Science.gov

Sample records for diffraction lens telescope

  1. Twenty-meter space telescope based on diffractive Fresnel lens

    NASA Astrophysics Data System (ADS)

    Early, James T.; Hyde, Roderick; Baron, Richard L.

    2004-02-01

    Diffractive lenses offer two potential advantages for very large aperture space telescopes; very loose surface-figure tolerances and physical implementation as thin, flat optical elements. In order to actually realize these advantages one must be able to build large diffractive lenses with adequate optical precision and also to compactly stow the lens for launch and then fully deploy it in space. We will discuss the recent fabrication and assembly demonstration of a 5m glass diffractive Fresnel lens at LLNL. Optical performance data from smaller full telescopes with diffractive lens and corrective optics show diffraction limited performance with broad bandwidths. A systems design for a 20m space telescope will be presented. The primary optic can be rolled to fit inside of the standard fairings of the Delta IV vehicle. This configuration has a simple deployment and requires no orbital assembly. A twenty meter visible telescope could have a significant impact in conventional astronomy with eight times the resolution of Hubble and over sixty times the light gathering capacity. If the light scattering is made acceptable, this telescope could also be used in the search for terrestrial planets.

  2. Twenty Meter Space Telescope Based on Diffractive Fresnel Lens

    SciTech Connect

    Early, J; Hyde, R; Baron, R

    2003-06-26

    Diffractive lenses offer two potential advantages for very large aperture space telescopes; very loose surface-figure tolerances and physical implementation as thin, flat optical elements. In order to actually realize these advantages one must be able to build large diffractive lenses with adequate optical precision and also to compactly stow the lens for launch and then fully deploy it in space. We will discuss the recent fabrication and assembly demonstration of a 5m glass diffractive Fresnel lens at LLNL. Optical performance data from smaller full telescopes with diffractive lens and corrective optics show diffraction limited performance with broad bandwidths. A systems design for a 20m space telescope will be presented. The primary optic can be rolled to fit inside of the standard fairings of the Delta IV vehicle. This configuration has a simple deployment and requires no orbital assembly. A twenty meter visible telescope could have a significant impact in conventional astronomy with eight times the resolution of Hubble and over sixty times the light gathering capacity. If the light scattering is made acceptable, this telescope could also be used in the search for terrestrial planets.

  3. A positron annihilation radiation telescope using Laue diffraction in a crystal lens

    SciTech Connect

    Smither, R.K. ); von Ballmoos, P. . Centre d'Etude Spatiale des Rayonnements)

    1993-03-01

    We present a new type of gamma-ray telescope featuring a Laue diffraction lens, a detector module with a 3-by-3 germanium array, and a balloon gondola stabilized to 5 arc sec pointing accuracy. The instrument's lens is designed to collect 511 keV photons on its 150 CM[sup 2] effective area and focus them onto a small detector having only [approx]14 CM[sup 3] of equivalent volume for background noise. As a result, this telescope overcomes the mass-sensitivity impasse of present detectors in which the collection areas are identical to the detection area. The sensitivity of our instrument is anticipated to be 3 [times] 10[sup [minus]5] ph cm[sup [minus]2] S[sup [minus]1] at 511 key with an angular resolution of 15 arc sec and an energy resolution of 2 keV. These features will allow the resolve of a possible energetically narrow 511 keV positron annihilation line both energy-wise and spatially within a Galactic Center microquasar'' as 1El740.7-2942 or GRS1758-258. In addition to the galactic microquasars,'' other prime objectives include Cyg X-1, X-ray binaries, pulsars, and AGNS.

  4. A positron annihilation radiation telescope using Laue diffraction in a crystal lens

    SciTech Connect

    Smither, R.K.; von Ballmoos, P.

    1993-03-01

    We present a new type of gamma-ray telescope featuring a Laue diffraction lens, a detector module with a 3-by-3 germanium array, and a balloon gondola stabilized to 5 arc sec pointing accuracy. The instrument`s lens is designed to collect 511 keV photons on its 150 CM{sup 2} effective area and focus them onto a small detector having only {approx}14 CM{sup 3} of equivalent volume for background noise. As a result, this telescope overcomes the mass-sensitivity impasse of present detectors in which the collection areas are identical to the detection area. The sensitivity of our instrument is anticipated to be 3 {times} 10{sup {minus}5} ph cm{sup {minus}2} S{sup {minus}1} at 511 key with an angular resolution of 15 arc sec and an energy resolution of 2 keV. These features will allow the resolve of a possible energetically narrow 511 keV positron annihilation line both energy-wise and spatially within a Galactic Center ``microquasar`` as 1El740.7-2942 or GRS1758-258. In addition to the galactic ``microquasars,`` other prime objectives include Cyg X-1, X-ray binaries, pulsars, and AGNS.

  5. Telescopic vision contact lens

    NASA Astrophysics Data System (ADS)

    Tremblay, Eric J.; Beer, R. Dirk; Arianpour, Ashkan; Ford, Joseph E.

    2011-03-01

    We present the concept, optical design, and first proof of principle experimental results for a telescopic contact lens intended to become a visual aid for age-related macular degeneration (AMD), providing magnification to the user without surgery or external head-mounted optics. Our contact lens optical system can provide a combination of telescopic and non-magnified vision through two independent optical paths through the contact lens. The magnified optical path incorporates a telescopic arrangement of positive and negative annular concentric reflectors to achieve 2.8x - 3x magnification on the eye, while light passing through a central clear aperture provides unmagnified vision.

  6. Large aperture diffractive space telescope

    DOEpatents

    Hyde, Roderick A.

    2001-01-01

    A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.

  7. THE OPTIMAL GRAVITATIONAL LENS TELESCOPE

    SciTech Connect

    Surdej, J.; Hanot, C.; Sadibekova, T.; Delacroix, C.; Habraken, S.; Coleman, P.; Dominik, M.; Le Coroller, H.; Mawet, D.; Quintana, H.; Sluse, D.

    2010-05-15

    Given an observed gravitational lens mirage produced by a foreground deflector (cf. galaxy, quasar, cluster, ...), it is possible via numerical lens inversion to retrieve the real source image, taking full advantage of the magnifying power of the cosmic lens. This has been achieved in the past for several remarkable gravitational lens systems. Instead, we propose here to invert an observed multiply imaged source directly at the telescope using an ad hoc optical instrument which is described in the present paper. Compared to the previous method, this should allow one to detect fainter source features as well as to use such an optimal gravitational lens telescope to explore even fainter objects located behind and near the lens. Laboratory and numerical experiments illustrate this new approach.

  8. Eyeglass: A Very Large Aperture Diffractive Space Telescope

    SciTech Connect

    Hyde, R; Dixit, S; Weisberg, A; Rushford, M

    2002-07-29

    Eyeglass is a very large aperture (25-100 meter) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope's large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently fieldable (lightweight and flat, hence packagable and deployable) and virtually eliminates the traditional, very tight, surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by corrective optics in the telescope's eyepiece. The Eyeglass can provide diffraction-limited imaging with either single-band, multiband, or continuous spectral coverage. Broadband diffractive telescopes have been built at LLNL and have demonstrated diffraction-limited performance over a 40% spectral bandwidth (0.48-0.72 {micro}m). As one approach to package a large aperture for launch, a foldable lens has been built and demonstrated. A 75 cm aperture diffractive lens was constructed from 6 panels of 1 m thick silica; it achieved diffraction-limited performance both before and after folding. This multiple panel, folding lens, approach is currently being scaled-up at LLNL. We are building a 5 meter aperture foldable lens, involving 72 panels of 700 {micro}m thick glass sheets, diffractively patterned to operate as coherent f/50 lens.

  9. Very Large Aperture Diffractive Space Telescope

    SciTech Connect

    Hyde, Roderick Allen

    1998-04-20

    A very large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass ''aiming'' at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The magnifying glass includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the magnifying glass, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets.

  10. Finite Element Analysis of the LOLA Receiver Telescope Lens

    NASA Technical Reports Server (NTRS)

    Matzinger, Elizabeth

    2007-01-01

    This paper presents the finite element stress and distortion analysis completed on the Receiver Telescope lens of the Lunar Orbiter Laser Altimeter (LOLA). LOLA is one of six instruments on the Lunar Reconnaissance Orbiter (LRO), scheduled to launch in 2008. LOLA's main objective is to produce a high-resolution global lunar topographic model to aid in safe landings and enhance surface mobility in future exploration missions. The Receiver Telescope captures the laser pulses transmitted through a diffractive optical element (DOE) and reflected off the lunar surface. The largest lens of the Receiver Telescope, Lens 1, is a 150 mm diameter aspheric lens originally designed to be made of BK7 glass. The finite element model of the Receiver Telescope Lens 1 is comprised of solid elements and constrained in a manner consistent with the behavior of the mounting configuration of the Receiver Telescope tube. Twenty-one temperature load cases were mapped to the nodes based on thermal analysis completed by LOLA's lead thermal analyst, and loads were applied to simulate the preload applied from the ring flexure. The thermal environment of the baseline design (uncoated BK7 lens with no baffle) produces large radial and axial gradients in the lens. These large gradients create internal stresses that may lead to part failure, as well as significant bending that degrades optical performance. The high stresses and large distortions shown in the analysis precipitated a design change from BK7 glass to sapphire.

  11. Adjustable hybrid diffractive/refractive achromatic lens.

    PubMed

    Valley, Pouria; Savidis, Nickolaos; Schwiegerling, Jim; Dodge, Mohammad Reza; Peyman, Gholam; Peyghambarian, N

    2011-04-11

    We demonstrate a variable focal length achromatic lens that consists of a flat liquid crystal diffractive lens and a pressure-controlled fluidic refractive lens. The diffractive lens is composed of a flat binary Fresnel zone structure and a thin liquid crystal layer, producing high efficiency and millisecond switching times while applying a low ac voltage input. The focusing power of the diffractive lens is adjusted by electrically modifying the sub-zones and re-establishing phase wrapping points. The refractive lens includes a fluid chamber with a flat glass surface and an opposing elastic polydimethylsiloxane (PDMS) membrane surface. Inserting fluid volume through a pump system into the clear aperture region alters the membrane curvature and adjusts the refractive lens' focal position. Primary chromatic aberration is remarkably reduced through the coupling of the fluidic and diffractive lenses at selected focal lengths. Potential applications include miniature color imaging systems, medical and ophthalmic devices, or any design that utilizes variable focal length achromats.

  12. Variable focus crystal diffraction lens

    SciTech Connect

    Smither, R.K.

    1988-11-01

    A new method has been developed to control the shape of the surface of a diffracting crystal that will allow it to function as a variable focus crystal diffraction lens, for focusing photon beams from a synchrotron source. The new method uses thermal gradients in the crystal to control the shape of the surface of the crystal in two dimensions and allows one to generate both spherical and ellipsoidal surface shapes. In this work the thermal gradient was generated by core drilling two sets of cooling channels in a silicon crystal so that cooling or heating fluids could be circulated through the crystal at two different levels. The first set of channels is close to the surface of the crystal where the photon beam strikes it. The second set of channels is equal distant from the back surface. If a concave surface is desired, the fluid in the channels just below the surface exposed to the beam is cooler than the fluid circulating through the channels near the back surface. If a convex surface is desired, then the cooling fluid in the upper channels near the surface exposed to the incident photon beam, is warmer than the fluid in the lower channels. The focal length of the crystal lens is varied by varying the thermal gradient in the crystal. This approach can also be applied to the first crystal in a high power synchrotron beam line to eliminate the bowing and other thermal distortions of the crystal caused by the high heat load. 6 refs., 8 figs., 3 tabs.

  13. A tunable crystal diffraction telescope for the International Space Station

    NASA Technical Reports Server (NTRS)

    VonBallmoos, P.; Kohnle, A.; Olive, J. F.; Vedrenne, G.; Smither, R. K.; Fernandez, P. B.; Graber, T.

    1996-01-01

    A focusing gamma ray telescope is proposed for use onboard the International Space Station. It consists of a tunable crystal diffraction lens which focuses gamma rays onto a small array of germanium detectors located on an extendable boom. While the weight of such an instrument is less than 500 kg, it features an angular resolution of 15 arcsec, an energy resolution of 2 keV and a 3 sigma sensitivity of the order of 10(exp -7) photons/sq cm sec for any individual narrow line at energies of between 200 and 1300 keV. The scientific potential of such a telescope is discussed. The principles of a diffraction lens and a tunable diffraction lens are described.

  14. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1991-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed.

  15. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1993-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described.

  16. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, N.M.; Hawryluk, A.M.; London, R.A.; Seppala, L.G.

    1993-10-26

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described. 21 figures.

  17. Diffractive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  18. Finite element analysis of the LOLA receiver telescope lens

    NASA Astrophysics Data System (ADS)

    Matzinger, Elizabeth A.

    2007-09-01

    This paper presents the finite element stress and distortion analysis completed on the receiver telescope lens of the Lunar Orbiter Laser Altimeter (LOLA). LOLA is one of six instruments on the Lunar Reconnaissance Orbiter (LRO), scheduled to launch in 2008. LOLA's main objective is to produce a high-resolution global lunar topographic model to aid in safe landings and enhance surface mobility in future exploration missions. A receiver telescope captures the laser pulses transmitted through a diffractive optical element (DOE) and reflected off the lunar surface. The largest lens of the receiver telescope was modeled with solid elements and constrained in a manner consistent with the behavior of the mounting configuration. Twenty-one temperature load cases were mapped to the nodes based on thermal analysis completed by LOLA's lead thermal analyst, and loads were applied to simulate the preload applied from the ring flexure. The thermal environment of the baseline design produces large radial and axial gradients in the lens. These large gradients create internal stresses that may lead to part failure, as well as significant bending that degrades optical performance. The high stresses and large distortions shown in the analysis precipitated a design change from BK7 glass to sapphire.

  19. Super-resolution optical telescopes with local light diffraction shrinkage.

    PubMed

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820

  20. Super-resolution optical telescopes with local light diffraction shrinkage

    PubMed Central

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820

  1. Super-resolution optical telescopes with local light diffraction shrinkage

    NASA Astrophysics Data System (ADS)

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-12-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems.

  2. Super-resolution optical telescopes with local light diffraction shrinkage.

    PubMed

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-12-18

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems.

  3. Crystal diffraction lens for medical imaging

    SciTech Connect

    Smither, R. K.; Roa, D. E.

    2000-02-25

    A crystal diffraction lens for focusing energetic gamma rays has been developed at Argonne National Laboratory for use in medical imaging of radioactivity in the human body. A common method for locating possible cancerous growths in the body is to inject radioactivity into the blood stream of the patient and then look for any concentration of radioactivity that could be associated with the fast growing cancer cells. Often there are borderline indications of possible cancers that could be due to statistical functions in the measured counting rates. In order to determine if these indications are false or real, one must resort to surgical means and take tissue samples in the suspect area. They are developing a system of crystal diffraction lenses that will be incorporated into a 3-D imaging system with better sensitivity (factors of 10 to 100) and better spatial resolution (a few mm in both vertical and horizontal directions) than most systems presently in use. The use of this new imaging system will allow one to eliminate 90% of the false indications and both locate and determine the size of the cancer with mm precision. The lens consists of 900 single crystals of copper, 4 mm x 4 mm on a side and 2--4 mm thick, mounted in 13 concentric rings.

  4. Lightweight Inexpensive Ozone Lidar Telescope Using a Plastic Fresnel Lens

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Notari, Anthony; Carrion, William; Pliutau, Denis

    2014-01-01

    An inexpensive lightweight ozone lidar telescope was designed, constructed and operated during an ozone lidar field campaign. This report summarizes the design parameters and performance of the plastic Fresnel lens telescope and shows the ozone lidar performance compared to Zemax calculations.

  5. Additive manufacturing of a trifocal diffractive-refractive lens

    NASA Astrophysics Data System (ADS)

    Hinze, Ulf; El-Tamer, Ayman; Doskolovich, Leonid L.; Bezus, Evgeni A.; Reiß, Stefan; Stolz, Heinrich; Guthoff, Rudolf F.; Stachs, Oliver; Chichkov, Boris

    2016-08-01

    The application of two-photon polymerization and molding for the fabrication of a multifocal diffractive-refractive lens operating in water is studied. The fabricated lens is of aspheric shape and combines diffractive and refractive parts in a single element to generate three foci. The lens performance is characterized by visualization of the beam propagation in a transparent basin filled with water containing fluorescein. The experimental measurements are in good agreement with the theoretical description. The obtained results are promising for the realization of trifocal intraocular lenses with predetermined light intensity distribution between the foci.

  6. Coherent diffraction imaging by moving a lens.

    PubMed

    Shen, Cheng; Tan, Jiubin; Wei, Ce; Liu, Zhengjun

    2016-07-25

    A moveable lens is used for determining amplitude and phase on the object plane. The extended fractional Fourier transform is introduced to address the single lens imaging. We put forward a fast algorithm for the transform by convolution. Combined with parallel iterative phase retrieval algorithm, it is applied to reconstruct the complex amplitude of the object. Compared with inline holography, the implementation of our method is simple and easy. Without the oversampling operation, the computational load is less. Also the proposed method has a superiority of accuracy over the direct focusing measurement for the imaging of small size objects. PMID:27464107

  7. Design Of A Near Diffraction Limited Catadioptric Lens

    NASA Astrophysics Data System (ADS)

    Rao, D. V. B.

    1987-06-01

    A near diffraction limited catadioptric lens of EFL=324.4 mm and f/3.6 was designed for the spectral range 546 to 852 nm. This is a 5 element lens with a field of view of +/-2.5°. The obscuration ratio is 0.5 and relative illumination at the edge of the field is 81.4%. The distortion is less than 0.16%. This lens can be used for high resolution imaging applications using CCDs. The design details were presented in this paper.

  8. Programmable diffractive lens for ophthalmic application

    NASA Astrophysics Data System (ADS)

    Millán, María S.; Pérez-Cabré, Elisabet; Romero, Lenny A.; Ramírez, Natalia

    2014-06-01

    Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements, particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advantage of their properties of great flexibility, easy and fast refreshment, and multiplexing capability in comparison with equivalent conventional refractive lenses. We explore the application of programmable diffractive lenses displayed on the pixelated screen of a liquid crystal on silicon spatial light modulator to ophthalmic optics. In particular, we consider the use of programmable diffractive lenses for the visual compensation of refractive errors (myopia, hypermetropia, astigmatism) and presbyopia. The principles of compensation are described and sketched using geometrical optics and paraxial ray tracing. For the proof of concept, a series of experiments with artificial eye in optical bench are conducted. We analyze the compensation precision in terms of optical power and compare the results with those obtained by means of conventional ophthalmic lenses. Practical considerations oriented to feasible applications are provided.

  9. Intraocular camera for retinal prostheses: Refractive and diffractive lens systems

    NASA Astrophysics Data System (ADS)

    Hauer, Michelle Christine

    The focus of this thesis is on the design and analysis of refractive, diffractive, and hybrid refractive/diffractive lens systems for a miniaturized camera that can be surgically implanted in the crystalline lens sac and is designed to work in conjunction with current and future generation retinal prostheses. The development of such an intraocular camera (IOC) would eliminate the need for an external head-mounted or eyeglass-mounted camera. Placing the camera inside the eye would allow subjects to use their natural eye movements for foveation (attention) instead of more cumbersome head tracking, would notably aid in personal navigation and mobility, and would also be significantly more psychologically appealing from the standpoint of personal appearances. The capability for accommodation with no moving parts or feedback control is incorporated by employing camera designs that exhibit nearly infinite depth of field. Such an ultracompact optical imaging system requires a unique combination of refractive and diffractive optical elements and relaxed system constraints derived from human psychophysics. This configuration necessitates an extremely compact, short focal-length lens system with an f-number close to unity. Initially, these constraints appear highly aggressive from an optical design perspective. However, after careful analysis of the unique imaging requirements of a camera intended to work in conjunction with the relatively low pixellation levels of a retinal microstimulator array, it becomes clear that such a design is not only feasible, but could possibly be implemented with a single lens system.

  10. Achromatic diffractive lens written onto a liquid crystal display.

    PubMed

    Márquez, A; Iemmi, C; Campos, J; Yzuel, M J

    2006-02-01

    We propose a programmable diffractive lens written onto a liquid crystal display (LCD) that is able to provide equal focal lengths for several wavelengths simultaneously. To achieve this goal it is necessary that the LCD operate in the phase-only regime simultaneously for the different wavelengths. We design the appropriate lens for each wavelength, and then the lenses are spatially multiplexed onto the LCD. Various multiplexing schemes have been analyzed, and the random scheme shows the best performance. We further show the possibility of finely tuning the chromaticity of the focal spot by changing the relative weights of the multiplexing among the various wavelengths.

  11. Diffraction enhanced X-ray imaging of mammals crystalline lens

    NASA Astrophysics Data System (ADS)

    Antunes, A.; Hönnicke, M. G.; Safatle, A. M. V.; Cusatis, C.; Moraes Barros, P. S.; Morelhão, S. L.

    2005-08-01

    Crystalline lenses are transparent biological materials where the organization of the lens fibers can also be affected by changes at molecular level, and therefore the structure and morphology of the tissue can be correlated to the loss of transparency of the lens. In this work, internal structure of mammal lenses regarding the long-range ordering of the fibers are investigated by diffraction enhanced X-ray imaging (DEI) radiography. Moreover, DEI and absorption X-ray synchrotron radiographs for healthy and cataractous crystalline lenses are compared. Significant differences in healthy and cataractous crystalline lenses are observed.

  12. Comparison of visual outcomes after implantation of diffractive trifocal toric intraocular lens and a diffractive apodized bifocal toric intraocular lens

    PubMed Central

    Gundersen, Kjell Gunnar; Potvin, Rick

    2016-01-01

    Purpose The aim of this study was to compare a new diffractive trifocal toric lens with an apodized diffractive bifocal toric lens in terms of refractive and visual acuity (VA) outcomes, including low-contrast VA (LCVA), as well as the patient’s visual function 3 months after implantation. Patients and methods This is a randomized prospective study involving bilateral implantation of a trifocal toric or a bifocal toric lens. At 3 months postoperatively, the subject’s vision was tested both uncorrected and with his/her best distance correction at: distance (4 m), intermediate (63 cm), and near (40 cm). Binocular defocus curves were measured with no correction and with the subject’s best distance correction in place. Quality of vision was measured using the National Eye Institute Visual Function Questionnaire. Results A total of 22 patients were enrolled (eleven in each group). There was no statistically significant difference in the absolute change in measured rotation between 1 month and 3 months postoperatively between the two intraocular lens (IOL) groups (P=0.98). At 3 months, the postoperative refraction and distance VA by eye were similar between groups. There was no statistically significant difference in the measured LCVA between groups (P=0.39). The defocus curve showed that at 67 cm, the trifocal toric lens had statistically significantly better VA when compared to the bifocal toric lens. There were no statistically significant differences by group for any of the National Eye Institute Visual Function Questionnaire scores (P>0.26 in all cases). Conclusion The trifocal toric IOL improved the intermediate vision without negatively impacting visual function and distance, near, or low-contrast VA when compared to a bifocal toric IOL. The toric component of the trifocal lens effectively reduced astigmatism and provided good rotational stability. PMID:27051269

  13. A refracting radio telescope. [using ionosphere as lens

    NASA Technical Reports Server (NTRS)

    Bernhardt, P.; Da Rosa, A. V.

    1977-01-01

    Observations of extraterrestrial radio sources at the lower end of the radio frequency spectrum are limited by reflection of waves from the topside ionosphere and by the large size of antenna apertures necessary for the realization of narrow beamwidths. The use of the ionosphere as a lens is considered. The lens is formed by the release of chemicals such as H2 and H2O at the F2-layer peak. These chemicals promote dissociative recombination of O(+) in the ionosphere resulting in a local reduction in plasma density. Gradients in electron density in the vicinity of the gas release tend to focus rays propagating through the depleted region. Preliminary calculations indicate that a lens capable of focusing cosmic radio waves in the 1 to 10 MHz frequency range may be produced by the release of 100 kg of H2 at the peak of the nighttime F layer. The beamwidth of a refracting radio telescope using this lens may be less than 1/5 degree.

  14. Diffraction-limited step-zoom telescope by image restoration.

    PubMed

    Araiza-Durán, José A; Luna, Esteban; Cornejo-Rodríguez, Alejandro; Sohn, Erika

    2015-11-10

    The design of a step-zoom telescope and its ability to achieve a diffraction-limited performance is explored. The basic idea is to include digital postprocessing to compensate for changes in the modulation transfer function of the system, assuming the knowledge of the range to the object. The instrument is conformed of a two-mirror telescope, two lenses, and a detector. High-quality images and a zoom telescope that ranges from 22 to 61 f-number is achieved by moving the primary mirror and two lenses. The preliminary calculations for the design process and a simulation that shows the performance of the step-zoom telescope are described.

  15. Precision lens molding of asphero diffractive surfaces in chalcogenide materials

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Scordato, M.; Schwertz, K.; Bagwell, J.

    2015-10-01

    Finished lens molding, and the similar process of precision lens molding, have long been practiced for high volume, accurate replication of optical surfaces on oxide glass. The physics surrounding these processes are well understood, and the processes are capable of producing high quality optics with great fidelity. However, several limitations exist due to properties inherent with oxide glasses. Tooling materials that can withstand the severe environmental conditions of oxide glass molding cannot easily be machined to produce complex geometries such as diffractive surfaces, lens arrays, and off axis features. Current machining technologies coupled with a limited selection of tool materials greatly limits the type of structures that can be molded into the finished optic. Tooling for chalcogenide glasses are not bound by these restrictions since the molding temperatures required are much lower than for oxide glasses. Innovations in tooling materials and manufacturing techniques have enabled the production of complex geometries to optical quality specifications and have demonstrated the viability of creating tools for molding diffractive surfaces, off axis features, datums, and arrays. Applications for optics having these features are found in automotive, defense, security, medical, and industrial domains. This paper will discuss results achieved in the study of various molding techniques for the formation of positive diffractive features on a concave spherical surface molded from As2Se3 chalcogenide glass. Examples and results of molding with tools having CTE match with the glass and non CTE match will be reviewed. The formation of stress within the glass during molding will be discussed, and methods of stress management will also be demonstrated and discussed. Results of process development methods and production of good diffractive surfaces will be shown.

  16. Array of reconfigurable diffractive lens on flexible substrate (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Moghimi, Mohammad J.; Jiang, Hongrui

    2016-03-01

    We designed and fabricated microscale lens arrays on a flexible substrate. The flexibility of the substrate allows for wide field of view imaging as well as optical focus scanning. Fresnel zone plates (FZPs), which are compact and lightweight, are used as microlenses for focusing. The arrangement of FZPs on flexible substrate can be reconfigured to maximize FOV. Tunable focus can also be achieved by stretching the FZPs laterally. In addition, the lightweight microlenses can be actuated to scan the focus axially. The lenses have a wide range of applications including displays, contact lenses, microscopy, surveillance and optical communications. The diameter of the microlenses ranges from 100 to 500 µm. The thickness of the lenses is 100 µm. Unlike refractive and reflective lenses, the focusing capability of FZPs is achieved via diffraction. FZPs consist of alternating black and white zones to modulate the phase of the incident light. The light diffracted from edge of the regions to achieve multiple focus. Most of the energy is diffracted into the first focus. The dark regions are made of silicon nanowires which are highly absorbent for visible spectrum. Standard processes, including wet and dry etching, are used to etch silicon substrate and form nanowires. The white zones are designed for both reflective and transmissive lenses. The lenses are implemented on PDMS as flexible substrate. The silicon nanowires are embedded into PDMS so that the shape of individual lens as well as the arrangement of the array can be reconfigured. In this article, we report our design, fabrication process and experiments.

  17. Micron-scale lens array having diffracting structures

    DOEpatents

    Goldberg, Kenneth A

    2013-10-29

    A novel micron-scale lens, a microlens, is engineered to concentrate light efficiently onto an area of interest, such as a small, light-sensitive detector element in an integrated electronic device. Existing microlens designs imitate the form of large-scale lenses and are less effective at small sizes. The microlenses described herein have been designed to accommodate diffraction effects, which dominate the behavior of light at small length scales. Thus a new class of light-concentrating optical elements with much higher relative performance has been created. Furthermore, the new designs are much easier to fabricate than previous designs.

  18. Diffraction-limited step-zoom telescope by image restoration.

    PubMed

    Araiza-Durán, José A; Luna, Esteban; Cornejo-Rodríguez, Alejandro; Sohn, Erika

    2015-11-10

    The design of a step-zoom telescope and its ability to achieve a diffraction-limited performance is explored. The basic idea is to include digital postprocessing to compensate for changes in the modulation transfer function of the system, assuming the knowledge of the range to the object. The instrument is conformed of a two-mirror telescope, two lenses, and a detector. High-quality images and a zoom telescope that ranges from 22 to 61 f-number is achieved by moving the primary mirror and two lenses. The preliminary calculations for the design process and a simulation that shows the performance of the step-zoom telescope are described. PMID:26560774

  19. Analytical study of diffraction effects in extremely large segmented telescopes.

    PubMed

    Yaitskova, Natalia; Dohlen, Kjetil; Dierickx, Philippe

    2003-08-01

    We present an analysis of the diffraction effects from a segmented aperture with a very large number of segments-prototype of the next generation of extremely large telescopes. This analysis is based on the point-spread-function analytical calculation for Keck-type hexagonal segmentation geometry. We concentrate on the effects that lead to the appearance of speckles and/or a regular pattern of diffraction peaks. These effects are related to random piston and tip-tilt errors on each segment, gaps between segments, and segment edge distortion. We deliver formulas and the typical numerical values for the Strehl ratio, the relative intensity of higher-order diffraction peaks, and the averaged intensity of speckles associated with each particular case of segmentation error. PMID:12938912

  20. Analytical study of diffraction effects in extremely large segmented telescopes.

    PubMed

    Yaitskova, Natalia; Dohlen, Kjetil; Dierickx, Philippe

    2003-08-01

    We present an analysis of the diffraction effects from a segmented aperture with a very large number of segments-prototype of the next generation of extremely large telescopes. This analysis is based on the point-spread-function analytical calculation for Keck-type hexagonal segmentation geometry. We concentrate on the effects that lead to the appearance of speckles and/or a regular pattern of diffraction peaks. These effects are related to random piston and tip-tilt errors on each segment, gaps between segments, and segment edge distortion. We deliver formulas and the typical numerical values for the Strehl ratio, the relative intensity of higher-order diffraction peaks, and the averaged intensity of speckles associated with each particular case of segmentation error.

  1. HIGH-PRECISION ASTROMETRY WITH A DIFFRACTIVE PUPIL TELESCOPE

    SciTech Connect

    Guyon, Olivier; Eisner, Josh A.; Angel, Roger; Woolf, Neville J.; Bendek, Eduardo A.; Milster, Thomas D.; Mark Ammons, S.; Shao, Michael; Shaklan, Stuart; Levine, Marie; Nemati, Bijan; Pitman, Joe; Woodruff, Robert A.; Belikov, Ruslan

    2012-06-01

    Astrometric detection and mass determination of Earth-mass exoplanets require sub-{mu}as accuracy, which is theoretically possible with an imaging space telescope using field stars as an astrometric reference. The measurement must, however, overcome astrometric distortions, which are much larger than the photon noise limit. To address this issue, we propose to generate faint stellar diffraction spikes using a two-dimensional grid of regularly spaced small dark spots added to the surface of the primary mirror (PM). Accurate astrometric motion of the host star is obtained by comparing the position of the spikes to the background field stars. The spikes do not contribute to scattered light in the central part of the field and therefore allow unperturbed coronagraphic observation of the star's immediate surroundings. Because the diffraction spikes are created on the PM and imaged on the same focal plane detector as the background stars, astrometric distortions affect equally the diffraction spikes and the background stars and are therefore calibrated. We describe the technique, detail how the data collected by the wide-field camera are used to derive astrometric motion, and identify the main sources of astrometric error using numerical simulations and analytical derivations. We find that the 1.4 m diameter telescope, 0.3 deg{sup 2} field we adopt as a baseline design achieves 0.2 {mu}as single measurement astrometric accuracy. The diffractive pupil concept thus enables sub-{mu}as astrometry without relying on the accurate pointing, external metrology, or high-stability hardware required with previously proposed high-precision astrometry concepts.

  2. Diffraction-limited lucky imaging with a 12" commercial telescope

    NASA Astrophysics Data System (ADS)

    Baptista, Brian J.

    2014-08-01

    Here we demonstrate a novel lucky imaging camera which is designed to produce diffraction-limited imaging using small telescopes similar to ones used by many academic institutions for outreach and/or student training. We present a design that uses a Meade 12" SCT paired with an Andor iXon fast readout EMCCD. The PSF of the telescope is matched to the pixel size of the EMCCD by adding a simple, custom-fabricated, intervening optical system. We demonstrate performance of the system by observing both astronomical and terrestrial targets. The astronomical application requires simpler data reconstruction techniques as compared to the terrestrial case. We compare different lucky imaging registration and reconstruction algorithms for use with this imager for both astronomical and terrestrial targets. We also demonstrate how this type of instrument would be useful for both undergraduate and graduate student training. As an instructional aide, the instrument can provide a hands-on approach for teaching instrument design, standard data reduction techniques, lucky imaging data processing, and high resolution imaging concepts.

  3. Fabrication of large diffractive optical elements in thick film on a concave lens surface

    NASA Astrophysics Data System (ADS)

    Xie, Yongjun; Lu, Zhenwu; Li, Fengyou

    2003-05-01

    We demonstrate experimentally the technique of fabricating large diffractive optical elements (DOEs) in thick film on a concave lens surface (mirrors) with precise alignment by using the strategy of double exposure. We adopt the method of double exposure to overcome the difficulty of processing thick photoresist on a large curved substrate. A uniform thick film with arbitrary thickness on a concave lens can be obtained with this technique. We fabricate a large concentric circular grating with a 10-im period on a concave lens surface in film with a thickness of 2.0 im after development. It is believed that this technique can also be used to fabricate larger DOEs in thicker film on the concave or convex lens surface with precise alignment. There are other potential applications of this technique, such as fabrication of micro-optoelectromechanical systems (MOEMS) or microelectromechanical systems (MEMS) and fabrication of microlens arrays on a large concave lens surface or convex lens surface with precise alignment.

  4. Electromagnetic analysis of diffractive lens with C method and local linear grating model

    NASA Astrophysics Data System (ADS)

    Xiao, Kai; Liu, Ying; Fu, Shaojun

    2005-02-01

    The electromagnetic theory should be applied to determine the diffraction efficiency of structures whose minimum line width is comparable with wavelength or the grooves are too deep, where scalar theory is no longer useful. The coordinate transformation method (the C method) is a very efficient method for obtaining continuous surface-relief grating efficiency for both TE and TM polarization. The local linear grating model (LLGM) models 2-D circular diffractive lens with combination of a series of local linear gratings. We synthesized and analyzed circular diffractive lens with a continuous profile not as previous authors who always use multi-lever structures. The result is compared with that of scalar theory and analysis using LLGM and rigorous coupled-wave theory. This optimization can be used as a complement of the scalar design of diffractive lens.

  5. Diffractive telescope for protoplanetary disks study in UV

    NASA Astrophysics Data System (ADS)

    Roux, W.; Koechlin, L.

    2015-12-01

    The direct observation of exoplanetary systems and their environment remains a technological challenge: on the one hand, because of the weak luminosity of objects surrounding the central star, and on the other hand, because of their small size compared to the distance from Earth. The fresnel imager is a concept of space telescope based on focusing by diffraction, developed by our team in Institut de Recherche en Astrophysique et Planétologie (IRAP). Its high photometric dynamics and its low angular resolution make it a competitive candidate. Currently we propose a space mission on board the International Space Station (ISS), observing in the ultraviolet band, in order to validate its capabilities in space and so increase the Technological Readiness Level (TRL), anticipating a larger mission in the future. To reach this goal, we have to provide some evolutions, like improving the design of Fresnel arrays or conceive a new chromatism corrector. This paper presents the evolutions for the ISS prototype and its possible applications like protoplanetary disks imaging.

  6. Chromatic dispersion of a high-efficiency resonance domain diffractive lens.

    PubMed

    Barlev, Omri; Golub, Michael A

    2015-07-01

    Inherent strong lateral and longitudinal chromatic dispersion of a transmission resonance domain off-axis diffractive lens were studied theoretically and experimentally. It is shown that a 4 mm diameter and 0.14 NA diffractive lens provides both focusing and dispersion with a spectral resolution of up to 0.09 nm, which is suitable for laser line spectral measurements. Experimental results for measured spectra of a mercury-argon source, a helium-neon laser, and RGB laser diodes pave a technological path to compact spectral sensors and microspectrometers. PMID:26193158

  7. Fictional Telescopes: Astronomy Through A Science Fiction Lens

    NASA Astrophysics Data System (ADS)

    DeGraff, D. R.

    2000-12-01

    Astronomy can be a difficult subject for non-science students to grasp because the things astronomers talk about, stellar evolution, distances measured in light-years, the beginning of time, are all things that are not part of the everyday experience of most people. There are two groups of people for whom these abstractions are more concrete: Astronomers, and science fiction writers. Science fiction can be a lens for students to see astronomical concepts in more concrete terms than is presented in traditional textbooks. Concepts that are usually presented as abstractions make a concrete difference in the characters' lives in these stories. The concept of lookback time, for example, is made vividly real in Robert Reed's story "The Shape of Everything." Supernovae become more than exploding stars that get really bright in Robert R. Chase's "Transit of Betelgeuse." Authors use data from the latest planetary probes to make the worlds more believable, actual places where people may someday travel and possibly live, as in Paul J. McAuley's "Sea Change, with Monsters." Textbooks rarely talk about what a planet would smell like, science fiction writers show the planets through all their characters' senses. Who better than professional writers to really enhance the sense of wonder for the universe that astronomy can bring? I will present a few examples of science fiction short stories, and how they can be used in the classroom as a source of concept tests, tests of critical thinking, and small group discussion questions.

  8. Ultrastructural appearances of a lens with marked polychromatic lustre: evidence for diffraction as a cause.

    PubMed

    Hayes, B P; Fisher, R F

    1984-12-01

    A human lens showing polychromatic lustre associated with cortical opacities (Christmas tree cataract) has been examined by slit-lamp photography, thin-section light microscopy, and electron microscopy. Anterior epithelial cells were fibroblast-like, and an area of breakdown of cortical lens fibres was observed in the anterior lens, containing feathery fibres, whorls, and process bodies. Parallel sided stacks of fused cell membranes were found beneath the watery area at the same depth as the polychromatic lustre seen in the slit-lamp. The dimensions of these membrane plates are consistent with the diffraction of light by a parallel thin film to give coloured points of light. Deeper areas of small granules between the lens fibres are associated with the main trunk-like opacity and its branches seen with the slit-lamp.

  9. Resonance domain surface relief diffractive lens for the visible spectral region.

    PubMed

    Barlev, Omri; Golub, Michael A

    2013-03-01

    Early expectations for a role of diffractive lenses were dramatically lessened by their high order overlapping foci, low optical powers, and competing advances in refractive micro-optics. By bringing the Bragg properties of volume holograms to diffractive lenses we got rid of ghost diffractive orders and the critical trade-off between diffraction efficiency, number of phase levels, and spatial feature-size. Binary off-axis resonance domain diffractive lens with high numerical aperture of 0.16 was designed with analytical effective grating theory, fabricated by direct e-beam writing, etched in fused silica and experimentally investigated. More than 81% measured diffraction efficiency exceeds twice the limits of thin binary optics.

  10. Design and Development of Binary Diffractive Germanium Lens by Thin Film Deposition

    NASA Astrophysics Data System (ADS)

    Alshami, M.; Wabby, A.; Mousselly, M. F.

    2015-11-01

    The design and development of infrared (λ: [8]-[12] μm) binary diffractive germanium lens (BDGL) by two - steps thin film deposition (Physical vapor deposition (PVD) technique) is presented. The optical design of the required elements using the optical design code Zemax, the design of the 4 steps binary surface and its required metallic masks using the programming language Delphi, the procedures of fabrication, and the measurement of the resulting profile, were presented. The comparison between the refractive/diffractive lenses by measuring the minimum resolvable temperature difference (MRTD) shows the advantages of binary diffractive surface.

  11. Solar Sail - Fresnel Zone Plate Lens for a Large Space Based Telescope

    SciTech Connect

    Early, J T

    2002-02-13

    A Fresnel zone plate lens made with solar sail material could be used as the primary optic for a very large aperture telescope on deep space probes propelled by solar sails. The large aperture telescope capability could enable significant science on fly-by missions to the asteroids, Pluto, Kuiper belt or the tort cloud and could also enable meaningful interstellar fly-by missions for laser propelled sails. This type of lens may also have some potential for laser communications and as a solar concentrator. The techniques for fabrication of meter size and larger Fresnel phase plate optics are under development at LLNL, and we are extending this technology to amplitude zone plates made from sail materials. Corrector optics to greatly extend the bandwidth of these Fresnel optics will be demonstrated in the future. This novel telescope concept will require new understanding of the fabrication, deployment and control of gossamer space structures. It will also require new materials technology for fabricating these optics and understanding their long term stability in a space environment.

  12. Application of nanoimprinting technique for fabrication of trifocal diffractive lens with sine-like radial profile

    NASA Astrophysics Data System (ADS)

    Osipov, Vladimir; Doskolovich, Leonid L.; Bezus, Evgeni A.; Drew, Tom; Zhou, Kaiming; Sawalha, Kameel; Swadener, Greg; Wolffsohn, James S. W.

    2015-02-01

    The fabrication of submicron-height sine-like relief of a trifocal diffractive zone plate using a nanoimprinting technique is studied. The zone plate is intended for use in combined trifocal diffractive-refractive lenses and provides the possibility to form trifocal intraocular lenses with predetermined light intensity distribution between foci. The optical properties of the designed zone plate having the optical powers 3 D, 0, -3 D in the three main diffraction orders are theoretically and experimentally investigated. The results of the theoretical investigations are in good agreement with experimental measurements. The effects of the pupil size (lens diameter) as well as the wavelength-dependent behavior of the zone plate are also discussed.

  13. Unveiling Physical Processes in Type Ia Supernovae with a Laue Lens Telescope

    NASA Astrophysics Data System (ADS)

    Barriere, Nicolas; Boggs, S. E.; Tomsick, J. A.

    2010-03-01

    Despite their use as standard candles in cosmological studies, many fundamental aspects of Type Ia supernovae (SNIa) remain uncertain, including the progenitor systems, the explosion trigger and the detailed nuclear burning physics. The most popular model involves an accreting CO white dwarf undergoing a thermonuclear runaway, converting a substantial fraction of the stellar mass to 56Ni. The radioactive decay chain 56Ni -> 56Co -> 56Fe powers both the SNIa optical light curve and produces several gamma-ray lines, including bright lines at 158 keV and 847 keV. Observations of the spectrum and light curve of any of these lines would be extremely valuable in constraining and discriminating between the currently competing models of SNIa. However, these lines are weak in flux and evolve relatively quickly by gamma-ray standards: to be able to study a handful SNIa per year, the required sensitivity is about 10-6 ph/cm2/s at 847 keV and 10-7 ph/s/cm2 at 158 keV for 3% broadened lines, and these levels must be achieved in 105 s. A Laue lens telescope offers a novel and powerful method of achieving these extremely challenging requirements. In this paper, we briefly introduce the Laue lens principle and state-of-the-art technologies, and we demonstrate how a space-borne telescope based on a Laue lens focusing on a Compton camera could bring about the long-awaited observational clues leading to a better understanding of SNIa physics.

  14. Primary posterior continuous curvilinear capsulorhexis combined with diffractive multifocal intraocular lens implantation.

    PubMed

    Ouchi, M

    2016-01-01

    PurposeTo evaluate the effect of mild posterior capsule opacity (PCO) on visual acuity (VA) in eyes implanted with a diffractive multifocal intraocular lens (IOL) compared with a monofocal IOL, and the effect of posterior continuous curvilinear capsulorhexis (PCCC) combined with diffractive multifocal IOL implantation.MethodsFor the initial evaluation, we compared charge-coupled device (CCD) camera photographs taken through both a monofocal IOL-loaded model eye and a diffractive IOL-loaded model eye under the conditions of both with and without an opaque filter for the simulation of mild PCO. The clinical evaluation involved 20 patients who underwent bilateral implantation of the same diffractive multifocal IOL. In all 20 cases, PCCC was performed in 1 eye (PCCC group) and not performed in the fellow eye (NCCC group). Postoperative clinical results were then compared between the two groups.ResultsThe CCD photographs revealed that the diffractive IOL-loaded eye was more strongly affected by the simulated PCO than was the monofocal IOL-loaded eye. In the clinical setting, the PCCC group registered better results than NCCC group in distance and near VA, low-contrast VA, and contrast sensitivity testing.ConclusionsDiffractive multifocal IOLs tend to be more influenced by mild PCO than do monofocal IOLs, and PCCC prior to IOL implantation can contribute to the avoidance of this effect. PMID:26493036

  15. James Webb Space Telescope Optical Simulation Testbed II: design of a three-lens anastigmat telescope simulator

    NASA Astrophysics Data System (ADS)

    Choquet, Élodie; Levecq, Olivier; N'Diaye, Mamadou; Perrin, Marshall D.; Soummer, Rémi

    2014-08-01

    The JamesWebb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop experiment designed to reproduce the main aspects of wavefront sensing and control (WFS and C) for JWST. To replicate the key optical physics of JWST's three-mirror anastigmat (TMA) design at optical wavelengths we have developed a three-lens anastigmat optical system. This design uses custom lenses (plano-convex, plano-concave, and bi-convex) with fourth-order aspheric terms on powered surfaces to deliver the equivalent image quality and sampling of JWST NIRCam at the WFS and C wavelength (633 nm, versus JWST's 2.12 μm). For active control, in addition to the segmented primary mirror simulator, JOST reproduces the secondary mirror alignment modes with five degrees of freedom. We present the testbed requirements and its optical and optomechanical design. We study the linearity of the main aberration modes (focus, astigmatism, coma) both as a function of field point and level of misalignments of the secondary mirror. We find that the linearity with the transmissive design is similar to what is observed with a traditional TMA design, and will allow us to develop a linear-control alignment strategy based on the multi-field methods planned for JWST.

  16. A focal plane detector design for a wide-band Laue-lens telescope

    NASA Astrophysics Data System (ADS)

    Caroli, Ezio; Auricchio, Natalia; Amati, Lorenzo; Bezsmolnyy, Yuriy; Budtz-Jørgensen, Carl; da Silva, Rui M. Curado; Frontera, Filippo; Pisa, Alessandro; del Sordo, Stefano; Stephen, John B.; Ventura, Giulio

    2005-12-01

    The energy range above 60 keV is important for the study of many open problems in high energy astrophysics such as the role of Inverse Compton with respect to synchrotron or thermal processes in GRBs, non thermal mechanisms in SNR, the study of the high energy cut-offs in AGN spectra, and the detection of nuclear and annihilation lines. Recently the development of high energy Laue lenses with broad energy bandpasses from 60 to 600keV have been proposed for a Hard X ray focusing Telescope (HAXTEL) in order to study the X-ray continuum of celestial sources. The required focal plane detector should have high detection efficiency over the entire operative range, a spatial resolution of about 1mm, an energy resolution of a few keV at 500keV and a sensitivity to linear polarization. We describe a possible configuration of the focal plane detector based on several CdTe/CZT pixelated layers stacked together to achieve the required detection efficiency at high energy. Each layer can operate both as a separate position sensitive detector and polarimeter or work with other layers to increase the overall photopeak efficiency. Each layer has a hexagonal shape in order to minimize the detector surface required to cover the lens field of view. The pixels would have the same geometry so as to provide the best coupling with the lens point spread function and to increase the symmetry for polarimetric studies.

  17. Terahertz 3D printed diffractive lens matrices for field-effect transistor detector focal plane arrays.

    PubMed

    Szkudlarek, Krzesimir; Sypek, Maciej; Cywiński, Grzegorz; Suszek, Jarosław; Zagrajek, Przemysław; Feduniewicz-Żmuda, Anna; Yahniuk, Ivan; Yatsunenko, Sergey; Nowakowska-Siwińska, Anna; Coquillat, Dominique; But, Dmytro B; Rachoń, Martyna; Węgrzyńska, Karolina; Skierbiszewski, Czesław; Knap, Wojciech

    2016-09-01

    We present the concept, the fabrication processes and the experimental results for materials and optics that can be used for terahertz field-effect transistor detector focal plane arrays. More specifically, we propose 3D printed arrays of a new type - diffractive multi-zone lenses of which the performance is superior to that of previously used mono-zone diffractive or refractive elements and evaluate them with GaN/AlGaN field-effect transistor terahertz detectors. Experiments performed in the 300-GHz atmospheric window show that the lens arrays offer both a good efficiency and good uniformity, and may improve the signal-to-noise ratio of the terahertz field-effect transistor detectors by more than one order of magnitude. In practice, we tested 3 × 12 lens linear arrays with printed circuit board THz detector arrays used in postal security scanners and observed significant signal-to-noise improvements. Our results clearly show that the proposed technology provides a way to produce cost-effective, reproducible, flat optics for large-size field-effect transistor THz-detector focal plane arrays.

  18. Terahertz 3D printed diffractive lens matrices for field-effect transistor detector focal plane arrays.

    PubMed

    Szkudlarek, Krzesimir; Sypek, Maciej; Cywiński, Grzegorz; Suszek, Jarosław; Zagrajek, Przemysław; Feduniewicz-Żmuda, Anna; Yahniuk, Ivan; Yatsunenko, Sergey; Nowakowska-Siwińska, Anna; Coquillat, Dominique; But, Dmytro B; Rachoń, Martyna; Węgrzyńska, Karolina; Skierbiszewski, Czesław; Knap, Wojciech

    2016-09-01

    We present the concept, the fabrication processes and the experimental results for materials and optics that can be used for terahertz field-effect transistor detector focal plane arrays. More specifically, we propose 3D printed arrays of a new type - diffractive multi-zone lenses of which the performance is superior to that of previously used mono-zone diffractive or refractive elements and evaluate them with GaN/AlGaN field-effect transistor terahertz detectors. Experiments performed in the 300-GHz atmospheric window show that the lens arrays offer both a good efficiency and good uniformity, and may improve the signal-to-noise ratio of the terahertz field-effect transistor detectors by more than one order of magnitude. In practice, we tested 3 × 12 lens linear arrays with printed circuit board THz detector arrays used in postal security scanners and observed significant signal-to-noise improvements. Our results clearly show that the proposed technology provides a way to produce cost-effective, reproducible, flat optics for large-size field-effect transistor THz-detector focal plane arrays. PMID:27607620

  19. Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light.

    PubMed

    Chen, Gang; Zhang, Kun; Yu, Anping; Wang, Xianyou; Zhang, Zhihai; Li, Yuyan; Wen, Zhongquan; Li, Chen; Dai, Luru; Jiang, Senling; Lin, Feng

    2016-05-16

    Planar lenses are attractive photonic devices due to its minimized size and easy to integrate. However, planar lenses designed in traditional ways are restricted by the diffraction limit. They have difficulties in further reducing the focal spot size beyond the diffraction limit. Super-oscillation provides a possible way to solve the problem. However, lenses based on super-oscillation have always been affected by huge sidelobes, which resulted in limited field of view and difficulties in real applications. To address the problem, in the paper, a far-field sub-diffraction lens based on binary amplitude-phase mask was demonstrated under illumination of linearly polarized plane wave at wavelength 632.8 nm. The lens realized a long focal length of 148λ (94 µm), and the full width at half maximum of the focal line was 0.406λ, which was super-oscillatory. More important is that such a flat lens has small sidelobes and wide field of view. Within the measured range of [-132λ, + 120λ], the maximum sidelobe observed on the focal plane was less than 22% of the central peak. Such binary amplitude-phase planar lens can also be extended to long focal length far-field sub-diffraction focusing lens for other spectrum ranges.

  20. Clinical Outcomes after Binocular Implantation of a New Trifocal Diffractive Intraocular Lens

    PubMed Central

    Kretz, Florian T. A.; Breyer, Detlev; Diakonis, Vasilios F.; Klabe, Karsten; Henke, Franziska; Auffarth, Gerd U.; Kaymak, Hakan

    2015-01-01

    Purpose. To evaluate visual, refractive, and contrast sensitivity outcomes, as well as the incidence of pseudophakic photic phenomena and patient satisfaction after bilateral diffractive trifocal intraocular lens (IOL) implantation. Methods. This prospective nonrandomized study included consecutive patients undergoing cataract surgery with bilateral implantation of a diffractive trifocal IOL (AT LISA tri 839MP, Carl Zeiss Meditec). Distance, intermediate, and near visual outcomes were evaluated as well as the defocus curve and the refractive outcomes 3 months after surgery. Photopic and mesopic contrast sensitivity, patient satisfaction, and halo perception were also evaluated. Results. Seventy-six eyes of 38 patients were included; 90% of eyes showed a spherical equivalent within ±0.50 diopters 3 months after surgery. All patients had a binocular uncorrected distance visual acuity of 0.00 LogMAR or better and a binocular uncorrected intermediate visual acuity of 0.10 LogMAR or better, 3 months after surgery. Furthermore, 85% of patients achieved a binocular uncorrected near visual acuity of 0.10 LogMAR or better. Conclusions. Trifocal diffractive IOL implantation seems to provide an effective restoration of visual function for far, intermediate, and near distances, providing high levels of visual quality and patient satisfaction. PMID:26301104

  1. Reaching the Diffraction Limit - Differential Speckle and Wide-Field Imaging for the WIYN Telescope

    NASA Technical Reports Server (NTRS)

    Scott, Nic J.; Howell, Steve; Horch, Elliott

    2016-01-01

    Speckle imaging allows telescopes to achieve diffraction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, effectively 'freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the diffraction limit of the telescope. These new instruments are based on the successful performance and design of the Differential Speckle Survey Instrument (DSSI).The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA, K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide-field mode and standard SDSS filters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations will remain around 13-14th at WIYN and 16-17th at Gemini, while wide-field, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.

  2. A life course approach to injury prevention: a "lens and telescope" conceptual model

    PubMed Central

    2011-01-01

    Background Although life course epidemiology is increasingly employed to conceptualize the determinants of health, the implications of this approach for strategies to reduce the burden of injuries have received little recognition to date. Methods The authors reviewed core injury concepts and the principles of the life course approach. Based on this understanding, a conceptual model was developed, to provide a holistic view of the mechanisms that underlie the accumulation of injury risk and their consequences over the life course. Results A "lens and telescope" model is proposed that particularly draws on (a) the extended temporal dimension inherent in the life course approach, with links between exposures and outcomes that span many years, or even generations, and (b) an ecological perspective, according to which the contexts in which individuals live are critical, as are changes in those contexts over time. Conclusions By explicitly examining longer-term, intergenerational and ecological perspectives, life course concepts can inform and strengthen traditional approaches to injury prevention and control that have a strong focus on proximal factors. The model proposed also serves as a tool to identify intervention strategies that have co-benefits for other areas of health. PMID:21899775

  3. Dimensional stability. [of glass and glass-ceramic materials in diffraction telescopes

    NASA Technical Reports Server (NTRS)

    Hochen, R.; Justie, B.

    1976-01-01

    The temporal stability of glass and glass-ceramic materials is important to the success of a large diffraction-limited telescope. The results are presented of an experimental study of the dimensional stability of glasses and glass ceramics being considered for substrates of massive diffraction-limited mirrors designed for several years of service in earth orbit. The purpose of the study was to measure the relative change in length of the candidate substrate materials, to the order of 5 parts in 10 to the 8th power, as a function of several years time. The development of monolithic test etalons, the development and improvement of two types of ultra-high precision interferometers, and certain aspects of tests data presently achieved are discussed.

  4. Response characteristics of laser diffraction particle size analyzers - Optical sample volume extent and lens effects

    NASA Technical Reports Server (NTRS)

    Hirleman, E. D.; Oechsle, V.; Chigier, N. A.

    1984-01-01

    The response characteristics of laser diffraction particle sizing instruments were studied theoretically and experimentally. In particular, the extent of optical sample volume and the effects of receiving lens properties were investigated in detail. The experimental work was performed with a particle size analyzer using a calibration reticle containing a two-dimensional array of opaque circular disks on a glass substrate. The calibration slide simulated the forward-scattering characteristics of a Rosin-Rammler droplet size distribution. The reticle was analyzed with collection lenses of 63 mm, 100 mm, and 300 mm focal lengths using scattering inversion software that determined best-fit Rosin-Rammler size distribution parameters. The data differed from the predicted response for the reticle by about 10 percent. A set of calibration factor for the detector elements was determined that corrected for the nonideal response of the instrument. The response of the instrument was also measured as a function of reticle position, and the results confirmed a theoretical optical sample volume model presented here.

  5. Adaptive Optics Imaging of the CLASS Gravitational Lens System B1359+154 with the Canada-France-Hawaii Telescope.

    PubMed

    Rusin; Hall; Nichol; Marlow; Richards; Myers

    2000-04-20

    We present adaptive optics imaging of the CLASS gravitational lens system B1359+154 obtained with the Canada-France-Hawaii Telescope (CFHT) in the infrared K band. The observations show at least three brightness peaks within the ring of lensed images, which we identify as emission from multiple lensing galaxies. The results confirm the suspected compound nature of the lens, as deduced from preliminary mass modeling. The detection of several additional nearby galaxies suggests that B1359+154 is lensed by the compact core of a small galaxy group. We attempted to produce an updated lens model based on the CFHT observations and new 5 GHz radio data obtained with the MERLIN array, but there are too few constraints to construct a realistic model at this time. The uncertainties inherent with modeling compound lenses make B1359+154 a challenging target for Hubble constant determination through the measurement of differential time delays. However, time delays will offer additional constraints to help pin down the mass model. This lens system therefore presents a unique opportunity to directly measure the mass distribution of a galaxy group at intermediate redshift.

  6. Near-infrared images of MG 1131+0456 with the W. M. Keck telescope: Another dusty gravitational lens?

    NASA Technical Reports Server (NTRS)

    Larkin, J. E.; Matthews, K.; Lawrence, C. R.; Graham, J. R.; Harrison, W.; Jernigan, G.; Lin, S.; Nelson, J.; Neugebauer, G.; Smith, G.

    1994-01-01

    Images of the gravitational lens system MG 1131+0456 taken with the near-infrared camera on the W. M. Keck telescope in the J and K(sub s) bands show that the infrared counterparts of the compact radio structure are exceedingly red, with J - K greater than 4.2 mag. The J image reveals only the lensing galaxy, while the K(sub s) image shows both the lens and the infrared counterparts of the compact radio components. After subtracting the lensing galaxy from the K(sub s) image, the position and orientation of the compact components agree with their radio counterparts. The broad-band spectrum and observed brightness of the lens suggest a giant galaxy at a redshift of approximately 0.75, while the color of the quasar images suggests significant extinction by dust in the lens. There is a significant excess of faint objects within 20 sec of MG 1131+0456. Depending on their mass and redshifts, these objects could complicate the lensing potential considerably.

  7. Adaptive Optics Imaging of the CLASS Gravitational Lens System B1359+154 with the Canada-France-Hawaii Telescope.

    PubMed

    Rusin; Hall; Nichol; Marlow; Richards; Myers

    2000-04-20

    We present adaptive optics imaging of the CLASS gravitational lens system B1359+154 obtained with the Canada-France-Hawaii Telescope (CFHT) in the infrared K band. The observations show at least three brightness peaks within the ring of lensed images, which we identify as emission from multiple lensing galaxies. The results confirm the suspected compound nature of the lens, as deduced from preliminary mass modeling. The detection of several additional nearby galaxies suggests that B1359+154 is lensed by the compact core of a small galaxy group. We attempted to produce an updated lens model based on the CFHT observations and new 5 GHz radio data obtained with the MERLIN array, but there are too few constraints to construct a realistic model at this time. The uncertainties inherent with modeling compound lenses make B1359+154 a challenging target for Hubble constant determination through the measurement of differential time delays. However, time delays will offer additional constraints to help pin down the mass model. This lens system therefore presents a unique opportunity to directly measure the mass distribution of a galaxy group at intermediate redshift. PMID:10770697

  8. Phase function design of a diffraction grating lens for an optical imaging system from a Fraunhofer diffraction perspective.

    PubMed

    Ando, Takamasa; Korenaga, Tsuguhiro; Suzuki, Masa-aki

    2013-09-10

    The potential exists to apply diffraction gratings to optical imaging systems to improve camera resolution and shorten optical length. However, we have noted the generation of striped flare lights, which differ from unnecessary-order diffraction lights, under intense lighting. We have elucidated the generation principle of these new striped lights and have discovered that they are caused by narrow diffraction grating rings. In this paper, using an analysis based on Fraunhofer diffraction, we suggest a way of minimizing them by designing an appropriate phase function structure, and test the efficacy of this design using our own manufactured prototype.

  9. Covariance of lucky images for increasing objects contrast: diffraction-limited images in ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Cagigal, Manuel P.; Valle, Pedro J.; Colodro-Conde, Carlos; Villó-Pérez, Isidro; Pérez-Garrido, Antonio

    2016-01-01

    Images of stars adopt shapes far from the ideal Airy pattern due to atmospheric density fluctuations. Hence, diffraction-limited images can only be achieved by telescopes without atmospheric influence, e.g. spatial telescopes, or by using techniques like adaptive optics or lucky imaging. In this paper, we propose a new computational technique based on the evaluation of the COvariancE of Lucky Images (COELI). This technique allows us to discover companions to main stars by taking advantage of the atmospheric fluctuations. We describe the algorithm and we carry out a theoretical analysis of the improvement in contrast. We have used images taken with 2.2-m Calar Alto telescope as a test bed for the technique resulting that, under certain conditions, telescope diffraction limit is clearly reached.

  10. Aperture masking interferometry on the Keck I Telescope: new results from the diffraction limit

    NASA Astrophysics Data System (ADS)

    Tuthill, Peter G.; Monnier, John D.; Danchi, William C.

    2000-07-01

    A high-resolution aperture-masking interferometry experiment at the Keck-1 telescope has produced images of stellar systems at diffraction-limited angular resolutions in the near-infrared (tens of milliarcsec). Targeting the dusty cocoons of young stellar objects and the circumstellar shrouds surrounding evolved giants and supergiants, these images have revealed a startling range of morphologies. Evolved stars from massive blue Wolf-Rayets to red giants, supergiants and carbon stars have shown dramatic dust plumes, clumps and shells which can dominate the dust halo, showing that mass loss from these objects can sometimes be anything but smooth and isotropic. The photospheres of a handful of red giants were large enough to be resolved with the 10 m baselines available within the Keck pupil. Stellar diameters were found to vary with pulsation phase and with observing wavelength.

  11. Compact high-resolution spectrographs for large and extremely large telescopes: using the diffraction limit

    NASA Astrophysics Data System (ADS)

    Robertson, J. Gordon; Bland-Hawthorn, Joss

    2012-09-01

    As telescopes get larger, the size of a seeing-limited spectrograph for a given resolving power becomes larger also, and for ELTs the size will be so great that high resolution instruments of simple design will be infeasible. Solutions include adaptive optics (but not providing full correction for short wavelengths) or image slicers (which give feasible but still large instruments). Here we develop the solution proposed by Bland-Hawthorn and Horton: the use of diffraction-limited spectrographs which are compact even for high resolving power. Their use is made possible by the photonic lantern, which splits a multi-mode optical fiber into a number of single-mode fibers. We describe preliminary designs for such spectrographs, at a resolving power of R ~ 50,000. While they are small and use relatively simple optics, the challenges are to accommodate the longest possible fiber slit (hence maximum number of single-mode fibers in one spectrograph) and to accept the beam from each fiber at a focal ratio considerably faster than for most spectrograph collimators, while maintaining diffraction-limited imaging quality. It is possible to obtain excellent performance despite these challenges. We also briefly consider the number of such spectrographs required, which can be reduced by full or partial adaptive optics correction, and/or moving towards longer wavelengths.

  12. Effects of diffraction and static wavefront errors on high-contrast imaging from the Thirty Meter Telescope

    NASA Technical Reports Server (NTRS)

    Troya, Mitchell; Chananb, Gary; Crossfielda, Ian; Dumonta, Philip; Green, Joseph J.; Macintosh, Bruce

    2006-01-01

    High-contrast imaging, particularly direct detection of extrasolar planets, is a major science driver for the next generation of extremely large telescopes such as the segmented Thirty Meter Telescope. This goal requires more than merely diffraction-limited imaging, but also attention to residual scattered light from wavefront errors and diffraction effects at the contrast level of 10-8-10-9. Using a wave-optics simulation of adaptive optics and a diffraction suppression system we investigate diffraction from the segmentation geometry, intersegment gaps, obscuration by the secondary mirror and its supports. We find that the large obscurations pose a greater challenge than the much smaller segment gaps. In addition the impact of wavefront errors from the primary mirror, including segment alignment and figure errors, are analyzed. Segment-to-segment reflectivity variations and residual segment figure error will be the dominant error contributors from the primary mirror. Strategies to mitigate these errors are discussed.

  13. Visual Outcomes, Patient Satisfaction and Spectacle Independence with a Trifocal Diffractive Intraocular Lens

    PubMed Central

    Kretz, Florian Tobias Alwin; Choi, Chul Young; Müller, Matthias; Gerl, Matthias; Gerl, Ralf Helmar

    2016-01-01

    Purpose To evaluate visual outcomes following implantation of a trifocal diffractive intraocular lens (IOL) and to analyze their correlation with patient satisfaction and ease of performing daily tasks. Methods This was a prospective study enrolling 100 eyes of 50 patients undergoing cataract surgery with implantation of trifocal IOL AT LISA tri 839MP. Visual and refractive outcomes were evaluated during a 3-month follow-up. Postoperatively, a questionnaire was used to evaluate patient satisfaction with regard to surgical outcome, spectacle independence, perception of photic phenomena, and ease of performing some vision-related activities. Results A total of 91%, 87%, and 79% of eyes achieved a monocular uncorrected distance, near, and intermediate visual acuity of 0.1 logarithm of the minimum angle of resolution or better, respectively. After the surgery, 96% of the patients could perform their daily activities without problems. The mean spectacle independence scores for reading, doing computer work, and for distance were 10.33 ± 12.47, 5.71 ± 11.90, and 3.92 ± 9.77, respectively (scale: 0 = no spectacles needed; 40 = spectacles always needed). No correlation was found between spectacle independence and visual outcome (-0.101 ≤ r ≤ 0.244, p ≥ 0.087). Mean scores (0 = no symptoms; 40 = strong symptoms) for glare at night, ghost images, and halos were 15.15 ± 12.02, 4.49 ± 7.92, and 13.34 ± 10.82, respectively. No correlation was found between photic phenomena and visual outcome (-0.199 ≤ r ≤ 0.209, p ≥ 0.150). A total of 80% of patients reported satisfaction with the surgery outcome, and 86% would recommend the surgery to friends and family. Conclusions Implantation of the AT LISA tri 839MP IOL after cataract surgery provides effective visual restoration associated with a minimal level of photic phenomena, a positive impact on the performance of vision-related daily activities, and a high level of postoperative patient satisfaction. PMID:27247517

  14. Progress on the prevention of stray light and diffraction effects on the Thai National Telescope

    NASA Astrophysics Data System (ADS)

    Buisset, Christophe; Prasit, Apirat; Leckngam, Apichat; Lépine, Thierry; Poshyajinda, Saran; Soonthornthum, Boonrucksar; Irawati, Puji; Richichi, Andrea; Sawangwit, Utane; Dhillon, Vik; Hardy, Liam K.

    2015-09-01

    The 2.4-m Thai National Telescope (TNT) is the main facility of the Thai National Observatory located on the Doi Inthanon, Thailand's highest mountain. The first astronomical images obtained at the TNT suffered from diffraction and stray light problems: bright spikes spread from bright stellar images over few arcminutes in the focal plane, and the images taken during observations in bright moon conditions were contaminated by high levels of stray light. We performed targeted investigations to identify the origin of these problems. In a first time, these investigations consisted of analyzing the irradiance distribution of defocused stellar images and of identifying the contributors. We concluded that these bright spikes around the bright stellar images were due to the chamfer and the wavefront error at the mirror edge. We thus installed an annular mask along the edge of the primary mirror that fully suppressed these spikes and we quantified the improvement by observing the double star Sirius. In a second time, we identified the contributors to the stray light by placing a pinhole camera at the TNT focal plane. Then, we designed a new baffle to improve the stray light rejection. The final design of the baffle comprises 21 diaphragms, is painted with an ordinary black paint and was designed, developed and installed on the TNT in less than 8 months. We assessed the improvement on the performance by measuring the variation of the stray light signal before and after installing the baffle in the telescope structure. These steps significantly improved the image quality and enhanced the rejection of the stray light at the focal plane level. In this paper, we present our investigations, we describe the method used to design the TNT baffle, and we present the improvement in quantitative terms.

  15. Optical study of a spectrum splitting solar concentrator based on a combination of a diffraction grating and a Fresnel lens

    SciTech Connect

    Michel, Céline Habraken, Serge; Loicq, Jérôme; Thibert, Tanguy

    2015-09-28

    This paper presents recent improvements of our new solar concentrator design for space application. The concentrator is based on a combination of a diffraction grating (blazed or lamellar) coupled with a Fresnel lens. Thanks to this diffractive/refractive combination, this optical element splits spatially and spectrally the light and focus approximately respectively visible light and IR light onto electrically independent specific cells. It avoid the use of MJs cells and then also their limitations like current matching and lattice matching conditions, leading theoretically to a more tolerant system. The concept is reminded, with recent optimizations, ideal and more realistic results, and the description of an experimental realization highlighting the feasibility of the concept and the closeness of theoretical and experimental results.

  16. Large Space Telescopes Using Fresnel Lens for Power Beaming, Astronomy and Sail Missions

    SciTech Connect

    Early, J T

    2002-10-15

    The concept of using Fresnel optics as part of power beaming, astronomy or sail systems has been suggested by several authors. The primary issues for large Fresnel optics are the difficulties in fabricating these structures and deploying them in space and for astronomy missions the extremely narrow frequency range of these optics. In proposals where the telescope is used to transmit narrow frequency laser power, the narrow bandwidth has not been an issue. In applications where the optic is to be used as part of a telescope, only around 10{sup -5} to limited frequency response of a Fresnel optic is addressed by the use of a corrective optic that will broaden the frequency response of the telescope by three or four orders of magnitude. This broadening will dramatically increase the optical power capabilities of the system and will allow some spectroscopy studies over a limited range. Both the fabrication of Fresnel optics as large as five meters and the use of corrector optics for telescopes have been demonstrated at LLNL. For solar and laser sail missions the use of Fresnel amplitude zone plates made of very thin sail material is also discussed.

  17. Hubble Space Telescope Wide Field Camera imaging of the gravitational lens 2237 + 0305

    NASA Technical Reports Server (NTRS)

    Rix, Hans-Walter; Schneider, Donald P.; Bahcall, John N.

    1992-01-01

    Images of the gravitational lens system 2237 + 0305, taken with the HST Wide Field Camera, are analyzed. Positions for the four quasar images, accurate to +/-0.015 arcsec, and relative magnitudes in U and R, accurate to +/-0.06 and 0.04 mag, respectively, are determined. The upper limits on the observed brightness of the fifth image are found to be less than or approximately equal to 7 percent of the brightest quasar image. The mass of the lens inside 0.9 arcsec is found to be 1.08 +/-0.02 x 10 exp 10 solar masses/h100 corresponding to a mass-to-light ratio in B of 12.3h100. This solar mass/solar luminosity estimate agrees with values obtained from stellar dynamics for other elliptical galaxies. A comparison of predictions from this mass model with the measured central velocity dispersion yields a distance-independent agreement to within 10 percent, assuming isotropic velocity dispersions.

  18. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths

    PubMed Central

    Yuan, Guanghui; Rogers, Edward T. F.; Roy, Tapashree; Adamo, Giorgio; Shen, Zexiang; Zheludev, Nikolay I.

    2014-01-01

    Planar optical lenses are fundamental elements of miniaturized photonic devices. However, conventional planar optical lenses are constrained by the diffraction limit in the optical far-field due to the band-limited wavevectors supported by free-space and loss of high-spatial-frequency evanescent components. As inspired by Einstein's radiation ‘needle stick', electromagnetic energy can be delivered into an arbitrarily small solid angle. Such sub-diffraction optical needles have been numerically investigated using diffractive optical elements (DOEs) together with specially polarized optical beams, but experimental demonstration is extremely difficult due to the bulky size of DOEs and the required alignment precision. Planar super-oscillatory lenses (SOLs) were proposed to overcome these constraints and demonstrated that sub-diffraction focal spots can actually be formed without any evanescent waves, making far-field, label-free super-resolution imaging possible. Here we extend the super-oscillation concept into the vectorial-field regime to work with circularly polarized light, and experimentally demonstrate, for the first time, a circularly polarized optical needle with sub-diffraction transverse spot size (0.45λ) and axial long depth of focus (DOF) of 15λ using a planar SOL at a violet wavelength of 405 nm. This sub-diffraction circularly polarized optical needle has potential applications in circular dichroism spectroscopy, super-resolution imaging, high-density optical storage, heat-assisted magnetic recording, nano-manufacturing and nano-metrology. PMID:25208611

  19. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths.

    PubMed

    Yuan, Guanghui; Rogers, Edward T F; Roy, Tapashree; Adamo, Giorgio; Shen, Zexiang; Zheludev, Nikolay I

    2014-01-01

    Planar optical lenses are fundamental elements of miniaturized photonic devices. However, conventional planar optical lenses are constrained by the diffraction limit in the optical far-field due to the band-limited wavevectors supported by free-space and loss of high-spatial-frequency evanescent components. As inspired by Einstein's radiation 'needle stick', electromagnetic energy can be delivered into an arbitrarily small solid angle. Such sub-diffraction optical needles have been numerically investigated using diffractive optical elements (DOEs) together with specially polarized optical beams, but experimental demonstration is extremely difficult due to the bulky size of DOEs and the required alignment precision. Planar super-oscillatory lenses (SOLs) were proposed to overcome these constraints and demonstrated that sub-diffraction focal spots can actually be formed without any evanescent waves, making far-field, label-free super-resolution imaging possible. Here we extend the super-oscillation concept into the vectorial-field regime to work with circularly polarized light, and experimentally demonstrate, for the first time, a circularly polarized optical needle with sub-diffraction transverse spot size (0.45λ) and axial long depth of focus (DOF) of 15λ using a planar SOL at a violet wavelength of 405 nm. This sub-diffraction circularly polarized optical needle has potential applications in circular dichroism spectroscopy, super-resolution imaging, high-density optical storage, heat-assisted magnetic recording, nano-manufacturing and nano-metrology.

  20. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths

    NASA Astrophysics Data System (ADS)

    Yuan, Guanghui; Rogers, Edward T. F.; Roy, Tapashree; Adamo, Giorgio; Shen, Zexiang; Zheludev, Nikolay I.

    2014-09-01

    Planar optical lenses are fundamental elements of miniaturized photonic devices. However, conventional planar optical lenses are constrained by the diffraction limit in the optical far-field due to the band-limited wavevectors supported by free-space and loss of high-spatial-frequency evanescent components. As inspired by Einstein's radiation `needle stick', electromagnetic energy can be delivered into an arbitrarily small solid angle. Such sub-diffraction optical needles have been numerically investigated using diffractive optical elements (DOEs) together with specially polarized optical beams, but experimental demonstration is extremely difficult due to the bulky size of DOEs and the required alignment precision. Planar super-oscillatory lenses (SOLs) were proposed to overcome these constraints and demonstrated that sub-diffraction focal spots can actually be formed without any evanescent waves, making far-field, label-free super-resolution imaging possible. Here we extend the super-oscillation concept into the vectorial-field regime to work with circularly polarized light, and experimentally demonstrate, for the first time, a circularly polarized optical needle with sub-diffraction transverse spot size (0.45λ) and axial long depth of focus (DOF) of 15λ using a planar SOL at a violet wavelength of 405 nm. This sub-diffraction circularly polarized optical needle has potential applications in circular dichroism spectroscopy, super-resolution imaging, high-density optical storage, heat-assisted magnetic recording, nano-manufacturing and nano-metrology.

  1. Focusing performance of a multilayer Laue lens with layer placement error described by dynamical diffraction theory.

    PubMed

    Hu, Lingfei; Chang, Guangcai; Liu, Peng; Zhou, Liang

    2015-07-01

    The multilayer Laue lens (MLL) is essentially a linear zone plate with large aspect ratio, which can theoretically focus hard X-rays to well below 1 nm with high efficiency when ideal structures are used. However, the focusing performance of a MLL depends heavily on the quality of the layers, especially the layer placement error which always exists in real MLLs. Here, a dynamical modeling approach, based on the coupled wave theory, is proposed to study the focusing performance of a MLL with layer placement error. The result of simulation shows that this method can be applied to various forms of layer placement error.

  2. Visual Performance after Bilateral Implantation of a Four-Haptic Diffractive Toric Multifocal Intraocular Lens in High Myopes.

    PubMed

    Chang, John S M; Chan, Vincent K C; Ng, Jack C M; Law, Antony K P

    2016-01-01

    Background. The vision with diffractive toric multifocal intraocular lenses after cataract surgery in long eyes has not been studied previously. Objectives. To report visual performance after bilateral implantation of a diffractive toric multifocal intraocular lens in high myopes. Methods. Prospective, observational case series to include patients with axial length of ≥26 mm and corneal astigmatism of >1 dioptre who underwent bilateral AT LISA 909M implantation. Postoperative examinations included photopic and mesopic distance, intermediate, and near visual acuity; photopic contrast sensitivity; visual symptoms (0-5); satisfaction (1-5); and spectacle independence rate. Results. Twenty-eight eyes (14 patients) were included. Postoperatively, mean photopic monocular uncorrected distance, intermediate, and near visual acuities (logMAR) were 0.12 ± 0.20 (standard deviation), 0.24 ± 0.16, and 0.29 ± 0.21, respectively. Corresponding binocular values were -0.01 ± 0.14, 0.13 ± 0.12, and 0.20 ± 0.19, respectively. One eye (4%) had one-line loss in vision. Under mesopic condition, intermediate vision and near vision decreased significantly (all P ≤ 0.001). Contrast sensitivity at all spatial frequencies did not improve significantly under binocular condition (all P > 0.05). Median scores for halos, night glare, starbursts, and satisfaction were 0.50, 0.00, 0.00, and 4.25, respectively. Ten patients (71%) reported complete spectacle independence. Conclusions. Bilateral implantation of the intraocular lens in high myopes appeared to be safe and achieved good visual performance and high satisfaction.

  3. Visual Performance after Bilateral Implantation of a Four-Haptic Diffractive Toric Multifocal Intraocular Lens in High Myopes.

    PubMed

    Chang, John S M; Chan, Vincent K C; Ng, Jack C M; Law, Antony K P

    2016-01-01

    Background. The vision with diffractive toric multifocal intraocular lenses after cataract surgery in long eyes has not been studied previously. Objectives. To report visual performance after bilateral implantation of a diffractive toric multifocal intraocular lens in high myopes. Methods. Prospective, observational case series to include patients with axial length of ≥26 mm and corneal astigmatism of >1 dioptre who underwent bilateral AT LISA 909M implantation. Postoperative examinations included photopic and mesopic distance, intermediate, and near visual acuity; photopic contrast sensitivity; visual symptoms (0-5); satisfaction (1-5); and spectacle independence rate. Results. Twenty-eight eyes (14 patients) were included. Postoperatively, mean photopic monocular uncorrected distance, intermediate, and near visual acuities (logMAR) were 0.12 ± 0.20 (standard deviation), 0.24 ± 0.16, and 0.29 ± 0.21, respectively. Corresponding binocular values were -0.01 ± 0.14, 0.13 ± 0.12, and 0.20 ± 0.19, respectively. One eye (4%) had one-line loss in vision. Under mesopic condition, intermediate vision and near vision decreased significantly (all P ≤ 0.001). Contrast sensitivity at all spatial frequencies did not improve significantly under binocular condition (all P > 0.05). Median scores for halos, night glare, starbursts, and satisfaction were 0.50, 0.00, 0.00, and 4.25, respectively. Ten patients (71%) reported complete spectacle independence. Conclusions. Bilateral implantation of the intraocular lens in high myopes appeared to be safe and achieved good visual performance and high satisfaction. PMID:27563460

  4. Visual Performance after Bilateral Implantation of a Four-Haptic Diffractive Toric Multifocal Intraocular Lens in High Myopes

    PubMed Central

    Chan, Vincent K. C.

    2016-01-01

    Background. The vision with diffractive toric multifocal intraocular lenses after cataract surgery in long eyes has not been studied previously. Objectives. To report visual performance after bilateral implantation of a diffractive toric multifocal intraocular lens in high myopes. Methods. Prospective, observational case series to include patients with axial length of ≥26 mm and corneal astigmatism of >1 dioptre who underwent bilateral AT LISA 909M implantation. Postoperative examinations included photopic and mesopic distance, intermediate, and near visual acuity; photopic contrast sensitivity; visual symptoms (0–5); satisfaction (1–5); and spectacle independence rate. Results. Twenty-eight eyes (14 patients) were included. Postoperatively, mean photopic monocular uncorrected distance, intermediate, and near visual acuities (logMAR) were 0.12 ± 0.20 (standard deviation), 0.24 ± 0.16, and 0.29 ± 0.21, respectively. Corresponding binocular values were −0.01 ± 0.14, 0.13 ± 0.12, and 0.20 ± 0.19, respectively. One eye (4%) had one-line loss in vision. Under mesopic condition, intermediate vision and near vision decreased significantly (all P ≤ 0.001). Contrast sensitivity at all spatial frequencies did not improve significantly under binocular condition (all P > 0.05). Median scores for halos, night glare, starbursts, and satisfaction were 0.50, 0.00, 0.00, and 4.25, respectively. Ten patients (71%) reported complete spectacle independence. Conclusions. Bilateral implantation of the intraocular lens in high myopes appeared to be safe and achieved good visual performance and high satisfaction. PMID:27563460

  5. Ophthalmic compensation of visual ametropia based on a programmable diffractive lens

    NASA Astrophysics Data System (ADS)

    Millán, Maria S.; Pérez-Cabré, Elisabet; Romero, Lenny A.; Ramírez, Natalia

    2013-11-01

    Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements (DOEs), particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advantage of their properties of great flexibility, easy and fast refreshment, and multiplexing capability in comparison with equivalent conventional refractive lenses. In this paper, we explore the application of programmable diffractive lenses displayed on the pixelated screen of a liquid crystal on silicon spatial light modulator (LCoS-SLM) to ophthalmic optics. In particular, we consider the use of programmable diffractive lenses for the visual compensation of some refractive errors (myopia, hyperopia). The theoretical principles of compensation are described and sketched using geometrical optics and paraxial ray tracing. A series of experiments with artificial eye in optical bench are conducted to analyze the compensation accuracy in terms of optical power and to compare the results with those obtained by means of conventional ophthalmic lenses. Practical considerations oriented to feasible applications are provided.

  6. Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications.

    PubMed

    Li, Guoqiang; Mathine, David L; Valley, Pouria; Ayräs, Pekka; Haddock, Joshua N; Giridhar, M S; Williby, Gregory; Schwiegerling, Jim; Meredith, Gerald R; Kippelen, Bernard; Honkanen, Seppo; Peyghambarian, Nasser

    2006-04-18

    Presbyopia is an age-related loss of accommodation of the human eye that manifests itself as inability to shift focus from distant to near objects. Assuming no refractive error, presbyopes have clear vision of distant objects; they require reading glasses for viewing near objects. Area-divided bifocal lenses are one example of a treatment for this problem. However, the field of view is limited in such eyeglasses, requiring the user to gaze down to accomplish near-vision tasks and in some cases causing dizziness and discomfort. Here, we report on previously undescribed switchable, flat, liquid-crystal diffractive lenses that can adaptively change their focusing power. The operation of these spectacle lenses is based on electrical control of the refractive index of a 5-mum-thick layer of nematic liquid crystal using a circular array of photolithographically defined transparent electrodes. It operates with high transmission, low voltage (<2 Vrms), fast response (<1 sec), diffraction efficiency > 90%, small aberrations, and a power-failure-safe configuration. These results represent significant advance in state-of-the-art liquid-crystal diffractive lenses for vision care and other applications. They have the potential of revolutionizing the field of presbyopia correction when combined with automatic adjustable focusing power.

  7. A STUDY OF GRAVITATIONAL LENS CHROMATICITY WITH THE HUBBLE SPACE TELESCOPE

    SciTech Connect

    Munoz, J. A.; Mosquera, A. M.; Mediavilla, E.; Kochanek, C. S.; Falco, E. E.

    2011-12-01

    We report Hubble Space Telescope observations of six gravitational lenses with the Advanced Camera for Surveys. We measured the flux ratios between the lensed images in seven filters from 8140 #Angstrom# to 2200 #Angstrom#. In three of the systems, HE0512-3329, B1600+434, and H1413+117, we were able to construct UV extinction curves partially overlapping the 2175 #Angstrom# feature and characterize the properties of the dust relative to the Galaxy and the Magellanic Clouds. In HE1104-1804, we detect chromatic microlensing and use it to study the physical properties of the quasar accretion disk. For a Gaussian model of the disk exp (- r{sup 2}/2r{sup 2}{sub s}), scaling with wavelength as r{sub s} {proportional_to}{lambda}{sup p}, we estimate r{sub s} ({lambda}3363) = 4{sup +4}{sub -2} (7 {+-} 4) light days and p = 1.1 {+-} 0.6 (1.0 {+-} 0.6) for a logarithmic (linear) prior on r{sub s} . The remaining two systems, FBQ0951+2635 and SBS1520+530, yielded no useful estimates of extinction or chromatic microlensing.

  8. Experimentally observe the effect of spherical aberration on diffractive intraocular lens using adaptive optics

    NASA Astrophysics Data System (ADS)

    Guo, Huanqing; DeLestrange, Elie

    2015-03-01

    We first investigated the similarity in optical quality of a batch of diffractive intraocular lenses (DIOLs), providing experimental evidence for one DIOL as representative of a batch. Using adaptive optics, we then evaluated one DIOL under different levels of Zernike spherical aberration (SA) by applying both a point spread function test and a psychophysical visual acuity test. We found that for small aperture size SA has the effect of shifting the through-focus curve of DIOL. Also, for a relatively large aperture size, it has different effects on the distant and near foci.

  9. The Adaptive Optics Lucky Imager: Diffraction limited imaging at visible wavelengths with large ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Crass, Jonathan; Mackay, Craig; King, David; Rebolo-López, Rafael; Labadie, Lucas; Puga, Marta; Oscoz, Alejandro; González Escalera, Victor; Pérez Garrido, Antonio; López, Roberto; Pérez-Prieto, Jorge; Rodríguez-Ramos, Luis; Velasco, Sergio; Villó, Isidro

    2015-01-01

    One of the continuing challenges facing astronomers today is the need to obtain ever higher resolution images of the sky. Whether studying nearby crowded fields or distant objects, with increased resolution comes the ability to probe systems in more detail and advance our understanding of the Universe. Obtaining these high-resolution images at visible wavelengths however has previously been limited to the Hubble Space Telescope (HST) due to atmospheric effects limiting the spatial resolution of ground-based telescopes to a fraction of their potential. With HST now having a finite lifespan, it is prudent to investigate other techniques capable of providing these kind of observations from the ground. Maintaining this capability is one of the goals of the Adaptive Optics Lucky Imager (AOLI).Achieving the highest resolutions requires the largest telescope apertures, however, this comes at the cost of increased atmospheric distortion. To overcome these atmospheric effects, there are two main techniques employed today: adaptive optics (AO) and lucky imaging. These techniques individually are unable to provide diffraction limited imaging in the visible on large ground-based telescopes; AO currently only works at infrared wavelengths while lucky imaging reduces in effectiveness on telescopes greater than 2.5 metres in diameter. The limitations of both techniques can be overcome by combing them together to provide diffraction limited imaging at visible wavelengths on the ground.The Adaptive Optics Lucky Imager is being developed as a European collaboration and combines AO and lucky imaging in a dedicated instrument for the first time. Initially for use on the 4.2 metre William Herschel Telescope, AOLI uses a low-order adaptive optics system to reduce the effects of atmospheric turbulence before imaging with a lucky imaging based science detector. The AO system employs a novel type of wavefront sensor, the non-linear Curvature Wavefront Sensor (nlCWFS) which provides

  10. Usefulness of Implantation of Diffractive Multifocal Intraocular Lens in Eyes with Long Axial Lengths

    PubMed Central

    Ogawa, Tomoichiro; Shiba, Takuya; Tsuneoka, Hiroshi

    2015-01-01

    Purpose. This study retrospectively analyzed the postoperative visual functions of myopic eyes implanted with multifocal intraocular lens (IOL) to evaluate the efficacy of multifocal IOL in highly myopic eyes. Methods. We studied 61 patients (96 eyes) who were implanted with multifocal IOL ZMA00 or ZMB00 (Abbott Medical Optics). The patients were stratified into two groups by axial length: 26 mm or above (AL ≥ 26 group) and below 26 mm (AL < 26 group). Postoperative corrected and uncorrected distance (5 m) and near (30 cm) visual acuity (VA), contrast sensitivity, and depth of focus were compared between two groups. Results. In the AL ≥ 26 group and the AL < 26 group, the mean ± standard deviation uncorrected distance logMAR VA at 12-month postoperative follow-up was −0.04 ± 0.11 and −0.01 ± 0.14, respectively; and the corrected distance VA was −0.17 ± 0.08 and −0.14 ± 0.07, with no significant differences between two groups (p = 0.558 and 0.101; Mann-Whitney U test). For near VA, the corresponding uncorrected VA was 0.06 ± 0.08 and 0.05 ± 0.09; and distance-corrected VA was 0.01 ± 0.06 and 0.01 ± 0.02, with no significant differences between two groups (p = 0.572, and 0.157; Mann-Whitney U test). Conclusion. The present study demonstrates that it is possible to achieve good uncorrected near and distance VA following implantation of multifocal IOL in eyes with long axial lengths. PMID:26609428

  11. Telescopic system design using hybrid elements (refractive-diffractive) for people with visual weakness

    NASA Astrophysics Data System (ADS)

    Garcia Lievanos, O.; Vazquez-Montiel, Sergio

    2004-10-01

    People with visual weakness, besides the typical refraction problems as myopia (shortsightedness), lose much of the light that enters to their eyes because their retina has many useless cones. For this reason the traditional ophthalmic lenses cannot solve the problem of these people, therefore, we are required of optical systems that collect a big quantity of light, we also need these systems to be of small dimensions and lightweight so they can be used for a long time. In this work we propose the optical design of telescopes using hybrid components, using this new optical components we have obtained compact and lightweight optical systems without decreasing the optical quality of the images. We present the optical design of telescopes for three different magnifications, as well as the analysis of the quality of their images.

  12. Visual outcomes and optical quality after implantation of a diffractive multifocal toric intraocular lens

    PubMed Central

    Chen, Xiangfei; Zhao, Ming; Shi, Yuhua; Yang, Liping; Lu, Yan; Huang, Zhenping

    2016-01-01

    Background: This study evaluated the visual function after implantation of a multifocal toric intraocular lenses (IOLs). Materials and Methods: This study involved 10 eyes from eight cataract patients with corneal astigmatism of 1.0 diopter (D) or higher who had received phacoemulsification with implantation of an AcrySof IQ ReSTOR Toric IOL. Six-month evaluations included visual acuity, spherical equivalent (SE), defocus curve, residual astigmatism, IOL rotation, contrast sensitivity (CS), wavefront aberrations, modulation transfer function (MTF), and patient satisfaction assessments. Results: At 6 months postoperatively, uncorrected distance visual acuity (logarithm of the minimum angle of resolution) was 0.09 ± 0.04, corrected distance visual acuity was 0.02 ± 0.11, and uncorrected near visual acuity was 0.12 ± 0.07. The mean SE was −0.095 ± 0.394 D (±0.50 D in 90%). Refractive astigmatism at the 6-month follow-up visit was significantly reduced to 0.35 ± 0.32 D from 1.50 ± 0.41 D presurgery (P < 0.05). The mean IOL axis rotation was 3.20 ± 1.55°. Postoperative CS levels were high. Postoperative total order aberrations (TOAs), lower-order aberrations (LOAs), higher-order aberrations (HOAs), and spherical aberrations were decreased compared with preoperative values (P < 0.05). At 3 months postoperatively, TOAs, LOAs, and HOAs with a 3 mm pupil diameter as well as TOAs, LOAs, and astigmatism aberrations with a 5 mm pupil diameter were statistically lower than those at 1-month post surgery, but without subsequent significant changes (P > 0.05). There was an increase in MTF results between preoperative and postoperative evaluations at all spatial frequencies. Conclusions: The diffractive multifocal toric IOL is able to provide a predictable astigmatic correction with apparently outstanding levels of optical quality after implantation. PMID:27221680

  13. Diffractive optical elements for generating arbitrary line foci

    NASA Technical Reports Server (NTRS)

    Mait, Joseph N.; Prather, Dennis W.; Vandergracht, Joseph; Tayag, Tristan J.

    1993-01-01

    The key optical component in the architecture of the linearly variable magnification telescope presented here is a conical lens. This architecture has application to Doppler radar processing and to wavelet processing. Unfortunately, the unique surface profile of a conical lens does not allow traditional grinding techniques to be used for fabrication; therefore, its fabrication is considered custom. In addition to the requirement of custom fabrication, a refractive conical lens introduces phase aberrations that are intrinsic to its conic shape. Further, due to the large prismatic component of the lens, the variable magnification telescope architecture is off-axis. To overcome the fabrication and application difficulties of a refractive lens, we consider the construction of a hybrid diffractive-refractive lens.

  14. Nanoscale strain distributions in embedded SiGe semiconductor devices revealed by precession electron diffraction and dual lens dark field electron holography

    SciTech Connect

    Wang, Y. Y.; Cooper, D.; Bernier, N.; Rouviere, J.; Murray, C. E.; Bruley, J.

    2015-01-26

    The detailed strain distributions produced by embedded SiGe stressor structures are measured at high spatial resolution with high precision, with dual lens dark field electron holography and precession electron diffraction. Shear strain and lattice rotation within the crystalline lattice are observed at the boundaries between the SiGe and Si regions. The experimental results are compared to micromechanical modeling simulations to understand the mechanisms of elastic relaxation on all the modes of deformation at a sub-micron length scale.

  15. Space infrared telescope facility wide field and diffraction limited array camera (IRAC)

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.

    1988-01-01

    The wide-field and diffraction limited array camera (IRAC) is capable of two-dimensional photometry in either a wide-field or diffraction-limited mode over the wavelength range from 2 to 30 microns with a possible extension to 120 microns. A low-doped indium antimonide detector was developed for 1.8 to 5.0 microns, detectors were tested and optimized for the entire 1.8 to 30 micron range, beamsplitters were developed and tested for the 1.8 to 30 micron range, and tradeoff studies of the camera's optical system performed. Data are presented on the performance of InSb, Si:In, Si:Ga, and Si:Sb array detectors bumpbonded to a multiplexed CMOS readout chip of the source-follower type at SIRTF operating backgrounds (equal to or less than 1 x 10 to the 8th ph/sq cm/sec) and temperature (4 to 12 K). Some results at higher temperatures are also presented for comparison to SIRTF temperature results. Data are also presented on the performance of IRAC beamsplitters at room temperature at both 0 and 45 deg angle of incidence and on the performance of the all-reflecting optical system baselined for the camera.

  16. A collimated focused ultrasound beam of high acoustic transmission and minimum diffraction achieved by using a lens with subwavelength structures

    SciTech Connect

    Lin, Zhou; Tu, Juan; Cheng, Jianchun; Guo, Xiasheng E-mail: dzhang@nju.edu.cn; Wu, Junru; Huang, Pingtong; Zhang, Dong E-mail: dzhang@nju.edu.cn

    2015-09-14

    An acoustic focusing lens incorporated with periodically aligned subwavelength grooves corrugated on its spherical surface has been developed. It is demonstrated theoretically and experimentally that acoustic focusing achieved by using the lens can suppress the relative side-lobe amplitudes, enhance the focal gain, and minimize the shifting of the focus. Use of the lens coupled with a planar ultrasound transducer can generate an ultrasound beam with enhanced acoustic transmission and collimation effect, which offers the capability of improving the safety, efficiency, and accuracy of targeted surgery implemented by high intensity focused ultrasound.

  17. Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination

    PubMed Central

    Zhao, Zeyu; Luo, Yunfei; Zhang, Wei; Wang, Changtao; Gao, Ping; Wang, Yanqin; Pu, Mingbo; Yao, Na; Zhao, Chengwei; Luo, Xiangang

    2015-01-01

    For near-field imaging optics, minimum resolvable feature size is highly constrained by the near-field diffraction limit associated with the illumination light wavelength and the air distance between the imaging devices and objects. In this study, a plasmonic cavity lens composed of Ag-photoresist-Ag form incorporating high spatial frequency spectrum off-axis illumination (OAI) is proposed to realize deep subwavelength imaging far beyond the near-field diffraction limit. This approach benefits from the resonance effect of the plasmonic cavity lens and the wavevector shifting behavior via OAI, which remarkably enhances the object’s subwavelength information and damps negative imaging contribution from the longitudinal electric field component in imaging region. Experimental images of well resolved 60-nm half-pitch patterns under 365-nm ultra-violet light are demonstrated at air distance of 80 nm between the mask patterns and plasmonic cavity lens, approximately four-fold longer than that in the conventional near-field lithography and superlens scheme. The ultimate air distance for the 60-nm half-pitch object could be theoretically extended to 120 nm. Moreover, two-dimensional L-shape patterns and deep subwavelength patterns are illustrated via simulations and experiments. This study promises the significant potential to make plasmonic lithography as a practical, cost-effective, simple and parallel nano-fabrication approach. PMID:26477856

  18. Bispectrum speckle interferometry of the Red Rectangle: Diffraction-limited near-infrared images reconstructed from Keck telescope speckle data

    NASA Astrophysics Data System (ADS)

    Tuthill, P. G.; Men'shchikov, A. B.; Schertl, D.; Monnier, J. D.; Danchi, W. C.; Weigelt, G.

    2002-07-01

    We present new near-infrared (2.1-3.3 mu m) images of the Red Rectangle with unprecedented diffraction-limited angular resolutions of 46-68 mas; 4 times higher than that of the Hubble space telescope and almost a factor of two improvement over the previous 6 m SAO telecope speckle images presented by Men'shchikov et al. (\\cite{Men'shchikov_etal1998}). The new images, which were reconstructed from Keck telescope speckle data using the bispectrum speckle interferometry method, clearly show two bright lobes above and below the optically thick dark lane obscuring the central binary. X-shaped spikes, thought to trace the surface of a biconical flow, change the intensity distribution of the bright lobes, making them appear broadened or with an east-west double-peak in images with the highest resolution. The striking biconical appearance of the Red Rectangle is preserved on scales from 50 mas to 1 arcmin and from the visible (red) to at least 10 mu m, implying that large grains of at least several microns in size dominate scattering. The new images supplement previous 76 mas resolution speckle reconstructions at shorter wavelengths of 0.6-0.8 mu m (Osterbart et al. \\cite{Osterbart_etal1997}) and 0.7-2.2 mu m (Men'shchikov et al. \\cite{Men'shchikov_etal1998}), allowing a more detailed analysis of the famous bipolar nebula. The intensity distribution of the images is inconsistent with a flat disk geometry frequently used to model the bipolar nebulae. Instead, a geometrically thick torus-like density distribution with bipolar conical cavities is preferred. The extent of the bright lobes indicates that the dense torus has a diameter of >~ 100 AU, for an assumed distance of 330 pc. This torus may be the outer reaches of a flared thick disk tapering inwards to the central star, however such a density enhancement on the midplane is not strictly required to explain the narrow dark lane obscuring the central stars.

  19. Telescopes of galileo.

    PubMed

    Greco, V; Molesini, G; Quercioli, F

    1993-11-01

    The Florentine Istituto e Museo di Storia delta Scienza houses two complete telescopes and a single objective lens (reconstructed from several fragments) that can be attributed to Galileo. These optics have been partially dismantled and made available for optical testing with state-of-the-art equipment. The lenses were investigated individually; the focal length and the radii of curvature were measured, and the optical layout of the instruments was worked out. The optical quality of the surfaces and the overall performance of the two complete telescopes have been evaluated interferometrically at a wavelength of 633 nm (with a He-Ne laser source). It was found in particular that the optics of Galileo came close to attaining diffraction-limited operation.

  20. Comparison of visual outcomes and subjective visual quality after bilateral implantation of a diffractive trifocal intraocular lens and blended implantation of apodized diffractive bifocal intraocular lenses

    PubMed Central

    Gundersen, Kjell Gunnar; Potvin, Rick

    2016-01-01

    Purpose To compare the visual acuity (VA) and quality of vision between bilateral implantation of a trifocal intraocular lens (IOL) and blended bifocal IOLs with an intermediate add in the dominant eye and a near add in the nondominant eye. Patients and methods Patients with either trifocal or blended bifocal IOLs implanted were recruited after surgery. Subjects returned for a single diagnostic visit between 3 and 24 months after surgery. VA was tested at various distances, including low-contrast acuity and acuity at their preferred reading distance. A binocular defocus curve was obtained, and subjective visual function and quality of vision were evaluated. Results Twenty-five trifocal subjects and 30 blended bifocal subjects were enrolled. There were no significant differences in low-contrast acuity, preferred reading distance, or acuity at that reading distance. Binocular vision at 4 m, 60 cm, and 40 cm was not statistically significantly different. The trifocal provided statistically significantly better visual acuity (P<0.05) at vergences from −0.5 to −1.5 D (from 2 m to 67 cm viewing distance, P<0.05). There was no statistically significant difference in the near vision subscale scores of the 39-question National Eye Institute Visual Function Questionnaire or the overall scores of the Quality of Vision questionnaire, though significantly more trifocal subjects reported that the observed visual disturbances were “bothersome” (P<0.05). Conclusion Both lens modalities provided subjects with excellent binocular near and distance vision, with similar low rates of visual disturbances and good reported functional vision. The trifocal IOL provided significantly better intermediate VA in the viewing distance range of 2 m to 67 cm, corresponding to viewing things such as a car dashboard or grocery shelf. VA was similar between groups at viewing distances from 60 to 40 cm, corresponding to computer or reading distance. PMID:27274184

  1. Reaching the Diffraction Limit - Differential Speckle and Wide-Field Imaging for the Gemini-N Telescope

    NASA Technical Reports Server (NTRS)

    Scott, Nic J.; Howell, Steve; Horch, Elliott

    2016-01-01

    Speckle imaging allows telescopes to achieve di raction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, e ectively `freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the di raction limit of the telescope. These new instruments are based on the successful performance and design of the Di erential Speckle Survey Instrument (DSSI) [2, 1]. The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes [3]. Examples of DSSI data are shown in the gures below. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide- eld mode and standard SDSS lters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations, will remain around 13-14th at WIYN and 16-17th at Gemini, while wide- eld, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.

  2. Medium-term visual outcomes of apodized diffractive multifocal intraocular lens with +3.00 d addition power.

    PubMed

    Guo, Xiaohong; Sun, Yi; Zhang, Bowen; Zheng, Danying

    2014-01-01

    Purpose. To evaluate 2-year visual acuities and questionnaire after bilateral implantation of SN6AD1 multifocal intraocular lens (MIOL) or SN60WF IOL. Methods. Patients randomly scheduled for bilateral implantation of SN6AD1 MIOL and SN60WF IOL with 2-year follow-up were enrolled. Uncorrected/corrected distance and near visual acuity, uncorrected intermediate visual acuity at 63 cm under high and low contrast, reading activity, the defocus curve, and a quality-of-life questionnaire were evaluated. Results. Each group comprised 20 patients. Uncorrected intermediate visual acuities and uncorrected near visual acuity were better in SN6AD1 group than in SN60WF group (P = 0.005, P = 0.011, and P < 0.001). In SN6AD1 group, the uncorrected intermediate and near visual acuities 1 year and 2 years postoperatively were reduced than postoperative 3-month outcomes, respectively. SN6AD1 group reported superior overall spectacle independence and inferior satisfaction. SN6AD1 group had a longer reading newspaper duration than SN60WF group (P = 0.036). When using mobile phone, SN6AD1 group had a more comfortable distance than SN60WF group (P < 0.001) and higher speed of reading fixed text message (P < 0.001). Conclusion. SN6AD1 MIOL provided a satisfactory full range of visual acuities and questionnaire performance 2 years postoperatively. One-year and 2-year uncorrected near and intermediate visual acuities of SN6AD1 MIOL were lower than those 3 months postoperatively. PMID:24724014

  3. SNAP telescope

    SciTech Connect

    Lampton, Michael L.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro, R.; Ealet, A.; Ellis,R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar,A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland,S.E.; Huterer, D.; Karcher, A.; Kim, A.G.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder, E.V.; Loken,S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi,H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto,E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) mission will require a two-meter class telescope delivering diffraction limited images spanning a one degree field in the visible and near infrared wavelength regime. This requirement, equivalent to nearly one billion pixel resolution, places stringent demands on its optical system in terms of field flatness, image quality, and freedom from chromatic aberration. We discuss the advantages of annular-field three-mirror anastigmat (TMA) telescopes for applications such as SNAP, and describe the features of the specific optical configuration that we have baselined for the SNAP mission. We discuss the mechanical design and choice of materials for the telescope. Then we present detailed ray traces and diffraction calculations for our baseline optical design. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of tasks to be carried out during the upcoming SNAP research and development phase.

  4. Visual acuity and patient satisfaction at varied distances and lighting conditions after implantation of an aspheric diffractive multifocal one-piece intraocular lens

    PubMed Central

    Chang, Daniel H

    2016-01-01

    Purpose The aim of the study is to evaluate the visual acuity and patient satisfaction at varied distances under photopic and mesopic lighting conditions in patients bilaterally implanted with aspheric diffractive multifocal one-piece intraocular lenses. Methods In this retrospective–prospective study, 16 patients with a mean age of 66.2±9.2 years (range: 50–81 years) who had undergone bilateral phacoemulsification surgery with implantation of a Tecnis multifocal one-piece intraocular lens (ZMB00) were evaluated. Monocular and binocular uncorrected and distance-corrected visual acuities were measured at distance (20 ft), intermediate (70–80 cm), and near (35–40 cm) under photopic (85 cd/m2) and mesopic (3 cd/m2) lighting conditions and were compared using the paired t-test. All patients also completed a subjective questionnaire. Results At a mean follow-up of 9.5±3.9 months, distance, near, and intermediate visual acuity improved significantly from preoperative acuity. Under photopic and mesopic conditions, 93.8% and 62.5% of patients, respectively, had binocular uncorrected intermediate visual acuity of 20/40 or better, and 62.5% and 31.3% of patients had binocular uncorrected near visual acuity of 20/20 or better. All patients were satisfied with their overall vision without using glasses and/or contact lenses when compared with before surgery. A total of 87.5% of patients reported no glare and 68.8% of patients reported no halos around lights at night. Conclusion Tecnis multifocal one-piece intraocular lenses provide good distance, intermediate, and near visual acuity under photopic as well as mesopic lighting conditions. High levels of spectacle independence with low levels of photic phenomenon were achieved, resulting in excellent patient satisfaction. PMID:27536061

  5. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, D.N. Jr.; Simpson, M.L.

    1997-10-21

    A miniature lens system that corrects for imaging and chromatic aberrations is disclosed, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components. 2 figs.

  6. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, Jr., David N.; Simpson, Marc L.

    1997-01-01

    A miniature lens system that corrects for imaging and chromatic aberrations, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components.

  7. Dispersion-compensated Fresnel lens

    DOEpatents

    Johnson, K.C.

    1992-11-03

    A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4[times]10[sup [minus]5] inch and a profile width of at least 10[sup [minus]3] inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight. 10 figs.

  8. Dispersion-compensated fresnel lens

    DOEpatents

    Johnson, Kenneth C.

    1992-01-01

    A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4.multidot.10.sup.-5 inch and a profile width of at least 10.sup.-3 inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight.

  9. Experimental results obtained with the positron-annihilation- radiation telescope of the Toulouse-Argonne collaboration

    SciTech Connect

    Naya, J.E.; von Ballmoos, P.; Albernhe, F.; Vedrenne, G.; Smither, R.K.; Faiz, M.; Fernandez, P.B.; Graber, T.

    1995-10-01

    We present laboratory measurements obtained with a ground-based prototype of a focusing positron-annihilation-radiation telescope developed by the Toulouse-Argonne collaboration. This balloon-borne telescope has been designed to collect 511-keV photons with an extremely low instrumental background. The telescope features a Laue diffraction lens and a detector module containing a small array of germanium detectors. It will provide a combination of high spatial and energy resolution (15 arc sec and 2 keV, respectively) with a sensitivity of {approximately}3{times}10{sup {minus}5} photons cm{sup {minus}2}s{sup {minus}1}. These features will allow us to resolve a possible narrow 511-keV line both energetically and spatially within a Galactic center ``microquasar`` or in other broad-class annihilators. The ground-based prototype consists of a crystal lens holding small cubes of diffracting germanium crystals and a 3{times}3 germanium array that detects the concentrated beam in the focal plane. Measured performances of the instrument at different line energies (511 keV and 662 keV) are presented and compared with Monte-Carlo simulations. The advantages of a 3{times}3 Ge-detector array with respect to a standard-monoblock detector have been confirmed. The results obtained in the laboratory have strengthened interest in a crystal-diffraction telescope, offering new perspectives for die future of experimental gamma-ray astronomy.

  10. World atlas of large optical telescopes

    NASA Technical Reports Server (NTRS)

    Meszaros, S. P.

    1979-01-01

    By 1980 there will be approximately 100 large optical telescopes in the world with mirror or lens diameters of one meter (39 inches) and larger. This atlas gives information on these telescopes and shows their locations on continent-sized maps. Observatory locations considered suitable for the construction of future large telescopes are also shown.

  11. Gravitational Lens B0218+357

    NASA Video Gallery

    This movie illustrates the components of a gravitational lens system (a kind of natural telescope formed when a rare cosmic alignment allows the gravity of a massive object to bend and amplify ligh...

  12. High resolution telescope

    DOEpatents

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  13. A broadband zone plate lens from transformation optics.

    PubMed

    Yang, Rui; Tang, Wenxuan; Hao, Yang

    2011-06-20

    A zone plate lens utilizing a refractive instead of diffractive approach is presented for broadband operation. By utilizing transformation optics, we compress the conventional hyperbolic lens into a flat one with a few zone plates made of all-dielectric materials. Such a transformed lens maintains the broadband performance of the original lens, thus providing a superior alternative to the diffractive Fresnel element which is inherently narrow band.

  14. Micron-Accurate Laser Fresnel-Diffraction Ranging System

    NASA Technical Reports Server (NTRS)

    Lehner, David; Campbell, Jonathan; Smith, Kelly; Sanders, Alvin; Allison, Stephen; Smaley, Larry

    2008-01-01

    Two versions of an optoelectronic system undergoing development are depicted. The system is expected to be capable of measuring a distance between 2 and 10 m with an error of no more than 1 micrometer. The system would be designed to exploit Fresnel diffraction of a laser beam. In particular, it would be designed to take advantage of the fact that a Fresnel diffraction pattern is ultrasensitive to distance. The two versions would differ in the following respects: In version 1, the focus of the telescope would be in the Fresnel region, and the telescope would have a small depth of focus. As a consequence, the Fresnel pattern would be imaged directly onto the photodetector array; in version 2, a multielement lens module would displace the Fresnel region from the vicinity of the pinhole to the vicinity of the optical receiver. As the distance to be measured varied, the location of the receiver relative to the displaced Fresnel-diffraction region would vary, thereby causing the Fresnel diffraction pattern on the focal plane to vary. The multielement lens module would also correct for aberrations. The processing of the digitized Fresnel diffraction pattern in the computer might be accelerated by using only parts of the pattern or even only one small part - the central pixel. As the distance from the pinhole increased, the central pixel would rapidly cycle between maximum and minimum light intensity. This in itself would not be sufficient to uniquely determine the distance. However, by varying the size of the pinhole or the wavelength of the laser, one could obtain a second cycle of variation of intensity that, in conjunction with the first cycle, could enable a unique determination of distance. Alternatively, for a single wavelength and a single pinhole size, it should suffice to consider the data from only two different key pixels in the Fresnel pattern.

  15. Diffractive optics in adverse environments

    NASA Technical Reports Server (NTRS)

    Behrmann, Gregory P.

    1993-01-01

    An investigation at the Army Research Laboratory is in progress to characterize DOE performance in mil-spec environments. One of the most significant environmental influences is temperature. An analysis of a diffractive lens is presented in which optical performance is described as a function of temperature. In particular, we review the thermal dependence of focal length and diffraction efficiency. It is shown that the change in these parameters is independent of lens shape and relates only to material properties. Thermalized hybrid refractive/diffractive designs are discussed.

  16. QUASAR PG1115+080 AND GRAVITATIONAL LENS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Left: The light from the single quasar PG 1115+080 is split and distorted in this infrared image. PG 1115+080 is at a distance of about 8 billion light years in the constellation Leo, and it is viewed through an elliptical galaxy lens at a distance of 3 billion light years. The NICMOS frame is taken at a wavelength of 1.6 microns and it shows the four images of the quasar (the two on the left are nearly merging) surrounding the galaxy that causes the light to be lensed. The quasar is a variable light source and the light in each image travels a different path to reach the Earth. The time delay of the variations allows the distance scale to be measured directly. The linear streaks on the image are diffraction artifacts in the NICMOS instrument (NASA/Space Telescope Science Institute). Right: In this NICMOS image, the four quasar images and the lens galaxy have been subtracted, revealing a nearly complete ring of infrared light. This ring is the stretched and amplified starlight of the galaxy that contains the quasar, some 8 billion light years away. (NASA/Space Telescope Science Institute). Credit: Christopher D. Impey (University of Arizona)

  17. Space Telescope.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This pamphlet describes the Space Telescope, an unmanned multi-purpose telescope observatory planned for launch into orbit by the Space Shuttle in the 1980s. The unique capabilities of this telescope are detailed, the major elements of the telescope are described, and its proposed mission operations are outlined. (CS)

  18. Overview Of Diffractive Optics At Honeywell

    NASA Astrophysics Data System (ADS)

    Cox, J. Allen

    1988-05-01

    Interest in holographic, or diffractive, optics has been rekindled in the last few years with demonstrated advances in three areas: computer-aided design (CAD) tools, VLSI lithographic and dry etching processes, and mathematical modeling of diffractive elements.1 The availability of CAD tools and electron-beam lithography led first to the emergence of computer-generated holography (CGH). CGH work at Honeywell was started and brought to maturity by Arnold2 in 1980-1983. However, because of the inherently low diffraction efficiency (-10%), lithographic CGHs have found a place in only a relatively few practical applications, such as testing diamond turned aspherics, and thus CGHs have not been widely accepted within industry. The first step in changing this situation came in the 1970s with numerical approaches to rigorously solve the vector field equations for diffraction from blazed gratings.3 The extensive numerical results from these models not only showed that high diffraction efficiencies are possible with etched surface profiles, but also indicated the sensitivity to various profile configurations and design parameters. Veldkamp et al.1,4'-'61 at MIT Lincoln Laboratories have taken the final step necessary to establish the practical feasibility of diffractive optics by using reactive ion etching techniques to produce the surface profiles prescribed by the numerical models and delineated by CGH lithographic masks. With this combined approach, they have demonstrated the feasibility of high-efficiency diffractive elements for a variety of diverse applications, such as the CO2 laser radar telescope,4 coherent beam addition of laser diode arrays,5 and on-axis, broadband, aspheric lens elements for infrared imagers.6 These elements are fabricated using well-established VLSI lithographic and dry etching techniques. Moreover, the ability to replicate each diffractive element provides the potential for high-volume, low-cost producibility. With this precedent, Honeywell

  19. Crystal diffraction lens with variable focal length

    DOEpatents

    Smither, Robert K.

    1991-01-01

    A method and apparatus for altering the focal length of a focusing element o one of a plurality of pre-determined focal lengths by changing heat transfer within selected portions of the element by controlled quantities. Control over heat transfer is accomplished by manipulating one or more of a number of variables, including: the amount of heat or cold applied to surfaces; type of fluids pumped through channels for heating and cooling; temperatures, directions of flow and rates of flow of fluids; and placement of channels.

  20. Crystal diffraction lens with variable focal length

    DOEpatents

    Smither, R.K.

    1991-04-02

    A method and apparatus for altering the focal length of a focusing element of one of a plurality of pre-determined focal lengths by changing heat transfer within selected portions of the element by controlled quantities is disclosed. Control over heat transfer is accomplished by manipulating one or more of a number of variables, including: the amount of heat or cold applied to surfaces; type of fluids pumped through channels for heating and cooling; temperatures, directions of flow and rates of flow of fluids; and placement of channels. 19 figures.

  1. Measurement of wavefront aberrations of diffractive imaging elements

    NASA Astrophysics Data System (ADS)

    Zajac, Marek; Dubik, Boguslawa

    1998-01-01

    Diffractive optics is more and more widely used nowadays. One of its most important applications is diffractive imaging element (DIE). The DIE can be a lens (Holo-lens, diffractive lens, hybrid lens) or a part of complex imaging system (e.g. an aberration corrector). Apart of such problems occurring when dealing with DIE as its design, manufacture or copying the problem of its control is important. By this we mean the measurement of wavefront generated by DIE, i.e. the evaluation of wavefront aberrations. To this aim we propose two different experimental methods: one of them employs diffraction interferometer, the other one holographic shearing interferometer.

  2. Imaging characteristics of ball lens

    NASA Astrophysics Data System (ADS)

    Li, Qinghui; Shao, Xiaopeng

    2014-05-01

    In most digital imaging applications, high-resolution imaging or videos are usually desired for later processing and analysis. The desire for high-resolution stems from two principal application areas: improvement of pictorial information for human interpretation, and helping representation for automatic machine preception. While the image sensors limit the spatial resolution of the image, the image details are also limited by the optical system, due to diffraction, and aberration1. Monocentric lens are an attractive option for gigapixel camera because the symmetrical design focuses light identically coming from any direction. Marks and Brady proposed a monocentric lens design imaging 40 gigapixels with an f-number of 2.5 and resolving 2 arcsec over a 120 degrees field of view2. Recently, Cossairt, Miau, and Nayer proposed a proof-of-concept gigapixel computational camera consisting of a large ball lens shared by several small planar sensors coupled with a deblurring step3. The design consists of a ball element resulting in a lens that is both inexpensive to produce and easy to align. Because the resolution of spherical lens is fundamentally limited by geometric aberrations, the imaging characteristics of the ball lens is expressed by the geometrical aberrations, in which the general equations for the primary aberration of the ball lens are given. The effect of shifting the stop position on the aberrations of a ball lens is discussed. The variation of the axial chromatic aberration with the Abbe V-number when the refraction index takes different values is analyzed. The variation of the third-order spherical aberration ,the fifth-order spherical aberration and the spherical aberration obtained directly from ray tracing with the f-number is discussed. The other imaging evaluation merits, such as the spot diagram, the modulation transfer function(MTF) and the encircled energy are also described. Most of the analysis of the ball lens is carried out using OSLO optics

  3. The large binocular telescope.

    PubMed

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010. PMID:20517352

  4. The large binocular telescope.

    PubMed

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010.

  5. Opposed port alignment system (OPAS): a commercial astronomical telescope modified for viewing the interior of the NIF target chamber

    NASA Astrophysics Data System (ADS)

    Manuel, Anastacia M.; McCarville, Tom J.; Seppala, Lynn G.; Klingmann, Jeff L.; Kalantar, Daniel H.

    2012-10-01

    The National Ignition Facility (NIF) requires high resolution live images of regions inside the target chamber in order to align diagnostic instruments to fusion targets and to monitor target stability. To view the interior of the target chamber, we modified a commercial 11-inch Schmidt-Cassegrain telescope to develop the Opposed Port Alignment System (OPAS). There are two OPAS systems installed on the target chamber ports directly opposite the diagnostics. This paper describes the optical design, highlighting the two key modifications of the telescope. The first key modification was to reposition the Schmidt corrector plate and to uniquely mount the secondary mirror to a precision translation stage to adjust focus from 5.5 m to infinity. The stage is carefully aligned to ensure that the telescope's optical axis lies on a straight line during focus adjustments. The second key modification was a custom three element lens that flattens the field, corrects residual aberrations of the Schmidt-Cassegrain and, with a commercial 1:1 relay lens, projects the final image plane onto a large format 50 mega-pixel camera. The OPAS modifications greatly extend the Schmidt-Cassegrain telescope's field of view, producing nearly diffraction-limited images over a flat field covering +/-0.4 degrees. Also discussed in the paper are the alignment procedure and the hardware layout of the telescope.

  6. Developing a second generation Laue lens prototype: high-reflectivity crystals and accurate assembly

    NASA Astrophysics Data System (ADS)

    Barrière, Nicolas M.; Tomsick, John A.; Boggs, Steven E.; Lowell, Alexander; von Ballmoos, Peter

    2011-09-01

    Laue lenses are an emerging technology that will enhance gamma-ray telescope sensitivity by one to two orders of magnitude in selected energy bands of the ~100 keV to ~1.5 MeV range. This optic would be particularly well adapted to the observation of faint gamma ray lines, as required for the study of Supernovae and Galactic positron annihilation. It could also prove very useful for the study of hard X-ray tails from a variety of compact objects, especially making a difference by providing sufficient sensitivity for polarization to be measured by the focal plane detector. Our group has been addressing the two key issues relevant to improve performance with respect to the first generation of Laue lens prototypes: obtaining large numbers of efficient crystals and developing a method to fix them with accurate orientation and dense packing factor onto a substrate. We present preliminary results of an on-going study aiming to enable a large number of crystals suitable for diffraction at energies above 500 keV. In addition, we show the first results of the Laue lens prototype assembled using our beamline at SSL/UC Berkeley, which demonstrates our ability to orient and glue crystals with accuracy of a few arcsec, as required for an efficient Laue lens telescope.

  7. Space Telescopes

    NASA Technical Reports Server (NTRS)

    Clampin, Mark; Flanagan, Kathryn A.

    2012-01-01

    Space telescopes have been a dominant force in astrophysics and astronomy over the last two decades. As Lyman Spitzer predicted in 1946, space telescopes have opened up much of the electromagnetic spectrum to astronomers, and provided the opportunity to exploit the optical performance of telescopes uncompromised by the turbulent atmosphere. This special section of Optical Engineering is devoted to space telescopes. It focuses on the design and implementation of major space observatories from the gamma-ray to far-infrared, and highlights the scientific and technical breakthroughs enabled by these telescopes. The papers accepted for publication include reviews of major space telescopes spanning the last two decades, in-depth discussions of the design considerations for visible and x-ray telescopes, and papers discussing concepts and technical challenges for future space telescopes.

  8. Dual focus diffractive optical element with extended depth of focus

    NASA Astrophysics Data System (ADS)

    Uno, Katsuhiro; Shimizu, Isao

    2014-09-01

    A dual focus property and an extended depth of focus were verified by a new type of diffractive lens displaying on liquid crystal on silicon (LCoS) devices. This type of lens is useful to read information on multilayer optical discs and tilted discs. The radial undulation of the phase groove on the diffractive lens gave the dual focus nature. The focal extension was performed by combining the dual focus lens with the axilens that was invented for expanding the depth of focus. The number of undulations did not affect the intensity along the optical axis but the central spot of the diffraction pattern.

  9. On buying a telescope for videolaryngoscopy.

    PubMed

    Painter, C; Komiyama, S

    1987-06-01

    The purpose of this article is to compare aspects of the performance of three widely-used rigid laryngoscopy telescopes. The Nagashima SFT-I, Wolf 4450.57, and Karl Storz 8702 D were used with a JVC GX-N8U camera and Panasonic PV 8600 VCR to make recordings of a one-tenth-inch grid at various distances between the lens and the grid and at two telescope holding angles. Measurements were made of the anteroposterior and mediolateral viewing fields at all distances and holding angles on maximum and minimum zoom. The telescopes were compared for viewing field, lens angle effects, holding angle effects, plane distortion effects, effects due to lens distance, color, edge definition, focus control, light source compatibility, stroboscopic use, cross-sectional diameter, fogging, and cost. An overview enables laryngologists to assess their needs before buying.

  10. Shack-Hartmann Phasing of Segmented Telescopes: Systematic Effects from Lenslet Arrays

    NASA Technical Reports Server (NTRS)

    Troy, Mitchell; Chanan, Gary; Roberts, Jennifer

    2010-01-01

    The segments in the Keck telescopes are routinely phased using a Shack-Hartmann wavefront sensor with sub-apertures that span adjacent segments. However, one potential limitation to the absolute accuracy of this technique is that it relies on a lenslet array (or a single lens plus a prism array) to form the subimages. These optics have the potential to introduce wavefront errors and stray reflections at the subaperture level that will bias the phasing measurement. We present laboratory data to quantify this effect, using measured errors from Keck and two other lenslet arrays. In addition, as part of the design of the Thirty Meter Telescope Alignment and Phasing System we present a preliminary investigation of a lenslet-free approach that relies on Fresnel diffraction to form the subimages at the CCD. Such a technique has several advantages, including the elimination of lenslet aberrations.

  11. Collection Mode Lens System

    DOEpatents

    Fletcher, Daniel A.; Kino, Gordon S.

    2002-11-05

    A lens system including a collection lens and a microlens spaced from the collection lens adjacent the region to be observed. The diameter of the observablel region depends substantially on the radius of the microlens.

  12. Phase Sensor for Aligning a Segmented Telescope Mirror

    NASA Technical Reports Server (NTRS)

    Stahl, Philip; Walker, Chanda Barlett

    2006-01-01

    A phase sensor has been developed for use in aligning a segmented telescope mirror to within a fraction of a wavelength in piston. (As used here, piston signifies displacement of a mirror segment along the optical axis of the telescope.) Such precise alignment is necessary in order to realize the full benefit of the large aperture achievable through segmentation. This phase sensor is achromatic. It is based on two-wavelength shearing interferometry, and can be modified to utilize an extended or broad-band (e.g., white) light source. The sensor optics include a ruled diffraction grating and an imaging lens. The sensor can measure the piston shift between segments as well as aberrations of the segments. It can measure the surface error of an individual segment, making it possible to compensate for the error with optimal amount(s) of piston and/or tilt. The precise capture range of the sensor depends partly on the telescope design; the largest relative piston shifts measurable by use of this sensor are of the order of 100 m. The accuracy of the sensor also depends partly on the telescope design; in general, the accuracy is sufficient to enable alignment to within approximately half a wavelength. The interferometric image is digitized and processed by a simple algorithm in real time, and the output of the algorithm can be used to maintain alignment in real time, even in the presence of atmospheric turbulence. The sensor is robust. Through calibration, it can be made insensitive to (and, hence, tolerant of) misalignments and aberrations of its own optics, most aberrations of the telescope as a whole (in contradistinction to aberrations of individual segments), and most aberrations introduced by atmospheric turbulence

  13. Telescope Equipment

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Renaissance Telescope for high resolution and visual astronomy has five 82-degree Field Tele-Vue Nagler Eyepieces, some of the accessories that contribute to high image quality. Telescopes and eyepieces are representative of a family of optical equipment manufactured by Tele-Vue Optics, Inc.

  14. Converging or Diverging Lens?

    ERIC Educational Resources Information Center

    Branca, Mario

    2013-01-01

    Why does a lens magnify? Why does it shrink objects? Why does this happen? The activities that we propose here are useful in helping us to understand how lenses work, and they show that the same lens can have different magnification capabilities. A converging lens can also act as a diverging lens. (Contains 4 figures.)

  15. Space Telescopes

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2011-01-01

    The science of astronomy depends on modern-day temples called telescopes. Astronomers make pilgrimages to remote mountaintops where these large, intricate, precise machines gather light that rains down from the Universe. Bit, since Earth is a bright, turbulent planet, our finest telescopes are those that have been launched into the dark stillness of space. These space telescopes, named after heroes of astronomy (Hubble, Chandra, Spitzer, Herschel), are some of the best ideas our species has ever had. They show us, over 13 billion years of cosmic history, how galaxies and quasars evolve. They study planets orbiting other stars. They've helped us determine that 95% of the Universe is of unknown composition. In short, they tell us about our place in the Universe. The next step in this journey is the James Webb Space Telescope, being built by NASA, Europe, and Canada for a 2018 launch; Webb will reveal the first galaxies that ever formed.

  16. Contact lens in keratoconus

    PubMed Central

    Rathi, Varsha M; Mandathara, Preeji S; Dumpati, Srikanth

    2013-01-01

    Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP) lenses, soft and soft toric lenses, piggy back contact lenses (PBCL), hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the English language with the keywords keratoconus and various contact lenses such as Rose k lens, RGP lens, hybrid lens, scleral lens and PBCL. PMID:23925325

  17. The Lens Capsule

    PubMed Central

    Danysh, Brian P.; Duncan, Melinda K.

    2009-01-01

    The lens capsule is a modified basement membrane that completely surrounds the ocular lens. It is known that this extracellular matrix is important for both the structure and biomechanics of the lens in addition to providing informational cues to maintain lens cell phenotype. This review covers the development and structure of the lens capsule, lens diseases associated with mutations in extracellular matrix genes and the role of the capsule in lens function including those proposed for visual accommodation, selective permeability to infectious agents, and cell signaling. PMID:18773892

  18. Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Ekers, Ron; Wilson, Thomas L.

    ``Radio Telescopes" starts with a brief historical introduction from Jansky's1931 discovery of radio emission from the Milky Way through the development ofradio telescope dishes and arrays to aperture synthesis imaging. It includessufficient basics of electromagnetic radiation to provide some understanding of thedesign and operation of radio telescopes. The criteria such as frequencyrange, sensitivity, survey speed, angular resolution, and field of view thatdetermine the design of radio telescopes are introduced. Because it is soeasy to manipulate the electromagnetic waves at radio frequencies, radiotelescopes have evolved into many different forms, sometimes with "wire"structures tuned to specific wavelengths, which look very different from anykind of classical telescope. To assist astronomers more familiar with otherwavelength domains, the appendix A.1. includes a comparison of radioand optical terminology. Some of the different types of radio telescopesincluding the filled aperture dishes, electronically steered phased arrays, andaperture synthesis radio telescopes are discussed, and there is a sectioncomparing the differences between dishes and arrays. Some of the morerecent developments including hierarchical beam forming, phased arrayfeeds, mosaicing, rotation measure synthesis, digital receivers, and longbaseline interferometers are included. The problem of increasing radiofrequency interference is discussed, and some possible mitigation strategies areoutlined.

  19. Alt-Az Spacewatch Telescope

    NASA Technical Reports Server (NTRS)

    Gehrels, Tom

    1997-01-01

    This grant funded about one third of the cost of the construction of a telescope with an aperture 1.8 meters in diameter to discover asteroids and comets and investigate the statistics of their populations and orbital distributions. This telescope has been built to the PI's specifications and installed in a dome on Kitt Peak mountain in Arizona. Funds for the dome and building were provided entirely by private sources. The dome building and telescope were dedicated in a ceremony at the site on June 7, 1997. The attached abstract describes the parameters of the telescope. The telescope is a new item of capital property. It is permanently located in University of Arizona building number 910 in the Steward Observatory compound on Kitt Peak mountain in the Tohono O'odham Nation, Arizona. fts property tag number is A252107. This grant did not include funds for the coma corrector lens, instrument derotator, CCD detector, detector electronics, or computers to acquire or process the data. It also did not include funds to operate the telescope or conduct research with it. Funds for these items and efforts are pending from NASA and other sources.

  20. Optical aperture synthesis with electronically connected telescopes.

    PubMed

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D

    2015-04-16

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths.

  1. DISCOVERY OF A QUADRUPLE LENS IN CANDELS WITH A RECORD LENS REDSHIFT z = 1.53

    SciTech Connect

    Van der Wel, A.; Van de Ven, G.; Maseda, M.; Rix, H. W.; Rudnick, G. H.; Grazian, A.; Finkelstein, S. L.; Koo, D. C.; Faber, S. M.; Kocevski, D. D.

    2013-11-01

    Using spectroscopy from the Large Binocular Telescope and imaging from the Hubble Space Telescope we discovered the first strong galaxy lens at z {sub lens} > 1. The lens has a secure photometric redshift of z = 1.53 ± 0.09 and the source is spectroscopically confirmed at z = 3.417. The Einstein radius (0.''35; 3.0 kpc) encloses 7.6 × 10{sup 10} M {sub ☉}, with an upper limit on the dark matter fraction of 60%. The highly magnified (40×) source galaxy has a very small stellar mass (∼10{sup 8} M {sub ☉}) and shows an extremely strong [O III]{sub 5007Å} emission line (EW{sub 0} ∼ 1000 Å) bolstering the evidence that intense starbursts among very low-mass galaxies are common at high redshift.

  2. Improved Optical Design for the Large Synoptic Survey Telescope (LSST)

    SciTech Connect

    Seppala, L

    2002-09-24

    This paper presents an improved optical design for the LSST, an fll.25 three-mirror telescope covering 3.0 degrees full field angle, with 6.9 m effective aperture diameter. The telescope operates at five wavelength bands spanning 386.5 nm to 1040 nm (B, V, R, I and Z). For all bands, 80% of the polychromatic diffracted energy is collected within 0.20 arc-seconds diameter. The reflective telescope uses an 8.4 m f/1.06 concave primary, a 3.4 m convex secondary and a 5.2 m concave tertiary in a Paul geometry. The system length is 9.2 m. A refractive corrector near the detector uses three fused silica lenses, rather than the two lenses of previous designs. Earlier designs required that one element be a vacuum barrier, but now the detector sits in an inert gas at ambient pressure. The last lens is the gas barrier. Small adjustments lead to optimal correction at each band. The filters have different axial thicknesses. The primary and tertiary mirrors are repositioned for each wavelength band. The new optical design incorporates features to simplify manufacturing. They include a flat detector, a far less aspheric convex secondary (10 {micro}m from best fit sphere) and reduced aspheric departures on the lenses and tertiary mirror. Five aspheric surfaces, on all three mirrors and on two lenses, are used. The primary is nearly parabolic. The telescope is fully baffled so that no specularly reflected light from any field angle, inside or outside of the full field angle of 3.0 degrees, can reach the detector.

  3. United States Atlas of Optical Telescopes. [2nd Edition

    NASA Technical Reports Server (NTRS)

    Meszaros, Stephen Paul

    1987-01-01

    This atlas shows the locations of and gives information about optical telescopes used for astronomical research in the United States as of late 1986. Those instruments with mirror or lens diameters of 3/4 m (approx. 30 inches) and larger are included. These telescopes are concentrated in the Southwest, on the West Coast and on the island of Hawaii.

  4. An Investigation of the Eighteenth-Century Achromatic Telescope

    ERIC Educational Resources Information Center

    Jaecks, Duane H.

    2010-01-01

    The optical quality and properties of over 200 telescopes residing in museums and private collections have been measured and tested with the goal of obtaining new information about the early development of the achromatic lens (1757-1770). Quantitative measurements of the chromatic and spherical aberration of telescope objective lenses were made…

  5. Apochromatic telescope without anomalous dispersion glasses

    NASA Astrophysics Data System (ADS)

    Duplov, Roman

    2006-07-01

    In order to correct secondary longitudinal chromatic aberration in conventional refracting optical systems, it is necessary to use at least one optical material having anomalous partial dispersion. A novel lens system with correction of the secondary spectrum by using only normal glasses is presented. The lens system comprises three widely separated lens components; both second and third components are subaperture. The presented example of an apochromatic telescope demonstrates secondary spectrum correction with the use of only crown BK7 and flint F2, which are among the most inexpensive optical glasses available at the market. Two more similar designs are presented, both with the use of low-cost slightly anomalous dispersion glasses. These telescopes have a higher relative aperture and a smaller tertiary spectrum.

  6. The European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Socas-Navarro, H.

    2012-12-01

    In this presentation I will describe the current status of the European Solar Telescope (EST) project. The EST design has a 4-m aperture to achieve both a large photon collection and very high spatial resolution. It includes a multi-conjugate adaptive system integrated in the light path for diffraction-limited imaging. The optical train is optimized to minimize instrumental polarization and to keep it nearly constant as the telescope tracks the sky. A suite of visible and infrared instruments are planned with a light distribution system that accomodates full interoperability and simultaneous usage. The science drivers emphasize combined observations at multiple heights in the atmosphere to build a connected view of solar magnetism from the photosphere to the corona.

  7. Low scatter lens design/development

    NASA Technical Reports Server (NTRS)

    Gallipeau, R. B.; Quesada, A.

    1974-01-01

    The criteria for the optimum design of optical systems are discussed along with the selection of appropriate materials. The construction details of low scatter lens systems are tabulated. Scattering analysis; total energy diffracted; and computation of delta for a scratch, bubble, and microscopic irregularities are also discussed.

  8. Lens transmission measurement for an absolute radiation thermometer

    SciTech Connect

    Hao, X.; Yuan, Z.; Lu, X.

    2013-09-11

    The lens transmission for the National Institute of Metrology of China absolute radiation thermometer is measured by a hybrid method. The results of the lens transmission measurements are 99.002% and 86.792% for filter radiometers with center wavelengths 633 nm and 900 nm, respectively. These results, after correcting for diffraction factors and the size-of-source effect when the lens is incorporated within the radiometer, can be used for measurement of thermodynamic temperature. The expanded uncertainty of the lens transmission measurement system has been evaluated. It is 1.3×10{sup −3} at 633 nm and 900 nm, respectively.

  9. A Diffraction-limited Survey for Direct Detection of Halpha Emitting/Accreting ExtraSolar Planets with the 6.5m Magellan Telescope and the MagAO Visible AO system

    NASA Astrophysics Data System (ADS)

    Close, Laird

    TECHNICAL BACKGROUND: An advanced adaptive secondary mirror (ASM) with 585 actuators was commissioned at the 6.5-m Magellan Telescope at one of the world’s best sites (Las Campanas Observatory; LCO) in Chile. By the end of the commissioning run (April 2013) the MagAO system was regularly producing the highest spatial resolution deep images to date (0.023” deep images at Halpha (0.656 microns); Close et al. 2013). This is due to its 378 corrective modes at 1kHz on a 6.5-m telescope. Strehl ratis>20% at Halpha were obtained in 75% of the seeing statistics at the site. We propose here to utilize MagAO’s absolutely unique ability to take Halpha, continuum (0.643 microns), and L’ (3.8 microns) thermal images (all simultaneously) to carry out a novel survey to: Discover a population of the lowest mass young accreting extrasolar planets imaged to date. to characterize the spatial distribution, and estimate accretion rates, of young extrasolar planets >5AU, to understand the influence of planets on transitional disk gaps. THEORY BACKGROUND: Extrasolar planets are very difficult to image directly since planets become very faint below ~8 Mjup (Jupiter masses) for ages >1 Myr and such massive planets are rare. There is a class of young stars that are still accreting yet have SED (and often imaging) evidence of a lack of dust and gas inside a r=5-140 AU “gap”. These “transitional disks” are believed to be transitioning into “disk free” stars. These gaps are believed to be maintained by planets that continuously clear (though scattering or accretion) the optically thin gaps. Indeed large >10 AU gaps (>few Hill spheres) must be maintained by multiple ~1 Mjup planets (Dodson-Robinson & Salyk 2011). Since gas must pass through each of these gaps to continuously supply the accreting star, simulations suggest that these “gap planets” are also crossing points for these gas streamers on their way to the star. These streamers “force-feed” these planets a

  10. Fraunhofer Diffraction Effects on Total Power for a Planckian Source.

    PubMed

    Shirley, E L

    2001-01-01

    An algorithm for computing diffraction effects on total power in the case of Fraunhofer diffraction by a circular lens or aperture is derived. The result for Fraunhofer diffraction of monochromatic radiation is well known, and this work reports the result for radiation from a Planckian source. The result obtained is valid at all temperatures.

  11. Infrared telescope

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Hendricks, J. B.

    1985-01-01

    The development of the Infrared Telescope for Spacelab 2 is discussed. The design, development, and testing required to interface a stationary superfluid helium dewar with a scanning cryostate capable of operating in the zero-g environment in the space shuttle bay is described.

  12. Telescopic hindsight

    NASA Astrophysics Data System (ADS)

    Cox, Laurence

    2014-08-01

    In reply to the physicsworld.com blog post "Cosmic blunders that have held back science" (2 June, http://ow.ly/xwC7C), about an essay by the astronomer Avi Loeb in which he criticized, among others, his Harvard University predecessor Edward Pickering, who claimed in 1909 that telescopes had reached their optimal size.

  13. Selecting Your First Telescope.

    ERIC Educational Resources Information Center

    Harrington, Sherwood

    1982-01-01

    Designed for first-time telescope purchasers, provides information on how a telescope works; major telescope types (refractors, reflectors, compound telescopes); tripod, pier, altazimuth, and equatorial mounts; selecting a telescope; visiting an astronomy club; applications/limitations of telescope use; and tips on buying a telescope. Includes a…

  14. Contact Lens Care

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Contact Lens Care Share Tweet Linkedin Pin it More ... 1088, www.fda.gov/medwatch Learn More about Contact Lens Care Other Tips on Contact Lenses Decorative ...

  15. Contact Lens Solution Toxicity

    MedlinePlus

    ... rash and rashes clinical tools newsletter | contact Share | Contact Lens Solution Toxicity Information for adults A A A This image shows a reaction to contact lens solution. The prominent blood vessels and redness ...

  16. The Unique Optical Design of the CTI-II Survey Telescope

    NASA Astrophysics Data System (ADS)

    Ackermann, Mark R.; McGraw, J. T.; MacFarlane, M.

    2006-12-01

    The CCD/Transit Instrument with Innovative Instrumentation (CTI-II) is being developed for precision ground-based astrometric and photometric astronomical observations. The 1.8m telescope will be stationary, near-zenith pointing and will feature a CCD-mosaic array operated in time-delay and integrate (TDI) mode to image a continuous strip of the sky in five bands. The heart of the telescope is a Nasmyth-like bent-Cassegrain optical system optimized to produce near diffraction-limited images with near zero distortion over a circular1.42 deg field. The optical design includes an f/2.2 parabolic ULE primary with no central hole salvaged from the original CTI telescope and adds the requisite hyperbolic secondary, a folding flat and a highly innovative all-spherical, five lens corrector which includes three plano surfaces. The reflective and refractive portions of the design have been optimized as individual but interdependent systems so that the same reflective system can be used with slightly different refractive correctors. At present, two nearly identical corrector designs are being evaluated, one fabricated from BK-7 glass and the other of fused silica. The five lens corrector consists of an air-spaced triplet separated from follow-on air-spaced doublet. Either design produces 0.25 arcsecond images at 83% encircled energy with a maximum of 0.0005% distortion. The innovative five lens corrector design has been applied to other current and planned Cassegrain, RC and super RC optical systems requiring correctors. The basic five lens approach always results in improved performance compared to the original designs. In some cases, the improvement in image quality is small but includes substantial reductions in distortion. In other cases, the improvement in image quality is substantial. Because the CTI-II corrector is designed for a parabolic primary, it might be especially useful for liquid mirror telescopes. We describe and discuss the CTI-II optical design with respect

  17. Candidate Gravitational Microlensing Events for Future Direct Lens Imaging

    NASA Astrophysics Data System (ADS)

    Henderson, C. B.; Park, H.; Sumi, T.; Udalski, A.; Gould, A.; Tsapras, Y.; Han, C.; Gaudi, B. S.; Bozza, V.; Abe, F.; Bennett, D. P.; Bond, I. A.; Botzler, C. S.; Freeman, M.; Fukui, A.; Fukunaga, D.; Itow, Y.; Koshimoto, N.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Namba, S.; Ohnishi, K.; Rattenbury, N. J.; Saito, To; Sullivan, D. J.; Suzuki, D.; Sweatman, W. L.; Tristram, P. J.; Tsurumi, N.; Wada, K.; Yamai, N.; Yock, P. C. M.; Yonehara, A.; MOA Collaboration; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Skowron, J.; Kozłowski, S.; Poleski, R.; Ulaczyk, K.; Wyrzykowski, Ł.; Pietrukowicz, P.; OGLE Collaboration; Almeida, L. A.; Bos, M.; Choi, J.-Y.; Christie, G. W.; Depoy, D. L.; Dong, S.; Friedmann, M.; Hwang, K.-H.; Jablonski, F.; Jung, Y. K.; Kaspi, S.; Lee, C.-U.; Maoz, D.; McCormick, J.; Moorhouse, D.; Natusch, T.; Ngan, H.; Pogge, R. W.; Shin, I.-G.; Shvartzvald, Y.; Tan, T.-G.; Thornley, G.; Yee, J. C.; μFUN Collaboration; Allan, A.; Bramich, D. M.; Browne, P.; Dominik, M.; Horne, K.; Hundertmark, M.; Figuera Jaimes, R.; Kains, N.; Snodgrass, C.; Steele, I. A.; Street, R. A.; RoboNet Collaboration

    2014-10-01

    The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unrelated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic bulge with high relative lens-source proper motion that are therefore good candidates for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 to 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with μ >~ 8 mas yr-1. Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA-2005-BLG-36, OGLE-2012-BLG-0211, OGLE-2012-BLG-0456, MOA-2012-BLG-532, and MOA-2013-BLG-029. In lsim12 yr from the time of each event the lens and source of each event will be sufficiently separated for ground-based telescopes with AO systems or space telescopes to resolve each component and further characterize the lens system. Furthermore, for the most recent events, comparison of the lens flux estimates from images taken immediately to those estimated from images taken when the lens and source are resolved can be used to empirically check the robustness of the single-epoch method currently being used to estimate lens masses for many events.

  18. Scanning holographic lidar telescope

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Wilkerson, Thomas D.

    1993-01-01

    We have developed a unique telescope for lidar using a holographic optical element (HOE) as the primary optic. The HOE diffracts 532 nm laser backscatter making a 43 deg angle with a normal to its surface to a focus located 130 cm along the normal. The field of view scans a circle as the HOE rotates about the normal. The detector assembly and baffling remain stationary, compared to conventional scanning lidars in which the entire telescope and detector assembly require steering, or which use a large flat steerable mirror in front of the telescope to do the pointing. The spectral bandpass of our HOE is 50 nm (FWHM). Light within that bandpass is spectrally dispersed at 0.6 nm/mm in the focal plane. An aperture stop reduces the bandpass of light reaching the detector from one direction to 1 nm while simultaneously reducing the field of view to 1 mrad. Wavelengths outside the 50 nm spectral bandpass pass undiffracted through HOE to be absorbed by a black backing. Thus, the HOE combines three functions into one optic: the scanning mirror, the focusing mirror, and a narrowband filter.

  19. Aberration design of zoom lens systems using thick lens modules.

    PubMed

    Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi

    2014-12-20

    A systematic approach for the aberration design of a zoom lens system using a thick lens module is presented. Each component is treated as a thick lens module at the beginning of the design. A thick lens module refers to a thick lens component with a real lens structure, like lens materials, lens curvatures, lens thicknesses, and lens interval distances. All nine third-order aberrations of a thick lens component are considered during the design. The relationship of component aberrations in different zoom positions can be approximated from the aberration shift. After minimizing the aberrations of the zoom lens system, the nine third-order aberrations of every lens component can be determined. Then the thick lens structure of every lens component can be determined after optimization according to their first-order properties and third-order aberration targets. After a third optimization for minimum practical third-order aberrations of a zoom lens system, the aberration design using the thick lens module is complete, which provides a practical zoom lens system with thick lens structures. A double-sided telecentric zoom lens system is designed using the thick lens module in this paper, which shows that this method is practical for zoom lens design.

  20. Computational imaging using lightweight diffractive-refractive optics.

    PubMed

    Peng, Yifan; Fu, Qiang; Amata, Hadi; Su, Shuochen; Heide, Felix; Heidrich, Wolfgang

    2015-11-30

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  1. Ultra low wind resistance enclosure for a 100-m telescope

    NASA Astrophysics Data System (ADS)

    Ditto, Thomas D.; Ritter, Joseph M.

    2008-07-01

    We discuss a transmission primary objective grating (POG) telescope that is nearly flat to the ground with its secondary components buried below ground in a protected environment that enjoys a controlled atmosphere. Temperature gradients can be held steady by sealing this enclosure. End-to-end ray paths need not be interrupted by spiders or other structural support elements. Unlike mirror and lens telescopes, this layout is intrinsically off-axis. Light diffracted from a POG at a grazing angle can be collected a few meters below the POG, and the substructures do not require a deep excavation, as would be required for buried on-axis mirrors such as a zenith tube. The POG principle can take advantage of the rotation of the earth to acquire spectra sequentially, so active tilt and rotate axes are not necessary during observations. The POG aperture is extensible as a ribbon optic to kilometer scale at a linear increase in cost, as compared to other choices where infrastructure grows as the cube of the telescope size. The principle of operation was proven in miniature during bench tests that show high resolution spectra can be obtained at angular resolutions equal to seeing. Mathematical models of the underlying relationships show that flux collection increases with increased angles of grazing exodus even as efficiency decreases. Zemax models show a 30° field-of-view and the capacity to take spectra of all sources within that very wide field-of-view. The method lends itself to large apertures, because it is tolerant of POG surface unevenness.

  2. Design concepts for the California Extremely Large Telescope (CELT)

    NASA Astrophysics Data System (ADS)

    Nelson, Jerry E.

    2000-08-01

    The California Extremely Large Telescope is a study currently underway by the University of California and the California Institute of Technology, to assess the feasibility of building a 30-m ground based telescope that will push the frontiers to observational astronomy. The telescope will be fully steerable, with a large field of view, and be able to work in both a seeing-limited arena and as a diffraction-limited telescope, with adaptive optics.

  3. Fabrication of a multilevel THz Fresnel lens by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Komlenok, M. S.; Volodkin, B. O.; Knyazev, B. A.; Kononenko, T. V.; Kononenko, V. V.; Konov, V. I.; Soifer, V. A.; Pavel'ev, V. S.; Tukmakov, K. N.; Choporova, Yu Yu

    2015-10-01

    The possibility of fabricating a silicon diffractive fourlevel THz Fresnel lens by laser ablation is studied. For a microrelief to be formed on the sample surface, use is made of a femtosecond Yb : YAG laser with a high pulse repetition rate (f = 200 kHz). Characteristics of the diffractive optical element are investigated in the beam of a 141-mm free-electron laser. The measured diffraction efficiency of the lens is in good agreement with the theoretical estimate.

  4. Quantum telescope: feasibility and constraints.

    PubMed

    Kurek, A R; Pięta, T; Stebel, T; Pollo, A; Popowicz, A

    2016-03-15

    The quantum telescope is a recent idea aimed at beating the diffraction limit of spaceborne telescopes and possibly other distant target imaging systems. There is no agreement yet on the best setup of such devices, but some configurations have already been proposed. In this Letter we characterize the predicted performance of quantum telescopes and their possible limitations. Our extensive simulations confirm that the presented model of such instruments is feasible and the device can provide considerable gains in the angular resolution of imaging in the UV, optical, and infrared bands. We argue that it is generally possible to construct and manufacture such instruments using the latest or soon to be available technology. We refer to the latest literature to discuss the feasibility of the proposed QT system design. PMID:26977642

  5. Scientific management of Space Telescope

    NASA Technical Reports Server (NTRS)

    Odell, C. R.

    1981-01-01

    A historical summay is given on the science management of the Space Telescope, the inception of which began in 1962, when scientists and engineers first recommended the development of a nearly diffraction limited substantial-size optical telescope. Phase A, the feasibility requirements generation phase, began in 1971 and consisted largely of NASA scientists and a NASA design. Phase B, the preliminary design phase, established a tiered structure of scientists, led by the Large Space Telescope operations and Management Work Group. A Mission Operations Working Group headed six instrument definition teams to develop the essential instrument definitions. Many changes took place during Phase B, before design and development, which began in 1978 and still continues today.

  6. Quantum telescope: feasibility and constraints.

    PubMed

    Kurek, A R; Pięta, T; Stebel, T; Pollo, A; Popowicz, A

    2016-03-15

    The quantum telescope is a recent idea aimed at beating the diffraction limit of spaceborne telescopes and possibly other distant target imaging systems. There is no agreement yet on the best setup of such devices, but some configurations have already been proposed. In this Letter we characterize the predicted performance of quantum telescopes and their possible limitations. Our extensive simulations confirm that the presented model of such instruments is feasible and the device can provide considerable gains in the angular resolution of imaging in the UV, optical, and infrared bands. We argue that it is generally possible to construct and manufacture such instruments using the latest or soon to be available technology. We refer to the latest literature to discuss the feasibility of the proposed QT system design.

  7. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays.

    PubMed

    Zhang, Shuyan; Kim, Myoung-Hwan; Aieta, Francesco; She, Alan; Mansuripur, Tobias; Gabay, Ilan; Khorasaninejad, Mohammadreza; Rousso, David; Wang, Xiaojun; Troccoli, Mariano; Yu, Nanfang; Capasso, Federico

    2016-08-01

    We report the first demonstration of a mid-IR reflection-based flat lens with high efficiency and near diffraction-limited focusing. Focusing efficiency as high as 80%, in good agreement with simulations (83%), has been achieved at 45° incidence angle at λ = 4.6 μm. The off-axis geometry considerably simplifies the optical arrangement compared to the common geometry of normal incidence in reflection mode which requires beam splitters. Simulations show that the effects of incidence angle are small compared to parabolic mirrors with the same NA. The use of single-step photolithography allows large scale fabrication. Such a device is important in the development of compact telescopes, microscopes, and spectroscopic designs. PMID:27505769

  8. Processing of data from innovative parabolic strip telescope.

    NASA Astrophysics Data System (ADS)

    Kosejk, Vladislav; Novy, J.; Chadzitaskos, Goce

    2015-12-01

    This paper presents an innovative telescope design based on the usage of a parabolic strip fulfilling the function of an objective. Isaac Newton was the first to solve the problem of chromatic aberration, which is caused by a difference in the refractive index of lenses. This problem was solved by a new kind of telescope with a mirror used as an objective. There are many different kinds of telescopes. The most basic one is the lens telescope. This type of a telescope uses a set of lenses. Another type is the mirror telescope, which employs the concave mirror, spherical parabolic mirror or hyperbolically shaped mirror as its objective. The lens speed depends directly on the surface of a mirror. Both types can be combined to form a telescope composed of at least two mirrors and a set of lenses. The light is reflected from the primary mirror to the secondary one and then to the lens system. This type is smaller-sized, with a respectively reduced lens speed. The telescope design presented in this paper uses a parabolic strip fulfilling the function of an objective. Observed objects are projected as lines in a picture plane. Each of the lines of a size equal to the size of the strip corresponds to the sum of intensities of the light coming perpendicular to the objective from an observed object. A series of pictures taken with a different rotation and processed by a special reconstruction algorithm is needed to get 2D pictures. The telescope can also be used for fast detection of objects. In this mode, the rotation and multiple pictures are not needed, just one picture in the focus of a mirror is required to be taken.

  9. Neutrino telescopes

    SciTech Connect

    Costantini, H.

    2012-09-15

    Neutrino astrophysics offers a new possibility to observe our Universe: high-energy neutrinos, produced by the most energetic phenomena in our Galaxy and in the Universe, carry complementary (if not exclusive) information about the cosmos: this young discipline extends in fact the conventional astronomy beyond the usual electromagnetic probe. The weak interaction of neutrinos with matter allows them to escape from the core of astrophysical objects and in this sense they represent a complementary messenger with respect to photons. However, their detection on Earth due to the small interaction cross section requires a large target mass. The aim of this article is to review the scientific motivations of the high-energy neutrino astrophysics, the detection principles together with the description of a running apparatus, the experiment ANTARES, the performance of this detector with some results, and the presentation of other neutrino telescope projects.

  10. Close-Packed Silicon Lens Antennas for Millimeter-Wave MKID Camera

    NASA Astrophysics Data System (ADS)

    Nitta, Tom; Karatsu, Kenichi; Sekimoto, Yutaro; Naruse, Masato; Sekine, Masakazu; Sekiguchi, Shigeyuki; Matsuo, Hiroshi; Noguchi, Takashi; Mitsui, Kenji; Okada, Norio; Seta, Masumichi; Nakai, Naomasa

    2014-09-01

    We have been developing a large-format millimeter-wave camera based on lens-antenna-coupled microwave kinetic inductance detectors (MKIDs) for a planned telescope at Dome Fuji (3810 m a.s.l.), Antarctica. Optical coupling to the MKID incorporates double-slot antennas and a silicon lens array. To realize a large-format camera (10,000 pixels), a highly integrated small-diameter lens array and fast optics are required. Lens diameters of 1.2, 2, and 3 times the target wavelength are investigated for the main beam symmetry, side-lobe level, cross-polarization level, and bandwidth, considering the effects of the surrounding lenses. In this study, we present the simulated beam pattern profiles of close-packed lens antenna and the effect of misalignment between the silicon lens and double-slot antenna. We also show the evaluations of the developed 721-pixel close-packed silicon lens array.

  11. Characteristic of laser diode beam propagation through a collimating lens.

    PubMed

    Xu, Qiang; Han, Yiping; Cui, Zhiwei

    2010-01-20

    A mathematical model of a laser diode beam propagating through a collimating lens is presented. Wave propagation beyond the paraxial approximation is studied. The phase delay of the laser diode wave in passing through the lens is analyzed in detail. The propagation optical field after the lens is obtained from the diffraction integral by the stationary phase method. The model is employed to predict the light intensity at various beam cross sections, and the computed intensity distributions are in a good agreement with the corresponding measurements.

  12. Spider diffraction: a comparison of curved and straight legs

    SciTech Connect

    Richter, J.L.

    1984-06-15

    It has been known for some time that, if curved legs rather than the usual straight ones are used in the spider that supports the secondary optics in certain telescopes, the visible diffraction effect is reduced. Fraunhofer theory is used to calculate the diffraction effects due to the curved leg spider. Calculated and photographic diffraction patterns are compared for straight and curved leg spiders.

  13. LISA Telescope Spacer Design Issues

    NASA Technical Reports Server (NTRS)

    Livas, Jeff; Arsenovic, P.; Catelluci, K.; Generie, J.; Howard, J.; Stebbins, Howard R.; Preston, A.; Sanjuan, J.; Williams, L.; Mueller, G.

    2010-01-01

    The LISA mission observes gravitational waves by measuring the separations between freely floating proof masses located 5 million kilometers apart with an accuracy of - 10 picometers. The separations are measured interferometrically. The telescope is an afocal Cassegrain style design with a magnification of 80x. The entrance pupil has a 40 cm diameter and will either be centered on-axis or de-centered off-axis to avoid obscurations. Its two main purposes are to transform the small diameter beam used on the optical bench to a diffraction limited collimated beam to efficiently transfer the metrology laser between spacecraft, and to receive the incoming light from the far spacecraft. It transmits and receives simultaneously. The basic optical design and requirements are well understood for a conventional telescope design for imaging applications, but the LISA design is complicated by the additional requirement that the total optical path through the telescope must remain stable at the picometer level over the measurement band during the mission to meet the measurement accuracy. We describe the mechanical requirements for the telescope and the preliminary work that has been done to understand the materials and mechanical issues associated with the design of a passive metering structure to support the telescope and to maintain the spacing between the primary and secondary mirrors in the LISA on-orbit environment. This includes the requirements flowdown from the science goals, thermal modeling of the spacecraft and telescope to determine the expected temperature distribution, layout options for the telescope including an on- and off-axis design. Plans for fabrication and testing will be outlined.

  14. Preliminary LISA Telescope Spacer Design

    NASA Technical Reports Server (NTRS)

    Livas, J.; Arsenovic, P.; Catellucci, K.; Generie, J.; Howard, J.; Stebbins, R. T.

    2010-01-01

    The Laser Interferometric Space Antenna (LISA) mission observes gravitational waves by measuring the separations between freely floating proof masses located 5 million kilometers apart with an accuracy of approximately 10 picometers. The separations are measured interferometrically. The telescope is an afocal Cassegrain style design with a magnification of 80x. The entrance pupil has a 40 cm diameter and will either be centered on-axis or de-centered off-axis to avoid obscurations. Its two main purposes are to transform the small diameter beam used on the optical bench to a diffraction limited collimated beam to efficiently transfer the metrology laser between spacecraft, and to receive the incoming light from the far spacecraft. It transmits and receives simultaneously. The basic optical design and requirements are well understood for a conventional telescope design for imaging applications, but the LISA design is complicated by the additional requirement that the total optical path through the telescope must remain stable at the picometer level over the measurement band during the mission to meet the measurement accuracy. This poster describes the requirements for the telescope and the preliminary work that has been done to understand the materials and mechanical issues associated with the design of a passive metering structure to support the telescope and to maintain the spacing between the primary and secondary mirrors in the LISA on-orbit environment. This includes the requirements flowdown from the science goals, thermal modeling of the spacecraft and telescope to determine the expected temperature distribution,layout options for the telescope including an on- and off-axis design, and plans for fabrication and testing.

  15. JSC Particle Telescope

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.

    2003-01-01

    This paper presents a detailed description of the Johnson Space Center's Particle Telescope. Schematic diagrams of the telescope geometry and an electronic block diagram of the detector telescopes' components are also described.

  16. Optimization of the Tilted-Pulse-Front Terahertz Excitation Setup Containing Telescope

    NASA Astrophysics Data System (ADS)

    Tokodi, Levente; Hebling, J.; Pálfalvi, L.

    2016-09-01

    Optimization of the telescopic tilted-pulse-front terahertz excitation setup with respect to the imaging errors is given. A guideline is presented in the form of simple analytical formulae describing the optimal geometrical configuration of the telescopic setup. Pump pulse distortions and terahertz wave-front distortions are analyzed by ray tracing calculations supposing near-infrared pump pulses with 200 fs transform limited pulse length. The detrimental effects of imaging errors in a tilted-pulse-front terahertz source can be significantly reduced by using telescopic imaging instead of one-lens. It is also shown, that in the case of the one-lens setup significant, and in the case of the telescopic setup, less significant reduction of the imaging errors can be achieved by using achromat lens(es) instead of singlet one(s). Calculation results show that the telescopic setup consisting of two achromat lenses is the most promising choice among the practically relevant schemes.

  17. Galaxy mergers and gravitational lens statistics

    NASA Technical Reports Server (NTRS)

    Rix, Hans-Walter; Maoz, Dan; Turner, Edwin L.; Fukugita, Masataka

    1994-01-01

    We investigate the impact of hierarchical galaxy merging on the statistics of gravitational lensing of distant sources. Since no definite theoretical predictions for the merging history of luminous galaxies exist, we adopt a parameterized prescription, which allows us to adjust the expected number of pieces comprising a typical present galaxy at z approximately 0.65. The existence of global parameter relations for elliptical galaxies and constraints on the evolution of the phase space density in dissipationless mergers, allow us to limit the possible evolution of galaxy lens properties under merging. We draw two lessons from implementing this lens evolution into statistical lens calculations: (1) The total optical depth to multiple imaging (e.g., of quasars) is quite insensitive to merging. (2) Merging leads to a smaller mean separation of observed multiple images. Because merging does not reduce drastically the expected lensing frequency, it cannot make lambda-dominated cosmologies compatible with the existing lensing observations. A comparison with the data from the Hubble Space Telescope (HST) Snapshot Survey shows that models with little or no evolution of the lens population are statistically favored over strong merging scenarios. A specific merging scenario proposed to Toomre can be rejected (95% level) by such a comparison. Some versions of the scenario proposed by Broadhurst, Ellis, & Glazebrook are statistically acceptable.

  18. Gravitational Lens Modeling with Basis Sets

    NASA Astrophysics Data System (ADS)

    Birrer, Simon; Amara, Adam; Refregier, Alexandre

    2015-11-01

    We present a strong lensing modeling technique based on versatile basis sets for the lens and source planes. Our method uses high performance Monte Carlo algorithms, allows for an adaptive build up of complexity, and bridges the gap between parametric and pixel based reconstruction methods. We apply our method to a Hubble Space Telescope image of the strong lens system RX J1131-1231 and show that our method finds a reliable solution and is able to detect substructure in the lens and source planes simultaneously. Using mock data, we show that our method is sensitive to sub-clumps with masses four orders of magnitude smaller than the main lens, which corresponds to about {10}8{M}⊙ , without prior knowledge of the position and mass of the sub-clump. The modeling approach is flexible and maximizes automation to facilitate the analysis of the large number of strong lensing systems expected in upcoming wide field surveys. The resulting search for dark sub-clumps in these systems, without mass-to-light priors, offers promise for probing physics beyond the standard model in the dark matter sector.

  19. Ground-Based Telescope Parametric Cost Model

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  20. The Thirty Meter Telescope (TMT) Project

    NASA Astrophysics Data System (ADS)

    Sanders, G.; TMT Project

    2004-12-01

    The Thirty Meter Telescope (TMT) Project is engaged in a design and development phase. TMT is proposed as a private-public partnership of the California Institute of Technology and the University of California (partners in the earlier CELT design study), AURA (designers of the earlier GSMT concept), and the Canadian ACURA consortium (designers of the VLOT concept). The partners are developing a 30 meter diameter, finely segmented filled aperture telescope with seeing-limited and diffraction-limited capabilities to address the broad range of GSMT science goals. The paper will present the status of the project development and telescope and instrument design.

  1. Beyond the diffraction limit via optical amplification.

    PubMed

    Kellerer, Aglaé N; Ribak, Erez N

    2016-07-15

    In a previous article [Astron. Astrophys.561, A118 (2014)], we suggested a method to overcome the diffraction limit behind a telescope. We discuss and extend recent numerical simulations and test whether it is indeed possible to use photon amplification to enhance the angular resolution of a telescope or a microscope beyond the diffraction limit. An essential addition is the proposal to select events with an above-average ratio of stimulated to spontaneous photons. The analysis shows that the diffraction limit of a telescope is surpassed by a factor of 10 for an amplifier gain of 200, if the analysis is restricted to a tenth of the incoming astronomical photons. A gain of 70 is sufficient with a hundredth of the photons. More simulations must be performed to account for the bunching of spontaneous photons. PMID:27420490

  2. Boundary diffraction wave integrals for diffraction modeling of external occulters.

    PubMed

    Cady, Eric

    2012-07-01

    An occulter is a large diffracting screen which may be flown in conjunction with a telescope to image extrasolar planets. The edge is shaped to minimize the diffracted light in a region beyond the occulter, and a telescope may be placed in this dark shadow to view an extrasolar system with the starlight removed. Errors in position, orientation, and shape of the occulter will diffract additional light into this region, and a challenge of modeling an occulter system is to accurately and quickly model these effects. We present a fast method for the calculation of electric fields following an occulter, based on the concept of the boundary diffraction wave: the 2D structure of the occulter is reduced to a 1D edge integral which directly incorporates the occulter shape, and which can be easily adjusted to include changes in occulter position and shape, as well as the effects of sources-such as exoplanets-which arrive off-axis to the occulter. The structure of a typical implementation of the algorithm is included. PMID:22772218

  3. Spectral and angular dependences of the efficiency of relief-phase diffractive lenses with two- and three-layer microstructures

    NASA Astrophysics Data System (ADS)

    Greisukh, G. I.; Danilov, V. A.; Ezhov, E. G.; Stepanov, S. A.; Usievich, B. A.

    2015-06-01

    The efficiency of diffractive lenses with two-layer single-relief and three-layer double-relief microstructures is studied. Studies are carried out using the scalar and electromagnetic diffraction theories. Depending on the requirements for the diffractive lens, the theories permit one to justifiably choose the configuration, optical materials, and constructive parameters of the microstructure, as well as to determine the real maximum allowable angle of radiation incidence on the diffractive lens with the microstructure of a particular type.

  4. Contact lens hygiene compliance and lens case contamination: A review.

    PubMed

    Wu, Yvonne Tzu-Ying; Willcox, Mark; Zhu, Hua; Stapleton, Fiona

    2015-10-01

    A contaminated contact lens case can act as a reservoir for microorganisms that could potentially compromise contact lens wear and lead to sight threatening adverse events. The rate, level and profile of microbial contamination in lens cases, compliance and other risk factors associated with lens case contamination, and the challenges currently faced in this field are discussed. The rate of lens case contamination is commonly over 50%. Coagulase-negative Staphylococcus, Bacillus spp., Pseudomonas aeruginosa and Serratia marcescens are frequently recovered from lens cases. In addition, we provide suggestions regarding how to clean contact lens cases and improve lens wearers' compliance as well as future lens case design for reducing lens case contamination. This review highlights the challenges in reducing the level of microbial contamination which require an industry wide approach.

  5. Objective Lens Optimized for Wavefront Delivery, Pupil Imaging, and Pupil Ghosting

    NASA Technical Reports Server (NTRS)

    Olzcak, Gene

    2009-01-01

    An interferometer objective lens (or diverger) may be used to transform a collimated beam into a diverging or converging beam. This innovation provides an objective lens that has diffraction-limited optical performance that is optimized at two sets of conjugates: imaging to the objective focus and imaging to the pupil. The lens thus provides for simultaneous delivery of a high-quality beam and excellent pupil resolution properties.

  6. Unitary lens semiconductor device

    DOEpatents

    Lear, K.L.

    1997-05-27

    A unitary lens semiconductor device and method are disclosed. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors. 9 figs.

  7. Unitary lens semiconductor device

    DOEpatents

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  8. Intraocular lens fabrication

    DOEpatents

    Salazar, Mike A.; Foreman, Larry R.

    1997-01-01

    This invention describes a method for fabricating an intraocular lens made rom clear Teflon.TM., Mylar.TM., or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube.

  9. Intraocular lens fabrication

    DOEpatents

    Salazar, M.A.; Foreman, L.R.

    1997-07-08

    This invention describes a method for fabricating an intraocular lens made from clear Teflon{trademark}, Mylar{trademark}, or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube. 13 figs.

  10. Ultraviolet spectrograph lens

    SciTech Connect

    Brixner, B.; Winkler, M.A.

    1981-01-01

    A 700-mm f/4.7 spectrograph camera lens was designed for imaging spectral lines in the 200 to 400-nm region on a 120-mm flat image field. Lens elements of fused silica and crystalline calcium fluoride have so little secondary spectrum that raytracing calculations predict a monochromatic resolution limit of 30 lines/mm without refocusing in the 238- to 365-nm region. Light scattering at the polished calcium-fluoride surfaces is avoided by sandwiching the fluoride elements between fused silica and cementing with silicone fluid. The constructed lens makes good spectrograms.

  11. Ultraviolet-spectrograph lens

    SciTech Connect

    Brixner, B.; Winkler, M.A.

    1981-01-01

    A 700-mm f/4.7 spectrograph camera lens was designed for imaging spectral lines in the 200- to 400-nm region on a 120-mm flat image field. Lens elements of fused silica and crystal calcium fluoride give such good achromatization that raytracing calculations predict a resolution limit of 30 lines/mm without refocusing in the 238- to 365-nm region. Light scattering at the polished calcium-fluoride surfaces is avoided by sandwiching the fluoride elements between fused silica and cementing with silicone fluid. The constructed lens makes good spectrograms.

  12. Reflections From a Fresnel Lens

    ERIC Educational Resources Information Center

    Keeports, David

    2005-01-01

    Reflection of light by a convex Fresnel lens gives rise to two distinct images. A highly convex inverted real reflective image forms on the object side of the lens, while an upright virtual reflective image forms on the opposite side of the lens. I describe here a set of laser experiments performed upon a Fresnel lens. These experiments provide…

  13. Solar Rejection Filter for Large Telescopes

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Lesh, James

    2009-01-01

    To reject solar radiation photons at the front aperture for large telescopes, a mosaic of large transmission mode filters is placed in front of the telescope or at the aperture of the dome. Filtering options for effective rejection of sunlight include a smaller filter down-path near the focus of the telescope, and a large-diameter filter located in the front of the main aperture. Two types of large filters are viable: reflectance mode and transmittance mode. In the case of reflectance mode, a dielectric coating on a suitable substrate (e.g. a low-thermal-expansion glass) is arranged to reflect only a single, narrow wavelength and to efficiently transmit all other wavelengths. These coatings are commonly referred to as notch filter. In this case, the large mirror located in front of the telescope aperture reflects the received (signal and background) light into the telescope. In the case of transmittance mode, a dielectric coating on a suitable substrate (glass, sapphire, clear plastic, membrane, and the like) is arranged to transmit only a single wavelength and to reject all other wavelengths (visible and near IR) of light. The substrate of the large filter will determine its mass. At first glance, a large optical filter with a diameter of up to 10 m, located in front of the main aperture, would require a significant thickness to avoid sagging. However, a segmented filter supported by a structurally rugged grid can support smaller filters. The obscuration introduced by the grid is minimal because the total area can be made insignificant. This configuration can be detrimental to a diffraction- limited telescope due to diffraction effects at the edges of each sub-panel. However, no discernable degradation would result for a 20 diffraction-limit telescope (a photon bucket). Even the small amount of sagging in each subpanel should have minimal effect in the performance of a non-diffraction limited telescope because the part has no appreciable optical power. If the

  14. Metrology of achromatic diffractive features on chalcogenide lenses

    NASA Astrophysics Data System (ADS)

    Scordato, M.; Nelson, J.; Schwertz, K.; Mckenna, P.; Bagwell, J.

    2015-10-01

    Achromatic diffractive features on lenses are widely used in industry for color correction, however there is not a welldefined standard to quantify the performance of the lenses. One metric used to qualify a lens is the sag deviation from the nominal lens profile. Imperfections in the manufacturing of the diffractive feature may cause scattering and performance loss. This is not reflected in sag deviation measurements, therefore performance measurements are required. There are different quantitative approaches to measuring the performance of an achromatic diffractive lens. Diffraction efficiency, a measure of optical power throughput, is a common design metric used to define the percent drop from the modulation transfer function (MTF) metric. The line spread function (LSF) shows a layout of the intensity with linear distance and an ensquared energy specification can be implemented. The MTF is a common analysis tool for assemblies and can be applied to a single element. These functional tests will be performed and compared with diffractive lenses manufactured by different tool designs. This paper displays the results found with various instruments. Contact profilometry was used to inspect the profile of the diffractive elements, and a MTF bench was used to characterize lens performance. Included will be a discussion comparing the results of profile traces and beam profiles to expected diffraction efficiency values and the effects of manufacturing imperfections.

  15. Phase Aberrations in Diffraction Microscopy

    SciTech Connect

    Marchesini, S; Chapman, H N; Barty, A; Howells, M R; Spence, J H; Cui, C; Weierstall, U; Minor, A M

    2005-09-29

    In coherent X-ray diffraction microscopy the diffraction pattern generated by a sample illuminated with coherent x-rays is recorded, and a computer algorithm recovers the unmeasured phases to synthesize an image. By avoiding the use of a lens the resolution is limited, in principle, only by the largest scattering angles recorded. However, the imaging task is shifted from the experiment to the computer, and the algorithm's ability to recover meaningful images in the presence of noise and limited prior knowledge may produce aberrations in the reconstructed image. We analyze the low order aberrations produced by our phase retrieval algorithms. We present two methods to improve the accuracy and stability of reconstructions.

  16. Contact Lens Risks

    MedlinePlus

    ... Health and Consumer Devices Consumer Products Contact Lenses Contact Lens Risks Share Tweet Linkedin Pin it More ... redness blurred vision swelling pain Serious Hazards of Contact Lenses Symptoms of eye irritation can indicate a ...

  17. Inhomogeneous Lens Structures for Integrated Optics.

    NASA Astrophysics Data System (ADS)

    Finlayson, Neil

    Available from UMI in association with The British Library. Requires signed TDF. The thesis is concerned with the design, analysis, fabrication and evaluation of integrated optic lenses which are inhomogeneous either in physical shape or in refractive index profile. Connections are made between the study of these lenses and the exciting new field of optical computing. A special class of non-uniform lenses forms the main area of interest in the present study. Historically, the development of these lenses has followed two distinct lines. In one method the optical path is made to vary directly, whilst the other method involves controlling the physical path, and thus the optical path, through the principle of equivalence. The dual development has been continued in the field of integrated optics, where lenses based on direct control of the optical path are termed variable-index lenses and those based on physical path control are termed geodesic lenses. The perfect variable -index lens studied in this work was the well-known Luneburg lens. The design formulae for both types of lens are presented. A simpler lens, of spherical geometry, is also presented. Chapter three investigates the problems involved in modelling fabrication conditions in a thermal-evaporation -in-vacuum environment so that lens profiles can actually be constructed. Chapter four goes into methods of tracing rays through these lenses in some detail. The beam-propagation method (BPM) is used to study diffraction and associated effects in inhomogeneous lenses. Negative focal shifts are reported which are not predicted by geometrical optics or the usual approximate diffraction theories. The fabrication of lenses is considered. Planar waveguide measurements carried out on the various materials used in the study are presented. A major problem in the fabrication of geodesic lenses, that of obtaining a uniform waveguide layer over the complete lens area, is dealt with in some detail. Extensive tests on the

  18. Analysis of intermediary scan-lens and tube-lens mechanisms for optical coherence tomography.

    PubMed

    Atry, Farid; Pashaie, Ramin

    2016-02-01

    Combining an optical coherence tomography (OCT) scanner with other techniques such as optogenetic neurostimulation or fluorescence imaging requires integrating auxiliary components into the optical path of the setup. Due to the short scanning distance of most OCT objectives, adding scan and tube lenses in the device is essential to open space between the back-focal-plane of the objective and center of mass of the mirrors in the galvanometer. The effect of the scan and tube lenses on the focal spot size of the scanner using off-the-shelf components are theoretically explored for three different designs in this paper. Two lens mechanisms were implemented and tested in a custom-built OCT scanner to experimentally measure point-spread functions. Based on our analysis, proper form of a four-element semi-Plössl lens provides a superior performance compared with an achromatic doublet when used as a scan/tube lens. The former lens design provides close to diffraction-limited resolution for scan angles up to 6.4°; however, due to aberrations in an achromatic doublet, the later design offers diffraction-limited resolution confined to 2° scan angles.

  19. Analysis of intermediary scan-lens and tube-lens mechanisms for optical coherence tomography.

    PubMed

    Atry, Farid; Pashaie, Ramin

    2016-02-01

    Combining an optical coherence tomography (OCT) scanner with other techniques such as optogenetic neurostimulation or fluorescence imaging requires integrating auxiliary components into the optical path of the setup. Due to the short scanning distance of most OCT objectives, adding scan and tube lenses in the device is essential to open space between the back-focal-plane of the objective and center of mass of the mirrors in the galvanometer. The effect of the scan and tube lenses on the focal spot size of the scanner using off-the-shelf components are theoretically explored for three different designs in this paper. Two lens mechanisms were implemented and tested in a custom-built OCT scanner to experimentally measure point-spread functions. Based on our analysis, proper form of a four-element semi-Plössl lens provides a superior performance compared with an achromatic doublet when used as a scan/tube lens. The former lens design provides close to diffraction-limited resolution for scan angles up to 6.4°; however, due to aberrations in an achromatic doublet, the later design offers diffraction-limited resolution confined to 2° scan angles. PMID:26836064

  20. Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation.

    PubMed

    Glytsis, E N; Harrigan, M E; Hirayama, K; Gaylord, T K

    1998-01-01

    Practical collimating diffractive cylindrical lenses of 2, 4, 8, and 16 discrete levels are analyzed with a sequential application of the two-region formulation of the rigorous electromagnetic boundary-element method (BEM). A Gaussian beam of TE or TM polarization is incident upon the finite-thickness lens. F/4, F/2, and F/1.4 lenses are analyzed and near-field electric-field patterns are presented. The near-field wave-front quality is quantified by its mean-square deviation from a planar wave front. This deviation is found to be less than 0.05 free-space wavelengths. The far-field intensity patterns are determined and compared with the ones predicted by the approximate Fraunhofer scalar diffraction analysis. The diffraction efficiencies determined with the rigorous BEM are found to be generally lower than those obtained with the scalar approximation. For comparison, the performance characteristics of the corresponding continuous Fresnel (continuous profile within a zone but discontinuous at zone boundaries) and continuous refractive lenses are determined by the use of both the BEM and the scalar approximation. The diffraction efficiency of the continuous Fresnel lens is found to be similar to that of the 16-level diffractive lens but less than that of the continuous refractive lens. It is shown that the validity of the scalar approximation deteriorates as the lens f-number decreases.

  1. Lens auto-centering

    NASA Astrophysics Data System (ADS)

    Lamontagne, Frédéric; Desnoyers, Nichola; Doucet, Michel; Côté, Patrice; Gauvin, Jonny; Anctil, Geneviève; Tremblay, Mathieu

    2015-09-01

    In a typical optical system, optical elements usually need to be precisely positioned and aligned to perform the correct optical function. This positioning and alignment involves securing the optical element in a holder or mount. Proper centering of an optical element with respect to the holder is a delicate operation that generally requires tight manufacturing tolerances or active alignment, resulting in costly optical assemblies. To optimize optical performance and minimize manufacturing cost, there is a need for a lens mounting method that could relax manufacturing tolerance, reduce assembly time and provide high centering accuracy. This paper presents a patent pending lens mounting method developed at INO that can be compared to the drop-in technique for its simplicity while providing the level of accuracy close to that achievable with techniques using a centering machine (usually < 5 μm). This innovative auto-centering method is based on the use of geometrical relationship between the lens diameter, the lens radius of curvature and the thread angle of the retaining ring. The autocentering principle and centering test results performed on real optical assemblies are presented. In addition to the low assembly time, high centering accuracy, and environmental robustness, the INO auto-centering method has the advantage of relaxing lens and barrel bore diameter tolerances as well as lens wedge tolerances. The use of this novel lens mounting method significantly reduces manufacturing and assembly costs for high performance optical systems. Large volume productions would especially benefit from this advancement in precision lens mounting, potentially providing a drastic cost reduction.

  2. Terahertz Artificial Dielectric Lens

    NASA Astrophysics Data System (ADS)

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-03-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  3. Terahertz Artificial Dielectric Lens.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  4. Terahertz Artificial Dielectric Lens.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M

    2016-03-14

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  5. Terahertz Artificial Dielectric Lens

    PubMed Central

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  6. Copper crystal lens for medical imaging: first results

    NASA Astrophysics Data System (ADS)

    Roa, Dante E.; Smither, Robert K.

    2001-06-01

    A copper crystal lens designed to focus gamma ray energies of 100 to 200 keV has been assembled at Argonne National Laboratory. In particular, the lens has been optimized to focus the 140.6 keV gamma rays from technetium-99 m typically used in radioactive tracers. This new approach to medical imaging relies on crystal diffraction to focus incoming gamma rays in a manner similar to a simple convex lens focusing visible light. The lens is envisioned to be part of an array of lenses that can be used as a complementary technique to gamma cameras for localized scans of suspected tumor regions in the body. In addition, a 2- lens array can be used to scan a woman's breast in search of tumors with no discomfort to the patient. The incoming gamma rays are diffracted by a set of 828 copper crystal cubes arranged in 13 concentric rings, which focus the gamma rays into a very small area on a well-shielded NaI detector. Experiments performance with technetium-99 m and cobalt 57 radioactive sources indicate that a 6-lens array should be capable of detecting sources with (mu) Ci strength.

  7. Perception for a large deployable reflector telescope

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. M.; Swanson, P. N.; Meinel, A. B.; Meinel, M. P.

    1984-01-01

    Optical science and technology concepts for a large deployable reflector for far-infrared and submillimeter astronomy from above the earth's atmosphere are discussed. Requirements given at the Asilomar Conference are reviewed. The technical challenges of this large-aperture (about 20-meter) telescope, which will be diffraction limited in the infrared, are highlighted in a brief discussion of one particular configuration.

  8. Minimal movement zoom lens.

    PubMed

    Schwiegerling, Jim; Paleta-Toxqui, Carmen

    2009-04-01

    We make a novel telescope design using a pair of Alvarez lenses. Previous examples using these types of lenses were single elements used just to provide a change in power. Consequently, the location of the object and/or image plane must move. In this effort, we combine two elements to form a telescope. In this manner, we can fix the location of the object and image plane and simply change magnification. We describe the shapes of the Alvarez lenses used, as well as the advantages, the disadvantages, and the differences between a telescope using Alvarez lenses and a traditional telescope. PMID:19340148

  9. Optical aperture synthesis with electronically connected telescopes

    PubMed Central

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.

    2015-01-01

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705

  10. Optical aperture synthesis with electronically connected telescopes.

    PubMed

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D

    2015-01-01

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705

  11. 30-Lens interferometer for high-energy X-rays.

    PubMed

    Lyubomirskiy, Mikhail; Snigireva, Irina; Kohn, Victor; Kuznetsov, Sergey; Yunkin, Vyacheslav; Vaughan, Gavin; Snigirev, Anatoly

    2016-09-01

    A novel high-energy multi-lens interferometer consisting of 30 arrays of planar compound refractive lenses is reported. Under coherent illumination each lens array creates a diffraction-limited secondary source. Overlapping such coherent beams produces an interference pattern demonstrating strong longitudinal functional dependence. The proposed multi-lens interferometer was tested experimentally at the 100 m-long ID11 ESRF beamline in the X-ray energy range from 30 to 65 keV. The interference pattern generated by the interferometer was recorded at fundamental and fractional Talbot distances. An effective source size (FWHM) of the order of 15 µm was determined from the first Talbot image, proving the concept that the multi-lens interferometer can be used as a high-resolution tool for beam diagnostics. PMID:27577763

  12. 30-Lens interferometer for high-energy X-rays.

    PubMed

    Lyubomirskiy, Mikhail; Snigireva, Irina; Kohn, Victor; Kuznetsov, Sergey; Yunkin, Vyacheslav; Vaughan, Gavin; Snigirev, Anatoly

    2016-09-01

    A novel high-energy multi-lens interferometer consisting of 30 arrays of planar compound refractive lenses is reported. Under coherent illumination each lens array creates a diffraction-limited secondary source. Overlapping such coherent beams produces an interference pattern demonstrating strong longitudinal functional dependence. The proposed multi-lens interferometer was tested experimentally at the 100 m-long ID11 ESRF beamline in the X-ray energy range from 30 to 65 keV. The interference pattern generated by the interferometer was recorded at fundamental and fractional Talbot distances. An effective source size (FWHM) of the order of 15 µm was determined from the first Talbot image, proving the concept that the multi-lens interferometer can be used as a high-resolution tool for beam diagnostics.

  13. Active optics and modified-Rumsey wide-field telescopes: MINITRUST demonstrators with vase- and tulip-form mirrors

    NASA Astrophysics Data System (ADS)

    Lemaître, Gérard R.; Montiel, Pierre; Joulié, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2005-12-01

    Wide-field astronomy requires the development of larger aperture telescopes. The optical properties of a three-mirror modified-Rumsey design provide significant advantages when compared to other telescope designs: (i) at any wavelength, the design has a flat field and is anastigmatic; (ii) the system is extremely compact, i.e., it is almost four times shorter than a Schmidt. Compared to the equally compact flat-field Ritchey-Chrétien with a doublet-lens corrector, as developed for the Sloan digital sky survey - and which requires the polishing of six optical surfaces - the proposed modified-Rumsey design requires only a two-surface polishing and provides a better imaging quality. All the mirrors are spheroids of the hyperboloid type. Starting from the classical Rumsey design, it is shown that the use of all eight available free parameters allows the simultaneous aspherization of the primary and tertiary mirrors by active optics methods from a single deformable substrate. The continuity conditions between the primary and the tertiary hyperbolizations are achieved by an intermediate narrow ring of constant thickness that is not optically used. After the polishing of a double vase form in a spherical shape, the primary-tertiary hyperbolizations are achieved by in situ stressing. The tulip-form secondary is hyperbolized by stress polishing. Other active optics alternatives are possible for a space telescope. The modified-Rumsey design is of interest for developing large space- and ground-based survey telescopes in UV, visible, or IR ranges, such as currently demonstrated with the construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° field of view. Double-pass optical tests show diffraction-limited images.

  14. Laser diode assembly including a cylindrical lens

    DOEpatents

    Snyder, J.J.; Reichert, P.

    1992-01-14

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. 11 figs.

  15. Laser diode assembly including a cylindrical lens

    DOEpatents

    Snyder, James J.; Reichert, Patrick

    1992-01-01

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing.

  16. World Atlas of large optical telescopes (second edition)

    NASA Technical Reports Server (NTRS)

    Meszaros, S. P.

    1986-01-01

    By early 1986 there will be over 120 large optical telescopes in the world engaged in astronomical research with mirror or lens diameters of one meter (39-inches) and larger. This atlas gives information on these telescopes and shows their observatory sites on continent sized maps. Also shown are observatory locations considered suitable for the construction of future large telescopes. Of the 126 major telescopes listed in this atlas, 101 are situated in the Northern Hemisphere and 25 are located in the Southern Hemisphere. The totals by regions are as follows: Europe (excluding the USSR), 30; Soviet Union, 9; Asia (excluding the USSR), 5; Africa, 9; Australia, 6; The Pacific, 4 (all on Hawaii); South America, 17; North America, 46 (the continental US has 38 of these). In all, the United States has 42 of the world's major telescopes on its territory (continental US plus Hawaii) making it by far the leading nation in astronomical instrumentation.

  17. Tunable optofluidic birefringent lens.

    PubMed

    Wee, D; Hwang, S H; Song, Y S; Youn, J R

    2016-05-01

    An optofluidic birefringent lens is demonstrated using hydrodynamic liquid-liquid (L(2)) interfaces in a microchannel. The L(2) lens comprises a nematic liquid crystal (NLC) phase and an optically isotropic phase for the main stream and the surrounding sub-stream, respectively. When the optofluidic device is subjected to a sufficiently strong electric field perpendicular to the flow direction, NLCs are allowed to orient along the external field rather than the flow direction overcoming fluidic viscous stress. The characteristics of the optofluidic birefringence lens are investigated by experimental and numerical analyses. The difference between the refractive indices of the main stream and the sub-stream changes according to the polarization direction of incident light, which determines the optical behaviour of the lens. The incidence of s-polarized light leads to a short focal point, while p-polarized light has a relatively long focal distance from the same L(2) interface. The curvatures and focal lengths of the lens are successfully evaluated by a hydrodynamic theory of NLCs and a simple ray-tracing model. PMID:27035877

  18. Simple geometry to record fractional Fourier transform hologram with holographic lens

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Zhang, Yixiao; Zeng, Yangsu; Yang, Jing; Xie, Shiwei; Gao, Fuhua; Huang, Xiaoyang; Yao, Jun; Du, Jinglei; Guo, Yongkang

    2002-06-01

    FRTH is a new kind of hologram, which is different form common Fresnel holograms and Fourier transform holograms. It can be applied for fractional Fourier transform filtering and anti-counterfeiting, etc. Due to the flexibility of holographic lens, we present a method that uses the -1 diffraction wave of holographic lens as the object wave and the 0 diffraction wave as the reference wave to record FRTH. It provides a new simple way to record FRTH. In this paper, the theory of achieving FRT and recording FRTH with holographic lens has been discussed, and the experimental results are also presented.

  19. Ring lens focusing and push-pull tracking scheme for optical disk systems

    NASA Technical Reports Server (NTRS)

    Gerber, R.; Zambuto, J.; Erwin, J. K.; Mansuripur, M.

    1993-01-01

    An experimental comparison of the ring lens and the astigmatic techniques of generating focus-error-signal (FES) in optical disk systems reveals that the ring lens generates a FES over two times steeper than that produced by the astigmat. Partly due to this large slope and, in part, because of its diffraction-limited behavior, the ring lens scheme exhibits superior performance characteristics. In particular the undesirable signal known as 'feedthrough' (induced on the FES by track-crossings during the seek operation) is lower by a factor of six compared to that observed with the astigmatic method. The ring lens is easy to align and has reasonable tolerance for positioning errors.

  20. NLST: the Indian National Large Solar Telescope

    NASA Astrophysics Data System (ADS)

    Hasan, S. S.; Soltau, D.; Kärcher, H.; Süss, M.; Berkefeld, T.

    2010-07-01

    India is planning a new solar telescope with an aperture of 2-m for carrying out high resolution studies of the Sun. Site characterization is underway at high altitude locations in the Himalayan mountains. A detailed concept design for NLST (National Large Solar Telescope) has been completed. The optical design of the telescope is optimized for high optical throughput and uses a minimum number of optical elements. A high order AO system is integrated part of the design that works with a modest Fried's parameter of 7-cm to give diffraction limited performance. The telescope will be equipped with a suite of post-focus instruments including a high resolution spectrograph and a polarimeter. NLST will also be used for carrying out stellar observations during the night. The mechanical design of the telescope, building, and the innovative dome is optimized to take advantage of the natural air flush which will help to keep the open telescope in temperature equilibrium. After its completion (planned for 2014), NLST will fill a gap in longitude between the major solar facilities in USA and Europe, and it will be for years the largest solar telescope in the world

  1. Design of plastic diffractive-refractive compact zoom lenses for visible-near-IR spectrum.

    PubMed

    Greisukh, Grigoriy I; Ezhov, Evgeniy G; Sidyakina, Zoya A; Stepanov, Sergei A

    2013-08-10

    The requirements for selecting the initial scheme for a compact plastic zoom lens are formulated. The main stages of the initial scheme of the transformation, incorporating the diffractive lens and replacement of the lenses' glasses by optical plastics, are presented. The efficiency of the suggested techniques of the optical layout process are demonstrated by using the example of the design and analysis of a zoom lens intended for use in security cameras for day or night vision.

  2. Metamaterial lens design

    NASA Astrophysics Data System (ADS)

    Shepard, Ralph Hamilton, III

    Developments in nanotechnology and material science have produced optical materials with astonishing properties. Theory and experimentation have demonstrated that, among other properties, the law of refraction is reversed at an interface between a naturally occurring material and these so-called metamaterials. As the technology advances metamaterials have the potential to vastly impact the field of optical science. In this study we provide a foundation for future work in the area of geometric optics and lens design with metamaterials. The concept of negative refraction is extended to derive a comprehensive set of first-order imaging principles as well as an exhaustive aberration theory to 4th order. Results demonstrate congruence with the classical theory; however, negative refraction introduces a host of novel properties. In terms of aberration theory, metamaterials present the lens designer with increased flexibility. A singlet can be bent to produce either positive or negative spherical aberration (regardless of its focal length), its contribution to coma can become independent of its conjugate factor, and its field curvature takes on the opposite sign of its focal power. This is shown to be advantageous in some designs such as a finite conjugate relay lens; however, in a wider field of view landscape lens we demonstrate a metamaterial's aberration properties may be detrimental. This study presents the first comprehensive investigation of metamaterial lenses using industry standard lens design software. A formal design study evaluates the performance of doublet and triplet lenses operating at F/5 with a 100 mm focal length, a 20° half field of view, and specific geometric constraints. Computer aided optimization and performance evaluation provide experimental controls to remove designer-induced bias from the results. Positive-index lenses provide benchmarks for comparison to metamaterial systems subjected to identical design constraints. We find that

  3. Microoptical compound lens

    DOEpatents

    Sweatt, William C.; Gill, David D.

    2007-10-23

    An apposition microoptical compound lens comprises a plurality of lenslets arrayed around a segment of a hollow, three-dimensional optical shell. The lenslets collect light from an object and focus the light rays onto the concentric, curved front surface of a coherent fiber bundle. The fiber bundle transports the light rays to a planar detector, forming a plurality of sub-images that can be reconstructed as a full image. The microoptical compound lens can have a small size (millimeters), wide field of view (up to 180.degree.), and adequate resolution for object recognition and tracking.

  4. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  5. Explication of diffraction lights on an optical imaging system from a Fraunhofer diffraction perspective

    NASA Astrophysics Data System (ADS)

    Ando, Takamasa; Korenaga, Tsuguhiro; Suzuki, Masa-aki

    2012-06-01

    Low-height camera modules are demanded for such applications as cellular phones and vehicles. For designing optical lens, it has widely been recognized that a trade-off exists between reducing the number of lenses and camera resolution. The optical performance of imaging lenses has been improved by diffraction gratings, which have a peculiar inverse dispersion in the wavelength and exhibit the efficacy of correction for chromatic aberration. We can simultaneously reduce the number of lenses and maintain optical resolution using diffraction gratings. However, we have found a generation of striped flare lights under intense light sources that differ from unnecessary order diffraction lights. In this paper, we reveal the generation mechanism of these new striped diffraction lights and suggest a novel structure of diffraction gratings that can decrease them.

  6. Telescopes and space exploration

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Maran, S. P.

    1976-01-01

    The necessity for different types of telescopes for astronomical investigations is discussed. Major findings in modern astronomy by ground-based and spaceborne telescopes are presented. Observations of the Crab Nebula, solar flares, interstellar gas, and the Black Hole are described. The theory of the oscillating universe is explored. Operating and planned telescopes are described.

  7. The space telescope

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers concerning the development of the Space Telescope which were presented at the Twenty-first Annual Meeting of the American Astronautical Society in August, 1975 are included. Mission planning, telescope performance, optical detectors, mirror construction, pointing and control systems, data management, and maintenance of the telescope are discussed.

  8. The Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Prestage, R. M.; Constantikes, K. T.; Hunter, T. R.; King, L. J.; Lacasse, R. J.; Lockman, F. J.; Norrod, R. D.

    2009-08-01

    The Robert C. Byrd Green Bank Telescope of the National Radio Astronomy Observatory is the world's premiere single-dish radio telescope operating at centimeter to long millimeter wavelengths. This paper describes the history, construction, and main technical features of the telescope.

  9. Optimal lens design and use in laser-scanning microscopy

    PubMed Central

    Negrean, Adrian; Mansvelder, Huibert D.

    2014-01-01

    In laser-scanning microscopy often an off-the-shelf achromatic doublet is used as a scan lens which can reduce the available diffraction-limited field-of-view (FOV) by a factor of 3 and introduce chromatic aberrations that are scan angle dependent. Here we present several simple lens designs of superior quality that fully make use of high-NA low-magnification objectives, offering diffraction-limited imaging over a large FOV and wavelength range. We constructed a two-photon laser-scanning microscope with optimized custom lenses which had a near diffraction limit point-spread-function (PSF) with less than 3.6% variation over a 400 µm FOV and less than 0.5 µm lateral color between 750 and 1050 nm. PMID:24877017

  10. ATST telescope mount: telescope of machine tool

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  11. Optical testing of bifocal diffractive-refractive intraocular lenses using Shack-Hartmann wavefront sensor

    NASA Astrophysics Data System (ADS)

    Gutman, A. S.; Shchesyuk, I. V.; Korolkov, V. P.

    2010-05-01

    Applicability of the Shack-Hartmann wavefront sensor for the bifocal diffractive-refractive intraocular lens testing is discussed. Measurement method based on quasi-continuous wavefront has been suggested. Light source requirements for testing of MIOL-Accord intraocular lens have been validated. The method has been realized in dioptrimeter including Shack-Hartman sensor and multi-wavelength coherent light source.

  12. Chromatic confocal microscope using hybrid aspheric diffractive lenses

    NASA Astrophysics Data System (ADS)

    Rayer, Mathieu; Mansfield, Daniel

    2014-05-01

    A chromatic confocal microscope is a single point non-contact distance measurement sensor. For three decades the vast majority of the chromatic confocal microscope use refractive-based lenses to code the measurement axis chromatically. However, such an approach is limiting the range of applications. In this paper the performance of refractive, diffractive and Hybrid aspheric diffractive are compared. Hybrid aspheric diffractive lenses combine the low geometric aberration of a diffractive lens with the high optical power of an aspheric lens. Hybrid aspheric diffractive lenses can reduce the number of elements in an imaging system significantly or create large hyper- chromatic lenses for sensing applications. In addition, diffractive lenses can improve the resolution and the dynamic range of a chromatic confocal microscope. However, to be suitable for commercial applications, the diffractive optical power must be significant. Therefore, manufacturing such lenses is a challenge. We show in this paper how a theoretical manufacturing model can demonstrate that the hybrid aspheric diffractive configuration with the best performances is achieved by step diffractive surface. The high optical quality of step diffractive surface is then demonstrated experimentally. Publisher's Note: This paper, originally published on 5/10/14, was replaced with a corrected/revised version on 5/19/14. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.

  13. A Tribute to Len Barton

    ERIC Educational Resources Information Center

    Tomlinson, Sally

    2010-01-01

    This article constitutes a short personal tribute to Len Barton in honour of his work and our collegial relationship going back over 30 years. It covers how Len saw his intellectual project of providing critical sociological and political perspectives on special education, disability and inclusion, and his own radical political perspectives. Len's…

  14. Wavefront Analysis of Adaptive Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Hillman, Lloyd

    1997-01-01

    The motivation for this work came from a NASA Headquarters interest in investigating design concepts for a large space telescope employing active optics technology. Current and foreseeable launch vehicles will be limited to carrying around 4-5 meter diameter objects. Thus, if a large, filled-aperture telescope (6-20 meters in diameter) is to be placed in space, it will be required to have a deployable primary mirror. Such a mirror may be an inflatable membrane or a segmented mirror consisting of many smaller pieces. In any case, it is expected that the deployed primary will not be of sufficient quality to achieve diffraction-limited performance for its aperture size. Thus, an active optics system will be needed to correct for initial as well as environmentally-produced primary figure errors. Marshall Space Flight Center has developed considerable expertise in the area of active optics with the PAMELA test-bed. The combination of this experience along with the Marshall optical shop's work in mirror fabrication made MSFC the logical choice to lead NASA's effort to develop active optics technology for large, space-based, astronomical telescopes. Furthermore, UAH's support of MSFC in the areas of optical design, fabrication, and testing of space-based optical systems placed us in a key position to play a major role in the development of this future-generation telescope. A careful study of the active optics components had to be carried out in order to determine control segment size, segment quality, and segment controllability required to achieve diffraction-limited resolution with a given primary mirror. With this in mind, UAH undertook the following effort to provide NASA/MSFC with optical design and analysis support for the large telescope study. All of the work performed under this contract has already been reported, as a team member with MSFC, to NASA Headquarters in a series of presentations given between May and December of 1995. As specified on the delivery

  15. Astronomers Discover Six-Image Gravitational Lens

    NASA Astrophysics Data System (ADS)

    2001-08-01

    An international team of astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope and NASA's Hubble Space Telescope (HST) to discover the first gravitational lens in which the single image of a very distant galaxy has been split into six different images. The unique configuration is produced by the gravitational effect of three galaxies along the line of sight between the more-distant galaxy and Earth. Optical and Radio Images of Gravitational Lens "This is the first gravitational lens with more than four images of the background object that is produced by a small group of galaxies rather than a large cluster of galaxies," said David Rusin, who just received his Ph.D. from the University of Pennsylvania. "Such systems are expected to be extremely rare, so this discovery is an important stepping stone. Because this is an intermediate case between gravitational lenses produced by single galaxies and lenses produced by large clusters of galaxies, it will give us insights we can't get from other types of lenses," Rusin added. The gravitational lens, called CLASS B1359+154, consists of a galaxy more than 11 billion light-years away in the constellation Bootes, with a trio of galaxies more than 7 billion light-years away along the same line of sight. The more-distant galaxy shows signs that it contains a massive black hole at its core and also has regions in which new stars are forming. The gravitational effect of the intervening galaxies has caused the light and radio waves from the single, more-distant galaxy to be "bent" to form six images as seen from Earth. Four of these images appear outside the triangle formed by the three intermediate galaxies and two appear inside that triangle. "This lens system is a very interesting case to study because it is more complicated than lenses produced by single galaxies, and yet simpler than lenses produced by clusters of numerous galaxies," said Chris Kochanek of the Harvard

  16. Backreflection measurements on the SILEX telescope

    NASA Astrophysics Data System (ADS)

    Birkl, R.; Manhart, S.

    1991-05-01

    The SILEX telescope breadboard model is used to conduct back-reflection measurements which could be analyzed to determine the characteristics of a simultaneous transmitting and receiving of laser signals, such as would be encountered in an optical intersatellite communication link terminal. Back-reflection is found to come primarily from the collimator lenses and the secondary mirror surface; at the edge of the useful wavelength band, the back-reflection ratio is 40 percent above the permissible value, due to the wavelength dependence of the lens antireflection coating.

  17. Thin Lens Ray Tracing.

    ERIC Educational Resources Information Center

    Gatland, Ian R.

    2002-01-01

    Proposes a ray tracing approach to thin lens analysis based on a vector form of Snell's law for paraxial rays as an alternative to the usual approach in introductory physics courses. The ray tracing approach accommodates skew rays and thus provides a complete analysis. (Author/KHR)

  18. The Lens of Chemistry

    ERIC Educational Resources Information Center

    Thalos, Mariam

    2013-01-01

    Chemistry possesses a distinctive theoretical lens--a distinctive set of theoretical concerns regarding the dynamics and transformations of a perplexing variety of organic and nonorganic substances--to which it must be faithful. Even if it is true that chemical facts bear a special (reductive) relationship to physical facts, nonetheless it will…

  19. Thermal Lens Microscope

    NASA Astrophysics Data System (ADS)

    Uchiyama, Kenji; Hibara, Akihide; Kimura, Hiroko; Sawada, Tsuguo; Kitamori, Takehiko

    2000-09-01

    We developed a novel laser microscope based on the thermal lens effect induced by a coaxial beam comprised of excitation and probe beams. The signal generation mechanism was confirmed to be an authentic thermal lens effect from the measurement of signal and phase dependences on optical configurations between the sample and the probe beam focus, and therefore, the thermal lens effect theory could be applied. Two-point spatial resolution was determined by the spot size of the excitation beam, not by the thermal diffusion length. Sensitivity was quite high, and the detection ability, evaluated using a submicron microparticle containing dye molecules, was 0.8 zmol/μm2, hence a distribution image of trace chemical species could be obtained quantitatively. In addition, analytes are not restricted to fluorescent species, therefore, the thermal lens microscope is a promising analytical microscope. A two-dimensional image of a histamine molecule distribution, which was produced in mast cells at the femtomole level in a human nasal mucous polyp, was obtained.

  20. Optical Telescope Assembly Concept for Next Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Wallace, N.; Krim, M.; Horner, G.

    1996-12-01

    A recent study by a TRW/HDOS/GSFC/LaRC/Swales team produced a conceptual design for an eight-meter diameter Next Generation Space Telescope (NGST). This space telescope would have a deployed primary mirror with active figure control of the mirror petals to give diffraction limited performance at one micron wavelength. The High Accuracy Reflector Development (HARD) scheme, utilizing special translation-rotation mechanisms and precision latches, would deploy and lock the primary mirror segments into place. Thin mirror faceplates on stiff, lightweight backing structure would allow the extremely low weight at moderate cost. The telescope would produce images and spectra from radiation in the 0.5 micron to 10 micron spectral interval, have a 10 arc-minute circular field of view, weigh about 1000 kg, and fit within the shroud of an Atlas II AS launch vehicle. A deployable sunshield and an L2 Lissajous orbit would give passive cooling to 30 K. This paper describes the baseline optics, structures, and control systems of the Optical Telescope Assembly design produced in the study. The associated technologies are discussed, with emphasis on the optics and mechanisms for the primary mirror. For the optics, different mirror materials, fabrication processes, structural configurations, controls configurations, and verification techniques were studied, and a preliminary wavefront error budget was produced. For mechanisms, concepts were produced for high resolution actuators with a large operating range and for active vibration suppression. The state-of-the-art of all these technologies is presented, the technological advances needed, and some preliminary plans for their development.

  1. ATA50 telescope: hardware

    NASA Astrophysics Data System (ADS)

    Yeşilyaprak, C.; Yerli, S. K.; Aksaker, N.; Yildiran, Y.; Güney, Y.; Güçsav, B. B.; Özeren, F. F.; Kiliç, Y.; Shameoni, M. N.; Fişek, S.; Kiliçerkan, G.; Nasiroğlu, İ.; Özbaldan, E. E.; Yaşar, E.

    2014-12-01

    ATA50 Telescope is a new telescope with RC optics and 50 cm diameter. It was supported by Atatürk University Scientific Research Project (2010) and established at about 2000 meters altitude in city of Erzurum in Turkey last year. The observations were started a few months ago under the direction and control of Atatürk University Astrophysics Research and Application Center (ATASAM). The technical properties and infrastructures of ATA50 Telescope are presented and we have been working on the robotic automation of the telescope as hardware and software in order to be a ready-on-demand candidate for both national and international telescope networks.

  2. Phasing piston error in segmented telescopes.

    PubMed

    Jiang, Junlun; Zhao, Weirui

    2016-08-22

    To achieve a diffraction-limited imaging, the piston errors between the segments of the segmented primary mirror telescope should be reduced to λ/40 RMS. We propose a method to detect the piston error by analyzing the intensity distribution on the image plane according to the Fourier optics principle, which can capture segments with the piston errors as large as the coherence length of the input light and reduce these to 0.026λ RMS (λ = 633nm). This method is adaptable to any segmented and deployable primary mirror telescope. Experiments have been carried out to validate the feasibility of the method. PMID:27557192

  3. Actuated Hybrid Mirrors for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Ealey, Mark; Redding, David

    2010-01-01

    This paper describes new, large, ultra-lightweight, replicated, actively controlled mirrors, for use in space telescopes. These mirrors utilize SiC substrates, with embedded solid-state actuators, bonded to Nanolaminate metal foil reflective surfaces. Called Actuated Hybrid Mirrors (AHMs), they use replication techniques for high optical quality as well as rapid, low cost manufacturing. They enable an Active Optics space telescope architecture that uses periodic image-based wavefront sensing and control to assure diffraction-limited performance, while relaxing optical system fabrication, integration and test requirements. The proposed International Space Station Observatory seeks to demonstrate this architecture in space.

  4. Phasing piston error in segmented telescopes.

    PubMed

    Jiang, Junlun; Zhao, Weirui

    2016-08-22

    To achieve a diffraction-limited imaging, the piston errors between the segments of the segmented primary mirror telescope should be reduced to λ/40 RMS. We propose a method to detect the piston error by analyzing the intensity distribution on the image plane according to the Fourier optics principle, which can capture segments with the piston errors as large as the coherence length of the input light and reduce these to 0.026λ RMS (λ = 633nm). This method is adaptable to any segmented and deployable primary mirror telescope. Experiments have been carried out to validate the feasibility of the method.

  5. Salvaging an Abused Lens or How a 4½ inch Brashear lens came unglued before I did!

    NASA Astrophysics Data System (ADS)

    Koester, Jack

    The author's newly-acquired Brashear telescope has a "fogged lens" that was stuck in its cell. After getting advice from several ATS members, the author visits Richard A. Buchroeder, the professional optical designer, who heats the mirror and cell in order to soften the binding substance by floating the cell in a pot filled with heated cooking oil. The process worked, and the two lenses were removed.

  6. Space Infrared Telescope Facility (SIRTF) telescope overview

    NASA Technical Reports Server (NTRS)

    Schember, Helene; Manhart, Paul; Guiar, Cecilia; Stevens, James H.

    1991-01-01

    The Space Infrared Telescope Facility (SIRTF) will be the first true infrared observatory in space, building upon the technical and scientific experience gained through its two NASA survey-oriented predecessors: the Infrared Astronomical Satellite and the Cosmic Background Explorer. During its minimum five year lifetime, the SIRTF will perform pointed scientific observations at wavelengths from 1.8 to 1200 microns with an increase in sensitivity over previous missions of several orders of magnitude. This paper discusses a candidate design for the SIRTF telescope, encompassing optics, cryostat, and instrument accommodation, which has been undertaken to provide a fulcrum for the development of functional requirements, interface definition, risk assessment and cost. The telescope optics employ a baffled Ritchey-Chretien Cassegrain system with a 1-m class primary mirror, an active secondary mirror, and a stationary facetted tertiary mirror. The optics are embedded in a large superfluid He cryostat designed to maintain the entire telescope-instrument system at temperatures below 3 K.

  7. Astronomers Discover Six-Image Gravitational Lens

    NASA Astrophysics Data System (ADS)

    2001-08-01

    An international team of astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope and NASA's Hubble Space Telescope (HST) to discover the first gravitational lens in which the single image of a very distant galaxy has been split into six different images. The unique configuration is produced by the gravitational effect of three galaxies along the line of sight between the more-distant galaxy and Earth. Optical and Radio Images of Gravitational Lens "This is the first gravitational lens with more than four images of the background object that is produced by a small group of galaxies rather than a large cluster of galaxies," said David Rusin, who just received his Ph.D. from the University of Pennsylvania. "Such systems are expected to be extremely rare, so this discovery is an important stepping stone. Because this is an intermediate case between gravitational lenses produced by single galaxies and lenses produced by large clusters of galaxies, it will give us insights we can't get from other types of lenses," Rusin added. The gravitational lens, called CLASS B1359+154, consists of a galaxy more than 11 billion light-years away in the constellation Bootes, with a trio of galaxies more than 7 billion light-years away along the same line of sight. The more-distant galaxy shows signs that it contains a massive black hole at its core and also has regions in which new stars are forming. The gravitational effect of the intervening galaxies has caused the light and radio waves from the single, more-distant galaxy to be "bent" to form six images as seen from Earth. Four of these images appear outside the triangle formed by the three intermediate galaxies and two appear inside that triangle. "This lens system is a very interesting case to study because it is more complicated than lenses produced by single galaxies, and yet simpler than lenses produced by clusters of numerous galaxies," said Chris Kochanek of the Harvard

  8. India's National Large Solar Telescope

    NASA Astrophysics Data System (ADS)

    Hasan, S. S.

    2012-12-01

    India's 2-m National Large Solar Telescope (NLST) is aimed primarily at carrying out observations of the solar atmosphere with high spatial and spectral resolution. A comprehensive site characterization program, that commenced in 2007, has identified two superb sites in the Himalayan region at altitudes greater than 4000-m that have extremely low water vapor content and are unaffected by monsoons. With an innovative optical design, the NLST is an on-axis Gregorian telescope with a low number of optical elements to reduce the number of reflections and yield a high throughput with low polarization. In addition, it is equipped with a high-order adaptive optics to produce close to diffraction limited performance. To control atmospheric and thermal perturbations of the observations, the telescope will function with a fully open dome, to achieve its full potential atop a 25 m tower. Given its design, NLST can also operate at night, without compromising its solar performance. The post-focus instruments include broad-band and tunable Fabry-Pérot narrow-band imaging instruments; a high resolution spectropolarimeter and an Echelle spectrograph for night time astronomy. This project is led by the Indian Institute of Astrophysics and has national and international partners. Its geographical location will fill the longitudinal gap between Japan and Europe and is expected to be the largest solar telescope with an aperture larger than 1.5 m till the ATST and EST come into operation. An international consortium has been identified to build the NLST. The facility is expected to be commissioned by 2016.

  9. Animal model experimentation using the expansile hydrogel intraocular lens.

    PubMed

    Siepser, S B; Wieland, M

    1991-07-01

    To determine the biocompatibility of the expansile hydrogel intraocular lens, a two-year animal study was undertaken. After phacoemulsification, hydrogel expansile intraocular lenses were implanted in four Dutch-belted rabbit eyes. Slitlamp examinations revealed minimal anterior chamber reaction and lens synechias. Gross pathology and histology demonstrated hyperplastic residual cortex, but confirmed our clinical impression that the lenses were well tolerated. Electron diffraction energy dispersive X-ray microanalysis revealed deposition of aluminum, silicon, magnesium, and calcium, but there was no evidence of matrix penetration. PMID:1895227

  10. Effect of multiphoton ionization on performance of crystalline lens.

    PubMed

    Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D; Campbell, M C W; Sharma, R P

    2014-12-15

    This Letter presents a model for propagation of a laser pulse in a human crystalline lens. The model contains a transverse beam diffraction effect, laser-induced optical breakdown for the creation of plasma via a multiphoton ionization process, and the gradient index (GRIN) structure. Plasma introduces the nonlinearity in the crystalline lens which affects the propagation of the beam. The multiphoton ionization process generates plasma that changes the refractive index and hence leads to the defocusing of the laser beam. The Letter also points out the relevance of the present investigation to cavitation bubble formation for restoring the elasticity of the eyes.

  11. Effect of multiphoton ionization on performance of crystalline lens.

    PubMed

    Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D; Campbell, M C W; Sharma, R P

    2014-12-15

    This Letter presents a model for propagation of a laser pulse in a human crystalline lens. The model contains a transverse beam diffraction effect, laser-induced optical breakdown for the creation of plasma via a multiphoton ionization process, and the gradient index (GRIN) structure. Plasma introduces the nonlinearity in the crystalline lens which affects the propagation of the beam. The multiphoton ionization process generates plasma that changes the refractive index and hence leads to the defocusing of the laser beam. The Letter also points out the relevance of the present investigation to cavitation bubble formation for restoring the elasticity of the eyes. PMID:25502994

  12. Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film.

    PubMed

    Jeng, Shie-Chang; Hwang, Shug-June; Horng, Jing-Shyang; Lin, Kuo-Ren

    2010-12-01

    A simple method to make a switchable liquid crystal (LC) Fresnel lens with high diffraction efficiency and a low driving voltage was proposed based on the photo-induced surface modification of the vertical alignment layer. UV illumination alters the pretilt angle of alignment layers, a Fresnel zone-distribution hybrid alignment in the homeotropic LC cell can be straightforwardly achieved through UV exposure, yielding a concentric structure of the Fresnel phase LC lens. A remarkable diffraction efficiency of ~31.4%, close to the measured diffraction efficiency of the used Fresnel-zone-plate mask of 32%, was detected using a linearly polarized incident beam. PMID:21164982

  13. HST image of Gravitational Lens G2237 + 305 or 'Einstein Cross'

    NASA Technical Reports Server (NTRS)

    1990-01-01

    European Space Agency (ESA) Faint Object Camera (FOC) science image was taken from the Hubble Space Telescope (HST) of Gravitational Lens G2237 + 305 or 'Einstein Cross'. The gravitational lens G2237 + 305 or 'Einstein Cross' shows four images of a very distant quasar which has been multiple-imaged by a relatively nearby galaxy acting as a gravitational lens. The angular separation between the upper and lower images is 1.6 arc seconds. Photo was released from Goddard Space Flight Center (GSFC) 09-12-90.

  14. Compact high-resolution Littrow conical diffraction spectrometer.

    PubMed

    Yang, Qinghua

    2016-06-20

    This paper presents a compact high-resolution Littrow conical diffraction spectrometer (LCDS) that includes an echelle grating for horizontally dispersing the incident light beam into several high diffraction orders, a prism for vertically separating the overlapping diffraction orders, and a shared focusing lens used for both the incident and dispersed beams. The unique design of the optics enables the LCDS to give high dispersion on the detector without requiring a large field of view and, therefore, to achieve the benefits of high spectral resolution and compactness. The use of the Littrow conical diffraction coupled with the shared focusing lens makes the LCDS more compact. The formulas of the footprint of the dispersed spectra are derived, and the numerical simulation is given. The design calculations for application of the LCDS to an optical coherence tomography system are illustrated by an example.

  15. Eclipsing negative-parity image of gravitational microlensing by a giant-lens star

    NASA Astrophysics Data System (ADS)

    Rahvar, Sohrab

    2016-07-01

    Gravitational microlensing has been used as a powerful tool for astrophysical studies and exoplanet detections. In the gravitational microlensing, we have two images with negative and positive parities. The negative-parity image is a fainter image and is produced at a closer angular separation with respect to the lens star. In the case of a red-giant lens star and large impact parameter of lensing, this image can be eclipsed by the lens star. The result would be dimming the flux receiving from the combination of the source and the lens stars and the light curve resembles to an eclipsing binary system. In this work, we introduce this phenomenon and propose an observational procedure for detecting this eclipse. The follow-up microlensing telescopes with lucky imaging camera or space-based telescopes can produce high-resolution images from the events with reddish sources and confirm the possibility of blending due to the lens star. After conforming a red-giant lens star and source star, we can use the advance photometric methods and detect the relative flux change during the eclipse in the order of 10-4-10-3. Observation of the eclipse provides the angular size of source star in the unit of Einstein angle and combination of this observation with the parallax observation enable us to calculate the mass of lens star. Finally, we analysed seven microlensing event and show the feasibility of observation of this effect in future observations.

  16. JWST pathfinder telescope integration

    NASA Astrophysics Data System (ADS)

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; McKay, Andrew; Levi, Joshua; Keski-Kuha, Ritva; Feinberg, Lee

    2015-08-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI and T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  17. Automated telescope scheduling

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1988-01-01

    With the ever increasing level of automation of astronomical telescopes the benefits and feasibility of automated planning and scheduling are becoming more apparent. Improved efficiency and increased overall telescope utilization are the most obvious goals. Automated scheduling at some level has been done for several satellite observatories, but the requirements on these systems were much less stringent than on modern ground or satellite observatories. The scheduling problem is particularly acute for Hubble Space Telescope: virtually all observations must be planned in excruciating detail weeks to months in advance. Space Telescope Science Institute has recently made significant progress on the scheduling problem by exploiting state-of-the-art artificial intelligence software technology. What is especially interesting is that this effort has already yielded software that is well suited to scheduling groundbased telescopes, including the problem of optimizing the coordinated scheduling of more than one telescope.

  18. The Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Grueff, G.; Alvito, G.; Ambrosini, R.; Bolli, P.; D'Amico, N.; Maccaferri, A.; Maccaferri, G.; Morsiani, M.; Mureddu, L.; Natale, V.; Olmi, L.; Orfei, A.; Pernechele, C.; Poma, A.; Porceddu, I.; Rossi, L.; Zacchiroli, G.

    We describe the Sardinia Radio Telescope (SRT), a new general purpose, fully steerable antenna of the National Institute for Astrophysics. The radio telescope is under construction near Cagliari (Sardinia). With its large aperture (64m diameter) and its active surface, SRT is capable of operations up to ˜100GHz, it will contribute significantly to VLBI networks and will represent a powerful single-dish radio telescope for many science fields. The radio telescope has a Gregorian optical configuration with a supplementary beam-waveguide (BWG), which provides additional focal points. The Gregorian surfaces are shaped to minimize the spill-over and standing wave. After the start of the contract for the radio telescope structural and mechanical fabrication in 2003, in the present year the foundation construction will be completed. The schedule foresees the radio telescope inauguration in late 2006.

  19. JWST Pathfinder Telescope Integration

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; McKay, Andrew; Levi, Joshua; Keski-Kuha, Ritva; Feinberg, Lee

    2015-01-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI&T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  20. Chitah: Strong-gravitational-lens Hunter in Imaging Surveys

    NASA Astrophysics Data System (ADS)

    Chan, James H. H.; Suyu, Sherry H.; Chiueh, Tzihong; More, Anupreeta; Marshall, Philip J.; Coupon, Jean; Oguri, Masamune; Price, Paul

    2015-07-01

    Strong gravitationally lensed quasars provide powerful means to study galaxy evolution and cosmology. Current and upcoming imaging surveys will contain thousands of new lensed quasars, augmenting the existing sample by at least two orders of magnitude. To find such lens systems, we built a robot, Chitah, that hunts for lensed quasars by modeling the configuration of the multiple quasar images. Specifically, given an image of an object that might be a lensed quasar, Chitah first disentangles the light from the supposed lens galaxy and the light from the multiple quasar images based on color information. A simple rule is designed to categorize the given object as a potential four-image (quad) or two-image (double) lensed quasar system. The configuration of the identified quasar images is subsequently modeled to classify whether the object is a lensed quasar system. We test the performance of Chitah using simulated lens systems based on the Canada-France-Hawaii Telescope Legacy Survey. For bright quads with large image separations (with Einstein radius {r}{ein}\\gt 1\\buildrel{\\prime\\prime}\\over{.} 1) simulated using Gaussian point-spread functions, a high true-positive rate (TPR) of ˜ 90% and a low false-positive rate of ˜ 3% show that this is a promising approach to search for new lens systems. We obtain high TPR for lens systems with {r}{ein}≳ 0\\buildrel{\\prime\\prime}\\over{.} 5, so the performance of Chitah is set by the seeing. We further feed a known gravitational lens system, COSMOS 5921+0638, to Chitah, and demonstrate that Chitah is able to classify this real gravitational lens system successfully. Our newly built Chitah is omnivorous and can hunt in any ground-based imaging surveys.

  1. Functional modular contact lens

    NASA Astrophysics Data System (ADS)

    Shum, Angela J.; Cowan, Melissa; Lähdesmäki, Ilkka; Lingley, Andrew; Otis, Brian; Parviz, Babak A.

    2009-08-01

    Tear fluid offers a potential route for non-invasive sensing of physiological parameters. Utilization of this potential depends on the ability to manufacture sensors that can be placed on the surface of the eye. A contact lens makes a natural platform for such sensors, but contact lens polymers present a challenge for sensor fabrication. This paper describes a microfabrication process for constructing sensors that can be integrated into the structure of a functional contact lens in the future. To demonstrate the capabilities of the process, an amperometric glucose sensor was fabricated on a polymer substrate. The sensor consists of platinum working and counter electrodes, as well as a region of indium-tin oxide (ITO) for glucose oxidase immobilization. An external silver-silver chloride electrode was used as the reference electrode during the characterization experiments. Sensor operation was validated by hydrogen peroxide measurements in the 10- 20 μM range and glucose measurements in the 0.125-20 mM range.

  2. South Pole Telescope optics.

    PubMed

    Padin, S; Staniszewski, Z; Keisler, R; Joy, M; Stark, A A; Ade, P A R; Aird, K A; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; Dobbs, M A; Halverson, N W; Heimsath, S; Hills, R E; Holzapfel, W L; Lawrie, C; Lee, A T; Leitch, E M; Leong, J; Lu, W; Lueker, M; McMahon, J J; Meyer, S S; Mohr, J J; Montroy, T E; Plagge, T; Pryke, C; Ruhl, J E; Schaffer, K K; Shirokoff, E; Spieler, H G; Vieira, J D

    2008-08-20

    The South Pole Telescope is a 10 m diameter, wide-field, offset Gregorian telescope with a 966-pixel, millimeter-wave, bolometer array receiver. The telescope has an unusual optical system with a cold stop around the secondary. The design emphasizes low scattering and low background loading. All the optical components except the primary are cold, and the entire beam from prime focus to the detectors is surrounded by cold absorber. PMID:18716649

  3. South Pole Telescope optics.

    PubMed

    Padin, S; Staniszewski, Z; Keisler, R; Joy, M; Stark, A A; Ade, P A R; Aird, K A; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; Dobbs, M A; Halverson, N W; Heimsath, S; Hills, R E; Holzapfel, W L; Lawrie, C; Lee, A T; Leitch, E M; Leong, J; Lu, W; Lueker, M; McMahon, J J; Meyer, S S; Mohr, J J; Montroy, T E; Plagge, T; Pryke, C; Ruhl, J E; Schaffer, K K; Shirokoff, E; Spieler, H G; Vieira, J D

    2008-08-20

    The South Pole Telescope is a 10 m diameter, wide-field, offset Gregorian telescope with a 966-pixel, millimeter-wave, bolometer array receiver. The telescope has an unusual optical system with a cold stop around the secondary. The design emphasizes low scattering and low background loading. All the optical components except the primary are cold, and the entire beam from prime focus to the detectors is surrounded by cold absorber.

  4. LISA Telescope Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The results of a LISA telescope sensitivity analysis will be presented, The emphasis will be on the outgoing beam of the Dall-Kirkham' telescope and its far field phase patterns. The computed sensitivity analysis will include motions of the secondary with respect to the primary, changes in shape of the primary and secondary, effect of aberrations of the input laser beam and the effect the telescope thin film coatings on polarization. An end-to-end optical model will also be discussed.

  5. Deployable reflector configurations. [for space telescope

    NASA Technical Reports Server (NTRS)

    Meinel, A. B.; Meinel, M. P.; Woolf, N. J.

    1983-01-01

    Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.

  6. Perceptual image quality and telescope performance ranking

    NASA Astrophysics Data System (ADS)

    Lentz, Joshua K.; Harvey, James E.; Marshall, Kenneth H.; Salg, Joseph; Houston, Joseph B.

    2010-08-01

    Launch Vehicle Imaging Telescopes (LVIT) are expensive, high quality devices intended for improving the safety of vehicle personnel, ground support, civilians, and physical assets during launch activities. If allowed to degrade from the combination of wear, environmental factors, and ineffective or inadequate maintenance, these devices lose their ability to provide adequate quality imagery to analysts to prevent catastrophic events such as the NASA Space Shuttle, Challenger, accident in 1986 and the Columbia disaster of 2003. A software tool incorporating aberrations and diffraction that was developed for maintenance evaluation and modeling of telescope imagery is presented. This tool provides MTF-based image quality metric outputs which are correlated to ascent imagery analysts' perception of image quality, allowing a prediction of usefulness of imagery which would be produced by a telescope under different simulated conditions.

  7. Telescope performance verification

    NASA Astrophysics Data System (ADS)

    Swart, Gerhard P.; Buckley, David A. H.

    2004-09-01

    While Systems Engineering appears to be widely applied on the very large telescopes, it is lacking in the development of many of the medium and small telescopes currently in progress. The latter projects rely heavily on the experience of the project team, verbal requirements and conjecture based on the successes and failures of other telescopes. Furthermore, it is considered an unaffordable luxury to "close-the-loop" by carefully analysing and documenting the requirements and then verifying the telescope's compliance with them. In this paper the authors contend that a Systems Engineering approach is a keystone in the development of any telescope and that verification of the telescope's performance is not only an important management tool but also forms the basis upon which successful telescope operation can be built. The development of the Southern African Large Telescope (SALT) has followed such an approach and is now in the verification phase of its development. Parts of the SALT verification process will be discussed in some detail to illustrate the suitability of this approach, including oversight by the telescope shareholders, recording of requirements and results, design verification and performance testing. Initial test results will be presented where appropriate.

  8. Compact, holographic correction of aberrated telescopes.

    PubMed

    Andersen, G; Munch, J; Veitch, P

    1997-03-01

    We demonstrate a compact reflector telescope design that incorporates the holographic correction of a large, low-quality primary spherical mirror by using a laser beacon located at the center of curvature. The simple design makes use of conventional optics and is easily scalable to much larger apertures. Experimental results indicate diffraction-limited performance from a heavily aberrated 0.5-m-diameter spherical mirror.

  9. Holographic Optical Elements as Scanning Lidar Telescopes

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2005-01-01

    We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. For example, rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed and tested transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.

  10. The Large Binocular Telescope as an early ELT

    NASA Astrophysics Data System (ADS)

    Hill, John; Hinz, Philip; Ashby, David

    2013-12-01

    The Large Binocular Telescope (LBT) has two 8.4-m primary mirrors on a common AZ-EL mounting. The dual Gregorian optical configuration for LBT includes a pair of adaptive secondaries. The adaptive secondaries are working reliably for science observations as well as for the commissioning of new instruments. Many aspects of the LBT telescope design have been optimized for the combination of the two optical trains. The telescope structure is relatively compact and stiff with a lowest eigenfrequency near 8 Hz. A vibration measurement system of accelerometers (OVMS) has been installed to characterize the vibrations of the telescope. A first-generation of the binocular telescope control system has been deployed on-sky. Two instruments, LBTI and LINC-NIRVANA, have been built to take advantage of the 22.65-m diffraction baseline when the telescope is phased. This diffraction-limited imaging capability (beyond 20-m baseline) positions LBT as a forerunner of the new generation of extremely large telescopes (ELT). We discuss here some of the experiences ofphasing the two sides of the telescope starting in 2010. We also report some lessons learned during on-sky commissioning of the LBTI instrument.

  11. PROSPECTS FOR CHARACTERIZING HOST STARS OF THE PLANETARY SYSTEM DETECTIONS PREDICTED FOR THE KOREAN MICROLENSING TELESCOPE NETWORK

    SciTech Connect

    Henderson, Calen B.

    2015-02-10

    I investigate the possibility of constraining the flux of the lens (i.e., host star) for the types of planetary systems the Korean Microlensing Telescope Network is predicted to find. I examine the potential to obtain lens flux measurements by (1) imaging the lens once it is spatially resolved from the source, (2) measuring the elongation of the point-spread function of the microlensing target (lens+source) when the lens and source are still unresolved, and (3) taking prompt follow-up photometry. In each case I simulate the observing programs for a representative example of current ground-based adaptive optics (AO) facilities (specifically NACO on the Very Large Telescope), future ground-based AO facilities (GMTIFS on the Giant Magellan Telescope, GMT), and future space telescopes (NIRCAM on the James Webb Space Telescope, JWST). Given the predicted distribution of relative lens-source proper motions, I find that the lens flux could be measured to a precision of σ{sub H{sub ℓ}}≤0.1 for ≳60% of planet detections ≥5 yr after each microlensing event for a simulated observing program using GMT, which images resolved lenses. NIRCAM on JWST would be able to carry out equivalently high-precision measurements for ∼28% of events Δt = 10 yr after each event by imaging resolved lenses. I also explore the effects various blend components would have on the mass derived from prompt follow-up photometry, including companions to the lens, companions to the source, and unassociated interloping stars. I find that undetected blend stars would cause catastrophic failures (i.e., >50% fractional uncertainty in the inferred lens mass) for ≲ (16 · f {sub bin})% of planet detections, where f {sub bin} is the binary fraction, with the majority of these failures occurring for host stars with mass ≲0.3 M {sub ☉}.

  12. Prospects for Characterizing Host Stars of the Planetary System Detections Predicted for the Korean Microlensing Telescope Network

    NASA Astrophysics Data System (ADS)

    Henderson, Calen B.

    2015-02-01

    I investigate the possibility of constraining the flux of the lens (i.e., host star) for the types of planetary systems the Korean Microlensing Telescope Network is predicted to find. I examine the potential to obtain lens flux measurements by (1) imaging the lens once it is spatially resolved from the source, (2) measuring the elongation of the point-spread function of the microlensing target (lens+source) when the lens and source are still unresolved, and (3) taking prompt follow-up photometry. In each case I simulate the observing programs for a representative example of current ground-based adaptive optics (AO) facilities (specifically NACO on the Very Large Telescope), future ground-based AO facilities (GMTIFS on the Giant Magellan Telescope, GMT), and future space telescopes (NIRCAM on the James Webb Space Telescope, JWST). Given the predicted distribution of relative lens-source proper motions, I find that the lens flux could be measured to a precision of σ H_{\\ell } ≤ 0.1 for gsim60% of planet detections >=5 yr after each microlensing event for a simulated observing program using GMT, which images resolved lenses. NIRCAM on JWST would be able to carry out equivalently high-precision measurements for ~28% of events Δt = 10 yr after each event by imaging resolved lenses. I also explore the effects various blend components would have on the mass derived from prompt follow-up photometry, including companions to the lens, companions to the source, and unassociated interloping stars. I find that undetected blend stars would cause catastrophic failures (i.e., >50% fractional uncertainty in the inferred lens mass) for <~ (16 · f bin)% of planet detections, where f bin is the binary fraction, with the majority of these failures occurring for host stars with mass lsim0.3 M ⊙.

  13. LUTE telescope structural design

    NASA Technical Reports Server (NTRS)

    Ruthven, Gregory

    1993-01-01

    The major objective of the Lunar Ultraviolet Transit Experiment (LUTE) Telescope Structural Design Study was to investigate the feasibility of designing an ultralightweight 1-m aperture system within optical performance requirements and mass budget constraints. This study uses the results from our previous studies on LUTE as a basis for further developing the LUTE structural architecture. After summarizing our results in Section 2, Section 3 begins with the overall logic we used to determine which telescope 'structural form' should be adopted for further analysis and weight estimates. Specific telescope component analysis showing calculated fundamental frequencies and how they compare with our derived requirements are included. 'First-order' component stress analyses to ensure telescope optical and structural component (i.e. mirrors & main bulkhead) weights are realistic are presented. Layouts of both the primary and tertiary mirrors showing dimensions that are consistent with both our weight and frequency calculations also form part of Section 3. Section 4 presents our calculated values for the predicted thermally induced primary-to-secondary mirror despace motion due to the large temperature range over which LUTE must operate. Two different telescope design approaches (one which utilizes fused quartz metering rods and one which assumes the entire telescope is fabricated from beryllium) are considered in this analysis. We bound the secondary mirror focus mechanism range (in despace) based on these two telescope configurations. In Section 5 we show our overall design of the UVTA (Ultraviolet Telescope Assembly) via an 'exploded view' of the sub-system. The 'exploded view' is annotated to help aid in the understanding of each sub-assembly. We also include a two view layout of the UVTA from which telescope and telescope component dimensions can be measured. We conclude our study with a set of recommendations not only with respect to the LUTE structural architecture

  14. NIRCam pupil imaging lens actuator assembly

    NASA Astrophysics Data System (ADS)

    Clark, Charles S.

    2009-08-01

    The near infrared camera (NIRCam) is one of four science instruments installed on the integrated science instrument module (ISIM) of NASA's James Webb Space Telescope (JWST) which is intended to conduct scientific observations over a five-year mission lifetime. NIRCam's requirements include operation at 37 Kelvin to produce high-resolution images in two-wave bands encompassing the range from 0.6 to 5 microns. The NIRCam instrument is also required to provide a means of imaging the primary mirror for ground testing, instrument commissioning, and diagnostics which have resulted in the development of the pupil imaging lens actuator assembly. This paper discusses the development of the pupil imaging lens (PIL) assembly, including the driving requirements for the PIL assembly, and how the design supports these conditions. Some of the design features included in the PIL assembly are the titanium isothermal optical flexure mounts with multi-axis alignment flexures, a counterbalanced direct drive rotary actuator, and a fail-safe retraction system with magnetic stowage stop. The paper also discusses how the PIL assembly was successfully tested to the demanding requirements typical for cryogenic instruments.

  15. Development of a Prototype for the Fluorescence Detector Array of Single-Pixel Telescopes

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Malacari, M.; Bertaina, M.; Casolino, M.; Dawson, B.; Jiang, J.; Matalon, A.; Matthews, J. N.; Motloch, P.; Privitera, P.; Takizawa, Y.; Yamazaki, K.

    We present a concept for large-area, low-cost detection of ultra-high energy cosmic rays (UHECR) with a Fluorescence detector Array of Single-pixel Telescopes (FAST), addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report preliminary results of a FAST prototype installed at the Telescope Array site, consisting of a single 200 mm photo-multiplier tube at the focal plane of a 1 m2 Fresnel lens system taken from the prototype of the JEM-EUSO experiment.

  16. Zoned near-zero refractive index fishnet lens antenna: Steering millimeter waves

    SciTech Connect

    Pacheco-Peña, V. Orazbayev, B. Beaskoetxea, U. Beruete, M.; Navarro-Cía, M.

    2014-03-28

    A zoned fishnet metamaterial lens is designed, fabricated, and experimentally demonstrated at millimeter wavelengths to work as a negative near-zero refractive index lens suitable for compact lens antenna configurations. At the design frequency f = 56.7 GHz (λ{sub 0} = 5.29 mm), the zoned fishnet metamaterial lens, designed to have a focal length FL = 9λ{sub 0}, exhibits a refractive index n = −0.25. The focusing performance of the diffractive optical element is briefly compared with that of a non-zoned fishnet metamaterial lens and an isotropic homogeneous zoned lens made of a material with the same refractive index. Experimental and numerically-computed radiation diagrams of the fabricated zoned lens are presented and compared in detail with that of a simulated non-zoned lens. Simulation and experimental results are in good agreement, demonstrating an enhancement generated by the zoned lens of 10.7 dB, corresponding to a gain of 12.26 dB. Moreover, beam steering capability of the structure by shifting the feeder on the xz-plane is demonstrated.

  17. Goddard Robotic Telescope

    NASA Astrophysics Data System (ADS)

    Sakamoto, Takanori; Donato, Davide; Gehrels, Neil; Okajima, Takashi; Ukwatta, Tilan N.

    2009-05-01

    We are constructing the 14'' fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up the Swift/Fermi Gamma-Ray Bursts (GRBs) and 2) to perform the coordinated optical observations of the Fermi/Large Area Telescope (LAT) Active Galactic Nuclei (AGN). Our telescope system consists of the 14'' Celestron Optical Telescope Assembly (OTA), the Astro-Physics 1200GTO mount, the Apogee U47 CCD camera, the JMI's electronic focuser, and the Finger Lake Instrumentation's color filter wheel with U, B, V, R and I filters. With the focal reducer, 20'×20' field of view has been achieved. The observatory dome is the Astro Haven's 7 ft clam-shell dome. We started the scientific observations on mid-November 2008. While not observing our primary targets (GRBs and AGNs), we are planning to open our telescope time to the public for having a wider use of our telescope in both a different research field and an educational purpose.

  18. Video Telescope Operating Microscopy.

    PubMed

    Divers, Stephen J

    2015-09-01

    Exotic pet veterinarians frequently have to operate on small animals, and magnification is commonly used. Existing endoscopy equipment can be used with a mechanical arm and telescope to enable video telescope operating microscopy. The additional equipment items and their specifics are described, and several case examples are provided. PMID:26117519

  19. Goddard Robotic Telescope

    SciTech Connect

    Sakamoto, Takanori; Donato, Davide; Gehrels, Neil; Okajima, Takashi; Ukwatta, Tilan N.

    2009-05-25

    We are constructing the 14'' fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up the Swift/Fermi Gamma-Ray Bursts (GRBs) and 2) to perform the coordinated optical observations of the Fermi/Large Area Telescope (LAT) Active Galactic Nuclei (AGN). Our telescope system consists of the 14'' Celestron Optical Telescope Assembly (OTA), the Astro-Physics 1200GTO mount, the Apogee U47 CCD camera, the JMI's electronic focuser, and the Finger Lake Instrumentation's color filter wheel with U, B, V, R and I filters. With the focal reducer, 20'x20' field of view has been achieved. The observatory dome is the Astro Haven's 7 ft clam-shell dome. We started the scientific observations on mid-November 2008. While not observing our primary targets (GRBs and AGNs), we are planning to open our telescope time to the public for having a wider use of our telescope in both a different research field and an educational purpose.

  20. Video Telescope Operating Microscopy.

    PubMed

    Divers, Stephen J

    2015-09-01

    Exotic pet veterinarians frequently have to operate on small animals, and magnification is commonly used. Existing endoscopy equipment can be used with a mechanical arm and telescope to enable video telescope operating microscopy. The additional equipment items and their specifics are described, and several case examples are provided.

  1. Diffractive optics for compact flat panel displays. Final report

    SciTech Connect

    Sweeney, D.; DeLong, K.

    1997-04-29

    Three years ago LLNL developed a practical method to dramatically reduce the chromatic aberration in single element diffractive imaging lenses. High efficiency, achromatic imaging lenses have been fabricated for human vision correction. This LDRD supported research in applying our new methods to develop a unique, diffraction-based optical interface with solid state, microelectronic imaging devices. Advances in microelectronics have led to smaller, more efficient components for optical systems. There have, however, been no equivalent advances in the imaging optics associated with these devices. The goal of this project was to replace the bulky, refractive optics in typical head-mounted displays with micro-thin diffractive optics to directly image flat-panel displays into the eye. To visualize the system think of the lenses of someone`s eyeglasses becoming flat-panel displays. To realize this embodiment, we needed to solve the problems of large chromatic aberrations and low efficiency that are associated with diffraction. We have developed a graceful tradeoff between chromatic aberrations and the diffractive optic thickness. It turns out that by doubling the thickness of a micro-thin diffractive lens we obtain nearly a two-times improvement in chromatic performance. Since the human eye will tolerate one diopter of chromatic aberration, we are able to achieve an achromatic image with a diffractive lens that is only 20 microns thick, versus 3 mm thickness for the comparable refractive lens. Molds for the diffractive lenses are diamond turned with sub-micron accuracy; the final lenses are cast from these molds using various polymers. We thus retain both the micro- thin nature of the diffractive optics and the achromatic image quality of refractive optics. During the first year of funding we successfully extended our earlier technology from 1 cm diameter optics required for vision applications up to the 5 cm diameter optics required for this application. 3 refs., 6 figs.

  2. Retinal images in the human eye with implanted intraocular lens

    NASA Astrophysics Data System (ADS)

    Zając, Marek; Siedlecki, Damian; Nowak, Jerzy

    2007-04-01

    A typical proceeding in cataract is based on the removal of opaque crystalline lens and inserting in its place the artificial intraocular lens (IOL). The quality of retinal image after such procedure depends, among others, on the parameters of the IOL, so the design of the implanted lens is of great importance. An appropriate choice of the IOL material, especially in relation to its biocompatibility, is often considered. However the parameter, which is often omitted during the IOL design is its chromatic aberration. In particular lack of its adequacy to the chromatic aberration of a crystalline lens may cause problems. In order to fit better chromatic aberration of the eye with implanted IOL to that of the healthy eye we propose a hybrid - refractive-diffractive IOL. It can be designed in such way that the total longitudinal chromatic aberration of an eye with implanted IOL equals the total longitudinal chromatic aberration of a healthy eye. In this study we compare the retinal image quality calculated numerically on the basis of the well known Liou-Brennan eye model with typical IOL implanted with that obtained if the IOL is done as hybrid (refractive-diffractive) design.

  3. Hubble Space Telescope overview

    NASA Technical Reports Server (NTRS)

    Polidan, Ronald S.

    1991-01-01

    A general overview of the performance and current status of the Hubble Space Telescope is presented. Most key spacecraft subsystems are operating well, equaling or exceeding specifications. Spacecraft thermal properties, power, and communications, are superb. The only spacecraft subsystem to have failed, a gyro, is briefly discussed. All science instruments are functioning extremely well and are returning valuable scientific data. The two significant problems effecting the Hubble Space Telescope science return, the pointing jitter produced by thermally induced bending of the solar array wings and the optical telescope assembly spherical aberration, are discussed and plans to repair both problems are mentioned. The possible restoration of full optical performance of the axial scientific instruments through the use of the Corrective Optics Space Telescope Axial Replacement, currently under study for the 1993 servicing mission, is discussed. In addition, an overview of the scientific performance of the Hubble Space Telescope is presented.

  4. The European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Collados, M.; Bettonvil, F.; Cavaller, L.; Ermolli, I.; Gelly, B.; Pérez, A.; Socas-Navarro, H.; Soltau, D.; Volkmer, R.; EST Team

    The European Solar Telescope (EST) is a project to design, build and operate an European Solar 4-meter class telescope to be located in the Canary Islands, with the participation of institutions from fifteen European countries gathered around the consortium EAST (European Association for Solar Telescopes). The project main objective up to the present has been the development of the conceptual design study (DS) of a large aperture Solar Telescope. The study has demonstrated the scientific, technical and financial feasibility of EST. The DS has been possible thanks to the co-financing allocated specifically by the EU and the combined efforts of all the participant institutions. Different existing alternatives have been analysed for all telescope systems and subsystems, and decisions have been taken on the ones that are most compatible with the scientific goals and the technical strategies. The present status of some subsystems is reviewed in this paper.

  5. Lens of Eye Dosimetry

    SciTech Connect

    Mallett, Michael Wesley

    2015-03-23

    An analysis of LANL occupational dose measurements was made with respect to lens of eye dose (LOE), in particular, for plutonium workers. Table 1 shows the reported LOE as a ratio of the “deep” (photon only) and “deep+neutron” dose for routine monitored workers at LANL for the past ten years. The data compares the mean and range of these values for plutonium workers* and non-routine plutonium workers. All doses were reported based on measurements with the LANL Model 8823 TLD.

  6. Physics of electrostatic lens

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The purpose of this program was to study the physics of the ion-energy boosting electrostatic lens for collective ion acceleration in the Luce diode. Extensive work was done in preparation for experiments on the PI Pulserad 1150. Analytic work was done on the orbit of protons in a mass spectrometer and a copper stack for nuclear activation analysis of proton energy spectrum has been designed. Unfortunately, a parallel program which would provide the Luce diode for the collective ion acceleration experiment never materialized. As a result no experiments were actually performed on the Pulserad 1150.

  7. The 2014 IODC lens design problem: the Cinderella lens

    NASA Astrophysics Data System (ADS)

    Juergens, Richard C.

    2014-12-01

    The lens design problem for the 2014 IODC is to design a 100 mm focal length lens in which all the components of the lens can be manufactured from ten Schott N-BK7 lens blanks 100 mm in diameter x 30 mm thick. The lens is used monochromatically at 587.56 nm. The goal of the problem is to maximize the product of the entrance pupil diameter and the semi-field of view while holding the RMS wavefront error to <= 0.070 wave within the field of view. There were 45 entries from 13 different countries. Four different commercial lens design programs were used, along with six custom, in-house programs. The number of lens elements in the entries ranged from 10 to 52. The winning entry from Jon Ehrmann had 25 lens elements, and had an entrance pupil diameter of 33.9 mm and a semi-field of view of 62.5° for a merit function product of 2,119.

  8. Point spread function of the optical needle super-oscillatory lens

    SciTech Connect

    Roy, Tapashree; Rogers, Edward T. F.; Yuan, Guanghui; Zheludev, Nikolay I.

    2014-06-09

    Super-oscillatory optical lenses are known to achieve sub-wavelength focusing. In this paper, we analyse the imaging capabilities of a super-oscillatory lens by studying its point spread function. We experimentally demonstrate that a super-oscillatory lens can generate a point spread function 24% smaller than that dictated by the diffraction limit and has an effective numerical aperture of 1.31 in air. The object-image linear displacement property of these lenses is also investigated.

  9. Design of an eight-element refractive lens for high resolution imaging applications

    NASA Astrophysics Data System (ADS)

    Rao, D. V. B.

    1987-06-01

    An 8 element refractive lens of 324.4 mm EFL and f/4.5 was designed for the spectral band 520nm to 590nm. The FOV of the lens was +- 5 degrees. The computed MTF of this lens system was better than 0.7 for spatial frequencies up to 60 1p/mm, as against the diffraction limited MTF of 0.81. A similar lens was designed for the spectral band 770nm to 860nm. These two lenses will be configured alongwith a panchromatic catadioptric lens of 900 mm EFL for high resolution spacecraft remote sensing applications. The design details of these lenses were presented in this paper.

  10. Optimizing distance image quality of an aspheric multifocal intraocular lens using a comprehensive statistical design approach.

    PubMed

    Hong, Xin; Zhang, Xiaoxiao

    2008-12-01

    The AcrySof ReSTOR intraocular lens (IOL) is a multifocal lens with state-of-the-art apodized diffractive technology, and is indicated for visual correction of aphakia secondary to removal of cataractous lenses in adult patients with/without presbyopia, who desire near, intermediate, and distance vision with increased spectacle independence. The multifocal design results in some optical contrast reduction, which may be improved by reducing spherical aberration. A novel patent-pending approach was undertaken to investigate the optical performance of aspheric lens designs. Simulated eyes using human normal distributions were corrected with different lens designs in a Monte Carlo simulation that allowed for variability in multiple surgical parameters (e.g. positioning error, biometric variation). Monte Carlo optimized results indicated that a lens spherical aberration of -0.10 microm provided optimal distance image quality.

  11. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications.

    PubMed

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter, we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.68), which enables efficient light focusing even inside other media, such as water or an adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping, and fiber probes.

  12. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications

    NASA Astrophysics Data System (ADS)

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I.; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.69), which enables efficient light focusing even inside other media such as water or adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping and fiber probes.

  13. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications.

    PubMed

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter, we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.68), which enables efficient light focusing even inside other media, such as water or an adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping, and fiber probes. PMID:27472584

  14. Optical loss due to diffraction by concentrator Fresnel lenses

    SciTech Connect

    Hornung, Thorsten Nitz, Peter

    2014-09-26

    Fresnel lenses are widely used in concentrating photovoltaic (CPV) systems as a primary optical element. They focus sunlight on small solar cells or on the entrance apertures of secondary optical elements. A Fresnel lens consists of several prism rings and diffraction by these prism rings is unavoidable. Some of the light that would reach a designated target area according to geometric optics will miss it due to diffraction. This diffraction loss may be of relevant magnitude for CPV applications. The results of published analytical calculations are evaluated, discussed, and compared to computer simulations and measurements.

  15. Lens-based fluorescence nanoscopy.

    PubMed

    Eggeling, Christian; Willig, Katrin I; Sahl, Steffen J; Hell, Stefan W

    2015-05-01

    The majority of studies of the living cell rely on capturing images using fluorescence microscopy. Unfortunately, for centuries, diffraction of light was limiting the spatial resolution in the optical microscope: structural and molecular details much finer than about half the wavelength of visible light (~200 nm) could not be visualized, imposing significant limitations on this otherwise so promising method. The surpassing of this resolution limit in far-field microscopy is currently one of the most momentous developments for studying the living cell, as the move from microscopy to super-resolution microscopy or 'nanoscopy' offers opportunities to study problems in biophysical and biomedical research at a new level of detail. This review describes the principles and modalities of present fluorescence nanoscopes, as well as their potential for biophysical and cellular experiments. All the existing nanoscopy variants separate neighboring features by transiently preparing their fluorescent molecules in states of different emission characteristics in order to make the features discernible. Usually these are fluorescent 'on' and 'off' states causing the adjacent molecules to emit sequentially in time. Each of the variants can in principle reach molecular spatial resolution and has its own advantages and disadvantages. Some require specific transitions and states that can be found only in certain fluorophore subfamilies, such as photoswitchable fluorophores, while other variants can be realized with standard fluorescent labels. Similar to conventional far-field microscopy, nanoscopy can be utilized for dynamical, multi-color and three-dimensional imaging of fixed and live cells, tissues or organisms. Lens-based fluorescence nanoscopy is poised for a high impact on future developments in the life sciences, with the potential to help solve long-standing quests in different areas of scientific research.

  16. Beam deformation within an acousto-optic lens.

    PubMed

    Zhou, Zhenqiao; Li, Longhui; Wang, Jiancun; Hu, Qinglei; Zeng, Shaoqun

    2015-05-15

    The acousto-optic lens (AOL) is becoming a popular tool in the neuroscience field. Here we analyzed the deformation of the diffraction beam after passage through an AOL consisting of a pair of acousto-optic deflectors using both theoretical and experimental data. The results showed that, because of the high sensitivity of optical spatial frequencies of acousto-optic deflectors, the boundary strength of the diffraction beam of the AOL decreases significantly. When the focal length of AOL diminishes, the deformation of the diffraction beam becomes more serious with a smaller beam size. This deformation of the diffraction beam finally leads to a decreased illuminative numerical aperture, which worsens the image's spatial resolution. PMID:26393698

  17. Two Easily Made Astronomical Telescopes.

    ERIC Educational Resources Information Center

    Hill, M.; Jacobs, D. J.

    1991-01-01

    The directions and diagrams for making a reflecting telescope and a refracting telescope are presented. These telescopes can be made by students out of plumbing parts and easily obtainable, inexpensive, optical components. (KR)

  18. Electrostatic Focusing Lens

    NASA Astrophysics Data System (ADS)

    Thomas, Eric; Hopkins, Demitri

    2011-10-01

    We developed an electrostatic focusing lens capable of generating DD reactions, by focusing deuterium ions generated from a pointed emitter at a frozen heavy water target. Due to difficulty with the pointed emitter, we later switched to a hollow cathode design. To model the lenses, chamber, and calculate the dimensions for the design that would maximize ion energy and density, the program SIMION was used. During stable operation, vacuum was hand adjusted around 10-13 mTorr. To keep stable beam, DC voltage generator was varied between 15-25 kV. Hand adjusting was necessary, because at points in the operation the frozen heavy water would release vapor at an increased rate. This caused the pressure to rise and the beam current to spike, creating instabilities and an arc to the lens. Three methods were used to determine successful DD production. (1) Two differently shielded Geiger counters (unshielded and UHMW-PE insulated tube), (2) Spectrophotometer comparing control peaks with heavy water tests, and (3) a calibrated bubble dosimeter specific to neutrons. Analysis of the results suggest the neutrons flux varied from 532 to 1.4 × 106 neutrons/sec, and require further tests to plot and narrow results.

  19. Engineering near-field focusing of a microsphere lens with pupil masks

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Yue, Liyang; Wang, Zengbo

    2016-07-01

    Recent researches have shown small dielectric microspheres can perform as super-resolution lens to break optical diffraction limit for super-resolution applications. In this paper, we show for the first time that by combining a microsphere lens with a pupil mask, it is possible to precisely control the focusing properties of the lens, including the focusing spot size and focal length. Generally, the pupil mask can significantly reduce the spot size which means an improved resolution. The work is important for advancing microsphere-based super-resolution technologies, including fabrication and imaging.

  20. Surface figure measurements of radio telescopes with a shearing interferometer.

    PubMed

    Serabyn, E; Phillips, T G; Masson, C R

    1991-04-01

    A new technique for determining the surface figure of large submillimeter wavelength telescopes is presented, which is based on measuring the telescope's focal plane diffraction pattern with a shearing interferometer. In addition to the instrumental theory, results obtained using such an interferometer on the 10.4-m diam telescope of the Caltech Submillimeter Observatory are discussed. Using wavelengths near 1 mm, a measurement accuracy of 9 microm, or lambda/115, has been achieved, and the rms surface accuracy has been determined to be just under 30 microm. The distortions of the primary reflector with changing elevation angle have also been measured and agree well with theoretical predictions of the dish deformation.

  1. Optical design of the new solar telescope GREGOR

    NASA Astrophysics Data System (ADS)

    Soltau, D.; Volkmer, R.; von der Lühe, O.; Berkefeld, Th.

    2012-11-01

    This article describes the considerations which led to the current optical design of the new 1.5 m solar telescope GREGOR. The result is Gregorian design with two real foci in the optical train. The telescope includes a relay optic with a pupil image used by a high order adaptive optics system (AO). The optical design is described in detail and performance characteristics are given. Finally we show some verification results which prove that - without atmospheric effects - the completed telescope reaches a diffraction limited performance.

  2. Cooled infrared telescope development

    NASA Technical Reports Server (NTRS)

    Young, L. S.

    1976-01-01

    The feasibility of the design concept for a 1-m-aperture, cryogenically cooled telescope for Spacelab is assessed. The device makes use of double-folded Gregorian reflective optics. The planned cryogen is helium, and beryllium will be used for the 1.2 m primary mirror. Results of studies based on smaller instruments indicate that no new technology will be required to construct a Shuttle Infrared Telescope Facility which will offer improvement over the sensitivity of conventional telescopes by a factor of 1000 at 10 micrometers.

  3. Multi-use lunar telescopes

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Hine, Butler; Genet, Russell; Genet, David; Talent, David; Boyd, Louis; Trueblood, Mark; Filippenko, Alexei V. (Editor)

    1991-01-01

    The objective of multi-use telescopes is to reduce the initial and operational costs of space telescopes to the point where a fair number of telescopes, a dozen or so, would be affordable. The basic approach is to develop a common telescope, control system, and power and communications subsystem that can be used with a wide variety of instrument payloads, i.e., imaging CCD cameras, photometers, spectrographs, etc. By having such a multi-use and multi-user telescope, a common practice for earth-based telescopes, development cost can be shared across many telescopes, and the telescopes can be produced in economical batches.

  4. An Infrared Einstein Ring in the Gravitational Lens PG 1115+080

    NASA Astrophysics Data System (ADS)

    Impey, C. D.; Falco, E. E.; Kochanek, C. S.; Lehár, J.; McLeod, B. A.; Rix, H.-W.; Peng, C. Y.; Keeton, C. R.

    1998-12-01

    Hubble Space Telescope observations of the gravitational lens PG 1115+080 in the infrared show the known zl = 0.310 lens galaxy and reveal the zs = 1.722 quasar host galaxy. The main lens galaxy G is a nearly circular (ellipticity ε < 0.07) elliptical galaxy with a de Vaucouleurs profile and an effective radius of Re = 0.59" +/- 0.06" (1.7 +/- 0.2 h-1 kpc for Ω0 = 1 and h = H0/100 km s-1 Mpc-1). G is part of a group of galaxies that is a required component of all successful lens models. The new quasar and lens positions (3 mas uncertainty) yield constraints for these models that are statistically degenerate, but several conclusions are firmly established. (1) The principal lens galaxy is an elliptical galaxy with normal structural properties, lying close to the fundamental plane for its redshift. (2) The potential of the main lens galaxy is nearly round, even when not constrained by the small ellipticity of the light of this galaxy. (3) All models involving two mass distributions place the group component near the luminosity-weighted centroid of the brightest nearby group members. (4) All models predict a time delay ratio rABC ~= 1.3. (5) Our lens models predict H0 = 44 +/- 4 km s-1 Mpc-1 if the lens galaxy contains dark matter and has a flat rotation curve and H0 = 65 +/- 5 km s-1 Mpc-1 if it has a constant mass-to-light ratio. (6) Any dark halo of the main lens galaxy must be truncated near 1.5" (4 h-1 kpc) before the inferred H0 rises above ~60 km s-1 Mpc-1. (7) The quasar host galaxy is lensed into an Einstein ring connecting the four quasar images, whose shape is reproduced by the models. Improved near-infrared camera multiobject spectrograph (NICMOS) imaging of the ring could be used to break the degeneracy of the lens models. Based on Observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  5. X-Ray Diffraction.

    ERIC Educational Resources Information Center

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  6. The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies

    NASA Technical Reports Server (NTRS)

    Bolton, Adam S.; Burles, Scott; Koopmans, Leon V. E.; Treu, Tommaso; Moustakas, Leonidas A.

    2006-01-01

    The Sloan Lens ACS (SLACS) Survey is an efficient Hubble Space Telescope (HST) Snapshot imaging survey for new galaxy-scale strong gravitational lenses. The targeted lens candidates are selected spectroscopically from the Sloan Digital Sky Survey (SDSS) database of galaxy spectra for having multiple nebular emission lines at a redshift significantly higher than that of the SDSS target galaxy. The SLACS survey is optimized to detect bright early-type lens galaxies with faint lensed sources in order to increase the sample of known gravitational lenses suitable for detailed lensing, photometric, and dynamical modeling. In this paper, the first in a series on the current results of our HST Cycle 13 imaging survey, we present a catalog of 19 newly discovered gravitational lenses, along with nine other observed candidate systems that are either possible lenses, nonlenses, or nondetections. The survey efficiency is thus >=68%. We also present Gemini 8 m and Magellan 6.5 m integral-field spectroscopic data for nine of the SLACS targets, which further support the lensing interpretation. A new method for the effective subtraction of foreground galaxy images to reveal faint background features is presented. We show that the SLACS lens galaxies have colors and ellipticities typical of the spectroscopic parent sample from which they are drawn (SDSS luminous red galaxies and quiescent MAIN sample galaxies), but are somewhat brighter and more centrally concentrated. Several explanations for the latter bias are suggested. The SLACS survey provides the first statistically significant and homogeneously selected sample of bright early-type lens galaxies, furnishing a powerful probe of the structure of early-type galaxies within the half-light radius. The high confirmation rate of lenses in the SLACS survey suggests consideration of spectroscopic lens discovery as an explicit science goal of future spectroscopic galaxy surveys.

  7. Electromagnetic diffraction by plane reflection diffraction gratings

    NASA Technical Reports Server (NTRS)

    Bocker, R. P.; Marathay, A. S.

    1972-01-01

    A plane wave theory was developed to study electromagnetic diffraction by plane reflection diffraction gratings of infinite extent. A computer program was written to calculate the energy distribution in the various orders of diffraction for the cases when the electric or magnetic field vectors are parallel to the grating grooves. Within the region of validity of this theory, results were in excellent agreement with those in the literature. Energy conservation checks were also made to determine the region of validity of the plane wave theory. The computer program was flexible enough to analyze any grating profile that could be described by a single value function f(x). Within the region of validity the program could be used with confidence. The computer program was used to investigate the polarization and blaze properties of the diffraction grating.

  8. Webb Telescope: Planetary Evolution

    NASA Video Gallery

    Stars and planets form in the dark, inside vast, cold clouds of gas and dust. The James Webb Space Telescope's large mirror and infrared sensitivity will let astronomers peer inside dusty knots whe...

  9. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Schloerb, F. Peter; Carrasco, Luis

    2004-10-01

    We present a summary of the Large Millimeter Telescope Project and its present status. The Large Millimeter Telescope (LMT) is a joint project of the University of Massachusetts (UMass) in the USA and the Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) in Mexico to build a 50m-diameter millimeter-wave telescope. The LMT is being built at an altitude of 4600 m atop Volcan Sierra Negra, an extinct volcanic peak in the state of Puebla, Mexico, approximately 100 km east of the city of Puebla. Construction of the antenna is now well underway. The basic structure with a limited number of surface panels is expected to be completed in 2005. Engineering acceptance and telescope commissioning are expected to be completed in 2007.

  10. Composite Space Telescope Truss

    NASA Video Gallery

    NASA engineers are recycling an idea for a lightweight, compact space telescope structure from the early 1990s. The 315 struts and 84 nodes were originally designed to enable spacewalking astronaut...

  11. Building a Telescope.

    ERIC Educational Resources Information Center

    Linas, Chris F.

    1988-01-01

    Provides information on the parts, materials, prices, dimensions, and tools needed for the construction of a telescope that can be used in high school science laboratories. Includes step-by-step directions and a diagram for assembly. (RT)

  12. Shuttle Infrared Telescope Facility

    NASA Technical Reports Server (NTRS)

    Mccarthy, S. G.

    1976-01-01

    The Shuttle Infrared Telescope Facility (SIRTF) will combine high sensitivity with the flexibility offered by the Space Transportation System. A recently completed study has generated a preliminary design which demonstrates the feasibility of SIRTF. The 1.0 to 1.5 meter aperture, f/8 Gregorian telescope will be cooled to 20 K by a stored supercritical helium system. The telescope will be pointed and stabilized at two levels: the European-developed Instrument Pointing System provides primary pointing and stabilization; and an internal star tracker senses residual errors and drives a folding mirror inside the telescope to null the errors. The folding mirror can also be driven by square or triangular waves to provide space chopping or small-area scanning.

  13. Telescopes in History

    NASA Astrophysics Data System (ADS)

    Bond, P.; Murdin, P.

    2000-11-01

    The precise origins of the optical telescope are hidden in the depths of time. In the thirteenth century Roger Bacon claimed to have devised a combination of lenses which enabled him to see distant objects as if they were near. Others who have an unsubstantiated claim to have invented the telescope in the sixteenth century include an Englishman, Leonard DIGGES, and an Italian, Giovanni Batista Po...

  14. Hubble Space Telescope Configuration

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This image illustrates the overall Hubble Space Telescope (HST) configuration. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  15. LISA Telescope Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    The Laser Interferometer Space Antenna (LISA) for the detection of Gravitational Waves is a very long baseline interferometer which will measure the changes in the distance of a five million kilometer arm to picometer accuracies. As with any optical system, even one with such very large separations between the transmitting and receiving, telescopes, a sensitivity analysis should be performed to see how, in this case, the far field phase varies when the telescope parameters change as a result of small temperature changes.

  16. An early lunar-based telescope - The Lunar Transit Telescope (LTT)

    NASA Technical Reports Server (NTRS)

    Mcgraw, John T.

    1990-01-01

    The first telescope accompanying return to the moon, a simple but elegant two meter class instrument capable of producing an extraordinary survey of the universe is proposed. This telescope produces a deep image of the sky obtained simultaneously in several broad bandpasses in the wavelength range from about 0.1 to 2 microns, with diffraction limited imaging in the infrared and approximately 0.1 arcsec resolution at shorter wavelengths. In an 18.6 year mission, the survey would include approximately 2 percent of the sky with multiple observations of all the surveyed area. This survey is accomplished with a telescope which has no moving parts and requires no continuing support beyond initial deployment.

  17. FESDIF -- Finite Element Scalar Diffraction theory code

    SciTech Connect

    Kraus, H.G.

    1992-09-01

    This document describes the theory and use of a powerful scalar diffraction theory based computer code for calculation of intensity fields due to diffraction of optical waves by two-dimensional planar apertures and lenses. This code is called FESDIF (Finite Element Scalar Diffraction). It is based upon both Fraunhofer and Kirchhoff scalar diffraction theories. Simplified routines for circular apertures are included. However, the real power of the code comes from its basis in finite element methods. These methods allow the diffracting aperture to be virtually any geometric shape, including the various secondary aperture obstructions present in telescope systems. Aperture functions, with virtually any phase and amplitude variations, are allowed in the aperture openings. Step change aperture functions are accommodated. The incident waves are considered to be monochromatic. Plane waves, spherical waves, or Gaussian laser beams may be incident upon the apertures. Both area and line integral transformations were developed for the finite element based diffraction transformations. There is some loss of aperture function generality in the line integral transformations which are typically many times more computationally efficient than the area integral transformations when applicable to a particular problem.

  18. Bringing Perfect Vision to the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Matijevich, Russ; Johansson, Erik; Johnson, Luke; Cavaco, Jeff; National Solar Observatory

    2016-01-01

    The world's largest ground-based solar telescope is one step closer to operation with the acceptance of the deformable mirror engineered by AOA Xinetics, a Northrop Grumman Corporation company. The Daniel K. Inouye Solar Telescope (DKIST), currently under construction in Haleakala, Hawaii, will offer unprecedented high-resolution images of the sun using the latest adaptive optics technology to provide its distortion-free imaging.Led by the National Solar Observatory (NSO) and the Association of Universities for Research in Astronomy (AURA), the Inouye Solar Telescope will help scientists better understand how magnetic fields affect the physical properties of the Sun, what roles they play in our solar system and how they affect Earth.Ground-based telescopes, whether observing the sun or the night sky must contend with atmospheric turbulence that acts as a flexible lens, constantly reshaping observed images. This turbulence makes research on solar activity difficult and drives the need for the latest adaptive optics technology.To provide DKIST with the distortion-free imaging it requires, AOA Xinetics designed a deformable mirror with 1,600 actuators, four times the normal actuator density. This deformable mirror (DM) is instrumental in removing all of the atmospheric blurriness that would otherwise limit the telescope's performance. The mirror also has an internal thermal management system to handle the intense solar energy coming from DKIST's telescope. This poster provides the history behind this incredible success story.

  19. The Multiple-Mirror Telescope

    ERIC Educational Resources Information Center

    Carleton, Nathaniel P.; Hoffmann, William F.

    1978-01-01

    Describes the basic design and principle of operating an optical-infrared telescope, the MMT. This third largest telescope in the world represents a new stage in telescope design; it uses a cluster of six reflecting telescopes, and relies on an automatic sensing and control system. (GA)

  20. Pediatric genetic disorders of lens.

    PubMed

    Nihalani, Bharti R

    2014-12-01

    Pediatric genetic disorders of lens include various cataractous and non-cataractous anomalies. The purpose of this review is to help determine the genetic cause based on the lens appearance, ocular and systemic associations. Children with bilateral cataracts require a comprehensive history, ophthalmic and systemic examination to guide further genetic evaluation. With advancements in genetics, it is possible to determine the genetic mutations and assess phenotype genotype correlation in different lens disorders. The genetic diagnosis helps the families to better understand the disorder and develop realistic expectations as to the course of their child's disorder. PMID:27625879

  1. Pediatric genetic disorders of lens

    PubMed Central

    Nihalani, Bharti R.

    2014-01-01

    Pediatric genetic disorders of lens include various cataractous and non-cataractous anomalies. The purpose of this review is to help determine the genetic cause based on the lens appearance, ocular and systemic associations. Children with bilateral cataracts require a comprehensive history, ophthalmic and systemic examination to guide further genetic evaluation. With advancements in genetics, it is possible to determine the genetic mutations and assess phenotype genotype correlation in different lens disorders. The genetic diagnosis helps the families to better understand the disorder and develop realistic expectations as to the course of their child's disorder.

  2. A liquid crystal adaptive lens

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Cleverly, D.

    1981-01-01

    Creation of an electronically controlled liquid crystal lens for use as a focusing mechanism in a multi-element lens system or as an adaptive optical element is analyzed. Varying the index of refraction is shown to be equivalent to the shaping of a solid refracting material. Basic characteristics of liquid crystals, essential for the creation of a lens, are reviewed. The required variation of index of refraction is provided by choosing appropriate electrode voltages. The configuration required for any incoming polarization is given and its theoretical performance in terms of modulation transfer function derived.

  3. Integrated Lens Antennas for Multi-Pixel Receivers

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Chattopadhyay, Goutam

    2011-01-01

    Future astrophysics and planetary experiments are expected to require large focal plane arrays with thousands of detectors. Feedhorns have excellent performance, but their mass, size, fabrication challenges, and expense become prohibitive for very large focal plane arrays. Most planar antenna designs produce broad beam patterns, and therefore require additional elements for efficient coupling to the telescope optics, such as substrate lenses or micromachined horns. An antenna array with integrated silicon microlenses that can be fabricated photolithographically effectively addresses these issues. This approach eliminates manual assembly of arrays of lenses and reduces assembly errors and tolerances. Moreover, an antenna array without metallic horns will reduce mass of any planetary instrument significantly. The design has a monolithic array of lens-coupled, leaky-wave antennas operating in the millimeter- and submillimeter-wave frequencies. Electromagnetic simulations show that the electromagnetic fields in such lens-coupled antennas are mostly confined in approximately 12 15 . This means that one needs to design a small-angle sector lens that is much easier to fabricate using standard lithographic techniques, instead of a full hyper-hemispherical lens. Moreover, this small-angle sector lens can be easily integrated with the antennas in an array for multi-pixel imager and receiver implementation. The leaky antenna is designed using double-slot irises and fed with TE10 waveguide mode. The lens implementation starts with a silicon substrate. Photoresist with appropriate thickness (optimized for the lens size) is spun on the substrate and then reflowed to get the desired lens structure. An antenna array integrated with individual lenses for higher directivity and excellent beam profile will go a long way in realizing multi-pixel arrays and imagers. This technology will enable a new generation of compact, low-mass, and highly efficient antenna arrays for use in multi

  4. Lens system for a photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1990-01-01

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system.

  5. Lens system for a photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1990-11-27

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component is disclosed. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system. 8 figs.

  6. The 4-meter lunar engineering telescope

    NASA Technical Reports Server (NTRS)

    Peacock, Keith; Giannini, Judith A.; Kilgus, Charles C.; Bely, Pierre Y.; May, B. Scott; Cooper, Shannon A.; Schlimm, Gerard H.; Sounder, Charles; Ormond, Karen; Cheek, Eric

    1991-01-01

    The 16-meter diffraction limited lunar telescope incorporates a primary mirror with 312 one-meter segments; 3 nanometer active optics surface control with laser metrology and hexapod positioners; a space frame structure with one-millimeter stability; and a hexapod mount for pointing. The design data needed to limit risk in this development can be obtained by building a smaller engineering telescope on the moon with all of the features of the 16-meter design. This paper presents a 4.33-meter engineering telescope concept developed by the Summer 1990 Student Program of the NASA/JHU Space Grant Consortium Lunar Telescope Project. The primary mirror, made up of 18 one-meter hexagonal segments, is sized to provide interesting science as well as engineering data. The optics are configured as a Ritchey-Chretien with a coude relay to the focal plane beneath the surface. The optical path is continuously monitored with 3-nanometer precision interferometrically. An active optics processor and piezoelectric actuators operate to maintain the end-to-end optical configuration established by wave front sensing using a guide star. The mirror segments, consisting of a one-centimeter thick faceplate on 30-cm deep ribs, maintain the surface figure to a few nanometers under lunar gravity and thermal environment.

  7. Two-lens designs for modern uncooled and cooled IR imaging devices

    NASA Astrophysics Data System (ADS)

    Schuster, Norbert; Franks, John

    2013-10-01

    In recent years, thermal detectors with a 17 μm pixel pitch have become well-established for use in various applications, such as thermal imaging in cars. This has allowed the civilian infrared market to steadily mature. The main cost for these lens designs comes from the number of lenses used. The development of thermal detectors, which are less sensitive than quantum detectors, has compelled camera manufacturers to demand very fast F-numbers such as f/1.2 or faster. This also minimizes the impact of diffraction in the 8-12 μmm waveband. The freedom afforded by the choice of the stop position in these designs has been used to create high-resolution lenses that operate near the diffraction limit. Based on GASIR®1, a chalcogenide glass, two-lens designs have been developed for all pixel counts and fields of view. Additionally, all these designs have been passively athermalized, either optically or mechanically. Lenses for cooled quantum detectors have a defined stop position called the cold stop (CS) near the FPA-plane. The solid angle defined by the CS fixes not only the F-number (which is less fast than for thermal detectors), but determines also the required resolution. The main cost driver of these designs is the lens diameter. Lenses must be sufficiently large to avoid any vignetting of ray bundles intended to reach the cooled detector. This paper studies the transfer of approved lens design principles for thermal detectors to lenses for cooled quantum detectors with CS for same pixel count at three horizontal fields of view: a 28° medium field lens, an 8° narrow field lens, and a 90° wide field lens. The lens arrangements found for each category have similar lens costs.

  8. Lens design based on lens form parameters using Gaussian brackets

    NASA Astrophysics Data System (ADS)

    Yuan, Xiangyu; Cheng, Xuemin

    2014-11-01

    The optical power distribution and the symmetry of the lens components are two important attributes that decide the ultimate lens performance and characteristics. Lens form parameters W and S are the key criteria describing the two attributes mentioned above. Lens components with smaller W and S will have a good nature of aberration balance and perform well in providing good image quality. Applying the Gaussian brackets, the two lens form parameters and the Seidel Aberration Coefficients are reconstructed. An initial lens structure can be analytically described by simultaneous equations of Seidel Aberration Coefficients and third-order aberration theory. Adding the constraints of parameters W and S in the solving process, a solution with a proper image quality and aberration distribution is achieved. The optical properties and image quality of the system based on the parameters W and S are also analyzed in this article. In the method, the aberration distribution can be controlled to some extent in the beginning of design, so that we can reduce some workload of optimization later.

  9. Adjustable Focus Optical Correction Lens (AFOCL)

    NASA Technical Reports Server (NTRS)

    Peters, Bruce R.

    2001-01-01

    This report describes the activities and accomplishments along with the status of the characterization of a PLZT-based Adjustable Focus Optical Correction Lens (AFOCL) test device. The activities described in this report were undertaken by members of the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) under NASA Contract NAS8-00188. The effort was led by Dr. Bruce Peters as the Principal Investigator and supported by Dr. Patrick Reardon, Ms. Deborah Bailey, and graduate student Mr. Jeremy Wong. The activities outlined for the first year of the contract were to identify vendors and procure a test device along with performing the initial optical characterization of the test device. This activity has been successfully executed and test results are available and preliminary information was published at the SPIE Photonics West Conference in San Jose, January 2001. The paper, "Preliminary investigation of an active PLZT lens," was well received and generated response with several questions from the audience. A PLZT test device has been commercially procured from an outside vendor: The University of California in San Diego (UCSD) in partnership with New Interconnect Packaging Technologies (NIPT) Inc. The device has been subjected to several tests to characterize the optical performance of the device at wavelengths of interest. The goal was to evaluate the AFOCL similar to a conventional lens and measure any optical aberrations present due to the PLZT material as a deviation in the size of the diffraction limited spot (blur), the presence of diffracted energy into higher orders surrounding the focused spot (a variation in Strehl), and/or a variation or spread in the location of the focused energy away from the optical axis (a bias towards optical wedge, spherical, comma, or other higher order aberrations). While data has been collected indicative of the imaging quality of the AFOCL test device, it was not possible to fully characterize the

  10. Survey of intraocular lens material and design.

    PubMed

    Doan, Kim T; Olson, Randall J; Mamalis, Nick

    2002-02-01

    Modern cataract surgery is constantly evolving and improving in terms of lens material and design. Researchers and physicians strive to obtain better refractive correction with smaller wound size and minimizing host cell response to limit the proliferation of lens epithelial cells leading to opacification of the lens capsule. Intraocular lens material varies in water content, refractive index, and tensile strength. Intraocular lens design has undergone revisions to prohibit lens epithelial cell migration and reflection of internal and external light. The evolution of intraocular lens and extracapsular cataract surgery has lead to faster postoperative recovery and better visual outcomes.

  11. Optical design of zero-power Hubble Space Telescope wave-front correctors for null testing.

    PubMed

    Hannan, P G; Davila, P; Wood, H J

    1993-04-01

    The optical design of the second-generation wide-field/planetary-camera instrument for the Hubble Space Telescope has been modified to compensate for the spherical aberration of the optical telescope assembly (OTA) by introduction of undercorrected spherical aberration into the wave front. This instrument can be tested in a simple manner to ensure that its aberration contribution has the proper sign and magnitude. We present designs for a near-zero power doublet lens that can be used to generate a spherically aberrated wave front that is similar to the OTA wave front. When this lens is used in combination with the instrument, a near-perfect or nulled wave front should be produced, resulting in a high-quality point image on axis. We also present lens designs for a similar test that can be performed on the OTA simulators now being built to verify the other second-generation instruments.

  12. Optical design of zero-power Hubble Space Telescope wave-front correctors for null testing

    NASA Technical Reports Server (NTRS)

    Hannan, Paul G.; Davila, Pam; Wood, H. J.

    1993-01-01

    The optical design of the second-generation wide-field/planetary-camera instrument for the Hubble Space Telescope has been modified to compensate for the spherical aberration of the optical telescope assembly (OTA) by introduction of undercorrected spherical aberration into the wave front. This instrument can be tested in a simple manner to ensure that its aberration contribution has the proper sign and magnitude. We present designs for a near-zero power doublet lens that can be used to generate a spherically aberrated wave front that is similar to the OTA wave front. When this lens is used in combination with the instrument, a near-perfect or nulled wave front should be produced, resulting in a high-quality point image on axis. We also present lens designs for a similar test that can be performed on the OTA simulators now being built to verify the other second-generation instruments.

  13. The South Pole Telescope

    SciTech Connect

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  14. Robotic and Survey Telescopes

    NASA Astrophysics Data System (ADS)

    Woźniak, Przemysław

    Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.

  15. Telescope Adaptive Optics Code

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The defaultmore » parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST« less

  16. Spectroradiometry with space telescopes

    NASA Astrophysics Data System (ADS)

    Pauluhn, Anuschka; Huber, Martin C. E.; Smith, Peter L.; Colina, Luis

    2015-12-01

    Radiometry, i.e. measuring the power of electromagnetic radiation—hitherto often referred to as "photometry"—is of fundamental importance in astronomy. We provide an overview of how to achieve a valid laboratory calibration of space telescopes and discuss ways to reliably extend this calibration to the spectroscopic telescope's performance in space. A lot of effort has been, and still is going into radiometric "calibration" of telescopes once they are in space; these methods use celestial primary and transfer standards and are based in part on stellar models. The history of the calibration of the Hubble Space Telescope serves as a platform to review these methods. However, we insist that a true calibration of spectroscopic space telescopes must directly be based on and traceable to laboratory standards, and thus be independent of the observations. This has recently become a well-supported aim, following the discovery of the acceleration of the cosmic expansion by use of type-Ia supernovae, and has led to plans for launching calibration rockets for the visible and infrared spectral range. This is timely, too, because an adequate exploitation of data from present space missions, such as Gaia, and from many current astronomical projects like Euclid and WFIRST demands higher radiometric accuracy than is generally available today. A survey of the calibration of instruments observing from the X-ray to the infrared spectral domains that include instrument- or mission-specific estimates of radiometric accuracies rounds off this review.

  17. Monolithic afocal telescope

    NASA Technical Reports Server (NTRS)

    Roberts, William T. (Inventor)

    2010-01-01

    An afocal monolithic optical element formed of a shallow cylinder of optical material (glass, polymer, etc.) with fast aspheric surfaces, nominally confocal paraboloids, configured on the front and back surfaces. The front surface is substantially planar, and this lends itself to deposition of multi-layer stacks of thin dielectric and metal films to create a filter for rejecting out-of-band light. However, an aspheric section (for example, a paraboloid) can either be ground into a small area of this surface (for a Cassegrain-type telescope) or attached to the planar surface (for a Gregorian-type telescope). This aspheric section of the surface is then silvered to create the telescope's secondary mirror. The rear surface of the cylinder is figured into a steep, convex asphere (again, a paraboloid in the examples), and also made reflective to form the telescope's primary mirror. A small section of the rear surface (approximately the size of the secondary obscuration, depending on the required field of the telescope) is ground flat to provide an unpowered surface through which the collimated light beam can exit the optical element. This portion of the rear surface is made to transmit the light concentrated by the reflective surfaces, and can support the deposition of a spectral filter.

  18. The Travelling Telescope

    NASA Astrophysics Data System (ADS)

    Murabona Oduori, Susan

    2015-08-01

    The telescope has been around for more than 400 years, and through good use of it scientists have made many astonishing discoveries and begun to understand our place in the universe. Most people, however, have never looked through one. Yet it is a great tool for cool science and observation especially in a continent and country with beautifully dark skies. The Travelling Telescope project aims to invite people outside under the stars to learn about those curious lights in the sky.The Travelling Telescope aims to promote science learning to a wide range of Kenyan schools in various locations exchanging knowledge about the sky through direct observations of celestial bodies using state of the art telescopes. In addition to direct observing we also teach science using various hands-on activities and astronomy software, ideal for explaining concepts which are hard to understand, and for a better grasp of the sights visible through the telescope. We are dedicated to promoting science using astronomy especially in schools, targeting children from as young as 3 years to the youth, teachers, their parents and members of the public. Our presentation focuses on the OAD funded project in rural coastal Kenya.

  19. Compound Schmidt telescope designs with nonzero Petzval curvatures.

    PubMed

    Sigler, R D

    1975-09-01

    A variety of aplanatic and anastigmatic Schmidt Cassegrain and Schmidt Gregorian telescope designs with nonzero Petzval curvatures are investigated. Relaxing the Petzval constraint permits the development of high performance photo/visual instruments which are capable of diffraction limited imaging over fields of view of 1-2 degrees . PMID:20155004

  20. Compound Schmidt telescope designs with nonzero Petzval curvatures.

    PubMed

    Sigler, R D

    1975-09-01

    A variety of aplanatic and anastigmatic Schmidt Cassegrain and Schmidt Gregorian telescope designs with nonzero Petzval curvatures are investigated. Relaxing the Petzval constraint permits the development of high performance photo/visual instruments which are capable of diffraction limited imaging over fields of view of 1-2 degrees .

  1. Astronomical telescope with holographic primary objective

    NASA Astrophysics Data System (ADS)

    Ditto, Thomas D.; Friedman, Jeffrey F.; Content, David A.

    2011-09-01

    A dual dispersion telescope with a plane grating primary objective was previously disclosed that can overcome intrinsic chromatic aberration of dispersive optics while allowing for unprecedented features such as million object spectroscopy, extraordinary étendue, flat primary objective with a relaxed figure tolerance, gossamer membrane substrate stowable as an unsegmented roll inside a delivery vehicle, and extensibility past 100 meter aperture at optical wavelengths. The novel design meets many criteria for space deployment. Other embodiments are suitable for airborne platforms as well as terrestrial and lunar sites. One problem with this novel telescope is that the grazing exodus configuration necessary to achieve a large aperture is traded for throughput efficiency. Now we show how the hologram of a point source used in place of the primary objective plane grating can improve efficiency by lowering the diffraction angle below grazing exodus. An intermediate refractive element is used to compensate for wavelength dependent focal lengths of the holographic primary objective.

  2. Optical design of an astrometric space telescope

    NASA Astrophysics Data System (ADS)

    Richardson, E. H.; Morbey, C. L.

    1986-01-01

    A three-mirror telescope derived from the Paul corrector is described. It differs from the original Paul design in several respects. (1) The third mirror is located behind the primary mirror instead of in front of it. (2) The telescope is made off-axis so that there is no central obstruction, thus avoiding the extension and asymmetry of the diffraction pattern caused by the spiders holding an on-axis secondary mirror. (3) Baffling is not a problem as it is with the usual Paul design. The focal surface is flat where a moving ronchi grating is located. This is the first element in the astrometric analyzer. A real image of the pupil is produced behind the focus. This is helpful in the design of relay optics (not described) which reimage the grating onto a CCD.

  3. Contact lens management of keratoconus.

    PubMed

    Downie, Laura E; Lindsay, Richard G

    2015-07-01

    Contact lenses are the primary form of visual correction for patients with keratoconus. Contemporary advances in contact lens designs and materials have significantly expanded the available fitting options for patients with corneal ectasia. Furthermore, imaging technology, such as corneal topography and anterior segment optical coherence tomography, can be applied to both gain insight into corneal microstructural changes and to guide contact lens fitting. This paper provides a comprehensive review of the range of contact lens modalities, including soft lenses, hybrid designs, rigid lenses, piggyback configurations, corneo-scleral, mini-scleral and scleral lenses that are currently available for the optical management of keratoconus. The review also discusses the importance of monitoring for disease progression in patients with keratoconus, in particular children, who tend to undergo more rapid progressive changes, so as to facilitate appropriate modification to contact lens fitting and/or potential referral for corneal collagen cross-linking treatment, as appropriate. PMID:26104589

  4. Intraocular lens fixation with dacron.

    PubMed

    Peyman, G A; Koziol, J E

    1978-10-01

    To overcome the problem of postoperative lens dislocation, we evaluated a new means of lens fixation. Our experimental studies in rabbits and primates demonstrated that Dacron polyethylene terephtalate induced a cellular reaction from either the anterior or posterior iris surface when placed in contact with the iris, thereby establishing a bond between the Dacron fibers and the iris. Dacron mesh can be attached to the distal portion of either the anterior or posterior loops of a Binkhorst iris clip (4-loop) lens. In the rabbit eye, lens fixation occurred within five days; in the primate eye, 30 days. When combined with silk, Dacron produced tissue ingrowth in the primate eye within 14 days. No unwanted reaction occurred in any animal with the Dacron and silk combination. Being biodegradable, the silk induced faster cellular ingrowth than the Dacron. However, Dacron, which is not biodegradable, provided a permanent means of fixation. PMID:155053

  5. High resolution telescope including an array of elemental telescopes aligned along a common axis and supported on a space frame with a pivot at its geometric center

    DOEpatents

    Norbert, Massie A.; Yale, Oster

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employes speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by a electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  6. High resolution telescope including an array of elemental telescopes aligned along a common axis and supported on a space frame with a pivot at its geometric center

    DOEpatents

    Norbert, M.A.; Yale, O.

    1992-04-28

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employes speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by a electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes. 15 figs.

  7. Far Sidelobes Measurement of the Atacama Cosmology Telescope

    NASA Technical Reports Server (NTRS)

    Duenner, Rolando; Gallardo, Patricio; Wollack, Ed; Henriquez, Fernando; Jerez-Hanckes, Carlos

    2012-01-01

    The Atacama Cosmology Telescope (ACT) is a 6m telescope designed to map the Cosmic Microwave Background (CMB) simultaneously at 145GHz, 220 GHz and 280 GHz. Its off-axis Gregorian design is intended to minimize and control the off-axis sidelobe response, which is critical for scientific purposes. The expected sidelobe level for this kind of design is less than -50 dB and can be challenging to measure. Here we present a measurement of the 145 GHz far sidelobes of ACT done on the near-field of the telescope. We used a 1 mW microwave source placed 13 meters away from the telescope and a chopper wheel to produce a varying signal that could be detected by the camera for different orientations of the telescope. The source feed was designed to produce a wide beam profile. Given that the coupling is expected to be dominated by diffraction over the telescope shielding structure, when combined with a measurements of the main beam far field response, these measurement can be used to validate elements of optical design and constrain the level of spurious coupling at large angles. Our results show that the diffractive coupling beyond the ground screen is consistently below -75 dB, satisfying the design expectations.

  8. Far sidelobes measurement of the Atacama Cosmology Telescope

    NASA Astrophysics Data System (ADS)

    Dünner, Rolando; Gallardo, Patricio; Wollack, Ed; Henriquez, Fernando; Jerez-Hanckes, Carlos

    2012-09-01

    The Atacama Cosmology Telescope (ACT) is a 6m telescope designed to map the Cosmic Microwave Background (CMB) simultaneously at 145GHz, 220 GHz and 280 GHz. Its off-axis Gregorian design is intended to minimize and control the off-axis sidelobe response, which is critical for scientific purposes. The expected sidelobe level for this kind of design is less than -50 dB and can be challenging to measure. Here we present a measurement of the 145GHz far sidelobes of ACT done on the near-field of the telescope. We used a 1mW microwave source placed 13 meters away from the telescope and a chopper wheel to produce a varying signal that could be detected by the camera for different orientations of the telescope. The source feed was designed to produce a wide beam profile. Given that the coupling is expected to be dominated by diffraction over the telescope shielding structure, when combined with a measurements of the main beam far field response, these measurement can be used to validate elements of optical design and constrain the level of spurious coupling at large angles. Our results show that the diffractive coupling beyond the ground screen is consistently below -75 dB, satisfying the design expectations.

  9. Single lens laser beam shaper

    DOEpatents

    Liu, Chuyu; Zhang, Shukui

    2011-10-04

    A single lens bullet-shaped laser beam shaper capable of redistributing an arbitrary beam profile into any desired output profile comprising a unitary lens comprising: a convex front input surface defining a focal point and a flat output portion at the focal point; and b) a cylindrical core portion having a flat input surface coincident with the flat output portion of the first input portion at the focal point and a convex rear output surface remote from the convex front input surface.

  10. Amateur Telescope Making

    NASA Astrophysics Data System (ADS)

    Tonkin, Stephen

    Many amateur astronomers make their own instruments, either because of financial considerations or because they are just interested. Amateur Telescope Making offers a variety of designs for telescopes, mounts and drives which are suitable for the home-constructor. The designs range from simple to advanced, but all are within the range of a moderately well-equipped home workshop. The book not only tells the reader what he can construct, but also what it is sensible to construct given what time is available commercially. Thus each chapter begins with reasons for undertaking the project, then looks at theoretical consideration before finishing with practical instructions and advice. An indication is given as to the skills required for the various projects. Appendices list reputable sources of (mail order) materials and components. The telescopes and mounts range from "shoestring" (very cheap) instruments to specialist devices that are unavailable commercially.

  11. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Pérez-Grovas, Alfonso Serrano; Schloerb, F. Peter; Hughes, David; Yun, Min

    2006-06-01

    We present a summary of the Large Millimeter Telescope (LMT) Project and its current status. The LMT is a joint project of the University of Massachusetts (UMass) in the USA and the Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) in Mexico to build a 50m-diameter millimeter-wave telescope. The LMT site is at an altitude of 4600 m atop Volcan Sierra Negra, an extinct volcanic peak in the state of Puebla, Mexico, approximately 100 km east of the city of Puebla. Construction of the antenna steel structure has been completed and the antenna drive system has been installed. Fabrication of the reflector surface is underway. The telescope is expected to be completed in 2008.

  12. The Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi

    2011-08-01

    We present the status of the Sardinia Radio Telescope (SRT) project, a new general purpose, fully steerable 64 m diameter parabolic radio telescope under construction in Sardinia. The instrument is funded by Italian Ministry of University and Research (MIUR), by the Sardinia Regional Government (RAS), and by the Italian Space Agency (ASI), and it is charge to three research structures of the National Institute for Astrophysics (INAF): the Institute of Radio Astronomy of Bologna, the Cagliari Astronomical Observatory (in Sardinia), and the Arcetri Astrophysical Observatory in Florence. The radio telescope has a shaped Gregorian optical configuration with a 8 m diameter secondary mirror and additional Beam-Wave Guide (BWG) mirrors. One of the most challenging feature of SRT is the active surface of the primary reflector which provides good efficiency up to about 100 GHz. This paper reports on the most recent advances of the construction.

  13. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Bendek, Eduardo

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide straw man mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible and/or UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST

  14. COSMOLOGY FROM GRAVITATIONAL LENS TIME DELAYS AND PLANCK DATA

    SciTech Connect

    Suyu, S. H.; Treu, T.; Sonnenfeld, A.; Hilbert, S.; Spiniello, C.; Auger, M. W.; Collett, T.; Blandford, R. D.; Marshall, P. J.; Courbin, F.; Meylan, G.; Tewes, M.; Fassnacht, C. D.; Koopmans, L. V. E.

    2014-06-20

    Under the assumption of a flat ΛCDM cosmology, recent data from the Planck satellite point toward a Hubble constant that is in tension with that measured by gravitational lens time delays and by the local distance ladder. Prosaically, this difference could arise from unknown systematic uncertainties in some of the measurements. More interestingly—if systematics were ruled out—resolving the tension would require a departure from the flat ΛCDM cosmology, introducing, for example, a modest amount of spatial curvature, or a non-trivial dark energy equation of state. To begin to address these issues, we present an analysis of the gravitational lens RXJ1131–1231 that is improved in one particular regard: we examine the issue of systematic error introduced by an assumed lens model density profile. We use more flexible gravitational lens models with baryonic and dark matter components, and find that the exquisite Hubble Space Telescope image with thousands of intensity pixels in the Einstein ring and the stellar velocity dispersion of the lens contain sufficient information to constrain these more flexible models. The total uncertainty on the time-delay distance is 6.6% for a single system. We proceed to combine our improved time-delay distance measurement with the WMAP9 and Planck posteriors. In an open ΛCDM model, the data for RXJ1131–1231 in combination with Planck favor a flat universe with Ω{sub k}=0.00{sub −0.02}{sup +0.01} (68% credible interval (CI)). In a flat wCDM model, the combination of RXJ1131–1231 and Planck yields w=−1.52{sub −0.20}{sup +0.19} (68% CI)

  15. A femtosecond electron diffraction system

    NASA Astrophysics Data System (ADS)

    Zhao, Baosheng; Zhang, Jie; Tian, Jinshou; Wang, Junfeng; Wu, Jianjun; Liu, Yunquan; Liu, Hulin

    2007-01-01

    The femtosecond electron diffraction (FED) is a unique method for the study of the changes of complex molecular structures, and has been specifically applied in the investigations of transient-optics, opto-physics, crystallography, and other fields. The FED system designed by the present group, consists of a 35nm Ag photocathode evaporated on an ultraviolet glass, an anode with a 0.1mm aperture, two pairs of deflection plate for the deflection of electron beams in X and Y directions, and the Y deflection plate can be used as a scanning plate while measuring the pulse width of electron beams, the double MCPs detector for the enhancing and detecting of electron image. The magnetic lens was used for the focusing of the electron beams, and the focal length is 125mm. The distance between the object(the photocathode) and the image(the sample) is 503mm, and the size of electron beams is smaller than 17microns after focusing, the convergence angle is of -0.075~0.075°, and the temporal resolution is better than 350fs.

  16. Progress in the Fabrication and Testing of Telescope Mirrors for The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Bowers, Charles W.; Clampin, M.; Feinberg, L.; Keski-Kuha, R.; McKay, A.; Chaney, D.; Gallagher, B.; Ha, K.

    2012-01-01

    The telescope of the James Webb Space Telescope (JWST) is an f/20, three mirror anastigmat design, passively cooled (40K) in an L2 orbit. The design provides diffraction limited performance (Strehl ≥ 0.8) at λ=2μm. To fit within the launch vehicle envelope (Arianne V), the 6.6 meter primary mirror and the secondary mirror support structure are folded for launch, then deployed and aligned in space. The primary mirror is composed of 18 individual, 1.3 meter (flat:flat) hexagonal segments, each adjustable in seven degrees of freedom (six rigid body + radius of curvature) provided by a set of high precision actuators. The actuated secondary mirror ( 0.74m) is similarly positioned in six degrees of rigid body motion. The .70x.51m, fixed tertiary and 0.17m, flat fine steering mirror complete the telescope mirror complement. The telescope is supported by a composite structure optimized for performance at cryogenic temperatures. All telescope mirrors are made of Be with substantial lightweighting (21kg for each 1.3M primary segment). Additional Be mounting and supporting structure for the high precision ( 10nm steps) actuators are attached to the primary segments and secondary mirror. All mirrors undergo a process of thermal stabilization to reduce stress. An extensive series of interferometric measurements guide each step of the polishing process. Final polishing must account for any deformation between the ambient temperature of polishing and the cryogenic, operational temperature. This is accomplished by producing highly precise, cryo deformation target maps of each surface which are incorporated into the final polishing cycle. All flight mirrors have now completed polishing, coating with protected Au and final cryo testing, and the telescope is on track to meet all system requirements. We here review the measured performance of the component mirrors and the predicted performance of the flight telescope.

  17. Progress in the Fabrication and Testing of Telescope Mirrors for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Bowers, Charles

    2012-01-01

    The telescope of the James Webb Space Telescope (JWST) is an f/20, three mirror anastigmat design, passively cooled (40K) in an L2 orbit. The design provides diffraction limited performance (Strehl > or = 0.8) at .=2 m. To fit within the launch vehicle envelope (Arianne V), the 6.6 meter primary mirror and the secondary mirror support structure are folded for launch, then deployed and aligned in space. The primary mirror is composed of 18 individual, 1.3 meter (flat flat) hexagonal segments, each adjustable in seven degrees of freedom (six rigid body + radius of curvature) provided by a set of high precision actuators. The actuated secondary mirror (approx.0.74m) is similarly positioned in six degrees of rigid body motion. The approx..70x.51m, fixed tertiary and approx. 0.17m, flat fine steering mirror complete the telescope mirror complement. The telescope is supported by a composite structure optimized for performance at cryogenic temperatures. All telescope mirrors are made of Be with substantial light-weighting (21 kg for each 1.3M primary segment). Additional Be mounting and supporting structure for the high precision (approx.10nm steps) actuators are attached to the primary segments and secondary mirror. All mirrors undergo a process of thermal stabilization to reduce stress. An extensive series of interferometric measurements guide each step of the polishing process. Final polishing must account for any deformation between the ambient temperature of polishing and the cryogenic, operational temperature. This is accomplished by producing highly precise, cryo deformation target maps of each surface which are incorporated into the final polishing cycle. All flight mirrors have now completed polishing, coating with protected Au and final cryo testing, and the telescope is on track to meet all system requirements. We here review the measured performance of the component mirrors and the predicted performance of the flight telescope.

  18. Hard Diffraction at CDF

    SciTech Connect

    Melese, P.; CDF Collaboration

    1997-06-01

    We present results on diffractive production of hard processes in {anti p}p collisions at {radical}s = 1.8 TeV at the Tevatron using the CDF detector. The signatures used to identify diffractive events are the forward rapidity gap and/or the detection of a recoil antiproton with high forward momentum. We have observed diffractive W- boson, dijet, and heavy quark production. We also present results on double-pomeron production of dijets.

  19. The Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Millis, R. L.; Dunham, E. W.; Sebring, T. A.; Smith, B. W.; de Kock, M.; Wiecha, O.

    2004-11-01

    The Discovery Channel Telescope (DCT) is a 4.2-m telescope to be built at a new site near Happy Jack, Arizona. The DCT features a large prime focus mosaic CCD camera with a 2-degree-diameter field of view especially designed for surveys of KBOs, Centaurs, NEAs and other moving or time-variable targets. The telescope can be switched quickly to a Ritchey-Chretien configuration for optical/IR spectroscopy or near-IR imaging. This flexibility allows timely follow-up physical studies of high priority objects discovered in survey mode. The ULE (ultra-low-expansion) meniscus primary and secondary mirror blanks for the telescope are currently in fabrication by Corning Glass. Goodrich Aerospace, Vertex RSI, M3 Engineering and Technology Corp., and e2v Technologies have recently completed in-depth conceptual design studies of the optics, mount, enclosure, and mosaic focal plane, respectively. The results of these studies were subjected to a formal design review in July, 2004. Site testing at the 7760-ft altitude Happy Jack site began in 2001. Differential image motion observations from 117 nights since January 1, 2003 gave median seeing of 0.84 arcsec FWHM, and the average of the first quartile was 0.62 arcsec. The National Environmental Policy Act (NEPA) process for securing long-term access to this site on the Coconino National Forest is nearing completion and ground breaking is expected in the spring of 2005. The Discovery Channel Telescope is a project of the Lowell Observatory with major financial support from Discovery Communications, Inc. (DCI). DCI plans ongoing television programming featuring the construction of the telescope and the research ultimately undertaken with the DCT. An additional partner can be accommodated in the project. Interested parties should contact the lead author.

  20. Energy Efficiency of a New Trifocal Intraocular Lens

    NASA Astrophysics Data System (ADS)

    Vega, F.; Alba-Bueno, F.; Millán, M. S.

    2014-01-01

    The light distribution among the far, intermediate and near foci of a new trifocal intraocular lens (IOL) is experimentally determined, as a function of the pupil size, from image analysis. The concept of focus energy efficiency is introduced because, in addition to the theoretical diffraction efficiency of the focus, it accounts for other factors that are naturally presented in the human eye such as the level of spherical aberration (SA) upon the IOL, light scattering at the diffractive steps or the depth of focus. The trifocal IOL is tested in-vitro in two eye models: the aberration-free ISO model, and a so called modified-ISO one that uses an artificial cornea with positive spherical SA in instead. The SA upon the IOL is measured with a Hartmann-Shack sensor and compared to the values of theoretical eye models. The results show, for large pupils, a notorious reduction of the energy efficiency of the far and near foci of the trifocal IOL due to two facts: the level of SA upon the IOL is larger than the value the lens is able to compensate for and there is significant light scattering at the diffractive steps. On the other hand, the energy efficiency of the intermediate focus for small pupils is enhanced by the contribution of the extended depth of focus of the near and far foci. Thus, while IOLs manufacturers tend to provide just the theoretical diffraction efficiency of the foci to show which would be the performance of the lens in terms of light distribution among the foci, our results put into evidence that this is better described by using the energy efficiency of the foci.

  1. Hubble Space Telescope Image

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a photograph of giant twisters and star wisps in the Lagoon Nebula. This superb Hubble Space Telescope (HST) image reveals a pair of one-half light-year long interstellar twisters, eerie furnels and twisted rope structures (upper left), in the heart of the Lagoon Nebula (Messier 8) that lies 5,000 light-years away in the direction of the constellation Sagittarius. This image was taken by the Hubble Space Telescope Wide Field/Planetary Camera 2 (WF/PC2).

  2. Ground based automated telescope

    SciTech Connect

    Colgate, S.A.; Thompson, W.

    1980-01-01

    Recommendation that a ground-based automated telescope of the 2-meter class be built for remote multiuser use as a natural facility. Experience dictates that a primary consideration is a time shared multitasking operating system with virtual memory overlayed with a real time priority interrupt. The primary user facility is a remote terminal networked to the single computer. Many users must have simultaneous time shared access to the computer for program development. The telescope should be rapid slewing, and hence a light weight construction. Automation allows for the closed loop pointing error correction independent of extreme accuracy of the mount.

  3. Robust telescope scheduling

    NASA Technical Reports Server (NTRS)

    Swanson, Keith; Bresina, John; Drummond, Mark

    1994-01-01

    This paper presents a technique for building robust telescope schedules that tend not to break. The technique is called Just-In-Case (JIC) scheduling and it implements the common sense idea of being prepared for likely errors, just in case they should occur. The JIC algorithm analyzes a given schedule, determines where it is likely to break, reinvokes a scheduler to generate a contingent schedule for each highly probable break case, and produces a 'multiply contingent' schedule. The technique was developed for an automatic telescope scheduling problem, and the paper presents empirical results showing that Just-In-Case scheduling performs extremely well for this problem.

  4. Pointing the SOFIA Telescope

    NASA Astrophysics Data System (ADS)

    Gross, M. A. K.; Rasmussen, J. J.; Moore, E. M.

    2010-12-01

    SOFIA is an airborne, gyroscopically stabilized 2.5m infrared telescope, mounted to a spherical bearing. Unlike its predecessors, SOFIA will work in absolute coordinates, despite its continually changing position and attitude. In order to manage this, SOFIA must relate equatorial and telescope coordinates using a combination of avionics data and star identification, manage field rotation and track sky images. We describe the algorithms and systems required to acquire and maintain the equatorial reference frame, relate it to tracking imagers and the science instrument, set up the oscillating secondary mirror, and aggregate pointings into relocatable nods and dithers.

  5. Hubble Space Telescope Image

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This color image from the Hubble Space Telescope (HST) shows a region in NGC 1365, a barred spiral galaxy located in a cluster of galaxies called Fornax. A barred spiral galaxy is characterized by a bar of stars, dust, and gas across its center. The black and white photograph from a ground-based telescope shows the entire galaxy, which is visible from the Southern Hemisphere. The galaxy is estimated to be 60-million light-years from Earth. This image was taken by the HST Wide Field/Planetary Camera 2 (WF/PC-2).

  6. Solar rejection for an orbiting telescope

    NASA Technical Reports Server (NTRS)

    Rehnberg, J. D.

    1975-01-01

    The present work discusses some of the constraints that the optical designer must deal with in optimizing spaceborne sensors that must look at or near the sun. Analytical techniques are described for predicting the effects of stray radiation from sources such as mirror scatter, baffle scatter, diffraction, and ghost images. In addition, the paper describes a sensor design that has been flown on the Apollo Telescope Mount (Skylab) to aid astronauts in locating solar flares. In addition to keeping stray radiation to a minimum, the design had to be nondegradable by the direct solar heat load.

  7. Instrumentation for the California Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Taylor, Keith; McLean, Ian S.

    2003-03-01

    The Phase A study for the California Extremely Large Telescope (CELT) Project has recently been completed. As part of this exercise a working group was set-up to evolve instrumentation strategies matched to the scientific case for the CELT facility. We report here on the proposed initial instrument suite which includes not only massively multiplexed seeing-limited multi-object spectroscopy but also on plans for wide-field adaptive optics fed integral-field spectroscopy and imaging at, or approaching, CELT's diffraction limit.

  8. No effect of diffraction on Pluto-Charon mutual events

    NASA Technical Reports Server (NTRS)

    Tholen, D. J.; Hubbard, W. B.

    1988-01-01

    Mulholland and Gustafson (1987) made the interesting suggestion that observations of Pluto-Charon mutual events might show significant dependence on both wavelength and telescope aperture because of diffraction effects. In this letter, observations are presented that show the predicted effects to be absent and demonstrate that the parameters of the system are such that the events can be accurately analyzed with geometrical optics.

  9. Rigorous analysis and design of diffractive cylindrical lenses with high numerical and large geometrical apertures

    NASA Astrophysics Data System (ADS)

    Schmitz, Martin; Bryngdahl, Olof

    1998-07-01

    A concept is presented for the analysis of diffractive cylindrical lenses with apertures larger than 100 wavelengths which are denoted as large geometrical apertures throughout this paper. The transmitted field of a cylindrical lens is calculated by the use of rigorous electromagnetic diffraction theory. Large geometrical apertures are subdivided into smaller overlapping areas that are treated in sequence. The wave propagation from the lens plane to the focal plane is calculated with the spectrum of plane waves. A design concept is presented which ensures that the performance of diffractive cylindrical lenses with high numerical apertures (NA≥0.3) is almost independent of the polarization of the illuminating light. The design concept is based on the local grating model in combination with the phase detour principle. As an example we design and analyze a F/0.5 cylindrical lens (NA=0.71) with a geometrical aperture of 600 wavelengths.

  10. Learning neuroendoscopy with an exoscope system (video telescopic operating monitor): Early clinical results

    PubMed Central

    Parihar, Vijay; Yadav, Y. R.; Kher, Yatin; Ratre, Shailendra; Sethi, Ashish; Sharma, Dhananjaya

    2016-01-01

    Context: Steep learning curve is found initially in pure endoscopic procedures. Video telescopic operating monitor (VITOM) is an advance in rigid-lens telescope systems provides an alternative method for learning basics of neuroendoscopy with the help of the familiar principle of microneurosurgery. Aims: The aim was to evaluate the clinical utility of VITOM as a learning tool for neuroendoscopy. Materials and Methods: Video telescopic operating monitor was used 39 cranial and spinal procedures and its utility as a tool for minimally invasive neurosurgery and neuroendoscopy for initial learning curve was studied. Results: Video telescopic operating monitor was used in 25 cranial and 14 spinal procedures. Image quality is comparable to endoscope and microscope. Surgeons comfort improved with VITOM. Frequent repositioning of scope holder and lack of stereopsis is initial limiting factor was compensated for with repeated procedures. Conclusions: Video telescopic operating monitor is found useful to reduce initial learning curve of neuroendoscopy. PMID:27695549

  11. Learning neuroendoscopy with an exoscope system (video telescopic operating monitor): Early clinical results

    PubMed Central

    Parihar, Vijay; Yadav, Y. R.; Kher, Yatin; Ratre, Shailendra; Sethi, Ashish; Sharma, Dhananjaya

    2016-01-01

    Context: Steep learning curve is found initially in pure endoscopic procedures. Video telescopic operating monitor (VITOM) is an advance in rigid-lens telescope systems provides an alternative method for learning basics of neuroendoscopy with the help of the familiar principle of microneurosurgery. Aims: The aim was to evaluate the clinical utility of VITOM as a learning tool for neuroendoscopy. Materials and Methods: Video telescopic operating monitor was used 39 cranial and spinal procedures and its utility as a tool for minimally invasive neurosurgery and neuroendoscopy for initial learning curve was studied. Results: Video telescopic operating monitor was used in 25 cranial and 14 spinal procedures. Image quality is comparable to endoscope and microscope. Surgeons comfort improved with VITOM. Frequent repositioning of scope holder and lack of stereopsis is initial limiting factor was compensated for with repeated procedures. Conclusions: Video telescopic operating monitor is found useful to reduce initial learning curve of neuroendoscopy.

  12. Cosmic Lens Reveals Distant Galactic Violence

    NASA Astrophysics Data System (ADS)

    2008-10-01

    By cleverly unraveling the workings of a natural cosmic lens, astronomers have gained a rare glimpse of the violent assembly of a young galaxy in the early Universe. Their new picture suggests that the galaxy has collided with another, feeding a supermassive black hole and triggering a tremendous burst of star formation. Gravitational Lens Diagram Imaging a Distant Galaxy Using a Gravitational Lens CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for details and more graphics. The astronomers used the National Science Foundation's Very Large Array (VLA) radio telescope to look at a galaxy more than 12 billion light-years from Earth, seen as it was when the Universe was only about 15 percent of its current age. Between this galaxy and Earth lies another distant galaxy, so perfectly aligned along the line of sight that its gravity bends the light and radio waves from the farther object into a circle, or "Einstein Ring." This gravitational lens made it possible for the scientists to learn details of the young, distant galaxy that would have been unobtainable otherwise. "Nature provided us with a magnifying glass to peer into the workings of a nascent galaxy, providing an exciting look at the violent, messy process of building galaxies in the early history of the Universe," said Dominik Riechers, who led this project at the Max Planck Institute for Astronomy in Germany and now is a Hubble Fellow at the California Institute of Technology (Caltech). The new picture of the distant galaxy, dubbed PSS J2322+1944, shows a massive reservoir of gas, 16,000 light-years in diameter, that contains the raw material for building new stars. A supermassive black hole is voraciously eating material, and new stars are being born at the rate of nearly 700 Suns per year. By comparison, our Milky Way Galaxy produces the equivalent of about 3-4 Suns per year. The black hole appears to be near the edge, rather than at the center, of the giant gas reservoir, indicating, the astronomers say

  13. TELESCOPES: Astronomers Overcome 'Aperture Envy'.

    PubMed

    Irion, R

    2000-07-01

    Many users of small telescopes are disturbed by the trend of shutting down smaller instruments in order to help fund bigger and bolder ground-based telescopes. Small telescopes can thrive in the shadow of giant new observatories, they say--but only if they are adapted to specialized projects. Telescopes with apertures of 2 meters or less have unique abilities to monitor broad swaths of the sky and stare at the same objects night after night, sometimes for years; various teams are turning small telescopes into robots, creating networks that span the globe and devoting them to survey projects that big telescopes don't have a prayer of tackling. PMID:17832960

  14. Circular common-path point diffraction interferometer.

    PubMed

    Du, Yongzhao; Feng, Guoying; Li, Hongru; Vargas, J; Zhou, Shouhuan

    2012-10-01

    A simple and compact point-diffraction interferometer with circular common-path geometry configuration is developed. The interferometer is constructed by a beam-splitter, two reflection mirrors, and a telescope system composed by two lenses. The signal and reference waves travel along the same path. Furthermore, an opaque mask containing a reference pinhole and a test object holder or test window is positioned in the common focal plane of the telescope system. The object wave is divided into two beams that take opposite paths along the interferometer. The reference wave is filtered by the reference pinhole, while the signal wave is transmitted through the object holder. The reference and signal waves are combined again in the beam-splitter and their interference is imaged in the CCD. The new design is compact, vibration insensitive, and suitable for the measurement of moving objects or dynamic processes.

  15. Residual Stresses in LENS-Deposited AISI 410 Stainless Steel Plates

    SciTech Connect

    Wang, L; Felicellli, S D; Pratt, Phillip R

    2008-01-01

    The residual stress in thin plate components deposited by the laser engineered net shaping (LENS{reg_sign}) process was investigated experimentally and numerically. Neutron diffraction mapping was used to characterize the residual stress in LENS-deposited AISI 410 stainless steel thin wall plates. Using the commercial welding software SYSWELD, a thermo-mechanical three-dimensional finite element model was developed, which considers also the effect of metallurgical phase transformations. The model was employed to predict the temperature history and the residual stress field during the LENS process. Several simulations were performed with the geometry and process parameters that were used to build the experimental samples. The origin of the residual stress distribution is discussed based on the thermal histories of the samples, and the modeling results are compared with measurements obtained by neutron diffraction mapping.

  16. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Schloerb, F. Peter

    2008-07-01

    This paper, presented on behalf of the Large Millimeter Telescope (LMT) project team, describes the status and near-term plans for the telescope and its initial instrumentation. The LMT is a bi-national collaboration between Mexico and the USA, led by the Instituto Nacional de Astrofísica, Optica y Electronica (INAOE) and the University of Massachusetts at Amherst, to construct, commission and operate a 50m-diameter millimeter-wave radio telescope. Construction activities are nearly complete at the 4600m LMT site on the summit of Sierra Negra, an extinct volcano in the Mexican state of Puebla. Full movement of the telescope, under computer control in both azimuth and elevation, has been achieved. First-light at centimeter wavelengths on astronomical sources was obtained in November 2006. Installation of precision surface segments for millimeter-wave operation is underway, with the inner 32m-diameter of the surface now complete and ready to be used to obtain first light at millimeter wavelengths in 2008. Installation of the remainder of the reflector will continue during the next year and be completed in 2009 for final commissioning of the antenna. The full LMT antenna, outfitted with its initial complement of scientific instruments, will be a world-leading scientific research facility for millimeter-wave astronomy.

  17. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Hughes, D. H.; Schloerb, F. P.; LMT Project Team

    2009-05-01

    This paper, presented on behalf of the Large Millimeter Telescope (LMT) project team, describes the status and near-term plans for the telescope and its initial instrumentation. The LMT is a bi-national collaboration between México and the USA, led by the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and the University of Massachusetts at Amherst, to construct, commission and operate a 50 m diameter millimeter-wave radio telescope. Construction activities are nearly complete at the LMT site, at an altitude of ˜ 4600 m on the summit of Sierra Negra, an extinct volcano in the Mexican state of Puebla. Full movement of the telescope, under computer control in both azimuth and elevation, has been achieved. First-light at centimeter wavelengths on astronomical sources was obtained in November 2006. Installation of precision surface segments for millimeter-wave operation is underway, with the inner 32 m diameter of the surface now complete and ready to be used to obtain first-light at millimeter wavelengths in 2008. Installation of the remainder of the reflector will continue during the next year and be completed in 2009 for final commissioning of the antenna. The full LMT antenna, outfitted with its initial complement of scientific instruments, will be a world-leading scientific research facility for millimeter-wave astronomy.

  18. Solar Rotating Fourier Telescope

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan

    1994-01-01

    Proposed telescope based on absorbing Fourier-transform grids images full Sun at unprecedented resolution. Overcomes limitations of both conventional optical and pinhole cameras. Arrays of grids and detectors configured for sensitivity to selected fourier components of x-ray images.

  19. Exploring Galileo's Telescope

    ERIC Educational Resources Information Center

    Straulino, Samuele; Terzuoli, Alessandra

    2010-01-01

    In the first months of 2009, the International Year of Astronomy, the authors developed an educational project for middle-level students connected with the first astronomical discoveries that Galileo Galilei (1564-1642) made 400 years ago. The project included the construction of a basic telescope and the observation of the Moon. The project, if…

  20. The Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Odell, C. R.

    1979-01-01

    A convenient guide to the expected characteristics of the Space Telescope Observatory for astronomers and physicists is presented. An attempt is made to provide enough detail so that a professional scientist, observer or theorist, can plan how the observatory may be used to further his observing programs or to test theoretical models.

  1. The Falcon Telescope Network

    NASA Astrophysics Data System (ADS)

    Chun, F.; Tippets, R.; Dearborn, M.; Gresham, K.; Freckleton, R.; Douglas, M.

    2014-09-01

    The Falcon Telescope Network (FTN) is a global network of small aperture telescopes developed by the Center for Space Situational Awareness Research in the Department of Physics at the United States Air Force Academy (USAFA). Consisting of commercially available equipment, the FTN is a collaborative effort between USAFA and other educational institutions ranging from two- and four-year colleges to major research universities. USAFA provides the equipment (e.g. telescope, mount, camera, filter wheel, dome, weather station, computers and storage devices) while the educational partners provide the building and infrastructure to support an observatory. The user base includes USAFA along with K-12 and higher education faculty and students. Since the FTN has a general use purpose, objects of interest include satellites, astronomical research, and STEM support images. The raw imagery, all in the public domain, will be accessible to FTN partners and will be archived at USAFA in the Cadet Space Operations Center. FTN users will be able to submit observational requests via a web interface. The requests will then be prioritized based on the type of user, the object of interest, and a user-defined priority. A network wide schedule will be developed every 24 hours and each FTN site will autonomously execute its portion of the schedule. After an observational request is completed, the FTN user will receive notification of collection and a link to the data. The Falcon Telescope Network is an ambitious endeavor, but demonstrates the cooperation that can be achieved by multiple educational institutions.

  2. A Simple "Tubeless" Telescope

    ERIC Educational Resources Information Center

    Straulino, S.; Bonechi, L.

    2010-01-01

    Two lenses make it possible to create a simple telescope with quite large magnification. The set-up is very simple and can be reproduced in schools, provided the laboratory has a range of lenses with different focal lengths. In this article, the authors adopt the Keplerian configuration, which is composed of two converging lenses. This instrument,…

  3. The Configurable Aperture Space Telescope (CAST)

    NASA Astrophysics Data System (ADS)

    Ennico, Kimberly; Bendek, Eduardo A.; Lynch, Dana H.; Vassigh, Kenny K.; Young, Zion

    2016-07-01

    The Configurable Aperture Space Telescope, CAST, is a concept that provides access to a UV/visible-infrared wavelength sub-arcsecond imaging platform from space, something that will be in high demand after the retirement of the astronomy workhorse, the 2.4 meter diameter Hubble Space Telescope. CAST allows building large aperture telescopes based on small, compatible and low-cost segments mounted on autonomous cube-sized satellites. The concept merges existing technology (segmented telescope architecture) with emerging technology (smartly interconnected modular spacecraft, active optics, deployable structures). Requiring identical mirror segments, CAST's optical design is a spherical primary and secondary mirror telescope with modular multi-mirror correctors placed at the system focal plane. The design enables wide fields of view, up to as much as three degrees, while maintaining aperture growth and image performance requirements. We present a point design for the CAST concept based on a 0.6 meter diameter (3 x 3 segments) growing to a 2.6 meter diameter (13 x 13 segments) primary, with a fixed Rp=13,000 and Rs=8,750 mm curvature, f/22.4 and f/5.6, respectively. Its diffraction limited design uses a two arcminute field of view corrector with a 7.4 arcsec/mm platescale, and can support a range of platescales as fine as 0.01 arcsec/mm. Our paper summarizes CAST, presents a strawman optical design and requirements for the underlying modular spacecraft, highlights design flexibilities, and illustrates applications enabled by this new method in building space observatories.

  4. National Large Solar Telescope of Russia

    NASA Astrophysics Data System (ADS)

    Demidov, Mikhail

    One of the most important task of the modern solar physics is multi-wavelength observations of the small-scale structure of solar atmosphere on different heights, including chromosphere and corona. To do this the large-aperture telescopes are necessary. At present time there several challenging projects of the large (and even giant) solar telescopes in the world are in the process of construction or designing , the most known ones among them are 4-meter class telescopes ATST in USA and EST in Europe. Since 2013 the development of the new Large Solar Telescope (LST) with 3 meter diameter of the main mirror is started in Russia as a part (sub-project) of National Heliogeophysical Complex (NHGC) of the Russian Academy of Sciences. It should be located at the Sayan solar observatory on the altitude more then 2000 m. To avoid numerous problems of the off-axis optical telescopes (despite of the obvious some advantages of the off-axis configuration) and to meet to available financial budget, the classical on-axis Gregorian scheme on the alt-azimuth mount has been chosen. The scientific equipment of the LST-3 will include several narrow-band tunable filter devices and spectrographs for different wavelength bands, including infrared. The units are installed either at the Nasmyth focus or/and on the rotating coude platform. To minimize the instrumental polarization the polarization analyzer is located near diagonal mirror after M2 mirror. High order adaptive optics is used to achieve the diffraction limited performances. It is expected that after some modification of the optical configuration the LST-3 will operate as an approximately 1-m mirror coronograph in the near infrared spectral lines. Possibilities for stellar observations during night time are provided as well.

  5. Far-field characteristics of the square grooved-dielectric lens antenna for the terahertz band.

    PubMed

    Pan, Wu; Zeng, Wei

    2016-09-10

    In order to improve the gain and directionality of a terahertz antenna, a square grooved-dielectric lens antenna based on a Fresnel zone plate is proposed. First, a diagonal horn, which is adopted as the primary feed antenna, is designed. Then, the far-field characteristics of the lens antenna are studied by using Fresnel-Kirchhoff diffraction theory and the paraxial approximation. The effects of the full-wave period, the focus diameter ratio, the subregion, and the dielectric substrate thickness on radiation characteristics are studied. The experimental results show that the proposed lens antenna has axisymmetric radiation patterns. The gain is over 26.1 dB, and the 3 dB main lobe beam width is lower than 5.6° across the operation band. The proposed lens antenna is qualified for applications in terahertz wireless communication systems. PMID:27661370

  6. Coherent array telescopes as a fifteen meter optical telescope equivalent

    NASA Astrophysics Data System (ADS)

    Odgers, G. J.

    1982-10-01

    The potential benefits of using a mirror array to form a large optical telescope equivalent to a 15 m monolithic mirror telescope are discussed. The concept comprises 25 three meter telescopes in a circular array or 13 double unit telescopes, also in a circular array. The double-units would have individual 4.2 m instruments. Meniscus-shaped mirrors with F/2 aperture ratios would allow lightweight construction. A smaller, four double unit telescope would be equivalent to an 8.4 m telescope, larger than any existing in the world. The viewing capabilities could also be extended to the IR. Each sector of the compound telescopes, if built with 3 m apertures, could be controlled with 1/20th arsec acccuracy. Finally, the inherent long baseline of an array telescope would permit enhanced interferometric viewing.

  7. Phononic crystal diffraction gratings

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent

    2012-02-01

    When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.

  8. Automated Micro-Object Detection for Mobile Diagnostics Using Lens-Free Imaging Technology

    PubMed Central

    Roy, Mohendra; Seo, Dongmin; Oh, Sangwoo; Chae, Yeonghun; Nam, Myung-Hyun; Seo, Sungkyu

    2016-01-01

    Lens-free imaging technology has been extensively used recently for microparticle and biological cell analysis because of its high throughput, low cost, and simple and compact arrangement. However, this technology still lacks a dedicated and automated detection system. In this paper, we describe a custom-developed automated micro-object detection method for a lens-free imaging system. In our previous work (Roy et al.), we developed a lens-free imaging system using low-cost components. This system was used to generate and capture the diffraction patterns of micro-objects and a global threshold was used to locate the diffraction patterns. In this work we used the same setup to develop an improved automated detection and analysis algorithm based on adaptive threshold and clustering of signals. For this purpose images from the lens-free system were then used to understand the features and characteristics of the diffraction patterns of several types of samples. On the basis of this information, we custom-developed an automated algorithm for the lens-free imaging system. Next, all the lens-free images were processed using this custom-developed automated algorithm. The performance of this approach was evaluated by comparing the counting results with standard optical microscope results. We evaluated the counting results for polystyrene microbeads, red blood cells, HepG2, HeLa, and MCF7 cells lines. The comparison shows good agreement between the systems, with a correlation coefficient of 0.91 and linearity slope of 0.877. We also evaluated the automated size profiles of the microparticle samples. This Wi-Fi-enabled lens-free imaging system, along with the dedicated software, possesses great potential for telemedicine applications in resource-limited settings. PMID:27164146

  9. Automated Micro-Object Detection for Mobile Diagnostics Using Lens-Free Imaging Technology.

    PubMed

    Roy, Mohendra; Seo, Dongmin; Oh, Sangwoo; Chae, Yeonghun; Nam, Myung-Hyun; Seo, Sungkyu

    2016-01-01

    Lens-free imaging technology has been extensively used recently for microparticle and biological cell analysis because of its high throughput, low cost, and simple and compact arrangement. However, this technology still lacks a dedicated and automated detection system. In this paper, we describe a custom-developed automated micro-object detection method for a lens-free imaging system. In our previous work (Roy et al.), we developed a lens-free imaging system using low-cost components. This system was used to generate and capture the diffraction patterns of micro-objects and a global threshold was used to locate the diffraction patterns. In this work we used the same setup to develop an improved automated detection and analysis algorithm based on adaptive threshold and clustering of signals. For this purpose images from the lens-free system were then used to understand the features and characteristics of the diffraction patterns of several types of samples. On the basis of this information, we custom-developed an automated algorithm for the lens-free imaging system. Next, all the lens-free images were processed using this custom-developed automated algorithm. The performance of this approach was evaluated by comparing the counting results with standard optical microscope results. We evaluated the counting results for polystyrene microbeads, red blood cells, and HepG2, HeLa, and MCF7 cells. The comparison shows good agreement between the systems, with a correlation coefficient of 0.91 and linearity slope of 0.877. We also evaluated the automated size profiles of the microparticle samples. This Wi-Fi-enabled lens-free imaging system, along with the dedicated software, possesses great potential for telemedicine applications in resource-limited settings. PMID:27164146

  10. Automated Micro-Object Detection for Mobile Diagnostics Using Lens-Free Imaging Technology.

    PubMed

    Roy, Mohendra; Seo, Dongmin; Oh, Sangwoo; Chae, Yeonghun; Nam, Myung-Hyun; Seo, Sungkyu

    2016-05-05

    Lens-free imaging technology has been extensively used recently for microparticle and biological cell analysis because of its high throughput, low cost, and simple and compact arrangement. However, this technology still lacks a dedicated and automated detection system. In this paper, we describe a custom-developed automated micro-object detection method for a lens-free imaging system. In our previous work (Roy et al.), we developed a lens-free imaging system using low-cost components. This system was used to generate and capture the diffraction patterns of micro-objects and a global threshold was used to locate the diffraction patterns. In this work we used the same setup to develop an improved automated detection and analysis algorithm based on adaptive threshold and clustering of signals. For this purpose images from the lens-free system were then used to understand the features and characteristics of the diffraction patterns of several types of samples. On the basis of this information, we custom-developed an automated algorithm for the lens-free imaging system. Next, all the lens-free images were processed using this custom-developed automated algorithm. The performance of this approach was evaluated by comparing the counting results with standard optical microscope results. We evaluated the counting results for polystyrene microbeads, red blood cells, and HepG2, HeLa, and MCF7 cells. The comparison shows good agreement between the systems, with a correlation coefficient of 0.91 and linearity slope of 0.877. We also evaluated the automated size profiles of the microparticle samples. This Wi-Fi-enabled lens-free imaging system, along with the dedicated software, possesses great potential for telemedicine applications in resource-limited settings.

  11. Chromospheric telescope of Baikal Astrophysical Observatory. New light

    NASA Astrophysics Data System (ADS)

    Skomorovsky, Valeriy; Kushtal, Galina; Lopteva, Lyubov; Proshin, Vladimir; Trifonov, Viktor; Chuprakov, Sergey; Khimich, Valeriy

    2016-06-01

    A chromospheric telescope is an important instrument for synoptic observations and solar research. After several decades of observations with the chromospheric telescope at Baikal Astrophysical Observatory, a need arose to improve the characteristics of this telescope and filter. A new reimaging lens to produce full-disk solar images 18 mm in diameter at the CCD camera Hamamatsu C-124 with a detector 36×24 mm (4000×2672 pixels) was designed and manufactured to replace the out-of-operation 50×50 mm Princeton Instruments camera. A contrast interference blocking filter and a new Iceland spar and quartz crystal plates instead of damaged ones were made and installed in the Hα birefringent filter (BF), manufactured by Bernhard Halle Nachfl. The optical immersion in the filter was changed. All telescope optics was cleaned and adjusted. We describe for the first time the design features and their related BF passband tuning. The wavefront interferograms of optical elements and telescope as a whole show that the wavefront distortion of the optical path is within 0.25 λ. The BF and pre-filter spectral parameters provide high-contrast monochromatic images. Besides, we give examples of solar chromospheric images in the Hα line core and wing.

  12. A broadband terahertz ultrathin multi-focus lens

    PubMed Central

    He, Jingwen; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan

    2016-01-01

    Ultrathin transmission metasurface devices are designed on the basis of the Yang-Gu amplitude-phase retrieval algorithm for focusing the terahertz (THz) radiation into four or nine spots with focal spacing of 2 or 3 mm at a frequency of 0.8 THz. The focal properties are experimentally investigated in detail, and the results agree well with the theoretical expectations. The designed THz multi-focus lens (TMFL) demonstrates a good focusing function over a broad frequency range from 0.3 to 1.1 THz. As a transmission-type device based on metasurface, the diffraction efficiency of the TMFL can be as high as 33.92% at the designed frequency. The imaging function of the TMFL is also demonstrated experimentally and clear images are obtained. The proposed method produces an ultrathin, low-cost, and broadband multi-focus lens for THz-band application PMID:27346430

  13. A broadband terahertz ultrathin multi-focus lens

    NASA Astrophysics Data System (ADS)

    He, Jingwen; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan

    2016-06-01

    Ultrathin transmission metasurface devices are designed on the basis of the Yang-Gu amplitude-phase retrieval algorithm for focusing the terahertz (THz) radiation into four or nine spots with focal spacing of 2 or 3 mm at a frequency of 0.8 THz. The focal properties are experimentally investigated in detail, and the results agree well with the theoretical expectations. The designed THz multi-focus lens (TMFL) demonstrates a good focusing function over a broad frequency range from 0.3 to 1.1 THz. As a transmission-type device based on metasurface, the diffraction efficiency of the TMFL can be as high as 33.92% at the designed frequency. The imaging function of the TMFL is also demonstrated experimentally and clear images are obtained. The proposed method produces an ultrathin, low-cost, and broadband multi-focus lens for THz-band application

  14. A broadband terahertz ultrathin multi-focus lens.

    PubMed

    He, Jingwen; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan

    2016-01-01

    Ultrathin transmission metasurface devices are designed on the basis of the Yang-Gu amplitude-phase retrieval algorithm for focusing the terahertz (THz) radiation into four or nine spots with focal spacing of 2 or 3 mm at a frequency of 0.8 THz. The focal properties are experimentally investigated in detail, and the results agree well with the theoretical expectations. The designed THz multi-focus lens (TMFL) demonstrates a good focusing function over a broad frequency range from 0.3 to 1.1 THz. As a transmission-type device based on metasurface, the diffraction efficiency of the TMFL can be as high as 33.92% at the designed frequency. The imaging function of the TMFL is also demonstrated experimentally and clear images are obtained. The proposed method produces an ultrathin, low-cost, and broadband multi-focus lens for THz-band application. PMID:27346430

  15. Adaptive Optics for the 8 meter Chinese Giant Solar Telescope

    NASA Astrophysics Data System (ADS)

    Beckers, Jacques; Liu, Zhong; Deng, Yuanyong; Ji, Haisheng

    2013-12-01

    Solar ELTs enable diffraction limited imaging of the basic structure of the solar atmosphere. Magneto-hydrodynamic considerations limit their size to about 0.03 arcsec. To observe them in the near-infrared 8-meter class telescopes are needed. The Chinese Giant Solar Telescope, or CGST, is such a NIR solar ELT. It is a Ring Telescope with 8-meter outer diameter and a central clear aperture of about 6-meter diameter. At present various options for such a Gregorian type telescope are under study like a continuous ring made of segments or a multiple aperture ring made of 7 off-axis telescopes. The advantages of such a ring telescope is that its MTF covers all spatial frequencies out to those corresponding to its outer diameter, that its circular symmetry makes it polarization neutral, and that its large central hole helps thermal control and provides ample space for MCAO and Gregorian instrumentation. We present the current status of the design of the CGST. Our thinking is guided by the outstanding performance of the 1-meter vacuum solar telescope of the Yunnan Solar Observatory which like the CGST uses both AO and image reconstruction. Using it with a ring-shape aperture mask the imaging techniques for the CGST are being explored. The CGST will have Multi-Conjugate Adaptive Optics (MCAO). The peculiarities of Atmospheric Wavefront Tomography for Ring Telescopes are aided by the ample availability of guide stars on the Sun. IR MCAO-aided diffraction limited imaging offers the advantage of a large FOV, and high solar magnetic field sensitivity. Site testing is proceeding in western China, (e.g. northern Yunnan Province and Tibet). The CGST is a Chinese solar community project originated by the Yunnan Astronomical Observatory, the National Astronomical Observatories, the Purple Mountain Observatory, the Nanjing University, the Nanjing Institute of Astronomical Optics & Technology and the Beijing Normal University.

  16. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Hughes, David H.; Jáuregui Correa, Juan-Carlos; Schloerb, F. Peter; Erickson, Neal; Romero, Jose Guichard; Heyer, Mark; Reynoso, David Huerta; Narayanan, Gopal; Perez-Grovas, Alfonso Serrano; Souccar, Kamal; Wilson, Grant; Yun, Min

    2010-07-01

    This paper describes the current status of the Large Millimeter Telescope (LMT), the near-term plans for the telescope and the initial suite of instrumentation. The LMT is a bi-national collaboration between Mexico and the USA, led by the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and the University of Massachusetts at Amherst, to construct, commission and operate a 50m-diameter millimeter-wave radio telescope. Construction activities are nearly complete at the 4600m LMT site on the summit of Volcán Sierra Negra, an extinct volcano in the Mexican state of Puebla. Full movement of the telescope, under computer control in both azimuth and elevation, has been achieved. The commissioning and scientific operation of the LMT is divided into two major phases. As part of phase 1, the installation of precision surface segments for millimeter-wave operation within the inner 32m-diameter of the LMT surface is now complete. The alignment of these surface segments is underway. The telescope (in its 32-m diameter format) will be commissioned later this year with first-light scientific observations at 1mm and 3mm expected in early 2011. In phase 2, we will continue the installation and alignment of the remainder of the reflector surface, following which the final commissioning of the full 50-m LMT will take place. The LMT antenna, outfitted with its initial complement of scientific instruments, will be a world-leading scientific research facility for millimeter-wave astronomy.

  17. Giant Magellan Telescope: overview

    NASA Astrophysics Data System (ADS)

    Johns, Matt; McCarthy, Patrick; Raybould, Keith; Bouchez, Antonin; Farahani, Arash; Filgueira, Jose; Jacoby, George; Shectman, Steve; Sheehan, Michael

    2012-09-01

    The Giant Magellan Telescope (GMT) is a 25-meter optical/infrared extremely large telescope that is being built by an international consortium of universities and research institutions. It will be located at the Las Campanas Observatory, Chile. The GMT primary mirror consists of seven 8.4-m borosilicate honeycomb mirror segments made at the Steward Observatory Mirror Lab (SOML). Six identical off-axis segments and one on-axis segment are arranged on a single nearly-paraboloidal parent surface having an overall focal ratio of f/0.7. The fabrication, testing and verification procedures required to produce the closely-matched off-axis mirror segments were developed during the production of the first mirror. Production of the second and third off-axis segments is underway. GMT incorporates a seven-segment Gregorian adaptive secondary to implement three modes of adaptive-optics operation: natural-guide star AO, laser-tomography AO, and ground-layer AO. A wide-field corrector/ADC is available for use in seeing-limited mode over a 20-arcmin diameter field of view. Up to seven instruments can be mounted simultaneously on the telescope in a large Gregorian Instrument Rotator. Conceptual design studies were completed for six AO and seeing-limited instruments, plus a multi-object fiber feed, and a roadmap for phased deployment of the GMT instrument suite is being developed. The partner institutions have made firm commitments for approximately 45% of the funds required to build the telescope. Project Office efforts are currently focused on advancing the telescope and enclosure design in preparation for subsystem- and system-level preliminary design reviews which are scheduled to be completed in the first half of 2013.

  18. The Greenland Telescope

    NASA Astrophysics Data System (ADS)

    Grimes, Paul; Blundell, Raymond

    2012-09-01

    In the spring of 2010, the Academia Sinica Institute of Astronomy and Astrophysics, and the Smithsonian Astrophysical Observatory, acquired the ALMA North America prototype antenna - a state-of-the-art 12-m diameter dish designed for submillimeter astronomy. Together with the MIT-Haystack Observatory and the National Radio Astronomy Observatory, the plan is to retrofit this antenna for cold-weather operation and equip it with a suite of instruments designed for a variety of scientific experiments and observations. The primary scientific goal is to image the shadow of the Super-Massive Black Hole in M87 in order to test Einstein’s theory of relativity under extreme gravity. This requires the highest angular resolution, which can only be achieved by linking this antenna with others already in place to form a telescope almost the size of the Earth. We are therefore developing plans to install this antenna at the peak of the Greenland ice-sheet. This location will produce an equivalent North-South separation of almost 9,000 km when linked to the ALMA telescope in Northern Chile, and an East-West separation of about 6,000 km when linked to SAO and ASIAA’s Submillimeter Array on Mauna Kea, Hawaii, and will provide an angular resolution almost 1000 times higher than that of the most powerful optical telescopes. Given the quality of the atmosphere at the proposed telescope location, we also plan to make observations in the atmospheric windows at 1.3 and 1.5 THz. We will present plans to retrofit the telescope for cold-weather operation, and discuss potential instrumentation and projected time-line.

  19. Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey

    2007-05-01

    The Allen Telescope Array (ATA) is a pioneering centimeter-wavelength radio telescope that will produce science that cannot be done with any other instrument. The ATA is the first radio telescope designed for commensal observing; it will undertake the most comprehensive and sensitive SETI surveys ever done as well as the deepest and largest area continuum and spectroscopic surveys. Science operations will commence this year with a 42-element array. The ATA will ultimately comprise 350 6-meter dishes at Hat Creek in California, and will make possible large, deep radio surveys that were not previously feasible. The telescope incorporates many new design features including hydroformed antenna surfaces, a log-periodic feed covering the entire range of frequencies from 500 MHz to 11.2 GHz, low noise, wide-band amplifiers with a flat response over the entire band. The full array has the sensitivity of the Very Large Array but with a survey capability that is greater by an order of magnitude due to the wide field of view of the 6-meter dishes. Even with 42 elements, the ATA will be one of the most powerful radio survey telescopes. Science goals include the Five GHz sky survey (FiGSS) to match the 1.4-GHz NRAO VLA Sky Survey (NVSS) and the Sloan Digital Sky Survey within the first year of operation with the 42 element array, and a deep all-sky survey of extragalactic hydrogen to investigate galaxy evolution and intergalactic gas accretion. Transient and variable source surveys, pulsar science, spectroscopy of new molecular species in the galaxy, large-scale mapping of galactic magnetic filaments, and wide-field imaging of comets and other solar system objects are among the other key science objectives of the ATA. SETI surveys will reach sufficient sensitivity to detect an Arecibo planetary radar from 1,000,000 stars to distances of 300 pc.

  20. Design of compact apochromatic lens with very-broad spectrum and high resolution

    NASA Astrophysics Data System (ADS)

    Yan, Aqi; Cao, Jianzhong; Zhang, Jian; Zhang, Zhi; Wang, Hao; Wu, Dengshan; Zhou, Zuofeng; Zhang, Kaisheng; Lei, Yangjie

    2013-09-01

    This paper designs a compact apochromatic lens with long focal length, which operates over very-broad spectrum from 400nm to 900nm for high resolution image application. The focal length is 290mm, and F-number is 4.5.In order to match CCD sensor, lens resolution must be higher than 100lp/mm. It is a significant challenge to correct secondary spectrum over very-broad spectrum for this application. The paper firstly pays much attention on dispersion characteristic of optical materials over this very-broad spectrum, and dispersion characteristic of glasses is analyzed. After properly glasses combinations and optimal lens structure selected, this compact apochromatic lens is designed. The lens described in this paper comprises fewer lenses, most of them are ordinary optical materials, and only one special flint type TF3 with anomalous dispersion properties is used for secondary spectrum correction. Finally, the paper shows MTF and aberration curve for performance evaluation. It can be seen that MTF of the designed lens nearly reach diffraction limit at Nyquist frequency 100lp/mm, and residual secondary spectrum is greatly reduced to less than 0.03mm (in the lines 550nm and 787.5nm). The overall length of this compact apochromatic lens is just 0.76 times its focal length, and because of fewer lenses and ordinary optical materials widely used, production cost is also greatly reduced.

  1. A compact electron gun for time-resolved electron diffraction

    SciTech Connect

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2015-01-15

    A novel compact time-resolved electron diffractometer has been built with the primary goal of studying the ultrafast molecular dynamics of photoexcited gas-phase molecules. Here, we discuss the design of the electron gun, which is triggered by a Ti:Sapphire laser, before detailing a series of calibration experiments relating to the electron-beam properties. As a further test of the apparatus, initial diffraction patterns have been collected for thin, polycrystalline platinum samples, which have been shown to match theoretical patterns. The data collected demonstrate the focusing effects of the magnetic lens on the electron beam, and how this relates to the spatial resolution of the diffraction pattern.

  2. Wavefront Analysis of Adaptive Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Hillman, Lloyd

    1997-01-01

    The motivation for this work came from a NASA Headquarters interest in investigating design concepts for a large space telescope employing active optics technology. The development of telescope optical requirements and potential optical design configurations is reported.

  3. Delayed accumulation of lens material behind the foldable intraocular lens.

    PubMed

    Bhattacharjee, Harsha; Bhattacharjee, Kasturi; Bhattacharjee, Pankaj

    2007-01-01

    Foldable acrylic intraocular lenses (IOLs) are known to reduce posterior capsule opacification by preventing migration of lens epithelial cells with its square edge design and its property of tackiness. Studies have reported a mean adhesiveness to posterior capsule more than three times higher for certain acrylic foldable IOLs than polymethyl methacrylate IOLs. The authors would like to report two cases where the force of tackiness was compensated, thereby presenting with delayed accumulation of lens material in the capsular bags behind the IOL with temporary loss of vision. PMID:17951912

  4. Delayed accumulation of lens material behind the foldable intraocular lens.

    PubMed

    Bhattacharjee, Harsha; Bhattacharjee, Kasturi; Bhattacharjee, Pankaj

    2007-01-01

    Foldable acrylic intraocular lenses (IOLs) are known to reduce posterior capsule opacification by preventing migration of lens epithelial cells with its square edge design and its property of tackiness. Studies have reported a mean adhesiveness to posterior capsule more than three times higher for certain acrylic foldable IOLs than polymethyl methacrylate IOLs. The authors would like to report two cases where the force of tackiness was compensated, thereby presenting with delayed accumulation of lens material in the capsular bags behind the IOL with temporary loss of vision.

  5. Delayed accumulation of lens material behind the foldable intraocular lens

    PubMed Central

    Bhattacharjee, Kasturi; Bhattacharjee, Pankaj

    2007-01-01

    Foldable acrylic intraocular lenses (IOLs) are known to reduce posterior capsule opacification by preventing migration of lens epithelial cells with its square edge design and its property of tackiness. Studies have reported a mean adhesiveness to posterior capsule more than three times higher for certain acrylic foldable IOLs than polymethyl methacrylate IOLs. The authors would like to report two cases where the force of tackiness was compensated, thereby presenting with delayed accumulation of lens material in the capsular bags behind the IOL with temporary loss of vision. PMID:17951912

  6. Aplanatic and quasi-aplanatic diffraction gratings

    DOEpatents

    Hettrick, M.C.

    1987-09-14

    A reflection diffraction grating having a series of transverse minute grooves of progressively varying spacing along a concave surface enables use of such gratings for x-ray or longer wavelength imaging of objects. The variable groove spacing establishes aplanatism or substantially uniform magnetification across the optical aperture. The grating may be sued, for example, in x-ray microscopes or telescopes of the imaging type and in x-ray microprobed. Increased spatial resolution and field of view may be realized in x-ray imaging. 5 figs.

  7. Aplanatic and quasi-aplanatic diffraction gratings

    DOEpatents

    Hettrick, Michael C.

    1989-01-01

    A reflection diffraction grating having a series of transverse minute grooves of progressively varying spacing along a concave surface enables use of such gratings for X-ray or longer wavelength imaging of objects. The variable groove spacing establishes aplanatism or substantially uniform magnification across the optical aperture. The grating may be used, for example, in X-ray microscopes or telescopes of the imaging type and in X-ray microprobes. Increased spatial resolution and field of view may be realized in X-ray imaging.

  8. The application of diffractive optical elements in the optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Egorov, D. I.; Tsyganok, E. A.

    2016-04-01

    The article investigates the possibility of using diffractive optical elements on an example of the kinoform in the optical coherence tomography (OCT). The article gives a brief overview of modern methods of research in the OCT, the expediency of development hyperchromatic lenses for spectral OCT systems. The authors made the aberration analysis of diffractive optical element (DOE), conducted a review of its application, and the DOE proposed to use in the example of a kinoform as the main force component of the hyperchromatic lens. In conclusion, the article provides examples of developed hybrid lenses for two spectral ranges, lens transmittance analysis and the assessment of their adaptability.

  9. SPACE WARPS- II. New gravitational lens candidates from the CFHTLS discovered through citizen science

    NASA Astrophysics Data System (ADS)

    More, Anupreeta; Verma, Aprajita; Marshall, Philip J.; More, Surhud; Baeten, Elisabeth; Wilcox, Julianne; Macmillan, Christine; Cornen, Claude; Kapadia, Amit; Parrish, Michael; Snyder, Chris; Davis, Christopher P.; Gavazzi, Raphael; Lintott, Chris J.; Simpson, Robert; Miller, David; Smith, Arfon M.; Paget, Edward; Saha, Prasenjit; Küng, Rafael; Collett, Thomas E.

    2016-01-01

    We report the discovery of 29 promising (and 59 total) new lens candidates from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) based on about 11 million classifications performed by citizen scientists as part of the first SPACE WARPS lens search. The goal of the blind lens search was to identify lens candidates missed by robots (the RINGFINDER on galaxy scales and ARCFINDER on group/cluster scales) which had been previously used to mine the CFHTLS for lenses. We compare some properties of the samples detected by these algorithms to the SPACE WARPS sample and find them to be broadly similar. The image separation distribution calculated from the SPACE WARPS sample shows that previous constraints on the average density profile of lens galaxies are robust. SPACE WARPS recovers about 65 per cent of known lenses, while the new candidates show a richer variety compared to those found by the two robots. This detection rate could be increased to 80 per cent by only using classifications performed by expert volunteers (albeit at the cost of a lower purity), indicating that the training and performance calibration of the citizen scientists is very important for the success of SPACE WARPS. In this work we present the SIMCT pipeline, used for generating in situ a sample of realistic simulated lensed images. This training sample, along with the false positives identified during the search, has a legacy value for testing future lens-finding algorithms. We make the pipeline and the training set publicly available.

  10. Parametric Powder Diffraction

    NASA Astrophysics Data System (ADS)

    David, William I. F.; Evans, John S. O.

    The rapidity with which powder diffraction data may be collected, not only at neutron and X-ray synchrotron facilities but also in the laboratory, means that the collection of a single diffraction pattern is now the exception rather than the rule. Many experiments involve the collection of hundreds and perhaps many thousands of datasets where a parameter such as temperature or pressure is varied or where time is the variable and life-cycle, synthesis or decomposition processes are monitored or three-dimensional space is scanned and the three-dimensional internal structure of an object is elucidated. In this paper, the origins of parametric diffraction are discussed and the techniques and challenges of parametric powder diffraction analysis are presented. The first parametric measurements were performed around 50 years ago with the development of a modified Guinier camera but it was the automation afforded by neutron diffraction combined with increases in computer speed and memory that established parametric diffraction on a strong footing initially at the ILL, Grenoble in France. The theoretical parameterisation of quantities such as lattice constants and atomic displacement parameters will be discussed and selected examples of parametric diffraction over the past 20 years will be reviewed that highlight the power of the technique.

  11. Diffractive optics technology and the NASA Geostationary Earth Observatory (GEO)

    NASA Technical Reports Server (NTRS)

    Morris, G. Michael; Michaels, Robert L.; Faklis, Dean

    1992-01-01

    Diffractive (or binary) optics offers unique capabilities for the development of large-aperture, high-performance, light-weight optical systems. The Geostationary Earth Observatory (GEO) will consist of a variety of instruments to monitor the environmental conditions of the earth and its atmosphere. The aim of this investigation is to analyze the design of the GEO instrument that is being proposed and to identify the areas in which diffractive (or binary) optics technology can make a significant impact in GEO sensor design. Several potential applications where diffractive optics may indeed serve as a key technology for improving the performance and reducing the weight and cost of the GEO sensors have been identified. Applications include the use of diffractive/refractive hybrid lenses for aft-optic imagers, diffractive telescopes for narrowband imaging, subwavelength structured surfaces for anti-reflection and polarization control, and aberration compensation for reflective imaging systems and grating spectrometers.

  12. Planar lens with a quasi-periodic circular design

    NASA Astrophysics Data System (ADS)

    Phan, Thaibao Q.; Zhu, Li; Qiao, Pengfei; Chang-Hasnain, Connie J.

    2016-03-01

    In recent years, subwavelength dielectric gratings have been engineered for use as planar focusing elements at optical communication frequencies. Pioneering designs were based on aperiodic one-dimensional gratings, which were polarization-sensitive and designed bar by bar. In this paper, we present our recent designs which eliminated the polarization dependence by using a novel two-dimensional hexagonal lattice and algorithm to build the lens. In this way, lens can be designed algorithmically, with the inherent geometry requiring the use of only one period for the hexagonal lattice. We propose a unique geometry for designing two-dimensional grating lenses: dielectric posts arrayed in concentric circles. Because it is straightforward to space concentric rings apart at varying distances, we no longer need to restrict the design to a uniform grating period. By choosing two periodicities to work with, we managed to algorithmically design a two-dimensional lens, but with the advantage that our smallest feature sizes are up to twice as large as those of lenses designed with only one period. This increases the ease of fabrication for lenses working at current wavelengths and opens up the possibility for working with shorter wavelengths. Furthermore, this concentrically arrayed grating lens can be designed using phase information calculated for a periodic hexagonal lattice, even though the two designs show very little geometric resemblance. Also, we found that the grating lens is suitable not only for focusing plane waves, but also for imaging point sources. Finally, we show that bifocal lenses can be crated from diffraction gratings using our algorithm as well.

  13. Science operations with Space Telescope

    NASA Astrophysics Data System (ADS)

    Giacconi, R.

    1982-08-01

    The operation, instrumentation, and expected contributions of the Space Telescope are discussed. Space Telescope capabilities are described. The organization and nature of the Space Telescope Science Institute are outlined, including the allocation of observing time and the data rights and data access policies of the institute.

  14. Lunar transit telescope lander design

    NASA Technical Reports Server (NTRS)

    Omar, Husam A.

    1992-01-01

    The Program Development group at NASA's Marshall Space Flight Center has been involved in studying the feasibility of placing a 16 meter telescope on the lunar surface to scan the skies using visible/ Ultraviolet/ Infrared light frequencies. The precursor telescope is now called the TRANSIT LUNAR TELESCOPE (LTT). The Program Development Group at Marshall Space Flight Center has been given the task of developing the basic concepts and providing a feasibility study on building such a telescope. The telescope should be simple with minimum weight and volume to fit into one of the available launch vehicles. The preliminary launch date is set for 2005. A study was done to determine the launch vehicle to be used to deliver the telescope to the lunar surface. The TITAN IV/Centaur system was chosen. The engineering challenge was to design the largest possible telescope to fit into the TITAN IV/Centaur launch system. The telescope will be comprised of the primary, secondary and tertiary mirrors and their supporting system in addition to the lander that will land the telescope on the lunar surface and will also serve as the telescope's base. The lunar lander should be designed integrally with the telescope in order to minimize its weight, thus allowing more weight for the telescope and its support components. The objective of this study were to design a lander that meets all the constraints of the launching system. The basic constraints of the TITAN IV/Centaur system are given.

  15. Lunar transit telescope lander design

    NASA Technical Reports Server (NTRS)

    Omar, Husam A.

    1991-01-01

    The Program Development group at NASA's Marshall Space Flight Center has been involved in studying the feasibility of placing a 16 meter telescope on the lunar surface to scan the skies using visible/ Ultraviolet/ Infrared light frequencies. The precursor telescope is now called the TRANSIT LUNAR TELESCOPE (LTT). The Program Development Group at Marshall Space Flight Center has been given the task of developing the basic concepts and providing a feasibility study on building such a telescope. The telescope should be simple with minimum weight and volume to fit into one of the available launch vehicles. The preliminary launch date is set for 2005. A study was done to determine the launch vehicle to be used to deliver the telescope to the lunar surface. The TITAN IV/Centaur system was chosen. The engineering challenge was to design the largest possible telescope to fit into the TITAN IV/Centaur launch system. The telescope will be comprised of the primary, secondary and tertiary mirrors and their supporting system in addition to the lander that will land the telescope on the lunar surface and will also serve as the telescope's base. The lunar lander should be designed integrally with the telescope in order to minimize its weight, thus allowing more weight for the telescope and its support components. The objective of this study were to design a lander that meets all the constraints of the launching system. The basic constraints of the TITAN IV/Centaur system are given.

  16. The SNAP Strong Lens Survey

    SciTech Connect

    Marshall, P.

    2005-01-03

    Basic considerations of lens detection and identification indicate that a wide field survey of the types planned for weak lensing and Type Ia SNe with SNAP are close to optimal for the optical detection of strong lenses. Such a ''piggy-back'' survey might be expected even pessimistically to provide a catalogue of a few thousand new strong lenses, with the numbers dominated by systems of faint blue galaxies lensed by foreground ellipticals. After sketching out our strategy for detecting and measuring these galaxy lenses using the SNAP images, we discuss some of the scientific applications of such a large sample of gravitational lenses: in particular we comment on the partition of information between lens structure, the source population properties and cosmology. Understanding this partitioning is key to assessing strong lens cosmography's value as a cosmological probe.

  17. [Contact lens-related keratitis].

    PubMed

    Steiber, Zita; Berta, András; Módis, László

    2013-11-10

    Nowadays, keratitis, corneal infection due to wearing contact lens means an increasingly serious problem. Neglected cases may lead to corneal damage that can cause blindness in cases of otherwise healthy eyes. Early diagnosis based on the clinical picture and the typical patient history is an important way of prevention. Prophylaxis is substantial to avoid bacterial and viral infection that is highly essential in this group of diseases. Teaching contact lens wearers the proper contact lens care, storage, sterility, and hygiene regulations is of great importance. In case of corneal inflammation early accurate diagnosis supported by microbiological culture from contact lenses, storage boxes or cornea is very useful. Thereafter, targeted drug therapy or in therapy-resistant cases surgical treatment may even be necessary in order to sustain suitable visual acuity.

  18. A Prototype Antifungal Contact Lens

    PubMed Central

    Ciolino, Joseph B.; Hudson, Sarah P.; Mobbs, Ashley N.; Hoare, Todd R.; Iwata, Naomi G.; Fink, Gerald R.

    2011-01-01

    Purpose. To design a contact lens to treat and prevent fungal ocular infections. Methods. Curved contact lenses were created by encapsulating econazole-impregnated poly(lactic-co-glycolic) acid (PLGA) films in poly(hydroxyethyl methacrylate) (pHEMA) by ultraviolet photopolymerization. Release studies were conducted in phosphate-buffered saline at 37°C with continuous shaking. The contact lenses and their release media were tested in an antifungal assay against Candida albicans. Cross sections of the pre- and postrelease contact lenses were characterized by scanning electron microscopy and by Raman spectroscopy. Results. Econazole-eluting contact lenses provided extended antifungal activity against Candida albicans fungi. Fungicidal activity varied in duration and effectiveness depending on the mass of the econazole-PLGA film encapsulated in the contact lens. Conclusions. An econazole-eluting contact lens could be used as a treatment for fungal ocular infections. PMID:21527380

  19. Automated Fresnel lens tester system

    SciTech Connect

    Phipps, G.S.

    1981-07-01

    An automated data collection system controlled by a desktop computer has been developed for testing Fresnel concentrators (lenses) intended for solar energy applications. The system maps the two-dimensional irradiance pattern (image) formed in a plane parallel to the lens, whereas the lens and detector assembly track the sun. A point detector silicon diode (0.5-mm-dia active area) measures the irradiance at each point of an operator-defined rectilinear grid of data positions. Comparison with a second detector measuring solar insolation levels results in solar concentration ratios over the image plane. Summation of image plane energies allows calculation of lens efficiencies for various solar cell sizes. Various graphical plots of concentration ratio data help to visualize energy distribution patterns.

  20. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  1. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  2. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Deboer, David; Ackermann, Rob; Blitz, Leo; Bock, Douglas; Bower, Geoffrey; Davis, Michael; Dreher, John; Engargiola, Greg; Fleming, Matt; Keleta, Girmay; Harp, Gerry; Lugten, John; Tarter, Jill; Thornton, Doug; Wadefalk, Niklas; Weinreb, Sander; Welch, William J.

    2004-06-01

    The Allen Telescope Array, a joint project between the SETI Institute and the Radio Astronomy Laboratory at the University of California Berkeley, is currently under development and construction at the Hat Creek Radio Observatory in northern California. It will consist of 350 6.1-m offset Gregorian antennas in a fairly densely packed configuration, with minimum baselines of less than 10 m and a maximum baseline of about 900 m. The dual-polarization frequency range spans from about 500 MHz to 11 GHz, both polarizations of which are transported back from each antenna. The first generation processor will provide 32 synthesized beams of 104 MHz bandwidth, eight at each of four tunings, as well as outputs for a full-polarization correlator at two of the tunings at the same bandwidth. This paper provides a general description of the Allen Telescope Array.

  3. COROT telescope development

    NASA Astrophysics Data System (ADS)

    Viard, Thierry; Bodin, Pierre; Magnan, Alain

    2004-06-01

    COROTEL is the telescope of the future COROT satellite which aims at measuring stellar flux variations very accurately. To perform this mission, COROTEL has to be very well protected against straylight (from Sun and Earth) and must be very stable with time. Thanks to its high experience in this field, Alcatel Space has proposed an original optical concept associated with a high performance baffle. From 2001, the LAM (Laboratoire d'Astrophysique de Marseille, CNRS) has placed the telescope development contract to Alcatel Space and is presently almost finished. Based on relevant material and efficient thermal control design, COROTEL should meet its ambitious performance and bring to scientific community for the first time precious data coming from stars and their possible companions.

  4. Telescopic limiting magnitudes

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1990-01-01

    The prediction of the magnitude of the faintest star visible through a telescope by a visual observer is a difficult problem in physiology. Many prediction formulas have been advanced over the years, but most do not even consider the magnification used. Here, the prediction algorithm problem is attacked with two complimentary approaches: (1) First, a theoretical algorithm was developed based on physiological data for the sensitivity of the eye. This algorithm also accounts for the transmission of the atmosphere and the telescope, the brightness of the sky, the color of the star, the age of the observer, the aperture, and the magnification. (2) Second, 314 observed values for the limiting magnitude were collected as a test of the formula. It is found that the formula does accurately predict the average observed limiting magnitudes under all conditions.

  5. The Neutrino Telescope ANTARES

    NASA Astrophysics Data System (ADS)

    Hernández, Juan José

    Neutrinos can reveal a brand new Universe at high energies. The ANTARES collaboration [1] , formed in 1996, works towards the building and deployment of a neutrino telescope. This detector could observe and study high energy astrophysical sources such as X-ray binary systems, young supernova remnants or Active Galactic Nuclei and help to discover or set exclusion limits on some of the elementary particles and objects that have been put forward as candidates to fill the Universe (WIMPS, neutralinos, topological deffects, Q-balls, etc). A neutrino telescope will certainly open a new observational window and can shed light on the most energetic phenomena of the Universe. A review of the progress made by the ANTARES collaboration to achieve this goal is presented

  6. Building the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. JWST will make progress In almost every area of astronomy, from the first galaxies to form in the early universe to exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitless Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory Is confirmed for launch in 2018; the design is complete and it is in its construction phase. Innovations that make JWST possible include large-area low-noise infrared detectors, cryogenic ASICs, a MEMS micro-shutter array providing multi-object spectroscopy, a non-redundant mask for interferometric coronagraphy and diffraction-limited segmented beryllium mirrors with active wavefront sensing and control. Recent progress includes the completion of the mirrors, the delivery of the first flight instruments and the start of the integration and test phase.

  7. The Large Area Telescope

    SciTech Connect

    Michelson, Peter F.; /KIPAC, Menlo Park /Stanford U., HEPL

    2007-11-13

    The Large Area Telescope (LAT), one of two instruments on the Gamma-ray Large Area Space Telescope (GLAST) mission, is an imaging, wide field-of-view, high-energy pair-conversion telescope, covering the energy range from {approx}20 MeV to more than 300 GeV. The LAT is being built by an international collaboration with contributions from space agencies, high-energy particle physics institutes, and universities in France, Italy, Japan, Sweden, and the United States. The scientific objectives the LAT will address include resolving the high-energy gamma-ray sky and determining the nature of the unidentified gamma-ray sources and the origin of the apparently isotropic diffuse emission observed by EGRET; understanding the mechanisms of particle acceleration in celestial sources, including active galactic nuclei, pulsars, and supernovae remnants; studying the high-energy behavior of gamma-ray bursts and transients; using high-energy gamma-rays to probe the early universe to z {ge} 6; and probing the nature of dark matter. The components of the LAT include a precision silicon-strip detector tracker and a CsI(Tl) calorimeter, a segmented anticoincidence shield that covers the tracker array, and a programmable trigger and data acquisition system. The calorimeter's depth and segmentation enable the high-energy reach of the LAT and contribute significantly to background rejection. The aspect ratio of the tracker (height/width) is 0.4, allowing a large field-of-view and ensuring that nearly all pair-conversion showers initiated in the tracker will pass into the calorimeter for energy measurement. This paper includes a description of each of these LAT subsystems as well as a summary of the overall performance of the telescope.

  8. [Galileo and his telescope].

    PubMed

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book.

  9. [Galileo and his telescope].

    PubMed

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book. PMID:16929794

  10. Computer-aided lens assembly.

    PubMed

    Tomlinson, Richard; Alcock, Rob; Petzing, Jon; Coupland, Jeremy

    2004-01-20

    We propose a computer-aided method of lens manufacture that allows assembly, adjustment, and test phases to be run concurrently until an acceptable level of optical performance is reached. Misalignment of elements within a compound lens is determined by a comparison of the results of physical ray tracing by use of an array of Gaussian laser beams with numerically obtained geometric ray traces. An estimate of misalignment errors is made, and individual elements are adjusted in an iterative manner until performance criteria are achieved. The method is illustrated for the alignment of an air-spaced doublet. PMID:14765916

  11. Liquid crystal Fresnel lens display

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Qian; Abhishek Kumar, Srivastava; Alwin Tam, Ming-Wai; Zheng, Zhi-Gang; Shen, Dong; Vladimir, Chigrinov G.; Kwok, Hoi-Sing

    2016-09-01

    A novel see-through display with a liquid crystal lens array was proposed. A liquid crystal Fresnel lens display (LCFLD) with a holographic screen was demonstrated. The proposed display system has high efficiency, simple fabrication, and low manufacturing cost due to the absence of a polarizer and color filter. Project supported by Partner State Key Laboratory on Advanced Displays and Optoelectronics Technologies HKUST, China, the National Natural Science Foundation of China (Grant Nos. 61435008 and 61575063), and the Fundamental Research Funds for the Central Universities, China (Grant No. WM1514036).

  12. Liquid crystal Fresnel lens display

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Qian; Abhishek Kumar, Srivastava; Alwin Tam, Ming-Wai; Zheng, Zhi-Gang; Shen, Dong; Vladimir, Chigrinov G.; Kwok, Hoi-Sing

    2016-09-01

    A novel see-through display with a liquid crystal lens array was proposed. A liquid crystal Fresnel lens display (LCFLD) with a holographic screen was demonstrated. The proposed display system has high efficiency, simple fabrication, and low manufacturing cost due to the absence of a polarizer and color filter. Project supported by Partner State Key Laboratory on Advanced Displays and Optoelectronics Technologies HKUST, China, the National Natural Science Foundation of China (Grant Nos. 61435008 and 61575063), and the Fundamental Research Funds for the Central Universities, China (Grant No. WM1514036).

  13. MIRI Telescope Simulator

    NASA Astrophysics Data System (ADS)

    Belenguer, T.; Alcacera, M. A.; Aricha, A.; Balado, A.; Barandiarán, J.; Bernardo, A.; Canchal, M. R.; Colombo, M.; Diaz, E.; Eiriz, V.; Figueroa, I.; García, G.; Giménez, A.; González, L.; Herrada, F.; Jiménez, A.; López, R.; Menéndez, M.; Reina, M.; Rodríguez, J. A.; Sánchez, A.

    2008-07-01

    The MTS, MIRI Telescope Simulator, is developed by INTA as the Spanish contribution of MIRI (Mid InfraRed Instrument) on board JWST (James Web Space Telescope). The MTS is considered as optical equipment which is part of Optical Ground Support Equipment for the AIV/Calibration phase of the instrument at Rutherford Appleton Laboratory, UK. It is an optical simulator of the JWST Telescope, which will provide a diffractionlimited test beam, including the obscuration and mask pattern, in all the MIRI FOV and in all defocusing range. The MTS will have to stand an environment similar to the flight conditions (35K) but using a smaller set-up, typically at lab scales. The MTS will be used to verify MIRI instrument-level tests, based on checking the implementation/realisation of the interfaces and performances, as well as the instrument properties not subject to interface control such as overall transmission of various modes of operation. This paper includes a functional description and a summary of the development status.

  14. Hubble Space Telescope satellite

    NASA Technical Reports Server (NTRS)

    Mitchell, R. E.

    1985-01-01

    The Hubble Space Telescope, named for the American astronomer Edwin Powell Hubble, will be the largest and most powerful astronomical instrument ever orbited. Placed above the obscuring effects of the earth's atmosphere in a 600-km orbit, this remotely-controlled, free-flying satellite observatory will expand the terrestrial-equivalent resolution of the universe by a factor of seven, or a volumetric factor of 350. This telescope has a 2.4-m primary mirror and can accommodate five scientific instruments (cameras, spectrographs and photometers). The optics are suitable for a spectral range from 1100 angstrom to 1 mm wavelength. With a projected service life of fifteen years, the spacecraft can be serviced on-orbit for replacement of degraded systems, to insert advanced scientific instruments, and to reboost the telescope from decayed altitudes. The anticipated image quality will be a result of extremely precise lambda/20 optics, stringent cleanliness, and very stable pointing: jitter will be held to less than 0.01 arcsecond for indefinite observation periods, consistent with instrument apertures as small as 0.1 arcsecond.

  15. Fast Fourier transform telescope

    SciTech Connect

    Tegmark, Max; Zaldarriaga, Matias

    2009-04-15

    We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore's law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog{sub 2}N rather than N{sup 2}) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.

  16. Contact lens wear at altitude: subcontact lens bubble formation.

    PubMed

    Flynn, W J; Miller, R E; Tredici, T J; Block, M G; Kirby, E E; Provines, W F

    1987-11-01

    A concern in the past regarding contact lens wear in aviation has been the fear of subcontact lens bubble formation. Previous reports have documented the occurrence of bubbles with hard (PMMA) lenses. Reported here are the results of contact lens bubble studies with soft hydrophilic and rigid gas-permeable lenses. Testing was accomplished in hypobaric chambers and onboard USAF transport aircraft. Hypobaric chamber flights were of three types: high-altitude flights up to 7,620 m (25,000 ft); explosive rapid decompressions from 2,438.4 m (8,000 ft) to 7,620 m (25,000 ft); and 4-h flights at 3,048 m (10,000 ft). Flights aboard transport aircraft typically had cabin pressures equivalent to 1,524-2,438.4 m (5,000-8,000 ft), and ranged in duration from 3 to 10 h. For subjects wearing rigid gas-permeable lenses, central bubbles were detected in 2 of 10 eyes and occurred at altitudes greater than 6,096 m (20,000 ft). With soft contact lenses, bubble formation was detected in approximately 24% (22 of 92 eyes) of the eyes tested, sometimes occurring at altitudes as low as 1,828.8 m (6,000 ft). Soft lens bubbles were always located at the limbus and were without sequela to vision or corneal epithelial integrity. Bubbles under the rigid lenses were primarily central, with potential adverse effects on vision and the corneal epithelium.

  17. Ensuring Safe Use of Contact Lens Solution

    MedlinePlus

    ... For Consumers Consumer Updates Ensuring Safe Use of Contact Lens Solution Share Tweet Linkedin Pin it More ... back to top Dos and Don'ts for Contact Lens Wearers DO: Always wash your hands before ...

  18. Fraunhofer Diffraction and Polarization.

    ERIC Educational Resources Information Center

    Fortin, E.

    1979-01-01

    Describes an experiment for the intermediate undergraduate optics laboratory designed to illustrate simultaneously some aspects of the phenomena of diffraction; interference, coherence, apodization, the Fresnel-Arago law; as well as of the interrelations between these concepts. (HM)

  19. Fresnel Coherent Diffractive Imaging

    NASA Astrophysics Data System (ADS)

    Williams, G. J.; Quiney, H. M.; Dhal, B. B.; Tran, C. Q.; Nugent, K. A.; Peele, A. G.; Paterson, D.; de Jonge, M. D.

    2006-07-01

    We present an x-ray coherent diffractive imaging experiment utilizing a nonplanar incident wave and demonstrate success by reconstructing a nonperiodic gold sample at 24 nm resolution. Favorable effects of the curved beam illumination are identified.

  20. Multigap Diffraction at LHC

    SciTech Connect

    Goulianos, Konstantin

    2005-10-06

    The large rapidity interval available at the Large Hadron Collider (LHC) offers an arena in which the QCD aspects of diffraction may be explored in an environment free of gap survival complications using events with multiple rapidity gaps.

  1. Reflective diffraction grating

    DOEpatents

    Lamartine, Bruce C.

    2003-06-24

    Reflective diffraction grating. A focused ion beam (FIB) micromilling apparatus is used to store color images in a durable medium by milling away portions of the surface of the medium to produce a reflective diffraction grating with blazed pits. The images are retrieved by exposing the surface of the grating to polychromatic light from a particular incident bearing and observing the light reflected by the surface from specified reception bearing.

  2. SimpLens: Interactive gravitational lensing simulator

    NASA Astrophysics Data System (ADS)

    Saha, Prasenjit; Williams, Liliya L. R.

    2016-06-01

    SimpLens illustrates some of the theoretical ideas important in gravitational lensing in an interactive way. After setting parameters for elliptical mass distribution and external mass, SimpLens displays the mass profile and source position, the lens potential and image locations, and indicate the image magnifications and contours of virtual light-travel time. A lens profile can be made shallower or steeper with little change in the image positions and with only total magnification affected.

  3. Infrared Astronomy Professional Development for K-12 Educators: WISE Telescope

    NASA Astrophysics Data System (ADS)

    Borders, Kareen; Mendez, B. M.

    2010-01-01

    K-12 educators need effective and relevant astronomy professional development. WISE Telescope (Wide-Field Infrared Survey Explorer) and Spitzer Space Telescope Education programs provided an immersive teacher professional development workshop at Arecibo Observatory in Puerto Rico during the summer of 2009. As many common misconceptions involve scale and distance, teachers worked with Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers built and used basic telescopes, learned about the history of telescopes, explored ground and satellite based telescopes, and explored and worked on models of WISE Telescope. An in-depth explanation of WISE and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. We taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of WISE lenticulars and diagramming of infrared data, listening to light by using speakers hooked up to photoreceptor cells, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars. We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development. Funding was provided by WISE Telescope, Spitzer Space Telescope, Starbucks, Arecibo Observatory, the American Institute of Aeronautics and Astronautics, and the Washington Space Grant Consortium.

  4. Correction of atmospheric distortion with an image-sharpening telescope

    NASA Technical Reports Server (NTRS)

    Buffington, A.; Crawford, F. S.; Muller, R. A.; Schwemin, A. J.; Smits, R. G.

    1977-01-01

    A 30 x 5 cm aperture telescope employing six movable mirrors to compensate for atmospherically induced phase distortion is built and tested. A feedback system adjusts the mirrors in real time to maximize the intensity of light passing through a narrow slit in the image plane. Essentially diffraction-limited performance is achieved when imaging both laser and white-light objects through 250 m of turbulent atmosphere. The behavior of the telescope is accurately predicted by computer simulations. The system has yet to achieve its full potential, but has already operated successfully for objects as dim as 5th magnitude.

  5. Multivariable Parametric Cost Model for Ground Optical: Telescope Assembly

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature were examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter were derived.

  6. Multivariable Parametric Cost Model for Ground Optical Telescope Assembly

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2005-01-01

    A parametric cost model for ground-based telescopes is developed using multivariable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction-limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature are examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e., multi-telescope phased-array systems). Additionally, single variable models Based on aperture diameter are derived.

  7. A broadband transformation-optics metasurface lens

    SciTech Connect

    Wan, Xiang; Xiang Jiang, Wei; Feng Ma, Hui; Jun Cui, Tie

    2014-04-14

    We present a transformational metasurface Luneburg lens based on the quasi-conformal mapping method, which has weakly anisotropic constitutive parameters. We design the metasurface lens using inhomogeneous artificial structures to realize the required surface refractive indexes. The transformational metasurface Luneburg lens is fabricated and the measurement results demonstrate very good performance in controlling the radiated surface waves.

  8. 21 CFR 886.3600 - Intraocular lens.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraocular lens. 886.3600 Section 886.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3600 Intraocular lens. (a) Identification. An intraocular lens is a device made of materials...

  9. Contact Lens-Related Eye Infections

    MedlinePlus

    ... Stories Español Eye Health / Eye Health A-Z Contact Lens-Related Eye Infections Sections Contact Lens-Related ... About Contact Lenses Proper Care of Contact Lenses Contact Lens-Related Eye Infections Written by: Kierstan Boyd ...

  10. New merit values for lens performance.

    NASA Astrophysics Data System (ADS)

    Nakagawa, J.

    1995-08-01

    New merit values for lens performance m=Σ(Qh)2 and m¯=Σ(Qh¯)2 were introduced, where Q is Abbe's invariant, h is paraxial ray height and the bar indicates principal ray. The studies showed that m and m¯ are useful for the evaluation of potentialities of lens systems and for the optimization of lens designs.

  11. In vivo human crystalline lens topography

    PubMed Central

    Ortiz, Sergio; Pérez-Merino, Pablo; Gambra, Enrique; de Castro, Alberto; Marcos, Susana

    2012-01-01

    Custom high-resolution high-speed anterior segment spectral domain optical coherence tomography (OCT) was used to characterize three-dimensionally (3-D) the human crystalline lens in vivo. The system was provided with custom algorithms for denoising and segmentation of the images, as well as for fan (scanning) and optical (refraction) distortion correction, to provide fully quantitative images of the anterior and posterior crystalline lens surfaces. The method was tested on an artificial eye with known surfaces geometry and on a human lens in vitro, and demonstrated on three human lenses in vivo. Not correcting for distortion overestimated the anterior lens radius by 25% and the posterior lens radius by more than 65%. In vivo lens surfaces were fitted by biconicoids and Zernike polynomials after distortion correction. The anterior lens radii of curvature ranged from 10.27 to 14.14 mm, and the posterior lens radii of curvature ranged from 6.12 to 7.54 mm. Surface asphericities ranged from −0.04 to −1.96. The lens surfaces were well fitted by quadrics (with variation smaller than 2%, for 5-mm pupils), with low amounts of high order terms. Surface lens astigmatism was significant, with the anterior lens typically showing horizontal astigmatism (Z22 ranging from −11 to −1 µm) and the posterior lens showing vertical astigmatism (Z22 ranging from 6 to 10 µm). PMID:23082289

  12. High-Resolution, Wide-Field-of-View Scanning Telescope

    NASA Technical Reports Server (NTRS)

    Sepulveda, Cesar; Wilson, Robert; Seshadri, Suresh

    2007-01-01

    A proposed telescope would afford high resolution over a narrow field of view (<0.10 ) while scanning over a total field of view nominally 16 wide without need to slew the entire massive telescope structure. The telescope design enables resolution of a 1-m-wide object in a 50- km-wide area of the surface of the Earth as part of a 200-km-wide area field of view monitored from an orbit at an altitude of 700 km. The conceptual design of this telescope could also be adapted to other applications both terrestrial and extraterrestrial in which there are requirements for telescopes that afford both wide- and narrow-field capabilities. In the proposed telescope, the scanning would be effected according to a principle similar to that of the Arecibo radio telescope, in which the primary mirror is stationary with respect to the ground and a receiver is moved across the focal surface of the primary mirror. The proposed telescope would comprise (1) a large spherical primary mirror that would afford high resolution over a narrow field of view and (2) a small displaceable optical relay segment that would be pivoted about the center of an aperture stop to effect the required scanning (see figure). Taken together, both comprise a scanning narrow-angle telescope that does not require slewing the telescope structure. In normal operation, the massive telescope structure would stare at a fixed location on the ground. The inner moveable relay optic would be pivoted to scan the narrower field of view over the wider one, making it possible to retain a fixed telescope orientation, while obtaining high-resolution images over multiple target areas during an interval of 3 to 4 minutes in the intended orbit. The pivoting relay segment of the narrow-angle telescope would include refractive and reflective optical elements, including two aspherical mirrors, to counteract the spherical aberration of the primary mirror. Overall, the combination of the primary mirror and the smaller relay optic

  13. Fraunhofer diffraction of Laguerre-Gaussian laser beam by helical axicon

    NASA Astrophysics Data System (ADS)

    Topuzoski, S.

    2014-11-01

    In this article we present a theoretical study for Fraunhofer diffraction of a Laguerre-Gaussian laser beam with “0” radial mode number and “l” azimuthal mode number (LG0l) by helical axicon. Analytical expressions describing the diffracted wave field amplitude and intensity distributions in the back focal plane of a convergent lens are derived in a form of product of a Gauss-doughnut function and a sum of hypergeometric Kummer functions. Also, the diffracted LG beam by axicon only, as well as by spiral phase plate only, and the diffracted Gaussian beam by helical axicon, are described mathematically in the back focal plane of a convergent lens. Different possibilities for obtaining output vortex beam with reduced or increased topological charge compared to that of the incident beam, or for obtaining chargeless beam are analyzed.

  14. Tevatron electron lens magnetic system

    SciTech Connect

    Vladimir Shiltsev et al.

    2001-07-12

    In the framework of collaboration between IHEP and FNAL, a magnetic system of the Tevatron Electron Lens (TEL) has been designed and built. The TEL is currently installed in the superconducting ring of the Tevatron proton-antiproton collider and used for experimental studies of beam-beam compensation [1].

  15. The Fyodorov Sputnik intraocular lens.

    PubMed

    Kwitko, M L

    1979-04-01

    The author has implanted 197 Fyodorov intraocular lenses. With careful selection of patients, good surgical judgment, and meticulous surgery, a degree of success can be obtained with this lens, which will equal that of conventional cataract surgery. The surgical technique of implantation will be described. PMID:537770

  16. A Lens to the Enterprise.

    ERIC Educational Resources Information Center

    Zemsky, Robert, Ed.

    1999-01-01

    This essay is based on a series of roundtables convened through the Knight Collaborative National Medical Education Roundtable. It reports that the challenges and transformations experienced in recent years by community-based medical schools and clinical campuses offer a lens to the whole higher education enterprise, and asks the fundamental…

  17. The BOSS Emission-Line Lens Survey (BELLS). I. A Large Spectroscopically Selected Sample of Lens Galaxies at Redshift ~0.5

    NASA Astrophysics Data System (ADS)

    Brownstein, Joel R.; Bolton, Adam S.; Schlegel, David J.; Eisenstein, Daniel J.; Kochanek, Christopher S.; Connolly, Natalia; Maraston, Claudia; Pandey, Parul; Seitz, Stella; Wake, David A.; Wood-Vasey, W. Michael; Brinkmann, Jon; Schneider, Donald P.; Weaver, Benjamin A.

    2012-01-01

    We present a catalog of 25 definite and 11 probable strong galaxy-galaxy gravitational lens systems with lens redshifts 0.4 <~ z <~ 0.7, discovered spectroscopically by the presence of higher-redshift emission lines within the Baryon Oscillation Spectroscopic Survey (BOSS) of luminous galaxies, and confirmed with high-resolution Hubble Space Telescope (HST) images of 44 candidates. Our survey extends the methodology of the Sloan Lens Advanced Camera for Surveys survey (SLACS) to higher redshift. We describe the details of the BOSS spectroscopic candidate detections, our HST ACS image processing and analysis methods, and our strong gravitational lens modeling procedure. We report BOSS spectroscopic parameters and ACS photometric parameters for all candidates, and mass-distribution parameters for the best-fit singular isothermal ellipsoid models of definite lenses. Our sample to date was selected using only the first six months of BOSS survey-quality spectroscopic data. The full five-year BOSS database should produce a sample of several hundred strong galaxy-galaxy lenses and in combination with SLACS lenses at lower redshift, strongly constrain the redshift evolution of the structure of elliptical, bulge-dominated galaxies as a function of luminosity, stellar mass, and rest-frame color, thereby providing a powerful test for competing theories of galaxy formation and evolution. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 12209. Based on spectroscopic data from the Baryon Oscillation Spectroscopic Survey of the Sloan Digital Sky Survey III.

  18. Virtual input device with diffractive optical element

    NASA Astrophysics Data System (ADS)

    Wu, Ching Chin; Chu, Chang Sheng

    2005-02-01

    As a portable device, such as PDA and cell phone, a small size build in virtual input device is more convenient for complex input demand. A few years ago, a creative idea called 'virtual keyboard' is announced, but up to now there's still no mass production method for this idea. In this paper we'll show the whole procedure of making a virtual keyboard. First of all is the HOE (Holographic Optical Element) design of keyboard image which yields a fan angle about 30 degrees, and then use the electron forming method to copy this pattern in high precision. And finally we can product this element by inject molding. With an adaptive lens design we can get a well correct keyboard image in distortion and a wilder fan angle about 70 degrees. With a batter alignment of HOE pattern lithography, we"re sure to get higher diffraction efficiency.

  19. LSST Telescope Alignment Plan Based on Nodal Aberration Theory

    NASA Astrophysics Data System (ADS)

    Sebag, J.; Gressler, W.; Schmid, T.; Rolland, J. P.; Thompson, K. P.

    2012-04-01

    The optical alignment of the Large Synoptic Survey Telescope (LSST) is potentially challenging, due to its fast three-mirror optical design and its large 3.5° field of view (FOV). It is highly advantageous to align the three-mirror optical system prior to the integration of the complex science camera on the telescope, which corrects the FOV via three refractive elements and includes the operational wavefront sensors. A telescope alignment method based on nodal aberration theory (NAT) is presented here to address this challenge. Without the science camera installed on the telescope, the on-axis imaging performance of the telescope is diffraction-limited, but the field of view is not corrected. The nodal properties of the three-mirror telescope design have been analyzed and an alignment approach has been developed using the intrinsically linear nodal behavior, which is linked via sensitivities to the misalignment parameters. Since mirror figure errors will exist in any real application, a methodology to introduce primary-mirror figure errors into the analysis has been developed and is also presented.

  20. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    DeBoer, David R.; Welch, William J.; Dreher, John; Tarter, Jill; Blitz, Leo; Davis, Michael; Fleming, Matt; Bock, Douglas; Bower, Geoffrey; Lugten, John; Girmay-Keleta, G.; D'Addario, Larry R.; Harp, Gerry R.; Ackermann, Rob; Weinreb, Sander; Engargiola, Greg; Thornton, Doug; Wadefalk, Niklas

    2004-10-01

    The Allen Telescope Array, originally called the One Hectare Telescope (1hT) [1] will be a large array radio telescope whose novel characteristics will be a wide field of view (3.5 deg-GHz HPBW), continuous frequency coverage of 0.5 - 11 GHz, four dual-linear polarization output bands of 100 MHz each, four beams in each band, two 100 MHz spectral correlators for two of the bands, and hardware for RFI mitigation built in. Its scientific motivation is for deep SETI searches and, at the same time, a variety of other radio astronomy projects, including transient (e.g. pulsar) studies, HI mapping of the Milky Way and nearby galaxies, Zeeman studies of the galactic magnetic field in a number of transitions, mapping of long chain molecules in molecular clouds, mapping of the decrement in the cosmic background radiation toward galaxy clusters, and observation of HI absorption toward quasars at redshifts up to z=2. The array is planned for 350 6.1-meter dishes giving a physical collecting area of about 10,000 square meters. The large number of components reduces the price with economies of scale. The front end receiver is a single cryogenically cooled MIMIC Low Noise Amplifier covering the whole band. The feed is a wide-band log periodic feed of novel design, and the reflector system is an offset Gregorian for minimum sidelobes and spillover. All preliminary and critical design reviews have been completed. Three complete antennas with feeds and receivers are under test, and an array of 33 antennas is under construction at the Hat Creek Radio Observatory for the end of 2004. The present plan is to have a total of about 200 antennas completed by the summer of 2006 and the balance of the array finished before the end of the decade.

  1. Comparing NEO Search Telescopes

    NASA Astrophysics Data System (ADS)

    Myhrvold, Nathan

    2016-04-01

    Multiple terrestrial and space-based telescopes have been proposed for detecting and tracking near-Earth objects (NEOs). Detailed simulations of the search performance of these systems have used complex computer codes that are not widely available, which hinders accurate cross-comparison of the proposals and obscures whether they have consistent assumptions. Moreover, some proposed instruments would survey infrared (IR) bands, whereas others would operate in the visible band, and differences among asteroid thermal and visible-light models used in the simulations further complicate like-to-like comparisons. I use simple physical principles to estimate basic performance metrics for the ground-based Large Synoptic Survey Telescope and three space-based instruments—Sentinel, NEOCam, and a Cubesat constellation. The performance is measured against two different NEO distributions, the Bottke et al. distribution of general NEOs, and the Veres et al. distribution of Earth-impacting NEO. The results of the comparison show simplified relative performance metrics, including the expected number of NEOs visible in the search volumes and the initial detection rates expected for each system. Although these simplified comparisons do not capture all of the details, they give considerable insight into the physical factors limiting performance. Multiple asteroid thermal models are considered, including FRM, NEATM, and a new generalized form of FRM. I describe issues with how IR albedo and emissivity have been estimated in previous studies, which may render them inaccurate. A thermal model for tumbling asteroids is also developed and suggests that tumbling asteroids may be surprisingly difficult for IR telescopes to observe.

  2. The Planck Telescope reflectors

    NASA Astrophysics Data System (ADS)

    Stute, Thomas

    2004-09-01

    The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  3. Multipath analysis diffraction calculations

    NASA Technical Reports Server (NTRS)

    Statham, Richard B.

    1996-01-01

    This report describes extensions of the Kirchhoff diffraction equation to higher edge terms and discusses their suitability to model diffraction multipath effects of a small satellite structure. When receiving signals, at a satellite, from the Global Positioning System (GPS), reflected signals from the satellite structure result in multipath errors in the determination of the satellite position. Multipath error can be caused by diffraction of the reflected signals and a method of calculating this diffraction is required when using a facet model of the satellite. Several aspects of the Kirchhoff equation are discussed and numerical examples, in the near and far fields, are shown. The vector form of the extended Kirchhoff equation, by adding the Larmor-Tedone and Kottler edge terms, is given as a mathematical model in an appendix. The Kirchhoff equation was investigated as being easily implemented and of good accuracy in the basic form, especially in phase determination. The basic Kirchhoff can be extended for higher accuracy if desired. A brief discussion of the method of moments and the geometric theory of diffraction is included, but seems to offer no clear advantage in implementation over the Kirchhoff for facet models.

  4. Astronomy before the telescope.

    NASA Astrophysics Data System (ADS)

    Walker, C.

    This book is the most comprehensive and authoritative survey to date of world astronomy before the telescope in AD 1609. International experts have contributed chapters examining what observations were made, what instruments were used, the effect of developments in mathematics and measurement, and the diversity of early views of cosmology and astrology. The achievements of European astronomers from prehistoric times to the Renaissance are linked with those of ancient Egypt and Mesopotamia, India and the Islamic world. Other chapters deal with early astronomy in the Far East and in the Americas, and with traditional astronomical knowledge in Africa, Australia and the Pacific.

  5. Cosmology with liquid mirror telescopes

    NASA Astrophysics Data System (ADS)

    Hogg, David W.; Gibson, Brad K.; Hickson, Paul

    1993-01-01

    Liquid mirrors provide an exciting means to obtain large optical telescopes for substantially lower costs than conventional technologies. The liquid mirror concept has been demonstrated in the lab with the construction of a diffraction limited 1.5 m mirror. The mirror surface, using liquid mercury, forms a perfect parabolic shape when the mirror cell is rotated at a uniform velocity. A liquid mirror must be able to support a heavy mercury load with minimal flexure and have a fundamental resonant frequency that is as high as possible, to suppress the amplitude of surface waves caused by small vibrations transmitted to the mirror. To minimize the transmission of vibrations to the liquid surface, the entire mirror rests on an air bearing. This necessitates the mirror cell being lightweight, due to the limited load capabilities of the air bearing. The mirror components must also have physical characteristics which minimize the effects of thermal expansion with ambient temperature fluctuations in the observatory. In addition, the 2.7 m mirror construction is designed so that the techniques used may be readily extended to the construction of large mirrors. To attain the goals of a lightweight, rigid mirror, a composite laminant construction was used. The mirror consists of a foam core cut to the desired parabolic shape, with an accuracy of a few mm. An aluminum hub serves as an anchor for the foam and skin, and allows precise centering of the mirror on the air bearing and drive system. Several plys of Kevlar, covered in an epoxy matrix, are then applied to the foam. A final layer of pure epoxy is formed by spin casting. This final layer is parabolic to within a fraction of a mm. An aluminum ring bonded to the circumference of the mirror retains the mercury, and incorporates stainless-steel hard-points for the attachment of balance weights.

  6. Lens-based wavefront sensorless adaptive optics swept source OCT

    PubMed Central

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-01-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects. PMID:27278853

  7. Lens-based wavefront sensorless adaptive optics swept source OCT.

    PubMed

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J; Bonora, Stefano; Sarunic, Marinko V

    2016-01-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient's eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.

  8. Lens-based wavefront sensorless adaptive optics swept source OCT

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-06-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.

  9. Diffraction by nanocrystals II.

    PubMed

    Chen, Joe P J; Millane, Rick P

    2014-08-01

    Nanocrystals with more than one molecule in the unit cell will generally crystallize with incomplete unit cells on the crystal surface. Previous results show that the ensemble-averaged diffraction by such crystals consists of a usual Bragg component and two other Bragg-like components due to the incomplete unit cells. Using an intrinsic flexibility in the definition of the incomplete-unit-cell part of a crystal, the problem is formulated such that the magnitude of the Bragg-like components is minimized, which leads to a simpler and more useful interpretation of the diffraction. Simulations show the nature of the relative magnitudes of the diffraction components in different regions of reciprocal space and the effect of crystal faceting. PMID:25121528

  10. A stochastic model of eye lens growth.

    PubMed

    Šikić, Hrvoje; Shi, Yanrong; Lubura, Snježana; Bassnett, Steven

    2015-07-01

    The size and shape of the ocular lens must be controlled with precision if light is to be focused sharply on the retina. The lifelong growth of the lens depends on the production of cells in the anterior epithelium. At the lens equator, epithelial cells differentiate into fiber cells, which are added to the surface of the existing fiber cell mass, increasing its volume and area. We developed a stochastic model relating the rates of cell proliferation and death in various regions of the lens epithelium to deposition of fiber cells and radial lens growth. Epithelial population dynamics were modeled as a branching process with emigration and immigration between proliferative zones. Numerical simulations were in agreement with empirical measurements and demonstrated that, operating within the strict confines of lens geometry, a stochastic growth engine can produce the smooth and precise growth necessary for lens function. PMID:25816743

  11. Formation of Micro Lens by Laser Polymerization

    NASA Astrophysics Data System (ADS)

    Mori, Akira; Horiuchi, Takashi; Mizumachi, Manabu; Seino, Satoshi; Nakagawa, Takuya; Suzuki, Kaoru

    Recently, a micro lens has been demanded in uniting a laser device and an optical fiber. We have fabricated a new type of plastic micro lens by laser polymerization. The amount of the resin polymerized by exposing laser light, namely light-curing, depends on the laser power and exposing time. The shape of the lens can be controlled by changing the condition of laser irradiation. In this paper, the characteristic of the lens formed by this method was examined. Moreover, the relation between the lens shape and the condition of laser irradiation was investigated, and the condition to reducing a transverse spherical aberration was examined. As the result, the lens of 390μm in diameter was formed. The area which can be used for light coupling from a laser diode to a multimode fiber will be 81 % in the total lens area.

  12. Scanning Kirkpatrick-Baez X-ray telescope to maximize effective area and eliminate spurious images - Design

    NASA Technical Reports Server (NTRS)

    Kast, J. W.

    1975-01-01

    We consider the design of a Kirkpatrick-Baez grazing-incidence X-ray telescope to be used in a scan of the sky and analyze the distribution of both properly reflected rays and spurious images over the field of view. To obtain maximum effective area over the field of view, it is necessary to increase the spacing between plates for a scanning telescope as compared to a pointing telescope. Spurious images are necessarily present in this type of lens, but they can be eliminated from the field of view by adding properly located baffles or collimators. Results of a computer design are presented.

  13. Performance predictions for the Keck telescope adaptive optics system

    SciTech Connect

    Gavel, D.T.; Olivier, S.S.

    1995-08-07

    The second Keck ten meter telescope (Keck-11) is slated to have an infrared-optimized adaptive optics system in the 1997--1998 time frame. This system will provide diffraction-limited images in the 1--3 micron region and the ability to use a diffraction-limited spectroscopy slit. The AO system is currently in the preliminary design phase and considerable analysis has been performed in order to predict its performance under various seeing conditions. In particular we have investigated the point-spread function, energy through a spectroscopy slit, crowded field contrast, object limiting magnitude, field of view, and sky coverage with natural and laser guide stars.

  14. Progress in the Fabrication and Testing of Telescope Mirrors for The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Bowers, Charles W.; Clampin, M.; Feinberg, L.; Stahl, P.; McKay, A.; Chaney, D.; Gallagher, B.

    2010-01-01

    The telescope of the James Webb Space Telescope (JWST) is an f/20, three mirror anastigmat design, passively cooled (40K) in an L2 orbit. The design provides diffraction limited performance (Strehl ≥ 0.8) at λ=2μm. To fit within the launch vehicle envelope (Arianne V), the 6.6 meter primary mirror and the secondary mirror support structure are folded for launch, then deployed and aligned in space. The primary mirror is composed of 18 individual, 1.3 meter (flat:flat) hexagonal segments, each adjustable in seven degrees of freedom (six rigid body + radius of curvature) provided by a set of high precision actuators. The actuated secondary mirror ( 0.74m) is similarly positioned in six degrees of rigid body motion. The 0.67m, fixed tertiary and 0.17m, flat fine steering mirror complete the telescope mirror complement. All telescope mirrors are made of Be with substantial lightweighting (21kg for each 1.3M primary segment). Additional Be mounting and supporting structure for the high precision ( 10nm steps) actuators are attached to the primary segments and secondary mirror. All mirrors undergo a process of thermal stabilization to reduce stress. An extensive series of interferometric measurements guide each step of the polishing process. Final polishing must account for any deformation between the ambient temperature of polishing and the cryogenic, operational temperature. This is accomplished by producing highly precise, cryo deformation target maps of each surface which are incorporated into the final polishing cycle. The flight mirrors are all close to readiness for this final step or have started cryo-testing at the X-Ray Calibration Facility. Each mirror will then be coated with a protected Au coating prior to attachment to the flight structure. We here review the process and status of the mirror fabrication program and discuss the predicted performance of the telescope based on initial results from cryogenic mirror measurements.

  15. Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Nurre, G.

    1987-01-01

    The Hubble Space Telescope will employ magnetic torque controllers, which make use of the Earth's magnetic field augmented by four reaction wheels. DC torques are easily allowed for, but variations, orbit by orbit, can result in excessive wheel speeds which can excite vibratory modes in the telescope structure. If the angular momentum from aerodynamic sources exceeds its allocation of 100 Nms, the excess has to come out of the maneuvering budget since the total capacity of the momentum storage system is fixed at 500 Nms. This would mean that maneuvers could not be made as quickly, and this would reduce the amount of science return. In summary, there is a definite need for a model that accurately portrays short term (within orbit) variations in density for use in angular momentum management analyses. It would be desirable to have a simplified model that could be used for planning purposes; perhaps applicable only over a limited altitude range (400 to 700 km) and limited latitude band.

  16. Antares Reference Telescope System

    SciTech Connect

    Viswanathan, V.K.; Kaprelian, E.; Swann, T.; Parker, J.; Wolfe, P.; Woodfin, G.; Knight, D.

    1983-01-01

    Antares is a 24-beam, 40-TW carbon-dioxide laser-fusion system currently nearing completion at the Los Alamos National Laboratory. The 24 beams will be focused onto a tiny target (typically 300 to 1000 ..mu..m in diameter) located approximately at the center of a 7.3-m-diameter by 9.3-m-long vacuum (10/sup -6/ torr) chamber. The design goal is to position the targets to within 10 ..mu..m of a selected nominal position, which may be anywhere within a fixed spherical region 1 cm in diameter. The Antares Reference Telescope System is intended to help achieve this goal for alignment and viewing of the various targets used in the laser system. The Antares Reference Telescope System consists of two similar electro-optical systems positioned in a near orthogonal manner in the target chamber area of the laser. Each of these consists of four subsystems: (1) a fixed 9X optical imaging subsystem which produces an image of the target at the vidicon; (2) a reticle projection subsystem which superimposes an image of the reticle pattern at the vidicon; (3) an adjustable front-lighting subsystem which illuminates the target; and (4) an adjustable back-lighting subsystem which also can be used to illuminate the target. The various optical, mechanical, and vidicon design considerations and trade-offs are discussed. The final system chosen (which is being built) and its current status are described in detail.

  17. Antares reference telescope system

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Kaprelian, E.; Swann, T.; Parker, J.; Wolfe, P.; Woodfin, G.; Knight, D.

    Antares is a 24 beam, 40 TW carbon dioxide laser fusion system currently nearing completion. The 24 beams will be focused onto a tiny target. It is to position the targets to within 10 (SIGMA)m of a selected nominal position, which may be anywhere within a fixed spherical region 1 cm in diameter. The Antares reference telescope system is intended to help achieve this goal for alignment and viewing of the various targets used in the laser system. The Antares reference telescope system consists of two similar electrooptical systems positioned in a near orthogonal manner in the target chamber area of the laser. Each of these consists of four subsystems: (1) a fixed 9% optical imaging subsystem which produces an image of the target at the vidicon; (2) a reticle projection subsystem which superimposes an image of the reticle pattern at the vidicon; (3) an adjustable front lighting subsystem which illuminates the target; and (4) an adjustable back lighting subsystem which also can be used to illuminate the target. The various optical, mechanical, and vidicon design considerations and tradeoffs are discussed. The final system chosen and its current status are described.

  18. SNAP Telescope Latest Developments

    NASA Astrophysics Data System (ADS)

    Lampton, M.; SNAP Collaboration

    2004-12-01

    The coming era of precision cosmology imposes new demands on space telescopes with regard to spectrophotometric accuracy and image stability. To meet these requirements for SNAP we have developed an all reflecting two-meter-class space telescope of the three-mirror anastigmat type. Our design features a large flat annular field (1.5 degrees = 580mm diameter) and a telephoto advantage of 6, delivering a 22m focal length within an optical package length of only 3.5 meters. The use of highly stable materials (Corning ULE glass and carbon-fiber reinforced cyanate ester resin for the metering structure) combined with agressive distributed thermal control and an L2 orbit location will lead to unmatched figure stability. Owing to our choice of rigid structure with nondeployable solar panels, finite-element models show no structural resonances below 10Hz. An exhaustive stray light study has been completed. Beginning in 2005, two industry studies will develop plans for fabrication, integration and test, bringing SNAP to a highly realistic level of definition. SNAP is supported by the Office of Science, US DoE, under contract DE-AC03-76SF00098.

  19. Thermal eigenmode amplifiers for diffraction-limited amplification of ultrashort pulses.

    PubMed

    Salin, F; Blanc, C L; Squier, J; Barty, C

    1998-01-01

    The design of high-repetition, high-average power, multipass amplifiers in which the pump power induced thermal lensing within the amplifier is used to create an equivalent lens waveguide for the production of diffraction-limited beams is analyzed.

  20. The Parkes radio telescope - 1986

    NASA Astrophysics Data System (ADS)

    Ables, J. G.; Jacka, C. E.; McConnell, D.; Schinckel, A. E.; Hunt, A. J.

    The Parkes radio telescope has been refurbished 25 years after its commisioning in 1961, with complete replacement of its drive and control systems. The new computer system distributes computing tasks among a loosely coupled network of minicomputers which communicate via full duplex serial lines. Central to the control system is the 'CLOCK' element, which relates all positioning of the telescope to absolute time and synchronizes the logging of astronomical data. Two completely independent servo loops furnish telescope positioning functions.

  1. FalconSAT-7: a membrane space solar telescope

    NASA Astrophysics Data System (ADS)

    Andersen, Geoff; Asmolova, Olha; McHarg, Matthew G.; Quiller, Trey; Maldonado, Carlos

    2016-07-01

    The US Air Force Academy of Physics has built FalconSAT-7, a membrane solar telescope to be deployed from a 3U CubeSat in LEO. The primary optic is a 0.2m photon sieve - a diffractive element consisting of billions of tiny circular dimples etched into a Kapton sheet. The membrane its support structure, secondary optics, two imaging cameras and associated control, recording electronics are packaged within half the CubeSat volume. Once in space the supporting pantograph structure is deployed, extending out and pulling the membrane flat under tension. The telescope will then be directed at the Sun to gather images at H-alpha for transmission to the ground. We will present details of the optical configuration, operation and performance of the flight telescope which has been made ready for launch in early 2017.

  2. On-Orbit Performance of the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas; Werner, Michael; Gallagher, David; Irace, William; Fazio, Giovanni; Houck, James; Rieke, George; Wilson, Robert; Soifer, Thomas

    2004-01-01

    The Spitzer Space Telescope (formally known as SIRTF) was successfully launched on August 25, 2003, and has completed its initial in-orbit checkout and science validation and calibration period. The measured performance of the observatory has met or exceeded all of its high-level requirements, it has entered normal operations, and is beginning to return high-quality science data. A superfluid-helium cooled 85 cm diameter telescope provides extremely low infrared backgrounds and feeds three science instruments covering wavelengths ranging from 3.2 to 180 microns. The telescope optical quality is excellent, providing diffraction-limited performance down to wavelengths below 6.5 microns. Based on the first helium mass and boil-off rate measurements, a cryogenic lifetime in excess of 5 years is expected. This presentation will provide a summary of the overall performance of the observatory, with an emphasis on those performance parameters that have the greatest impact on its ultimate science return.

  3. Telescope structures - An evolutionary overview

    NASA Technical Reports Server (NTRS)

    Meinel, Aden B.; Meinel, Marjorie P.

    1987-01-01

    A development history is presented for telescope structural support materials, design concepts, equatorial and altazimuthal orientational preferences, and mechanical control system structural realizations. In the course of 50 years after Galileo, the basic configurations of all reflecting telescopes was set for the subsequent 300 years: these were the Cassegrain, Gregorian, and Newtonian designs. The challenge of making a lightweight ribbed pyrex glass primary mirror for the 5-m Palomar telescope was met by von Karman's use of finite element analysis. Attention is given to the prospects for a 20-m deployable space-based reflecting telescope.

  4. Why Space Telescopes Are Amazing

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2012-01-01

    One of humanity's best ideas has been to put telescopes in space. The dark stillness of space allows telescopes to perform much better than they can on even the darkest and clearest of Earth's mountaintops. In addition, from space we can detect colors of light, like X-rays and gamma rays, that are blocked by the Earth's atmosphere I'll talk about NASA's team of great observatories: the Hubble Space Telescope, Spitzer Space Telescope, and Chandra X-ray Observatory} and how they've worked together to answer key questions: When did the stars form? Is there really dark matter? Is the universe really expanding ever faster and faster?

  5. Achromatic shearing phase sensor for generating images indicative of measure(s) of alignment between segments of a segmented telescope's mirrors

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip (Inventor); Walker, Chanda Bartlett (Inventor)

    2006-01-01

    An achromatic shearing phase sensor generates an image indicative of at least one measure of alignment between two segments of a segmented telescope's mirrors. An optical grating receives at least a portion of irradiance originating at the segmented telescope in the form of a collimated beam and the collimated beam into a plurality of diffraction orders. Focusing optics separate and focus the diffraction orders. Filtering optics then filter the diffraction orders to generate a resultant set of diffraction orders that are modified. Imaging optics combine portions of the resultant set of diffraction orders to generate an interference pattern that is ultimately imaged by an imager.

  6. Design of a Test Bench for Intraocular Lens Optical Characterization

    NASA Astrophysics Data System (ADS)

    Alba-Bueno, Francisco; Vega, Fidel; Millán, María S.

    2011-01-01

    The crystalline lens is the responsible for focusing at different distances (accommodation) in the human eye. This organ grows throughout life increasing in size and rigidity. Moreover, due this growth it loses transparency through life, and becomes gradually opacified causing what is known as cataracts. Cataract is the most common cause of visual loss in the world. At present, this visual loss is recoverable by surgery in which the opacified lens is destroyed (phacoemulsification) and replaced by the implantation of an intraocular lens (IOL). If the IOL implanted is mono-focal the patient loses its natural capacity of accommodation, and as a consequence they would depend on an external optic correction to focus at different distances. In order to avoid this dependency, multifocal IOLs designs have been developed. The multi-focality can be achieved by using either, a refractive surface with different radii of curvature (refractive IOLs) or incorporating a diffractive surface (diffractive IOLs). To analyze the optical quality of IOLs it is necessary to test them in an optical bench that agrees with the ISO119679-2 1999 standard (Ophthalmic implants. Intraocular lenses. Part 2. Optical Properties and Test Methods). In addition to analyze the IOLs according to the ISO standard, we have designed an optical bench that allows us to simulate the conditions of a real human eye. To do that, we will use artificial corneas with different amounts of optical aberrations and several illumination sources with different spectral distributions. Moreover, the design of the test bench includes the possibility of testing the IOLs under off-axis conditions as well as in the presence of decentration and/or tilt. Finally, the optical imaging quality of the IOLs is assessed by using common metrics like the Modulation Transfer Function (MTF), the Point Spread Function (PSF) and/or the Strehl ratio (SR), or via registration of the IOL's wavefront with a Hartmann-Shack sensor and its

  7. Calculating cellulose diffraction patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although powder diffraction of cellulose is a common experiment, the patterns are not widely understood. The theory is mathematical, there are numerous different crystal forms, and the conventions are not standardized. Experience with IR spectroscopy is not directly transferable. An awful error, tha...

  8. Diffraction with wavefront curvature

    NASA Astrophysics Data System (ADS)

    Nugent, K. A.; Peele, A. G.; Quiney, H. M.; Chapman, H. N.

    2005-05-01

    Modern X-ray optics can produce a focused synchrotron beam with curvature on a scale comparable to that of an isolated biomolecule or to the lattice spacing of a biomolecular crystal. It is demonstrated that diffraction of phase-curved beams from such systems allows unique and robust phase recovery.

  9. DIFFRACTION FROM MODEL CRYSTALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although calculating X-ray diffraction patterns from atomic coordinates of a crystal structure is a widely available capability, calculation from non-periodic arrays of atoms has not been widely applied to cellulose. Non-periodic arrays result from modeling studies that, even though started with at...

  10. Diffract, then destroy

    NASA Astrophysics Data System (ADS)

    Ball, Philip

    2016-09-01

    A new implementation of X-ray diffraction using free-electron lasers can take snapshots of biological molecules that are inaccessible via X-ray crystallography. As Philip Ball reports, the technique can even be used to create stop-motion films of dynamic molecular processes

  11. Microarcsecond relative astrometry from the ground with a diffractive pupil

    NASA Astrophysics Data System (ADS)

    Ammons, S. Mark; Bendek, Eduardo A.; Guyon, Olivier

    2011-10-01

    The practical use of astrometry to detect exoplanets via the reflex motion of the parent star depends critically on the elimination of systematic noise floors in imaging systems. In the diffractive pupil technique proposed for space-based detection of exo-earths, extended diffraction spikes generated by a dotted primary mirror are referenced against a widefield grid of background stars to calibrate changing optical distortion and achieve microarcsecond astrometric precision on bright targets (Guyon et al. 2010). We describe applications of this concept to ground-based uncrowded astrometry using a diffractive, monopupil telescope and a wide-field camera to image as many as ~4000 background reference stars. Final relative astrometric precision is limited by differential tip/tilt jitter caused by high altitude layers of turbulence. A diffractive 3-meter telescope is capable of reaching ~35 μas relative astrometric error per coordinate perpendicular to the zenith vector in three hours on a bright target star (I < 10) in fields of moderate stellar density (~40 stars arcmin-2 with I < 23). Smaller diffractive apertures (D < 1 m) can achieve 100-200 μas performance with the same stellar density and exposure time and a large telescope (6.5-10 m) could achieve as low as 10 μas, nearly an order of magnitude better than current space-based facilities. The diffractive pupil enables the use of larger fields of view through calibration of changing optical distortion as well as brighter target stars (V < 6) by preventing star saturation. Permitting the sky to naturally roll to average signals over many thousands of pixels can mitigate the effects of detector imperfections.

  12. Microarcsecond relative astrometry from the ground with a diffractive pupil

    SciTech Connect

    Ammons, S M; Bendek, E; Guyon, O

    2011-09-08

    The practical use of astrometry to detect exoplanets via the reflex motion of the parent star depends critically on the elimination of systematic floors in imaging systems. In the diffractive pupil technique proposed for space-based detection of exo-earths, extended diffraction spikes generated by a dotted primary mirror are referenced against a wide-field grid of background stars to calibrate changing optical distortion and achieve microarcsecond astrometric precision on bright targets (Guyon et al. 2010). We describe applications of this concept to ground-based uncrowded astrometry using a diffractive, monopupil telescope and a wide-field camera to image as many as {approx}4000 background reference stars. Final relative astrometric precision is limited by differential tip/tilt jitter caused by high altitude layers of turbulence. A diffractive 3-meter telescope is capable of reaching {approx}35 {micro}as relative astrometric error per coordinate perpendicular to the zenith vector in three hours on a bright target star (I < 10) in fields of moderate stellar density ({approx}40 stars arcmin{sup -2} with I < 23). Smaller diffractive apertures (D < 1 m) can achieve 100-200 {micro}as performance with the same stellar density and exposure time and a large telescope (6.5-10 m) could achieve as low as 10 {micro}as, nearly an order of magnitude better than current space-based facilities. The diffractive pupil enables the use of larger fields of view through calibration of changing optical distortion as well as brighter target stars (V < 6) by preventing star saturation. Permitting the sky to naturally roll to average signals over many thousands of pixels can mitigate the effects of detector imperfections.

  13. The Thirty Meter Telescope (TMT): An International Observatory

    NASA Astrophysics Data System (ADS)

    Sanders, Gary H.

    2013-06-01

    The Thirty Meter Telescope (TMT) will be the first truly global ground-based optical/infrared observatory. It will initiate the era of extremely large (30-meter class) telescopes with diffraction limited performance from its vantage point in the northern hemisphere on Mauna Kea, Hawaii, USA. The astronomy communities of India, Canada, China, Japan and the USA are shaping its science goals, suite of instrumentation and the system design of the TMT observatory. With large and open Nasmyth-focus platforms for generations of science instruments, TMT will have the versatility and flexibility for its envisioned 50 years of forefront astronomy. The TMT design employs the filled-aperture finely-segmented primary mirror technology pioneered with the W.M. Keck 10-meter telescopes. With TMT's 492 segments optically phased, and by employing laser guide star assisted multi-conjugate adaptive optics, TMT will achieve the full diffraction limited performance of its 30-meter aperture, enabling unprecedented wide field imaging and multi-object spectroscopy. The TMT project is a global effort of its partners with all partners contributing to the design, technology development, construction and scientific use of the observatory. TMT will extend astronomy with extremely large telescopes to all of its global communities.

  14. Lens Coupled Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor)

    2013-01-01

    Terahertz quantum cascade (QC) devices are disclosed that can operate, e.g., in a range of about 1 THz to about 10 THz. In some embodiments, QC lasers are disclosed in which an optical element (e.g., a lens) is coupled to an output facet of the laser's active region to enhance coupling of the lasing radiation from the active region to an external environment. In other embodiments, terahertz amplifier and tunable terahertz QC lasers are disclosed.

  15. Large space telescope, phase A. Volume 3: Optical telescope assembly

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development and characteristics of the optical telescope assembly for the Large Space Telescope are discussed. The systems considerations are based on mission-related parameters and optical equipment requirements. Information is included on: (1) structural design and analysis, (2) thermal design, (3) stabilization and control, (4) alignment, focus, and figure control, (5) electronic subsystem, and (6) scientific instrument design.

  16. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  17. Radiometric analysis of diffraction

    NASA Astrophysics Data System (ADS)

    Castañeda, R.; Betancur, R.; Herrera, J.; Carrasquilla, J.

    2008-04-01

    A description of Fresnel and Fraunhofer diffraction of quasi-homogenous optical fields in any state of spatial coherence is presented, which clearly differs from the classical formalism. Instead of the propagation of the cross-spectral density from the diffracting aperture to the observation plane, the diffracting aperture is regarded as a planar quasi-homogeneous source, whose generalised radiance is carried by the spatial coherence wavelets, and the power distribution at the observation plane is expressed in terms of the generalised radiant intensity. It allows interpreting the negative values of the generalised radiance as "negative energies" emitted along specific directions and subjected to the achievement of the conservation law of energy. This interpretation is not evident in the classical formalism. Consequently, interference can be thought as resulting of energy transfer over a given wavefront, due to the addition of equal amounts of "positive" and "negative" energies, along specific directions, to the contributions provided by the individual radiators of the radiant source. In this sense, the radiant flux from the source, which is provided only by the individual contributions, is redistributed depending on the spatial coherence properties of the field. This redistribution characterises the diffraction phenomenon. It is also shown that the supports of the complex degree of spatial coherence near the aperture edge are vignetted by the edge. This feature is a cause for the generalised radiance providing "negative energies", and constitutes the actual effect of the edge on diffraction. The approach is validated by the close concordance between the numerical and the experimental results, which should be regarded as a proof of the physical existence of the spatial coherence wavelets.

  18. Glycation precedes lens crystallin aggregation

    SciTech Connect

    Swamy, M.S.; Perry, R.E.; Abraham, E.C.

    1987-05-01

    Non-enzymatic glycosylation (glycation) seems to have the potential to alter the structure of crystallins and make them susceptible to thiol oxidation leading to disulfide-linked high molecular weight (HMW) aggregate formation. They used streptozotocin diabetic rats during precataract and cataract stages and long-term cell-free glycation of bovine lens crystallins to study the relationship between glycation and lens crystallin aggregation. HMW aggregates and other protein components of the water-soluble (WS) and urea-soluble (US) fractions were separated by molecular sieve high performance liquid chromatography. Glycation was estimated by both (/sup 3/H)NaBH/sub 4/ reduction and phenylboronate agarose affinity chromatography. Levels of total glycated protein (GP) in the US fractions were about 2-fold higher than in the WS fractions and there was a linear increase in GP in both WS and US fractions. This increase was parallelled by a corresponding increase in HMW aggregates. Total GP extracted by the affinity method from the US fraction showed a predominance of HMW aggregates and vice versa. Cell-free glycation studies with bovine crystallins confirmed the results of the animals studies. Increasing glycation caused a corresponding increase in protein insolubilization and the insoluble fraction thus formed also contained more glycated protein. It appears that lens protein glycation, HMW aggregate formation, and protein insolubilization are interrelated.

  19. New Scleral Lens For Electroretinography

    NASA Astrophysics Data System (ADS)

    Charlier, J. R.; Grall, Y.; Legargasson, J. F.

    1986-05-01

    This paper presents a scleral lens specifically designed for the implementation of new electroretinography (E.R.G.) procedures including ganzeld ERG, pattern ERG and optic fiber ERG. Ganzfeld ERG requires a direct, uniform illumination of the retina and is usually obtained within a ball stimulation which provides precisely controlled stimulation conditions. Pattern ERG is related to the electrical activity of ganglion cells and is produced by a structured visual stimulus, for instance a cherkerboard reversal. Fiber optics stimulation is a promising new technique involving an optic fiber which connects the scleral lens to a remote light stimulator. The new scleral lens is made out of silicon. Silicon is an ideal material for ERG applications. It is highly permeable to oxygen. It eliminates the risk of corneal abrasion and it provides good comfort to the patient. Two layers of conductive silicon are used for recording the bioelectric potential difference of the cornea with respect to the eye lids. An optically transparent window allows for the projection of structured images on the retina. A wide angle conic aperture is provided for ganzfeld stimulation. The same cone is used as a blepharostat and as a plug for connecting the optic fiber, once the transparent window is centered with respect to the pupil entrance.

  20. All-spherical catadioptric telescope design for wide-field imaging.

    PubMed

    Bahrami, Mehdi; Goncharov, Alexander V

    2010-10-20

    The current trend in building medium-size telescopes for wide-field imaging is to use a Ritchey-Chrétien (RC) design with a multilens corrector near the focus. Our goal is to find a cost-effective alternative design to the RC system for seeing-limited observations. We present an f/4.5 all-spherical catadioptric system with a 1.5° field of view. The system consists of a 0.8 m spherical primary and 0.4 m flat secondary mirror combined with a meniscus lens and followed by a three-lens field corrector. The optical performance is comparable to an equivalent f/4.5 RC system. We conclude that, for telescopes with apertures up to 2 m, the catadioptric design is a good alternative to the RC system. PMID:20962933