under remote control vary squeeze of ring clamp and push or pull of hollow shaft to make fine adjustments in curvature of mirror. Applicable to large astronomical-telescope mirrors with diameters of 60 cm or more.

  11. Faint-source-star planetary microlensing: the discovery of the cold gas-giant planet OGLE-2014-BLG-0676Lb

    NASA Astrophysics Data System (ADS)

    Rattenbury, N. J.; Bennett, D. P.; Sumi, T.; Koshimoto, N.; Bond, I. A.; Udalski, A.; Shvartzvald, Y.; Maoz, D.; Jørgensen, U. G.; Dominik, M.; Street, R. A.; Tsapras, Y.; Abe, F.; Asakura, Y.; Barry, R.; Bhattacharya, A.; Donachie, M.; Evans, P.; Freeman, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Oyokawa, H.; Saito, To.; Sharan, A.; Sullivan, D. J.; Suzuki, D.; Tristram, P. J.; Yonehara, A.; Poleski, R.; Skowron, J.; Mróz, P.; Szymański, M. K.; Soszyński, I.; Pietrukowicz, P.; Kozłowski, S.; Ulaczyk, K.; Wyrzykowski, Ł.; Friedmann, M.; Kaspi, S.; Alsubai, K.; Browne, P.; Andersen, J. M.; Bozza, V.; Calchi Novati, S.; Damerdji, Y.; Diehl, C.; Dreizler, S.; Elyiv, A.; Giannini, E.; Hardis, S.; Harpsøe, K.; Hinse, T. C.; Liebig, C.; Hundertmark, M.; Juncher, D.; Kains, N.; Kerins, E.; Korhonen, H.; Mancini, L.; Martin, R.; Mathiasen, M.; Rabus, M.; Rahvar, S.; Scarpetta, G.; Skottfelt, J.; Snodgrass, C.; Surdej, J.; Taylor, J.; Tregloan-Reed, J.; Vilela, C.; Wambsganss, J.; Williams, A.; D'Ago, G.; Bachelet, E.; Bramich, D. M.; Figuera Jaimes, R.; Horne, K.; Menzies, J.; Schmidt, R.; Steele, I. A.

    2017-04-01

    We report the discovery of a planet - OGLE-2014-BLG-0676Lb- via gravitational microlensing. Observations for the lensing event were made by the following groups: Microlensing Observations in Astrophysics; Optical Gravitational Lensing Experiment; Wise Observatory; RoboNET/Las Cumbres Observatory Global Telescope; Microlensing Network for the Detection of Small Terrestrial Exoplanets; and μ-FUN. All analyses of the light-curve data favour a lens system comprising a planetary mass orbiting a host star. The most-favoured binary lens model has a mass ratio between the two lens masses of (4.78 ± 0.13) × 10-3. Subject to some important assumptions, a Bayesian probability density analysis suggests the lens system comprises a 3.09_{-1.12}^{+1.02} MJ planet orbiting a 0.62_{-0.22}^{+0.20} M⊙ host star at a deprojected orbital separation of 4.40_{-1.46}^{+2.16} au. The distance to the lens system is 2.22_{-0.83}^{+0.96} kpc. Planet OGLE-2014-BLG-0676Lb provides additional data to the growing number of cool planets discovered using gravitational microlensing against which planetary formation theories may be tested. Most of the light in the baseline of this event is expected to come from the lens and thus high-resolution imaging observations could confirm our planetary model interpretation.

  12. Faint-Source-Star Planetary Microlensing: The Discovery of the Cold Gas-Giant Planet OGLE-2014-BLG-0676Lb

    NASA Technical Reports Server (NTRS)

    Rattenbury, N. J.; Bennett, D. P.; Sumi, T.; Koshimoto, N.; Bond, I. A.; Udalski, A.; Shvartzvald, Y.; Maoz, D.; Jorgensen, U. G.; Barry, R.; hide

    2016-01-01

    We report the discovery of a planet OGLE-2014-BLG-0676Lb via gravitational microlensing. Observations for the lensing event were made by the following groups: Microlensing Observations in Astrophysics; Optical Gravitational Lensing Experiment; Wise Observatory; RoboNETLas Cumbres Observatory Global Telescope; Microlensing Network for the Detection of Small Terrestrial Exoplanets; and -FUN. All analyses of the light-curve data favoura lens system comprising a planetary mass orbiting a host star. The most-favoured binary lens model has a mass ratio between the two lens masses of (4.78 +/- 0.13) 10(exp -3). Subject to some important assumptions, a Bayesian probability density analysis suggests the lens system comprises a 3.09(+1.02/-1.12) MJ planet orbiting a 0.62(+0.20/-0.22) solar mass host star at a deprojected orbital separation of 4.40(+2.16/-1.46) au. The distance to the lens system is 2.22(+0.96/-0.83) kpc. Planet OGLE-2014-BLG-0676Lb provides additional data to the growing number of cool planets discover redusing gravitational microlensing against which planetary formation theories may be tested. Most of the light in the baseline of this event is expected to come from the lens and thus high-resolution imaging observations could confirm our planetary model interpretation.

  13. Secondary mirror system for the European Solar Telescope (EST)

    NASA Astrophysics Data System (ADS)

    Cavaller, L.; Siegel, B.; Prieto, G.; Hernandez, E.; Casalta, J. M.; Mercader, J.; Barriga, J.

    2010-07-01

    The European Solar Telescope (EST) is a European collaborative project to build a 4m class solar telescope in the Canary Islands, which is now in its design study phase. The telescope will provide diffraction limited performance for several instruments observing simultaneously at the Coudé focus at different wavelengths. A multi-conjugated adaptive optics system composed of a tip-tilt mirror and several deformable mirrors will be integrated in the telescope optical path. The secondary mirror system is composed of the mirror itself (Ø800mm), the alignment drives and the cooling system needed to remove the solar heat load from the mirror. During the design study the feasibility to provide fast tip-tilt capabilities at the secondary mirror to work as the adaptive optics tip-tilt mirror is also being evaluated.

  14. HUBBLE VIEWS DISTANT GALAXIES THROUGH A COSMIC LENS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image of the rich galaxy cluster, Abell 2218, is a spectacular example of gravitational lensing. The arc-like pattern spread across the picture like a spider web is an illusion caused by the gravitational field of the cluster. The cluster is so massive and compact that light rays passing through it are deflected by its enormous gravitational field, much as an optical lens bends light to form an image. The process magnifies, brightens and distorts images of objects that lie far beyond the cluster. This provides a powerful 'zoom lens' for viewing galaxies that are so far away they could not normally be observed with the largest available telescopes. Hubble's high resolution reveals numerous arcs which are difficult to detect with ground-based telescopes because they appear to be so thin. The arcs are the distorted images of a very distant galaxy population extending 5-10 times farther than the lensing cluster. This population existed when the universe was just one quarter of its present age. The arcs provide a direct glimpse of how star forming regions are distributed in remote galaxies, and other clues to the early evoution of galaxies. Hubble also reveals multiple imaging, a rarer lensing event that happens when the distortion is large enough to produce more than one image of the same galaxy. Abell 2218 has an unprecedented total of seven multiple systems. The abundance of lensing features in Abell 2218 has been used to make a detailed map of the distribution of matter in the cluster's center. From this, distances can be calculated for a sample of 120 faint arclets found on the Hubble image. These arclets represent galaxies that are 50 times fainter than objects that can be seen with ground-based telescopes. Studies of remote galaxies viewed through well-studied lenses like Abell 2218 promise to reveal the nature of normal galaxies at much earlier epochs than was previously possible. The technique is a powerful combination of Hubble's superlative capabilities and the 'natural' focusing properties of massive clusters like Abell 2218. The image was taken with the Wide Field Planetary Camera 2. Credits: W.Couch (University of New South Wales), R. Ellis (Cambridge University), and NASA

  15. Scientific management of Space Telescope

    NASA Technical Reports Server (NTRS)

    Odell, C. R.

    1981-01-01

    A historical summay is given on the science management of the Space Telescope, the inception of which began in 1962, when scientists and engineers first recommended the development of a nearly diffraction limited substantial-size optical telescope. Phase A, the feasibility requirements generation phase, began in 1971 and consisted largely of NASA scientists and a NASA design. Phase B, the preliminary design phase, established a tiered structure of scientists, led by the Large Space Telescope operations and Management Work Group. A Mission Operations Working Group headed six instrument definition teams to develop the essential instrument definitions. Many changes took place during Phase B, before design and development, which began in 1978 and still continues today.

  16. Concept Study of Optical Configurations for High-Frequency Telescope for LiteBIRD

    NASA Astrophysics Data System (ADS)

    Hasebe, T.; Kashima, S.; Ade, P. A. R.; Akiba, Y.; Alonso, D.; Arnold, K.; Aumont, J.; Baccigalupi, C.; Barron, D.; Basak, S.; Beckman, S.; Borrill, J.; Boulanger, F.; Bucher, M.; Calabrese, E.; Chinone, Y.; Cho, H.-M.; Cukierman, A.; Curtis, D. W.; de Haan, T.; Dobbs, M.; Dominjon, A.; Dotani, T.; Duband, L.; Ducout, A.; Dunkley, J.; Duval, J. M.; Elleflot, T.; Eriksen, H. K.; Errard, J.; Fischer, J.; Fujino, T.; Funaki, T.; Fuskeland, U.; Ganga, K.; Goeckner-Wald, N.; Grain, J.; Halverson, N. W.; Hamada, T.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hayes, L.; Hazumi, M.; Hidehira, N.; Hill, C. A.; Hilton, G.; Hubmayr, J.; Ichiki, K.; Iida, T.; Imada, H.; Inoue, M.; Inoue, Y.; Irwin, K. D.; Ishino, H.; Jeong, O.; Kanai, H.; Kaneko, D.; Katayama, N.; Kawasaki, T.; Kernasovskiy, S. A.; Keskitalo, R.; Kibayashi, A.; Kida, Y.; Kimura, K.; Kisner, T.; Kohri, K.; Komatsu, E.; Komatsu, K.; Kuo, C. L.; Kurinsky, N. A.; Kusaka, A.; Lazarian, A.; Lee, A. T.; Li, D.; Linder, E.; Maffei, B.; Mangilli, A.; Maki, M.; Matsumura, T.; Matsuura, S.; Meilhan, D.; Mima, S.; Minami, Y.; Mitsuda, K.; Montier, L.; Nagai, M.; Nagasaki, T.; Nagata, R.; Nakajima, M.; Nakamura, S.; Namikawa, T.; Naruse, M.; Nishino, H.; Nitta, T.; Noguchi, T.; Ogawa, H.; Oguri, S.; Okada, N.; Okamoto, A.; Okamura, T.; Otani, C.; Patanchon, G.; Pisano, G.; Rebeiz, G.; Remazeilles, M.; Richards, P. L.; Sakai, S.; Sakurai, Y.; Sato, Y.; Sato, N.; Sawada, M.; Segawa, Y.; Sekimoto, Y.; Seljak, U.; Sherwin, B. D.; Shimizu, T.; Shinozaki, K.; Stompor, R.; Sugai, H.; Sugita, H.; Suzuki, A.; Suzuki, J.; Tajima, O.; Takada, S.; Takaku, R.; Takakura, S.; Takatori, S.; Tanabe, D.; Taylor, E.; Thompson, K. L.; Thorne, B.; Tomaru, T.; Tomida, T.; Tomita, N.; Tristram, M.; Tucker, C.; Turin, P.; Tsujimoto, M.; Uozumi, S.; Utsunomiya, S.; Uzawa, Y.; Vansyngel, F.; Wehus, I. K.; Westbrook, B.; Willer, M.; Whitehorn, N.; Yamada, Y.; Yamamoto, R.; Yamasaki, N.; Yamashita, T.; Yoshida, M.

    2018-05-01

    The high-frequency telescope for LiteBIRD is designed with refractive and reflective optics. In order to improve sensitivity, this paper suggests the new optical configurations of the HFT which have approximately 7 times larger focal planes than that of the original design. The sensitivities of both the designs are compared, and the requirement of anti-reflection (AR) coating on the lens for the refractive option is derived. We also present the simulation result of a sub-wavelength AR structure on both surfaces of silicon, which shows a band-averaged reflection of 1.1-3.2% at 101-448 GHz.

  17. Spectroscopy on the Overhead Projector.

    ERIC Educational Resources Information Center

    Solomon, Sally; And Others

    1994-01-01

    Any overhead projector easily can be converted into a simple spectrometer by placing a piece of diffraction grating over the projecting lens. A detailed description of the apparatus and suggested spectroscopy experiments are included. Demonstrations can utilize solutions of cobalt chloride, potassium permanganate, potassium dichromate, or…

  18. Habitable exoplanet imager optical telescope concept design

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2017-09-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sunlike stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirroranastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  19. Habitable Exoplanet Imager Optical Telescope Concept Design

    NASA Technical Reports Server (NTRS)

    Stahl, H Philip

    2017-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirror-anastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  20. Advanced technology optical telescopes IV; Proceedings of the Meeting, Tucson, AZ, Feb. 12-16, 1990. Parts 1 & 2

    NASA Technical Reports Server (NTRS)

    Barr, Lawrence D. (Editor)

    1990-01-01

    The present conference on the current status of large, advanced-technology optical telescope development and construction projects discusses topics on such factors as their novel optical system designs, the use of phased arrays, seeing and site performance factors, mirror fabrication and testing, pointing and tracking techniques, mirror thermal control, structural design strategies, mirror supports and coatings, and the control of segmented mirrors. Attention is given to the proposed implementation of the VLT Interferometer, the first diffraction-limited astronomical images with adaptive optics, a fiber-optic telescope using a large cross-section image-transmitting bundle, the design of wide-field arrays, Hartmann test data reductions, liquid mirrors, inertial drives for telescope pointing, temperature control of large honeycomb mirrors, evaporative coatings for very large telescope mirrors, and the W. M. Keck telescope's primary mirror active control system software.

  1. Laser diode assembly including a cylindrical lens

    DOEpatents

    Snyder, J.J.; Reichert, P.

    1992-01-14

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. 11 figs.

  2. Optical Simulation and Fabrication of Pancharatnam (Geometric) Phase Devices from Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Gao, Kun

    Pancharatnam made clear the concept of a phase-only device based on changes in the polarization state of light. A device of this type is sometimes called a circular polarization grating because of the polarization states of interfering light beams used to fabricate it by polarization holography. Here, we will call it a Pancharatnam (geometric) phase device to emphasize the fact that the phase of diffracted light does not have a discontinuous periodic profile but changes continuously. In this dissertation, using simulations and experiments, we have successfully demonstrated a 90% diffraction efficiency based on the Pancharatnam phase deflector (PPD) with the dual-twist structure. Unlike the conventional Pancharatnam phase deflector (c-PPD) limited to small diffraction angles, our work demonstrates that a device with a structural periodicity near the wavelength of light is highly efficient at deflecting light to large angles. Also, from a similar fabrication procedure, we have made an ultra-compact non-mechanical zoom lens system based on the Pancharatnam phase lens (PPL) with a low f-number and high efficiency. The wavelength dependence on the image quality is evaluated and shown to be satisfactory from red light to near-infrared machine vision systems. A demonstration device is shown with a 4x zoom ratio at a 633 nm wavelength. The unique characteristic of these devices is made possible through the use of azo-dye photoalignment materials to align a liquid crystal polymer (reactive mesogens). Furthermore, the proposed dual-twist design and fabrication opens the possibility for making a high-efficiency beam-steering device, a lens with an f-number less than 1.0, as well as a wide range of other potential applications in the optical and display industry. The details of simulation, fabrication, and characterization of these devices are shown in this dissertation.

  3. Ultrasonic superlensing jets and acoustic-fork sheets

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-05-01

    Focusing acoustical (and optical) beams beyond the diffraction limit has remained a major challenge in imaging instruments and systems, until recent advances on ;hyper; or ;super; lensing and higher-resolution imaging techniques have shown the counterintuitive violation of this rule under certain circumstances. Nonetheless, the proposed technologies of super-resolution acoustical focusing beyond the diffraction barrier require complex tools such as artificially engineered metamaterials, and other hardware equipment that may not be easily synthesized or manufactured. The present contribution therefore suggests a simple and reliable method of using a sound-penetrable circular cylinder lens illuminated by a nonparaxial Gaussian acoustical sheet (i.e. finite beam in 2D) to produce non-evanescent ultrasonic superlensing jets (or bullets) and acoustical 'snail-fork' shaped wavefronts with limited diffraction. The generalized (near-field) scattering theory for acoustical sheets of arbitrary wavefronts and incidence is utilized to synthesize the incident beam based upon the angular spectrum decomposition method and the multipole expansion method in cylindrical wave functions to compute the scattered pressure around the cylinder with particular emphasis on its physical properties. The results show that depending on the beam and lens parameters, a tight focusing (with dimensions much smaller than the beam waist) can be achieved. Subwavelength resolution can be also achieved by selecting a lens material with a speed of sound exceeding that of the host fluid medium. The ultrasonic superlensing jets provide the impetus to develop improved subwavelength microscopy and acoustical image-slicing systems, cell lysis and surgery, and photoacoustic imaging to name a few examples. Moreover, an acoustical fork-sheet generation may open innovative avenues in reconfigurable on-chip micro/nanoparticle tweezers and surface acoustic waves devices.

  4. Bringing the Visible Universe into Focus with Robo-AO

    PubMed Central

    Baranec, Christoph; Riddle, Reed; Law, Nicholas M.; Ramaprakash, A.N.; Tendulkar, Shriharsh P.; Bui, Khanh; Burse, Mahesh P.; Chordia, Pravin; Das, Hillol K.; Davis, Jack T.C.; Dekany, Richard G.; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; Morton, Timothy D.; Ofek, Eran O.; Punnadi, Sujit

    2013-01-01

    The angular resolution of ground-based optical telescopes is limited by the degrading effects of the turbulent atmosphere. In the absence of an atmosphere, the angular resolution of a typical telescope is limited only by diffraction, i.e., the wavelength of interest, λ, divided by the size of its primary mirror's aperture, D. For example, the Hubble Space Telescope (HST), with a 2.4-m primary mirror, has an angular resolution at visible wavelengths of ~0.04 arc seconds. The atmosphere is composed of air at slightly different temperatures, and therefore different indices of refraction, constantly mixing. Light waves are bent as they pass through the inhomogeneous atmosphere. When a telescope on the ground focuses these light waves, instantaneous images appear fragmented, changing as a function of time. As a result, long-exposure images acquired using ground-based telescopes - even telescopes with four times the diameter of HST - appear blurry and have an angular resolution of roughly 0.5 to 1.5 arc seconds at best. Astronomical adaptive-optics systems compensate for the effects of atmospheric turbulence. First, the shape of the incoming non-planar wave is determined using measurements of a nearby bright star by a wavefront sensor. Next, an element in the optical system, such as a deformable mirror, is commanded to correct the shape of the incoming light wave. Additional corrections are made at a rate sufficient to keep up with the dynamically changing atmosphere through which the telescope looks, ultimately producing diffraction-limited images. The fidelity of the wavefront sensor measurement is based upon how well the incoming light is spatially and temporally sampled1. Finer sampling requires brighter reference objects. While the brightest stars can serve as reference objects for imaging targets from several to tens of arc seconds away in the best conditions, most interesting astronomical targets do not have sufficiently bright stars nearby. One solution is to focus a high-power laser beam in the direction of the astronomical target to create an artificial reference of known shape, also known as a 'laser guide star'. The Robo-AO laser adaptive optics system2,3 employs a 10-W ultraviolet laser focused at a distance of 10 km to generate a laser guide star. Wavefront sensor measurements of the laser guide star drive the adaptive optics correction resulting in diffraction-limited images that have an angular resolution of ~0.1 arc seconds on a 1.5-m telescope. PMID:23426078

  5. Bringing the visible universe into focus with Robo-AO.

    PubMed

    Baranec, Christoph; Riddle, Reed; Law, Nicholas M; Ramaprakash, A N; Tendulkar, Shriharsh P; Bui, Khanh; Burse, Mahesh P; Chordia, Pravin; Das, Hillol K; Davis, Jack T C; Dekany, Richard G; Kasliwal, Mansi M; Kulkarni, Shrinivas R; Morton, Timothy D; Ofek, Eran O; Punnadi, Sujit

    2013-02-12

    The angular resolution of ground-based optical telescopes is limited by the degrading effects of the turbulent atmosphere. In the absence of an atmosphere, the angular resolution of a typical telescope is limited only by diffraction, i.e., the wavelength of interest, λ, divided by the size of its primary mirror's aperture, D. For example, the Hubble Space Telescope (HST), with a 2.4-m primary mirror, has an angular resolution at visible wavelengths of ~0.04 arc seconds. The atmosphere is composed of air at slightly different temperatures, and therefore different indices of refraction, constantly mixing. Light waves are bent as they pass through the inhomogeneous atmosphere. When a telescope on the ground focuses these light waves, instantaneous images appear fragmented, changing as a function of time. As a result, long-exposure images acquired using ground-based telescopes--even telescopes with four times the diameter of HST--appear blurry and have an angular resolution of roughly 0.5 to 1.5 arc seconds at best. Astronomical adaptive-optics systems compensate for the effects of atmospheric turbulence. First, the shape of the incoming non-planar wave is determined using measurements of a nearby bright star by a wavefront sensor. Next, an element in the optical system, such as a deformable mirror, is commanded to correct the shape of the incoming light wave. Additional corrections are made at a rate sufficient to keep up with the dynamically changing atmosphere through which the telescope looks, ultimately producing diffraction-limited images. The fidelity of the wavefront sensor measurement is based upon how well the incoming light is spatially and temporally sampled. Finer sampling requires brighter reference objects. While the brightest stars can serve as reference objects for imaging targets from several to tens of arc seconds away in the best conditions, most interesting astronomical targets do not have sufficiently bright stars nearby. One solution is to focus a high-power laser beam in the direction of the astronomical target to create an artificial reference of known shape, also known as a 'laser guide star'. The Robo-AO laser adaptive optics system, employs a 10-W ultraviolet laser focused at a distance of 10 km to generate a laser guide star. Wavefront sensor measurements of the laser guide star drive the adaptive optics correction resulting in diffraction-limited images that have an angular resolution of ~0.1 arc seconds on a 1.5-m telescope.

  6. Broadband Achromatic Telecentric Lens

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2007-01-01

    A new type of lens design features broadband achromatic performance as well as telecentricity, using a minimum number of spherical elements. With appropriate modifications, the lens design form can be tailored to cover the range of response of the focal-plane array, from Si (400-1,000 nm) to InGaAs (400-1,700 or 2,100 nm) or InSb/HgCdTe reaching to 2,500 nm. For reference, lenses typically are achromatized over the visible wavelength range of 480-650 nm. In remote sensing applications, there is a need for broadband achromatic telescopes, normally satisfied with mirror-based systems. However, mirror systems are not always feasible due to size or geometry restrictions. They also require expensive aspheric surfaces. Non-obscured mirror systems can be difficult to align and have a limited (essentially one-dimensional) field of view. Centrally obscured types have a two-dimensional but very limited field in addition to the obscuration. Telecentricity is a highly desirable property for matching typical spectrometer types, as well as for reducing the variation of the angle of incidence and cross-talk on the detector for simple camera types. This rotationally symmetric telescope with no obscuration and using spherical surfaces and selected glass types fills a need in the range of short focal lengths. It can be used as a compact front unit for a matched spectrometer, as an ultra-broadband camera objective lens, or as the optics of an integrated camera/spectrometer in which the wavelength information is obtained by the use of strip or linear variable filters on the focal plane array. This kind of camera and spectrometer system can find applications in remote sensing, as well as in-situ applications for geological mapping and characterization of minerals, ecological studies, and target detection and identification through spectral signatures. Commercially, the lens can be used in quality-control applications via spectral analysis. The lens design is based on the rear landscape lens with the aperture stop in front of all elements. This allows sufficient room for telecentricity in addition to making the stop easily accessible. The crucial design features are the use of a doublet with an ultra-low dispersion glass (fluorite or S-FPL53), and the use of a strong negative element, which enables flat field and telecentricity in conjunction with the last (field lens) element. The field lens also can be designed to be in contact with the array, a feature that is desirable in some applications. The lens has a 20deg field of view, for a 50-mm focal length, and is corrected over the range of wavelengths of 450-2,300 nm. Transverse color, which is the most pernicious aberration for spectroscopic work, is controlled at the level of 1 m or below at 0.7 m field and 5 m at full field. The maximum chief ray angle is less than 1.7 , providing good telecentricity. An additional feature of this lens is that it is made exclusively with glasses that provide good transmission up to 2,300 nm and even some transmission to 2,500 nm; thus, the lens can be used in applications that cover the entire solar-reflected spectrum. Alternative realizations are possible that provide enhanced resolution and even less transverse color over a narrower wavelength range.

  7. Damage and removal of the coating on the first lens of the MegaCam wide-field corrector

    NASA Astrophysics Data System (ADS)

    Barrick, Gregory; Benedict, Tom; Salmon, Derrick

    2016-08-01

    The coating on the exposed surface of the 810 mm diameter first element of the MegaCam wide-field corrector at the Canada-France-Hawaii Telescope (CFHT) was found to be degraded in the fall of 2014. An investigation showed that the coating was, in fact, damaged over a large part of the exposed surface and was causing major scattering, severely degrading the performance of the instrument. The coating was subsequently removed from the lens by CFHT, restoring the majority of the instrument performance. The investigation of the degradation and the procedure used to remove the coating will be described in this paper.

  8. Towards an Integrated Model of the WEAVE Performance

    NASA Astrophysics Data System (ADS)

    Ham, S. J.; Dalton, G.

    2016-10-01

    WEAVE is a new facility instrument for the 4.2 m William Herschel Telescope (WHT). The instrument has a 2° field of view and covers a wavelength range of 366-950 nm with up to 960 simultaneous spectra in each observation. The spectrograph consists of a collimator mirror and two correcting lenses before a VPH grating and two 8-lens cameras. The two cameras have been designed to have the same lens shapes. Here we report on the development of detailed simulations for the verification of the whole data reduction procedure and analysis pipeline, and for the generation of high signal-to-noise reference images that can be used as fitting templates for fiber positions and PSF mapping.

  9. Optical Design for Photonics. Organization of the 1993 Photonics Science Topical Meetings Held in Palm Springs, California on March 22 - 24, 1993. Technical Digest Series, Volume 9

    DTIC Science & Technology

    1993-03-24

    Lens BPG1 Lasr -Brewster Telescope "N 8 1 a I ISF DgD-*- Analyzer Prism Grating -0 V I LED.u Collimation Fine-Adjust K-*R- Risley Prisms-- ,,.,.BPG (64...x 32) 50:50 BS,_____ Mnput 3 Inp V4 Output I ,_"U 7!’:I Image PB NS 6" Risley Prisms V44 Inpu O P •/4Objective Lens ge Slngtge Electrical S-SEED...the laser pen. The fine angular (0 to 15 arc-minutes) alignment of the beam in both directions can be done optically with Risley steering wedgcs

  10. Study on the key alignment technology of the catadioptric optical system

    NASA Astrophysics Data System (ADS)

    Song, Chong; Fu, Xing; Fu, Xi-hong; Kang, Xiao-peng; Liu, Kai

    2017-02-01

    Optical system alignment has a great influence on the whole system accuracy. In this paper, the processing of optical system alignment was mainly studied, the processing method of optics on the primary and secondary mirrors, front correction lens group and behind correction lens group with high precision centering lathe and internal focusing telescope. Then using the height indicator complete the system alignment of the primary mirror, secondary mirror, front correction group and behind correction group. Finally, based on the zygo interferometer detect the wavefront information. Using this alignment program for catadioptric optical system, the wavefront aberration of optical system, focal length, modulation transfer function (MTF) and other technical indicators have reached the requirements.

  11. Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions

    NASA Astrophysics Data System (ADS)

    Factor, Samuel M.; Kraus, Adam L.

    2017-06-01

    Direct detection of close in companions (exoplanets or binary systems) is notoriously difficult. While coronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast near λ/D. Non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, though the mask discards ˜ 95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM to a diffraction limited image utilizing the full aperture. Instead of non-redundant closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I have developed a new, easy to use, faint companion detection pipeline which analyzes kernel-phases utilizing Bayesian model comparison. I demonstrate this pipeline on archival images from HST/NICMOS, searching for new companions in order to constrain binary formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical λ/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time. As no mask is needed, this technique can easily be applied to archival data and even target acquisition images (e.g. from JWST), making the detection of close in companions cheap and simple as no additional observations are needed.

  12. Models of gravitational lens candidates from Space Warps CFHTLS

    NASA Astrophysics Data System (ADS)

    Küng, Rafael; Saha, Prasenjit; Ferreras, Ignacio; Baeten, Elisabeth; Coles, Jonathan; Cornen, Claude; Macmillan, Christine; Marshall, Phil; More, Anupreeta; Oswald, Lucy; Verma, Aprajita; Wilcox, Julianne K.

    2018-03-01

    We report modelling follow-up of recently discovered gravitational-lens candidates in the Canada France Hawaii Telescope Legacy Survey. Lens modelling was done by a small group of specially interested volunteers from the Space Warps citizen-science community who originally found the candidate lenses. Models are categorized according to seven diagnostics indicating (a) the image morphology and how clear or indistinct it is, (b) whether the mass map and synthetic lensed image appear to be plausible, and (c) how the lens-model mass compares with the stellar mass and the abundance-matched halo mass. The lensing masses range from ˜1011 to >1013 M⊙. Preliminary estimates of the stellar masses show a smaller spread in stellar mass (except for two lenses): a factor of a few below or above ˜1011 M⊙. Therefore, we expect the stellar-to-total mass fraction to decline sharply as lensing mass increases. The most massive system with a convincing model is J1434+522 (SW 05). The two low-mass outliers are J0206-095 (SW 19) and J2217+015 (SW 42); if these two are indeed lenses, they probe an interesting regime of very low star formation efficiency. Some improvements to the modelling software (SpaghettiLens), and discussion of strategies regarding scaling to future surveys with more and frequent discoveries, are included.

  13. Galaxy mergers and gravitational lens statistics

    NASA Technical Reports Server (NTRS)

    Rix, Hans-Walter; Maoz, Dan; Turner, Edwin L.; Fukugita, Masataka

    1994-01-01

    We investigate the impact of hierarchical galaxy merging on the statistics of gravitational lensing of distant sources. Since no definite theoretical predictions for the merging history of luminous galaxies exist, we adopt a parameterized prescription, which allows us to adjust the expected number of pieces comprising a typical present galaxy at z approximately 0.65. The existence of global parameter relations for elliptical galaxies and constraints on the evolution of the phase space density in dissipationless mergers, allow us to limit the possible evolution of galaxy lens properties under merging. We draw two lessons from implementing this lens evolution into statistical lens calculations: (1) The total optical depth to multiple imaging (e.g., of quasars) is quite insensitive to merging. (2) Merging leads to a smaller mean separation of observed multiple images. Because merging does not reduce drastically the expected lensing frequency, it cannot make lambda-dominated cosmologies compatible with the existing lensing observations. A comparison with the data from the Hubble Space Telescope (HST) Snapshot Survey shows that models with little or no evolution of the lens population are statistically favored over strong merging scenarios. A specific merging scenario proposed to Toomre can be rejected (95% level) by such a comparison. Some versions of the scenario proposed by Broadhurst, Ellis, & Glazebrook are statistically acceptable.

  14. Apparatus and method for creating a photonic densely-accumulated ray-point

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    An optical apparatus includes an optical diffraction device configured for diffracting a predetermined wavelength of incident light onto adjacent optical focal points, and a photon detector for detecting a spectral characteristic of the predetermined wavelength. One of the optical focal points is a constructive interference point and the other optical focal point is a destructive interference point. The diffraction device, which may be a micro-zone plate (MZP) of micro-ring gratings or an optical lens, generates a constructive ray point using phase-contrasting of the destructive interference point. The ray point is located between adjacent optical focal points. A method of generating a densely-accumulated ray point includes directing incident light onto the optical diffraction device, diffracting the selected wavelength onto the constructive interference focal point and the destructive interference focal point, and generating the densely-accumulated ray point in a narrow region.

  15. Did the Cross-spiked Star Appear in Art Due to Telescope Optics?

    NASA Astrophysics Data System (ADS)

    Caton, Daniel B.; Hensley, B. D.

    2010-01-01

    Most of early art that still survives shows stars as amorphous blobs or with spikes of no particular geometry. We are investigating the possibility that more recent artistic renditions of stars having dominant crossed spikes originated with the advent of reflecting telescopes with a secondary mirror support spider that causes diffraction spikes, particularly in photographic images. We will report on the conclusions reached so far.

  16. A Low-Cost Quantitative Absorption Spectrophotometer

    ERIC Educational Resources Information Center

    Albert, Daniel R.; Todt, Michael A.; Davis, H. Floyd

    2012-01-01

    In an effort to make absorption spectrophotometry available to high school chemistry and physics classes, we have designed an inexpensive visible light absorption spectrophotometer. The spectrophotometer was constructed using LEGO blocks, a light emitting diode, optical elements (including a lens), a slide-mounted diffraction grating, and a…

  17. Tight focusing properties of the azimuthal discrete phase modulated radially polarized LG11* beam

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Li, Bo; Zhao, Heng; Hu, Yi; Wang, Wenjin; Wang, Youqing

    2013-06-01

    An novel method for generating an annual periodic optical chain by tight focusing the rotational symmetric π/0 phase plate modulated first order radially polarized Laguerre Gaussian (LG11*) beam with a high-NA lens is proposed. The optical chain is composed of either bright spots or dark spots. Vector diffraction numerical calculation method is employed to analyze the tight focus properties. The analyses indicate that the properties of the optical chains are closely related to the number of phase plate sectors, beam width of radially polarized LG11* beam and the numerical aperture of focusing lens. Furthermore, the average Full Width at Half Maximum (FWHM) of hollow dark spots or bright spots in optical chain is breaking the diffraction limit. These kinds of annular optical chains are expected to be applied in trapping or arranging multiple bar-like micro particles whose refractive index are either higher or lower than that of the ambient.

  18. Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues

    PubMed Central

    Kašalynas, Irmantas; Venckevičius, Rimvydas; Minkevičius, Linas; Sešek, Aleksander; Wahaia, Faustino; Tamošiūnas, Vincas; Voisiat, Bogdan; Seliuta, Dalius; Valušis, Gintaras; Švigelj, Andrej; Trontelj, Janez

    2016-01-01

    A terahertz (THz) imaging system based on narrow band microbolometer sensors (NBMS) and a novel diffractive lens was developed for spectroscopic microscopy applications. The frequency response characteristics of the THz antenna-coupled NBMS were determined employing Fourier transform spectroscopy. The NBMS was found to be a very sensitive frequency selective sensor which was used to develop a compact all-electronic system for multispectral THz measurements. This system was successfully applied for principal components analysis of optically opaque packed samples. A thin diffractive lens with a numerical aperture of 0.62 was proposed for the reduction of system dimensions. The THz imaging system enhanced with novel optics was used to image for the first time non-neoplastic and neoplastic human colon tissues with close to wavelength-limited spatial resolution at 584 GHz frequency. The results demonstrated the new potential of compact RT THz imaging systems in the fields of spectroscopic analysis of materials and medical diagnostics. PMID:27023551

  19. Materials for x-ray refractive lenses minimizing wavefront distortions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Thomas; Alianelli, Lucia; Lengeler, Daniel

    2017-06-09

    Refraction through curved surfaces, reflection from curved mirrors in grazing incidence, and diffraction from Fresnel zone plates are key hard x-ray focusing mechanisms. In this article, we present materials used for refractive x-ray lenses. Important properties of such x-ray lenses include focusing strength, shape, and the material’s homogeneity and absorption coefficient. Both the properties of the initial material and the fabrication process result in a lens with imperfections, which can lead to unwanted wavefront distortions. Different fabrication methods for one-dimensional and two-dimensional focusing lenses are presented, together with the respective benefits and inconveniences that are mostly due to shape fidelity.more » Different materials and material grades have been investigated in terms of their homogeneity and the absence of inclusions. Single-crystalline materials show high homogeneity, but suffer from unwanted diffracted radiation, which can be avoided using amorphous materials. Lastly, we show that shape imperfections can be corrected using a correction lens.« less

  20. Laser bandwidth interlock capable of single pulse detection and rejection

    DOEpatents

    Armstrong, James P; Telford, Steven James; Lanning, Rodney Kay; Bayramian, Andrew James

    2012-10-09

    A pulse of laser light is switched out of a pulse train and spatially dispersed into its constituent wavelengths. The pulse is collimated to a suitable size and then diffracted by high groove density multilayer dielectric gratings. This imparts a different angle to each individual wavelength so that, when brought to the far field with a lens, the colors have spread out in a linear arrangement. The distance between wavelengths (resolution) can be tailored for the specific laser and application by altering the number of times the beam strikes the diffraction gratings, the groove density of the gratings and the focal length of the lens. End portions of the linear arrangement are each directed to a respective detector, which converts the signal to a 1 if the level meets a set-point, and a 0 if the level does not. If both detectors produces a 1, then the pulse train is allowed to propagate into an optical system.

  1. Actuated Hybrid Mirrors for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Ealey, Mark; Redding, David

    2010-01-01

    This paper describes new, large, ultra-lightweight, replicated, actively controlled mirrors, for use in space telescopes. These mirrors utilize SiC substrates, with embedded solid-state actuators, bonded to Nanolaminate metal foil reflective surfaces. Called Actuated Hybrid Mirrors (AHMs), they use replication techniques for high optical quality as well as rapid, low cost manufacturing. They enable an Active Optics space telescope architecture that uses periodic image-based wavefront sensing and control to assure diffraction-limited performance, while relaxing optical system fabrication, integration and test requirements. The proposed International Space Station Observatory seeks to demonstrate this architecture in space.

  2. VizieR Online Data Catalog: 1992-1997 binary star speckle measurements (Balega+, 1999)

    NASA Astrophysics Data System (ADS)

    Balega, I. I.; Balega, Y. Y.; Maksimov, A. F.; Pluzhnik, E. A.; Shkhagosheva, Z. U.; Vasyuk, V. A.

    2000-11-01

    We present the results of speckle interferometric measurements of binary stars made with the television photon-counting camera at the 6-m Big Azimuthal Telescope (BTA) and 1-m telescope of the Special Astrophysical Observatory (SAO) between August 1992 and May 1997. The data contain 89 observations of 62 star systems on the large telescope and 21 on the smaller one. For the 6-m aperture 18 systems remained unresolved. The measured angular separation ranged from 39 mas, two times above the BTA diffraction limit, to 1593 mas. (3 data files).

  3. A dispersed fringe sensor prototype for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Frostig, Danielle; McLeod, Brian A.; Kopon, Derek

    2017-01-01

    The Giant Magellan Telescope (GMT) will employ seven 8.4m primary mirror segments and seven 1m secondary mirror segments to achieve the diffraction limit of a 25.4m aperture. One challenge of the GMT is keeping the seven pairs of mirror segments in phase. We present a conceptual opto mechanical design for a prototype dispersed fringe sensor. The prototype, which operates at J-band and incorporates an infrared avalanche photodiode array, will be deployed on the Magellan Clay Telescope to verify the sensitivity and accuracy of the planned GMT phasing sensor.

  4. BRDF measurements of sunshield and baffle materials for the IRAS telescope

    NASA Technical Reports Server (NTRS)

    Smith, S. M.

    1982-01-01

    Measurements of the far-infrared bidirectional reflectance distribution functions (BRDF) of four samples of Martin Black coating and one sample of gold coated aluminum from the telescope to be flown on the Infrared Astronomy Satellite (IRAS) are presented. At incidence angles near 35 deg Martin Black is a diffuse reflector at wavelengths as long as 36 microns. The gold coated aluminum sample from the IRAS sunshield has a visible grain which causes a strong diffraction enhancement of the BRDF at large nonspecular angles. This enhancement from the sunshield will increase the stray light level inside the telescope.

  5. Negative refraction imaging of acoustic metamaterial lens in the supersonic range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jianning; Wen, Tingdun; Key Laboratory of Electronic Testing Technology, North University of China, Taiyuan 030051

    2014-05-15

    Acoustic metamaterials with negative refraction index is the most promising method to overcome the diffraction limit of acoustic imaging to achieve ultrahigh resolution. In this paper, we use localized resonant phononic crystal as the unit cell to construct the acoustic negative refraction lens. Based on the vibration model of the phononic crystal, negative quality parameters of the lens are obtained while excited near the system resonance frequency. Simulation results show that negative refraction of the acoustic lens can be achieved when a sound wave transmiting through the phononic crystal plate. The patterns of the imaging field agree well with thatmore » of the incident wave, while the dispersion is very weak. The unit cell size in the simulation is 0.0005 m and the wavelength of the sound source is 0.02 m, from which we show that acoustic signal can be manipulated through structures with dimensions much smaller than the wavelength of incident wave.« less

  6. Anisotropic surface acoustic waves in tungsten/lithium niobate phononic crystals

    NASA Astrophysics Data System (ADS)

    Sun, Jia-Hong; Yu, Yuan-Hai

    2018-02-01

    Phononic crystals (PnC) were known for acoustic band gaps for different acoustic waves. PnCs were already applied in surface acoustic wave (SAW) devices as reflective gratings based on the band gaps. In this paper, another important property of PnCs, the anisotropic propagation, was studied. PnCs made of circular tungsten films on a lithium niobate substrate were analyzed by finite element method. Dispersion curves and equal frequency contours of surface acoustic waves in PnCs of various dimensions were calculated to study the anisotropy. The non-circular equal frequency contours and negative refraction of group velocity were observed. Then PnC was applied as an acoustic lens based on the anisotropic propagation. Trajectory of SAW passing PnC lens was calculated and transmission of SAW was optimized by selecting proper layers of lens and applying tapered PnC. The result showed that PnC lens can suppress diffraction of surface waves effectively and improve the performance of SAW devices.

  7. Diffractive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  8. The Star Blended with the MOA-2008-BLG-310 Source Is Not the Exoplanet Host Star

    NASA Astrophysics Data System (ADS)

    Bhattacharya, A.; Bennett, D. P.; Anderson, J.; Bond, I. A.; Gould, A.; Batista, V.; Beaulieu, J. P.; Fouqué, P.; Marquette, J. B.; Pogge, R.

    2017-08-01

    High-resolution Hubble Space Telescope (HST) image analysis of the MOA-2008-BLG-310 microlens system indicates that the excess flux at the location of the source found in the discovery paper cannot primarily be due to the lens star because it does not match the lens-source relative proper motion, {μ }{rel}, predicted by the microlens models. This excess flux is most likely to be due to an unrelated star that happens to be located in close proximity to the source star. Two epochs of HST observations indicate proper motion for this blend star that is typical of a random bulge star but is not consistent with a companion to the source or lens stars if the flux is dominated by only one star, aside from the lens. We consider models in which the excess flux is due to a combination of an unrelated star and the lens star, and this yields a 95% confidence level upper limit on the lens star brightness of {I}L> 22.44 and {V}L> 23.62. A Bayesian analysis using a standard Galactic model and these magnitude limits yields a host star mass of {M}h={0.21}-0.09+0.21 {M}⊙ and a planet mass of {m}p={23.4}-9.9+23.9 {M}\\oplus at a projected separation of {a}\\perp ={1.12}-0.17+0.16 au. This result illustrates that excess flux in a high-resolution image of a microlens-source system need not be due to the lens. It is important to check that the lens-source relative proper motion is consistent with the microlensing prediction. The high-resolution image analysis techniques developed in this paper can be used to verify the WFIRST exoplanet microlensing survey mass measurements.

  9. Long working distance objective lenses for single atom trapping and imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritchard, J. D., E-mail: jonathan.pritchard@strath.ac.uk; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG; Isaacs, J. A.

    We present a pair of optimized objective lenses with long working distances of 117 mm and 65 mm, respectively, that offer diffraction limited performance for both Cs and Rb wavelengths when imaging through standard vacuum windows. The designs utilise standard catalog lens elements to provide a simple and cost-effective solution. Objective 1 provides NA = 0.175 offering 3 μm resolution whilst objective 2 is optimized for high collection efficiency with NA = 0.29 and 1.8 μm resolution. This flexible design can be further extended for use at shorter wavelengths by simply re-optimising the lens separations.

  10. Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy.

    PubMed

    Wang, Chen; Ji, Na

    2012-06-01

    The intrinsic aberrations of high-NA gradient refractive index (GRIN) lenses limit their image quality as well as field of view. Here we used a pupil-segmentation-based adaptive optical approach to correct the inherent aberrations in a two-photon fluorescence endoscope utilizing a 0.8 NA GRIN lens. By correcting the field-dependent aberrations, we recovered diffraction-limited performance across a large imaging field. The consequent improvements in imaging signal and resolution allowed us to detect fine structures that were otherwise invisible inside mouse brain slices.

  11. Planet detection and spectroscopy in visible light with a single aperture telescope and a nulling coronagraph

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Serabyn, Eugene; Levine, Bruce Martin; Beichman, Charles; Liu, Duncan; Martin, Stefan; Orton, Glen; Mennesson, Bertrand; Morgan, Rhonda; Velusamy, Thangasamy; hide

    2003-01-01

    This talk describes a new concept for visible direct detection of Earth like extra solar planets using a nulling coronagraph instrument behind a 4m telescope in space. In the baseline design, a 4 beam nulling interferometer is synthesized from the telescope pupil, producing a very deep theta^4null which is then filtered by a coherent array of single mode fibers to suppress the residual scattered light. With perfect optics, the stellar leakage is less than 1e-11 of the starlight at the location of the planet. With diffraction limited telescope optics (lambda/20), suppression of the starlight to 1e-10 is possible. The concept is described along with the key advantages over more traditional approaches such as apodized aperture telescopes and Lyot type coronagraphs.

  12. Development of a 3D CZT detector prototype for Laue Lens telescope

    NASA Astrophysics Data System (ADS)

    Caroli, Ezio; Auricchio, Natalia; Del Sordo, Stefano; Abbene, Leonardo; Budtz-Jørgensen, Carl; Casini, Fabio; Curado da Silva, Rui M.; Kuvvetlli, Irfan; Milano, Luciano; Natalucci, Lorenzo; Quadrini, Egidio M.; Stephen, John B.; Ubertini, Pietro; Zanichelli, Massimiliano; Zappettini, Andrea

    2010-07-01

    We report on the development of a 3D position sensitive prototype suitable as focal plane detector for Laue lens telescope. The basic sensitive unit is a drift strip detector based on a CZT crystal, (~19×8 mm2 area, 2.4 mm thick), irradiated transversally to the electric field direction. The anode side is segmented in 64 strips, that divide the crystal in 8 independent sensor (pixel), each composed by one collecting strip and 7 (one in common) adjacent drift strips. The drift strips are biased by a voltage divider, whereas the anode strips are held at ground. Furthermore, the cathode is divided in 4 horizontal strips for the reconstruction of the third interaction position coordinate. The 3D prototype will be made by packing 8 linear modules, each composed by one basic sensitive unit, bonded on a ceramic layer. The linear modules readout is provided by a custom front end electronics implementing a set of three RENA-3 for a total of 128 channels. The front-end electronics and the operating logics (in particular coincidence logics for polarisation measurements) are handled by a versatile and modular multi-parametric back end electronics developed using FPGA technology.

  13. A compact electron gun for time-resolved electron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A., E-mail: derek.wann@york.ac.uk

    A novel compact time-resolved electron diffractometer has been built with the primary goal of studying the ultrafast molecular dynamics of photoexcited gas-phase molecules. Here, we discuss the design of the electron gun, which is triggered by a Ti:Sapphire laser, before detailing a series of calibration experiments relating to the electron-beam properties. As a further test of the apparatus, initial diffraction patterns have been collected for thin, polycrystalline platinum samples, which have been shown to match theoretical patterns. The data collected demonstrate the focusing effects of the magnetic lens on the electron beam, and how this relates to the spatial resolutionmore » of the diffraction pattern.« less

  14. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    NASA Astrophysics Data System (ADS)

    He, Z.-H.; Thomas, A. G. R.; Beaurepaire, B.; Nees, J. A.; Hou, B.; Malka, V.; Krushelnick, K.; Faure, J.

    2013-02-01

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  15. Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Miao, Jianwei; Hodgson, Keith O.; Ishikawa, Tetsuya; Larabell, Carolyn A.; Legros, Mark A.; Nishino, Yoshinori

    2003-01-01

    We report the first experimental recording, to our knowledge, of the diffraction pattern from intact Escherichia coli bacteria using coherent x-rays with a wavelength of 2 Å. By using the oversampling phasing method, a real space image at a resolution of 30 nm was directly reconstructed from the diffraction pattern. An R factor used for characterizing the quality of the reconstruction was in the range of 5%, which demonstrated the reliability of the reconstruction process. The distribution of proteins inside the bacteria labeled with manganese oxide has been identified and this distribution confirmed by fluorescence microscopy images. Compared with lens-based microscopy, this diffraction-based imaging approach can examine thicker samples, such as whole cultured cells, in three dimensions with resolution limited only by radiation damage. Looking forward, the successful recording and reconstruction of diffraction patterns from biological samples reported here represent an important step toward the potential of imaging single biomolecules at near-atomic resolution by combining single-particle diffraction with x-ray free electron lasers.

  16. Design of a panoramic long-wave infrared athermal system

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Geng, Anbing; Bai, Jian; Wang, Haitao; Guo, Jie; Xiong, Tao; Luo, Yujie; Huang, Zhi; Hou, Xiyun

    2016-12-01

    A panoramic long-wave infrared athermal system is introduced in this paper. The proposed system includes a panoramic annular lens (PAL) block providing a stereo field of view of (30 deg - 100 deg) × 360 deg without the need to move its components. Moreover, to ensure the imaging quality at different temperatures, a refractive/diffractive hybrid lens is introduced to achieve optical passive athermalization. The system operates in a spectral band between 8 and 12 μm, with a total length of 175 mm and a focal length of 3.4 mm. To get a bright and clear image, the aperture of the system was set to f/1.15. The introduction of aspherical surface and even-order diffractive surface not only eliminates the differential thermal but also makes the structure simple and lightweight and improves the image quality. The results show that the modulation transfer function below 20 lp/mm of the system is above 0.2 at each temperature ranging from -20°C to +60°C, which is close to the diffraction limit. The system is suitable to be applied in an uncooled infrared focal plane array detector and will serve as a static alert system. It has a number of pixels of 640×480, and the pixel size is 25 μm.

  17. [Design and analysis of a novel light visible spectrum imaging spectrograph optical system].

    PubMed

    Shen, Man-de; Li, Fei; Zhou, Li-bing; Li, Cheng; Ren, Huan-huan; Jiang, Qing-xiu

    2015-02-01

    A novel visible spectrum imaging spectrograph optical system was proposed based on the negative dispersion, the arbitrary phase modulation characteristics of diffractive optical element and the aberration correction characteristics of freeform optical element. The double agglutination lens was substituted by a hybrid refractive/diffractive lens based on the negative dispersion of diffractive optical element. Two freeform optical elements were used in order to correct some aberration based on the aberration correction characteristics of freeform optical element. An example and frondose design process were presented. When the design parameters were uniform, compared with the traditional system, the novel visible spectrum imaging spectrograph optical system's weight was reduced by 22.9%, the total length was reduced by 26.6%, the maximal diameter was reduced by 30.6%, and the modulation transfer function (MTF) in 1.0 field-of-view was improved by 0.35 with field-of-view improved maximally. The maximal distortion was reduced by 1.6%, the maximal longitudinal aberration was reduced by 56.4%, and the lateral color aberration was reduced by 59. 3%. From these data, we know that the performance of the novel system was advanced quickly and it could be used to put forward a new idea for modern visible spectrum imaging spectrograph optical system design.

  18. H0LiCOW – IV. Lens mass model of HE 0435-1223 and blind measurement of its time-delay distance for cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Kenneth C.; Suyu, Sherry H.; Auger, Matthew W.

    Strong gravitational lenses with measured time delays between the multiple images allow a direct measurement of the time-delay distance to the lens, and thus a measure of cosmological parameters, particularly the Hubble constant, H0. We present a blind lens model analysis of the quadruply imaged quasar lens HE 0435-1223 using deep Hubble Space Telescope imaging, updated time-delay measurements from the COSmological MOnitoring of GRAvItational Lenses (COSMOGRAIL), a measurement of the velocity dispersion of the lens galaxy based on Keck data, and a characterization of the mass distribution along the line of sight. HE 0435-1223 is the third lens analysed as a part of the H0 Lenses in COSMOGRAIL's Wellspring (H0LiCOW) project. We account for various sources of systematic uncertainty, including the detailed treatment of nearby perturbers, the parametrization of the galaxy light and mass profile, and the regions used for lens modelling. We constrain the effective time-delay distance to be D Δt=2612more » $$+208\\atop{-191}$$Mpc, a precision of 7.6 per cent. From HE 0435-1223 alone, we infer a Hubble constant of H 0=73.1$$+5.7\\atop{-6.0}$$kms -1Mpc -1 assuming a flat ΛCDM cosmology. Lastly, the cosmographic inference based on the three lenses analysed by H0LiCOW to date is presented in a companion paper (H0LiCOW Paper V).« less

  19. H0LiCOW – IV. Lens mass model of HE 0435-1223 and blind measurement of its time-delay distance for cosmology

    DOE PAGES

    Wong, Kenneth C.; Suyu, Sherry H.; Auger, Matthew W.; ...

    2016-11-29

    Strong gravitational lenses with measured time delays between the multiple images allow a direct measurement of the time-delay distance to the lens, and thus a measure of cosmological parameters, particularly the Hubble constant, H0. We present a blind lens model analysis of the quadruply imaged quasar lens HE 0435-1223 using deep Hubble Space Telescope imaging, updated time-delay measurements from the COSmological MOnitoring of GRAvItational Lenses (COSMOGRAIL), a measurement of the velocity dispersion of the lens galaxy based on Keck data, and a characterization of the mass distribution along the line of sight. HE 0435-1223 is the third lens analysed as a part of the H0 Lenses in COSMOGRAIL's Wellspring (H0LiCOW) project. We account for various sources of systematic uncertainty, including the detailed treatment of nearby perturbers, the parametrization of the galaxy light and mass profile, and the regions used for lens modelling. We constrain the effective time-delay distance to be D Δt=2612more » $$+208\\atop{-191}$$Mpc, a precision of 7.6 per cent. From HE 0435-1223 alone, we infer a Hubble constant of H 0=73.1$$+5.7\\atop{-6.0}$$kms -1Mpc -1 assuming a flat ΛCDM cosmology. Lastly, the cosmographic inference based on the three lenses analysed by H0LiCOW to date is presented in a companion paper (H0LiCOW Paper V).« less

  20. FPscope: a field-portable high-resolution microscope using a cellphone lens.

    PubMed

    Dong, Siyuan; Guo, Kaikai; Nanda, Pariksheet; Shiradkar, Radhika; Zheng, Guoan

    2014-10-01

    The large consumer market has made cellphone lens modules available at low-cost and in high-quality. In a conventional cellphone camera, the lens module is used to demagnify the scene onto the image plane of the camera, where image sensor is located. In this work, we report a 3D-printed high-resolution Fourier ptychographic microscope, termed FPscope, which uses a cellphone lens in a reverse manner. In our platform, we replace the image sensor with sample specimens, and use the cellphone lens to project the magnified image to the detector. To supersede the diffraction limit of the lens module, we use an LED array to illuminate the sample from different incident angles and synthesize the acquired images using the Fourier ptychographic algorithm. As a demonstration, we use the reported platform to acquire high-resolution images of resolution target and biological specimens, with a maximum synthetic numerical aperture (NA) of 0.5. We also show that, the depth-of-focus of the reported platform is about 0.1 mm, orders of magnitude longer than that of a conventional microscope objective with a similar NA. The reported platform may enable healthcare accesses in low-resource settings. It can also be used to demonstrate the concept of computational optics for educational purposes.

  1. Bringing Perfect Vision to the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Matijevich, Russ; Johansson, Erik; Johnson, Luke; Cavaco, Jeff; National Solar Observatory

    2016-01-01

    The world's largest ground-based solar telescope is one step closer to operation with the acceptance of the deformable mirror engineered by AOA Xinetics, a Northrop Grumman Corporation company. The Daniel K. Inouye Solar Telescope (DKIST), currently under construction in Haleakala, Hawaii, will offer unprecedented high-resolution images of the sun using the latest adaptive optics technology to provide its distortion-free imaging.Led by the National Solar Observatory (NSO) and the Association of Universities for Research in Astronomy (AURA), the Inouye Solar Telescope will help scientists better understand how magnetic fields affect the physical properties of the Sun, what roles they play in our solar system and how they affect Earth.Ground-based telescopes, whether observing the sun or the night sky must contend with atmospheric turbulence that acts as a flexible lens, constantly reshaping observed images. This turbulence makes research on solar activity difficult and drives the need for the latest adaptive optics technology.To provide DKIST with the distortion-free imaging it requires, AOA Xinetics designed a deformable mirror with 1,600 actuators, four times the normal actuator density. This deformable mirror (DM) is instrumental in removing all of the atmospheric blurriness that would otherwise limit the telescope's performance. The mirror also has an internal thermal management system to handle the intense solar energy coming from DKIST's telescope. This poster provides the history behind this incredible success story.

  2. Literature survey for suppression of scattered light in large space telescopes

    NASA Technical Reports Server (NTRS)

    Tifft, W. G.; Fannin, B. B.

    1973-01-01

    A literature survey is presented of articles dealing with all aspects of predicting, measuring, and controlling unwanted scattered (stray) light. The survey is divided into four broad classifications: (1) existing baffle/telescope designs; (2) computer programs for the analysis/design of light suppression systems; (3) the mechanism, measurement, and control of light scattering; and (4) the advantages and problems introduced by the space environment for the operation of diffraction-limited optical systems.

  3. Method and apparatus for eliminating coherent noise in a coherent energy imaging system without destroying spatial coherence

    NASA Technical Reports Server (NTRS)

    Shulman, A. R. (Inventor)

    1971-01-01

    A method and apparatus for substantially eliminating noise in a coherent energy imaging system, and specifically in a light imaging system of the type having a coherent light source and at least one image lens disposed between an input signal plane and an output image plane are, discussed. The input signal plane is illuminated with the light source by rotating the lens about its optical axis. In this manner, the energy density of coherent noise diffraction patterns as produced by imperfections such as dust and/or bubbles on and/or in the lens is distributed over a ring-shaped area of the output image plane and reduced to a point wherein it can be ignored. The spatial filtering capability of the coherent imaging system is not affected by this noise elimination technique.

  4. Features of optical surfaces of multifocal diffractive-refractive eye lenses

    NASA Astrophysics Data System (ADS)

    Lenkova, G. A.

    2017-09-01

    This paper considers shape features of the surface structures of multifocal intraocular lenses (IOLs), which, unlike bifocal IOLs, generate additional foci or extends the depth of focus, which not only corrects near and far vision but also provides good vision at intermediate distances. Expansion of the field of clear vision is achieved due to the effects of diffraction, interference, and refraction (change in the radius of curvature of the lens surface). The optical characteristics of the most famous multifocal IOLs (trifocal and quadrafocal lenses and lenses with extended focal area) are given.

  5. NASA SBIR Subtopic S2.04 "Advanced Optical Components"

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2009-01-01

    The primary purpose of this subtopic is to develop and demonstrate technologies to manufacture ultra-low-cost precision optical systems for very large x-ray, UV/optical or infrared telescopes. Potential solutions include but are not limited to direct precision machining, rapid optical fabrication, slumping or replication technologies to manufacture 1 to 2 meter (or larger) precision quality mirror or lens segments (either normal incidence for uv/optical/infrared or grazing incidence for x-ray). An additional key enabling technology for UV/optical telescopes is a broadband (from 100 nm to 2500 nm) high-reflectivity mirror coating with extremely uniform amplitude and polarization properties which can be deposited on 1 to 3 meter class mirror.

  6. Variable magnification variable dispersion glancing incidence imaging x-ray spectroscopic telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1991-01-01

    A variable magnification variable dispersion glancing incidence x-ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x-ray and extreme ultraviolet radiation sources includes a pirmary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carries each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a mutlilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x-ray sensitive photogrpahic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.

  7. Variable magnification variable dispersion glancing incidence imaging x ray spectroscopic telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard (Inventor)

    1990-01-01

    A variable magnification variable dispersion glancing incidence x ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carriers each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a multilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x ray sensitive photographic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.

  8. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    PubMed Central

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stefano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11–13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy. PMID:20368463

  9. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE PAGES

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; ...

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore » freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  10. Method for fabrication of cylindrical microlenses of selected shape

    DOEpatents

    Snyder, J.J.; Baer, T.M.

    1992-01-14

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. The present invention has many applications, such as integrated optics, optical detectors and laser diodes. The lens, when connected to a laser diode bar, can provide a high intensity source of laser radiation for pumping a high average power solid state laser. In integrated optics, a lens can be used to couple light into and out of apertures such as waveguides. The lens can also be used to collect light, and focus it on a detector. 11 figs.

  11. Method for fabrication of cylindrical microlenses of selected shape

    DOEpatents

    Snyder, James J.; Baer, Thomas M.

    1992-01-01

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. The present invention has many applications, such as integrated optics, optical detectors and laser diodes. The lens, when connected to a laser diode bar, can provide a high intensity source of laser radiation for pumping a high average power solid state laser. In integrated optics, a lens can be used to couple light into and out of apertures such as waveguides. The lens can also be used to collect light, and focus it on a detector.

  12. Diffraction-limited Mid-infrared Integral Field Spectroscopy of Io's Volcanic Activity with ALES on the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Skrutskie, Michael F.; de Kleer, Katherine R.; Stone, Jordan; Conrad, Al; Davies, Ashley; de Pater, Imke; Leisenring, Jarron; Hinz, Philip; Skemer, Andrew; Veillet, Christian; Woodward, Charles E.; Ertel, Steve; Spalding, Eckhart

    2017-10-01

    The Arizona Lenslet for Exoplanet Spectroscopy (ALES) is an enhancement to the Large Binocular Telescope's mid-infrared imager, LMIRcam, that permits low-resolution (R~20) spectroscopy between 2.8 and 4.2 μm of every diffraction-limited resolution element in a 2.5"x2.5" field-of-view on a 2048x2048 HAWAII-2RG 5.2 μm-cutoff array. The 1" disk of Io, dotted with powerful self-luminous volcanic eruptions, provides an ideal target for ALES, where the single 8.4-meter aperture diffraction-limited scale for Io at opposition ranges from 240 kilometers (80 milliarcseconds) at 2.8 μm to 360 kilometers (120 milliarcseconds) at 4.2 μm. ALES provides the capability to assess the color temperature of each volcanic thermal emission site as well as map broadband absorbers such as SO2 frost. A monitoring campaign in the Spring 2017 semester provided two global snapshots of Io's volcanic activity with ALES as well as characterization of a new brightening episode at Loki Patera over four epochs between January and May 2017.

  13. Flat liquid crystal diffractive lenses with variable focus and magnification

    NASA Astrophysics Data System (ADS)

    Valley, Pouria

    Non-mechanical variable lenses are important for creating compact imaging devices. Various methods employing dielectrically actuated lenses, membrane lenses, and liquid crystal lenses were previously proposed [1-4]. In This dissertation the design, fabrication, and characterization of innovative flat tunable-focus liquid crystal diffractive lenses (LCDL) are presented. LCDL employ binary Fresnel zone electrodes fabricated on Indium-Tin-Oxide using conventional micro-photolithography. The light phase can be adjusted by varying the effective refractive index of a nematic liquid crystal sandwiched between the electrodes and a reference substrate. Using a proper voltage distribution across various electrodes the focal length can be changed between several discrete values. Electrodes are shunted such that the correct phase retardation step sequence is achieved. If the number of 2pi zone boundaries is increased by a factor of m the focal length is changed from f to f/m based on the digitized Fresnel zone equation: f = rm2/2mlambda, where r m is mth zone radius, and lambda is the wavelength. The chromatic aberration of the diffractive lens is addressed and corrected by adding a variable fluidic lens. These LCDL operate at very low voltage levels (+/-2.5V ac input), exhibit fast switching times (20-150 ms), can have large apertures (>10 mm), and small form factor, and are robust and insensitive to vibrations, gravity, and capillary effects that limit membrane and dielectrically actuated lenses. Several tests were performed on the LCDL including diffraction efficiency measurement, switching dynamics, and hybrid imaging with a refractive lens. Negative focal lengths are achieved by adjusting the voltages across electrodes. Using these lenses in combination, magnification can be changed and zoom lenses can be formed. These characteristics make LCDL a good candidate for a variety of applications including auto-focus and zoom lenses in compact imaging devices such as camera phones. A business plan centered on this technology was developed as part of the requirements for the minor in entrepreneurship from the Eller College of Management. An industrial analysis is presented in this study that involves product development, marketing, and financial analyses (Appendix I).

  14. Design of Balanced Mixers for ALMA Band-10

    NASA Astrophysics Data System (ADS)

    Shitov, Sergey V.; Koryukin, Oleg V.; Uzawa, Yoshinori; Noguchi, Takashi; Uvarov, Andrey V.; Bukovski, Maksim A.; Cohn, Ilya A.

    2007-06-01

    Two variants of balanced mixer employing twin-SIS structure are under development for 787-950 GHz frequency range. Easy-to-use Geometry Transformation method for modeling of superconducting microstrips is developed, compared to referenced methods and used for design of the mixers. Lens-antenna mixer is based on cross-slot antenna; it does not need any intervening optics between its lens and sub-reflector of ALMA telescope; simple yet efficient composition of lens-antenna cartridge is suggested. Compact single-chamber balanced waveguide mixer employs two SIS chips and capacitive probe for LO injection; coupling above -3 dB and signal loss below -20 dB are expected. Need in shifting of resonance frequency of twin-SIS mixer towards top of the frequency band is predicted using Tucker's theory in large-signal approximation. TRX considerably below 200 K (DSB) is simulated using high-quality hybrid SIS junction for NbTiN/Nb - AlOx - Nb/Al for Jc = 12 kA/cm2.

  15. Measurements of Morphology in Strongly Lensed Galaxies in the Image Plane

    NASA Astrophysics Data System (ADS)

    Florian, Michael Kenneth

    2017-02-01

    The peak of star formation in the universe, the so-called "cosmic noon", occurs around redshift 2. Therefore, to study the physical mechanisms driving galaxy assembly and star formation, and thus the bulk morphological appearances of present day galaxies, we must look to galaxies at this redshift and greater. Unfortunately, even with current space-based telescopes, the internal structures of these galaxies cannot be resolved. The point spread function of the Hubble Space Telescope (HST), for example, corresponds to scales of about 0.5 kpc at redshift 2. Even the next generation of telescopes (e.g., the James Webb Space Telescope, the Wide-Field Infrared Survey Telescope, and the new thirty meter class of ground-based telescopes) will not be able to access the spatial scales--tens of parsecs or less--on which star formation has been shown to occur in the local universe. Fortunately, strong gravitational lensing can magnify these spatial scales to angular scales comparable to, or larger than, the HST point spread function. However, this increased access to small scales comes at the cost of strong distortions of the underlying image. To deal with this, I use simulations to show that some morphological measurements (e.g., the Gini coefficient) are preserved by gravitational lensing and can be measured in the image plane. I further show how such measurements can aid image family identification and thus improve lens models and source reconstructions. I explore a method to measure the fraction of a lensed galaxy's light that is contained in star-forming clumps in the image plane, which would bypass the need for lens modeling and source reconstruction to carry out similar measurements. I present a proof of concept for a simple case, and show where the major uncertainties lie--uncertainties that will need to be dealt with in order to expand this technique for use on more image configurations and tighten the relationship between the intrinsic values and the measured values. I suggest several ways in which these uncertainties can be overcome. Finally, I discuss the potential for future application of these techniques, particularly in the context of explaining star formation processes across cosmic time, and the associated implications for galaxy mass assembly mechanisms and galaxy evolution.

  16. Astrophysical targets of the Fresnel diffractive imager

    NASA Astrophysics Data System (ADS)

    Koechlin, L.; Deba, P.; Raksasataya, T.

    2017-11-01

    The Fresnel Diffractive imager is an innovative concept of distributed space telescope, for high resolution (milli arc-seconds) spectro-imaging in the IR, visible and UV domains. This paper presents its optical principle and the science that can be done on potential astrophysical targets. The novelty lies in the primary optics: a binary Fresnel array, akin to a binary Fresnel zone plate. The main interest of this approach is the relaxed manufacturing and positioning constraints. While having the resolution and imaging capabilities of lens or mirrors of equivalent size, no optical material is involved in the focusing process: just vacuum. A Fresnel array consists of millions void subapertures punched into a large and thin opaque membrane, that focus light by diffraction into a compact and highly contrasted image. The positioning law of the aperture edges drives the image quality and contrast. This optical concept allows larger and lighter apertures than solid state optics, aiming to high angular resolution and high dynamic range imaging, in particular for UV applications. Diffraction focusing implies very long focal distances, up to dozens of kilometers, which requires at least a two-vessel formation flying in space. The first spacecraft, "the Fresnel Array spacecraft", holds the large punched foil: the Fresnel Array. The second, the "Receiver spacecraft" holds the field optics and focal instrumentation. A chromatism correction feature enables moderately large (20%) relative wavebands, and fields of a few to a dozen arc seconds. This Fresnel imager is adapted to high contrast stellar environments: dust disks, close companions and (we hope) exoplanets. Specific to the particular grid-like pattern of the primary focusing zone plate, is the very high dynamic range achieved in the images, in the case of compact objects. Large stellar photospheres may also be mapped with Fresnel arrays of a few meters opertaing in the UV. Larger and more complex fields can be imaged with a lesser dynamic range: galactic or extragalactic, or at the opposite distance scale: small solar system bodies. This paper will briefly address the optical principle, and in more detail the astrophysical missions and targets proposed for a 4-meter class demonstrator: - Exoplanet imaging, Exoplanet spectroscopic analysis in the visible and UV, - Stellar environments, young stellar systems, disks, - Galactic clouds, astrochemistry, - IR observation of the galactic center, - Small objects of our solar system.

  17. Circular common-path point diffraction interferometer.

    PubMed

    Du, Yongzhao; Feng, Guoying; Li, Hongru; Vargas, J; Zhou, Shouhuan

    2012-10-01

    A simple and compact point-diffraction interferometer with circular common-path geometry configuration is developed. The interferometer is constructed by a beam-splitter, two reflection mirrors, and a telescope system composed by two lenses. The signal and reference waves travel along the same path. Furthermore, an opaque mask containing a reference pinhole and a test object holder or test window is positioned in the common focal plane of the telescope system. The object wave is divided into two beams that take opposite paths along the interferometer. The reference wave is filtered by the reference pinhole, while the signal wave is transmitted through the object holder. The reference and signal waves are combined again in the beam-splitter and their interference is imaged in the CCD. The new design is compact, vibration insensitive, and suitable for the measurement of moving objects or dynamic processes.

  18. James Webb Space Telescope optical simulation testbed IV: linear control alignment of the primary segmented mirror

    NASA Astrophysics Data System (ADS)

    Egron, Sylvain; Soummer, Rémi; Lajoie, Charles-Philippe; Bonnefois, Aurélie; Long, Joseph; Michau, Vincent; Choquet, Elodie; Ferrari, Marc; Leboulleux, Lucie; Levecq, Olivier; Mazoyer, Johan; N'Diaye, Mamadou; Perrin, Marshall; Petrone, Peter; Pueyo, Laurent; Sivaramakrishnan, Anand

    2017-09-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop experiment designed to study wavefront sensing and control for a segmented space telescope, such as JWST. With the JWST Science and Operations Center co-located at STScI, JOST was developed to provide both a platform for staff training and to test alternate wavefront sensing and control strategies for independent validation or future improvements beyond the baseline operations. The design of JOST reproduces the physics of JWST's three-mirror anastigmat (TMA) using three custom aspheric lenses. It provides similar quality image as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at 633 nm. An Iris AO segmented mirror stands for the segmented primary mirror of JWST. Actuators allow us to control (1) the 18 segments of the segmented mirror in piston, tip, tilt and (2) the second lens, which stands for the secondary mirror, in tip, tilt and x, y, z positions. We present the most recent experimental results for the segmented mirror alignment. Our implementation of the Wavefront Sensing (WFS) algorithms using phase diversity is tested on simulation and experimentally. The wavefront control (WFC) algorithms, which rely on a linear model for optical aberrations induced by misalignment of the secondary lens and the segmented mirror, are tested and validated both on simulations and experimentally. In this proceeding, we present the performance of the full active optic control loop in presence of perturbations on the segmented mirror, and we detail the quality of the alignment correction.

  19. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  20. 3D-HST Grism Spectroscopy of a Gravitationally Lensed, Low-metallicity Starburst Galaxy at z = 1.847

    NASA Astrophysics Data System (ADS)

    Brammer, Gabriel B.; Sánchez-Janssen, Rubén; Labbé, Ivo; da Cunha, Elisabete; Erb, Dawn K.; Franx, Marijn; Fumagalli, Mattia; Lundgren, Britt; Marchesini, Danilo; Momcheva, Ivelina; Nelson, Erica; Patel, Shannon; Quadri, Ryan; Rix, Hans-Walter; Skelton, Rosalind E.; Schmidt, Kasper B.; van der Wel, Arjen; van Dokkum, Pieter G.; Wake, David A.; Whitaker, Katherine E.

    2012-10-01

    We present Hubble Space Telescope (HST) imaging and spectroscopy of the gravitational lens SL2SJ02176-0513, a cusp arc at z = 1.847. The UV continuum of the lensed galaxy is very blue, which is seemingly at odds with its redder optical colors. The 3D-HST WFC3/G141 near-infrared spectrum of the lens reveals the source of this discrepancy to be extremely strong [O III] λ5007 and Hβ emission lines with rest-frame equivalent widths of 2000 ± 100 and 520 ± 40 Å, respectively. The source has a stellar mass ~108 M ⊙, sSFR ~ 100 Gyr-1, and detection of [O III] λ4363 yields a metallicity of 12 + log (O/H) = 7.5 ± 0.2. We identify local blue compact dwarf analogs to SL2SJ02176-0513, which are among the most metal-poor galaxies in the Sloan Digital Sky Survey. The local analogs resemble the lensed galaxy in many ways, including UV/optical spectral energy distribution, spatial morphology, and emission line equivalent widths and ratios. Common to SL2SJ02176-0513 and its local counterparts is an upturn at mid-IR wavelengths likely arising from hot dust heated by starbursts. The emission lines of SL2SJ02176-0513 are spatially resolved owing to the combination of the lens and the high spatial resolution of HST. The lensed galaxy is composed of two clumps with combined size re ~300 pc, and we resolve significant differences in UV color and emission line equivalent width between them. Though it has characteristics occasionally attributed to active galactic nuclei, we conclude that SL2SJ02176-0513 is a low-metallicity star-bursting dwarf galaxy. Such galaxies will be found in significant numbers in the full 3D-HST grism survey. Based on observations made with the NASA/ESA Hubble Space Telescope, program 12328, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  1. Constraints on early-type galaxy structure from spectroscopically selected gravitational lenses

    NASA Astrophysics Data System (ADS)

    Bolton, Adam Stallard

    2005-11-01

    This thesis describes all aspects of a unique spectroscopic survey for strong galaxy-galaxy gravitational lenses: motivation, candidate selection, ground- based spectroscopic follow-up, Hubble Space Telescope imaging, data analysis, and results on the radial density profile of the lens galaxies. The lens candidates are selected from within the spectroscopic database of the Sloan Digital Sky Survey (SDSS) based on the appearance of two significantly different redshifts along the same line of sight, and lenses are confirmed within the candidate sample by follow-up imaging and spectroscopy. The sample of [approximate]20 early-type lenses presented in this thesis represents the largest single strong-lens galaxy sample discovered and published to date. These lenses probe the mass of the lens galaxies on scales roughly equal to one-half effective radius. We find a dynamical normalization between isothermal lens-model velocity dispersions and aperture-corrected SDSS stellar velocity dispersions of f = s lens /s stars = 0.95 +/- 0.03. By combining lens-model Einstein radii and de Vaucouleurs effective radii with stellar velocity dispersions through the Jeans equation, we find that the logarithmic slope [Special characters omitted.] of the density profile in our lens galaxies (r 0 ( [Special characters omitted.] ) is on average slightly steeper than isothermal ([Special characters omitted.] = 2) with a modest intrinsic scatter. Parameterizing the intrinsic distribution in [Special characters omitted.] as Gaussian, we find a maximum-likelihood mean of [Special characters omitted. ] and standard deviation of s[Special characters omitted.] = [Special characters omitted.] (68% confidence, for isotropic velocity-dispersion models). Our results rule out a single universal logarithmic density slope at >99.995% confidence. The success of this spectroscopic lens survey suggests that similar projects should be considered as an explicit science goal of future redshift surveys. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  2. Very high-resolution spectroscopy for extremely large telescopes using pupil slicing and adaptive optics.

    PubMed

    Beckers, Jacques M; Andersen, Torben E; Owner-Petersen, Mette

    2007-03-05

    Under seeing limited conditions very high resolution spectroscopy becomes very difficult for extremely large telescopes (ELTs). Using adaptive optics (AO) the stellar image size decreases proportional with the telescope diameter. This makes the spectrograph optics and hence its resolution independent of the telescope diameter. However AO for use with ELTs at visible wavelengths require deformable mirrors with many elements. Those are not likely to be available for quite some time. We propose to use the pupil slicing technique to create a number of sub-pupils each of which having its own deformable mirror. The images from all sub-pupils are combined incoherently with a diameter corresponding to the diffraction limit of the sub-pupil. The technique is referred to as "Pupil Slicing Adaptive Optics" or PSAO.

  3. IBIS: An Interferometer-Based Imaging System for Detecting Extrasolar Planets with a Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Diner, David J.

    1989-01-01

    The direct detection of extrasolar planetary systems is a challenging observational objective. The observing system must be able to detect faint planetary signals against the background of diffracted and scattered starlight, zodiacal light, and in the IR, mirror thermal radiation. As part of a JPL study, we concluded that the best long-term approach is a 10-20 m filled-aperture telescope operating in the thermal IR (10-15 microns). At these wavelengths, the star/planet flux ratio is on the order of 10(exp 6)-10(exp 8). Our study supports the work of Angel et al., who proposed a cooled 16-m IR telescope and a special apodization mask to suppress the stellar light within a limited angular region around the star. Our scheme differs in that it is capable of stellar suppression over a much broader field-of- view, enabling more efficient planet searches. To do this, certain key optical signal-processing components are needed, including a coronagraph to apodize the stellar diffraction pattern, an infrared interferometer to provide further starlight suppression, a complementary visible-wavelength interferometer to sense figure errors in the telescope optics, and a deformable mirror to adaptively compensate for these errors. Because of the central role of interferometry we have designated this concept the Interferometer-Based Imaging System (IBIS). IBIS incorporates techniques originally suggested by Ken Knight for extrasolar planet detection at visible wavelengths. The type of telescope discussed at this workshop is well suited to implementation of the IBIS concept.

  4. Visual acuity from far to near and contrast sensitivity in eyes with a diffractive multifocal intraocular lens with a low addition power.

    PubMed

    Hayashi, Ken; Manabe, Shin-Ichi; Hayashi, Hideyuki

    2009-12-01

    To compare visual acuity from far to near, contrast visual acuity, and acuity in the presence of glare (glare visual acuity) between an aspheric diffractive multifocal intraocular lens (IOL) with a low addition (add) power (+3.0 diopters) and a monofocal IOL. Hayashi Eye Hospital, Fukuoka, Japan. This prospective study comprised patients having implantation of an aspheric diffractive multifocal ReSTOR SN6AD1 IOL with a +3.0 D add (multifocal group) or a monofocal AcrySof IQ SN60WF IOL (monofocal group). Visual acuity from far to near distances, contrast acuity, and glare acuity were evaluated 3 months postoperatively. Each IOL group comprised 64 eyes of 32 patients. For monocular and binocular visual acuity, the mean uncorrected and distance-corrected intermediate acuity at 0.5 m and the near acuity at 0.3 m were significantly better in the multifocal group than in the monofocal group (P

  5. Lens Model and Time Delay Predictions for the Sextuply Lensed Quasar SDSS J2222+2745

    NASA Astrophysics Data System (ADS)

    Sharon, Keren; Bayliss, Matthew B.; Dahle, Håkon; Florian, Michael K.; Gladders, Michael D.; Johnson, Traci L.; Paterno-Mahler, Rachel; Rigby, Jane R.; Whitaker, Katherine E.; Wuyts, Eva

    2017-01-01

    SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found τAB = 47.7 ± 6.0 days and τAC = -722 ± 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are τAD = 502 ± 68 days, τAE = 611 ± 75 days, and τAF = 415 ± 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift, indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-13337.

  6. Buckskin Drill Hole and CheMin X-ray Diffraction

    NASA Image and Video Library

    2015-12-17

    The graph at right presents information from the NASA Curiosity Mars rover's onboard analysis of rock powder drilled from the "Buckskin" target location, shown at left. X-ray diffraction analysis of the Buckskin sample inside the rover's Chemistry and Mineralogy (CheMin) instrument revealed the presence of a silica-containing mineral named tridymite. This is the first detection of tridymite on Mars. Peaks in the X-ray diffraction pattern are from minerals in the sample, and every mineral has a diagnostic set of peaks that allows identification. The image of Buckskin at left was taken by the rover's Mars Hand Lens Imager (MAHLI) camera on July 30, 2015, and is also available at PIA19804. http://photojournal.jpl.nasa.gov/catalog/PIA20271

  7. OGLE-2015-BLG-0479LA,B: BINARY GRAVITATIONAL MICROLENS CHARACTERIZED BY SIMULTANEOUS GROUND-BASED AND SPACE-BASED OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, C.; Udalski, A.; Szymański, M. K.

    2016-09-01

    We present a combined analysis of the observations of the gravitational microlensing event OGLE-2015-BLG-0479 taken both from the ground and by the Spitzer Space Telescope . The light curves seen from the ground and from space exhibit a time offset of ∼13 days between the caustic spikes, indicating that the relative lens-source positions seen from the two places are displaced by parallax effects. From modeling the light curves, we measure the space-based microlens parallax. Combined with the angular Einstein radius measured by analyzing the caustic crossings, we determine the mass and distance of the lens. We find that the lensmore » is a binary composed of two G-type stars with masses of ∼1.0 M {sub ⊙} and ∼0.9 M {sub ⊙} located at a distance of ∼3 kpc. In addition, we are able to constrain the complete orbital parameters of the lens thanks to the precise measurement of the microlens parallax derived from the joint analysis. In contrast to the binary event OGLE-2014-BLG-1050, which was also observed by Spitzer, we find that the interpretation of OGLE-2015-BLG-0479 does not suffer from the degeneracy between (±, ±) and (±, ∓) solutions, confirming that the four-fold parallax degeneracy in single-lens events collapses into the two-fold degeneracy for the general case of binary-lens events. The location of the blend in the color–magnitude diagram is consistent with the lens properties, suggesting that the blend is the lens itself. The blend is bright enough for spectroscopy and thus this possibility can be checked from future follow-up observations.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, James H. H.; Suyu, Sherry H.; Chiueh, Tzihong

    Strong gravitationally lensed quasars provide powerful means to study galaxy evolution and cosmology. Current and upcoming imaging surveys will contain thousands of new lensed quasars, augmenting the existing sample by at least two orders of magnitude. To find such lens systems, we built a robot, Chitah, that hunts for lensed quasars by modeling the configuration of the multiple quasar images. Specifically, given an image of an object that might be a lensed quasar, Chitah first disentangles the light from the supposed lens galaxy and the light from the multiple quasar images based on color information. A simple rule is designed to categorize the given object as a potential four-image (quad) or two-image (double) lensed quasar system. The configuration of the identified quasar images is subsequently modeled to classify whether the object is a lensed quasar system. We test the performance of Chitah using simulated lens systems based on the Canada–France–Hawaii Telescope Legacy Survey. For bright quads with large image separations (with Einstein radiusmore » $${r}_{\\mathrm{ein}}\\gt 1\\buildrel{\\prime\\prime}\\over{.} 1$$) simulated using Gaussian point-spread functions, a high true-positive rate (TPR) of $$\\sim 90\\%$$ and a low false-positive rate of $$\\sim 3\\%$$ show that this is a promising approach to search for new lens systems. We obtain high TPR for lens systems with $${r}_{\\mathrm{ein}}\\gtrsim 0\\buildrel{\\prime\\prime}\\over{.} 5$$, so the performance of Chitah is set by the seeing. We further feed a known gravitational lens system, COSMOS 5921+0638, to Chitah, and demonstrate that Chitah is able to classify this real gravitational lens system successfully. Our newly built Chitah is omnivorous and can hunt in any ground-based imaging surveys.« less

  9. The Grism Lens-Amplified Survey from Space (GLASS). II. Gas-Phase Metallicity and Radial Gradients in an Interacting System At Z ≃ 2

    NASA Astrophysics Data System (ADS)

    Jones, T.; Wang, X.; Schmidt, K. B.; Treu, T.; Brammer, G. B.; Bradač, M.; Dressler, A.; Henry, A. L.; Malkan, M. A.; Pentericci, L.; Trenti, M.

    2015-03-01

    We present spatially resolved gas-phase metallicity for a system of three galaxies at z = 1.85 detected in the Grism Lens-Amplified Survey from Space (GLASS). The combination of Hubble Space Telescope (HST’s) diffraction limit and strong gravitational lensing by the cluster MACS J0717+3745 results in a spatial resolution of ≃200-300 pc, enabling good spatial sampling despite the intrinsically small galaxy sizes. The galaxies in this system are separated by ≃50-200 kpc in projection and are likely in an early stage of interaction, evidenced by relatively high specific star formation rates. Their gas-phase metallicities are consistent with larger samples at similar redshift, star formation rate (SFR), and stellar mass. We obtain a precise measurement of the metallicity gradient for one galaxy and find a shallow slope compared to isolated galaxies at high redshift, consistent with a flattening of the gradient due to gravitational interaction. An alternative explanation for the shallow metallicity gradient and elevated SFR is rapid recycling of metal-enriched gas, but we find no evidence for enhanced gas-phase metallicities which should result from this effect. Notably, the measured stellar masses log {{M}*}/{{M}} = 7.2-9.1 probe to an order of magnitude below previous mass-metallicity studies at this redshift. The lowest mass galaxy has properties similar to those expected for Fornax at this redshift, indicating that GLASS is able to directly study the progenitors of local group dwarf galaxies on spatially resolved scales. Larger samples from the full GLASS survey will be ideal for studying the effects of feedback, and the time evolution of metallicity gradients. These initial results demonstrate the utility of HST spectroscopy combined with gravitational lensing for characterizing resolved physical properties of galaxies at high redshift.

  10. Diffractive optics technology and the NASA Geostationary Earth Observatory (GEO)

    NASA Technical Reports Server (NTRS)

    Morris, G. Michael; Michaels, Robert L.; Faklis, Dean

    1992-01-01

    Diffractive (or binary) optics offers unique capabilities for the development of large-aperture, high-performance, light-weight optical systems. The Geostationary Earth Observatory (GEO) will consist of a variety of instruments to monitor the environmental conditions of the earth and its atmosphere. The aim of this investigation is to analyze the design of the GEO instrument that is being proposed and to identify the areas in which diffractive (or binary) optics technology can make a significant impact in GEO sensor design. Several potential applications where diffractive optics may indeed serve as a key technology for improving the performance and reducing the weight and cost of the GEO sensors have been identified. Applications include the use of diffractive/refractive hybrid lenses for aft-optic imagers, diffractive telescopes for narrowband imaging, subwavelength structured surfaces for anti-reflection and polarization control, and aberration compensation for reflective imaging systems and grating spectrometers.

  11. A broadband terahertz ultrathin multi-focus lens

    PubMed Central

    He, Jingwen; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan

    2016-01-01

    Ultrathin transmission metasurface devices are designed on the basis of the Yang-Gu amplitude-phase retrieval algorithm for focusing the terahertz (THz) radiation into four or nine spots with focal spacing of 2 or 3 mm at a frequency of 0.8 THz. The focal properties are experimentally investigated in detail, and the results agree well with the theoretical expectations. The designed THz multi-focus lens (TMFL) demonstrates a good focusing function over a broad frequency range from 0.3 to 1.1 THz. As a transmission-type device based on metasurface, the diffraction efficiency of the TMFL can be as high as 33.92% at the designed frequency. The imaging function of the TMFL is also demonstrated experimentally and clear images are obtained. The proposed method produces an ultrathin, low-cost, and broadband multi-focus lens for THz-band application PMID:27346430

  12. Programmable diffractive lens for ophthalmic application

    NASA Astrophysics Data System (ADS)

    Millán, María S.; Pérez-Cabré, Elisabet; Romero, Lenny A.; Ramírez, Natalia

    2014-06-01

    Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements, particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advantage of their properties of great flexibility, easy and fast refreshment, and multiplexing capability in comparison with equivalent conventional refractive lenses. We explore the application of programmable diffractive lenses displayed on the pixelated screen of a liquid crystal on silicon spatial light modulator to ophthalmic optics. In particular, we consider the use of programmable diffractive lenses for the visual compensation of refractive errors (myopia, hypermetropia, astigmatism) and presbyopia. The principles of compensation are described and sketched using geometrical optics and paraxial ray tracing. For the proof of concept, a series of experiments with artificial eye in optical bench are conducted. We analyze the compensation precision in terms of optical power and compare the results with those obtained by means of conventional ophthalmic lenses. Practical considerations oriented to feasible applications are provided.

  13. Ophthalmic compensation of visual ametropia based on a programmable diffractive lens

    NASA Astrophysics Data System (ADS)

    Millán, Maria S.; Pérez-Cabré, Elisabet; Romero, Lenny A.; Ramírez, Natalia

    2013-11-01

    Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements (DOEs), particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advantage of their properties of great flexibility, easy and fast refreshment, and multiplexing capability in comparison with equivalent conventional refractive lenses. In this paper, we explore the application of programmable diffractive lenses displayed on the pixelated screen of a liquid crystal on silicon spatial light modulator (LCoS-SLM) to ophthalmic optics. In particular, we consider the use of programmable diffractive lenses for the visual compensation of some refractive errors (myopia, hyperopia). The theoretical principles of compensation are described and sketched using geometrical optics and paraxial ray tracing. A series of experiments with artificial eye in optical bench are conducted to analyze the compensation accuracy in terms of optical power and to compare the results with those obtained by means of conventional ophthalmic lenses. Practical considerations oriented to feasible applications are provided.

  14. Remote focusing in confocal microscopy by means of a modified Alvarez lens.

    PubMed

    Bawart, M; Jesacher, A; Bernet, S; Ritsch-Marte, M

    2018-06-22

    Alvarez lenses are actuated lens-pairs which allow one to tune the optical power by mechanical displacement of subelements. Here, we show that a recently realized modified Alvarez lens design which does not require mechanical actuation can be integrated into a confocal microscope. Instead of mechanically moving them, the sublenses are imaged onto each other in a 4f-configuration, where the lateral image shift leading to a change in optical power is created by a galvo-mirror. The avoidance of mechanical lens shifts leads to a large speed gain for axial (and hence also 3D) image scans compared to classical Alvarez lenses. We demonstrate that the suggested operation principle is compatible with confocal microscopy. In order to optimize the system, we have drawn advantage of the flexibility a liquid-crystal spatial light modulator offers for the implementation. For given specifications, dedicated diffractive optical elements or freeform elements can be used in combination with resonant galvo-scanners or acousto-optic beam deflectors, to achieve even faster z-scans than reported here, reaching video rate. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  15. Scientific Performance Analysis of the SYZ Telescope Design versus the RC Telescope Design

    NASA Astrophysics Data System (ADS)

    Ma, Donglin; Cai, Zheng

    2018-02-01

    Recently, Su et al. propose an innovative design, referred as the “SYZ” design, for China’s new project of a 12 m optical-infrared telescope. The SYZ telescope design consists of three aspheric mirrors with non-zero power, including a relay mirror below the primary mirror. SYZ design yields a good imaging quality and has a relatively flat field curvature at Nasmyth focus. To evaluate the science-compatibility of this three-mirror telescope, in this paper, we thoroughly compare the performance of SYZ design with that of Ritchey–Chrétien (RC) design, a conventional two-mirror telescope design. Further, we propose the Observing Information Throughput (OIT) as a metric for quantitatively evaluating the telescopes’ science performance. We find that although a SYZ telescope yields a superb imaging quality over a large field of view, a two-mirror (RC) telescope design holds a higher overall throughput, a better diffraction-limited imaging quality in the central field of view (FOV < 5‧) which is better for the performance of extreme Adaptive Optics (AO), and a generally better scientific performance with a higher OIT value. D. Ma & Z. Cai contributed equally to this paper.

  16. High-resolution scanning precession electron diffraction: Alignment and spatial resolution.

    PubMed

    Barnard, Jonathan S; Johnstone, Duncan N; Midgley, Paul A

    2017-03-01

    Methods are presented for aligning the pivot point of a precessing electron probe in the scanning transmission electron microscope (STEM) and for assessing the spatial resolution in scanning precession electron diffraction (SPED) experiments. The alignment procedure is performed entirely in diffraction mode, minimising probe wander within the bright-field (BF) convergent beam electron diffraction (CBED) disk and is used to obtain high spatial resolution SPED maps. Through analysis of the power spectra of virtual bright-field images extracted from the SPED data, the precession-induced blur was measured as a function of precession angle. At low precession angles, SPED spatial resolution was limited by electronic noise in the scan coils; whereas at high precession angles SPED spatial resolution was limited by tilt-induced two-fold astigmatism caused by the positive spherical aberration of the probe-forming lens. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Optical, Physical, and Chemical Properties of Surface Modified Titanium Dioxide Powders

    DTIC Science & Technology

    2011-02-01

    coefficient depends on the optical efficiency factor, QCM , the geometric cross section, G, and the particle mass as indicated by the relationship in eq 2...diffraction sensor with a RODOS powder dispersing unit. The instrument houses a HeNe laser (632.8 nm) and Fourier lens. Upon introduction of the

  18. Wavefront aberrations of x-ray dynamical diffraction beams.

    PubMed

    Liao, Keliang; Hong, Youli; Sheng, Weifan

    2014-10-01

    The effects of dynamical diffraction in x-ray diffractive optics with large numerical aperture render the wavefront aberrations difficult to describe using the aberration polynomials, yet knowledge of them plays an important role in a vast variety of scientific problems ranging from optical testing to adaptive optics. Although the diffraction theory of optical aberrations was established decades ago, its application in the area of x-ray dynamical diffraction theory (DDT) is still lacking. Here, we conduct a theoretical study on the aberration properties of x-ray dynamical diffraction beams. By treating the modulus of the complex envelope as the amplitude weight function in the orthogonalization procedure, we generalize the nonrecursive matrix method for the determination of orthonormal aberration polynomials, wherein Zernike DDT and Legendre DDT polynomials are proposed. As an example, we investigate the aberration evolution inside a tilted multilayer Laue lens. The corresponding Legendre DDT polynomials are obtained numerically, which represent balanced aberrations yielding minimum variance of the classical aberrations of an anamorphic optical system. The balancing of classical aberrations and their standard deviations are discussed. We also present the Strehl ratio of the primary and secondary balanced aberrations.

  19. The research on surface characteristics of optical lens by 3D printing technique and precise diamond turning technique

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Yao; Chang, Chun-Ming; Ho, Cheng-Fong; Lee, Tai-Wen; Lin, Ping-Hung; Hsu, Wei-Yao

    2017-06-01

    The advantage of 3D printing technique is flexible in design and fabrication. Using 3D printing technique, the traditional manufacturing limitations are not considered. The optical lens is the key component in an optical system. The traditional process to manufacture optical plastic lens is injection molding. However injection molding is only suitable for plastics lens, it cannot fabricate optical and mechanical components at same time. The assembly error of optical system can be reduced effectively with fabricating optical and mechanical components at same time. The process of printing optical and mechanical components simultaneously is proposed in previous papers, but the optical surface of printing components is not transparent. If we increase the transmittance of the optical surface, the printing components which fabricated by 3D printing process could be high transmission. Therefore, precise diamond turning technique has been used to turning the surface of 3D printing optical lens in this paper. The precise diamond turning techniques could process surfaces of components to meet the requirements of optical system. A 3D printing machine, Stratasys Connex 500, and a precise diamond turning machine, Precitech Freeform705XG, have been used in this paper, respectively. The dimension, roughness, transmission and printing types of 3D printing components have been discussed in this paper. After turning and polishing process, the roughness of 3D printing component is below 0.05 μm and the transmittance increase above 80 %. This optical module can be used in hand-held telescope and other system which need lens and special mechanical structure fabricated simultaneously.

  20. Strong Gravitational Lensing as a Probe of Gravity, Dark-Matter and Super-Massive Black Holes

    NASA Astrophysics Data System (ADS)

    Koopmans, L.V.E.; Barnabe, M.; Bolton, A.; Bradac, M.; Ciotti, L.; Congdon, A.; Czoske, O.; Dye, S.; Dutton, A.; Elliasdottir, A.; Evans, E.; Fassnacht, C.D.; Jackson, N.; Keeton, C.; Lasio, J.; Moustakas, L.; Meneghetti, M.; Myers, S.; Nipoti, C.; Suyu, S.; van de Ven, G.; Vegetti, S.; Wucknitz, O.; Zhao, H.-S.

    Whereas considerable effort has been afforded in understanding the properties of galaxies, a full physical picture, connecting their baryonic and dark-matter content, super-massive black holes, and (metric) theories of gravity, is still ill-defined. Strong gravitational lensing furnishes a powerful method to probe gravity in the central regions of galaxies. It can (1) provide a unique detection-channel of dark-matter substructure beyond the local galaxy group, (2) constrain dark-matter physics, complementary to direct-detection experiments, as well as metric theories of gravity, (3) probe central super-massive black holes, and (4) provide crucial insight into galaxy formation processes from the dark matter point of view, independently of the nature and state of dark matter. To seriously address the above questions, a considerable increase in the number of strong gravitational-lens systems is required. In the timeframe 2010-2020, a staged approach with radio (e.g. EVLA, e-MERLIN, LOFAR, SKA phase-I) and optical (e.g. LSST and JDEM) instruments can provide 10^(2-4) new lenses, and up to 10^(4-6) new lens systems from SKA/LSST/JDEM all-sky surveys around ~2020. Follow-up imaging of (radio) lenses is necessary with moderate ground/space-based optical-IR telescopes and with 30-50m telescopes for spectroscopy (e.g. TMT, GMT, ELT). To answer these fundamental questions through strong gravitational lensing, a strong investment in large radio and optical-IR facilities is therefore critical in the coming decade. In particular, only large-scale radio lens surveys (e.g. with SKA) provide the large numbers of high-resolution and high-fidelity images of lenses needed for SMBH and flux-ratio anomaly studies.

  1. PANIC: current status

    NASA Astrophysics Data System (ADS)

    Cárdenas, M. C.; Rodríguez Gómez, J.

    2011-11-01

    PANIC, the PAnoramic Near Infrared Camera, is a new instrument for Calar Alto Observatory (CAHA) is a wide-field infraredimager for the CAHA 2.2 m and 3.5 m telescopes. The optics is a folded single optical train, pure lens optics, with a pixel scale of 0.45 arcsec/pixel (18 microns) at the 2.2 m telescope and 0.23 arcsec/pixel at the 3.5 m. A mosaic of four Hawaii-2RG detectorsprovides a field of view (FOV) of 0.5x0.5 degrees and 0.25x0.25 degrees, respectively. It will cover the photometric bandsfrom Z to K_s (0.8 to 2.5 microns) with a low thermal background due to cold stops. Here we present the current status of the project.

  2. Cryogenic X-Ray Diffraction Microscopy for Biological Samples

    NASA Astrophysics Data System (ADS)

    Lima, Enju; Wiegart, Lutz; Pernot, Petra; Howells, Malcolm; Timmins, Joanna; Zontone, Federico; Madsen, Anders

    2009-11-01

    X-ray diffraction microscopy (XDM) is well suited for nondestructive, high-resolution biological imaging, especially for thick samples, with the high penetration power of x rays and without limitations imposed by a lens. We developed nonvacuum, cryogenic (cryo-) XDM with hard x rays at 8 keV and report the first frozen-hydrated imaging by XDM. By preserving samples in amorphous ice, the risk of artifacts associated with dehydration or chemical fixation is avoided, ensuring the imaging condition closest to their natural state. The reconstruction shows internal structures of intact D. radiodurans bacteria in their natural contrast.

  3. Zucchi, Niccolo (1586-1670)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Born in Parma, Italy, became a Jesuit, and in 1608, or perhaps 1616, used a lens to observe the image produced by a concave mirror, the first reflecting telescope. He described it in a book Optica Philosophica, in 1652. He was the first to observe the spots on Jupiter, in 1630. In about 1640, he is reported to have examined spots on Mars, as discovered by Fontana, but this must be regarded skepti...

  4. RELICS Discovery of a Probable Lens-magnified SN behind Galaxy Cluster Abell 1763

    NASA Astrophysics Data System (ADS)

    Rodney, S.; Coe, D.; Bradley, L.; Strolger, L.; Brammer, G.; Avila, R.; Ryan, R.; Ogaz, S.; Riess, A.; Sharon, K.; Johnson, T.; Paterno-Mahler, R.; Molino, A.; Graham, M.; Kelly, P.; Filippenko, A.; Frye, B.; Foley, R.; Schmidt, K.; Umetsu, K.; Czakon, N.; Weiner, B.; Stark, D.; Mainali, R.; Zitrin, A.; Sendra, I.; Graur, O.; Grillo, C.; Hjorth, J.; Selsing, J.; Christensen, L.; Rosati, P.; Nonino, M.; Balestra, I.; Vulcani, B.; McCully, C.; Dawson, W.; Bouwens, R.; Lam, D.; Trenti, M.; Nunez, D. Carrasco; Matheson, T.; Merten, J.; Jha, S.; Jones, C.; Andrade-Santos, F.; Salmon, B.; Bradac, M.; Hoag, A.; Huang, K.; Wang, X.; Oesch, P.

    2016-07-01

    We report the discovery of a likely supernova (SN) in the background field of the galaxy cluster Abell 1763 (a.k.a. RXC J1335.3+4059, ZwCl 1333.7+4117). The SN candidate was detected in Hubble Space Telescope (HST) observations collected on June 17, 2016 as part of the Reionization Lensing Cluster Survey (RELICS, HST program ID: 14096, PI: D.Coe).

  5. Microlensing Constraints on the Mass of Single Stars from HST Astrometric Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kains, N.; Calamida, A.; Sahu, K. C.

    Here, we report on the first results from a large-scale observing campaign aiming to use astrometric microlensing to detect and place limits on the mass of single objects, including stellar remnants. We used the Hubble Space Telescope to monitor stars near the Galactic Center for three years, and we measured the brightness and positions of ~2 million stars at each observing epoch. In addition to this, we monitored the same pointings using the VIMOS imager on the Very Large Telescope. The stars we monitored include several bright microlensing events observed from the ground by the OGLE collaboration. In this paper,more » we present the analysis of our photometric and astrometric measurements for six of these events, and derive mass constraints for the lens in each of them. Although these constraints are limited by the photometric precision of ground-based data, and our ability to determine the lens distance, we were able to constrain the size of the Einstein ring radius thanks to our precise astrometric measurements—the first routine measurements of this type from a large-scale observing program. In conclusion, this demonstrates the power of astrometric microlensing as a tool to constrain the masses of stars, stellar remnants, and, in the future, extrasolar planets, using precise ground- and space-based observations.« less

  6. Microlensing Constraints on the Mass of Single Stars from HST Astrometric Measurements

    DOE PAGES

    Kains, N.; Calamida, A.; Sahu, K. C.; ...

    2017-07-14

    Here, we report on the first results from a large-scale observing campaign aiming to use astrometric microlensing to detect and place limits on the mass of single objects, including stellar remnants. We used the Hubble Space Telescope to monitor stars near the Galactic Center for three years, and we measured the brightness and positions of ~2 million stars at each observing epoch. In addition to this, we monitored the same pointings using the VIMOS imager on the Very Large Telescope. The stars we monitored include several bright microlensing events observed from the ground by the OGLE collaboration. In this paper,more » we present the analysis of our photometric and astrometric measurements for six of these events, and derive mass constraints for the lens in each of them. Although these constraints are limited by the photometric precision of ground-based data, and our ability to determine the lens distance, we were able to constrain the size of the Einstein ring radius thanks to our precise astrometric measurements—the first routine measurements of this type from a large-scale observing program. In conclusion, this demonstrates the power of astrometric microlensing as a tool to constrain the masses of stars, stellar remnants, and, in the future, extrasolar planets, using precise ground- and space-based observations.« less

  7. A new-speckle interferometry system for the MAMA detector

    NASA Technical Reports Server (NTRS)

    Horch, E.; Morgan, J. S.; Giaretta, G.; Kasle, D. B.

    1992-01-01

    We have developed a new system for making speckle observations with the multianode microchannel array (MAMA) detector. This system is a true photon-counting imaging device which records the arrival time of every detected photon and allows for reconstruction of image features near the diffraction limit of the telescope. We present a description of the system and summary of observational results obtained at the Lick Observatory 1-m reflector in 1991 September. The diffraction limit of the 1-m telescope at 5029 A is about 0.125 arcsec and we have successfully resolved the catalogued interferometric binary HD 202582 with a separation of 0.157 +/- 0.031 arcsec. A pair of stars in the open cluster Chi Persei separated by 2.65 +/- 0.22 arcsec with approximate V magnitudes 8.6 and 11.5 has also been successfully analyzed with the speckle technique.

  8. A Case Study in High Contrast Coronagraph for Planet Discovery: The Eclipse Concept and Support Laboratory Experience

    NASA Technical Reports Server (NTRS)

    Trauger, John T.

    2005-01-01

    Eclipse is a proposed NASA Discovery mission to perform a sensitive imaging survey of nearby planetary systems, including a survey for jovian-sized planets orbiting Sun-like stars to distances of 15 pc. We outline the science objectives of the Eclipse mission and review recent developments in the key enabling technologies. Eclipse is a space telescope concept for high-contrast visible-wavelength imaging and spectrophotometry. Its design incorporates a telescope with an unobscured aperture of 1.8 meters, a coronographic camera for suppression of diffracted light, and precise active wavefront correction for the suppression of scattered background light. For reference, Eclipse is designed to reduce the diffracted and scattered starlight between 0.33 and 1.5 arcseconds from the star by three orders of magnitude compared to any HST instrument. The Eclipse mission provides precursor science exploration and technology experience in support of NASA's Terrestrial Planet Finder (TPF) program.

  9. Near-field microscopy with a microfabricated solid immersion lens

    NASA Astrophysics Data System (ADS)

    Fletcher, Daniel Alden

    2001-07-01

    Diffraction of focused light prevents optical microscopes from resolving features in air smaller than half the wavelength, λ Spatial resolution can be improved by passing light through a sub-wavelength metal aperture scanned close to a sample, but aperture-based probes suffer from low optical throughput, typically below 10-4. An alternate and more efficient technique is solid immersion microscopy in which light is focused through a high refractive index Solid Immersion Lens (SIL). This work describes the fabrication, modeling, and use of a microfabricated SIL to obtain spatial resolution better than the diffraction limit in air with high optical throughput for infrared applications. SILs on the order of 10 μm in diameter are fabricated from single-crystal silicon and integrated onto silicon cantilevers with tips for scanning. We measure a focused spot size of λ/5 with optical throughput better than 10-1 at a wavelength of λ = 9.3 μm. Spatial resolution is improved to λ/10 with metal apertures fabricated directly on the tip of the silicon SIL. Microlenses have reduced spherical aberration and better transparency than large lenses but cannot be made arbitrarily small and still focus. We model the advantages and limitations of focusing in lenses close to the wavelength in diameter using an extension of Mie theory. We also investigate a new contrast mechanism unique to microlenses resulting from the decrease in field-of-view with lens diameter. This technique is shown to achieve λ/4 spatial resolution. We explore applications of the microfabricated silicon SIL for high spatial resolution thermal microscopy and biological spectroscopy. Thermal radiation is collected through the SIL from a heated surface with spatial resolution four times better than that of a diffraction- limited infrared microscope. Using a Fourier-transform infrared spectrometer, we observe absorption peaks in bacteria cells positioned at the focus of the silicon SIL.

  10. The instrumentation program for the Thirty Meter Telescope

    NASA Astrophysics Data System (ADS)

    Simard, Luc; Crampton, David; Ellerbroek, Brent; Boyer, Corinne

    2012-09-01

    An overview of the current status of the Thirty Meter Telescope (TMT) instrumentation program is presented. Science cases and operational concepts as well as their links to the instruments are continually revisited and updated through a series of workshops and conferences. Work on the three first-light instruments (WFOS IRIS, and IRMS) has made significant progress, and many groups in TMT partner communities are developing future instrument concepts. Other instrument-related subsystems are also receiving considerable attention given their importance to the scientific end-to-end performance of the Observatory. As an example, we describe aspects of the facility instrument cooling system that are crucially important to successful diffraction-limited observations on an extremely large telescope.

  11. End-to-end commissioning demonstration of the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Acton, D. Scott; Towell, Timothy; Schwenker, John; Shields, Duncan; Sabatke, Erin; Contos, Adam R.; Hansen, Karl; Shi, Fang; Dean, Bruce; Smith, Scott

    2007-09-01

    The one-meter Testbed Telescope (TBT) has been developed at Ball Aerospace to facilitate the design and implementation of the wavefront sensing and control (WFSC) capabilities of the James Webb Space Telescope (JWST). We have recently conducted an "end-to-end" demonstration of the flight commissioning process on the TBT. This demonstration started with the Primary Mirror (PM) segments and the Secondary Mirror (SM) in random positions, traceable to the worst-case flight deployment conditions. The commissioning process detected and corrected the deployment errors, resulting in diffraction-limited performance across the entire science FOV. This paper will describe the commissioning demonstration and the WFSC algorithms used at each step in the process.

  12. Large Deployable Reflector Science and Technology Workshop. Volume 2: Scientific Rationale and Technology Requirements

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. (Editor)

    1983-01-01

    The scientific rationale for the large deployable reflector (LDR) and the overall technological requirements are discussed. The main scientific objectives include studies of the origins of planets, stars and galaxies, and of the ultimate fate of the universe. The envisioned studies require a telescope with a diameter of at least 20 m, diffraction-limited to wavelengths as short as 30-50 micron. In addition, light-bucket operation with 1 arcsec spatial resolution in the 2-4 microns wavelength region would be useful in studies of high-redshifted galaxies. Such a telescope would provide a large increase in spectroscopic sensitivity and spatial resolving power compared with existing or planned infrared telescopes.

  13. The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies

    NASA Technical Reports Server (NTRS)

    Bolton, Adam S.; Burles, Scott; Koopmans, Leon V. E.; Treu, Tommaso; Moustakas, Leonidas A.

    2006-01-01

    The Sloan Lens ACS (SLACS) Survey is an efficient Hubble Space Telescope (HST) Snapshot imaging survey for new galaxy-scale strong gravitational lenses. The targeted lens candidates are selected spectroscopically from the Sloan Digital Sky Survey (SDSS) database of galaxy spectra for having multiple nebular emission lines at a redshift significantly higher than that of the SDSS target galaxy. The SLACS survey is optimized to detect bright early-type lens galaxies with faint lensed sources in order to increase the sample of known gravitational lenses suitable for detailed lensing, photometric, and dynamical modeling. In this paper, the first in a series on the current results of our HST Cycle 13 imaging survey, we present a catalog of 19 newly discovered gravitational lenses, along with nine other observed candidate systems that are either possible lenses, nonlenses, or nondetections. The survey efficiency is thus >=68%. We also present Gemini 8 m and Magellan 6.5 m integral-field spectroscopic data for nine of the SLACS targets, which further support the lensing interpretation. A new method for the effective subtraction of foreground galaxy images to reveal faint background features is presented. We show that the SLACS lens galaxies have colors and ellipticities typical of the spectroscopic parent sample from which they are drawn (SDSS luminous red galaxies and quiescent MAIN sample galaxies), but are somewhat brighter and more centrally concentrated. Several explanations for the latter bias are suggested. The SLACS survey provides the first statistically significant and homogeneously selected sample of bright early-type lens galaxies, furnishing a powerful probe of the structure of early-type galaxies within the half-light radius. The high confirmation rate of lenses in the SLACS survey suggests consideration of spectroscopic lens discovery as an explicit science goal of future spectroscopic galaxy surveys.

  14. Application of point-diffraction interferometry to testing infrared imaging systems

    NASA Astrophysics Data System (ADS)

    Smartt, Raymond N.; Paez, Gonzalo

    2004-11-01

    Point-diffraction interferometry has found wide applications spanning much of the electromagnetic spectrum, including both near- and far-infrared wavelengths. Any telescopic, spectroscopic or other imaging system that converts an incident plane or spherical wavefront into an accessible point-like image can be tested at an intermediate image plane or at the principal image plane, in situ. Angular field performance can be similarly tested with inclined incident wavefronts. Any spatially coherent source can be used, but because of the available flux, it is most convenient to use a laser source. The simplicity of the test setup can allow testing of even large and complex fully-assembled systems. While purely reflective IR systems can be conveniently tested at visible wavelengths (apart from filters), catadioptric systems could be evaluated using an appropriate source and an IRPDI, with an imaging and recording system. PDI operating principles are briefly reviewed, and some more recent developments and interesting applications briefly discussed. Alternative approaches and recommended procedures for testing IR imaging systems, including the thermal IR, are suggested. An example of applying point-diffraction interferometry to testing a relatively low angular-resolution, optically complex IR telescopic system is presented.

  15. Design of pre-optics for laser guide star wavefront sensor for the ELT

    NASA Astrophysics Data System (ADS)

    Muslimov, Eduard; Dohlen, Kjetil; Neichel, Benoit; Hugot, Emmanuel

    2017-12-01

    In the present paper, we consider the optical design of a zoom system for the active refocusing in laser guide star wavefront sensors. The system is designed according to the specifications coming from the Extremely Large Telescope (ELT)-HARMONI instrument, the first-light, integral field spectrograph for the European (E)-ELT. The system must provide a refocusing of the laser guide as a function of telescope pointing and large decentring of the incoming beam. The system considers four moving lens groups, each of them being a doublet with one aspherical surface. The advantages and shortcomings of such a solution in terms of the component displacements and complexity of the surfaces are described in detail. It is shown that the system can provide the median value of the residual wavefront error of 13.8-94.3 nm and the maximum value <206 nm, while the exit pupil distortion is 0.26-0.36% for each of the telescope pointing directions.

  16. Design of light concentrators for Cherenkov telescope observatories

    NASA Astrophysics Data System (ADS)

    Hénault, François; Petrucci, Pierre-Olivier; Jocou, Laurent; Khélifi, Bruno; Manigot, Pascal; Hormigos, Stéphane; Knödlseder, Jürgen; Olive, Jean-François; Jean, Pierre; Punch, Michael

    2013-09-01

    The Cherenkov Telescope Array (CTA) will be the largest cosmic gamma ray detector ever built in the world. It will be installed at two different sites in the North and South hemispheres and should be operational for about 30 years. In order to cover the desired energy range, the CTA is composed of typically 50-100 collecting telescopes of various sizes (from 6 to 24-m diameters). Most of them are equipped with a focal plane camera consisting of 1500 to 2000 Photomultipliers (PM) equipped with light concentrating optics, whose double function is to maximize the amount of Cherenkov light detected by the photo-sensors, and to block any stray light originating from the terrestrial environment. Two different optical solutions have been designed, respectively based on a Compound Parabolic Concentrator (CPC), and on a purely dioptric concentrating lens. In this communication are described the technical specifications, optical designs and performance of the different solutions envisioned for all these light concentrators. The current status of their prototyping activities is also given.

  17. Readout signals calculated for near-field optical pickups with land and groove recording.

    PubMed

    Saito, K; Kishima, K; Ichimura, I

    2000-08-10

    Optical disk readout signals with a solid immersion lens (SIL) and the land-groove recording technique are calculated by use of a simplified vector-diffraction theory. In this method the full vector-diffraction theory is applied to calculate the diffracted light from the initial state of the disk, and the light scattered from the recorded marks is regarded as a perturbation. Using this method, we confirmed that the land-groove recording technique is effective as a means of cross-talk reduction even when the numerical aperture is more than 1. However, the top surface of the disk under the SIL must be flat, or the readout signal from marks recorded on a groove decays when the optical depth of the groove is greater than lambda/8.

  18. Focusing cosmic telescopes: systematics of strong lens modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Traci Lin; Sharon, Keren q.

    2018-01-01

    The use of strong gravitational lensing by galaxy clusters has become a popular method for studying the high redshift universe. While diverse in computational methods, lens modeling techniques have grasped the means for determining statistical errors on cluster masses and magnifications. However, the systematic errors have yet to be quantified, arising from the number of constraints, availablity of spectroscopic redshifts, and various types of image configurations. I will be presenting my dissertation work on quantifying systematic errors in parametric strong lensing techniques. I have participated in the Hubble Frontier Fields lens model comparison project, using simulated clusters to compare the accuracy of various modeling techniques. I have extended this project to understanding how changing the quantity of constraints affects the mass and magnification. I will also present my recent work extending these studies to clusters in the Outer Rim Simulation. These clusters are typical of the clusters found in wide-field surveys, in mass and lensing cross-section. These clusters have fewer constraints than the HFF clusters and thus, are more susceptible to systematic errors. With the wealth of strong lensing clusters discovered in surveys such as SDSS, SPT, DES, and in the future, LSST, this work will be influential in guiding the lens modeling efforts and follow-up spectroscopic campaigns.

  19. Fast-response variable focusing micromirror array lens

    NASA Astrophysics Data System (ADS)

    Boyd, James G., IV; Cho, Gyoungil

    2003-07-01

    A reflective type Fresnel lens using an array of micromirrors is designed and fabricated using the MUMPs® surface micromachining process. The focal length of the lens can be rapidly changed by controlling both the rotation and translation of electrostatically actuated micromirrors. The rotation converges rays and the translation adjusts the optical path length difference of the rays to be integer multiples of the wavelength. The suspension spring, pedestal and electrodes are located under the mirror to maximize the optical efficiency. Relations are provided for the fill-factor and the numerical aperture as functions of the lens diameter, the mirror size, and the tolerances specified by the MUMPs® design rules. The fabricated lens is 1.8mm in diameter, and each micromirror is approximately 100mm x 100mm. The lens fill-factor is 83.7%, the numerical aperture is 0.018 for a wavelength of 632.8nm, and the resolution is approximately 22mm, whereas the resolution of a perfect aberration-free lens is 21.4μm for a NA of 0.018. The focal length ranges from 11.3mm to infinity. The simulated Strehl ratio, which is the ratio of the point spread function maximum intensity to the theoretical diffraction-limited PSF maximum intensity, is 31.2%. A mechanical analysis was performed using the finite element code IDEAS. The combined maximum rotation and translation produces a maximum stress of 301MPa, below the yield strength of polysilicon, 1.21 to 1.65GPa. Potential applications include adaptive microscope lenses for scanning particle imaging velocimetry and a visually aided micro-assembly.

  20. HUBBLE AND KECK DISCOVER GALAXY BUILDING BLOCK

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image shows a very small, faint galaxy 'building block' newly discovered by a unique collaboration between ground- and space-based telescopes. Hubble and the 10-meter Keck Telescopes in Hawaii joined forces, using a galaxy cluster which acts as gravitational lens to detect what scientists believe is one of the smallest very distant objects ever found. The galaxy cluster Abell 2218 was used by a team of European and American astronomers led by Richard Ellis (Caltech) in their systematic search for intrinsically faint distant star-forming systems. Without help from Abell 2218's exceptional magnifying power to make objects appear about 30 times brighter, the galaxy building block would have been undetectable. In the image to the right, the object is seen distorted into two nearly identical, very red 'images' by the gravitational lens. The image pair represents the magnified result of a single background object gravitationally lensed by Abell 2218 and viewed at a distance of 13.4 billion light-years. The intriguing object contains only one million stars, far fewer than a mature galaxy, and scientists believe it is very young. Such young star-forming systems of low mass at early cosmic times are likely to be the objects from which present-day galaxies have formed. In the image to the left, the full overview of the galaxy cluster Abell 2218 is seen. This image was taken by Hubble in 1999 at the completion of Hubble Servicing Mission 3A. Credit: NASA, ESA, Richard Ellis (Caltech) and Jean-Paul Kneib (Observatoire Midi-Pyrenees, France) Acknowledgment: NASA, A. Fruchter and the ERO Team (STScI and ST-ECF)

  1. Large Aperture Camera for the Simon's Observatory

    NASA Astrophysics Data System (ADS)

    Dicker, Simon; Simons Observatory Collaboration

    2018-01-01

    The Simon's observatory will consist of one large 6m telescope and three or more smaller telescopes working together with a goal of measuring the polarization in the Cosmic Microwave Background on angular scales as small as 1' to larger than 1 degree and at a sensitivity far greater than has ever been reached before. To reach these sensitivities, needed for our science goals, we require over 90000 background limited TES detectors on the large telescope - hence a very large field-of-view. The telescope design we have selected is a copy of the CCAT-prime telescope, a Crossed Dragone with extra aspheric terms to increase the diffraction limited field-of-view. At the secondary focus will be a 2.5m diameter cryostat containing re-imaging silicon optics which can correct remaining aberrations (mostly astigmatism) at the edge of the field of view and allow this part of the focal plane to be used at higher frequencies. This poster will contain an outline of our optical designs and take a brief look at how they could be scaled to a larger telescope.

  2. Buyer's guide to telescopes at the best sites: Dome A, L2, and Shackleton Rim

    NASA Astrophysics Data System (ADS)

    Angel, J. Roger P.

    2004-10-01

    Future optical/infrared telescopes will need to be much larger than today"s, if they are to address such key challenges as direct observations of Earth-like exoplanets and of the first stars formed after the big bang. In this paper I consider the most promising of the new sites, both on the ground and in space, and telescope concepts to take advantage of their complementary scientific potential. Ground based telescopes with adaptive optics will be capable of diffraction limited imaging, down to a short wavelength limit set by the amplitude and speed of the atmospheric turbulence. The best conditions are on the high Antarctic plateau, where recent measurements at Dome C show turbulence typically half the amplitude of the best temperate sites, with temporal evolution at half the speed1. Thus uniquely in Antarctica, diffraction limited imaging at optical wavelengths should be practical. Conditions there are also best for infrared astronomy, given the combination of minimal aberration and winter temperatures averaging as low as 200K at Dome A (the highest point). In space, well away from the warm Earth, conditions are even better, with 24 hour/day observing free from all atmospheric aberration, and the potential for passive cooling to 50K or less by use of a sunshield. L2 and the Moon's south pole are such optimal space locations. A telescope at L2 requires only a little fuel to stay on orbit, and can be accurately pointed despite solar torques by well established active methods based on star trackers, gyros and reaction wheels. By contrast, the Moon provides a completely stable platform where a telescope with no moving parts can remain pointed indefinitely along the spin axis, or a telescope on a hexapod mount can be oriented and tracked by reaction to the turning lunar surface. Solar shielding on the Moon requires a polar location such as the high rim of the Shackleton crater, adjacent to the south pole, where there is also nearly continuous solar power. Long term operation large telescopes in space should be possible at affordable cost if we adopt the strategy used on the ground, where the same telescope OTA and mount is maintained for decades while instruments are periodically upgraded. HST has already shown the power of this modus operandi in space. It makes sense because the optical image quality of any telescope cannot be improved once the diffraction limit is reached, while instruments need to be renewed to keep pace with scientific and technical developments. Thus if future space exploration results in long-term robotic or human infrastructure on the Moon, the Shackleton rim would be favored as an observatory site, especially for ultra-deep optical/infrared surveys. If, on the other hand, exploration is centered a new station in free space, out of the Earth's gravitational potential well, observatories at L2 would be more easily supported. When contrasting the performance of ground and space telescope options, an important trade is larger aperture on Earth versus lower background in space The thermal zodiacal background of space is typically 105 times lower than even the Antarctic background, and the optical scattered starlight background in space is much less, but because of the strong dependence of sensitivity on diameter a 100 m telescope at Dome A or Dome C would have sensitivity and power to study Earth-like planets comparable to that of NASA's proposed TPF coronagraphic and interferometric missions combined. For ultradeep field studies in the infrared, integration time is also important, thus a 20 m fixed telescope on the lunar south pole surveying just the south ecliptic pole region would have nearly 100 times the sensitivity of the JWST at L2. Neither Dome A nor the Moon"s south pole has yet been explored, even robotically. If large telescopes are ever to be built at these optimum sites, smaller precursors must be built first to develop the required technology and to gain experience. On the Moon, a start which would yield already interesting science could be made with a 3-m class, fixed, robotically-deployed survey telescope. On the Antarctic plateau, a 20 m copy of the Giant Magellan Telescope3,4 would be a good scientific and technological precursor to a 100 m telescope in Antarctica.

  3. Science Programs for a 2-m Class Telescope at Dome C, Antarctica: PILOT, the Pathfinder for an International Large Optical Telescope

    NASA Astrophysics Data System (ADS)

    Burton, M. G.; Lawrence, J. S.; Ashley, M. C. B.; Bailey, J. A.; Blake, C.; Bedding, T. R.; Bland-Hawthorn, J.; Bond, I. A.; Glazebrook, K.; Hidas, M. G.; Lewis, G.; Longmore, S. N.; Maddison, S. T.; Mattila, S.; Minier, V.; Ryder, S. D.; Sharp, R.; Smith, C. H.; Storey, J. W. V.; Tinney, C. G.; Tuthill, P.; Walsh, A. J.; Walsh, W.; Whiting, M.; Wong, T.; Woods, D.; Yock, P. C. M.

    2005-08-01

    The cold, dry, and stable air above the summits of the Antarctic plateau provides the best ground-based observing conditions from optical to sub-millimetre wavelengths to be found on the Earth. Pathfinder for an International Large Optical Telescope (PILOT) is a proposed 2m telescope, to be built at Dome C in Antarctica, able to exploit these conditions for conducting astronomy at optical and infrared wavelengths. While PILOT is intended as a pathfinder towards the construction of future grand-design facilities, it will also be able to undertake a range of fundamental science investigations in its own right. This paper provides the performance specifications for PILOT, including its instrumentation. It then describes the kinds of projects that it could best conduct. These range from planetary science to the search for other solar systems, from star formation within the Galaxy to the star formation history of the Universe, and from gravitational lensing caused by exo-planets to that produced by the cosmic web of dark matter. PILOT would be particularly powerful for wide-field imaging at infrared wavelengths, achieving near diffraction-limited performance with simple tip-tilt wavefront correction. PILOT would also be capable of near diffraction-limited performance in the optical wavebands, as well be able to open new wavebands for regular ground-based observation, in the mid-IR from 17 to 40μm and in the sub-millimetre at 200μm.

  4. The James Webb Space Telescope: Mission Overview and Status

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.

    2009-01-01

    The James Webb Space Telescope (JWST) is the infrared successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 sq. m aperture (6 m telescope yielding diffraction limited angular resolution at a wavelength of 2 micron. The science instrument payload includes three passively cooled near-infrared instruments providing broad- and narrow-band imagery, coronagraphy, as well as multi object and integral-field spectroscopy over the 0.6 < 0 < 5.0 micron spectrum. An actively cooled mid-infrared instrument provides broad-band imagery, coronagraphy, and integral-field spectroscopy over the 5.0 < 0 < 29 micron spectrum. The JWST is being developed by NASA, in partnership with the European and Canadian Space Agencies, as a general user facility with science observations to be proposed by the international astronomical community in a manner similar to the Hubble Space Telescope. Technology development and mission design are complete, and construction is underway in all areas of the program. The JWST is on schedule to reach launch readiness during 2014.

  5. The James Webb Space Telescope: Mission Overview and Status

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.

    2011-01-01

    The James Webb Space Telescope (JWST) is the Infrared successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 sq m aperture (6 m class) telescope yielding diffraction limited angular resolution at a wave1ength of 2 micron. The science instrument payload includes three passively cooled near-infrared instruments providing broad- and narrow-band imagery, coronagraphy, as well as multi-object and integral-field spectroscopy over the 0.6

  6. Effect of astigmatism on visual acuity in eyes with a diffractive multifocal intraocular lens.

    PubMed

    Hayashi, Ken; Manabe, Shin-Ichi; Yoshida, Motoaki; Hayashi, Hideyuki

    2010-08-01

    To examine the effect of astigmatism on visual acuity at various distances in eyes with a diffractive multifocal intraocular lens (IOL). Hayashi Eye Hospital, Fukuoka, Japan. In this study, eyes had implantation of a diffractive multifocal IOL with a +3.00 diopter (D) addition (add) (AcrySof ReSTOR SN6AD1), a diffractive multifocal IOL with a +4.00 D add (AcrySof ReSTOR SN6AD3), or a monofocal IOL (AcrySof SN60WF). Astigmatism was simulated by adding cylindrical lenses of various diopters (0.00, 0.50, 1.00, 1.50, 2.00), after which distance-corrected acuity was measured at various distances. At most distances, the mean visual acuity in the multifocal IOL groups decreased in proportion to the added astigmatism. With astigmatism of 0.00 D and 0.50 D, distance-corrected near visual acuity (DCNVA) in the +4.00 D group and distance-corrected intermediate visual acuity (DCIVA) and DCNVA in the +3.00 D group were significantly better than in the monofocal group; the corrected distance visual acuity (CDVA) was similar. The DCNVA with astigmatism of 1.00 D was better in 2 multifocal groups; however, with astigmatism of 1.50 D and 2.00 D, the CDVA and DCIVA at 0.5m in the multifocal groups were significantly worse than in the monofocal group, although the DCNVA was similar. With astigmatism of 1.00 D or greater, the mean CDVA and DCNVA in the multifocal groups reached useful levels (20/40). The presence of astigmatism in eyes with a diffractive multifocal IOL compromised all distance visual acuities, suggesting the need to correct astigmatism of greater than 1.00 D. No author has a financial or proprietary interest in any material or method mentioned. Copyright 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. Galaxy Cluster Abell 1689

    NASA Image and Video Library

    2017-12-08

    Image release August 19, 2010 An international team of astronomers using gravitational lensing observations from the NASA/ESA Hubble Space Telescope has taken an important step forward in the quest to solve the riddle of dark energy, a phenomenon which mysteriously appears to power the Universe's accelerating expansion. Their results appear in the 20 August 2010 issue of the journal Science. This image shows the galaxy cluster Abell 1689, with the mass distribution of the dark matter in the gravitational lens overlaid (in purple). The mass in this lens is made up partly of normal (baryonic) matter and partly of dark matter. Distorted galaxies are clearly visible around the edges of the gravitational lens. The appearance of these distorted galaxies depends on the distribution of matter in the lens and on the relative geometry of the lens and the distant galaxies, as well as on the effect of dark energy on the geometry of the Universe. Credit: NASA, ESA, E. Jullo (JPL/LAM), P. Natarajan (Yale) and J-P. Kneib (LAM). To view a video of this image go to: www.flickr.com/photos/gsfc/4909967467 NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook To read more go to: www.spacetelescope.org/news/heic1014/?utm_source=feedburn...

  8. Laser interferometry for the determination of thickness distributions of low absorbing films and their spatial and thickness resolutions.

    PubMed

    Mishima, T; Kao, K C

    1982-03-15

    New laser interferometry has been developed, based on the principle that a 2-D fringe pattern can be produced by interference of spatially coherent light beams. To avoid the effect of reflection from the back surface of the substrate, the Brewster angle of incidence is adopted; to suppress the effect of diffraction, a lens or a lens system is used. This laser interferometry is an efficient nondestructive technique for the determination of thickness distributions or uniformities of low absorbing films on transparent substrates over a large area without involving laborious computations. The limitation of spatial resolution, thickness resolution, and visibility of fringes is fully analyzed.

  9. Formation of multiple focal spots using a high NA lens with a complex spiral phase mask

    NASA Astrophysics Data System (ADS)

    Lalithambigai, K.; Anbarasan, P. M.; Rajesh, K. B.

    2014-07-01

    The formation of a transversally polarized beam by transmitting a tightly focused double-ring-shaped azimuthally polarized beam through a complex spiral phase mask and high numerical aperture lens is presented based on vector diffraction theory. The generation of transversally polarized focal spot segment splitting and multiple focal spots is illustrated numerically. Moreover, we found that a properly designed complex spiral phase mask can move the focal spots along the optical axis in the z direction. Therefore, one can achieve a focal segment of two, three or multiple completely transversely polarized focal spots, which finds applications in optical trapping and in material processing technologies.

  10. Wavefront Analysis of Adaptive Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Hillman, Lloyd

    1997-01-01

    The motivation for this work came from a NASA Headquarters interest in investigating design concepts for a large space telescope employing active optics technology. Current and foreseeable launch vehicles will be limited to carrying around 4-5 meter diameter objects. Thus, if a large, filled-aperture telescope (6-20 meters in diameter) is to be placed in space, it will be required to have a deployable primary mirror. Such a mirror may be an inflatable membrane or a segmented mirror consisting of many smaller pieces. In any case, it is expected that the deployed primary will not be of sufficient quality to achieve diffraction-limited performance for its aperture size. Thus, an active optics system will be needed to correct for initial as well as environmentally-produced primary figure errors. Marshall Space Flight Center has developed considerable expertise in the area of active optics with the PAMELA test-bed. The combination of this experience along with the Marshall optical shop's work in mirror fabrication made MSFC the logical choice to lead NASA's effort to develop active optics technology for large, space-based, astronomical telescopes. Furthermore, UAH's support of MSFC in the areas of optical design, fabrication, and testing of space-based optical systems placed us in a key position to play a major role in the development of this future-generation telescope. A careful study of the active optics components had to be carried out in order to determine control segment size, segment quality, and segment controllability required to achieve diffraction-limited resolution with a given primary mirror. With this in mind, UAH undertook the following effort to provide NASA/MSFC with optical design and analysis support for the large telescope study. All of the work performed under this contract has already been reported, as a team member with MSFC, to NASA Headquarters in a series of presentations given between May and December of 1995. As specified on the delivery order, this report simply summarizes the material with the various UAH-written presentation packages attached as appendices.

  11. A revised lens time delay for JVAS B0218+357 from a reanalysis of VLA monitoring data

    NASA Astrophysics Data System (ADS)

    Biggs, A. D.; Browne, I. W. A.

    2018-06-01

    We have reanalysed the 1996/1997 Very Large Array monitoring data of the gravitational lens system JVAS B0218+357 to produce improved total flux density and polarization variability curves at 15, 8.4, and 5 GHz. This has been done using improved calibration techniques, accurate subtraction of the emission from the Einstein ring, and careful correction of various systematic effects, especially an offset in polarization position angle that is hour-angle dependent. The variations in total and polarized flux density give the best constraints and we determine a combined delay estimate of 11.3 ± 0.2 d (1σ). This is consistent with the γ-ray value recently derived using the Fermi Gamma-ray Space Telescope and thus we find no evidence for a positional shift between the radio and γ-ray emitting regions. Combined with the previously published lens model found using LENSCLEAN, the new delay gives a value for the Hubble constant of H0 = 72.9 ± 2.6 km s-1 Mpc-1 (1σ).

  12. Aplanatic and quasi-aplanatic diffraction gratings

    DOEpatents

    Hettrick, M.C.

    1987-09-14

    A reflection diffraction grating having a series of transverse minute grooves of progressively varying spacing along a concave surface enables use of such gratings for x-ray or longer wavelength imaging of objects. The variable groove spacing establishes aplanatism or substantially uniform magnetification across the optical aperture. The grating may be sued, for example, in x-ray microscopes or telescopes of the imaging type and in x-ray microprobed. Increased spatial resolution and field of view may be realized in x-ray imaging. 5 figs.

  13. Self-compensation for trefoil aberration of symmetric dioptric microlithographic lens

    NASA Astrophysics Data System (ADS)

    Peng, Wei-Jei; Ho, Cheng-Fang; Hsu, Wei-Yao

    2017-08-01

    The i-line microlithographic lens with unity magnification can be applied for the 3D integrated circuit steppers. The configuration of the microlithographic lens can be divided into three types: the dioptric type, the catoptric type, and the mixed catoptric and dioptric type. The dioptric type with unity magnification is typically designed as symmetry about the aperture stop on both image and object sides to counterbalance aberrations effectively. The lens mounting is substantially critical for the diffraction-limit microlithographic lens, because mounting stresses and gravity degrade image quality severely. The surface deformation of the kinematic mounting is ultimately low, but the disadvantage is high cost and complicated structures. The three-point mounting belongs to the semi-kinematic mounting without over constrain to decrease the surface deformation significantly instead of the ring mounting; however, the disadvantage is the trefoil aberration caused from large-aperture lenses due to gravity. Clocking lenses is a practical method of compensating the surface figure error for optimum wavefront aberration during pre-assembly phase, and then the time and cost spent on the post-assembly for fine alignment reduce much. The self-compensation by two pairs of symmetric lenses on both sides with 60-degree angle difference is beneficial to compensate the trefoil aberration effectively, and it is a costeffective method to achieve the wavefront error close to the design value. In this study, the self-compensation method for the trefoil deformation of large-aperture lenses employed in the symmetric dioptric microlithographic lens is successfully verified in simulation.

  14. HF-induced airglow structure as a proxy for ionospheric irregularity detection

    NASA Astrophysics Data System (ADS)

    Kendall, E. A.

    2013-12-01

    The High Frequency Active Auroral Research Program (HAARP) heating facility allows scientists to test current theories of plasma physics to gain a better understanding of the underlying mechanisms at work in the lower ionosphere. One powerful technique for diagnosing radio frequency interactions in the ionosphere is to use ground-based optical instrumentation. High-frequency (HF), heater-induced artificial airglow observations can be used to diagnose electron energies and distributions in the heated region, illuminate natural and/or artificially induced ionospheric irregularities, determine ExB plasma drifts, and measure quenching rates by neutral species. Artificial airglow is caused by HF-accelerated electrons colliding with various atmospheric constituents, which in turn emit a photon. The most common emissions are 630.0 nm O(1D), 557.7 nm O(1S), and 427.8 nm N2+(1NG). Because more photons will be emitted in regions of higher electron energization, it may be possible to use airglow imaging to map artificial field-aligned irregularities at a particular altitude range in the ionosphere. Since fairly wide field-of-view imagers are typically deployed in airglow campaigns, it is not well-known what meter-scale features exist in the artificial airglow emissions. Rocket data show that heater-induced electron density variations, or irregularities, consist of bundles of ~10-m-wide magnetic field-aligned filaments with a mean depletion depth of 6% [Kelley et al., 1995]. These bundles themselves constitute small-scale structures with widths of 1.5 to 6 km. Telescopic imaging provides high resolution spatial coverage of ionospheric irregularities and goes hand in hand with other observing techniques such as GPS scintillation, radar, and ionosonde. Since airglow observations can presumably image ionospheric irregularities (electron density variations), they can be used to determine the spatial scale variation, the fill factor, and the lifetime characteristics of irregularities. Telescopic imaging of airglow is a technique capable of simultaneously determining the properties of ionospheric irregularities at decameter resolution over a range of several kilometers. The HAARP telescopic imager consists of two cameras, a set of optics for each camera, and a robotic mount that supports and orients the system. The camera and optics systems are identical except for the camera lenses: one has a wide-angle lens (~19 degrees) and the other has a telescopic lens (~3 degrees). The telescopic imager has a resolution of ~20 m in the F layer and ~10 m in the E layer, which allows the observation of decameter- and kilometer-scale features. Analysis of telescopic data from HAARP campaigns over the last five years will be presented.

  15. The Hubble Space Telescope optical systems failure report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The findings of the Hubble Space Telescope Optical Systems Board of Investigation are reported. The Board was formed to determine the cause of the flaw in the telescope, how it occurred, and why it was not detected before launch. The Board conducted its investigation to include interviews with personnel involved in the fabrication and test of the telescope, review of documentation, and analysis and test of the equipment used in the fabrication of the telescope's mirrors. The investigation proved that the primary mirror was made in the wrong shape (a 0.4-wave rms wavefront error at 632.8 nm). The primary mirror was manufactured by the Perkin-Elmer Corporation (Hughes Danbury Optical Systems, Inc.). The critical optics used as a template in shaping the mirror, the reflective null corrector (RNC), consisted of two small mirrors and a lens. This unit had been preserved by the manufacturer exactly as it was during the manufacture of the mirror. When the Board measured the RNC, the lens was incorrectly spaced from the mirrors. Calculations of the effect of such displacement on the primary mirror show that the measured amount, 1.3 mm, accounts in detail for the amount and character of the observed image blurring. No verification of the reflective null corrector's dimensions was carried out by Perkin-Elmer after the original assembly. There were, however, clear indications of the problem from auxiliary optical tests made at the time. A special optical unit called an inverse null corrector, designed to mimic the reflection from a perfect primary mirror, was built and used to align the apparatus; when so used, it clearly showed the error in the reflective null corrector. A second null corrector was used to measure the vertex radius of the finished primary mirror. It, too, clearly showed the error in the primary mirror. Both indicators of error were discounted at the time as being themselves flawed. The Perkin-Elmer plan for fabricating the primary mirror placed complete reliance on the reflective null corrector as the only test to be used in both manufacturing and verifying the mirror's surface with the required precision. This methodology should have alerted NASA management to the fragility of the process and the possibility of gross error. Such errors had been seen in other telescope programs, yet no independent tests were planned, although some simple tests to protect against major error were considered and rejected. During the critical time period, there was great concern about cost and schedule, which further inhibited consideration of independent tests.

  16. Notes on Experiments.

    ERIC Educational Resources Information Center

    Physics Education, 1983

    1983-01-01

    Discusses investigations of mirages with an astronomical telescope and a way of demonstrating three of the main features of laser/maser action. Also discusses several physics demonstrations using color television. These include thin-film interference effects, single-slit diffraction, emission/absorption spectra, "rings and brushes"…

  17. Integrated Lens Antennas for Multi-Pixel Receivers

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Chattopadhyay, Goutam

    2011-01-01

    Future astrophysics and planetary experiments are expected to require large focal plane arrays with thousands of detectors. Feedhorns have excellent performance, but their mass, size, fabrication challenges, and expense become prohibitive for very large focal plane arrays. Most planar antenna designs produce broad beam patterns, and therefore require additional elements for efficient coupling to the telescope optics, such as substrate lenses or micromachined horns. An antenna array with integrated silicon microlenses that can be fabricated photolithographically effectively addresses these issues. This approach eliminates manual assembly of arrays of lenses and reduces assembly errors and tolerances. Moreover, an antenna array without metallic horns will reduce mass of any planetary instrument significantly. The design has a monolithic array of lens-coupled, leaky-wave antennas operating in the millimeter- and submillimeter-wave frequencies. Electromagnetic simulations show that the electromagnetic fields in such lens-coupled antennas are mostly confined in approximately 12 15 . This means that one needs to design a small-angle sector lens that is much easier to fabricate using standard lithographic techniques, instead of a full hyper-hemispherical lens. Moreover, this small-angle sector lens can be easily integrated with the antennas in an array for multi-pixel imager and receiver implementation. The leaky antenna is designed using double-slot irises and fed with TE10 waveguide mode. The lens implementation starts with a silicon substrate. Photoresist with appropriate thickness (optimized for the lens size) is spun on the substrate and then reflowed to get the desired lens structure. An antenna array integrated with individual lenses for higher directivity and excellent beam profile will go a long way in realizing multi-pixel arrays and imagers. This technology will enable a new generation of compact, low-mass, and highly efficient antenna arrays for use in multi-pixel receivers and imagers for future planetary and astronomical instruments. These antenna arrays can also be used in radars and imagers for contraband detection at stand-off distances. This will be enabling technology for future balloon-borne, smaller explorer class mission (SMEX), and other missions, and for a wide range of proposed planetary sounders and radars for planetary bodies.

  18. Laboratory and telescope demonstration of the TP3-WFS for the adaptive optics segment of AOLI

    NASA Astrophysics Data System (ADS)

    Colodro-Conde, C.; Velasco, S.; Fernández-Valdivia, J. J.; López, R.; Oscoz, A.; Rebolo, R.; Femenía, B.; King, D. L.; Labadie, L.; Mackay, C.; Muthusubramanian, B.; Pérez Garrido, A.; Puga, M.; Rodríguez-Coira, G.; Rodríguez-Ramos, L. F.; Rodríguez-Ramos, J. M.; Toledo-Moreo, R.; Villó-Pérez, I.

    2017-05-01

    Adaptive Optics Lucky Imager (AOLI) is a state-of-the-art instrument that combines adaptive optics (AO) and lucky imaging (LI) with the objective of obtaining diffraction-limited images in visible wavelength at mid- and big-size ground-based telescopes. The key innovation of AOLI is the development and use of the new Two Pupil Plane Positions Wavefront Sensor (TP3-WFS). The TP3-WFS, working in visible band, represents an advance over classical wavefront sensors such as the Shack-Hartmann WFS because it can theoretically use fainter natural reference stars, which would ultimately provide better sky coverages to AO instruments using this newer sensor. This paper describes the software, algorithms and procedures that enabled AOLI to become the first astronomical instrument performing real-time AO corrections in a telescope with this new type of WFS, including the first control-related results at the William Herschel Telescope.

  19. Deployable reflector configurations. [for space telescope

    NASA Technical Reports Server (NTRS)

    Meinel, A. B.; Meinel, M. P.; Woolf, N. J.

    1983-01-01

    Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.

  20. The Advanced Technology Large Aperture Space Telescope (ATLAST): Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Phillip; hide

    2011-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers and the resulting performance requirements for ATLAST (8 to 16 milliarcsecond angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to current generation observatory-class space missions. Keywords: Advanced Technology Large-Aperture Space Telescope (ATLAST); ultraviolet/optical space telescopes; astrophysics; astrobiology; technology development.

  1. Lightweight telescopes for lunar observatories

    NASA Astrophysics Data System (ADS)

    Rozelot, J. P.; Bingham, R.; Walker, D.

    1994-06-01

    Future optical observatories in space will require telescopes of very high resolution. To satisfy this demand, technology must be developed for large mirrors capable of diffraction-limited imaging. Conventional monolithic glass substrates (light-weight or not) have serious limitations for future development. In particular, glass is susceptible to fracture during ground-handling, transport and launch. An alternative solution is aluminium. It has lower cost, increased strength, easier and safer methods of fixing, amongst other advantages. It is readily lightweighted and can be produced with good polishing quality with nickel coating. We foresee applications for satellite telescope for astronomy, remote sensing, surveys of asteroids and debris in space. Furthermore, this technology is ideally suitable for lunar mounted interferometric experiments - as mirrors can be easily replicate, saving cost - and for telescopes deployed on planetary surfaces. Some results from the European Eureka Large Active Mirrors in Aluminium (LAMA) are here presented, which show the feasibility of such systems.

  2. VizieR Online Data Catalog: TU UMa light curves and maxima, CL Aur minima (Liska+, 2016)

    NASA Astrophysics Data System (ADS)

    Liska, J.; Skarka, M.; Mikulasek, Z.; Zejda, M.; Chrastina, M.

    2016-02-01

    Differential photometry for RR Lyrae star TU UMa in the 1st and 2nd file. The measurements were obtained using 24-inch and 1-inch telescopes, respectively. The observations were performed at the Masaryk University Observatory in Brno (3 nights, 24-inch), and at the private observatory in Brno (16 nights, 1-inch) in the Czech Republic from December 2013 to June 2014. Observing equipments consisted of 24-inch Newtonian telescope (600/2780mm, diameter/focal length) and a Moravian Instruments CCD camera G2-4000 with Stromgren photometric filters vby, and of 1-inch refractor (a photographic lens Sonnar 4/135mm, lens focal ratio/focal length) and ATIK 16IC CCD camera with green photometric filter with similar throughput as the Johnson V filter. Exposures were v - 60s, b - 30s, y - 30s, green - 30s. For the small aperture telescope, five frames were combined to a single image to achieve a better signal-to-noise ratio. The time resolution of a such combined frame is about 170s. CCD images were calibrated in a standard way (dark frame and flat field corrections). The C-Munipack software (Motl 2009) was used for this processing as well as for differential photometry. The comparison star BD+30 2165 was the same for both instruments, but the control stars were BD+30 2164 (for the 24-inch telescope) and HD 99593 (for the 1-inch telescope). The 3rd file contains maxima timings of TU UMa adopted from the GEOS RR Lyr database, from the latest publications, together with maxima timings determined in our study. Times of maxima were calculated from our observations, sky-surveys data (Hipparcos, NSVS, Pi of the Sky, SuperWASP), photographic measurements (project DASCH), and from several published datasets, in which the maxima were omitted or badly determined - Boenigk (1958AcA.....8...13B), Liakos, Niarchos (2011IBVS.6099....1L, 2011IBVS.5990....1L), Liu, Janes (1989ApJS...69..593L), Preston et al. (1961ApJ...133..484P). The 4th file contains minima timings of eclipsing binary CL Aur adopted from O-C Gateway database. (5 data files).

  3. Infrared imaging of WENSS radio sources

    NASA Astrophysics Data System (ADS)

    Villani, D.; di Serego Alighieri, S.

    1999-03-01

    We have performed deep imaging in the IR J- and K- bands for three sub-samples of radio sources extracted from the Westerbork Northern Sky Survey, a large low-frequency radio survey containing Ultra Steep Spectrum (USS), Gigahertz Peaked Spectrum (GPS) and Flat Spectrum (FS) sources. We present the results of these IR observations, carried out with the ARcetri Near Infrared CAmera (ARNICA) at the Nordic Optical Telescope (NOT), providing photometric and morphologic information on high redshift radio galaxies and quasars. We find that the radio galaxies contained in our sample do not show the pronounced radio/IR alignment claimed for 3CR sources. IR photometric measurements of the gravitational lens system 1600+434 are also presented. % This paper is based on data obtained at the Nordic Optical Telescope on La Palma (Canary Islands).

  4. A novel double fine guide sensor design on space telescope

    NASA Astrophysics Data System (ADS)

    Zhang, Xu-xu; Yin, Da-yi

    2018-02-01

    To get high precision attitude for space telescope, a double marginal FOV (field of view) FGS (Fine Guide Sensor) is proposed. It is composed of two large area APS CMOS sensors and both share the same lens in main light of sight. More star vectors can be get by two FGS and be used for high precision attitude determination. To improve star identification speed, the vector cross product in inter-star angles for small marginal FOV different from traditional way is elaborated and parallel processing method is applied to pyramid algorithm. The star vectors from two sensors are then used to attitude fusion with traditional QUEST algorithm. The simulation results show that the system can get high accuracy three axis attitudes and the scheme is feasibility.

  5. Solar rejection for an orbiting telescope

    NASA Technical Reports Server (NTRS)

    Rehnberg, J. D.

    1975-01-01

    The present work discusses some of the constraints that the optical designer must deal with in optimizing spaceborne sensors that must look at or near the sun. Analytical techniques are described for predicting the effects of stray radiation from sources such as mirror scatter, baffle scatter, diffraction, and ghost images. In addition, the paper describes a sensor design that has been flown on the Apollo Telescope Mount (Skylab) to aid astronauts in locating solar flares. In addition to keeping stray radiation to a minimum, the design had to be nondegradable by the direct solar heat load.

  6. Numerical Generation of Double Star Images for Different Types of Telescopes

    NASA Astrophysics Data System (ADS)

    Xavier, Ademir

    2015-11-01

    This paper reviews the modeling of stellar images using diffraction theory applied to different types of telescope masks. The masks are projected by secondary mirror holder vanes (such as the spider type) or holes on the primary mirror which result in different configurations of single stellar images. Using Fast Fourier Transform, the image of binary stars with different magnitudes is calculated. Given the numerical results obtained, a discussion is presented on the best secondary vane configurations and on the effect of obstruction types for the separation of binary pairs with different magnitudes.

  7. Planetary Remote Sensing Science Enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor)

    NASA Technical Reports Server (NTRS)

    Pitman, Joe; Duncan, Alan; Stubbs, David; Sigler, Robert; Kendrick, Rick; Chilese, John; Lipps, Jere; Manga, Mike; Graham, James; dePater, Imke

    2004-01-01

    The science capabilities and features of an innovative and revolutionary approach to remote sensing imaging systems, aimed at increasing the return on future space science missions many fold, are described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional telescopes, by integrating optical interferometry technologies into a mature multiple aperture array concept that addresses one of the highest needs for advancing future planetary science remote sensing.

  8. Design of a Test Bench for Intraocular Lens Optical Characterization

    NASA Astrophysics Data System (ADS)

    Alba-Bueno, Francisco; Vega, Fidel; Millán, María S.

    2011-01-01

    The crystalline lens is the responsible for focusing at different distances (accommodation) in the human eye. This organ grows throughout life increasing in size and rigidity. Moreover, due this growth it loses transparency through life, and becomes gradually opacified causing what is known as cataracts. Cataract is the most common cause of visual loss in the world. At present, this visual loss is recoverable by surgery in which the opacified lens is destroyed (phacoemulsification) and replaced by the implantation of an intraocular lens (IOL). If the IOL implanted is mono-focal the patient loses its natural capacity of accommodation, and as a consequence they would depend on an external optic correction to focus at different distances. In order to avoid this dependency, multifocal IOLs designs have been developed. The multi-focality can be achieved by using either, a refractive surface with different radii of curvature (refractive IOLs) or incorporating a diffractive surface (diffractive IOLs). To analyze the optical quality of IOLs it is necessary to test them in an optical bench that agrees with the ISO119679-2 1999 standard (Ophthalmic implants. Intraocular lenses. Part 2. Optical Properties and Test Methods). In addition to analyze the IOLs according to the ISO standard, we have designed an optical bench that allows us to simulate the conditions of a real human eye. To do that, we will use artificial corneas with different amounts of optical aberrations and several illumination sources with different spectral distributions. Moreover, the design of the test bench includes the possibility of testing the IOLs under off-axis conditions as well as in the presence of decentration and/or tilt. Finally, the optical imaging quality of the IOLs is assessed by using common metrics like the Modulation Transfer Function (MTF), the Point Spread Function (PSF) and/or the Strehl ratio (SR), or via registration of the IOL's wavefront with a Hartmann-Shack sensor and its analysis through expansion in Zernike polynomials.

  9. Transverse correlations in triphoton entanglement: Geometrical and physical optics

    NASA Astrophysics Data System (ADS)

    Wen, Jianming; Xu, P.; Rubin, Morton H.; Shih, Yanhua

    2007-08-01

    The transverse correlation of triphoton entanglement generated within a single crystal is analyzed. Among many interesting features of the transverse correlation, they arise from the spectral function F of the triphoton state produced in the parametric processes. One consequence of transverse effects of entangled states is quantum imaging, which is theoretically studied in photon counting measurements. Klyshko’s two-photon advanced-wave picture is found to be applicable to the multiphoton entanglement with some modifications. We found that in the two-photon coincidence counting measurement by using triphoton entanglement, although the Gaussian thin lens equation (GTLE) holds, the imaging shown in coincidences is obscure and has a poor quality. This is because of tracing the remaining transverse modes in the untouched beam. In the triphoton imaging experiments, two kinds of cases have been examined. For the case that only one object with one thin lens is placed in the system, we found that the GTLE holds as expected in the triphoton coincidences and the effective distance between the lens and imaging plane is the parallel combination of two distances between the lens and two detectors weighted by wavelengths, which behaves as the parallel combination of resistors in the electromagnetism theory. Only in this case, a point-point correspondence for forming an image is well-accomplished. However, when two objects or two lenses are inserted in the system, though the GTLEs are well-satisfied, in general a point-point correspondence for imaging cannot be established. Under certain conditions, two blurred images may be observed in the coincidence counts. We have also studied the ghost interference-diffraction experiments by using double slits as apertures in triphoton entanglement. It was found that when two double slits are used in two optical beams, the interference-diffraction patterns show unusual features compared with the two-photon case. This unusual behavior is a destructive interference between two amplitudes for two photons crossing two double slits.

  10. Paraxial light distribution in the focal region of a lens: a comparison of several analytical solutions and a numerical result.

    PubMed

    Wu, Yang; Kelly, Damien P

    2014-12-12

    The distribution of the complex field in the focal region of a lens is a classical optical diffraction problem. Today, it remains of significant theoretical importance for understanding the properties of imaging systems. In the paraxial regime, it is possible to find analytical solutions in the neighborhood of the focus, when a plane wave is incident on a focusing lens whose finite extent is limited by a circular aperture. For example, in Born and Wolf's treatment of this problem, two different, but mathematically equivalent analytical solutions, are presented that describe the 3D field distribution using infinite sums of [Formula: see text] and [Formula: see text] type Lommel functions. An alternative solution expresses the distribution in terms of Zernike polynomials, and was presented by Nijboer in 1947. More recently, Cao derived an alternative analytical solution by expanding the Fresnel kernel using a Taylor series expansion. In practical calculations, however, only a finite number of terms from these infinite series expansions is actually used to calculate the distribution in the focal region. In this manuscript, we compare and contrast each of these different solutions to a numerically calculated result, paying particular attention to how quickly each solution converges for a range of different spatial locations behind the focusing lens. We also examine the time taken to calculate each of the analytical solutions. The numerical solution is calculated in a polar coordinate system and is semi-analytic. The integration over the angle is solved analytically, while the radial coordinate is sampled with a sampling interval of [Formula: see text] and then numerically integrated. This produces an infinite set of replicas in the diffraction plane, that are located in circular rings centered at the optical axis and each with radii given by [Formula: see text], where [Formula: see text] is the replica order. These circular replicas are shown to be fundamentally different from the replicas that arise in a Cartesian coordinate system.

  11. Paraxial light distribution in the focal region of a lens: a comparison of several analytical solutions and a numerical result

    NASA Astrophysics Data System (ADS)

    Wu, Yang; Kelly, Damien P.

    2014-12-01

    The distribution of the complex field in the focal region of a lens is a classical optical diffraction problem. Today, it remains of significant theoretical importance for understanding the properties of imaging systems. In the paraxial regime, it is possible to find analytical solutions in the neighborhood of the focus, when a plane wave is incident on a focusing lens whose finite extent is limited by a circular aperture. For example, in Born and Wolf's treatment of this problem, two different, but mathematically equivalent analytical solutions, are presented that describe the 3D field distribution using infinite sums of ? and ? type Lommel functions. An alternative solution expresses the distribution in terms of Zernike polynomials, and was presented by Nijboer in 1947. More recently, Cao derived an alternative analytical solution by expanding the Fresnel kernel using a Taylor series expansion. In practical calculations, however, only a finite number of terms from these infinite series expansions is actually used to calculate the distribution in the focal region. In this manuscript, we compare and contrast each of these different solutions to a numerically calculated result, paying particular attention to how quickly each solution converges for a range of different spatial locations behind the focusing lens. We also examine the time taken to calculate each of the analytical solutions. The numerical solution is calculated in a polar coordinate system and is semi-analytic. The integration over the angle is solved analytically, while the radial coordinate is sampled with a sampling interval of ? and then numerically integrated. This produces an infinite set of replicas in the diffraction plane, that are located in circular rings centered at the optical axis and each with radii given by ?, where ? is the replica order. These circular replicas are shown to be fundamentally different from the replicas that arise in a Cartesian coordinate system.

  12. Adjustable Focus Optical Correction Lens (AFOCL)

    NASA Technical Reports Server (NTRS)

    Peters, Bruce R.

    2001-01-01

    This report describes the activities and accomplishments along with the status of the characterization of a PLZT-based Adjustable Focus Optical Correction Lens (AFOCL) test device. The activities described in this report were undertaken by members of the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) under NASA Contract NAS8-00188. The effort was led by Dr. Bruce Peters as the Principal Investigator and supported by Dr. Patrick Reardon, Ms. Deborah Bailey, and graduate student Mr. Jeremy Wong. The activities outlined for the first year of the contract were to identify vendors and procure a test device along with performing the initial optical characterization of the test device. This activity has been successfully executed and test results are available and preliminary information was published at the SPIE Photonics West Conference in San Jose, January 2001. The paper, "Preliminary investigation of an active PLZT lens," was well received and generated response with several questions from the audience. A PLZT test device has been commercially procured from an outside vendor: The University of California in San Diego (UCSD) in partnership with New Interconnect Packaging Technologies (NIPT) Inc. The device has been subjected to several tests to characterize the optical performance of the device at wavelengths of interest. The goal was to evaluate the AFOCL similar to a conventional lens and measure any optical aberrations present due to the PLZT material as a deviation in the size of the diffraction limited spot (blur), the presence of diffracted energy into higher orders surrounding the focused spot (a variation in Strehl), and/or a variation or spread in the location of the focused energy away from the optical axis (a bias towards optical wedge, spherical, comma, or other higher order aberrations). While data has been collected indicative of the imaging quality of the AFOCL test device, it was not possible to fully characterize the optical performance of the AFOCL alone because there were significant optical distortions due to fabrication related issues.

  13. Eye model for the ground squirrel

    NASA Astrophysics Data System (ADS)

    Sussman, Dafna; Chou, B. Ralph; Lakshminarayanan, Vasudevan

    2011-11-01

    This paper presents an anatomically-correct eye model for the ground squirrel, a diurnal, highly-developed mammal with high visual acuity. This model can assist in understanding the relationship between ocular structural development and its corresponding function. The eye model is constructed based on anatomical measurements of thicknesses and indices of refraction of the various ocular media. The model then derives the gradient index distribution of the crystalline lens using a ray tracing method with a Monte Carlo optimization. Results indicate a diffraction-limited ocular behaviour, implying the visual acuity of the ground squirrel is more likely to be limited by photoreceptor density and diffraction effects, than by ocular geometry.

  14. Curved focusing crystals for hard X-ray astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrari, C., E-mail: ferrari@imem.cnr.it; Buffagni, E.; Bonnini, E.

    A lens made by a properly arranged array of crystals can be used to focus x-rays of energy ranging from 30 to 500 keV for x-ray astronomy. Mosaic or curved crystals can be employed as x-ray optical elements. In this work self standing curved focusing Si and GaAs crystals in which the lattice bending is induced by a controlled damaging process on one side of planar crystals are characterized. Diffraction profiles in Laue geometry have been measured in crystals at x-ray energies E = 17, 59 and 120 keV. An enhancement of diffraction efficiency is found in asymmetric geometries.

  15. Single beam write and/or replay of spatial heterodyne holograms

    DOEpatents

    Thomas, Clarence E.; Hanson, Gregory R.

    2007-11-20

    A method of writing a spatially heterodyne hologram having spatially heterodyne fringes includes: passing a single write beam through a spatial light modulator that digitally modulates said single write beam; and focusing the single write beam at a focal plane of a lens to impose a holographic diffraction grating pattern on the photorefractive crystal, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein only said single write beam is incident on said photorefractive crystal without a reference beam. A method of replaying a spatially heterodyne hologram having spatially heterodyne fringes at a replay angle includes: illuminating a photorefractive crystal having a holographic diffraction grating with a beam from a laser at an illumination angle, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein a difference between said illumination angle and said replay angle defines a diffraction angle .alpha. that is a function of a plane wave mathematically added to original object wave phase and amplitude data of said spatially heterodyne hologram having spatially heterodyne fringes.

  16. Lens-based wavefront sensorless adaptive optics swept source OCT

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-06-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.

  17. Laue lens for radiotherapy applications through a focused hard x-ray beam: a feasibility study on requirements and tolerances

    NASA Astrophysics Data System (ADS)

    Camattari, Riccardo

    2017-09-01

    Focusing a hard x-ray beam would represent an innovative technique for tumour treatment, since such a beam may deliver a dose to a tumour located at a given depth under the skin, sparing the surrounding healthy cells. A detailed study of a focusing system for hard x-ray aimed at radiotherapy is presented here. Such a focusing system, named Laue lens, exploits x-ray diffraction and consists of a series of crystals disposed as concentric rings capable of concentrating a flux of x-rays towards a focusing point. A feasibility study regarding the positioning tolerances of the crystalline optical elements has been carried out. It is shown that a Laue lens can effectively be used in the context of radiotherapy for tumour treatments provided that the mounting errors are below certain values, which are reachable in the modern micromechanics. An extended survey based on an analytical approach and on simulations is presented for precisely estimating all the contributions of each mounting error, analysing their effect on the focal spot of the Laue lens. Finally, a simulation for evaluating the released dose in a water phantom is shown.

  18. Probing Extragalactic Planets Using Quasar Microlensing

    NASA Astrophysics Data System (ADS)

    Dai, Xinyu; Guerras, Eduardo

    2018-02-01

    Previously, planets have been detected only in the Milky Way galaxy. Here, we show that quasar microlensing provides a means to probe extragalactic planets in the lens galaxy, by studying the microlensing properties of emission close to the event horizon of the supermassive black hole of the background quasar, using the current generation telescopes. We show that a population of unbound planets between stars with masses ranging from Moon to Jupiter masses is needed to explain the frequent Fe Kα line energy shifts observed in the gravitationally lensed quasar RXJ 1131–1231 at a lens redshift of z = 0.295 or 3.8 billion lt-yr away. We constrain the planet mass-fraction to be larger than 0.0001 of the halo mass, which is equivalent to 2000 objects ranging from Moon to Jupiter mass per main-sequence star.

  19. Spitzer Parallax Observations of Long Duration Gaia Microlensing Events

    NASA Astrophysics Data System (ADS)

    Carey, Sean; Calchi-Novati, Sebastiano; Wyrzykowski, Lukasz; Kruszynska, Katarzyna; Gromadzki, Mariusz; Rybicki, Krzysztof

    2018-05-01

    We proposed to observe of order ten long duration (>100 day) microlensing events identified in Gaia survey data with the Spitzer Space Telescope. The long duration events are likely due to massive lenses, hence they could be isolated black holes. These observations could make defintive mass measurements for the first time of isolated stellar remanant black holes in our Galaxy. The Spitzer data provide a key component to making an umabiguous mass measurement by providing the microlensing parallax (as has been done for >500 event by Spitzer so far). The Gaia data is used for the detection of the events and measurement of the astrometric motion caused by the microlensing event. From the astrometric microlensing signature, the Einstein radius of the lens can be measured and combined with the microlensing parallax yields the lens mass and distance.

  20. VizieR Online Data Catalog: Grism Lens-Amplified Survey from Space (GLASS). I. (Treu+, 2015)

    NASA Astrophysics Data System (ADS)

    Treu, T.; Schmidt, K. B.; Brammer, G. B.; Vulcani, B.; Wang, X.; Bradac, M.; Dijkstra, M.; Dressler, A.; Fontana, A.; Gavazzi, R.; Henry, A. L.; Hoag, A.; Huang, K.-H.; Jones, T. A.; Kelly, P. L.; Malkan, M. A.; Mason, C.; Pentericci, L.; Poggianti, B.; Stiavelli, M.; Trenti, M.; von der Linden, A.

    2016-02-01

    In this paper we give an overview of Grism Lens Amplified Survey from Space (GLASS; PI Treu; GO 13459) and we present the first release of the data for MACS J0717.5+3745, the first cluster targeted by the survey. Spectra for 1151 galaxies down to magnitude HAB=24 (F140W) have been visually inspected by members of our team to ensure quality control. GLASS is a cycle-21 large program with the Hubble Space Telescope (HST), targeting 10 massive clusters, including the 6 Frontier Fields, using the WFC3 and ACS grisms. The program consists of 140 primary orbits (with the G102 and G141 grisms; range 0.81-1.69μm) and 140 parallel orbits (with the G800L grism). (2 data files).

  1. Intraocular lenses in age-related macular degeneration.

    PubMed

    Grzybowski, Andrzej; Wasinska-Borowiec, Weronika; Alio, Jorge L; Amat-Peral, Pedro; Tabernero, Juan

    2017-09-01

    The aim of this work is to review the lenses, assessing their advantages and disadvantages. We describe a total of seven types of intraocular lenses (IOLs) recommended for age-related macular degeneration (AMD). We used the PubMed web platform to search for implantable devices in various stages of AMD. We searched for both prospective and retrospective studies and also case reports. Clinical results in AMD patients have been described for a total of seven types of IOLs recommended for AMD: an implantable miniature telescope (IMT), IOL-VIP System, Lipshitz macular implant (LMI), sulcus-implanted Lipshitz macular implant, LMI-SI, Fresnel Prism Intraocular Lens, iolAMD and Scharioth Macula Lens. We conclude that to objectively ascertain the effectiveness and safety of these lenses, further independent clinical studies with longer follow-up data are necessary prior to the general use of these optical devices.

  2. Image quality affected by diffraction of aperture structure arrangement in transparent active-matrix organic light-emitting diode displays.

    PubMed

    Tsai, Yu-Hsiang; Huang, Mao-Hsiu; Jeng, Wei-de; Huang, Ting-Wei; Lo, Kuo-Lung; Ou-Yang, Mang

    2015-10-01

    Transparent display is one of the main technologies in next-generation displays, especially for augmented reality applications. An aperture structure is attached on each display pixel to partition them into transparent and black regions. However, diffraction blurs caused by the aperture structure typically degrade the transparent image when the light from a background object passes through finite aperture window. In this paper, the diffraction effect of an active-matrix organic light-emitting diode display (AMOLED) is studied. Several aperture structures have been proposed and implemented. Based on theoretical analysis and simulation, the appropriate aperture structure will effectively reduce the blur. The analysis data are also consistent with the experimental results. Compared with the various transparent aperture structure on AMOLED, diffraction width (zero energy position of diffraction pattern) of the optimize aperture structure can be reduced 63% and 31% in the x and y directions in CASE 3. Associated with a lenticular lens on the aperture structure, the improvement could reach to 77% and 54% of diffraction width in the x and y directions. Modulation transfer function and practical images are provided to evaluate the improvement of image blurs.

  3. FIRST, a fibered aperture masking instrument: Results of the Lick observing campaign

    NASA Astrophysics Data System (ADS)

    Bordwell, Baylee; Duchene, Gaspard; Huby, Elsa; Goebel, Sean; Marchis, Franck; Perrin, Guy; Lacour, Sylvestre; Kotani, Takayuki; Gates, Elinor L.; Choquet, Elodie

    2015-01-01

    FIRST is a prototype instrument aimed at achieving high dynamic range and angular resolution in ground-based images at visible wavelengths near the diffraction limit. FIRST utilizes an aperture masking-like technique that makes use of single-mode fibers and pupil remapping to maximize the area of the telescope mirror in use. While located at Lick observatory in 2011 and 2012, FIRST observed 25 binary systems with the Shane 3m telescope, with separations ranging from 20 to 200 mas, comparable to the 50 mas diffraction limit for our central wavelength. Huby et al. (2013) has reported results for the Capella system that established the utility of FIRST for characterizing stellar binaries using the directly measured spectral flux ratio. Using an improved data analysis pipeline, we obtained closure phase measurements for a majority of the targets observed at Lick, and derived angular separations and spectral flux ratios. From the spectral flux ratios we obtained spectra for the companions over at least 600-850 nm with R~300. Finally, by obtaining results for many binary systems we have better constrained the current performance of FIRST, which has an exciting future ahead at its current location behind SCExAO at the Subaru 8.2 m telescope, where it will eventually become available for general use by the astronomical community.

  4. Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials.

    PubMed

    Liu, Aiping; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai

    2012-10-01

    The resonant tunneling effects that could result in complete transmission of evanescent waves are examined in acoustic metamaterials of anisotropic effective mass. The tunneling conditions are first derived for the metamaterials composed of classical mass-in-mass structures. It is found that the tunneling transmission occurs when the total length of metamaterials is an integral number of half-wavelengths of the periodic Bloch wave. Due to the local resonance of building units of metamaterials, the Bloch waves are spatially modulated within the periodic structures, leading to the resonant tunneling occurring in the low-frequency region. The metamaterial slab lens with anisotropic effective mass is designed by which the physics of resonant tunneling and the features for evanescent field manipulations are examined. The designed lens interacts with evanescent waves in the way of the propagating wavenumber weakly dependent on the spatial frequency of evanescent waves. Full-wave simulations validate the imaging performance of the proposed lens with the spatial resolution beyond the diffraction limit.

  5. Planning the 8-meter Chinese Giant Solar Telescope

    NASA Astrophysics Data System (ADS)

    Beckers, Jacques M.; Liu, Z.; Deng, Y.; Ji, H.

    2013-07-01

    The Chinese Giant Solar Telescope (CGST) will be a diffraction limited solar telescope optimized for the near-infrared (NIR) spectral region (0.8 - 2.5 microns). Its diffraction limit will be reached by the incorporation of Multi-Conjugate Adaptive Optics (MCAO) enhanced by image restoration techniques to achieve uniform (u.v) plane coverage over the angular spatial frequency region allowed by its 8-meter aperture. Thus it will complement the imaging capabilities of 4-meter telescopes being planned elsewhere which are optimized for the visible (VIS) spectral region (300 - 1000 nm) In the NIR spectral regions the CGST will have access to unique spectral features which will improve the diagnostics of the solar atmosphere. These include the CaII lines near 860 nm , the HeI lines near 1083 nm, the 1074 nm FeXIII coronal lines, the large Zeeman-split FeI line at 1548 nm, and (v) the H- continuum absorption minimum at 1.6 micron. Especially in sunspot umbrae the simultaneous observation of continua and lines across the NIR spectral range will cover a substantial depth range in the solar atmosphere. Of course the mid- and far- infrared regions are also available for unequalled high-angular resolution solar observations, for example, in the Hydrogen Bracket lines, CO molecular bands, and the MgI emission line at 12.3 microns. The CGST is a so-called ring telescope in which the light is captured by a 1 meter wide segmented ring or by a ring of 7 smaller off-axis aperture telescopes. The open central area of the telescope is large. The advantages of such a ring configuration is that (a) it covers all the spatial frequencies out to those corresponding to its outer diameter, (b) its circular symmetry makes it polarization neutral, (c) its large central hole helps thermal control, and (d) it provides ample space for the MCAO system and instrumentation in the Gregorian focus. Even though optimized for the NIR, we expect to use the CGST also at visible wavelengths in the so-called “Partial Adaptive Optics” (PAO) mode (Applied Optics 31,424,1992) to obtain angular resolution twice that of a 4-meter telescope if their observations indicate that higher resolution is desirable. The CGST is a Chinese solar community project.

  6. IDATEN and G-SITENNO: GUI-assisted software for coherent X-ray diffraction imaging experiments and data analyses at SACLA.

    PubMed

    Sekiguchi, Yuki; Yamamoto, Masaki; Oroguchi, Tomotaka; Takayama, Yuki; Suzuki, Shigeyuki; Nakasako, Masayoshi

    2014-11-01

    Using our custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors, cryogenic coherent X-ray diffraction imaging experiments have been undertaken at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility. To efficiently perform experiments and data processing, two software suites with user-friendly graphical user interfaces have been developed. The first is a program suite named IDATEN, which was developed to easily conduct four procedures during experiments: aligning KOTOBUKI-1, loading a flash-cooled sample into the cryogenic goniometer stage inside the vacuum chamber of KOTOBUKI-1, adjusting the sample position with respect to the X-ray beam using a pair of telescopes, and collecting diffraction data by raster scanning the sample with X-ray pulses. Named G-SITENNO, the other suite is an automated version of the original SITENNO suite, which was designed for processing diffraction data. These user-friendly software suites are now indispensable for collecting a large number of diffraction patterns and for processing the diffraction patterns immediately after collecting data within a limited beam time.

  7. The Simultaneous Combination of Phase Contrast Imaging with In Situ X-ray diffraction from Shock Compressed Matter

    NASA Astrophysics Data System (ADS)

    McBride, Emma Elizabeth; Seiboth, Frank; Cooper, Leora; Frost, Mungo; Goede, Sebastian; Harmand, Marion; Levitan, Abe; McGonegle, David; Miyanishi, Kohei; Ozaki, Norimasa; Roedel, Melanie; Sun, Peihao; Wark, Justin; Hastings, Jerry; Glenzer, Siegfried; Fletcher, Luke

    2017-10-01

    Here, we present the simultaneous combination of phase contrast imaging (PCI) techniques with in situ X-ray diffraction to investigate multiple-wave features in laser-driven shock-compressed germanium. Experiments were conducted at the Matter at Extreme Conditions end station at the LCLS, and measurements were made perpendicular to the shock propagation direction. PCI allows one to take femtosecond snapshots of magnified real-space images of shock waves as they progress though matter. X-ray diffraction perpendicular to the shock propagation direction provides the opportunity to isolate and identify different waves and determine the crystal structure unambiguously. Here, we combine these two powerful techniques simultaneously, by using the same Be lens setup to focus the fundamental beam at 8.2 keV to a size of 1.5 mm on target for PCI and the 3rd harmonic at 24.6 keV to a spot size of 2 um on target for diffraction.

  8. The investigation of large field of view eyepiece with multilayer diffractive optical element

    NASA Astrophysics Data System (ADS)

    Fan, Changjiang

    2014-11-01

    In this paper, a light-small hybrid refractive/diffractive eyepiece for HMD is designed, which introduces a multilayer Diffractive Optical Element for the first time. This eyepiece optical system has a 22mm eye relief and 8mm exit pupil with 60° FOV. The multilayer DOE overcomes the difficulties of single-layer DOE and double-layer DOE using in the optical system, and improve the image contrast and the performance significantly due to the diffraction efficiency of the multilayer DOE is lager than 90% in wide waveband and large FOV range. The material of multilayer DOE are FCD1 for first layer, FD6 for second layer, PS for the filler layer. Moreover, the weight of the eyepiece system is only 8g, and the diameter of lens is 16mm. The MTF performance can satisfy the requirement of display with VGA resolution. Besides, the lateral color and distortion are 4.8% and 10μm, respectively. The properties of the helmet eyepiece system are excellent.

  9. Design study for a 16x zoom lens system for visible surveillance camera

    NASA Astrophysics Data System (ADS)

    Vella, Anthony; Li, Heng; Zhao, Yang; Trumper, Isaac; Gandara-Montano, Gustavo A.; Xu, Di; Nikolov, Daniel K.; Chen, Changchen; Brown, Nicolas S.; Guevara-Torres, Andres; Jung, Hae Won; Reimers, Jacob; Bentley, Julie

    2015-09-01

    *avella@ur.rochester.edu Design study for a 16x zoom lens system for visible surveillance camera Anthony Vella*, Heng Li, Yang Zhao, Isaac Trumper, Gustavo A. Gandara-Montano, Di Xu, Daniel K. Nikolov, Changchen Chen, Nicolas S. Brown, Andres Guevara-Torres, Hae Won Jung, Jacob Reimers, Julie Bentley The Institute of Optics, University of Rochester, Wilmot Building, 275 Hutchison Rd, Rochester, NY, USA 14627-0186 ABSTRACT High zoom ratio zoom lenses have extensive applications in broadcasting, cinema, and surveillance. Here, we present a design study on a 16x zoom lens with 4 groups (including two internal moving groups), designed for, but not limited to, a visible spectrum surveillance camera. Fifteen different solutions were discovered with nearly diffraction limited performance, using PNPX or PNNP design forms with the stop located in either the third or fourth group. Some interesting patterns and trends in the summarized results include the following: (a) in designs with such a large zoom ratio, the potential of locating the aperture stop in the front half of the system is limited, with ray height variations through zoom necessitating a very large lens diameter; (b) in many cases, the lens zoom motion has significant freedom to vary due to near zero total power in the middle two groups; and (c) we discuss the trade-offs between zoom configuration, stop location, packaging factors, and zoom group aberration sensitivity.

  10. Simulation and modeling of silicon pore optics for the ATHENA x-ray telescope

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Christensen, F. E.; Bavdaz, M.; Civitani, M. M.; Conconi, P.; Della Monica Ferreira, D.; Knudsen, E. B.; Massahi, S.; Pareschi, G.; Salmaso, B.; Shortt, B.; Tayabaly, K.; Westergaard, N. J.; Wille, E.

    2016-07-01

    The ATHENA X-ray observatory is a large-class ESA approved mission, with launch scheduled in 2028. The technology of silicon pore optics (SPO) was selected as baseline to assemble ATHENA's optic with more than 1000 mirror modules, obtained by stacking wedged and ribbed silicon wafer plates onto silicon mandrels to form the Wolter-I configuration. Even if the current baseline design fulfills the required effective area of 2 m2 at 1 keV on-axis, alternative design solutions, e.g., privileging the field of view or the off-axis angular resolution, are also possible. Moreover, the stringent requirement of a 5 arcsec HEW angular resolution at 1 keV entails very small profile errors and excellent surface smoothness, as well as a precise alignment of the 1000 mirror modules to avoid imaging degradation and effective area loss. Finally, the stray light issue has to be kept under control. In this paper we show the preliminary results of simulations of optical systems based on SPO for the ATHENA X-ray telescope, from pore to telescope level, carried out at INAF/OAB and DTU Space under ESA contract. We show ray-tracing results, including assessment of the misalignments of mirror modules and the impact of stray light. We also deal with a detailed description of diffractive effects expected in an SPO module from UV light, where the aperture diffraction prevails, to X-rays where the surface diffraction plays a major role. Finally, we analyze the results of X-ray tests performed at the BESSY synchrotron, we compare them with surface finishing measurements, and we estimate the expected HEW degradation caused by the X-ray scattering.

  11. Multi-conjugated adaptive optics imaging of distant galaxies - a comparison of Gemini/GSAOI and VLT/HAWK-I data

    NASA Astrophysics Data System (ADS)

    Schirmer, Mischa; Garrel, Vincent; Sivo, Gaetano; Marin, Eduardo; Carrasco, Eleazar R.

    2017-11-01

    Multi-conjugated adaptive optics (MCAO) yield nearly diffraction-limited images at 2 μm wavelengths. Currently, Gemini Multi-Conjugate Adaptive Optics System (GeMS)/Gemini South Adaptive Optics Imager (GSAOI) at Gemini South is the only MCAO facility instrument at an 8-m telescope. Using real data, and for the first time, we investigate the gain in depth and signal-to-noise ratios (S/N) when MCAO is employed for Ks-band observations of distant galaxies. Our analysis is based on the Frontier Fields cluster MACS J0416.1-2403, observed with GeMS/GSAOI (near diffraction-limited) and compared against Very Large Telescope/HAWK-I (natural seeing) data. Using galaxy number counts, we show that the substantially increased thermal background and lower optical throughput of the MCAO unit are fully compensated for by the wavefront correction because the galaxy images can be measured in smaller apertures with less sky noise. We also performed a direct comparison of the S/N of sources detected in both data sets. For objects with intrinsic angular sizes corresponding to half the HAWK-I image seeing, the gain in S/N is 40 per cent. Even smaller objects experience a boost in S/N by up to a factor of 2.5 despite our suboptimal natural guide star configuration. The depth of the near diffraction limited images is more difficult to quantify than that of seeing limited images, due to a strong dependence on the intrinsic source profiles. Our results emphasize the importance of cooled MCAO systems for Ks-band observations with future, extremely large telescopes.

  12. Imaging system design for improved information capacity

    NASA Technical Reports Server (NTRS)

    Fales, C. L.; Huck, F. O.; Samms, R. W.

    1984-01-01

    Shannon's theory of information for communication channels is used to assess the performance of line-scan and sensor-array imaging systems and to optimize the design trade-offs involving sensitivity, spatial response, and sampling intervals. Formulations and computational evaluations account for spatial responses typical of line-scan and sensor-array mechanisms, lens diffraction and transmittance shading, defocus blur, and square and hexagonal sampling lattices.

  13. Measurement of the curvature of a surface using parallel light beams

    DOEpatents

    Chason, Eric H.; Floro, Jerrold A.; Seager, Carleton H.; Sinclair, Michael B.

    1999-01-01

    Apparatus for measuring curvature of a surface wherein a beam of collimated light is passed through means for producing a plurality of parallel light beams each separated by a common distance which then reflect off the surface to fall upon a detector that measures the separation of the reflected beams of light. This means can be an etalon and the combination of a diffractive element and a converging lens. The curvature of the surface along the line onto which the multiple beams fall can be calculated from this information. A two-dimensional map of the curvature can be obtained by adding a second etalon (or a second combination of a diffractive element and a converging lens) which is rotated 90.degree. about the optical axis relative to the first etalon and inclined at the same angle. The second etalon creates an individual set of parallel light beams from each of the individual beams created by the first etalon with the sets of parallel light beams from the second etalon rotated 90.degree. relative to the line onto which the single set of parallel beams from the first etalon would have fallen.

  14. Measurement of the curvature of a surface using parallel light beams

    DOEpatents

    Chason, E.H.; Floro, J.A.; Seager, C.H.; Sinclair, M.B.

    1999-06-15

    Apparatus is disclosed for measuring curvature of a surface wherein a beam of collimated light is passed through a means for producing a plurality of parallel light beams each separated by a common distance which then reflect off the surface to fall upon a detector that measures the separation of the reflected beams of light. This means can be an etalon and the combination of a diffractive element and a converging lens. The curvature of the surface along the line onto which the multiple beams fall can be calculated from this information. A two-dimensional map of the curvature can be obtained by adding a second etalon (or a second combination of a diffractive element and a converging lens) which is rotated 90[degree] about the optical axis relative to the first etalon and inclined at the same angle. The second etalon creates an individual set of parallel light beams from each of the individual beams created by the first etalon with the sets of parallel light beams from the second etalon rotated 90[degree] relative to the line onto which the single set of parallel beams from the first etalon would have fallen. 5 figs.

  15. X-ray Interferometry with Transmissive Beam Combiners for Ultra-High Angular Resolution Astronomy

    NASA Technical Reports Server (NTRS)

    Skinner, G. K.; Krismanic, John F.

    2009-01-01

    Abstract Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to offer a much wider bandpass than either a Phase Fresnel Lens (PFL) or a PFL with a refractive lens in an achromatic pair. Simulations of an example system are presented.

  16. Thin Fresnel zone plate lenses for focusing underwater sound

    NASA Astrophysics Data System (ADS)

    Calvo, David C.; Thangawng, Abel L.; Nicholas, Michael; Layman, Christopher N.

    2015-07-01

    A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ring cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens.

  17. Thin Fresnel zone plate lenses for focusing underwater sound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvo, David C., E-mail: david.calvo@nrl.navy.mil; Thangawng, Abel L.; Nicholas, Michael

    A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ringmore » cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens.« less

  18. Probing cluster potentials through gravitational lensing of background X-ray sources

    NASA Technical Reports Server (NTRS)

    Refregier, A.; Loeb, A.

    1996-01-01

    The gravitational lensing effect of a foreground galaxy cluster, on the number count statistics of background X-ray sources, was examined. The lensing produces a deficit in the number of resolved sources in a ring close to the critical radius of the cluster. The cluster lens can be used as a natural telescope to study the faint end of the (log N)-(log S) relation for the sources which account for the X-ray background.

  19. Improved mass constraints for two nearby strong-lensing elliptical galaxies from Hubble Space Telescope imaging

    NASA Astrophysics Data System (ADS)

    Collier, William P.; Smith, Russell J.; Lucey, John R.

    2018-01-01

    We analyse newly obtained Hubble Space Telescope imaging for two nearby strong lensing elliptical galaxies, SNL-1 (z = 0.03) and SNL-2 (z = 0.05), in order to improve the lensing mass constraints. The imaging reveals previously unseen structure in both the lens galaxies and lensed images. For SNL-1, which has a well resolved source, we break the mass-versus-shear degeneracy using the relative magnification information, and measure a lensing mass of 9.49 ± 0.15 × 1010 M⊙, a 7 per cent increase on the previous estimate. For SNL-2, the imaging reveals a bright unresolved component to the source and this presents additional complexity due to possible active galactic nucleus microlensing or variability. We tentatively use the relative magnification information to constrain the contribution from SNL-2's nearby companion galaxy, measuring a lensing mass of 12.59 ± 0.30 × 1010 M⊙, a 9 per cent increase in mass. Our improved lens modelling reduces the mass uncertainty from 5 and 10 per cent to 2 and 3 per cent, respectively. Our results support the conclusions of the previous analysis, with newly measured mass excess parameters of 1.17 ± 0.09 and 0.96 ± 0.10 for SNL-1 and SNL-2, relative to a Milky Way like (Kroupa) initial mass function.

  20. A Measurement of Gravitational Lensing of the Cosmic Microwave Background by Galaxy Clusters Using Data from the South Pole Telescope

    DOE PAGES

    Baxter, E. J.; Keisler, R.; Dodelson, S.; ...

    2015-06-22

    Clusters of galaxies are expected to gravitationally lens the cosmic microwave background (CMB) and thereby generate a distinct signal in the CMB on arcminute scales. Measurements of this effect can be used to constrain the masses of galaxy clusters with CMB data alone. Here we present a measurement of lensing of the CMB by galaxy clusters using data from the South Pole Telescope (SPT). We also develop a maximum likelihood approach to extract the CMB cluster lensing signal and validate the method on mock data. We quantify the effects on our analysis of several potential sources of systematic error andmore » find that they generally act to reduce the best-fit cluster mass. It is estimated that this bias to lower cluster mass is roughly 0.85σ in units of the statistical error bar, although this estimate should be viewed as an upper limit. Furthermore, we apply our maximum likelihood technique to 513 clusters selected via their Sunyaev–Zeldovich (SZ) signatures in SPT data, and rule out the null hypothesis of no lensing at 3.1σ. The lensing-derived mass estimate for the full cluster sample is consistent with that inferred from the SZ flux: M 200,lens = 0.83 +0.38 -0.37 M 200,SZ (68% C.L., statistical error only).« less

Top