Sample records for diffraction mass spectrometry

  1. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight (CXIDB ID 16)

    DOE Data Explorer

    Loh, N. Duane

    2012-06-20

    This deposition includes the aerosol diffraction images used for phasing, fractal morphology, and time-of-flight mass spectrometry. Files in this deposition are ordered in subdirectories that reflect the specifics.

  2. Cobalt coated substrate for matrix-free analysis of small molecules by laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yalcin, Talat; Li, Liang

    2009-12-01

    Small molecule analysis is one of the most challenging issues in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. We have developed a cobalt coated substrate as a target for matrix-free analysis of small molecules in laser desorption/ionization mass spectrometry. Cobalt coating of 60-70 nm thickness has been characterized by scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and laser induced breakdown spectroscopy. This target facilitates hundreds of samples to be spotted and analyzed without mixing any matrices, in a very short time. This can save a lot of time and money and can be a very practical approach for the analysis of small molecules by laser desorption/ionization mass spectrometry.

  3. Self-assembly of triangular metallomacrocycles using unsymmetrical bisterpyridine ligands: isomer differentiation via TWIM mass spectrometry.

    PubMed

    Liang, Yen-Peng; He, Yun-Jui; Lee, Yin-Hsuan; Chan, Yi-Tsu

    2015-03-21

    Three unsymmetrical, 60°-bended bisterpyridine ligands with varying phenylene spacer lengths have been synthesized via the Suzuki-Miyaura coupling reactions. Their self-assembly processes were found to be strongly dependent on the ligand geometry. Upon complexation with Zn(II) ions, only 2,4''-di(4'-terpyridinyl)-1,1':4',1''-terphenyl underwent self-selection to give a trinuclear metallomacrocycle with perfect heteroleptic connectivity and the other two afforded a mixture of constitutional isomers. The metallosupramolecular assemblies were characterized by NMR spectroscopy, electrospray mass spectrometry (ESI MS), and single-crystal X-ray diffraction. In particular, the identification of isomeric architecture was accomplished using tandem mass spectrometry (MS(2)) coupled with traveling wave ion mobility mass spectrometry (TWIM MS).

  4. Native MS and ECD Characterization of a Fab-Antigen Complex May Facilitate Crystallization for X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Cui, Weidong; Wecksler, Aaron T.; Zhang, Hao; Molina, Patricia; Deperalta, Galahad; Gross, Michael L.

    2016-07-01

    Native mass spectrometry (MS) and top-down electron-capture dissociation (ECD) combine as a powerful approach for characterizing large proteins and protein assemblies. Here, we report their use to study an antibody Fab (Fab-1)-VEGF complex in its near-native state. Native ESI with analysis by FTICR mass spectrometry confirms that VEGF is a dimer in solution and that its complex with Fab-1 has a binding stoichiometry of 2:2. Applying combinations of collisionally activated dissociation (CAD), ECD, and infrared multiphoton dissociation (IRMPD) allows identification of flexible regions of the complex, potentially serving as a guide for crystallization and X-ray diffraction analysis.

  5. Search for life on Mars: Evaluation of techniques

    NASA Technical Reports Server (NTRS)

    Schwartz, D. E.; Mancinelli, R. L.; White, M. R.

    1995-01-01

    An important question for exobiology is, did life evolve on Mars? To answer this question, experiments must be conducted on the martian surface. Given current mission constraints on mass, power, and volume, these experiments can only be performed using proposed analytical techniques such as: electron microscopy, X-ray fluorescence, X-ray diffraction, a-proton backscatter, g-ray spectrometry, differential thermal analysis, differential scanning calorimetry, pyrolysis gas chromatography, mass spectrometry, and specific element detectors. Using prepared test samples consisting of 1% organic matter (bovine serum albumin) in palagonite and a mixture of palagonite, clays, iron oxides, and evaporites, it was determined that a combination of X-ray diffraction and differential thermal analysis coupled with gas chromatography provides the best insight into the chemistry, mineralogy, and geological history of the samples.

  6. Search for life on Mars: evaluation of techniques.

    PubMed

    Schwartz, D E; Mancinelli, R L; White, M R

    1995-03-01

    An important question for exobiology is, did life evolve on Mars? To answer this question, experiments must be conducted on the martian surface. Given current mission constraints on mass, power, and volume, these experiments can only be performed using proposed analytical techniques such as: electron microscopy, X-ray fluorescence, X-ray diffraction, alpha-proton backscatter, gamma-ray spectrometry, differential thermal analysis, differential scanning calorimetry, pyrolysis gas chromatography, mass spectrometry, and specific element detectors. Using prepared test samples consisting of 1% organic matter (bovine serum albumin) in palagonite and a mixture of palagonite, clays, iron oxides, and evaporites, it was determined that a combination of X-ray diffraction and differential thermal analysis coupled with gas chromatography provides the best insight into the chemistry, mineralogy, and geological history of the samples.

  7. Amino Acid Contents of Meteorite Mineral Separates

    NASA Astrophysics Data System (ADS)

    Berger, E. L.; Burton, A. S.; Locke, D.

    2017-07-01

    We investigate the relationship between parent body conditions, mineralogy, and amino acid composition, by analyzing meteoric mineral separates using liquid chromatography-mass spectrometry, scanning electron microscopy, and x-ray diffraction.

  8. Practical Problems in the Cement Industry Solved by Modern Research Techniques

    ERIC Educational Resources Information Center

    Daugherty, Kenneth E.; Robertson, Les D.

    1972-01-01

    Practical chemical problems in the cement industry are being solved by such techniques as infrared spectroscopy, gas chromatography-mass spectrometry, X-ray diffraction, atomic absorption and arc spectroscopy, thermally evolved gas analysis, Mossbauer spectroscopy, transmission and scanning electron microscopy. (CP)

  9. Actinide Corroles: Synthesis and Characterization of Thorium(IV) and Uranium(IV) bis(-chloride) Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Ashleigh L.; Buckley, Heather L.; Gryko, Daniel T.

    2013-12-01

    The first synthesis and structural characterization of actinide corroles is presented. Thorium(IV) and uranium(IV) macrocycles of Mes2(p-OMePh)corrole were synthesised and characterized by single-crystal X-ray diffraction, UV-Visible spectroscopy, variable-temperature 1H NMR, ESI mass spectrometry and cyclic voltammetry.

  10. Metallocarbohedrenes: Transmission Electron Microscopy of Mass Gated Deposits

    NASA Astrophysics Data System (ADS)

    Castleman, M. E. Lyn, Jr.

    2002-03-01

    Titanium and zirconium Met-Car cluster ions have been detected from the direct laser vaporization of metal-graphite mixtures using time-of-flight mass spectrometry. Optimization of the production conditions enabled sufficient intensities to mass select and deposit Met-Cars on surfaces. High-resolution transmission electron microscopy images of mass gated Met-Car species reveals deposited nanocrystals 2 nm in diameter. Diffraction patterns indicate the presence of multiple species and shows that the deposits have spatial orientation. Lattice parameters have been extracted. The implication of the findings will be discussed. Support for the work has been from the AFOSR F49620-01-1-0122.

  11. Surface analysis and depth profiling of corrosion products formed in lead pipes used to supply low alkalinity drinking water.

    PubMed

    Davidson, C M; Peters, N J; Britton, A; Brady, L; Gardiner, P H E; Lewis, B D

    2004-01-01

    Modern analytical techniques have been applied to investigate the nature of lead pipe corrosion products formed in pH adjusted, orthophosphate-treated, low alkalinity water, under supply conditions. Depth profiling and surface analysis have been carried out on pipe samples obtained from the water distribution system in Glasgow, Scotland, UK. X-ray diffraction spectrometry identified basic lead carbonate, lead oxide and lead phosphate as the principal components. Scanning electron microscopy/energy-dispersive x-ray spectrometry revealed the crystalline structure within the corrosion product and also showed spatial correlations existed between calcium, iron, lead, oxygen and phosphorus. Elemental profiling, conducted by means of secondary ion mass spectrometry (SIMS) and secondary neutrals mass spectrometry (SNMS) indicated that the corrosion product was not uniform with depth. However, no clear stratification was apparent. Indeed, counts obtained for carbonate, phosphate and oxide were well correlated within the depth range probed by SIMS. SNMS showed relationships existed between carbon, calcium, iron, and phosphorus within the bulk of the scale, as well as at the surface. SIMS imaging confirmed the relationship between calcium and lead and suggested there might also be an association between chloride and phosphorus.

  12. Crystallization of a pentapeptide-repeat protein by reductive cyclic pentylation of free amines with glutaraldehyde

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vetting, Matthew W., E-mail: vetting@aecom.yu.edu; Hegde, Subray S.; Blanchard, John S.

    2009-05-01

    A method to modify proteins with glutaraldehyde under reducing conditions is presented. Treatment with glutaraldehyde and dimethylaminoborane was found to result in cyclic pentylation of free amines and facilitated the structural determination of a protein previously recalcitrant to the formation of diffraction quality crystals. The pentapeptide-repeat protein EfsQnr from Enterococcus faecalis protects DNA gyrase from inhibition by fluoroquinolones. EfsQnr was cloned and purified to homogeneity, but failed to produce diffraction-quality crystals in initial crystallization screens. Treatment of EfsQnr with glutaraldehyde and the strong reducing agent borane–dimethylamine resulted in a derivatized protein which produced crystals that diffracted to 1.6 Å resolution;more » their structure was subsequently determined by single-wavelength anomalous dispersion. Analysis of the derivatized protein using Fourier transform ion cyclotron resonance mass spectrometry indicated a mass increase of 68 Da per free amino group. Electron-density maps about a limited number of structurally ordered lysines indicated that the modification was a cyclic pentylation of free amines, producing piperidine groups.« less

  13. Crystal Structure and Theoretical Analysis of Green Gold Au 30 (S- t Bu) 18 Nanomolecules and Their Relation to Au 30 S(S- t Bu) 18

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dass, Amala; Jones, Tanya; Rambukwella, Milan

    We report the complete X-ray crystallographic structure as determined through single crystal X-ray diffraction and a thorough theoretical analysis of the green gold Au30(S-tBu)18. While the structure of Au30S(S-tBu)18 with 19 sulfur atoms has been reported, the crystal structure of Au30(S-tBu)18 without the μ3-sulfur has remained elusive until now, though matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and electrospray ionization mass spectrometry (ESI-MS) data unequivocally shows its presence in abundance. The Au30(S-tBu)18 nanomolecule is not only distinct in its crystal structure but has unique temperature dependent optical properties. Structure determination allows a rigorous comparison and an excellent agreement with theoreticalmore » predictions of structure, stability, and optical response.« less

  14. Authenticity of Benin metalworks evaluated by inductively coupled plasma mass spectrometry and lead isotope analyses

    NASA Astrophysics Data System (ADS)

    Fabbri, E.; Soffritti, C.; Merlin, M.; Vaccaro, C.; Garagnani, G. L.

    2017-05-01

    Two metal plaques and a cock statuette belonging to a private collection and stylistically consistent with the Royal Art of Benin (Nigeria) were investigated in order to verify their authenticity. The characterization of alloys and patinas were carried out by inductively coupled plasma mass spectrometry, optical microscopy, scanning electron microscopy and energy dispersion spectroscopy, and X-Ray diffraction spectrometry. Furthermore, thermal ionization mass spectrometry was used to assess the abundances of lead isotopes and to attempt a dating by the measurement of 210Pb/204Pb ratio. The results showed that all three artefacts were mainly composed of low lead-brass alloys, with relatively high concentrations of zinc, antimony, cadmium and aluminum in the solid copper solution. Microstructures were mostly dendritic, typical of as-cast brasses, and characterized by recrystallized non-homogeneous twinned grains in areas corresponding to surface decorations, probably due to multiple hammering steps followed by partial annealing treatments. The matrix was composed of a cored α-Cu solid solution together with non-metallic inclusions, lead globules and Sn-rich precipitates in interdendritic spaces. On the surface of all metalworks, both copper and zinc oxides, a non-continuous layer of sulphur-containing contaminants and chloride-containing compounds, were identified. The lead isotope results were consistent with brasses produced shortly before or after 1900 CE. Overall, the data obtained by different techniques supported the hypothesis that the three artefacts were not authentic.

  15. Exploration of polyamide structure-property relationships by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Barrère, Caroline; Rejaibi, Majed; Curat, Aurélien; Hubert-Roux, Marie; Lavanant, Hélène; Afonso, Carlos; Kebir, Nasreddine; Desilles, Nicolas; Lecamp, Laurence; Burel, Fabrice; Loutelier-Bourhis, Corinne

    2014-08-15

    Polyamides (PA) are among the most used classes of polymers because of their attractive properties. Depending on the nature and proportion of the co-monomers used for their synthesis, they can exhibit a very large range of melting temperatures (Tm ). This study aims at the correlation of data from mass spectrometry (MS) with differential scanning calorimetry (DSC) and X-ray diffraction analyses to relate molecular structure to physical properties such as melting temperature, enthalpy change and crystallinity rate. Six different PA copolymers with molecular weights around 3500 g mol(-1) were synthesized with varying proportions of different co-monomers (amino-acid AB/di-amine AA/di-acid BB). Their melting temperature, enthalpy change and crystallinity rate were measured by DSC and X-ray diffraction. Their structural characterization was carried out by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Because of the poor solubility of PA, a solvent-free sample preparation strategy was used with 2,5-dihydroxybenzoic acid (2,5-DHB) as the matrix and sodium iodide as the cationizing agent. The different proportions of the repeating unit types led to the formation of PA with melting temperatures ranging from 115°C to 185°C. The structural characterization of these samples by MALDI-TOF-MS revealed a collection of different ion distributions with different sequences of repeating units (AA, BB; AB/AA, BB and AB) in different proportions according to the mixture of monomers used in the synthesis. The relative intensities of these ion distributions were related to sample complexity and structure. They were correlated to DSC and X-ray results, to explain the observed physical properties. The structural information obtained by MALDI-TOF-MS provided a better understanding of the variation of the PA melting temperature and established a structure-properties relationship. This work will allow future PA designs to be monitored. Copyright © 2014 John Wiley & Sons, Ltd.

  16. In situ flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions

    NASA Astrophysics Data System (ADS)

    Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F.; van Bokhoven, Jeroen A.

    2017-08-01

    An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.

  17. In situ flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions.

    PubMed

    Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F; van Bokhoven, Jeroen A

    2017-08-01

    An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.

  18. Protein nanocrystallography: growth mechanism and atomic structure of crystals induced by nanotemplates.

    PubMed

    Pechkova, E; Vasile, F; Spera, R; Fiordoro, S; Nicolini, C

    2005-11-01

    Protein nanocrystallography, a new technology for crystal growth based on protein nanotemplates, has recently been shown to produce diffracting, stable and radiation-resistant lysozyme crystals. This article, by computing these lysozyme crystals' atomic structures, obtained by the diffraction patterns of microfocused synchrotron radiation, provides a possible mechanism for this increased stability, namely a significant decrease in water content accompanied by a minor but significant alpha-helix increase. These data are shown to be compatible with the circular dichroism and two-dimensional Fourier transform spectra of high-resolution H NMR of proteins dissolved from the same nanotemplate-based crystal versus those from a classical crystal. Finally, evidence for protein direct transfer from the nanotemplate to the drop and the participation of the template proteins in crystal nucleation and growth is provided by high-resolution NMR spectrometry and mass spectrometry. Furthermore, the lysozyme nanotemplate appears stable up to 523 K, as confirmed by a thermal denaturation study using spectropolarimetry. The overall data suggest that heat-proof lysozyme presence in the crystal provides a possible explanation of the crystal's resistance to synchrotron radiation.

  19. Effect of Cooling Rates on γ → α Transformation and Metastable States in Fe-Cu Alloys with Addition of Ni

    NASA Astrophysics Data System (ADS)

    Crozet, C.; Verdier, M.; Lay, S.; Antoni-Zdziobek, A.

    2018-07-01

    α/γ phase transformations occurring in Fe-10Cu-xNi alloys (0 ≤ x ≤ 15 in mass%) were studied using X-ray diffraction, scanning electron microscopy, electron back scattered diffraction, transmission electron microscopy and chemical analysis, combining X-ray microanalysis with energy dispersive spectrometry in the scanning electron microscope and electron microprobe analysis with wavelength dispersive spectrometry. The influence of cooling rate on the microstructure was investigated using ice-brine quenching and 2 °C/min slow cooling rate performed with dilatometry. Ni addition induces metastable transformations on cooling: massive and bainitic ferrite are formed depending on the alloy composition and cooling rate. Moreover, most of the Cu phase precipitates on cooling giving rise to a fine distribution of Cu particles in the ferrite grains. For both cooling conditions, the hardness increases with increasing Ni content and a higher hardness is obtained in the quenched alloy for each composition. The change in hardness is correlated to the effect of Ni solid solution, transformation structure and size of Cu particles.

  20. Synthesis, characterization, and anticancer activity of a series of ketone-N(4)-substituted thiosemicarbazones and their ruthenium(II) arene complexes.

    PubMed

    Su, Wei; Qian, Quanquan; Li, Peiyuan; Lei, Xiaolin; Xiao, Qi; Huang, Shan; Huang, Chusheng; Cui, Jianguo

    2013-11-04

    A series of ketone-N(4)-substituted thiosemicarbazone (TSC) compounds (L1-L9) and their corresponding [(η(6)-p-cymene)Ru(II)(TSC)Cl](+/0) complexes (1-9) were synthesized and characterized by NMR, IR, elemental analysis, and HR-ESI-mass spectrometry. The molecular structures of L4, L9, 1-6, and 9 were determined by single-crystal X-ray diffraction analysis. The compounds were further evaluated for their in vitro antiproliferative activities against the SGC-7901 human gastric cancer, BEL-7404 human liver cancer, and HEK-293T noncancerous cell lines. Furthermore, the interactions of the compounds with DNA were followed by electrophoretic mobility spectrometry studies.

  1. Hemoglobin redux: combining neutron and X-ray diffraction with mass spectrometry to analyse the quaternary state of oxidized hemoglobins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueser, Timothy C., E-mail: timothy.mueser@utoledo.edu; Griffith, Wendell P.; Kovalevsky, Andrey Y.

    2010-11-01

    X-ray and neutron diffraction studies of cyanomethemoglobin are being used to evaluate the structural waters within the dimer–dimer interface involved in quaternary-state transitions. Improvements in neutron diffraction instrumentation are affording the opportunity to re-examine the structures of vertebrate hemoglobins and to interrogate proton and solvent position changes between the different quaternary states of the protein. For hemoglobins of unknown primary sequence, structural studies of cyanomethemoglobin (CNmetHb) are being used to help to resolve sequence ambiguity in the mass spectra. These studies have also provided additional structural evidence for the involvement of oxidized hemoglobin in the process of erythrocyte senescence. X-raymore » crystal studies of Tibetan snow leopard CNmetHb have shown that this protein crystallizes in the B state, a structure with a more open dyad, which possibly has relevance to RBC band 3 protein binding and erythrocyte senescence. R-state equine CNmetHb crystal studies elaborate the solvent differences in the switch and hinge region compared with a human deoxyhemoglobin T-state neutron structure. Lastly, comparison of histidine protonation between the T and R state should enumerate the Bohr-effect protons.« less

  2. The structure and material composition of ossified aortic valves identified using a set of scientific methods

    NASA Astrophysics Data System (ADS)

    Zeman, Antonín; Šmíd, Michal; Havelcová, Martina; Coufalová, Lucie; Kučková, Štěpánka; Velčovská, Martina; Hynek, Radovan

    2013-11-01

    Degenerative aortic stenosis has become a common and dangerous disease in recent decades. This disease leads to the mineralization of aortic valves, their gradual thickening and loss of functionality. We studied the detailed assessment of the proportion and composition of inorganic and organic components in the ossified aortic valve, using a set of analytical methods applied in science: polarized light microscopy, scanning electron microscopy, X-ray fluorescence, X-ray diffraction, gas chromatography/mass spectrometry and liquid chromatography-tandem mass spectrometry. The sample valves showed the occurrence of phosphorus and calcium in the form of phosphate and calcium carbonate, hydroxyapatite, fluorapatite and hydroxy-fluorapatite, with varying content of inorganic components from 65 to 90 wt%, and with phased development of degenerative disability. The outer layers of the plaque contained an organic component with peptide bonds, fatty acids, proteins and cholesterol. The results show a correlation between the formation of fluorapatite in aortic valves and in other parts of the human bodies, associated with the formation of bones.

  3. Green synthesis of gold nanoparticles using chlorogenic acid and their enhanced performance for inflammation.

    PubMed

    Hwang, Su Jung; Jun, Sang Hui; Park, Yohan; Cha, Song-Hyun; Yoon, Minho; Cho, Seonho; Lee, Hyo-Jong; Park, Youmie

    2015-10-01

    Here we developed a novel green synthesis method for gold nanoparticles (CGA-AuNPs) using chlorogenic acid (CGA) as reductants without the use of other chemicals and validated the anti-inflammatory efficacy of CGA-AuNPs in vitro and in vivo. The resulting CGA-AuNPs appeared predominantly spherical in shape with an average diameter of 22.25±4.78nm. The crystalline nature of the CGA-AuNPs was confirmed by high-resolution X-ray diffraction and by selected-area electron diffraction analyses. High-resolution liquid chromatography/electrospray ionization mass spectrometry revealed that the caffeic acid moiety of CGA forms quinone structure through a two-electron oxidation causing the reduction of Au(3+) to Au(0). When compared to CGA, CGA-AuNPs exhibited enhanced anti-inflammatory effects on NF-κB-mediated inflammatory network, as well as cell adhesion. Collectively, green synthesis of CGA-AuNPs using bioactive reductants and mechanistic studies based on mass spectrometry may open up new directions in nanomedicine and CGA-AuNPs can be an anti-inflammatory nanomedicine for future applications. Gold nanoparticles (Au NPs) have been shown to be very useful in many applications due to their easy functionalization capability. In this article, the authors demonstrated a novel method for the synthesis of gold nanoparticles using chlorogenic acid (CGA) as reductants. In-vitro experiments also confirmed biological activity of the resultant gold nanoparticles. Further in-vivo studies are awaited. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Combined analysis of 1,3-benzodioxoles by crystalline sponge X-ray crystallography and laser desorption ionization mass spectrometry.

    PubMed

    Hayashi, Yukako; Ohara, Kazuaki; Taki, Rika; Saeki, Tomomi; Yamaguchi, Kentaro

    2018-03-12

    The crystalline sponge (CS) method, which employs single-crystal X-ray diffraction to determine the structure of an analyte present as a liquid or an oil and having a low melting point, was used in combination with laser desorption ionization mass spectrometry (LDI-MS). 1,3-Benzodioxole derivatives were encapsulated in CS and their structures were determined by combining X-ray crystallography and MS. After the X-ray analysis, the CS was subjected to imaging mass spectrometry (IMS) with an LDI spiral-time-of-flight mass spectrometer (TOF-MS). The ion detection area matched the microscopic image of the encapsulated CS. In addition, the accumulated 1D mass spectra showed that fragmentation of the guest molecule (hereafter, guest) can be easily visualized without any interference from the fragment ions of CS except for two strong ion peaks derived from the tridentate ligand TPT (2,4,6-tris(4-pyridyl)-1,3,5-triazine) of the CS and its fragment. X-ray analysis clearly showed the presence of the guest as well as the π-π, CH-halogen, and CH-O interactions between the guest and the CS framework. However, some guests remained randomly diffused in the nanopores of CS. In addition, the detection limit was less than sub-pmol order based on the weight and density of CS determined by X-ray analysis. Spectroscopic data, such as UV-vis and NMR, also supported the encapsulation of the guest through the interaction between the guest and CS components. The results denote that the CS-LDI-MS method, which combines CS, X-ray analysis and LDI-MS, is effective for structure determination.

  5. Faradaurate-940: Synthesis, Mass Spectrometry, STEM, PDF, and SAXS Study of Au~940(SR)~160 Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumara, Chanaka; Zuo, Xiaobing; Cullen, David A

    2014-01-01

    Obtaining monodisperse nanocrystals, and determining its composition to the atomic level and its atomic structure is highly desirable, but is generally lacking. Here, we report the discovery and comprehensive characterization of a 3-nm plasmonic nanocrystal with a composition of Au940 20(SCH2CH2Ph)160 4, which is, the largest mass spectrometrically characterized gold thiolate nanoparticle produced to date. The compositional assignment has been made using electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS). The MS results show an unprecedented size monodispersity, where the number of Au atoms vary by only 40 atoms (940 20). The mass spectrometrically-determined sizemore » and composition are supported by aberration-corrected scanning transmission electron microscopy (STEM) and synchrotron-based methods such as atomic pair distribution function (PDF) and small angle X-ray scattering (SAXS). Lower resolution STEM images show an ensemble of particles 1000 s per frame visually demonstrating monodispersity. Modelling of SAXS on statistically significant nanoparticle population approximately 1012 individual nanoparticles - shows that the diameter is 3.0 0.2nm, supporting mass spectrometry and electron microscopy results on monodispersity. Atomic PDF based on high energy X-ray diffraction experiments show decent match with either a Marks decahedral or truncated octrahedral structure. Atomic resolution STEM images of single particles and its FFT suggest face-centered cubic (fcc) arrangement. UV-visible spectroscopy data shows that the 940-atom size supports a surface plasmon resonance peak at 505 nm. These monodisperse plasmonic nanoparticles minimize averaging effects and has potential application in solar cells, nano-optical devices, catalysis and drug delivery.« less

  6. Mineralogy, Three Dimensional Structure, and Oxygen Isotope Ratios of Four Crystalline Particles from Comet 81P/Wild 2

    NASA Technical Reports Server (NTRS)

    Nakamura, T.; Noguchi, T.; Tsuchiyama, A.; Ushikubo, T.; Kita, N. T.; Valley, J. W.; Zolensky, M. E.; Kakazu, Y.; Sakamoto, K.; Mashio, E.; hide

    2008-01-01

    Preliminary examinations of small dust particles from comet 82P/Wild 2 revealed many expected and unexpected features. Among them the most striking feature is the presence of abundant crystalline material in the comet. Synchrotron radiation X-ray diffraction and microtomography are the most efficient methods to detect and describe bulk mineralogical features of crystalline cometary particles. In the present study, in addition to these two non-destructive techniques, electron microscopy and ion-probe mass spectrometry were carried out on the four crystalline particles.

  7. Electrodeposition of WO3 nanoparticles into surface mounted metal-organic framework HKUST-1 thin films

    NASA Astrophysics Data System (ADS)

    Yoo, Hyeonseok; Welle, Alexander; Guo, Wei; Choi, Jinsub; Redel, Engelbert

    2017-03-01

    We describe a novel procedure to fabricate WO3@surface-mounted metal-organic framework (SURMOF) hybrid materials by electrodeposition of WO3 nanoparticles into HKUST-1, also termed Cu3(BTC)2 SURMOFs. These materials have been characterized using x-ray diffraction, time-of-flight secondary ion mass spectrometry, scanning electron microscopy, x-ray photoelectron spectroscopy as well as linear sweep voltammetry. The WO3 semiconductor/SURMOF heterostructures were further tested as hybrid electrodes in their performance for hydrogen evolution reaction from water.

  8. ITEP MEVVA ion beam for rhenium silicide production.

    PubMed

    Kulevoy, T; Gerasimenko, N; Seleznev, D; Kropachev, G; Kozlov, A; Kuibeda, R; Yakushin, P; Petrenko, S; Medetov, N; Zaporozhan, O

    2010-02-01

    The rhenium silicides are very attractive materials for semiconductor industry. In the Institute for Theoretical and Experimental Physics (ITEP) at the ion source test bench the research program of rhenium silicide production by ion beam implantation are going on. The investigation of silicon wafer after implantation of rhenium ion beam with different energy and with different total dose were carried out by secondary ions mass spectrometry, energy-dispersive x-ray microanalysis, and x-ray diffraction analysis. The first promising results of rhenium silicide film production by high intensity ion beam implantation are presented.

  9. Electrodeposition of WO3 nanoparticles into surface mounted metal-organic framework HKUST-1 thin films.

    PubMed

    Yoo, Hyeonseok; Welle, Alexander; Guo, Wei; Choi, Jinsub; Redel, Engelbert

    2017-03-17

    We describe a novel procedure to fabricate WO 3 @surface-mounted metal-organic framework (SURMOF) hybrid materials by electrodeposition of WO 3 nanoparticles into HKUST-1, also termed Cu 3 (BTC) 2 SURMOFs. These materials have been characterized using x-ray diffraction, time-of-flight secondary ion mass spectrometry, scanning electron microscopy, x-ray photoelectron spectroscopy as well as linear sweep voltammetry. The WO 3 semiconductor/SURMOF heterostructures were further tested as hybrid electrodes in their performance for hydrogen evolution reaction from water.

  10. The lateritic profile of Balkouin, Burkina Faso: Geochemistry, mineralogy and genesis

    NASA Astrophysics Data System (ADS)

    Giorgis, Ilaria; Bonetto, Sabrina; Giustetto, Roberto; Lawane, Abdou; Pantet, Anne; Rossetti, Piergiorgio; Thomassin, Jean-Hugues; Vinai, Raffaele

    2014-02-01

    This study reports on the geochemical and mineralogical characterization of a lateritic profile cropping out in the Balkouin area, Central Burkina Faso, aimed at obtaining a better understanding of the processes responsible for the formation of the laterite itself and the constraints to its development. The lateritic profile rests on a Paleoproterozoic basement mostly composed of granodioritic rocks related to the Eburnean magmatic cycle passing upwards to saprolite and consists of four main composite horizons (bottom to top): kaolinite and clay-rich horizons, mottled laterite and iron-rich duricrust. In order to achieve such a goal, a multi-disciplinary analytical approach was adopted, which includes inductively coupled plasma (ICP) atomic emission and mass spectrometries (ICP-AES and ICP-MS respectively), X-ray powder diffraction (XRPD), scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) and micro-Raman spectroscopy.

  11. Identification of a Catalytically Highly Active Surface Phase for CO Oxidation over PtRh Nanoparticles under Operando Reaction Conditions

    NASA Astrophysics Data System (ADS)

    Hejral, U.; Franz, D.; Volkov, S.; Francoual, S.; Strempfer, J.; Stierle, A.

    2018-03-01

    Pt-Rh alloy nanoparticles on oxide supports are widely employed in heterogeneous catalysis with applications ranging from automotive exhaust control to energy conversion. To improve catalyst performance, an atomic-scale correlation of the nanoparticle surface structure with its catalytic activity under industrially relevant operando conditions is essential. Here, we present x-ray diffraction data sensitive to the nanoparticle surface structure combined with in situ mass spectrometry during near ambient pressure CO oxidation. We identify the formation of ultrathin surface oxides by detecting x-ray diffraction signals from particular nanoparticle facets and correlate their evolution with the sample's enhanced catalytic activity. Our approach opens the door for an in-depth characterization of well-defined, oxide-supported nanoparticle based catalysts under operando conditions with unprecedented atomic-scale resolution.

  12. Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry

    PubMed Central

    Gupta, Sayan; D’Mello, Rhijuta; Chance, Mark R.

    2012-01-01

    Water is critical for the structure, stability, and functions of macromolecules. Diffraction and NMR studies have revealed structure and dynamics of bound waters at atomic resolution. However, localizing the sites and measuring the dynamics of bound waters, particularly on timescales relevant to catalysis and macromolecular assembly, is quite challenging. Here we demonstrate two techniques: first, temperature-dependent radiolytic hydroxyl radical labeling with a mass spectrometry (MS)-based readout to identify sites of bulk and bound water interactions with surface and internal residue side chains, and second, H218O radiolytic exchange coupled MS to measure the millisecond dynamics of bound water interactions with various internal residue side chains. Through an application of the methods to cytochrome c and ubiquitin, we identify sites of water binding and measure the millisecond dynamics of bound waters in protein crevices. As these MS-based techniques are very sensitive and not protein size limited, they promise to provide unique insights into protein–water interactions and water dynamics for both small and large proteins and their complexes. PMID:22927377

  13. Tuning Electrochemical Properties of Li-Rich Layered Oxide Cathodes by Adjusting Co/Ni Ratios and Mechanism Investigation Using in situ X-ray Diffraction and Online Continuous Flow Differential Electrochemical Mass Spectrometry.

    PubMed

    Shen, ShouYu; Hong, YuHao; Zhu, FuChun; Cao, ZhenMing; Li, YuYang; Ke, FuSheng; Fan, JingJing; Zhou, LiLi; Wu, LiNa; Dai, Peng; Cai, MingZhi; Huang, Ling; Zhou, ZhiYou; Li, JunTao; Wu, QiHui; Sun, ShiGang

    2018-04-18

    Owing to high specific capacity of ∼250 mA h g -1 , lithium-rich layered oxide cathode materials (Li 1+ x Ni y Co z Mn (3- x-2 y-3 z)/4 O 2 ) have been considered as one of the most promising candidates for the next-generation cathode materials of lithium ion batteries. However, the commercialization of this kind of cathode materials seriously restricted by voltage decay upon cycling though Li-rich materials with high cobalt content have been widely studied and show good capacity. This research successfully suppresses voltage decay upon cycling while maintaining high specific capacity with low Co/Ni ratio in Li-rich cathode materials. Online continuous flow differential electrochemical mass spectrometry (OEMS) and in situ X-ray diffraction (XRD) techniques have been applied to investigate the structure transformation of Li-rich layered oxide materials during charge-discharge process. The results of OEMS revealed that low Co/Ni ratio lithium-rich layered oxide cathode materials released no lattice oxygen at the first charge process, which will lead to the suppression of the voltage decay upon cycling. The in situ XRD results displayed the structure transition of lithium-rich layered oxide cathode materials during the charge-discharge process. The Li 1.13 Ni 0.275 Mn 0.580 O 2 cathode material exhibited a high initial medium discharge voltage of 3.710 and a 3.586 V medium discharge voltage with the lower voltage decay of 0.124 V after 100 cycles.

  14. Counting Molecules by Desorption Ionization and Mass Spectrometry/Mass Spectrometry.

    ERIC Educational Resources Information Center

    Cooks, R. G.; Busch, K. L.

    1982-01-01

    Discusses two newer methods in mass spectrometry and shows how they can increase signal and signal-to-noise ratios, respectively. The first method, desorption ionization (DI), increases sensitivity while the second method, mass spectrometry/mass spectrometry (MS/MS), increases specificity. Together, the two methods offer improved analytical…

  15. Measuring masses of large biomolecules and bioparticles using mass spectrometric techniques.

    PubMed

    Peng, Wen-Ping; Chou, Szu-Wei; Patil, Avinash A

    2014-07-21

    Large biomolecules and bioparticles play a vital role in biology, chemistry, biomedical science and physics. Mass is a critical parameter for the characterization of large biomolecules and bioparticles. To achieve mass analysis, choosing a suitable ion source is the first step and the instruments for detecting ions, mass analyzers and detectors should also be considered. Abundant mass spectrometric techniques have been proposed to determine the masses of large biomolecules and bioparticles and these techniques can be divided into two categories. The first category measures the mass (or size) of intact particles, including single particle quadrupole ion trap mass spectrometry, cell mass spectrometry, charge detection mass spectrometry and differential mobility mass analysis; the second category aims to measure the mass and tandem mass of biomolecular ions, including quadrupole ion trap mass spectrometry, time-of-flight mass spectrometry, quadrupole orthogonal time-of-flight mass spectrometry and orbitrap mass spectrometry. Moreover, algorithms for the mass and stoichiometry assignment of electrospray mass spectra are developed to obtain accurate structure information and subunit combinations.

  16. Ion mass spectrometry investigations of the discharge during reactive high power pulsed and direct current magnetron sputtering of carbon in Ar and Ar/N{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, S.; Greczynski, G.; Jensen, J.

    2012-07-01

    Ion mass spectrometry was used to investigate discharges formed during high power impulse magnetron sputtering (HiPIMS) and direct current magnetron sputtering (DCMS) of a graphite target in Ar and Ar/N{sub 2} ambient. Ion energy distribution functions (IEDFs) were recorded in time-averaged and time-resolved mode for Ar{sup +}, C{sup +}, N{sub 2}{sup +}, N{sup +}, and C{sub x}N{sub y}{sup +} ions. An increase of N{sub 2} in the sputter gas (keeping the deposition pressure, pulse width, pulse frequency, and pulse energy constant) results for the HiPIMS discharge in a significant increase in C{sup +}, N{sup +}, and CN{sup +} ion energies.more » Ar{sup +}, N{sub 2}{sup +}, and C{sub 2}N{sup +} ion energies, in turn, did not considerably vary with the changes in working gas composition. The HiPIMS process showed higher ion energies and fluxes, particularly for C{sup +} ions, compared to DCMS. The time evolution of the plasma species was analyzed for HiPIMS and revealed the sequential arrival of working gas ions, ions ejected from the target, and later during the pulse-on time molecular ions, in particular CN{sup +} and C{sub 2}N{sup +}. The formation of fullerene-like structured CN{sub x} thin films for both modes of magnetron sputtering is explained by ion mass-spectrometry results and demonstrated by transmission electron microscopy as well as diffraction.« less

  17. Au36(SPh)24 nanomolecules: X-ray crystal structure, optical spectroscopy, electrochemistry, and theoretical analysis.

    PubMed

    Nimmala, Praneeth Reddy; Knoppe, Stefan; Jupally, Vijay Reddy; Delcamp, Jared H; Aikens, Christine M; Dass, Amala

    2014-12-11

    The physicochemical properties of gold:thiolate nanomolecules depend on their crystal structure and the capping ligands. The effects of protecting ligands on the crystal structure of the nanomolecules are of high interest in this area of research. Here we report the crystal structure of an all aromatic thiophenolate-capped Au36(SPh)24 nanomolecule, which has a face-centered cubic (fcc) core similar to other nanomolecules such as Au36(SPh-tBu)24 and Au36(SC5H9)24 with the same number of gold atoms and ligands. The results support the idea that a stable core remains intact even when the capping ligand is varied. We also correct our earlier assignment of "Au36(SPh)23" which was determined based on MALDI mass spectrometry which is more prone to fragmentation than ESI mass spectrometry. We show that ESI mass spectrometry gives the correct assignment of Au36(SPh)24, supporting the X-ray crystal structure. The electronic structure of the title compound was computed at different levels of theory (PBE, LDA, and LB94) using the coordinates extracted from the single crystal X-ray diffraction data. The optical and electrochemical properties were determined from experimental data using UV-vis spectroscopy, cyclic voltammetry, and differential pulse voltammetry. Au36(SPh)24 shows a broad electrochemical gap near 2 V, a desirable optical gap of ∼1.75 eV for dye-sensitized solar cell applications, as well as appropriately positioned electrochemical potentials for many electrocatalytic reactions.

  18. Laser Ablation-Aerosol Mass Spectrometry-Chemical Ionization Mass Spectrometry for Ambient Surface Imaging

    DOE PAGES

    Berry, Jennifer L.; Day, Douglas A.; Elseberg, Tim; ...

    2018-02-20

    Mass spectrometry imaging is becoming an increasingly common analytical technique due to its ability to provide spatially resolved chemical information. In this paper, we report a novel imaging approach combining laser ablation with two mass spectrometric techniques, aerosol mass spectrometry and chemical ionization mass spectrometry, separately and in parallel. Both mass spectrometric methods provide the fast response, rapid data acquisition, low detection limits, and high-resolution peak separation desirable for imaging complex samples. Additionally, the two techniques provide complementary information with aerosol mass spectrometry providing near universal detection of all aerosol molecules and chemical ionization mass spectrometry with a heated inletmore » providing molecular-level detail of both gases and aerosols. The two techniques operate with atmospheric pressure interfaces and require no matrix addition for ionization, allowing for samples to be investigated in their native state under ambient pressure conditions. We demonstrate the ability of laser ablation-aerosol mass spectrometry-chemical ionization mass spectrometry (LA-AMS-CIMS) to create 2D images of both standard compounds and complex mixtures. Finally, the results suggest that LA-AMS-CIMS, particularly when combined with advanced data analysis methods, could have broad applications in mass spectrometry imaging applications.« less

  19. Laser Ablation-Aerosol Mass Spectrometry-Chemical Ionization Mass Spectrometry for Ambient Surface Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Jennifer L.; Day, Douglas A.; Elseberg, Tim

    Mass spectrometry imaging is becoming an increasingly common analytical technique due to its ability to provide spatially resolved chemical information. In this paper, we report a novel imaging approach combining laser ablation with two mass spectrometric techniques, aerosol mass spectrometry and chemical ionization mass spectrometry, separately and in parallel. Both mass spectrometric methods provide the fast response, rapid data acquisition, low detection limits, and high-resolution peak separation desirable for imaging complex samples. Additionally, the two techniques provide complementary information with aerosol mass spectrometry providing near universal detection of all aerosol molecules and chemical ionization mass spectrometry with a heated inletmore » providing molecular-level detail of both gases and aerosols. The two techniques operate with atmospheric pressure interfaces and require no matrix addition for ionization, allowing for samples to be investigated in their native state under ambient pressure conditions. We demonstrate the ability of laser ablation-aerosol mass spectrometry-chemical ionization mass spectrometry (LA-AMS-CIMS) to create 2D images of both standard compounds and complex mixtures. Finally, the results suggest that LA-AMS-CIMS, particularly when combined with advanced data analysis methods, could have broad applications in mass spectrometry imaging applications.« less

  20. Heavy doping of CdTe single crystals by Cr ion implantation

    NASA Astrophysics Data System (ADS)

    Popovych, Volodymyr D.; Böttger, Roman; Heller, Rene; Zhou, Shengqiang; Bester, Mariusz; Cieniek, Bogumil; Mroczka, Robert; Lopucki, Rafal; Sagan, Piotr; Kuzma, Marian

    2018-03-01

    Implantation of bulk CdTe single crystals with high fluences of 500 keV Cr+ ions was performed to achieve Cr concentration above the equilibrium solubility limit of this element in CdTe lattice. The structure and composition of the implanted samples were studied using secondary ion mass spectrometry (SIMS), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS) to characterize the incorporation of chromium into the host lattice and to investigate irradiation-induced damage build-up. It was found that out-diffusion of Cr atoms and sputtering of the targets alter the depth distribution and limit concentration of the projectile ions in the as-implanted samples. Appearance of crystallographically oriented, metallic α-Cr nanoparticles inside CdTe matrix was found after implantation, as well as a strong disorder at the depth far beyond the projected range of the implanted ions.

  1. Analytical Characterization of Erythritol Tetranitrate, an Improvised Explosive.

    PubMed

    Matyáš, Robert; Lyčka, Antonín; Jirásko, Robert; Jakový, Zdeněk; Maixner, Jaroslav; Mišková, Linda; Künzel, Martin

    2016-05-01

    Erythritol tetranitrate (ETN), an ester of nitric acid and erythritol, is a solid crystalline explosive with high explosive performance. Although it has never been used in any industrial or military application, it has become one of the most prepared and misused improvise explosives. In this study, several analytical techniques were explored to facilitate analysis in forensic laboratories. FTIR and Raman spectrometry measurements expand existing data and bring more detailed assignment of bands through the parallel study of erythritol [(15) N4 ] tetranitrate. In the case of powder diffraction, recently published data were verified, and (1) H, (13) C, and (15) N NMR spectra are discussed in detail. The technique of electrospray ionization tandem mass spectrometry was successfully used for the analysis of ETN. Described methods allow fast, versatile, and reliable detection or analysis of samples containing erythritol tetranitrate in forensic laboratories. © 2016 American Academy of Forensic Sciences.

  2. Study of molybdenum-aluminum interdiffusion kinetics and contact resistance for VLSI applications

    NASA Astrophysics Data System (ADS)

    Singh, R. N.; Brown, D. M.; Kim, M. J.; Smith, G. A.

    1985-12-01

    Interdiffusion barrier characteristics of molybdenum thin film with aluminum-1% Si is studied between 733 and 763 K via sheet and contact resistance measurements, Rutherford backscattering spectrometry, secondary ion mass spectrometry, and x-ray diffraction analysis. The results indicate that thermal annealing of Mo/Al-1% Si thin film couples leads to MoAl12 compound formation initially as a nonplanar front, but extensive annealing results in complete transformation of Al-1% Si to MoAl12 and a significant increase in contact resistance. The interdiffusion kinetics is diffusion controlled and shows parabolic time dependence, incubation periods, and extremely high activation energy value of 5.9 eV. The incubation periods and an high activation energy values are explained by the presence of silicon precipitates at the Mo/Al-1% Si interface. Implications of these observations to VLSI device characteristics are discussed and a safe time-temperature processing regime is proposed.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Mark A.; Coker, Eric Nicholas; Griego, James J. M.

    High-temperature X-ray diffraction with concurrent gas chromatography (GC) was used to study cobalt disulfide cathode pellets disassembled from thermal batteries. When CoS 2 cathode materials were analyzed in an air environment, oxidation of the K(Br, Cl) salt phase in the cathode led to the formation of K 2SO 4 that subsequently reacted with the pyrite-type CoS 2 phase leading to cathode decomposition between ~260 and 450 °C. Here, independent thermal analysis experiments, i.e. simultaneous thermogravimetric analysis/differential scanning calorimetry/mass spectrometry (MS), augmented the diffraction results and support the overall picture of CoS 2 decomposition. Both gas analysis measurements (i.e. GC andmore » MS) from the independent experiments confirmed the formation of SO 2 off-gas species during breakdown of the CoS 2. In contrast, characterization of the same cathode material under inert conditions showed the presence of CoS 2 throughout the entire temperature range of analysis.« less

  4. Copper Refinement from Anode to Cathode and then to Wire Rod: Effects of Impurities on Recrystallization Kinetics and Wire Ductility.

    PubMed

    Helbert, Anne-Laure; Moya, Alice; Jil, Tomas; Andrieux, Michel; Ignat, Michel; Brisset, François; Baudin, Thierry

    2015-10-01

    In this paper, the traceability of copper from the anode to the cathode and then the wire rod has been studied in terms of impurity content, microstructure, texture, recrystallization kinetics, and ductility. These characterizations were obtained based on secondary ion mass spectrometry, differential scanning calorimetry (DSC), X-ray diffraction, HV hardness, and electron backscattered diffraction. It is shown that the recrystallization was delayed by the total amount of impurities. From tensile tests performed on cold drawn and subsequently annealed wires for a given time, a simplified model has been developed to link tensile elongation to the chemical composition. This model allowed quantification of the contribution of some additional elements, present in small quantity, on the recrystallization kinetics. The proposed model adjusted for the cold-drawn wires was also validated on both the cathode and wire rod used for the study of traceability.

  5. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  6. Conversion of kraft lignin over hierarchical MFI zeolite.

    PubMed

    Kim, Seong-Soo; Lee, Hyung Won; Ryoo, Ryong; Kim, Wookdong; Park, Sung Hoon; Jeon, Jong-Ki; Park, Young-Kwon

    2014-03-01

    Catalytic pyrolysis of kraft lignin was carried out using pyrolysis gas chromatography/mass spectrometry. Hierarchical mesoporous MFI was used as the catalyst and another mesoporous material Al-SBA-15 was also used for comparison. The characteristics of mesoporous MFI were analyzed by X-ray diffraction patterns, N2 adsorption-desorption isotherms, and temperature programmed desorption of NH3. Two catalyst/lignin mass ratios were tested: 5/1 and 10/1. Aromatics and alkyl phenolics were the main products of the catalytic pyrolysis of lignin over mesoporous MFI. In particular, the yields of mono-aromatics such as benzene, toluene, ethylbenzene, and xylene were increased substantially by catalytic upgrading. Increase in the catalyst dose enhanced the production of aromatics further, which is attributed to decarboxylation, decarbonlyation, and aromatization reactions occurring over the acid sites of mesoporous MFI.

  7. Isolation and characterisation of EfeM, a periplasmic component of the putative EfeUOBM iron transporter of Pseudomonas syringae pv. syringae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajasekaran, Mohan B; Structural Biology Unit at The BioCentre, University of Reading, Harborne Building, Whiteknights Campus, Reading, RG6 6AS; Mitchell, Sue A

    2010-07-30

    Research highlights: {yields} Bioinformatic analysis reveals EfeM is a metallopeptidase with conserved HXXE motif. {yields} Mass spectrometry confirms EfeM consists of 251 residues, molecular weight 27,772Da. {yields} SRCD spectroscopy shows an {alpha}-helical secondary structure. {yields} Single crystals of EfeM are orthorhombic and diffract to 1.6A resolution. {yields} Space group is P22{sub 1}2{sub 1} with cell dimensions a = 46.74, b = 95.17 and c = 152.61 A. -- Abstract: The EfeM protein is a component of the putative EfeUOBM iron-transporter of Pseudomonas syringae pathovar syringae and is thought to act as a periplasmic, ferrous-iron binding protein. It contains a signalmore » peptide of 34 amino acid residues and a C-terminal 'Peptidase{sub M}75' domain of 251 residues. The C-terminal domain contains a highly conserved 'HXXE' motif thought to act as part of a divalent cation-binding site. In this work, the gene (efeM or 'Psyr{sub 3}370') encoding EfeM was cloned and over-expressed in Escherichia coli, and the mature protein was purified from the periplasm. Mass spectrometry confirmed the identity of the protein (M{sub W} 27,772 Da). Circular dichroism spectroscopy of EfeM indicated a mainly {alpha}-helical structure, consistent with bioinformatic predictions. Purified EfeM was crystallised by hanging-drop vapor diffusion to give needle-shaped crystals that diffracted to a resolution of 1.6 A. This is the first molecular study of a peptidase M75 domain with a presumed iron transport role.« less

  8. On the Habitability of Desert Varnish: A Combined Study by Micro-Raman Spectroscopy, X-ray Diffraction, and Methylated Pyrolysis-Gas Chromatography-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Malherbe, C.; Hutchinson, I. B.; Ingley, R.; Boom, A.; Carr, A. S.; Edwards, H.; Vertruyen, B.; Gilbert, B.; Eppe, G.

    2017-11-01

    In 2020, the ESA ExoMars and NASA Mars 2020 missions will be launched to Mars to search for evidence of past and present life. In preparation for these missions, terrestrial analog samples of rock formations on Mars are studied in detail in order to optimize the scientific information that the analytical instrumentation will return. Desert varnishes are thin mineral coatings found on rocks in arid and semi-arid environments on Earth that are recognized as analog samples. During the formation of desert varnishes (which takes many hundreds of years), organic matter is incorporated, and microorganisms may also play an active role in the formation process. During this study, four complementary analytical techniques proposed for Mars missions (X-ray diffraction [XRD], Raman spectroscopy, elemental analysis, and pyrolysis-gas chromatography-mass spectrometry [Py-GC-MS]) were used to interrogate samples of desert varnish and describe their capacity to sustain life under extreme scenarios. For the first time, both the geochemistry and the organic compounds associated with desert varnish are described with the use of identical sets of samples. XRD and Raman spectroscopy measurements were used to nondestructively interrogate the mineralogy of the samples. In addition, the use of Raman spectroscopy instruments enabled the detection of β-carotene, a highly Raman-active biomarker. The content and the nature of the organic material in the samples were further investigated with elemental analysis and methylated Py-GC-MS, and a bacterial origin was determined to be likely. In the context of planetary exploration, we describe the habitable nature of desert varnish based on the biogeochemical composition of the samples. Possible interference of the geological substrate on the detectability of pyrolysis products is also suggested.

  9. MASS SPECTROMETRY IN ENVIRONMENTAL SCIENCES

    EPA Science Inventory

    This review covers applications of mass spectrometry to the environmental sciences. From the early applications of mass spectrometry to environmental research in the 1960s and 1970s, mass spectrometry has played an important role in aiding our understanding of environmental poll...

  10. Hands-on Electrospray Ionization-Mass Spectrometry for Upper-Level Undergraduate and Graduate Students

    ERIC Educational Resources Information Center

    Stock, Naomi L.; March, Raymond E.

    2014-01-01

    Electrospray ionization-mass spectrometry (ESI-MS) is a powerful technique for the detection, identification, and quantification of organic compounds. As mass spectrometers have become more user-friendly and affordable, many students--often with little experience in mass spectrometry--find themselves needing to incorporate mass spectrometry into…

  11. Mechanistic and Kinetic Analysis of Na2SO4-Modified Laterite Decomposition by Thermogravimetry Coupled with Mass Spectrometry

    PubMed Central

    Yang, Song; Du, Wenguang; Shi, Pengzheng; Shangguan, Ju; Liu, Shoujun; Zhou, Changhai; Chen, Peng; Zhang, Qian; Fan, Huiling

    2016-01-01

    Nickel laterites cannot be effectively used in physical methods because of their poor crystallinity and fine grain size. Na2SO4 is the most efficient additive for grade enrichment and Ni recovery. However, how Na2SO4 affects the selective reduction of laterite ores has not been clearly investigated. This study investigated the decomposition of laterite with and without the addition of Na2SO4 in an argon atmosphere using thermogravimetry coupled with mass spectrometry (TG-MS). Approximately 25 mg of samples with 20 wt% Na2SO4 was pyrolyzed under a 100 ml/min Ar flow at a heating rate of 10°C/min from room temperature to 1300°C. The kinetic study was based on derivative thermogravimetric (DTG) curves. The evolution of the pyrolysis gas composition was detected by mass spectrometry, and the decomposition products were analyzed by X-ray diffraction (XRD). The decomposition behavior of laterite with the addition of Na2SO4 was similar to that of pure laterite below 800°C during the first three stages. However, in the fourth stage, the dolomite decomposed at 897°C, which is approximately 200°C lower than the decomposition of pure laterite. In the last stage, the laterite decomposed and emitted SO2 in the presence of Na2SO4 with an activation energy of 91.37 kJ/mol. The decomposition of laterite with and without the addition of Na2SO4 can be described by one first-order reaction. Moreover, the use of Na2SO4 as the modification agent can reduce the activation energy of laterite decomposition; thus, the reaction rate can be accelerated, and the reaction temperature can be markedly reduced. PMID:27333072

  12. A new setup for the investigation of swift heavy ion induced particle emission and surface modifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meinerzhagen, F.; Breuer, L.; Bukowska, H.

    2016-01-15

    The irradiation with fast ions with kinetic energies of >10 MeV leads to the deposition of a high amount of energy along their trajectory (up to several ten keV/nm). The energy is mainly transferred to the electronic subsystem and induces different secondary processes of excitations, which result in significant material modifications. A new setup to study these ion induced effects on surfaces will be described in this paper. The setup combines a variable irradiation chamber with different techniques of surface characterizations like scanning probe microscopy, time-of-flight secondary ion, and neutral mass spectrometry, as well as low energy electron diffraction undermore » ultra high vacuum conditions, and is mounted at a beamline of the universal linear accelerator (UNILAC) of the GSI facility in Darmstadt, Germany. Here, samples can be irradiated with high-energy ions with a total kinetic energy up to several GeVs under different angles of incidence. Our setup enables the preparation and in situ analysis of different types of sample systems ranging from metals to insulators. Time-of-flight secondary ion mass spectrometry enables us to study the chemical composition of the surface, while scanning probe microscopy allows a detailed view into the local electrical and morphological conditions of the sample surface down to atomic scales. With the new setup, particle emission during irradiation as well as persistent modifications of the surface after irradiation can thus be studied. We present first data obtained with the new setup, including a novel measuring protocol for time-of-flight mass spectrometry with the GSI UNILAC accelerator.« less

  13. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Adam

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  14. Mass spectrometry-based proteomics for translational research: a technical overview.

    PubMed

    Paulo, Joao A; Kadiyala, Vivek; Banks, Peter A; Steen, Hanno; Conwell, Darwin L

    2012-03-01

    Mass spectrometry-based investigation of clinical samples enables the high-throughput identification of protein biomarkers. We provide an overview of mass spectrometry-based proteomic techniques that are applicable to the investigation of clinical samples. We address sample collection, protein extraction and fractionation, mass spectrometry modalities, and quantitative proteomics. Finally, we examine the limitations and further potential of such technologies. Liquid chromatography fractionation coupled with tandem mass spectrometry is well suited to handle mixtures of hundreds or thousands of proteins. Mass spectrometry-based proteome elucidation can reveal potential biomarkers and aid in the development of hypotheses for downstream investigation of the molecular mechanisms of disease.

  15. Mass Spectrometry-Based Proteomics for Translational Research: A Technical Overview

    PubMed Central

    Paulo, Joao A.; Kadiyala, Vivek; Banks, Peter A.; Steen, Hanno; Conwell, Darwin L.

    2012-01-01

    Mass spectrometry-based investigation of clinical samples enables the high-throughput identification of protein biomarkers. We provide an overview of mass spectrometry-based proteomic techniques that are applicable to the investigation of clinical samples. We address sample collection, protein extraction and fractionation, mass spectrometry modalities, and quantitative proteomics. Finally, we examine the limitations and further potential of such technologies. Liquid chromatography fractionation coupled with tandem mass spectrometry is well suited to handle mixtures of hundreds or thousands of proteins. Mass spectrometry-based proteome elucidation can reveal potential biomarkers and aid in the development of hypotheses for downstream investigation of the molecular mechanisms of disease. PMID:22461744

  16. Identification of Unknown Contaminants in Water Samples from ISS Employing Liquid Chromatography/Mass Spectrometry/Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Rutz, Jeffrey A.; Schultz, John R.

    2008-01-01

    Mass Spectrometry/Mass Spectrometry (MS/MS) is a powerful technique for identifying unknown organic compounds. For non-volatile or thermally unstable unknowns dissolved in liquids, liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) is often the variety of MS/MS used for the identification. One type of LC/MS/MS that is rapidly becoming popular is time-of-flight (TOF) mass spectrometry. This technique is now in use at the Johnson Space Center for identification of unknown nonvolatile organics in water samples from the space program. An example of the successful identification of one unknown is reviewed in detail in this paper. The advantages of time-of-flight instrumentation are demonstrated through this example as well as the strategy employed in using time-of-flight data to identify unknowns.

  17. Chemometrics comparison of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry Daphnia magna metabolic profiles exposed to salinity.

    PubMed

    Parastar, Hadi; Garreta-Lara, Elba; Campos, Bruno; Barata, Carlos; Lacorte, Silvia; Tauler, Roma

    2018-06-01

    The performances of gas chromatography with mass spectrometry and of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry are examined through the comparison of Daphnia magna metabolic profiles. Gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with mass spectrometry were used to compare the concentration changes of metabolites under saline conditions. In this regard, a chemometric strategy based on wavelet compression and multivariate curve resolution-alternating least squares is used to compare the performances of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry for the untargeted metabolic profiling of Daphnia magna in control and salinity-exposed samples. Examination of the results confirmed the outperformance of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry over gas chromatography with mass spectrometry for the detection of metabolites in D. magna samples. The peak areas of multivariate curve resolution-alternating least squares resolved elution profiles in every sample analyzed by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry were arranged in a new data matrix that was then modeled by partial least squares discriminant analysis. The control and salt-exposed daphnids samples were discriminated and the most relevant metabolites were estimated using variable importance in projection and selectivity ratio values. Salinity de-regulated 18 metabolites from metabolic pathways involved in protein translation, transmembrane cell transport, carbon metabolism, secondary metabolism, glycolysis, and osmoregulation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Pestalpolyols A-D, Cytotoxic Polyketides from Pestalotiopsis sp. cr013.

    PubMed

    Li, Jing; Xie, Jin; Yang, Yin-He; Li, Xiao-Lian; Zeng, Ying; Zhao, Pei-Ji

    2015-09-01

    Four novel polyketides, named pestalpolyols A (1), B (2), C (3), and D (4), were isolated from solid fermentation products of Pestalotiopsis sp. cr013. Their structures were elucidated by extensive spectroscopic methods, including 1D and 2D nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry experiments, and the absolute configuration was confirmed by single-crystal X-ray diffraction analysis using the anomalous scattering of Cu Kα radiation. The inhibitory activities of compounds 1, 2, and 4 against five human tumor lines were tested in vitro, and showed IC50 values 2.3-31.2 µM. Georg Thieme Verlag KG Stuttgart · New York.

  19. Self-Assembled Novel BODIPY-Based Palladium Supramolecules and Their Cellular Localization.

    PubMed

    Gupta, Gajendra; Das, Abhishek; Park, Kyoung Chul; Tron, Artur; Kim, Hyunuk; Mun, Junyoung; Mandal, Nripendranath; Chi, Ki-Whan; Lee, Chang Yeon

    2017-04-17

    Four new palladium metal supramolecules with triangular/square architectures derived from boron dipyrromethane (BODIPY) ligands were synthesized by self-assembly and fully characterized by 1 H and 31 P NMR, electrospray ionization mass spectrometry, and single-crystal X-ray diffraction. These supramolecules were more cytotoxic to brain cancer (glioblastoma) cells than to normal lung fibroblasts. Their cytotoxicity to the glioblastoma cells was higher than that of a benchmark metal-based chemotherapy drug, cisplatin. The characteristic green fluorescence of the BODIPY ligands in these supramolecules permitted their intracellular visualization using confocal microscopy, and the compounds were localized in the cytoplasm and on the plasma membrane.

  20. Multielectron donors based on TTF-phosphine and ferrocene-phosphine hybrid complexes of a hexarhenium(III) octahedral cluster core.

    PubMed

    Perruchas, Sandrine; Avarvari, Narcis; Rondeau, David; Levillain, Eric; Batail, Patrick

    2005-05-16

    Electroactive molecular materials precursors are obtained through coordination chemistry of the hexarhenium cluster core [Re(6)Se(8)](2+) on the six available apical positions with redox-active phosphines bearing tetrathiafulvalene- or ferrocene-based moieties. Single-crystal X-ray diffraction study and electrospray mass spectrometry ascertain the synthesis of these hexasubstituted electroactive clusters, containing up to 12 redox active sites. Cyclic voltammetry experiments demonstrate that these compounds can be reversibly oxidized at rather low potentials, thus allowing an easy access to the corresponding radical species which should provide new conducting and/or magnetic molecular materials.

  1. Modeling the Structure of Helical Assemblies with Experimental Constraints in Rosetta.

    PubMed

    André, Ingemar

    2018-01-01

    Determining high-resolution structures of proteins with helical symmetry can be challenging due to limitations in experimental data. In such instances, structure-based protein simulations driven by experimental data can provide a valuable approach for building models of helical assemblies. This chapter describes how the Rosetta macromolecular package can be used to model homomeric protein assemblies with helical symmetry in a range of modeling scenarios including energy refinement, symmetrical docking, comparative modeling, and de novo structure prediction. Data-guided structure modeling of helical assemblies with experimental information from electron density, X-ray fiber diffraction, solid-state NMR, and chemical cross-linking mass spectrometry is also described.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemi, Merja, E-mail: merja.niemi@joensuu.fi; Jänis, Janne; Jylhä, Sirpa

    The high-resolution mass-spectrometric characterization, crystallization and X-ray diffraction studies of a recombinant IgE Fab fragment in complex with bovine β-lactoglobulin are reported. A D1 Fab fragment containing the allergen-binding variable domains of the IgE antibody was characterized by ESI FT–ICR mass spectrometry and crystallized with bovine β-lactoglobulin (BLG) using the hanging-drop vapour-diffusion method at 293 K. X-ray data suitable for structure determination were collected to 2.8 Å resolution using synchrotron radiation. The crystal belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 67.0, b = 100.6, c = 168.1 Å. The three-dimensional structure ofmore » the D1 Fab fragment–BLG complex will provide the first insight into IgE antibody–allergen interactions at the molecular level.« less

  3. Inorganic trace analysis by mass spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine; Dietze, Hans-Joachim

    1998-10-01

    Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g -1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of high-purity materials and environmental samples) is used in order to improve the detection limits of trace elements. Furthermore, the determination of chemical elements in the trace and ultratrace concentration range is often difficult and can be disturbed through mass interferences of analyte ions by molecular ions at the same nominal mass. By applying double-focusing sector field mass spectrometry at the required mass resolution—by the mass spectrometric separation of molecular ions from the analyte ions—it is often possible to overcome these interference problems. Commercial instrumental equipment, the capability (detection limits, accuracy, precision) and the analytical application fields of mass spectrometric methods for the determination of trace and ultratrace elements and for surface analysis are discussed.

  4. Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annesley, Thomas M.; Cooks, Robert G.; Herold, David A.

    Each year the journal Clinical Chemistry publishes a January special issue on a topic that is relevant to the laboratory medicine community. In January 2016 the topic is mass spectrometry, and the issue is entitled “Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine”. One popular feature in our issues is a Q&A on a topic, clearly in this case mass spectrometry. The journal is assembling a panel of 5-6 experts from various areas of mass spectrometry ranging from instrument manufacturing to practicing clinical chemists. Dick Smith is one of the scientist requested to participate in this special issue Q&A onmore » Mass Spectrometry. The Q&A Transcript is attached« less

  5. Mass spectrometry of atmospheric aerosols--recent developments and applications. Part II: On-line mass spectrometry techniques.

    PubMed

    Pratt, Kerri A; Prather, Kimberly A

    2012-01-01

    Many of the significant advances in our understanding of atmospheric particles can be attributed to the application of mass spectrometry. Mass spectrometry provides high sensitivity with fast response time to probe chemically complex particles. This review focuses on recent developments and applications in the field of mass spectrometry of atmospheric aerosols. In Part II of this two-part review, we concentrate on real-time mass spectrometry techniques, which provide high time resolution for insight into brief events and diurnal changes while eliminating the potential artifacts acquired during long-term filter sampling. In particular, real-time mass spectrometry has been shown recently to provide the ability to probe the chemical composition of ambient individual particles <30 nm in diameter to further our understanding of how particles are formed through nucleation in the atmosphere. Further, transportable real-time mass spectrometry techniques are now used frequently on ground-, ship-, and aircraft-based studies around the globe to further our understanding of the spatial distribution of atmospheric aerosols. In addition, coupling aerosol mass spectrometry techniques with other measurements in series has allowed the in situ determination of chemically resolved particle effective density, refractive index, volatility, and cloud activation properties. Copyright © 2011 Wiley Periodicals, Inc.

  6. Effect of Genetic Database Comprehensiveness on Fractional Proteomics of Escherichia coli O157:H7

    DTIC Science & Technology

    2014-01-01

    proteins would be observed in the extracellular fraction. 15. SUBJECT TERMS Escherichia coli O157:H7 Liquid chromatography Mass spectrometry...Preparation ...............1 2.2 Liquid Chromatography /Mass Spectrometry Sample Preparation ....................2 2.3 Liquid Chromatography /Mass... Chromatography /Mass Spectrometry Sample Preparation. Samples were prepared for liquid chromatography tandem mass spectrometry (LC-MS/MS) in a similar

  7. CFA-4 - a fluorinated metal-organic framework with exchangeable interchannel cations.

    PubMed

    Fritzsche, J; Grzywa, M; Denysenko, D; Bon, V; Senkovska, I; Kaskel, S; Volkmer, D

    2017-05-23

    The syntheses and crystal structures of the fluorinated linker 1,4-bis(3,5-bis(trifluoromethyl)-1H-pyrazole-4-yl)benzene (H 2 -tfpb; 1) and the novel metal-organic framework family M[CFA-4] (Coordination Framework Augsburg University-4), M[Cu 5 (tfpb) 3 ] (M = Cu(i), K, Cs, Ca(0.5)), are described. The ligand 1 is fully characterized by single crystal X-ray diffraction, photoluminescence-, NMR-, IR spectroscopy, and mass spectrometry. The copper(i)-containing MOF crystallizes in the hexagonal crystal system within the chiral space group P6 3 22 (no. 182) and the unit cell parameters are as follows: a = 23.630(5) Å, c = 41.390(5) Å, V = 20 015(6) Å 3 . M[CFA-4] features a porous 3-D structure constructed from pentanuclear copper(i) secondary building units {Cu(pz) 6 } - (pz = pyrazolate). Cu(I)[CFA-4] is fully characterized by synchrotron single crystal X-ray diffraction, thermogravimetric analysis, variable temperature powder X-ray diffraction, IR spectroscopy, photoluminescence and gas sorption measurements. Moreover, thermal stability and gas sorption properties of K[CFA-4] and Cu(I)[CFA-4] are compared.

  8. The expanding role of mass spectrometry in the field of vaccine development.

    PubMed

    Sharma, Vaneet Kumar; Sharma, Ity; Glick, James

    2018-05-31

    Biological mass spectrometry has evolved as a core analytical technology in the last decade mainly because of its unparalleled ability to perform qualitative as well as quantitative profiling of enormously complex biological samples with high mass accuracy, sensitivity, selectivity and specificity. Mass spectrometry-based techniques are also routinely used to assess glycosylation and other post-translational modifications, disulfide bond linkage, and scrambling as well as for the detection of host cell protein contaminants in the field of biopharmaceuticals. The role of mass spectrometry in vaccine development has been very limited but is now expanding as the landscape of global vaccine development is shifting towards the development of recombinant vaccines. In this review, the role of mass spectrometry in vaccine development is presented, some of the ongoing efforts to develop vaccines for diseases with global unmet medical need are discussed and the regulatory challenges of implementing mass spectrometry techniques in a quality control laboratory setting are highlighted. © 2018 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

  9. Imaging mass spectrometry statistical analysis.

    PubMed

    Jones, Emrys A; Deininger, Sören-Oliver; Hogendoorn, Pancras C W; Deelder, André M; McDonnell, Liam A

    2012-08-30

    Imaging mass spectrometry is increasingly used to identify new candidate biomarkers. This clinical application of imaging mass spectrometry is highly multidisciplinary: expertise in mass spectrometry is necessary to acquire high quality data, histology is required to accurately label the origin of each pixel's mass spectrum, disease biology is necessary to understand the potential meaning of the imaging mass spectrometry results, and statistics to assess the confidence of any findings. Imaging mass spectrometry data analysis is further complicated because of the unique nature of the data (within the mass spectrometry field); several of the assumptions implicit in the analysis of LC-MS/profiling datasets are not applicable to imaging. The very large size of imaging datasets and the reporting of many data analysis routines, combined with inadequate training and accessible reviews, have exacerbated this problem. In this paper we provide an accessible review of the nature of imaging data and the different strategies by which the data may be analyzed. Particular attention is paid to the assumptions of the data analysis routines to ensure that the reader is apprised of their correct usage in imaging mass spectrometry research. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Illustrating the Concepts of Isotopes and Mass Spectrometry in Introductory Courses: A MALDI-TOF Mass Spectrometry Laboratory Experiment

    ERIC Educational Resources Information Center

    Dopke, Nancy Carter; Lovett, Timothy Neal

    2007-01-01

    Mass spectrometry is a widely used and versatile tool for scientists in many different fields. Soft ionization techniques such as matrix-assisted laser desorption/ionization (MALDI) allow for the analysis of biomolecules, polymers, and clusters. This article describes a MALDI mass spectrometry experiment designed for students in introductory…

  11. Amorphous titania modified with boric acid for selective capture of glycoproteins.

    PubMed

    Jin, Shanxia; Liu, Liping; Zhou, Ping

    2018-05-22

    Amorphous titania was modified with boric acid, and the resulting material was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction and X-ray photoelectron spectrometry. The new material, in contrast to conventional boronate affinity materials containing boronic acid ligands, bears boric acid groups. It is shown to exhibit high specificity for glycoproteins, and this was applied to design a method for solid phase extraction of glycoproteins as shown for ribonuclease B, horse radish peroxidase and ovalbumin. Glycoproteins were captured under slightly alkaline environment and released in acidic solutions. The glycoproteins extracted were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The binding capacities for ribonuclease B, horse radish peroxidase and ovalbumin typically are 9.3, 26.0 and 53.0 mg ∙ g -1 , respectively. The method was successfully applied to the selective enrichment of ovalbumin from egg white. Graphical abstract Schematic presentation of the capture of glycoproteins by amorphous titania modified with boric acid.

  12. The molecular structure of 4-methylpyridine-N-oxide: Gas-phase electron diffraction and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Belova, Natalya V.; Girichev, Georgiy V.; Kotova, Vitaliya E.; Korolkova, Kseniya A.; Trang, Nguyen Hoang

    2018-03-01

    The molecular structure of 4-methylpiridine-N-oxide, 4-MePyO, has been studied by gas-phase electron diffraction monitored by mass spectrometry (GED/MS) and quantum chemical (DFT) calculations. Both, quantum chemistry and GED analyses resulted in CS molecular symmetry with the planar pyridine ring. Obtained molecular parameters confirm the hyperconjugation in the pyridine ring and the sp2 hybridization concept of the nitrogen and carbon atoms in the ring. The experimental geometric parameters are in a good agreement with the parameters for non-substituted N-oxide and reproduced very closely by DFT calculations. The presence of the electron-donating CH3 substituent in 4-MePyO leads to a decrease of the ipso-angle and to an increase of r(N→O) in comparison with the non-substituted PyO. Electron density distribution analysis has been performed in terms of natural bond orbitals (NBO) scheme. The nature of the semipolar N→O bond is discussed.

  13. Monitoring of CoS 2 reactions using high-temperature XRD coupled with gas chromatography (GC)

    DOE PAGES

    Rodriguez, Mark A.; Coker, Eric Nicholas; Griego, James J. M.; ...

    2016-04-18

    High-temperature X-ray diffraction with concurrent gas chromatography (GC) was used to study cobalt disulfide cathode pellets disassembled from thermal batteries. When CoS 2 cathode materials were analyzed in an air environment, oxidation of the K(Br, Cl) salt phase in the cathode led to the formation of K 2SO 4 that subsequently reacted with the pyrite-type CoS 2 phase leading to cathode decomposition between ~260 and 450 °C. Here, independent thermal analysis experiments, i.e. simultaneous thermogravimetric analysis/differential scanning calorimetry/mass spectrometry (MS), augmented the diffraction results and support the overall picture of CoS 2 decomposition. Both gas analysis measurements (i.e. GC andmore » MS) from the independent experiments confirmed the formation of SO 2 off-gas species during breakdown of the CoS 2. In contrast, characterization of the same cathode material under inert conditions showed the presence of CoS 2 throughout the entire temperature range of analysis.« less

  14. Single-protein nanomechanical mass spectrometry in real time

    PubMed Central

    Hanay, M.S.; Kelber, S.; Naik, A.K.; Chi, D.; Hentz, S.; Bullard, E.C.; Colinet, E.; Duraffourg, L.; Roukes, M.L.

    2012-01-01

    Nanoelectromechanical systems (NEMS) resonators can detect mass with exceptional sensitivity. Previously, mass spectra from several hundred adsorption events were assembled in NEMS-based mass spectrometry using statistical analysis. Here, we report the first realization of single-molecule NEMS-based mass spectrometry in real time. As each molecule in the sample adsorbs upon the NEMS resonator, its mass and the position-of-adsorption are determined by continuously tracking two driven vibrational modes of the device. We demonstrate the potential of multimode NEMS-based mass spectrometry by analyzing IgM antibody complexes in real-time. NEMS-MS is a unique and promising new form of mass spectrometry: it can resolve neutral species, provides resolving power that increases markedly for very large masses, and allows acquisition of spectra, molecule-by-molecule, in real-time. PMID:22922541

  15. The life sciences mass spectrometry research unit.

    PubMed

    Hopfgartner, Gérard; Varesio, Emmanuel

    2012-01-01

    The Life Sciences Mass Spectrometry (LSMS) research unit focuses on the development of novel analytical workflows based on innovative mass spectrometric and software tools for the analysis of low molecular weight compounds, peptides and proteins in complex biological matrices. The present article summarizes some of the recent work of the unit: i) the application of matrix-assisted laser desorption/ionization (MALDI) for mass spectrometry imaging (MSI) of drug of abuse in hair, ii) the use of high resolution mass spectrometry for simultaneous qualitative/quantitative analysis in drug metabolism and metabolomics, and iii) the absolute quantitation of proteins by mass spectrometry using the selected reaction monitoring mode.

  16. The allure of mass spectrometry: From an earlyday chemist's perspective.

    PubMed

    Tőkés, László

    2017-07-01

    This reminiscing review article is an account of the author's fascination and involvements with mass spectrometry from the perspective of an organic chemist with an interest in natural product chemistry. It covers a period from 1961 through the mid 1990s as mass spectrometry evolved form a novelty technique to become a most widely used analytical technique. Following a brief synopsis of my pathway to mass spectrometry, my research efforts in this field are presented with a focus mainly on evolving principles and technologies which I had personal involvements with. To provide historical perspectives, discussions of these developments are accompanied by brief outlines of the relevant state-of-the-art, shedding light on the technical and conceptual challenges encountered during those early days in mass spectrometry. Examples are presented of my involvements with basic and applied research in mass spectrometry during graduate studies at Stanford University and close to three decade tenure in pharmaceutical research at Syntex Research. My basic research interests focused mainly on principles of electron ionization induced fragmentation mechanisms, with an emphasis on steroids and other model compounds. Extensive deuterium labeling evidence was used to determine the fragmentation mechanisms of the diagnostically significant ions in the spectra of numerous model compounds, uncovering examples of wide-ranging hydrogen transfers, skeletal rearrangements, methyl and phenyl migrations, stereoselective fragmentations and low and high energy fragmentation processes. Depiction of the industrial research phase of my career includes comments on the pivotal role mass spectrometry played on advancing modern pharmaceutical research. Examples are presented of involvements with instrumental developments and a few select cases of applied research, including studies of bile mechanisms in vertebrates, identification of bisphenol-A leaching from sterilized polycarbonate containers, high sensitivity TCDD analyses and other projects. Reflecting on my services for the mass spectrometry society, involvements with the co-founding and 12 year chairing of the Asilomar Conference on Mass Spectrometry and founding of the Bay Area Mass Spectrometry regional MS discussion group, as part of my services for the mass spectrometry community, are presented in some detail. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:520-542, 2017. © 2016 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

  17. Identification of Fatty Acids, Phospholipids, and Their Oxidation Products Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Electrospray Ionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Harmon, Christopher W.; Mang, Stephen A.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-01-01

    Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have found increasing application in the analysis of biological samples. Using these techniques to solve problems in analytical chemistry should be an essential component of the training of undergraduate chemists. We…

  18. Imaging mass spectrometry in drug development and toxicology.

    PubMed

    Karlsson, Oskar; Hanrieder, Jörg

    2017-06-01

    During the last decades, imaging mass spectrometry has gained significant relevance in biomedical research. Recent advances in imaging mass spectrometry have paved the way for in situ studies on drug development, metabolism and toxicology. In contrast to whole-body autoradiography that images the localization of radiolabeled compounds, imaging mass spectrometry provides the possibility to simultaneously determine the discrete tissue distribution of the parent compound and its metabolites. In addition, imaging mass spectrometry features high molecular specificity and allows comprehensive, multiplexed detection and localization of hundreds of proteins, peptides and lipids directly in tissues. Toxicologists traditionally screen for adverse findings by histopathological examination. However, studies of the molecular and cellular processes underpinning toxicological and pathologic findings induced by candidate drugs or toxins are important to reach a mechanistic understanding and an effective risk assessment strategy. One of IMS strengths is the ability to directly overlay the molecular information from the mass spectrometric analysis with the tissue section and allow correlative comparisons of molecular and histologic information. Imaging mass spectrometry could therefore be a powerful tool for omics profiling of pharmacological/toxicological effects of drug candidates and toxicants in discrete tissue regions. The aim of the present review is to provide an overview of imaging mass spectrometry, with particular focus on MALDI imaging mass spectrometry, and its use in drug development and toxicology in general.

  19. Role of Mass Spectrometry in Clinical Endocrinology.

    PubMed

    Ketha, Siva S; Singh, Ravinder J; Ketha, Hemamalini

    2017-09-01

    The advent of mass spectrometry into the clinical laboratory has led to an improvement in clinical management of several endocrine diseases. Liquid chromatography tandem mass spectrometry found some of its first clinical applications in the diagnosis of inborn errors of metabolism, in quantitative steroid analysis, and in drug analysis laboratories. Mass spectrometry assays offer analytical sensitivity and specificity that is superior to immunoassays for many analytes. This article highlights several areas of clinical endocrinology that have witnessed the use of liquid chromatography tandem mass spectrometry to improve clinical outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Advances in imaging secondary ion mass spectrometry for biological samples

    DOE PAGES

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this hasmore » been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.« less

  1. Crux: Rapid Open Source Protein Tandem Mass Spectrometry Analysis

    PubMed Central

    2015-01-01

    Efficiently and accurately analyzing big protein tandem mass spectrometry data sets requires robust software that incorporates state-of-the-art computational, machine learning, and statistical methods. The Crux mass spectrometry analysis software toolkit (http://cruxtoolkit.sourceforge.net) is an open source project that aims to provide users with a cross-platform suite of analysis tools for interpreting protein mass spectrometry data. PMID:25182276

  2. Direct Analysis in Real Time (DART) of an Organothiophosphate at Ultrahigh Resolution by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry

    PubMed Central

    Prokai, Laszlo; Stevens, Stanley M.

    2016-01-01

    Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae. PMID:26784186

  3. Direct Analysis in Real Time (DART) of an Organothiophosphate at Ultrahigh Resolution by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry.

    PubMed

    Prokai, Laszlo; Stevens, Stanley M

    2016-01-16

    Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae.

  4. Reduction-resistant and reduction-catalytic double-crown nickel nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Zhou, Zhou, Shiming; Yao, Chuanhao; Liao, Lingwen; Wu, Zhikun

    2014-11-01

    In this work, an attempt to synthesize zero-valent Ni nanoclusters using the Brust method resulted in an unexpected material, Ni6(SCH2CH2Ph)12, which is a nanoscale Ni(ii)-phenylethanethiolate complex and a hexameric, double-crown-like structure, as determined by a series of characterizations, including mass spectrometry (MS), thermal gravimetric analysis (TGA), single-crystal X-ray diffraction (XRD), and X-ray photoelectron spectrometry (XPS). An interesting finding is that this complex is resistant to aqueous BH4-. Investigations into other metal-phenylethanethiolate and Ni-thiolate complexes reveal that this property is not universal and appears only in complexes with a double-crown-like structure, indicating the correlation between this interesting property and the complexes' special structure. Another interesting finding is that the reduction-resistant Ni6(SCH2CH2Ph)12 exhibits remarkably higher catalytic activity than a well-known catalyst, Au25(SCH2CH2Ph)18, toward the reduction of 4-nitrophenol at low temperature (e.g., 0 °C). This work will help stimulate more research on the properties and applications of less noble metal nanoclusters.In this work, an attempt to synthesize zero-valent Ni nanoclusters using the Brust method resulted in an unexpected material, Ni6(SCH2CH2Ph)12, which is a nanoscale Ni(ii)-phenylethanethiolate complex and a hexameric, double-crown-like structure, as determined by a series of characterizations, including mass spectrometry (MS), thermal gravimetric analysis (TGA), single-crystal X-ray diffraction (XRD), and X-ray photoelectron spectrometry (XPS). An interesting finding is that this complex is resistant to aqueous BH4-. Investigations into other metal-phenylethanethiolate and Ni-thiolate complexes reveal that this property is not universal and appears only in complexes with a double-crown-like structure, indicating the correlation between this interesting property and the complexes' special structure. Another interesting finding is that the reduction-resistant Ni6(SCH2CH2Ph)12 exhibits remarkably higher catalytic activity than a well-known catalyst, Au25(SCH2CH2Ph)18, toward the reduction of 4-nitrophenol at low temperature (e.g., 0 °C). This work will help stimulate more research on the properties and applications of less noble metal nanoclusters. Electronic supplementary information (ESI) available: Experimental section, detailed structural data, MS analyses of M-SCH2CH2Ph complexes, stability study of Ni6 and TGA analysis of Au25(SCH2CH2Ph)18. See DOI: 10.1039/c4nr04981k

  5. Mass spectrometry in grape and wine chemistry. Part II: The consumer protection.

    PubMed

    Flamini, Riccardo; Panighel, Annarita

    2006-01-01

    Controls in food industry are fundamental to protect the consumer health. For products of high quality, warranty of origin and identity is required and analytical control is very important to prevent frauds. In this article, the "state of art" of mass spectrometry in enological chemistry as a consumer safety contribute is reported. Gas chromatography-mass spectrometry (GC/MS) and liquid-chromatography-mass spectrometry (LC/MS) methods have been developed to determine pesticides, ethyl carbamate, and compounds from the yeast and bacterial metabolism in wine. The presence of pesticides in wine is mainly linked to the use of dicarboxyimide fungicides on vineyard shortly before the harvest to prevent the Botrytis cinerea attack of grape. Pesticide residues are regulated at maximum residue limits in grape of low ppm levels, but significantly lower levels in wine have to be detected, and mass spectrometry offers effective and sensitive methods. Moreover, mass spectrometry represent an advantageous alternative to the radioactive-source-containing electron capture detector commonly used in GC analysis of pesticides. Analysis of ochratoxin A (OTA) in wine by LC/MS and multiple mass spectrometry (MS/MS) permits to confirm the toxin presence without the use of expensive immunoaffinity columns, or time and solvent consuming sample derivatization procedures. Inductively coupled plasma-mass spectrometry (ICP/MS) is used to control heavy metals contamination in wine, and to verify the wine origin and authenticity. Isotopic ratio-mass spectrometry (IRMS) is applied to reveal wine watering and sugar additions, and to determine the product origin and traceability.

  6. (±)-Evodiakine, A Pair of Rearranged Rutaecarpine-Type Alkaloids From Evodia rutaecarpa.

    PubMed

    Li, Yan-Hong; Zhang, Yu; Peng, Li-Yan; Li, Xiao-Nian; Zhao, Qin-Shi; Li, Rong-Tao; Wu, Xing-De

    2016-12-01

    (±)-Evodiakine (1a and 1b), a pair of rearranged rutaecarpine-type alkaloids with an unprecedented 6/5/5/7/6 ring system, were isolated from the nearly ripe fruits of Evodia rutaecarpa. Separation of the enantiomers have been achieved by chiral HPLC column. The structures of (±)-evodiakine were unambiguously elucidated by 1D and 2D NMR spectra, mass spectrometry, and single-crystal X-ray diffraction. Their absolute configurations were determined by comparison of experimental and calculated electronic circular dichroism spectra. A hypothetical biogenetic pathway for (±)-evodiakine was also proposed. Compounds 1a, 1b, and the racemate (1) were tested for their cytotoxic and anti-inflammatory activities.

  7. Prostaglandin PGE2: a possible mechanism for bone destruction in calcinosis circumscripta.

    PubMed

    Caniggia, A; Gennari, C; Vattimo, A; Runci, F; Bombardieri, S

    1978-02-28

    A patient showed evident osteolysis in phalanges and heavy periarticular calcium deposits of the fingers, wrists and toes which avidly took up 47Ca. The dense, white, tooth-paste like fluid contained in the periarticular calcium deposits has been studied by two different X-ray diffraction methods, by Ubatuba's bioassay for prostaglandin, by thin layer chromatography and by mass spectrometry. The calcium deposits were hydroxyapatite and prostaglandin PGE2 was detected in them. The bone resorption stimulating activity of PGE2 would be expected to result in increased bone destruction with release of calcium salts and this could be a working hypothesis of the pathogenesis of calcinosis circumscripta.

  8. Stepwise Construction of Heterobimetallic Cages by an Extended Molecular Library Approach.

    PubMed

    Hardy, Matthias; Struch, Niklas; Topić, Filip; Schnakenburg, Gregor; Rissanen, Kari; Lützen, Arne

    2018-04-02

    Two novel heterobimetallic complexes, a trigonal-bipyramidal and a cubic one, have been synthesized and characterized using the same C 3 -symmetric metalloligand, prepared by a simple subcomponent self-assembly strategy. Adopting the molecular library approach, we chose a mononuclear, preorganized iron(II) complex as the metalloligand capable of self-assembly into a trigonal-bipyramidal or a cubic aggregate upon coordination to cis-protected C 2 -symmetric palladium(II) or unprotected tetravalent palladium(II) ions, respectively. The trigonal-bipyramidal complex was characterized by NMR and UV-vis spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and single-crystal X-ray diffraction. The cubic structure was characterized by NMR and UV-vis spectroscopy and ESI-MS.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, K.M.; Al-Jassim, M.M.; Williamson, D.L.

    Over the last two decades extensive studies on the optical and electrical properties of hydrogenated amorphous Si (a-Si:H) have been reported. However, less attention was given to the structural characterization of this material partly due to the insensitivity to hydrogen of structural probes such as x-rays and electron diffraction. From a recent set of experiments, results on the solubility limit of hydrogen in a special type of a-Si:H and the characterization of hydrogen induced complexes or nanobubbles has been reported. In this study, we report TEM observations of the structural morphology of hydrogen related defects that support these recent measurementsmore » obtained by secondary ion mass spectrometry (SIMS) and small-angle x-ray scattering (SAXS).« less

  10. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques

    NASA Astrophysics Data System (ADS)

    Baier, S.; Rochet, A.; Hofmann, G.; Kraut, M.; Grunwaldt, J.-D.

    2015-06-01

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.

  11. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques.

    PubMed

    Baier, S; Rochet, A; Hofmann, G; Kraut, M; Grunwaldt, J-D

    2015-06-01

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.

  12. Aging effects in bulk and fiber TlBr-TlI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wysocki, J.A.; Wilson, R.G.; Standlee, A.G.

    1988-05-01

    A study of optical aging in bulk and extruded fibers of thallium bromo-iodide (TlBr-TlI) is presented. A variety of techniques including secondary ion mass spectrometry (SIMS), powder neutron and x-ray diffraction, infrared spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy are used to probe the chemical and structural properties of both pristine and aged material. High concentration levels of a hydrogen bearing impurity have been detected by SIMS and neutron scattering in aged TlBr-TlI, and have been shown to be localized in the surface layers of fibers as well as bulk samples. We present EPR evidence which indicates that the hydrogenmore » bearing impurity is water.« less

  13. In-situ, time resolved monitoring of uranium in BFS:OPC grout. Part 2: Corrosion in water.

    PubMed

    Stitt, C A; Paraskevoulakos, C; Banos, A; Harker, N J; Hallam, K R; Pullin, H; Davenport, A; Street, S; Scott, T B

    2018-06-18

    To reflect potential conditions in a geological disposal facility, uranium was encapsulated in grout and submersed in de-ionised water for time periods between 2-47 weeks. Synchrotron X-ray Powder Diffraction and X-ray Tomography were used to identify the dominant corrosion products and measure their dimensions. Uranium dioxide was observed as the dominant corrosion product and time dependent thickness measurements were used to calculate oxidation rates. The effectiveness of physical and chemical grout properties to uranium corrosion and mobilisation is discussed and Inductively Coupled Plasma Mass Spectrometry was used to measure 238 U (aq) content in the residual water of several samples.

  14. Identification and Quantification of Pesticides in Environmental Waters With Solid Phase Microextraction and Analysis Using Field-Portable Gas Chromatography-Mass Spectrometry

    DTIC Science & Technology

    2004-06-10

    Microextraction and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry Name of Candidate: CPT Michael J. Nack...and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry Beyond brief excerpts is with the permission of the copyright owner, and...Pesticides in Environmental Waters with Solid Phase Microextraction and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry

  15. Diagnosis of gastroenterological diseases by metabolome analysis using gas chromatography-mass spectrometry.

    PubMed

    Yoshida, Masaru; Hatano, Naoya; Nishiumi, Shin; Irino, Yasuhiro; Izumi, Yoshihiro; Takenawa, Tadaomi; Azuma, Takeshi

    2012-01-01

    Recently, metabolome analysis has been increasingly applied to biomarker detection and disease diagnosis in medical studies. Metabolome analysis is a strategy for studying the characteristics and interactions of low molecular weight metabolites under a specific set of conditions and is performed using mass spectrometry and nuclear magnetic resonance spectroscopy. There is a strong possibility that changes in metabolite levels reflect the functional status of a cell because alterations in their levels occur downstream of DNA, RNA, and protein. Therefore, the metabolite profile of a cell is more likely to represent the current status of a cell than DNA, RNA, or protein. Thus, owing to the rapid development of mass spectrometry analytical techniques metabolome analysis is becoming an important experimental method in life sciences including the medical field. Here, we describe metabolome analysis using liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry (GC-MS), capillary electrophoresis-mass spectrometry, and matrix assisted laser desorption ionization-mass spectrometry. Then, the findings of studies about GC-MS-based metabolome analysis of gastroenterological diseases are summarized, and our research results are also introduced. Finally, we discuss the realization of disease diagnosis by metabolome analysis. The development of metabolome analysis using mass spectrometry will aid the discovery of novel biomarkers, hopefully leading to the early detection of various diseases.

  16. Unbiased and targeted mass spectrometry for the HDL proteome.

    PubMed

    Singh, Sasha A; Aikawa, Masanori

    2017-02-01

    Mass spectrometry is an ever evolving technology that is equipped with a variety of tools for protein research. Some lipoprotein studies, especially those pertaining to HDL biology, have been exploiting the versatility of mass spectrometry to understand HDL function through its proteome. Despite the role of mass spectrometry in advancing research as a whole, however, the technology remains obscure to those without hands on experience, but still wishing to understand it. In this review, we walk the reader through the coevolution of common mass spectrometry workflows and HDL research, starting from the basic unbiased mass spectrometry methods used to profile the HDL proteome to the most recent targeted methods that have enabled an unprecedented view of HDL metabolism. Unbiased global proteomics have demonstrated that the HDL proteome is organized into subgroups across the HDL size fractions providing further evidence that HDL functional heterogeneity is in part governed by its varying protein constituents. Parallel reaction monitoring, a novel targeted mass spectrometry method, was used to monitor the metabolism of HDL apolipoproteins in humans and revealed that apolipoproteins contained within the same HDL size fraction exhibit diverse metabolic properties. Mass spectrometry provides a variety of tools and strategies to facilitate understanding, through its proteins, the complex biology of HDL.

  17. Characterization of reaction intermediate aggregates in aniline oxidative polymerization at low proton concentration.

    PubMed

    Ding, Zhongfen; Sanchez, Timothy; Labouriau, Andrea; Iyer, Srinivas; Larson, Toti; Currier, Robert; Zhao, Yusheng; Yang, Dali

    2010-08-19

    Aggregates of reaction intermediates form during the early stages of aniline oxidative polymerization whenever the initial mole ratio of proton concentration to aniline monomer concentration is low ([H(+)](0)/[An](0)

  18. The allure of mass spectrometry: From an earlyday chemist's perspective

    PubMed Central

    2016-01-01

    1 This reminiscing review article is an account of the author's fascination and involvements with mass spectrometry from the perspective of an organic chemist with an interest in natural product chemistry. It covers a period from 1961 through the mid 1990s as mass spectrometry evolved form a novelty technique to become a most widely used analytical technique. Following a brief synopsis of my pathway to mass spectrometry, my research efforts in this field are presented with a focus mainly on evolving principles and technologies which I had personal involvements with. To provide historical perspectives, discussions of these developments are accompanied by brief outlines of the relevant state‐of‐the‐art, shedding light on the technical and conceptual challenges encountered during those early days in mass spectrometry. Examples are presented of my involvements with basic and applied research in mass spectrometry during graduate studies at Stanford University and close to three decade tenure in pharmaceutical research at Syntex Research. My basic research interests focused mainly on principles of electron ionization induced fragmentation mechanisms, with an emphasis on steroids and other model compounds. Extensive deuterium labeling evidence was used to determine the fragmentation mechanisms of the diagnostically significant ions in the spectra of numerous model compounds, uncovering examples of wide‐ranging hydrogen transfers, skeletal rearrangements, methyl and phenyl migrations, stereoselective fragmentations and low and high energy fragmentation processes. Depiction of the industrial research phase of my career includes comments on the pivotal role mass spectrometry played on advancing modern pharmaceutical research. Examples are presented of involvements with instrumental developments and a few select cases of applied research, including studies of bile mechanisms in vertebrates, identification of bisphenol‐A leaching from sterilized polycarbonate containers, high sensitivity TCDD analyses and other projects. Reflecting on my services for the mass spectrometry society, involvements with the co‐founding and 12 year chairing of the Asilomar Conference on Mass Spectrometry and founding of the Bay Area Mass Spectrometry regional MS discussion group, as part of my services for the mass spectrometry community, are presented in some detail. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:520–542, 2017 PMID:26999732

  19. US Food and Drug Administration Perspectives on Clinical Mass Spectrometry.

    PubMed

    Lathrop, Julia Tait; Jeffery, Douglas A; Shea, Yvonne R; Scholl, Peter F; Chan, Maria M

    2016-01-01

    Mass spectrometry-based in vitro diagnostic devices that measure proteins and peptides are underutilized in clinical practice, and none has been cleared or approved by the Food and Drug Administration (FDA) for marketing or for use in clinical trials. One way to increase their utilization is through enhanced interactions between the FDA and the clinical mass spectrometry community to improve the validation and regulatory review of these devices. As a reference point from which to develop these interactions, this article surveys the FDA's regulation of mass spectrometry-based devices, explains how the FDA uses guidance documents and standards in the review process, and describes the FDA's previous outreach to stakeholders. Here we also discuss how further communication and collaboration with the clinical mass spectrometry communities can identify opportunities for the FDA to provide help in the development of mass spectrometry-based devices and enhance their entry into the clinic. © 2015 American Association for Clinical Chemistry.

  20. Mass spectrometry-based biomarker discovery: toward a global proteome index of individuality.

    PubMed

    Hawkridge, Adam M; Muddiman, David C

    2009-01-01

    Biomarker discovery and proteomics have become synonymous with mass spectrometry in recent years. Although this conflation is an injustice to the many essential biomolecular techniques widely used in biomarker-discovery platforms, it underscores the power and potential of contemporary mass spectrometry. Numerous novel and powerful technologies have been developed around mass spectrometry, proteomics, and biomarker discovery over the past 20 years to globally study complex proteomes (e.g., plasma). However, very few large-scale longitudinal studies have been carried out using these platforms to establish the analytical variability relative to true biological variability. The purpose of this review is not to cover exhaustively the applications of mass spectrometry to biomarker discovery, but rather to discuss the analytical methods and strategies that have been developed for mass spectrometry-based biomarker-discovery platforms and to place them in the context of the many challenges and opportunities yet to be addressed.

  1. Silver-109-based laser desorption/ionization mass spectrometry method for detection and quantification of amino acids.

    PubMed

    Arendowski, Adrian; Nizioł, Joanna; Ruman, Tomasz

    2018-04-01

    A new methodology applicable for both high-resolution laser desorption/ionization mass spectrometry and mass spectrometry imaging of amino acids is presented. The matrix-assisted laser desorption ionization-type target containing monoisotopic cationic 109 Ag nanoparticles ( 109 AgNPs) was used for rapid mass spectrometry measurements of 11 amino acids of different chemical properties. Amino acids were directly tested in 100,000-fold concentration change conditions ranging from 100 μg/mL to 1 ng/mL which equates to 50 ng to 500 fg of amino acid per measurement spot. Limit of detection values obtained suggest that presented method/target system is among the fastest and most sensitive ones in laser mass spectrometry. Mass spectrometry imaging of spots of human blood plasma spiked with amino acids showed their surface distribution allowing optimization of quantitative measurements. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Newborn screening for sickling and other haemoglobin disorders using tandem mass spectrometry: A pilot study of methodology in laboratories in England.

    PubMed

    Daniel, Yvonne A; Henthorn, Joan

    2016-12-01

    To determine (i) if electrospray mass spectrometry-mass spectrometry with the SpOtOn Diagnostics Ltd reagent kit for sickle cell screening could be integrated into the English newborn screening programme, under routine screening conditions, and provide mass spectrometry-mass spectrometry results which match existing methods, and (ii) if common action values could be set for all manufacturers in the study, for all assessed haemoglobins, to indicate which samples require further investigation. Anonymised residual blood spots were analysed using the SpOtOn reagent kit as per manufacturer's instructions, in parallel with existing techniques at four laboratories. Mass spectrometry-mass spectrometry instrumentation at Laboratories A and B was AB Sciex (Warrington, UK) AP4000, and at Laboratories C and D, Waters Micromass (Manchester, UK), Xevo TQMS and Premier, respectively. There were 23,898 results accepted from the four laboratories. Excellent specificity at 100% sensitivity was observed for haemoglobin S, haemoglobin C, haemoglobin E and haemoglobin O Arab . A common action value was not possible for Hb C, but action values were set by manufacturer. The two haemoglobin D Punjab cases at Laboratory D were not detected using the common action value. Conversely, false-positive results with haemoglobin D Punjab were a problem at the remaining three laboratories. This multicentre study demonstrates that it is possible to implement mass spectrometry-mass spectrometry into an established screening programme while maintaining consistency with existing methods for haemoglobinopathy screening. However, one of the instruments investigated cannot be recommended for use with this application. © The Author(s) 2016.

  3. Teaching Diffraction with Hands-On Optical Spectrometry

    ERIC Educational Resources Information Center

    Fischer, Robert

    2012-01-01

    Although the observation of optical spectra is common practice in physics classes, students are usually limited to a passive, qualitative observation of nice colours. This paper discusses a diffraction-based spectrometer that allows students to take quantitative measurements of spectral bands. Students can build it within minutes from generic…

  4. ENVIRONMENTAL MASS SPECTROMETRY: EMERGING CONTAMINANTS AND CURRENT ISSUES

    EPA Science Inventory

    This review covers developments in environmental mass spectrometry over the period of 2000-2001. A few significant references that appeared between January and February 2002 are also included. The previous Environmental Mass Spectrometry review was very comprehensive, including...

  5. Sampling and analyte enrichment strategies for ambient mass spectrometry.

    PubMed

    Li, Xianjiang; Ma, Wen; Li, Hongmei; Ai, Wanpeng; Bai, Yu; Liu, Huwei

    2018-01-01

    Ambient mass spectrometry provides great convenience for fast screening, and has showed promising potential in analytical chemistry. However, its relatively low sensitivity seriously restricts its practical utility in trace compound analysis. In this review, we summarize the sampling and analyte enrichment strategies coupled with nine modes of representative ambient mass spectrometry (desorption electrospray ionization, paper vhspray ionization, wooden-tip spray ionization, probe electrospray ionization, coated blade spray ionization, direct analysis in real time, desorption corona beam ionization, dielectric barrier discharge ionization, and atmospheric-pressure solids analysis probe) that have dramatically increased the detection sensitivity. We believe that these advances will promote routine use of ambient mass spectrometry. Graphical abstract Scheme of sampling stretagies for ambient mass spectrometry.

  6. Current use of high-resolution mass spectrometry in drug screening relevant to clinical and forensic toxicology and doping control.

    PubMed

    Ojanperä, Ilkka; Kolmonen, Marjo; Pelander, Anna

    2012-05-01

    Clinical and forensic toxicology and doping control deal with hundreds or thousands of drugs that may cause poisoning or are abused, are illicit, or are prohibited in sports. Rapid and reliable screening for all these compounds of different chemical and pharmaceutical nature, preferably in a single analytical method, is a substantial effort for analytical toxicologists. Combined chromatography-mass spectrometry techniques with standardised reference libraries have been most commonly used for the purpose. In the last ten years, the focus has shifted from gas chromatography-mass spectrometry to liquid chromatography-mass spectrometry, because of progress in instrument technology and partly because of the polarity and low volatility of many new relevant substances. High-resolution mass spectrometry (HRMS), which enables accurate mass measurement at high resolving power, has recently evolved to the stage that is rapidly causing a shift from unit-resolution, quadrupole-dominated instrumentation. The main HRMS techniques today are time-of-flight mass spectrometry and Orbitrap Fourier-transform mass spectrometry. Both techniques enable a range of different drug-screening strategies that essentially rely on measuring a compound's or a fragment's mass with sufficiently high accuracy that its elemental composition can be determined directly. Accurate mass and isotopic pattern acts as a filter for confirming the identity of a compound or even identification of an unknown. High mass resolution is essential for improving confidence in accurate mass results in the analysis of complex biological samples. This review discusses recent applications of HRMS in analytical toxicology.

  7. Clinical Application of Ambient Ionization Mass Spectrometry

    PubMed Central

    Li, Li-Hua; Hsieh, Hua-Yi; Hsu, Cheng-Chih

    2017-01-01

    Ambient ionization allows mass spectrometry analysis directly on the sample surface under atmospheric pressure with almost zero sample pretreatment. Since the development of desorption electrospray ionization (DESI) in 2004, many other ambient ionization techniques were developed. Due to their simplicity and low operation cost, rapid and on-site clinical mass spectrometry analysis becomes real. In this review, we will highlight some of the most widely used ambient ionization mass spectrometry approaches and their applications in clinical study. PMID:28337399

  8. Identification of chemical components in Baidianling Capsule based on gas chromatography-mass spectrometry and high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Wu, Wenying; Chen, Yu; Wang, Binjie; Sun, Xiaoyang; Guo, Ping; Chen, Xiaohui

    2017-08-01

    Baidianling Capsule, which is made from 16 Chinese herbs, has been widely used for treating vitiligo clinically. In this study, the sensitive and rapid method has been developed for the analysis of chemical components in Baidianling Capsule by gas chromatography-mass spectrometry in combination with retention indices and high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. Firstly, a total of 110 potential volatile compounds obtained from different extraction procedures including alkanes, alkenes, alkynes, ketones, ethers, aldehydes, alcohols, phenols, organic acids, esters, furans, pyrrole, acid amides, heterocycles, and oxides were detected from Baidianling Capsule by gas chromatography-mass spectrometry, of which 75 were identified by mass spectrometry in combination with the retention index. Then, a total of 124 components were tentatively identified by high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. Fifteen constituents from Baidianling Capsule were accurately identified by comparing the retention times with those of reference compounds, others were identified by comparing the retention times and mass spectrometry data, as well as retrieving the reference literature. This study provides a practical strategy for rapidly screening and identifying the multiple constituents of a complex traditional Chinese medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Bayesian Integration and Characterization of Composition C-4 Plastic Explosives Based on Time-of-Flight Secondary Ion Mass Spectrometry and Laser Ablation-Inductively Coupled Plasma Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahoney, Christine M.; Kelly, Ryan T.; Alexander, M. L.

    Key elements regarding the use of non-radioactive ionization sources will be presented as related to explosives detection by mass spectrometry and ion mobility spectrometry. Various non-radioactive ionization sources will be discussed along with associated ionization mechanisms pertaining to specific sample types.

  10. "EMERGING" POLLUTANTS, MASS SPECTROMETRY, AND COMMUNICATING SCIENCE: PHARMACEUTICALS IN THE ENVIRONMENT

    EPA Science Inventory

    A foundation for Environmental Science - Mass Spectrometry: Historically fundamental to amassing our understanding of environmental processes and chemical pollution is the realm of mass spectrometry - the mainstay of analytical chemistry - the workhorse that supplies much of the...

  11. Persubstituted p-benzoquinone monoxime alkyl ethers and their molecular structure

    NASA Astrophysics Data System (ADS)

    Slaschinin, D. G.; Alemasov, Y. A.; Ilushkin, D. I.; Sokolenko, W. A.; Tovbis, M. S.; Kirik, S. D.

    2012-05-01

    Theoretical and experimental approaches were applied for the investigation of the reactivity of persubstituted 4-nitrosophenols in the reaction with alkyl iodides, in particular the potassium salt of 2,6-di(alkoxycarbonyl)-3,5-dimethyl-4-nitrosophenol. Hartre-Fock calculations showed that the anion negative charge was located mostly on the oxygen of hydroxyl group, while estimation of the total energy of the alkylated products pointed out the benefit of alkylation on the oxygen atom of the nitroso group yielding p-benzoquinone monoxime alkyl ethers. Methylation and ethylation of persubstituted nitrosophenols were carried out. The products obtained were investigated using X-ray diffraction, 1Н NMR spectroscopy and mass spectrometry. The crystal structure of the methyl ether of 2,6-di(alkoxycarbonyl)-3,5-dimethyl-1,4-benzoquinone-1-oxime (С15H19NO6) (I) was determined by the X-ray powder diffraction technique. The unit cell parameters were: a = 7.3322(6) Å, b = 10.5039(12) Å, c = 21.1520(20) Å, β = 93.742(6)°, V = 1625.58(2) Å3Z = 4, Sp.Gr. P21/c. The structure modeling was made in direct space by the Monte-Carlo approach using rigid and soft restrictions. The structure refinement was completed by the Rietveld method. It was established that the alkylation occurred on the oxygen atom of the nitroso group. The molecules (I) in the crystal structure were packed in columns along the axis a with pairwise convergence in a column up to the distance of 3.63 Å due to a 180° turn of every second molecule around the column axis. In the molecular structure the methyloxime group was oriented in the benzene plane and had π-conjugation with the ring. The ethoxycarbonyl groups were turned nearly perpendicular to the ring. Other compounds obtained had the structure of the alkyl ethers of 1.4-benzoquinone-1-oxime, which was proved by 1Н NMR spectroscopy and mass-spectrometry.

  12. On the Habitability of Desert Varnish: A Combined Study by Micro-Raman Spectroscopy, X-ray Diffraction, and Methylated Pyrolysis-Gas Chromatography-Mass Spectrometry.

    PubMed

    Malherbe, C; Hutchinson, I B; Ingley, R; Boom, A; Carr, A S; Edwards, H; Vertruyen, B; Gilbert, B; Eppe, G

    2017-11-01

    In 2020, the ESA ExoMars and NASA Mars 2020 missions will be launched to Mars to search for evidence of past and present life. In preparation for these missions, terrestrial analog samples of rock formations on Mars are studied in detail in order to optimize the scientific information that the analytical instrumentation will return. Desert varnishes are thin mineral coatings found on rocks in arid and semi-arid environments on Earth that are recognized as analog samples. During the formation of desert varnishes (which takes many hundreds of years), organic matter is incorporated, and microorganisms may also play an active role in the formation process. During this study, four complementary analytical techniques proposed for Mars missions (X-ray diffraction [XRD], Raman spectroscopy, elemental analysis, and pyrolysis-gas chromatography-mass spectrometry [Py-GC-MS]) were used to interrogate samples of desert varnish and describe their capacity to sustain life under extreme scenarios. For the first time, both the geochemistry and the organic compounds associated with desert varnish are described with the use of identical sets of samples. XRD and Raman spectroscopy measurements were used to nondestructively interrogate the mineralogy of the samples. In addition, the use of Raman spectroscopy instruments enabled the detection of β-carotene, a highly Raman-active biomarker. The content and the nature of the organic material in the samples were further investigated with elemental analysis and methylated Py-GC-MS, and a bacterial origin was determined to be likely. In the context of planetary exploration, we describe the habitable nature of desert varnish based on the biogeochemical composition of the samples. Possible interference of the geological substrate on the detectability of pyrolysis products is also suggested. Key Words: Desert varnish-Habitability-Raman spectroscopy-Py-GC-MS-XRD-ExoMars-Planetary science. Astrobiology 17, 1123-1137.

  13. Secondary Sulfate Mineralization and Basaltic Chemistry of Craters of the Moon National Monument, Idaho: Potential Martian Analog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Doc Richardson; Nancy W. Hinman; Lindsay J. McHenry

    2012-05-01

    Secondary deposits associated with the basaltic caves of Craters of the Moon National Monument (COM) in southern Idaho were examined using X-ray powder diffraction, X-ray fluorescence spectrometry, Fourier transform infrared spectrometry, and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The secondary mineral assemblages are dominated by Na-sulfate minerals (thenardite, mirabilite) with a small fraction of the deposits containing minor concentrations of Na-carbonate minerals. The assemblages are found as white, efflorescent deposits in small cavities along the cave walls and ceilings and as localized mounds on the cave floors. Formation of the deposits is likely due to direct and indirectmore » physiochemical leaching of meteoritic water through the overlying basalts. Whole rock data from the overlying basaltic flows are characterized by their extremely high iron concentrations, making them good analogs for martian basalts. Understanding the physiochemical pathways leading to secondary mineralization at COM is also important because lava tubes and basaltic caves are present on Mars. The ability of FTICR-MS to consistently and accurately identify mineral species within these heterogeneous mineral assemblages proves its validity as a valuable technique for the direct fingerprinting of mineral species by deductive reasoning or by comparison with reference spectra.« less

  14. Rapid characterization of microorganisms by mass spectrometry--what can be learned and how?

    PubMed

    Fenselau, Catherine C

    2013-08-01

    Strategies for the rapid and reliable analysis of microorganisms have been sought to meet national needs in defense, homeland security, space exploration, food and water safety, and clinical diagnosis. Mass spectrometry has long been a candidate technique because it is extremely rapid and can provide highly specific information. It has excellent sensitivity. Molecular and fragment ion masses provide detailed fingerprints, which can also be interpreted. Mass spectrometry is also a broad band method--everything has a mass--and it is automatable. Mass spectrometry is a physiochemical method that is orthogonal and complementary to biochemical and morphological methods used to characterize microorganisms.

  15. Optimization of Whole-Body Zebrafish Sectioning Methods for Mass Spectrometry Imaging

    EPA Science Inventory

    Mass spectrometry imaging methods and protocols have become widely adapted to a variety of tissues and species. However, the mass spectrometry imaging literature contains minimal information on whole-body cryosection preparation for the zebrafish (Danio rerio), a model organism ...

  16. Mass spectrometry for the determination of fission products 135Cs, 137Cs and 90Sr: A review of methodology and applications

    NASA Astrophysics Data System (ADS)

    Bu, Wenting; Zheng, Jian; Liu, Xuemei; Long, Kaiming; Hu, Sheng; Uchida, Shigeo

    2016-05-01

    The radioactive fission products 135Cs, 137Cs and 90Sr have been released into the environment by human activities such as nuclear weapon tests, nuclear fuel reprocessing and nuclear power plant accidents. Monitoring of these radionuclides is important for dose assessment. Moreover, the 135Cs/137Cs isotopic ratio can be used as an important long-term fingerprint for radioactive source identification as it varies with weapon, reactor and fuel types. In recent years, mass spectrometry has become a powerful method for the determination of 135Cs, 137Cs and 90Sr in environmental samples. Mass spectrometry is characterized by the high sensitivity and low detection limit and the relatively shorter sample preparation and analysis times compared with radiometric methods. However, the mass spectrometric determination of radiocesium and 90Sr is affected by the peak tailings of the stable nuclides 133Cs and 88Sr, respectively, and the related isobaric and polyatomic interferences. Chemical separation and optimization of the mass spectrometry instrumental setup are strongly needed prior to the mass spectrometry detection. In this paper, we have reviewed the published works about the determination of 135Cs, 137Cs and 90Sr by mass spectrometry. The mass spectrometric techniques we cover are resonance ionization mass spectrometry (RIMS), thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICP-MS). For each technique, the principles or strategies used for the analysis of these radionuclides are discussed; these included the abundance sensitivity, ways to suppress the interference signals, and the instrumental setup. In particular, the chemical procedures for eliminating the interferences are also summarized. To date, triple quadrupole ICP-MS (ICP-QQQ) showed great ability for the analysis of these radionuclides and the detection limits were as low as 0.01 pg/mL levels. Finally, some investigations on the behaviors of radiocesium and radioactive source identifications are presented with the results of 135Cs/137Cs isotopic ratios measured in various environmental samples.

  17. Mass Spectrometry as a Powerful Analytical Technique for the Structural Characterization of Synthesized and Natural Products

    NASA Astrophysics Data System (ADS)

    Es-Safi, Nour-Eddine; Essassi, El Mokhtar; Massoui, Mohamed; Banoub, Joseph

    Mass spectrometry is an important tool for the identification and structural elucidation of natural and synthesized compounds. Its high sensitivity and the possibility of coupling liquid chromatography with mass spectrometry detection make it a technique of choice for the investigation of complex mixtures like raw natural extracts. The mass spectrometer is a universal detector that can achieve very high sensitivity and provide information on the molecular mass. More detailed information can be subsequently obtained by resorting to collision-induced dissociation tandem mass spectrometry (CID-MS/MS). In this review, the application of mass spectrometric techniques for the identification of natural and synthetic compounds is presented. The gas-phase fragmentation patterns of a series of four natural flavonoid glycosides, three synthesized benzodiazepines and two synthesized quinoxalinone derivatives were investigated using electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry techniques. Exact accurate masses were measured using a modorate resolution quadrupole orthogonal time-of-flight QqTOF-MS/MS hybrid mass spectrometer instrument. Confirmation of the molecular masses and the chemical structures of the studied compounds were achieved by exploring the gas-phase breakdown routes of the ionized molecules. This was rationalized by conducting low-energy collision CID-MS/MS analyses (product ion- and precursor ion scans) using a conventional quadrupole hexapole-quadrupole (QhQ) tandem mass spectrometer.

  18. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.

  19. Mass spectrometry-based metabolomics: Targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders.

    PubMed

    Luan, Hemi; Wang, Xian; Cai, Zongwei

    2017-11-12

    Metabolomics seeks to take a "snapshot" in a time of the levels, activities, regulation and interactions of all small molecule metabolites in response to a biological system with genetic or environmental changes. The emerging development in mass spectrometry technologies has shown promise in the discovery and quantitation of neuroactive small molecule metabolites associated with gut microbiota and brain. Significant progress has been made recently in the characterization of intermediate role of small molecule metabolites linked to neural development and neurodegenerative disorder, showing its potential in understanding the crosstalk between gut microbiota and the host brain. More evidence reveals that small molecule metabolites may play a critical role in mediating microbial effects on neurotransmission and disease development. Mass spectrometry-based metabolomics is uniquely suitable for obtaining the metabolic signals in bidirectional communication between gut microbiota and brain. In this review, we summarized major mass spectrometry technologies including liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and imaging mass spectrometry for metabolomics studies of neurodegenerative disorders. We also reviewed the recent advances in the identification of new metabolites by mass spectrometry and metabolic pathways involved in the connection of intestinal microbiota and brain. These metabolic pathways allowed the microbiota to impact the regular function of the brain, which can in turn affect the composition of microbiota via the neurotransmitter substances. The dysfunctional interaction of this crosstalk connects neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Huntington's disease. The mass spectrometry-based metabolomics analysis provides information for targeting dysfunctional pathways of small molecule metabolites in the development of the neurodegenerative diseases, which may be valuable for the investigation of underlying mechanism of therapeutic strategies. © 2017 Wiley Periodicals, Inc.

  20. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 2: Peptide Identification via Molecular Mass Determination

    ERIC Educational Resources Information Center

    Arnquist, Isaac J.; Beussman, Douglas J.

    2009-01-01

    Mass spectrometry has become a routine analytical tool in the undergraduate curriculum in the form of GC-MS. While relatively few undergraduate programs have incorporated biological mass spectrometry into their programs, the importance of these techniques, as demonstrated by their recognition with the 2002 Nobel Prize, will hopefully lead to…

  1. Fluorimetric and mass spectrometric study of the interaction of β-cyclodextrin and osthole

    NASA Astrophysics Data System (ADS)

    Zhang, Huarong; Zhang, Hanqi; Qu, Chenling; Bai, Lifei; Ding, Lan

    2007-11-01

    The inclusion complex of β-cyclodextrin (β-CD) and osthole was studied by the electrospray ionization mass spectrometry (ESI-MS) and fluorescence spectrometry. From the mass spectrum, the 1:1 stoichiometric inclusion complex of β-CD and osthole was observed. The tandem mass spectrum was performed. The fluorescence intensity of osthole increased in the present of β-CD. According to the 1:1 β-CD-osthole mode, the dissociation constant ( KD) was obtained by ESI-MS and fluorescence spectrometry. The KD of β-CD-osthole inclusion complex is 6.96 × 10 -3 mol L -1 obtained by mass spectrometry and that is 8.14 × 10 -3 mol L -1 obtained by fluorescence spectrometry, which is consistent with each other.

  2. Supercritical fluid extraction and direct fluid injection mass spectrometry for the determination of trichothecene mycotoxins in wheat samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinoski, H.T.; Udseth, H.R.; Wright, B.W.

    1986-10-01

    The application of on-line supercritical fluid extraction with chemical ionization mass spectrometry and collision induced dissociation tandem mass spectrometry for the rapid identification of parts-per-million levels of several trichothecene mycotoxins is demonstrated. Supercritical carbon dioxide is shown to allow identification of mycotoxins with minimum sample handling in complex natural matrices (e.g., wheat). Tandem mass spectrometry techniques are employed for unambiguous identification of compounds of varying polarity, and false positives from isobaric compounds are avoided. Capillary column supercritical fluid chromatography-mass spectrometry of a supercritical fluid extract of the same sample was also performed and detection limits in the parts-per-billion range appearmore » feasible.« less

  3. Recent applications of gas chromatography with high-resolution mass spectrometry.

    PubMed

    Špánik, Ivan; Machyňáková, Andrea

    2018-01-01

    Gas chromatography coupled to high-resolution mass spectrometry is a powerful analytical method that combines excellent separation power of gas chromatography with improved identification based on an accurate mass measurement. These features designate gas chromatography with high-resolution mass spectrometry as the first choice for identification and structure elucidation of unknown volatile and semi-volatile organic compounds. Gas chromatography with high-resolution mass spectrometry quantitative analyses was previously focused on the determination of dioxins and related compounds using magnetic sector type analyzers, a standing requirement of many international standards. The introduction of a quadrupole high-resolution time-of-flight mass analyzer broadened interest in this method and novel applications were developed, especially for multi-target screening purposes. This review is focused on the development and the most interesting applications of gas chromatography coupled to high-resolution mass spectrometry towards analysis of environmental matrices, biological fluids, and food safety since 2010. The main attention is paid to various approaches and applications of gas chromatography coupled to high-resolution mass spectrometry for non-target screening to identify contaminants and to characterize the chemical composition of environmental, food, and biological samples. The most interesting quantitative applications, where a significant contribution of gas chromatography with high-resolution mass spectrometry over the currently used methods is expected, will be discussed as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging.

    PubMed

    Kiss, András; Smith, Donald F; Jungmann, Julia H; Heeren, Ron M A

    2013-12-30

    Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source was combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The system's mass spectral and imaging performance is tested with various benchmark samples and thin tissue sections. The high secondary ion yield (with respect to 'traditional' monatomic primary ion sources) of the C60 primary ion source and the increased sensitivity of the high voltage detector setup improve microscope mode secondary ion mass spectrometry imaging. The analysis time and the signal-to-noise ratio are improved compared with other microscope mode imaging systems, all at high spatial resolution. We have demonstrated the unique capabilities of a C60 ion microscope with a Timepix detector for high spatial resolution microscope mode secondary ion mass spectrometry imaging. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Impact of comprehensive two-dimensional gas chromatography with mass spectrometry on food analysis.

    PubMed

    Tranchida, Peter Q; Purcaro, Giorgia; Maimone, Mariarosa; Mondello, Luigi

    2016-01-01

    Comprehensive two-dimensional gas chromatography with mass spectrometry has been on the separation-science scene for about 15 years. This three-dimensional method has made a great positive impact on various fields of research, and among these that related to food analysis is certainly at the forefront. The present critical review is based on the use of comprehensive two-dimensional gas chromatography with mass spectrometry in the untargeted (general qualitative profiling and fingerprinting) and targeted analysis of food volatiles; attention is focused not only on its potential in such applications, but also on how recent advances in comprehensive two-dimensional gas chromatography with mass spectrometry will potentially be important for food analysis. Additionally, emphasis is devoted to the many instances in which straightforward gas chromatography with mass spectrometry is a sufficiently-powerful analytical tool. Finally, possible future scenarios in the comprehensive two-dimensional gas chromatography with mass spectrometry food analysis field are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Revealing Individual Lifestyles through Mass Spectrometry Imaging of Chemical Compounds in Fingerprints.

    PubMed

    Hinners, Paige; O'Neill, Kelly C; Lee, Young Jin

    2018-03-26

    Fingerprints, specifically the ridge details within the print, have long been used in forensic investigations for individual identification. Beyond the ridge detail, fingerprints contain useful chemical information. The study of fingerprint chemical information has become of interest, especially with mass spectrometry imaging technologies. Mass spectrometry imaging visualizes the spatial relationship of each compound detected, allowing ridge detail and chemical information in a single analysis. In this work, a range of exogenous fingerprint compounds that may reveal a personal lifestyle were studied using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Studied chemical compounds include various brands of bug sprays and sunscreens, as well as food oils, alcohols, and citrus fruits. Brand differentiation and source determination were possible based on the active ingredients or exclusive compounds left in fingerprints. Tandem mass spectrometry was performed for the key compounds, so that these compounds could be confidently identified in a single multiplex mass spectrometry imaging data acquisition.

  7. Mass spectrometry of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine

    2003-10-01

    The capability of determining element concentrations at the trace and ultratrace level and isotope ratios is a main feature of inorganic mass spectrometry. The precise and accurate determination of isotope ratios of long-lived natural and artificial radionuclides is required, e.g. for their environmental monitoring and health control, for studying radionuclide migration, for age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, for quality assurance and determination of the burn-up of fuel material in a nuclear power plant, for reprocessing plants, nuclear material accounting and radioactive waste control. Inorganic mass spectrometry, especially inductively coupled plasma mass spectrometry (ICP-MS) as the most important inorganic mass spectrometric technique today, possesses excellent sensitivity, precision and good accuracy for isotope ratio measurements and practically no restriction with respect to the ionization potential of the element investigated—therefore, thermal ionization mass spectrometry (TIMS), which has been used as the dominant analytical technique for precise isotope ratio measurements of long-lived radionuclides for many decades, is being replaced increasingly by ICP-MS. In the last few years instrumental progress in improving figures of merit for the determination of isotope ratio measurements of long-lived radionuclides in ICP-MS has been achieved by the application of a multiple ion collector device (MC-ICP-MS) and the introduction of the collision cell interface in order to dissociate disturbing argon-based molecular ions, to reduce the kinetic energy of ions and neutralize the disturbing noble gas ions (e.g. of 129Xe + for the determination of 129I). The review describes the state of the art and the progress of different inorganic mass spectrometric techniques such as ICP-MS, laser ablation ICP-MS vs. TIMS, glow discharge mass spectrometry, secondary ion mass spectrometry, resonance ionization mass spectrometry and accelerator mass spectrometry for the determination of long-lived radionuclides in quite different materials.

  8. Comparison of pulse glow discharge-ion mobility spectrometry and liquid chromatography with tandem mass spectrometry based on multiplug filtration cleanup for the analysis of tricaine mesylate residues in fish and water.

    PubMed

    Zou, Nan; Chen, Ronghua; Qin, Yuhong; Song, Shuangyu; Tang, Xinglin; Pan, Canping

    2016-09-01

    Analytical methods based on multiplug filtration cleanup coupled with pulse glow discharge-ion mobility spectrometry and liquid chromatography tandem mass spectrometry were developed for the analysis of tricaine mesylate residue in fish and fish-raising water samples. A silica fiber holder and an appropriate new interface were designed to make the direct introduction of the fiber into the pulse glow discharge-ion mobility spectrometry introduction mechanism. The multiplug filtration cleanup method with adsorption mixtures was optimized for the determination of tricaine mesylate in fish samples. Good linear relationships were obtained by the two methods. For fish samples, limits of detection were 6 and 0.6 μg/kg by ion mobility spectrometry and liquid chromatography with tandem mass spectrometry, respectively. The matrix effect of the established liquid chromatography tandem mass spectrometry method was negligible for fish samples but that of the ion mobility spectrometry method was not. The two methods were compared. The ion mobility spectrometry system could be used a rapid screening tool on site with the advantage of rapidity, simplicity, and portability, and the liquid chromatography tandem mass spectrometry system could be used for validation in laboratory conditions with the advantage of lower limit of detection, stability, and precision. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. MPAI (mass probes aided ionization) method for total analysis of biomolecules by mass spectrometry.

    PubMed

    Honda, Aki; Hayashi, Shinichiro; Hifumi, Hiroki; Honma, Yuya; Tanji, Noriyuki; Iwasawa, Naoko; Suzuki, Yoshio; Suzuki, Koji

    2007-01-01

    We have designed and synthesized various mass probes, which enable us to effectively ionize various molecules to be detected with mass spectrometry. We call the ionization method using mass probes the "MPAI (mass probes aided ionization)" method. We aim at the sensitive detection of various biological molecules, and also the detection of bio-molecules by a single mass spectrometry serially without changing the mechanical settings. Here, we review mass probes for small molecules with various functional groups and mass probes for proteins. Further, we introduce newly developed mass probes for proteins for highly sensitive detection.

  10. Analysis of human plasma lipids by using comprehensive two-dimensional gas chromatography with dual detection and with the support of high-resolution time-of-flight mass spectrometry for structural elucidation.

    PubMed

    Salivo, Simona; Beccaria, Marco; Sullini, Giuseppe; Tranchida, Peter Q; Dugo, Paola; Mondello, Luigi

    2015-01-01

    The main focus of the present research is the analysis of the unsaponifiable lipid fraction of human plasma by using data derived from comprehensive two-dimensional gas chromatography with dual quadrupole mass spectrometry and flame ionization detection. This approach enabled us to attain both mass spectral information and analyte percentage data. Furthermore, gas chromatography coupled with high-resolution time-of-flight mass spectrometry was used to increase the reliability of identification of several unsaponifiable lipid constituents. The synergism between both the high-resolution gas chromatography and mass spectrometry processes enabled us to attain a more in-depth knowledge of the unsaponifiable fraction of human plasma. Additionally, information was attained on the fatty acid and triacylglycerol composition of the plasma samples, subjected to investigation by using comprehensive two-dimensional gas chromatography with dual quadrupole mass spectrometry and flame ionization detection and high-performance liquid chromatography with atmospheric pressure chemical ionization quadrupole mass spectrometry, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Online differentiation of mineral phase in aerosol particles by ion formation mechanism using a LAAP-TOF single-particle mass spectrometer

    NASA Astrophysics Data System (ADS)

    Marsden, Nicholas A.; Flynn, Michael J.; Allan, James D.; Coe, Hugh

    2018-01-01

    Mineralogy of silicate mineral dust has a strong influence on climate and ecosystems due to variation in physiochemical properties that result from differences in composition and crystal structure (mineral phase). Traditional offline methods of analysing mineral phase are labour intensive and the temporal resolution of the data is much longer than many atmospheric processes. Single-particle mass spectrometry (SPMS) is an established technique for the online size-resolved measurement of particle composition by laser desorption ionisation (LDI) followed by time-of-flight mass spectrometry (TOF-MS). Although non-quantitative, the technique is able to identify the presence of silicate minerals in airborne dust particles from markers of alkali metals and silicate molecular ions in the mass spectra. However, the differentiation of mineral phase in silicate particles by traditional mass spectral peak area measurements is not possible. This is because instrument function and matrix effects in the ionisation process result in variations in instrument response that are greater than the differences in composition between common mineral phases.In this study, we introduce a novel technique that enables the differentiation of mineral phase in silicate mineral particles by ion formation mechanism measured from subtle changes in ion arrival times at the TOF-MS detector. Using a combination of peak area and peak centroid measurements, we show that the arrangement of the interstitial alkali metals in the crystal structure, an important property in silicate mineralogy, influences the ion arrival times of elemental and molecular ion species in the negative ion mass spectra. A classification scheme is presented that allowed for the differentiation of illite-smectite, kaolinite and feldspar minerals on a single-particle basis. Online analysis of mineral dust aerosol generated from clay mineral standards produced mineral fractions that are in agreement with bulk measurements reported by traditional XRD (X-ray diffraction) analysis.

  12. Lipidomics in triacylglycerol and cholesteryl ester oxidation.

    PubMed

    Kuksis, Arnis

    2007-05-01

    Although direct mass spectrometry is capable of identification the major molecular species of lipids in crude total lipid extracts, prior chromatographic isolation is necessary for detection and identification of the minor components. This is especially important for the analysis of the oxolipids, which usually occur in trace amounts in the total lipid extract, and require prior isolation for detailed analysis. Both thin-layer chromatography and adsorption cartridges provide effective means for isolation and enrichment of lipid classes, while gas-liquid chromatography and high performance liquid chromatography with on-line mass spectrometry permit further separation and identification of molecular species. Prior chromatographic resolution is absolutely necessary for the identification of isobaric and chiral molecules, which mass spectrometry/mass spectrometry (MS/MS) cannot distinguish. Both gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry applications may require the preparation of derivatives in order to improve the chromatographic and mass spectrometric properties of the oxolipids which is a small inconvenience for securing analytical reliability. The following chapter reviews the advantages and necessity of combined chromatographic-mass spectrometric approaches to successful identification and quantification of molecular species of oxoacylglycerols and oxocholesteryl esters in in-vitro model studies of lipid peroxidation and in the analyses of oxolipids recovered from tissues.

  13. Mass spectrometry. [in organic chemistry

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  14. Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Schweiger, Michael J.; Kim, Dong-Sang

    2014-04-30

    The purpose of this study was to determine the solubility of iodine in a low-activity waste borosilicate glass when heated inside an evacuated and sealed fused quartz ampoule. The iodine was added to glass frit as KI in quantities of 100–24000 ppm iodine (by mass), each mixture was added to an ampoule, the ampoule was heated at 1000 °C for 2 h and then air quenched. In samples with ≥12000 ppm iodine, low viscosity salt phases were observed on the surface of the melts during cooling that solidified into a white coating upon cooling. These salts were identified as mixturesmore » of KI, NaI, and Na2SO4 with X-ray diffraction (XRD). The iodine concentrations in glass specimens were analyzed with inductively-coupled plasma mass spectrometry and the overall iodine solubility was determined to be 10000 ppm by mass. Several crystalline inclusions of iodine sodalite, Na8(AlSiO4)6I2, were observed in the 24000 ppm specimen and were verified with micro-XRD and wavelength dispersive spectroscopy.« less

  15. Iodine solubility in a low-activity waste borosilicate glass at 1000°C

    DOE PAGES

    Riley, Brian J.; Schweiger, Michael J.; Kim, Dong-Sang; ...

    2014-04-30

    The purpose of this study was to determine the solubility of iodine in a low-activity waste borosilicate glass when heated inside an evacuated and sealed fused quartz ampoule. The iodine was added to glass frit as KI in quantities of 100–24000 ppm iodine (by mass), each mixture was added to an ampoule, the ampoules were heated at 1000 °C for 2h, and then air quenched. In samples with ≥12000 ppm iodine, low viscosity salt phases were observed on the surface of the melts during cooling that solidified into a white coating upon cooling. These salts were identified as mixtures ofmore » KI, NaI, and Na 2SO 4 with X-ray diffraction (XRD). The iodine concentrations in glass specimens were analyzed with inductively-coupled plasma mass spectrometry and the overall iodine solubility was determined to be 10000 ppm by mass. Several crystalline inclusions of iodine sodalite, Na 8(AlSiO 4) 6I 2, were observed in the 24000 ppm specimen as determined by micro-XRD and wavelength dispersive spectroscopy.« less

  16. Oxidation-chlorination of binary Ni-Cr alloys in flowing Ar-O2-Cl2 gas mixtures at 1200 K

    NASA Technical Reports Server (NTRS)

    Mcnallan, M. J.; Lee, Y. Y.; Chang, Y. W.; Jacobson, N. S.; Doychak, J.

    1991-01-01

    Nickel-chromium alloys are resistant to oxidation because of the selective oxidation of chromium to form a protective Cr2O3 scale. In chlorine-containing environments, volatile corrosion products can also be formed. The mixed oxidation-chlorination of Ni-4.5Cr, Ni-13.8Cr, and Ni-26.5Cr (by weight) alloys in Ar-O2-Cl2 gas mixtures is investigated using thermogravimetric analysis and atmospheric-pressure-sampling mass spectrometry, followed by examination of the corrosion products using scanning electron microscopy and X-ray diffraction analysis. The overall kinetics of the corrosion are affected by the relative amounts of oxides and chlorides formed and the composition of the oxide corrosion products.

  17. 5-phosphonato-3,4-dihydropyrimidin-2(1H)-ones: Zinc triflate-catalyzed one-pot multi-component synthesis, X-ray crystal structure and anti-inflammatory activity

    NASA Astrophysics Data System (ADS)

    Essid, Idris; Lahbib, Karima; Kaminsky, Werner; Ben Nasr, Cherif; Touil, Soufiane

    2017-08-01

    Herein we report a simple and efficient one-pot three-component synthesis of 5-phosphonato-3,4-dihydropyrimidin-2(1H)-ones, through the zinc triflate-catalyzed Biginelli-type reaction of β-ketophosphonates, aldehydes and urea. The compounds obtained were characterized by various spectroscopic tools including IR, NMR (1H, 31P, 13C) spectroscopy, mass spectrometry and single crystal X-ray diffraction. All the synthesized compounds were screened, for the first time, for anti-inflammatory activity by carrageenan-induced hind paw edema method, using female Wister rats and they showed significant anti-inflammatory activity in some cases higher than the standard indomethacin.

  18. Evaluation of the increase in threading dislocation during the initial stage of physical vapor transport growth of 4H-SiC

    NASA Astrophysics Data System (ADS)

    Suo, Hiromasa; Tsukimoto, Susumu; Eto, Kazuma; Osawa, Hiroshi; Kato, Tomohisa; Okumura, Hajime

    2018-06-01

    The increase in threading dislocation during the initial stage of physical vapor transport growth of n-type 4H-SiC crystals was evaluated by cross-sectional X-ray topography. Crystals were grown under two different temperature conditions. A significant increase in threading dislocation was observed in crystals grown at a high, not low, temperature. The local strain distribution in the vicinity of the grown/seed crystal interface was evaluated using the electron backscatter diffraction technique. The local nitrogen concentration distribution was also evaluated by time-of-flight secondary ion mass spectrometry. We discuss the relationship between the increase in threading dislocation and the local strain due to thermal stress and nitrogen concentration.

  19. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baier, S.; Rochet, A.; Hofmann, G.

    2015-06-15

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor formore » in situ studies.« less

  20. Synthesis of zinc sulfide nanoparticles during zinc oxidization by H2S and H2S/H2O supercritical fluids

    NASA Astrophysics Data System (ADS)

    Vostrikov, A. A.; Fedyaeva, O. N.; Sokol, M. Ya.; Shatrova, A. V.

    2014-12-01

    Formation of zinc sulfide nanoparticles was detected during interaction of bulk samples with hydrogen sulfide at supercritical parameters. Synthesis proceeds with liberation of H2 by the reaction nZn + nH2S = (ZnS) n + nH2. It has been found by the X-ray diffraction method, scanning electron microscopy, and mass spectrometry that the addition of water stimulates coupled reactions of nanoparticle synthesis nZn + nH2O = (ZnO) n + nH2 and (ZnO) n + nH2S = (ZnS) n + nH2O and brings about an increase in the synthesis rate and morphological changes of (ZnS) n nanoparticles.

  1. Au Nanoparticle Sub-Monolayers Sandwiched between Sol-Gel Oxide Thin Films

    PubMed Central

    Della Gaspera, Enrico; Menin, Enrico; Sada, Cinzia

    2018-01-01

    Sub-monolayers of monodisperse Au colloids with different surface coverage have been embedded in between two different metal oxide thin films, combining sol-gel depositions and proper substrates functionalization processes. The synthetized films were TiO2, ZnO, and NiO. X-ray diffraction shows the crystallinity of all the oxides and verifies the nominal surface coverage of Au colloids. The surface plasmon resonance (SPR) of the metal nanoparticles is affected by both bottom and top oxides: in fact, the SPR peak of Au that is sandwiched between two different oxides is centered between the SPR frequencies of Au sub-monolayers covered with only one oxide, suggesting that Au colloids effectively lay in between the two oxide layers. The desired organization of Au nanoparticles and the morphological structure of the prepared multi-layered structures has been confirmed by Rutherford backscattering spectrometry (RBS), Secondary Ion Mass Spectrometry (SIMS), and Scanning Electron Microscopy (SEM) analyses that show a high quality sandwich structure. The multi-layered structures have been also tested as optical gas sensors. PMID:29538338

  2. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review.

    PubMed

    Dwivedi, D; Lepkova, K; Becker, T

    2017-03-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.

  3. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review

    NASA Astrophysics Data System (ADS)

    Dwivedi, D.; Lepkova, K.; Becker, T.

    2017-03-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.

  4. Separation of bioactive chamazulene from chamomile extract using metal-organic framework.

    PubMed

    Abdelhameed, Reda M; Abdel-Gawad, Hassan; Taha, Mohamed; Hegazi, Bahira

    2017-11-30

    Isolation of bioactive compounds from extracts of pharmaceutical plant is very important. In this work, copper benzene-1,3,5-tricarboxylate metal organic framework (Cu-BTC MOF) has been synthesized. It is used in separating of chamazulene from chamomile extract. The Cu-BTC MOF not only shows good chamazulene adsorption but also maintains good desorption properties. However, the research on this field is still new and the maturation of novel MOFs or the enhancements of known ones are required.The chamomile extract obtained after each stage of the treatments was carefully characterized by thin-layer chromatography (TLC), Fourier-transform infrared spectroscopy (FTIR), UV-vis spectrometry and gas chromatography-mass spectrometry (GC-MS). The morphology and the crystallinity of Cu-BTC MOF were investigated using scanning electron microscopy (SEM) and powder X-ray diffraction (PXRD), respectively. Breakthrough experiments in a column was investigated and the data was fitted with Bohart-Adams model. Monte Carlo simulation was conducted to investigate the preferential adsorption sites of Cu-BTC for chamazulene molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Assessment of the Effects Exerted by Acid and Alkaline Solutions on Bone: Is Chemistry the Answer?

    PubMed

    Amadasi, Alberto; Camici, Arianna; Porta, Davide; Cucca, Lucia; Merli, Daniele; Milanese, Chiara; Profumo, Antonella; Rassifi, Nabila; Cattaneo, Cristina

    2017-09-01

    The treatment of corpses with extremely acid or basic liquids is sometimes performed in criminal contexts. A thorough characterization by chemical analysis may provide further help to macroscopic and microscopic analysis; 63 porcine bone samples were treated with solutions at different pH (1-14) for immersion periods up to 70 days, as well as in extremely acidic sulfuric acid solutions (9 M/18 M) and extremely basic sodium hydroxide. Inductively coupled optical emission spectrometry (ICP-OES)/plasma mass spectrometry (ICP-MS), Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray analysis (EDX), X-ray powder diffraction (XRPD), and scanning electron microscopy (SEM) showed that only the sulfuric acid solution 18 M was able to completely dissolve the sample. In addition, chemical analysis allowed to recognize the contact between bone and substances. Hydrated calcium sulfate arose from extreme pH. The possibility of detecting the presence of human material within the residual solution was demonstrated, especially with FT-IR, ICP-OES, and EDX. © 2017 American Academy of Forensic Sciences.

  6. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review

    PubMed Central

    Dwivedi, D.; Becker, T.

    2017-01-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed. PMID:28413351

  7. Quantitation of mycotoxins using direct analysis in real time (DART)-mass spectrometry (MS)

    USDA-ARS?s Scientific Manuscript database

    Ambient ionization represents a new generation of mass spectrometry ion sources which is used for rapid ionization of small molecules under ambient conditions. The combination of ambient ionization and mass spectrometry allows analyzing multiple food samples with simple or no sample treatment, or in...

  8. Focus on Advancing High Performance Mass Spectrometry, Honoring Dr. Richard D. Smith, Recipient of the 2013 Award for a Distinguished Contribution in Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Erin Shammel; Muddiman, David C.; Loo, Joseph

    This special focus issue of the Journal of the American Society for Mass Spectrometry celebrates the accomplishments of Dr. Richard D. Smith, the recipient of the 2013ASMS Award for a Distinguished Contribution in Mass Spectrometry, and who serves as a Battelle Fellow, Chief Scientist in the Biological Sciences Division, and Director of Proteomics Research at Pacific Northwest National Laboratory (PNNL) in Richland, WA. The award is for his development of the electrodynamic ion funnel.

  9. Chromatography - mass spectrometry in aerospace industry

    NASA Astrophysics Data System (ADS)

    Buryak, A. K.; Serdyuk, T. M.

    2013-01-01

    The applications of chromatography - mass spectrometry in aerospace industry are considered. The primary attention is devoted to the development of physicochemical grounds of the use of various chromatography - mass spectrometry procedures to solve topical problems of this industry. Various methods for investigation of the composition of rocket fuels, surfaces of structural materials and environmental media affected by aerospace activities are compared. The application of chromatography - mass spectrometry for the development and evaluation of processes for decontaminations of equipment, industrial wastes and soils from rocket fuel components is substantiated. The bibliography includes 135 references.

  10. [Latest development in mass spectrometry for clinical application].

    PubMed

    Takino, Masahiko

    2013-09-01

    Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has seen enormous growth in special clinical chemistry laboratories. It significantly increases the analytic potential in clinical chemistry, especially in the field of low molecular weight biomarker analysis. This review summarizes the state of the art in mass spectrometry and related techniques for clinical application with a main focus on recent developments in LC-MS. Current trends in ionization techniques, automated online sample preparation techniques coupled with LC-MS, and ion mobility spectrometry are discussed. Emerging mass spectrometric approaches complementary to LC-MS are discussed as well.

  11. Performance and cost analysis of matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine identification of yeast.

    PubMed

    Dhiman, Neelam; Hall, Leslie; Wohlfiel, Sherri L; Buckwalter, Seanne P; Wengenack, Nancy L

    2011-04-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry was compared to phenotypic testing for yeast identification. MALDI-TOF mass spectrometry yielded 96.3% and 84.5% accurate species level identifications (spectral scores, ≥ 1.8) for 138 common and 103 archived strains of yeast. MALDI-TOF mass spectrometry is accurate, rapid (5.1 min of hands-on time/identification), and cost-effective ($0.50/sample) for yeast identification in the clinical laboratory.

  12. [Advances in mass spectrometry-based approaches for neuropeptide analysis].

    PubMed

    Ji, Qianyue; Ma, Min; Peng, Xin; Jia, Chenxi; Ji, Qianyue

    2017-07-25

    Neuropeptides are an important class of endogenous bioactive substances involved in the function of the nervous system, and connect the brain and other neural and peripheral organs. Mass spectrometry-based neuropeptidomics are designed to study neuropeptides in a large-scale manner and obtain important molecular information to further understand the mechanism of nervous system regulation and the pathogenesis of neurological diseases. This review summarizes the basic strategies for the study of neuropeptides using mass spectrometry, including sample preparation and processing, qualitative and quantitative methods, and mass spectrometry imagining.

  13. Determination of stoichiometry and concentration of trace elements in thin BaxSr1-xTiO3 perovskite layers.

    PubMed

    Becker, J S; Boulyga, S F

    2001-07-01

    This paper describes an analytical procedure for determining the stoichiometry of BaxSr1-xTiO3 perovskite layers using inductively coupled plasma mass spectrometry (ICP-MS). The analytical results of mass spectrometry measurements are compared to those of X-ray fluorescence analysis (XRF). The performance and the limits of solid-state mass spectrometry analytical methods for the surface analysis of thin BaxSr1-xTiO3 perovskite layers sputtered neutral mass spectrometry (SNMS)--are investigated and discussed.

  14. New isotope technologies in environmental physics

    NASA Astrophysics Data System (ADS)

    Povinec, P. P.; Betti, M.; Jull, A. J. T.; Vojtyla, P.

    2008-02-01

    As the levels of radionuclides observed at present in the environment are very low, high sensitive analytical systems are required for carrying out environmental investigations. We review recent progress which has been done in low-level counting techniques in both radiometrics and mass spectrometry sectors, with emphasis on underground laboratories, Monte Carlo (GEANT) simulation of background of HPGe detectors operating in various configurations, secondary ionisation mass spectrometry, and accelerator mass spectrometry. Applications of radiometrics and mass spectrometry techniques in radioecology and climate change studies are presented and discussed as well. The review should help readers in better orientation on recent developments in the field of low-level counting and spectrometry, and to advice on construction principles of underground laboratories, as well as on criteria how to choose low or high energy mass spectrometers for environmental investigations.

  15. Native Liquid Extraction Surface Analysis Mass Spectrometry: Analysis of Noncovalent Protein Complexes Directly from Dried Substrates

    NASA Astrophysics Data System (ADS)

    Martin, Nicholas J.; Griffiths, Rian L.; Edwards, Rebecca L.; Cooper, Helen J.

    2015-08-01

    Liquid extraction surface analysis (LESA) mass spectrometry is a promising tool for the analysis of intact proteins from biological substrates. Here, we demonstrate native LESA mass spectrometry of noncovalent protein complexes of myoglobin and hemoglobin from a range of surfaces. Holomyoglobin, in which apomyoglobin is noncovalently bound to the prosthetic heme group, was observed following LESA mass spectrometry of myoglobin dried onto glass and polyvinylidene fluoride surfaces. Tetrameric hemoglobin [(αβ)2 4H] was observed following LESA mass spectrometry of hemoglobin dried onto glass and polyvinylidene fluoride (PVDF) surfaces, and from dried blood spots (DBS) on filter paper. Heme-bound dimers and monomers were also observed. The `contact' LESA approach was particularly suitable for the analysis of hemoglobin tetramers from DBS.

  16. "EMERGING" POLLUTANTS, AND COMMUNICATING THE ...

    EPA Pesticide Factsheets

    This paper weaves a rnulti-dimensioned perspective of mass spectrometry as a career against the backdrop of mass spectrometry's key role in the past and future of environmental chemistry. Along the way, some insights are offered for better focusing the spotlight on the discipline of mass spectrometry. A Foundation for Environmental Science-Mass Spectrometry Historically fundamental to our understanding of environmental processes and chemical pollution is mass spectrometry. This branch of analytical chemistry is the workhorse which supplies much of the definitive data to environmental scientists and engineers for identifying the molecular compositions, and ultimately the structures, of chemicals. This is not to ignore the complementary and critical roles played by the adjunct practices of sample enrichment (e.g., to lower method detection limits via any of various means of selective extraction) and analyte separation (e.g., to lessen contaminant interferences via the myriad forms of chromatography and electrophoresis). While the power of mass spectrometry has long been highly visible to the practicing environmental chemist, it borders on continued obscurity to the lay public and most non-chemists. Even though mass spectrometry has played a long, historic and Largely invisible role in establishing or undergirding our existing knowledge about environmental processes and pollution, what recognition it does enjoy is usually relegated to that of a tool. It is usually

  17. Time-of-flight secondary ion mass spectrometry study on the distribution of alendronate sodium in drug-loaded ultra-high molecular weight polyethylene.

    PubMed

    Liu, Xiaomin; Qu, Shuxin; Lu, Xiong; Ge, Xiang; Leng, Yang

    2009-12-01

    The aim of this study was to investigate the drug distribution in ultra-high molecular weight polyethylene (UHMWPE) loaded with alendronate sodium (ALN), which was developed to treat particle-induced osteolysis after artificial joint replacements, since the drug distribution in UHMWPE could play a key role in controlling drug release. A mixture of UHMWPE powder and ALN was dried and hot pressed to prepare UHMWPE loaded with ALN (UHMWPE-ALN). Fourier transform infrared spectroscopy analysis demonstrated that the hot press had no effect on the functional groups of ALN in UHMWPE-ALN. X-ray diffraction indicated that there was no phase change of the UHMWPE after hot pressing. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) spectra revealed the existence of characteristic elements and functional groups from ALN in UHMWPE-ALN, such as Na+, C3H8N+, PO3(-) and PO3H(-). In addition, SIMS images suggested that ALN did not agglomerate in UHMWPE-ALN. A small punch test and hardness test were carried out and the results indicated that ALN did not affect the mechanical properties at the present content level. The present study demonstrated that it was feasible to fabricate the un-agglomerated distributed drug in UHMWPE with good mechanical properties. This ALN loaded UHMWPE would have potential application in clinics.

  18. Facile synthesis of titania nanoparticles coated carbon nanotubes for selective enrichment of phosphopeptides for mass spectrometry analysis.

    PubMed

    Yan, Yinghua; Lu, Jin; Deng, Chunhui; Zhang, Xiangmin

    2013-03-30

    In this work, titania nanoparticles coated carbon nanotubes (denoted as CNTs/TiO2 composites) were synthesized through a facile but effective solvothermal reaction using titanium isopropoxide as the titania source, isopropyl alcohol as the solvent and as the basic catalyst in the presence of hydrophilic carbon nanotubes. Characterizations using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicate that the CNTs/TiO2 composites consist of CNT core and a rough outer layer formed by titania nanoparticles (5-10nm). Measurements using wide angle X-ray diffraction (WAXRD), zeta potential and N2 sorption reveal that the titania shell is formed by anatase titania nanoparticles, and the composites have a high specific surface area of about 104 m(2)/g. By using their high surface area and affinity to phosphopeptides, the CNTs/TiO2 composites were applied to selectively enrich phosphopeptides for mass spectrometry analysis. The high selectivity and capacity of the CNTs/TiO2 composites have been demonstrated by effective enrichment of phosphopeptides from digests of phosphoprotein, protein mixtures of β-casein and bovine serum albumin, human serum and rat brain samples. These results foresee a promising application of the novel CNTs/TiO2 composites in the selective enrichment of phosphopeptides. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Al-Mn CVD-FBR coating on P92 steel as protection against steam oxidation at 650 °C: TGA-MS study

    NASA Astrophysics Data System (ADS)

    Castañeda, S. I.; Pérez, F. J.

    2018-02-01

    The initial stages oxidation of the P92 ferritic/martensitic steel with and without Al-Mn coating at 650 °C in Ar+40%H2O for 240 h were investigated by mass spectrometry (MS) and thermogravimetric analysis (TGA). TGA-MS measurements were conducted in a closed steam loop. An Al-Mn coating was deposited on P92 steel at 580 °C for 2 h by chemical vapour deposition in a fluidized bed reactor (CVD-FBR). The coating as-deposited was treated in the same reactor at 700 °C in Ar for 2h, in order to produce aluminide phases that form the protective alumina layer (Al2O3) during oxidation. MS measurements at 650 °C of the Al-Mn/P92 sample for 200 h indicated the presence of (Al-Mn-Cr-Fe-O) volatile species of small intensity. Uncoated P92 steel oxidized under the same steam oxidation conditions emitted greater intensities of volatile species of Cr, Fe and Mo in comparison with intensities from coated steel. TGA measurements verified that the mass gained by the coated sample was up to 300 times lower than for uncoated P92 steel. The morphology, composition and structure of samples by Scanning Electron Microscopy SEM, Backscattered Electron (BSE) detection, X-ray Energy Dispersive Spectrometry (EDAX) and X-ray Diffraction (XRD) are described.

  20. Biosourced polymetallic catalysts: an efficient means to synthesize underexploited platform molecules from carbohydrates.

    PubMed

    Escande, Vincent; Olszewski, Tomasz K; Petit, Eddy; Grison, Claude

    2014-07-01

    Polymetallic hyperaccumulating plants growing on wastes from former mining activity were used as the starting material in the preparation of novel plant-based Lewis acid catalysts. The preparation of biosourced Lewis acid catalysts is a new way to make use of mining wastes. These catalysts were characterized by X-ray fluorescence, X-ray diffraction, inductively coupled plasma mass spectrometry, and direct infusion electrospray ionization mass spectrometry. These analyses revealed a complex composition of metal species, present mainly as polymetallic chlorides. The catalysts proved to be efficient and recyclable in a solid-state version of the Garcia Gonzalez reaction, which has been underexploited until now in efforts to use carbohydrates from biomass. This methodology was extended to various carbohydrates to obtain the corresponding polyhydroxyalkyl furans in 38-98% yield. These plant-based catalysts may be a better alternative to classical Lewis acid catalysts that were previously used for the Garcia Gonzalez reaction, such as ZnCl2 , FeCl3 , and CeCl3 , which are often unrecyclable, require aqueous treatments, or rely on metals, the current known reserves of which will be consumed in the coming decades. Moreover, the plant-based catalysts allowed novel control of the Garcia Gonzalez reaction, as two different products were obtained depending on the reaction conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Updating the list of known opioids through identification and characterization of the new opioid derivative 3,4-dichloro-N-(2-(diethylamino)cyclohexyl)-N-methylbenzamide (U-49900).

    PubMed

    Fabregat-Safont, D; Carbón, X; Ventura, M; Fornís, I; Guillamón, E; Sancho, J V; Hernández, F; Ibáñez, M

    2017-07-24

    New psychoactive substances have been rapidly growing in popularity in the drug market as non-illegal drugs. In the last few years, an increment has been reported on the use of synthetic alternatives to heroin, the synthetic opioids. Based on the information provided by the European Monitoring Centre for Drug and Drug Addiction, these synthetic opioids have been related to overdoses and deaths in Europe and North America. One of these opioids is the U-47700. A few months ago, U-47700 was scheduled in the U.S. and other countries, and other opioid derivatives have been appearing in order to replace it. One of these compounds is U-49900, an analog of U-47700. A white powder sample was obtained from an anonymous user in Spain. After an accurate characterization by gas chromatography-mass spectrometry, ultra-high performance liquid chromatography-high resolution mass spectrometry, nuclear magnetic resonance and single-crystal X-ray diffraction; and complemented by Fourier-transformed infrared spectroscopy, ultraviolet and circular dichroism spectrophotometry, the drug sample was unequivocally identified as U-49900. The information provided will be useful for the Early Warning System and forensic laboratories for future identifications of the U-49900, as well as in tentative identifications of other related opioids.

  2. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight.

    PubMed

    Loh, N D; Hampton, C Y; Martin, A V; Starodub, D; Sierra, R G; Barty, A; Aquila, A; Schulz, J; Lomb, L; Steinbrener, J; Shoeman, R L; Kassemeyer, S; Bostedt, C; Bozek, J; Epp, S W; Erk, B; Hartmann, R; Rolles, D; Rudenko, A; Rudek, B; Foucar, L; Kimmel, N; Weidenspointner, G; Hauser, G; Holl, P; Pedersoli, E; Liang, M; Hunter, M S; Hunter, M M; Gumprecht, L; Coppola, N; Wunderer, C; Graafsma, H; Maia, F R N C; Ekeberg, T; Hantke, M; Fleckenstein, H; Hirsemann, H; Nass, K; White, T A; Tobias, H J; Farquar, G R; Benner, W H; Hau-Riege, S P; Reich, C; Hartmann, A; Soltau, H; Marchesini, S; Bajt, S; Barthelmess, M; Bucksbaum, P; Hodgson, K O; Strüder, L; Ullrich, J; Frank, M; Schlichting, I; Chapman, H N; Bogan, M J

    2012-06-27

    The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.

  3. Through a Glass Darkly: Glimpses into the Future of Mass Spectrometry

    PubMed Central

    Cooks, R. Graham; Mueller, Thomas

    2013-01-01

    The paper has three parts, (i) a brief overview of the main achievements made using mass spectrometry across all the fields of science, (ii) a survey of some of the topics currently being pursued most activity, including both applications and fundamental studies, and (iii) some hints as to what the future of mass spectrometry might hold with particular emphasis on revolutionary changes in the subject. Emphasis is given to ambient methods of ionization and their use in disease diagnosis and to their use in combination with miniature mass spectrometers for in-situ measurements. Special attention goes to the chemical aspects of mass spectrometry, including its emerging role as a preparative method based on accelerated bimolecular reaction rates in solution and on ion soft landing as a means of surface tailoring. In summary, the paper covers the proud history, vibrant present and expansive future of mass spectrometry. PMID:24349920

  4. Zero voltage mass spectrometry probes and systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooks, Robert Graham; Wleklinski, Michael Stanley; Bag, Soumabha

    The invention generally relates to zero volt mass spectrometry probes and systems. In certain embodiments, the invention provides a system including a mass spectrometry probe including a porous material, and a mass spectrometer (bench-top or miniature mass spectrometer). The system operates without an application of voltage to the probe. In certain embodiments, the probe is oriented such that a distal end faces an inlet of the mass spectrometer. In other embodiments, the distal end of the probe is 5 mm or less from an inlet of the mass spectrometer.

  5. Improving mass measurement accuracy in mass spectrometry based proteomics by combining open source tools for chromatographic alignment and internal calibration.

    PubMed

    Palmblad, Magnus; van der Burgt, Yuri E M; Dalebout, Hans; Derks, Rico J E; Schoenmaker, Bart; Deelder, André M

    2009-05-02

    Accurate mass determination enhances peptide identification in mass spectrometry based proteomics. We here describe the combination of two previously published open source software tools to improve mass measurement accuracy in Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). The first program, msalign, aligns one MS/MS dataset with one FTICRMS dataset. The second software, recal2, uses peptides identified from the MS/MS data for automated internal calibration of the FTICR spectra, resulting in sub-ppm mass measurement errors.

  6. Exudate Chemical Profiles Derived from Lespedeza and Other Tallgrass Prairie Plant Species

    DTIC Science & Technology

    2017-05-01

    assayed by liquid chromatography–tandem mass spec- trometry (LC-MS/MS) and gas chromatography/mass spectrometry (GC/MS). The objective was to elucidate...molecular weight compounds were identified via gas chromatography/mass spectrometry (GC/MS) and tentatively identified as benzophenone and 1,4...diacetylbenzene. Three higher molecular weight compounds were identified by liquid chromatography-electrospray ionization- mass spectrometry (LC-ESI-MS

  7. Characterizing the lipid and metabolite changes associated with placental function and pregnancy complications using ion mobility spectrometry-mass spectrometry and mass spectrometry imaging

    DOE PAGES

    Burnum-Johnson, Kristin E.; Baker, Erin S.; Metz, Thomas O.

    2017-03-29

    A successful pregnancy is dependent upon discrete biological events, which include embryo implantation, decidualization, and placentation. Furthermore, problems associated with each of these events can cause infertility or conditions such as preeclampsia. A greater understanding of the molecular changes associated with these complex processes is necessary to aid in identifying treatments for each condition. Previous nuclear magnetic resonance spectroscopy and mass spectrometry studies have been used to identify metabolites and lipids associated with pregnancy-related complications. However, due to limitations associated with conventional implementations of both techniques, novel technology developments are needed to more fully understand the initiation and development ofmore » pregnancy related problems at the molecular level. Here, we describe current analytical techniques for metabolomic and lipidomic characterization of pregnancy complications and discuss the potential for new technologies such as ion mobility spectrometry-mass spectrometry and mass spectrometry imaging to contribute to a better understanding of the molecular changes that affect the placenta and pregnancy outcomes.« less

  8. Characterizing the lipid and metabolite changes associated with placental function and pregnancy complications using ion mobility spectrometry-mass spectrometry and mass spectrometry imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnum-Johnson, Kristin E.; Baker, Erin S.; Metz, Thomas O.

    Successful pregnancy is dependent upon discrete biological events, which include embryo implantation, decidualization, and placentation. Problems associated with each of these events can cause infertility or conditions such as preeclampsia. A greater understanding of the molecular changes associated with these complex processes is necessary to aid in identifying treatments for each condition. Previous nuclear magnetic resonance spectroscopy and mass spectrometry studies have been used to identify metabolites and lipids associated with pregnancy-related complications. However, due to limitations associated with conventional implementations of both techniques, novel technology developments are needed to more fully understand the initiation and development of pregnancy relatedmore » problems at the molecular level. In this perspective, we describe current analytical techniques for metabolomic and lipidomic characterization of pregnancy complications and discuss the potential for new technologies such as ion mobility spectrometry-mass spectrometry and mass spectrometry imaging to contribute to a better understanding of the molecular changes that affect the placenta and pregnancy outcomes.« less

  9. Characterizing the lipid and metabolite changes associated with placental function and pregnancy complications using ion mobility spectrometry-mass spectrometry and mass spectrometry imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnum-Johnson, Kristin E.; Baker, Erin S.; Metz, Thomas O.

    A successful pregnancy is dependent upon discrete biological events, which include embryo implantation, decidualization, and placentation. Furthermore, problems associated with each of these events can cause infertility or conditions such as preeclampsia. A greater understanding of the molecular changes associated with these complex processes is necessary to aid in identifying treatments for each condition. Previous nuclear magnetic resonance spectroscopy and mass spectrometry studies have been used to identify metabolites and lipids associated with pregnancy-related complications. However, due to limitations associated with conventional implementations of both techniques, novel technology developments are needed to more fully understand the initiation and development ofmore » pregnancy related problems at the molecular level. Here, we describe current analytical techniques for metabolomic and lipidomic characterization of pregnancy complications and discuss the potential for new technologies such as ion mobility spectrometry-mass spectrometry and mass spectrometry imaging to contribute to a better understanding of the molecular changes that affect the placenta and pregnancy outcomes.« less

  10. Characterizing the lipid and metabolite changes associated with placental function and pregnancy complications using ion mobility spectrometry-mass spectrometry and mass spectrometry imaging.

    PubMed

    Burnum-Johnson, Kristin E; Baker, Erin S; Metz, Thomas O

    2017-12-01

    Successful pregnancy is dependent upon discrete biological events, which include embryo implantation, decidualization, and placentation. Problems associated with each of these events can cause infertility or conditions such as preeclampsia. A greater understanding of the molecular changes associated with these complex processes is necessary to aid in identifying treatments for each condition. Previous nuclear magnetic resonance spectroscopy and mass spectrometry studies have been used to identify metabolites and lipids associated with pregnancy-related complications. However, due to limitations associated with conventional implementations of both techniques, novel technology developments are needed to more fully understand the initiation and development of pregnancy related problems at the molecular level. In this perspective, we describe current analytical techniques for metabolomic and lipidomic characterization of pregnancy complications and discuss the potential for new technologies such as ion mobility spectrometry-mass spectrometry and mass spectrometry imaging to contribute to a better understanding of the molecular changes that affect the placenta and pregnancy outcomes. Copyright © 2017 IFPA, Elsevier Ltd. Published by Elsevier Ltd.. All rights reserved.

  11. Targeted Multiplex Imaging Mass Spectrometry in Transmission Geometry for Subcellular Spatial Resolution

    PubMed Central

    Lavenant, Gwendoline Thiery; Zavalin, Andrey I.; Caprioli, Richard M.

    2013-01-01

    Targeted multiplex Imaging Mass Spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This manuscript describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet. PMID:23397138

  12. Targeted Multiplex Imaging Mass Spectrometry in Transmission Geometry for Subcellular Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Thiery-Lavenant, Gwendoline; Zavalin, Andre I.; Caprioli, Richard M.

    2013-04-01

    Targeted multiplex imaging mass spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This article describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet.

  13. Fourier transform mass spectrometry.

    PubMed

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-07-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook.

  14. Fourier Transform Mass Spectrometry

    PubMed Central

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  15. Nucleic Acid analysis by fourier transform ion cyclotron resonance mass spectrometry at the beginning of the twenty-first century.

    PubMed

    Frahm, J L; Muddiman, D C

    2005-01-01

    Mass spectrometers measure an intrinsic property (i.e., mass) of a molecule, which makes it an ideal platform for nucleic acid analysis. Importantly, the unparalleled capabilities of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry further extend its usefulness for nucleic acid analysis. The beginning of the twenty-first century has been marked with notable advances in the field of FT-ICR mass spectrometry analysis of nucleic acids. Some of these accomplishments include fundamental studies of nucleic acid properties, improvements in sample clean up and preparation, better methods to obtain higher mass measurement accuracy, analysis of noncovalent complexes, tandem mass spectrometry, and characterization of peptide nucleic acids. This diverse range of studies will be presented herein.

  16. Modeling of Plutonium Ionization Probabilities for Use in Nuclear Forensic Analysis by Resonance Ionization Mass Spectrometry

    DTIC Science & Technology

    2016-12-01

    masses collide, they form a supercritical mass . Criticality refers to the neutron population within the system. A critical system is one that can...Spectrometry, no. 242, pp. 161–168, 2005. [9] S. Raeder, “Trace analysis of actinides in the environment by means of resonance ionization mass ...first ionization potential of actinide elements by resonance ionization mass spectrometry.” Spectrochimica Acta part B: Atomic Spectroscopy. vol. 52

  17. Microchemical Analysis Of Space Operation Debris

    NASA Technical Reports Server (NTRS)

    Cummings, Virginia J.; Kim, Hae Soo

    1995-01-01

    Report discusses techniques used in analyzing debris relative to space shuttle operations. Debris collected from space shuttle, expendable launch vehicles, payloads carried by space shuttle, and payloads carried by expendable launch vehicles. Optical microscopy, scanning electron microscopy with energy-dispersive spectrometry, analytical electron microscopy with wavelength-dispersive spectrometry, and X-ray diffraction chosen as techniques used in examining samples of debris.

  18. Isolation and Puification of Uranium Isotopes for Measurement by Mass-Spectrometry (233, 234, 235, 236, 238U) and Alpha Spectrometry (232U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinelli, R; Hamilton, T; Brown, T

    2006-05-30

    This report describes a standardized methodology used by researchers from the Center for Accelerator Mass Spectrometry (CAMS) (Energy and Environment Directorate) and the Environmental Radiochemistry Group (Chemistry and Materials Science Directorate) at the Lawrence Livermore National Laboratory (LLNL) for the full isotopic analysis of uranium from solution. The methodology has largely been developed for use in characterizing the uranium composition of selected nuclear materials but may also be applicable to environmental studies and assessments of public, military or occupational exposures to uranium using in-vitro bioassay monitoring techniques. Uranium isotope concentrations and isotopic ratios are measured using a combination of Multimore » Collector Inductively Coupled Plasma Mass Spectrometry (MC ICP-MS), Accelerator Mass Spectrometry (AMS) and Alpha Spectrometry.« less

  19. EMERGING POLLUTANTS, AND COMMUNICATING THE SCIENCE OF ENVIRONMENTAL CHEMISTRY AND MASS SPECTROMETRY: PHARMACEUTICALS IN THE ENVIRONMENT

    EPA Science Inventory

    This paper weaves a rnulti-dimensioned perspective of mass spectrometry as a career against the backdrop of mass spectrometry's key role in the past and future of environmental chemistry. Along the way, some insights are offered for better focusing the spotlight on the discipline...

  20. Simulation of Two Dimensional Electrophoresis and Tandem Mass Spectrometry for Teaching Proteomics

    ERIC Educational Resources Information Center

    Fisher, Amanda; Sekera, Emily; Payne, Jill; Craig, Paul

    2012-01-01

    In proteomics, complex mixtures of proteins are separated (usually by chromatography or electrophoresis) and identified by mass spectrometry. We have created 2DE Tandem MS, a computer program designed for use in the biochemistry, proteomics, or bioinformatics classroom. It contains two simulations--2D electrophoresis and tandem mass spectrometry.…

  1. "EMERGING" POLLUTANTS, AND COMMUNICATING THE SCIENCE OF ENVIRONMENTAL CHEMISTRY AND MASS SPECTROMETRY: PHARMACEUTICALS IN THE ENVIRONMENT

    EPA Science Inventory

    This paper weaves a rnulti-dimensioned perspective of mass spectrometry as a career against the backdrop of mass spectrometry's key role in the past and future of environmental chemistry. Along the way, some insights are offered for better focusing the spotlight on the discipline...

  2. Accuracy of delta 18O isotope ratio measurements on the same sample by continuous-flow isotope-ratio mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    The doubly labeled water method is considered the reference method to measure energy expenditure. Conventional mass spectrometry requires a separate aliquot of the same sample to be prepared and analyzed separately. With continuous-flow isotope-ratio mass spectrometry, the same sample could be analy...

  3. Quantitation of aflatoxins from corn and other food related materials by direct analysis in real time - mass spectrometry (DART-MS)

    USDA-ARS?s Scientific Manuscript database

    Ambient ionization coupled to mass spectrometry continues to be applied to new analytical problems, facilitating the rapid and convenient analysis of a variety of analytes. Recently, demonstrations of ambient ionization mass spectrometry applied to quantitative analysis of mycotoxins have been shown...

  4. 21 CFR 862.1055 - Newborn screening test system for amino acids, free carnitine, and acylcarnitines using tandem...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... mass spectrometry is a device that consists of stable isotope internal standards, control materials..., free carnitine, and acylcarnitines using tandem mass spectrometry. 862.1055 Section 862.1055 Food and... screening test system for amino acids, free carnitine, and acylcarnitines using tandem mass spectrometry. (a...

  5. 21 CFR 862.1055 - Newborn screening test system for amino acids, free carnitine, and acylcarnitines using tandem...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... mass spectrometry is a device that consists of stable isotope internal standards, control materials..., free carnitine, and acylcarnitines using tandem mass spectrometry. 862.1055 Section 862.1055 Food and... screening test system for amino acids, free carnitine, and acylcarnitines using tandem mass spectrometry. (a...

  6. Topographical and Chemical Imaging of a Phase Separated Polymer Using a Combined Atomic Force Microscopy/Infrared Spectroscopy/Mass Spectrometry Platform

    DOE PAGES

    Tai, Tamin; Karácsony, Orsolya; Bocharova, Vera; ...

    2016-02-18

    This article describes how the use of a hybrid atomic force microscopy/infrared spectroscopy/mass spectrometry imaging platform was demonstrated for the acquisition and correlation of nanoscale sample surface topography and chemical images based on infrared spectroscopy and mass spectrometry.

  7. Forensic Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  8. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.

    2016-01-07

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupledmore » plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.« less

  9. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Oliphant, C. J.; Jordaan, W. A.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Fabiane, M.; Manyala, N.

    2016-01-01

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

  10. Development of quantitative laser ionization mass spectrometry (LIMS). Final report, 1 Aug 87-1 Jan 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odom, R.W.

    1991-06-04

    The objective of the research was to develop quantitative microanalysis methods for dielectric thin films using the laser ionization mass spectrometry (LIMS) technique. The research involved preparation of thin (5,000 A) films of SiO2, Al2O3, MgF2, TiO2, Cr2O3, Ta2O5, Si3N4, and ZrO2, and doping these films with ion implant impurities of 11B, 40Ca, 56Fe, 68Zn, 81Br, and 121Sb. Laser ionization mass spectrometry (LIMS), secondary ion mass spectrometry (SIMS) and Rutherford backscattering spectrometry (RBS) were performed on these films. The research demonstrated quantitative LIMS analysis down to detection levels of 10-100 ppm, and led to the development of (1) a compoundmore » thin film standards product line for the performing organization, (2) routine LIMS analytical methods, and (3) the manufacture of high speed preamplifiers for time-of-flight mass spectrometry (TOF-MS) techniques.« less

  11. Advanced Mass Spectrometric Methods for the Rapid and Quantitative Characterization of Proteomes

    DOE PAGES

    Smith, Richard D.

    2002-01-01

    Progress is reviewedmore » towards the development of a global strategy that aims to extend the sensitivity, dynamic range, comprehensiveness and throughput of proteomic measurements based upon the use of high performance separations and mass spectrometry. The approach uses high accuracy mass measurements from Fourier transform ion cyclotron resonance mass spectrometry (FTICR) to validate peptide ‘accurate mass tags’ (AMTs) produced by global protein enzymatic digestions for a specific organism, tissue or cell type from ‘potential mass tags’ tentatively identified using conventional tandem mass spectrometry (MS/MS). This provides the basis for subsequent measurements without the need for MS/ MS. High resolution capillary liquid chromatography separations combined with high sensitivity, and high resolution accurate FTICR measurements are shown to be capable of characterizing peptide mixtures of more than 10 5 components. The strategy has been initially demonstrated using the microorganisms Saccharomyces cerevisiae and Deinococcus radiodurans. Advantages of the approach include the high confidence of protein identification, its broad proteome coverage, high sensitivity, and the capability for stableisotope labeling methods for precise relative protein abundance measurements. Abbreviations : LC, liquid chromatography; FTICR, Fourier transform ion cyclotron resonance; AMT, accurate mass tag; PMT, potential mass tag; MMA, mass measurement accuracy; MS, mass spectrometry; MS/MS, tandem mass spectrometry; ppm, parts per million.« less

  12. Trinuclear rhenium(III) halide clusters with carboxylate ligands

    NASA Astrophysics Data System (ADS)

    Dougan, Jeffrey Steven

    Four mono(carboxylato)trirhenium complexes and three bis(carboxylato)trirhenium complexes have been synthesized and characterized, principally by mass spectrometry, with supporting evidence from X-ray diffraction. These compounds represent the first trinuclear rhenium carboxylate complexes. The reactions generally proceed readily under comparatively mild conditions. Mass spectrometry has again proved its usefulness as a technique in the field of metal cluster chemistry, having provided the initial identification of the products of the reactions studied. These compounds provide a further base to which future mass spectra of metal cluster compounds can be compared. Re-examination of a reaction reported by Taha and Wilkinson has also cast considerable doubt onto the validity of a conversion widely reported in the literature that transforms (Re3Cl9) x into [Re2(O2CCH3)4Cl 2]. We believe that the literature result is a consequence of the purity of the metal precursor, and suggest that the starting material in the earlier work may have contained ReCl4 or ReCl5. The importance of mass spectrometry in the characterization of the new compounds synthesized in this project has led to a thorough study of calculated isotopic distributions. The information gathered suggests that for isotopically simple molecules, the choice of algorithm for computing an isotopic distribution is unimportant. However, it is important to compute the mass spectrum of an isotopically complex molecule using an algorithm that can, if desired, show the underlying isotopic fine structure of a peak of interest. In the last chapter of this thesis, the results of a project in chemistry education research are presented. Predicting the success of students in general chemistry has long been of interest to the chemistry education community, and several factors have been identified as contributing factors. An off-hand comment by a student inspired an examination of whether continuity with the same instructor for two semesters of general chemistry contributed to success in the second semester course. The results obtained through an examination of three years of data held by the Chemistry Department indicate that continuing with the same instructor is positively correlated with a higher grade in the second semester of general chemistry, relative to students who have different instructors for the two semesters.

  13. Simultaneous analysis by Quadrupole-Orbitrap mass spectrometry and UHPLC-MS/MS for the determination of sedative-hypnotics and sleep inducers in adulterated products.

    PubMed

    Lee, Ji Hyun; Park, Han Na; Choi, Ji Yeon; Kim, Nam Sook; Park, Hyung-Joon; Park, Seong Soo; Baek, Sun Young

    2017-12-01

    Adulterated products are continuously detected in society and cause problems. In this study, we developed and validated a method for determining synthetic sedative-hypnotics and sleep inducers, including barbital, benzodiazepam, zolpidem, and first-generation antihistamines, in adulterated products using Quadrupole-Orbitrap mass spectrometry and ultrahigh performance liquid chromatography with tandem mass spectrometry. In Quadrupole-Orbitrap mass spectrometry analysis, target compounds were confirmed using a combination of retention time, mass tolerance, mass accuracy, and fragment ions. For quantification, several validation parameters were employed using ultrahigh performance liquid chromatography with tandem mass spectrometry. The limit of detection and limit of quantitation was 0.05-53 and 0.17-177 ng/mL, respectively. The correlation coefficient for linearity was more than 0.995. The intra- and interassay accuracies were 86-110 and 84-111%, respectively. Their precision values were evaluated as within 4.0 (intraday) and 10.7% (interday). Mean recoveries of target compounds in adulterated products ranged from 85 to 116%. The relative standard deviation of stability was less than 10.7% at 4°C for 48 h. The 144 adulterated products obtained over 3 years (2014-2016) from online and in-person vendors were tested using established methods. After rapidly screening with Quadrupole-Orbitrap mass spectrometry, the detected samples were quantified using ultrahigh performance liquid chromatography with tandem mass spectrometry. Two of them were adulterated with phenobarbital. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Characterization of low-molecular weight iodine-terminated polyethylenes by gas chromatography/mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with the use of derivatization.

    PubMed

    Zaikin, Vladimir G; Borisov, Roman S; Polovkov, Nikolai Yu; Zhilyaev, Dmitry I; Vinogradov, Aleksei A; Ivanyuk, Aleksei V

    2013-01-01

    Gas chromatography/mass spectrometry (GC/MS) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry, in conjunction with various derivatization approaches, have been applied to structure determination of individual oligomers and molecular-mass distributions (MMD) in low-molecular mass polyethylene having an iodine terminus. Direct GC/MS analysis has shown that the samples under investigation composed of polyethyelene-iodides (major components) and n-alkanes. Exchange reaction with methanol in the presence of NaOH gave rise to methoxy-derivatives and n-alkenes. Electron ionization mass spectra have shown that the former contained terminal methoxy groups indicating the terminal position of the iodine atom in the initial oligomers. MMD parameters have been determined with the aid of MALDI mass spectrometry followed by preliminary derivatization-formation of covalently bonded charge through the reaction of iodides with triphenylphosphine, trialkylamines, pyridine or quinoline. The mass spectra revealed well-resolved peaks for cationic parts of derivatized oligomers allowing the determination of MMD. The latter values have been compared with those calculated from GC/MS data.

  15. A strategy for identification and structural characterization of compounds from Gardenia jasminoides by integrating macroporous resin column chromatography and liquid chromatography-tandem mass spectrometry combined with ion-mobility spectrometry.

    PubMed

    Wang, Lu; Liu, Shu; Zhang, Xueju; Xing, Junpeng; Liu, Zhiqiang; Song, Fengrui

    2016-06-24

    In this paper, an analysis strategy integrating macroporous resin (AB-8) column chromatography and high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) combined with ion mobility spectrometry (IMS) was proposed and applied for identification and structural characterization of compounds from the fruits of Gardenia jasminoides. The extracts of G. jasminoides were separated by AB-8 resin column chromatography combined with reversed phase liquid chromatography (C18 column) and detected by electrospray ionization tandem mass spectrometry. Additionally, ion mobility spectrometry (IMS) was employed as a supplementary separation technique to discover previously undetected isomers from the fruits of G. jasminoides. A total of 71 compounds, including iridoids, flavonoids, triterpenes, monoterpenoids, carotenoids and phenolic acids were identified by the characteristic high resolution mass spectrometry and the ESI-MS/MS fragmentations. In conclusion, the IMS-MS technique achieved the separation of isomers in crocin-3 and crocin-4 according to their acquired mobility drift times differing from classical analysis by mass spectrometry. The proposed strategy can be used as a highly sensitive and efficient procedure for identification and separation isomeric components in extracts of herbal medicines. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Direct Analysis of Large Living Organism by Megavolt Electrostatic Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ng, Kwan-Ming; Tang, Ho-Wai; Man, Sin-Heng; Mak, Pui-Yuk; Choi, Yi-Ching; Wong, Melody Yee-Man

    2014-09-01

    A new ambient ionization method allowing the direct chemical analysis of living human body by mass spectrometry (MS) was developed. This MS method, namely Megavolt Electrostatic Ionization Mass Spectrometry, is based on electrostatic charging of a living individual to megavolt (MV) potential, illicit drugs, and explosives on skin/glove, flammable solvent on cloth/tissue paper, and volatile food substances in breath were readily ionized and detected by a mass spectrometer.

  17. Direct analysis of large living organism by megavolt electrostatic ionization mass spectrometry.

    PubMed

    Ng, Kwan-Ming; Tang, Ho-Wai; Man, Sin-Heng; Mak, Pui-Yuk; Choi, Yi-Ching; Wong, Melody Yee-Man

    2014-09-01

    A new ambient ionization method allowing the direct chemical analysis of living human body by mass spectrometry (MS) was developed. This MS method, namely Megavolt Electrostatic Ionization Mass Spectrometry, is based on electrostatic charging of a living individual to megavolt (MV) potential, illicit drugs, and explosives on skin/glove, flammable solvent on cloth/tissue paper, and volatile food substances in breath were readily ionized and detected by a mass spectrometer.

  18. Structural analysis of commercial ceramides by gas chromatography-mass spectrometry.

    PubMed

    Bleton, J; Gaudin, K; Chaminade, P; Goursaud, S; Baillet, A; Tchapla, A

    2001-05-11

    A simple method using gas chromatography-mass spectrometry was applied to analyse structures of ceramides. Identification of trimethylsilylated ceramides were obtained in short analysis times (derivatization of ceramides in 30 min at room temperature and 20 min gas chromatography mass spectrometry run) even for complex mixtures. For example in ceramide Type III, 18 peaks were observed which represent 27 various structures. The coeluted compounds were ceramides containing the same functional groups and the same carbon number but with a different distribution on the two alkyl chains of the molecule. They were accurately differentiated by mass spectrometry. Therefore, 83 structures of trimethylsilylated ceramides were identified in 11 different commercial mixtures. For 52 structures of these, mass spectral data were not described in the literature, neither full mass spectra nor characteristic fragments.

  19. Defining Putative Glycan Cancer Biomarkers by Mass Spectrometry

    PubMed Central

    Mechref, Yehia; Hu, Yunli; Garcia, Aldo; Hussein, Ahmed

    2013-01-01

    Summary For decades, the association between aberrant glycosylation and many types of cancers has been shown. However, defining the changes of glycan structures has not been demonstrated until recently. This has been facilitated by the major advances in mass spectrometry and separation science which allowed the detailed characterization of glycan changes associated with cancer. Mass spectrometry glycomics methods have been successfully employed to compare the glycomic profiles of different human specimen collected from disease-free individuals and patients with cancer. Additionally, comparing the glycomic profiles of glycoproteins purified from specimen collected from disease-free individuals and patients with cancer has also been performed. These types of glycan analyses employing mass spectrometry or liquid-chromatography mass spectrometry allowed the characterization of native, labeled, and permethylated glycans. This review discusses the different glycomic and glycoproteomic methods employed for defining glycans as cancer biomarkers of different organs, including breast, colon, esophagus, liver, lung, ovarian, pancreas and prostate. PMID:23157355

  20. Mass Spectrometry Analyses of Multicellular Tumor Spheroids.

    PubMed

    Acland, Mitchell; Mittal, Parul; Lokman, Noor A; Klingler-Hoffmann, Manuela; Oehler, Martin K; Hoffmann, Peter

    2018-05-01

    Multicellular tumor spheroids (MCTS) are a powerful biological in vitro model, which closely mimics the 3D structure of primary avascularized tumors. Mass spectrometry (MS) has established itself as a powerful analytical tool, not only to better understand and describe the complex structure of MCTS, but also to monitor their response to cancer therapeutics. The first part of this review focuses on traditional mass spectrometry approaches with an emphasis on elucidating the molecular characteristics of these structures. Then the mass spectrometry imaging (MSI) approaches used to obtain spatially defined information from MCTS is described. Finally the analysis of primary spheroids, such as those present in ovarian cancer, and the great potential that mass spectrometry analysis of these structures has for improved understanding of cancer progression and for personalized in vitro therapeutic testing is discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    NASA Astrophysics Data System (ADS)

    Chen, C. H. Winston; Taranenko, N. I.; Zhu, Y. F.; Chung, C. N.; Allman, S. L.

    1997-05-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, we recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Sanger's enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. Our preliminary results indicate laser mass spectrometry can possible be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, we applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  2. The identification and characterization of non-coding and coding RNAs and their modified nucleosides by mass spectrometry

    PubMed Central

    Gaston, Kirk W; Limbach, Patrick A

    2014-01-01

    The analysis of ribonucleic acids (RNA) by mass spectrometry has been a valuable analytical approach for more than 25 years. In fact, mass spectrometry has become a method of choice for the analysis of modified nucleosides from RNA isolated out of biological samples. This review summarizes recent progress that has been made in both nucleoside and oligonucleotide mass spectral analysis. Applications of mass spectrometry in the identification, characterization and quantification of modified nucleosides are discussed. At the oligonucleotide level, advances in modern mass spectrometry approaches combined with the standard RNA modification mapping protocol enable the characterization of RNAs of varying lengths ranging from low molecular weight short interfering RNAs (siRNAs) to the extremely large 23 S rRNAs. New variations and improvements to this protocol are reviewed, including top-down strategies, as these developments now enable qualitative and quantitative measurements of RNA modification patterns in a variety of biological systems. PMID:25616408

  3. The current role of high-resolution mass spectrometry in food analysis.

    PubMed

    Kaufmann, Anton

    2012-05-01

    High-resolution mass spectrometry (HRMS), which is used for residue analysis in food, has gained wider acceptance in the last few years. This development is due to the availability of more rugged, sensitive, and selective instrumentation. The benefits provided by HRMS over classical unit-mass-resolution tandem mass spectrometry are considerable. These benefits include the collection of full-scan spectra, which provides greater insight into the composition of a sample. Consequently, the analyst has the freedom to measure compounds without previous compound-specific tuning, the possibility of retrospective data analysis, and the capability of performing structural elucidations of unknown or suspected compounds. HRMS strongly competes with classical tandem mass spectrometry in the field of quantitative multiresidue methods (e.g., pesticides and veterinary drugs). It is one of the most promising tools when moving towards nontargeted approaches. Certain hardware and software issues still have to be addressed by the instrument manufacturers for it to dislodge tandem mass spectrometry from its position as the standard trace analysis tool.

  4. The identification and characterization of non-coding and coding RNAs and their modified nucleosides by mass spectrometry.

    PubMed

    Gaston, Kirk W; Limbach, Patrick A

    2014-01-01

    The analysis of ribonucleic acids (RNA) by mass spectrometry has been a valuable analytical approach for more than 25 years. In fact, mass spectrometry has become a method of choice for the analysis of modified nucleosides from RNA isolated out of biological samples. This review summarizes recent progress that has been made in both nucleoside and oligonucleotide mass spectral analysis. Applications of mass spectrometry in the identification, characterization and quantification of modified nucleosides are discussed. At the oligonucleotide level, advances in modern mass spectrometry approaches combined with the standard RNA modification mapping protocol enable the characterization of RNAs of varying lengths ranging from low molecular weight short interfering RNAs (siRNAs) to the extremely large 23 S rRNAs. New variations and improvements to this protocol are reviewed, including top-down strategies, as these developments now enable qualitative and quantitative measurements of RNA modification patterns in a variety of biological systems.

  5. Fourier Transform Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  6. Cadmium sulfide rod-bundle structures decorated with nanoparticles from an inorganic/organic composite

    NASA Astrophysics Data System (ADS)

    Pan, Jun; Xi, Baojuan; Li, Jingfa; Yan, Yan; Li, Qianwen; Qian, Yitai

    2011-08-01

    We report a new morphology of wurzite cadmium sulfide with nanoparticles decorated on rod-bundle structures, which were synthesized via calcinations of an inorganic/organic composite at 400 °C in air. The composite was hydrothermally synthesized at 180 °C using thioglycolic acid (TGA) and cadmium acetate as starting materials. The structure, composition, and morphology of the prepared material were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscope, FT-IR spectrometry, photoluminescence spectrometry, and UV-visible spectrometry. Results indicated that the composite could be defined as CdS 0.65/Cd-TGA0.35. X-ray diffraction revealed that the annealed product is CdS with wurtizite phase. The diameter of the rod is about 150-400 nm and the length from the top to the bottom of the decorated nanoparticle is about 100 nm. The composite showed high intensity of photoluminescence with similar peak position, compared to that of wurtzite CdS, because of the structure defects.

  7. IMS - MS Data Extractor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-20

    An automated drift time extraction and computed associated collision cross section software tool for small molecule analysis with ion mobility spectrometry-mass spectrometry (IMS-MS). The software automatically extracts drift times and computes associated collision cross sections for small molecules analyzed using ion mobility spectrometry-mass spectrometry (IMS-MS) based on a target list of expected ions provided by the user.

  8. The expanding universe of mass analyzer configurations for biological analysis.

    PubMed

    Calvete, Juan J

    2014-01-01

    Mass spectrometry (MS) is an analytical technique that measures the mass-to-charge ratio of electrically charged gas-phase particles. All mass spectrometers combine ion formation, mass analysis, and ion detection. Although mass analyzers can be regarded as sophisticated devices that manipulate ions in space and time, the rich diversity of possible ways to combine ion separation, focusing, and detection in dynamic mass spectrometers accounts for the large number of instrument designs. A historical perspective of the progress in mass spectrometry that since 1965 until today have contributed to position this technique as an indispensable tool for biological research has been recently addressed by a privileged witness of this golden age of MS (Gelpí J. Mass Spectrom 43:419-435, 2008; Gelpí J. Mass Spectrom 44:1137-1161, 2008). The aim of this chapter is to highlight the view that the operational principles of mass spectrometry can be understood by a simple mathematical language, and that an understanding of the basic concepts of mass spectrometry is necessary to take the most out of this versatile technique.

  9. Identification of the chemical constituents of Chinese medicine Yi-Xin-Shu capsule by molecular feature orientated precursor ion selection and tandem mass spectrometry structure elucidation.

    PubMed

    Wang, Hong-ping; Chen, Chang; Liu, Yan; Yang, Hong-Jun; Wu, Hong-Wei; Xiao, Hong-Bin

    2015-11-01

    The incomplete identification of the chemical components of traditional Chinese medicinal formula has been one of the bottlenecks in the modernization of traditional Chinese medicine. Tandem mass spectrometry has been widely used for the identification of chemical substances. Current automatic tandem mass spectrometry acquisition, where precursor ions were selected according to their signal intensity, encounters a drawback in chemical substances identification when samples contain many overlapping signals. Compounds in minor or trace amounts could not be identified because most tandem mass spectrometry information was lost. Herein, a molecular feature orientated precursor ion selection and tandem mass spectrometry structure elucidation method for complex Chinese medicine chemical constituent analysis was developed. The precursor ions were selected according to their two-dimensional characteristics of retention times and mass-to-charge ratio ranges from herbal compounds, so that all precursor ions from herbal compounds were included and more minor chemical constituents in Chinese medicine were identified. Compared to the conventional automatic tandem mass spectrometry setups, the approach is novel and can overcome the drawback for chemical substances identification. As an example, 276 compounds from the Chinese Medicine of Yi-Xin-Shu capsule were identified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Laser Induced Breakdown Spectroscopy (LIBS)

    DTIC Science & Technology

    2010-03-31

    mass spectrometry and laser induced breakdown spectroscopy, Spe T Trejos, A Flores and JR. Almirall, Micro-spectrochemical analysis of document paper...and gel inks by laser ablation inductively coupled plasma mass spectrometry and laser induced breakdown spectroscopy, Spectrochimica Acta Part B...abstracts): 1. *Schenk, E.R. “Elemental analysis of unprocessed cotton by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser

  11. Proteomic Mass Spectrometry Imaging for Skin Cancer Diagnosis.

    PubMed

    Lazova, Rossitza; Seeley, Erin H

    2017-10-01

    Mass spectrometry imaging can be successfully used for skin cancer diagnosis, particularly for the diagnosis of challenging melanocytic lesions. This method analyzes proteins within benign and malignant melanocytic tumor cells and, based on their differences, which constitute a unique molecular signature of 5 to 20 proteins, can render a diagnosis of benign nevus versus malignant melanoma. Mass spectrometry imaging may assist in the differentiation between metastases and nevi as well as between proliferative nodules in nevi and melanoma arising in a nevus. In the difficult area of atypical Spitzoid neoplasms, mass spectrometry diagnosis can predict clinical outcome better than histopathology. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging.

    PubMed

    Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz

    2015-09-21

    Silver nanoparticles have been successfully applied as a matrix replacement for the laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF-MS). Nanoparticles, producing spectra with highly reduced chemical background in the low m/z region, are perfectly suited for low-molecular weight compound analysis and imaging. Silver nanoparticles (AgNPs) can efficiently absorb ultraviolet laser radiation, transfer energy to the analyte and promote analyte desorption, but also constitute a source of silver ions suitable for analyte cationisation. This review provides an overview of the literature on silver nanomaterials as non-conventional desorption and ionization promoters in LDI-MS and mass spectrometry imaging.

  13. Comprehensive Urine Drug Screen by Gas Chromatography/Mass Spectrometry (GC/MS).

    PubMed

    Ramoo, Bheemraj; Funke, Melissa; Frazee, Clint; Garg, Uttam

    2016-01-01

    Drug screening is an essential component of clinical toxicology laboratory service. Some laboratories use only automated chemistry analyzers for limited screening of drugs of abuse and few other drugs. Other laboratories use a combination of various techniques such as immunoassays, colorimetric tests, and mass spectrometry to provide more detailed comprehensive drug screening. Mass spectrometry, gas or liquid, can screen for hundreds of drugs and is often considered the gold standard for comprehensive drug screening. We describe an efficient and rapid gas chromatography/mass spectrometry (GC/MS) method for comprehensive drug screening in urine which utilizes a liquid-liquid extraction, sample concentration, and analysis by GC/MS.

  14. Analysis of sulfates on low molecular weight heparin using mass spectrometry: structural characterization of enoxaparin.

    PubMed

    Gupta, Rohitesh; Ponnusamy, Moorthy P

    2018-05-31

    Structural characterization of low molecular weight heparin (LMWH) is critical to meet biosimilarity standards. In this context, the review focuses on structural analysis of labile sulfates attached to the side-groups of LMWH using mass spectrometry. A comprehensive review of this topic will help readers to identify key strategies for tackling the problem related to sulfate loss. At the same time, various mass spectrometry techniques are presented to facilitate compositional analysis of LMWH, mainly enoxaparin. Areas covered: This review summarizes findings on mass spectrometry application for LMWH, including modulation of sulfates, using enzymology and sample preparation approaches. Furthermore, popular open-source software packages for automated spectral data interpretation are also discussed. Successful use of LC/MS can decipher structural composition for LMWH and help evaluate their sameness or biosimilarity with the innovator molecule. Overall, the literature has been searched using PubMed by typing various search queries such as 'enoxaparin', 'mass spectrometry', 'low molecular weight heparin', 'structural characterization', etc. Expert commentary: This section highlights clinically relevant areas that need improvement to achieve satisfactory commercialization of LMWHs. It also primarily emphasizes the advancements in instrumentation related to mass spectrometry, and discusses building automated software for data interpretation and analysis.

  15. A Comparison of Tissue Spray and Lipid Extract Direct Injection Electrospray Ionization Mass Spectrometry for the Differentiation of Eutopic and Ectopic Endometrial Tissues

    NASA Astrophysics Data System (ADS)

    Chagovets, Vitaliy; Wang, Zhihao; Kononikhin, Alexey; Starodubtseva, Natalia; Borisova, Anna; Salimova, Dinara; Popov, Igor; Kozachenko, Andrey; Chingin, Konstantin; Chen, Huanwen; Frankevich, Vladimir; Adamyan, Leila; Sukhikh, Gennady

    2018-02-01

    Recent research revealed that tissue spray mass spectrometry enables rapid molecular profiling of biological tissues, which is of great importance for the search of disease biomarkers as well as for online surgery control. However, the payback for the high speed of analysis in tissue spray analysis is the generally lower chemical sensitivity compared with the traditional approach based on the offline chemical extraction and electrospray ionization mass spectrometry detection. In this study, high resolution mass spectrometry analysis of endometrium tissues of different localizations obtained using direct tissue spray mass spectrometry in positive ion mode is compared with the results of electrospray ionization analysis of lipid extracts. Identified features in both cases belong to three lipid classes: phosphatidylcholines, phosphoethanolamines, and sphingomyelins. Lipids coverage is validated by hydrophilic interaction liquid chromatography with mass spectrometry of lipid extracts. Multivariate analysis of data from both methods reveals satisfactory differentiation of eutopic and ectopic endometrium tissues. Overall, our results indicate that the chemical information provided by tissue spray ionization is sufficient to allow differentiation of endometrial tissues by localization with similar reliability but higher speed than in the traditional approach relying on offline extraction.

  16. DETERMINATION OF ELEMENTAL COMPOSITIONS BY HIGH RESOLUTION MASS SPECTROMETRY WITHOUT MASS CALIBRANTS

    EPA Science Inventory

    Widely applicable mass calibrants, including perfluorokerosene, are available for gas-phase introduction of analytes ionized by electron impact (EI) prior to analysis using high resolution mass spectrometry. Unfortunately, no all-purpose calibrants are available for recently dev...

  17. Mass Spectrometry: A Technique of Many Faces

    PubMed Central

    Olshina, Maya A.; Sharon, Michal

    2016-01-01

    Protein complexes form the critical foundation for a wide range of biological process, however understanding the intricate details of their activities is often challenging. In this review we describe how mass spectrometry plays a key role in the analysis of protein assemblies and the cellular pathways which they are involved in. Specifically, we discuss how the versatility of mass spectrometric approaches provides unprecedented information on multiple levels. We demonstrate this on the ubiquitin-proteasome proteolytic pathway, a process that is responsible for protein turnover. We follow the various steps of this degradation route and illustrate the different mass spectrometry workflows that were applied for elucidating molecular information. Overall, this review aims to stimulate the integrated use of multiple mass spectrometry approaches for analyzing complex biological systems. PMID:28100928

  18. Recent developments in atmospheric pressure photoionization-mass spectrometry.

    PubMed

    Kauppila, Tiina J; Syage, Jack A; Benter, Thorsten

    2017-05-01

    Recent developments in atmospheric pressure photoionization (APPI), which is one of the three most important ionization techniques in liquid chromatography-mass spectrometry, are reviewed. The emphasis is on the practical aspects of APPI analysis, its combination with different separation techniques, novel instrumental developments - especially in gas chromatography and ambient mass spectrometry - and the applications that have appeared in 2009-2014. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:423-449, 2017. © 2015 Wiley Periodicals, Inc.

  19. Imaging with Mass Spectrometry of Bacteria on the Exoskeleton of Fungus-Growing Ants.

    PubMed

    Gemperline, Erin; Horn, Heidi A; DeLaney, Kellen; Currie, Cameron R; Li, Lingjun

    2017-08-18

    Mass spectrometry imaging is a powerful analytical technique for detecting and determining spatial distributions of molecules within a sample. Typically, mass spectrometry imaging is limited to the analysis of thin tissue sections taken from the middle of a sample. In this work, we present a mass spectrometry imaging method for the detection of compounds produced by bacteria on the outside surface of ant exoskeletons in response to pathogen exposure. Fungus-growing ants have a specialized mutualism with Pseudonocardia, a bacterium that lives on the ants' exoskeletons and helps protect their fungal garden food source from harmful pathogens. The developed method allows for visualization of bacterial-derived compounds on the ant exoskeleton. This method demonstrates the capability to detect compounds that are specifically localized to the bacterial patch on ant exoskeletons, shows good reproducibility across individual ants, and achieves accurate mass measurements within 5 ppm error when using a high-resolution, accurate-mass mass spectrometer.

  20. A MASSive Laboratory Tour. An Interactive Mass Spectrometry Outreach Activity for Children

    NASA Astrophysics Data System (ADS)

    Jungmann, Julia H.; Mascini, Nadine E.; Kiss, Andras; Smith, Donald F.; Klinkert, Ivo; Eijkel, Gert B.; Duursma, Marc C.; Cillero Pastor, Berta; Chughtai, Kamila; Chughtai, Sanaullah; Heeren, Ron M. A.

    2013-07-01

    It is imperative to fascinate young children at an early stage in their education for the analytical sciences. The exposure of the public to mass spectrometry presently increases rapidly through the common media. Outreach activities can take advantage of this exposure and employ mass spectrometry as an exquisite example of an analytical science in which children can be fascinated. The presented teaching modules introduce children to mass spectrometry and give them the opportunity to experience a modern research laboratory. The modules are highly adaptable and can be applied to young children from the age of 6 to 14 y. In an interactive tour, the students explore three major scientific concepts related to mass spectrometry; the building blocks of matter, charged particle manipulation by electrostatic fields, and analyte identification by mass analysis. Also, the students carry out a mass spectrometry experiment and learn to interpret the resulting mass spectra. The multistage, inquiry-based tour contains flexible methods, which teach the students current-day research techniques and possible applications to real research topics. Besides the scientific concepts, laboratory safety and hygiene are stressed and the students are enthused for the analytical sciences by participating in "hands-on" work. The presented modules have repeatedly been successfully employed during laboratory open days. They are also found to be extremely suitable for (early) high school science classes during laboratory visit-focused field trips.

  1. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry.

    PubMed

    Palmer, Andrew; Phapale, Prasad; Chernyavsky, Ilya; Lavigne, Regis; Fay, Dominik; Tarasov, Artem; Kovalev, Vitaly; Fuchser, Jens; Nikolenko, Sergey; Pineau, Charles; Becker, Michael; Alexandrov, Theodore

    2017-01-01

    High-mass-resolution imaging mass spectrometry promises to localize hundreds of metabolites in tissues, cell cultures, and agar plates with cellular resolution, but it is hampered by the lack of bioinformatics tools for automated metabolite identification. We report pySM, a framework for false discovery rate (FDR)-controlled metabolite annotation at the level of the molecular sum formula, for high-mass-resolution imaging mass spectrometry (https://github.com/alexandrovteam/pySM). We introduce a metabolite-signal match score and a target-decoy FDR estimate for spatial metabolomics.

  2. Mass Spectral Studies of 1-(2-Chloroethoxy)-2-[(2-chloroethyl)thio] Ethane and Related Compounds Using Gas ChromatographyMass Spectrometry and Gas ChromatographyTriple-Quadrupole Mass Spectrometry

    DTIC Science & Technology

    2016-02-01

    NOTES 14. ABSTRACT: The electron impact and collision-induced- dissociation mass spectra of 1-(2-chloroethoxy)-2-[(2-chloroethyl)thio] ethane and 10...Collision-ion dissociation (CID) Triple-quadrupole mass spectrometry (QQQ) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...ratio, 10:1), and a 1.0 µL volume of sample was placed on the column. Nitrogen was used as the collision gas for the collision-induced dissociation (CID

  3. Determination of nitroaromatic explosives and their degradation products in unsaturated-zone water samples by high-performance liquid chromatography with photodiode-array, mass spectrometric, and tandem mass spectrometric detection

    USGS Publications Warehouse

    Gates, Paul M.; Furlong, E.T.; Dorsey, T.F.; Burkhardt, M.R.

    1996-01-01

    Mass spectrometry and tandem mass spectrometry, coupled by a thermospray interface to a high-performance liguid chromatography system and equipped with a photodiode array detector, were used to determine the presence of nitroaromatic explosives and their degradation products in USA unsaturated-zone water samples. Using this approach, the lower limits of quantitation for explosives determined by mass spectrometry in this study typically ranged from 10 to 100 ng/l.

  4. Rapid characterization of the chemical constituents of Cortex Fraxini by homogenate extraction followed by UHPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry and GC-MS.

    PubMed

    Wang, Yinan; Han, Fei; Song, Aihua; Wang, Miao; Zhao, Min; Zhao, Chunjie

    2016-11-01

    Cortex Fraxini is an important traditional Chinese medicine. In this work, a rapid and reliable homogenate extraction method was applied for the fast extraction for Cortex Fraxini, and the method was optimized by response surface methodology. Ultra high performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry and gas chromatography with mass spectrometry were established for the separation and characterization of the constituents of Cortex Fraxini. Liquid chromatography separation was conducted on a C 18 column (150 mm × 2.1 mm, 1.8 μm), and gas chromatography separation was performed on a capillary with a 5% phenyl-methylpolysiloxane stationary phase (30 m × 0.25 mm × 0.25 mm) by injection of silylated samples. According to the results, 33 chemical compounds were characterized by liquid chromatography with mass spectrometry, and 11 chemical compounds were characterized by gas chromatography with mass spectrometry, and coumarins were the major components characterized by both gas chromatography with mass spectrometry and liquid chromatography with mass spectrometry. The proposed homogenate extraction was an efficient and rapid method, and coumarins, phenylethanoid glycosides, iridoid glycosides, phenylpropanoids, and lignans were the main constituents of Cortex Fraxini. This work laid the foundation for further study of Cortex Fraxini and will be helpful for the rapid extraction and characterization of ingredients in other traditional Chinese medicines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ambient Ionization Mass Spectrometry for Cancer Diagnosis and Surgical Margin Evaluation

    PubMed Central

    Ifa, Demian R.; Eberlin, Livia S.

    2017-01-01

    Background There is a clinical need for new technologies that would enable rapid disease diagnosis based on diagnostic molecular signatures. Ambient ionization mass spectrometry has revolutionized the means by which molecular information can be obtained from tissue samples in real time and with minimal sample pretreatment. New developments in ambient ionization techniques applied to clinical research suggest that ambient ionization mass spectrometry will soon become a routine medical tool for tissue diagnosis. Content This review summarizes the main developments in ambient ionization techniques applied to tissue analysis, with focus on desorption electrospray ionization mass spectrometry, probe electrospray ionization, touch spray, and rapid evaporative ionization mass spectrometry. We describe their applications to human cancer research and surgical margin evaluation, highlighting integrated approaches tested for ex vivo and in vivo human cancer tissue analysis. We also discuss the challenges for clinical implementation of these tools and offer perspectives on the future of the field. Summary A variety of studies have showcased the value of ambient ionization mass spectrometry for rapid and accurate cancer diagnosis. Small molecules have been identified as potential diagnostic biomarkers, including metabolites, fatty acids, and glycerophospholipids. Statistical analysis allows tissue discrimination with high accuracy rates (>95%) being common. This young field has challenges to overcome before it is ready to be broadly accepted as a medical tool for cancer diagnosis. Growing research in new, integrated ambient ionization mass spectrometry technologies and the ongoing improvements in the existing tools make this field very promising for future translation into the clinic. PMID:26555455

  6. Quantitative thin-layer chromatography/mass spectrometry analysis of caffeine using a surface sampling probe electrospray ionization tandem mass spectrometry system.

    PubMed

    Ford, Michael J; Deibel, Michael A; Tomkins, Bruce A; Van Berkel, Gary J

    2005-07-15

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 mum/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 muL) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by approximately 8% or more) than the literature values.

  7. THE APPLICATION OF MASS SPECTROMETRY TO THE STUDY OF MICROORGANISMS

    EPA Science Inventory

    The purpose of this research project is to use state-of-the-art mass spectrometric techniques, such as electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS), to provide "protein mass fingerprinting" and protein sequencing i...

  8. Gene silencing pathway RNA-dependent RNA polymerase of Neurospora crassa: yeast expression and crystallization of selenomethionated QDE-1 protein.

    PubMed

    Laurila, Minni R L; Salgado, Paula S; Makeyev, Eugene V; Nettelship, Joanne; Stuart, David I; Grimes, Jonathan M; Bamford, Dennis H

    2005-01-01

    The RNA-dependent RNA polymerase, QDE-1, is a component of the RNA silencing pathway in Neurospora crassa. The enzymatically active carboxy-terminal fragment QDE-1 DeltaN has been expressed in Saccharomyces cerevisiae in the presence and absence of selenomethionine (SeMet). The level of SeMet incorporation was estimated by mass spectrometry to be approximately 98%. Both native and SeMet proteins were crystallized in space group P2(1) with unit cell parameters a=101.2, b=122.5, c=114.4A, beta=108.9 degrees , and 2 molecules per asymmetric unit. The native and SeMet crystals diffract to 2.3 and 3.2A, respectively, the latter are suitable for MAD structure determination.

  9. Thermochemistry of Rare Earth Silicates for Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo; Jacobson, Nathan

    2015-01-01

    Rare earth silicates are promising candidates as environmental protective coatings (EBCs) for silica-forming ceramics and composites in combustion environments since they are predicted to have lower reactivity with the water vapor combustion products. The reactivity of rare earth silicates is assessed by the thermodynamic activity of the silica component which is best measured by Knudsen effusion mass spectrometry (KEMS). Here, we discuss a novel method based on a reducing agent to increase the partial pressure of SiO(g) which is then used to calculate thermodynamic activity of silica in Y2O3-SiO2 and Yb2O3-SiO2 systems. After the KEMS measurements, samples were probed by X-ray diffraction and their phase content was calculated from Rietveld refinement.

  10. Static Time-of-Flight Secondary Ion Mass Spectrometry (SIMS) | Materials

    Science.gov Websites

    -Flight Secondary Ion Mass Spectrometry (SIMS) Image of high mass resolution and mass accuracy provided by TOF SIMS We used the high mass resolution and mass accuracy of TOF SIMS to study surface cleanliness acidic wash resulted in contamination by Fe and other metals. Without high mass accuracy, the CaO signal

  11. ARO - Terrestrial Research Program, Methodologies and Protocols for Characterization of Geomaterials

    DTIC Science & Technology

    2015-05-14

    of ice involves melting, digestion, and analysis using inductively coupled plasma – mass spectrometry (ICPMS). ICP-MS analysis established elemental...4] have distinct chemical compositions. Knowledge of the chemical composition of the mineral assemblage present in a rock is critical to...activation analysis (INAA), to inductively-coupled plasma analysis and mass spectrometry (ICP & ICP-MS), mass spectrometry (MS), and laser-ablation

  12. Peculiarities of data interpretation upon direct tissue analysis by Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Chagovets, Vtaliy; Kononikhin, Aleksey; Starodubtseva, Nataliia; Kostyukevich, Yury; Popov, Igor; Frankevich, Vladimir; Nikolaev, Eugene

    2016-01-01

    The importance of high-resolution mass spectrometry for the correct data interpretation of a direct tissue analysis is demonstrated with an example of its clinical application for an endometriosis study. Multivariate analysis of the data discovers lipid species differentially expressed in different tissues under investigation. High-resolution mass spectrometry allows unambiguous separation of peaks with close masses that correspond to proton and sodium adducts of phosphatidylcholines and to phosphatidylcholines differing in double bond number.

  13. A COMPARISON OF PARTICLE MASS SPECTROMETERS DURING THE 1999 ATLANTA SUPERSITES EXPERIMENT

    EPA Science Inventory

    During the Atlanta SuperSite Experiment, four particle mass spectrometers were operated together for the first time: NOAA's PALMS (Particle Analysis by Laser Mass Spectrometry), U. C. Riverside's ATOFMS (Aerosol Time-of-Flight Mass Spectrometry), U. Delaware's RSMS-II (Rapid Si...

  14. Anatomy and evolution of database search engines-a central component of mass spectrometry based proteomic workflows.

    PubMed

    Verheggen, Kenneth; Raeder, Helge; Berven, Frode S; Martens, Lennart; Barsnes, Harald; Vaudel, Marc

    2017-09-13

    Sequence database search engines are bioinformatics algorithms that identify peptides from tandem mass spectra using a reference protein sequence database. Two decades of development, notably driven by advances in mass spectrometry, have provided scientists with more than 30 published search engines, each with its own properties. In this review, we present the common paradigm behind the different implementations, and its limitations for modern mass spectrometry datasets. We also detail how the search engines attempt to alleviate these limitations, and provide an overview of the different software frameworks available to the researcher. Finally, we highlight alternative approaches for the identification of proteomic mass spectrometry datasets, either as a replacement for, or as a complement to, sequence database search engines. © 2017 Wiley Periodicals, Inc.

  15. Imaging mass spectrometry in microbiology

    PubMed Central

    Watrous, Jeramie D.; Dorrestein, Pieter C.

    2013-01-01

    Mass spectrometry tools which allow for the 2-D visualization of the distribution of trace metals, metabolites, surface lipids, peptides and proteins directly from biological samples without the need for chemical tagging or antibodies are becoming increasingly useful for microbiology applications. These tools, comprised of different imaging mass spectrometry techniques, are ushering in an exciting new era of discovery by allowing for the generation of chemical hypotheses based on of the spatial mapping of atoms and molecules that can correlate to or transcend observed phenotypes. In this review, we explore the wide range of imaging mass spectrometry techniques available to microbiologists and describe their unique applications to microbiology with respect to the types of microbiology samples to be investigated. PMID:21822293

  16. Symposium on accelerator mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on themore » status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.« less

  17. Stability behaviour of antiretroviral drugs and their combinations. 5: Characterization of novel degradation products of abacavir sulfate by mass and nuclear magnetic resonance spectrometry.

    PubMed

    Kurmi, Moolchand; Sahu, Archana; Singh, Saranjit

    2017-02-05

    In the present study, degradation behaviour of abacavir sulfate was evaluated in solution and solid stress conditions. Solution state studies resulted in formation of eleven degradation products; of which two were also formed on solid stress. The same were separated by high performance liquid chromatography. They were characterized using liquid chromatography-high resolution mass spectrometry, liquid chromatography-multistage mass spectrometry and hydrogen/deuterium exchange mass spectrometry data. Additionally, seven degradation products were isolated and subjected to 1D and 2D nuclear magnetic resonance studies for their structural confirmation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Investigation on high efficiency volume Bragg gratings performances for spectrometry in space environment

    NASA Astrophysics Data System (ADS)

    Loicq, Jérôme; Stockman, Y.; Georges, Marc; Gaspar Venancio, Luis M.

    2017-11-01

    The special properties of Volume Bragg Gratings (VBGs) make them good candidates for spectrometry applications where high spectral resolution, low level of straylight and low polarisation sensitivity are required. Therefore it is of interest to assess the maturity and suitability of VBGs as enabling technology for future ESA missions with demanding requirements for spectrometry. The VBGs suitability for space application is being investigated in the frame of a project led by CSL and funded by the European Space Agency. The goal of this work is twofold: first the theoretical advantages and drawbacks of VBGs with respect to other technologies with identical functionalities are assessed, and second the performances of VBG samples in a representative space environment are experimentally evaluated. The performances of samples of two VBGs technologies, the Photo-Thermo-Refractive (PTR) glass and the DiChromated Gelatine (DCG), are assessed and compared in the Hα, O2-B and NIR bands. The tests are performed under vacuum condition combined with temperature cycling in the range of 200 K to 300K. A dedicated test bench experiment is designed to evaluate the impact of temperature on the spectral efficiency and to determine the optical wavefront error of the diffracted beam. Furthermore the diffraction efficiency degradation under gamma irradiation is assessed. Finally the straylight, the diffraction efficiency under conical incidence and the polarisation sensitivity is evaluated.

  19. Nanomanipulation-coupled nanospray mass spectrometry as an approach for single cell analysis

    NASA Astrophysics Data System (ADS)

    Phelps, Mandy; Hamilton, Jason; Verbeck, Guido F.

    2014-12-01

    Electrospray mass spectrometry is now a widely used technique for observing cell content of various biological tissues. However, electrospray techniques (liquid chromatography and direct infusion) often involve lysing a group of cells and extracting the biomolecules of interest, rather than a sensitive, individual cell method to observe local chemistry. Presented here is an approach of combining a nanomanipulator workstation with nanospray mass spectrometry, which allows for extraction of a single cell, followed by rapid mass analysis that can provide a detailed metabolic profile. Triacylglycerol content was profiled with this tool coupled to mass spectrometry to investigate heterogeneity between healthy and tumorous tissues as well as lipid droplet containing adipocytes in vitro as proof of concept. This selective approach provides cellular resolution and complements existing bioanalytical techniques with minimal invasion to samples. In addition, the coupling of nanomanipulation and mass spectrometry holds the potential to be used in a great number of applications for individual organelles, diseased tissues, and in vitro cell cultures for observing heterogeneity even amongst cells and organelles of the same tissue.

  20. Mass Spectrometry Imaging, an Emerging Technology in Neuropsychopharmacology

    PubMed Central

    Shariatgorji, Mohammadreza; Svenningsson, Per; Andrén, Per E

    2014-01-01

    Mass spectrometry imaging is a powerful tool for directly determining the distribution of proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ. Molecule-specific imaging can be achieved using various ionization techniques that are suited to different applications but which all yield data with high mass accuracies and spatial resolutions. The ability to simultaneously obtain images showing the distributions of chemical species ranging from metal ions to macromolecules makes it possible to explore the chemical organization of a sample and to correlate the results obtained with specific anatomical features. The imaging of biomolecules has provided new insights into multiple neurological diseases, including Parkinson's and Alzheimer's disease. Mass spectrometry imaging can also be used in conjunction with other imaging techniques in order to identify correlations between changes in the distribution of important chemical species and other changes in the properties of the tissue. Here we review the applications of mass spectrometry imaging in neuroscience research and discuss its potential. The results presented demonstrate that mass spectrometry imaging is a useful experimental method with diverse applications in neuroscience. PMID:23966069

  1. A Compressive Sensing Approach for Glioma Margin Delineation Using Mass Spectrometry

    PubMed Central

    Gholami, Behnood; Agar, Nathalie Y. R.; Jolesz, Ferenc A.; Haddad, Wassim M.; Tannenbaum, Allen R.

    2013-01-01

    Surgery, and specifically, tumor resection, is the primary treatment for most patients suffering from brain tumors. Medical imaging techniques, and in particular, magnetic resonance imaging are currently used in diagnosis as well as image-guided surgery procedures. However, studies show that computed tomography and magnetic resonance imaging fail to accurately identify the full extent of malignant brain tumors and their microscopic infiltration. Mass spectrometry is a well-known analytical technique used to identify molecules in a given sample based on their mass. In a recent study, it is proposed to use mass spectrometry as an intraoperative tool for discriminating tumor and non-tumor tissue. Integration of mass spectrometry with the resection module allows for tumor resection and immediate molecular analysis. In this paper, we propose a framework for tumor margin delineation using compressive sensing. Specifically, we show that the spatial distribution of tumor cell concentration can be efficiently reconstructed and updated using mass spectrometry information from the resected tissue. In addition, our proposed framework is model-free, and hence, requires no prior information of spatial distribution of the tumor cell concentration. PMID:22255629

  2. Mass spectrometry imaging, an emerging technology in neuropsychopharmacology.

    PubMed

    Shariatgorji, Mohammadreza; Svenningsson, Per; Andrén, Per E

    2014-01-01

    Mass spectrometry imaging is a powerful tool for directly determining the distribution of proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ. Molecule-specific imaging can be achieved using various ionization techniques that are suited to different applications but which all yield data with high mass accuracies and spatial resolutions. The ability to simultaneously obtain images showing the distributions of chemical species ranging from metal ions to macromolecules makes it possible to explore the chemical organization of a sample and to correlate the results obtained with specific anatomical features. The imaging of biomolecules has provided new insights into multiple neurological diseases, including Parkinson's and Alzheimer's disease. Mass spectrometry imaging can also be used in conjunction with other imaging techniques in order to identify correlations between changes in the distribution of important chemical species and other changes in the properties of the tissue. Here we review the applications of mass spectrometry imaging in neuroscience research and discuss its potential. The results presented demonstrate that mass spectrometry imaging is a useful experimental method with diverse applications in neuroscience.

  3. Magnetic solid-phase extraction based on magnetic multiwalled carbon nanotubes for the simultaneous enantiomeric analysis of five β-blockers in the environmental samples by chiral liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Wang, Zhaokun; Zhang, Xue; Jiang, Shenmeng; Guo, Xingjie

    2018-04-01

    In this work, the magnetic multiwalled carbon nanotubes (Mag-MWCNTs) were prepared by self-assembly method and characterized by scanning electron microscopy, X-ray powder diffraction, energy dispersive X-ray and vibrating sample magnetometer. Then, these synthetic Mag-MWCNTs were used as sorbents to extract five β-blockers (atenolol, metoprolol, esmolol, pindolol and arotinolol) by magnetic solid-phase extraction. The target analytes adsorbed on Mag-MWCNTs were eluted and determined on a chiral α-acid glycoprotein column coupled with a triple quadrupole mass spectrometry. Eventually, the proposed method was applied to the analysis of the enantiomeric composition of the studied β-blockers in three environmental samples, including river water, influent wastewater and effluent wastewater. Method detection and quantification limits for all enantiomers were in the range of 0.50-1.45 and 1.63-3.75ng/L, respectively. Satisfactory recovery (82.9-95.6%), good intra-day precision (RSD 0.4-10.4%) and inter-day precision (RSD 2.9-7.4%) were also obtained. With numerous advantages such as simplicity of operation, rapidity and high enrichment factor, the newly developed method has potential to assess the enantioselectivity of chiral drugs in ecotoxicity and biodegradation processes, which is also a new expanded application of Mag-MWCNTs in the environmental analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Environmental applications for the analysis of chlorinated dibenzo-p-dioxins and dibenzofurans using mass spectrometry/mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiner, E.J.; Schellenberg, D.H.; Taguchi, V.Y.

    1991-01-01

    A mass spectrometry/mass spectrometry-multiple reaction monitoring (MS/MS-MRM) technique for the analysis of all tetra- through octachlorinated dibenzo-p-dioxins (Cl{sub x}DD, x = 4-8) and dibenzofurans (Cl{sub x}DF, x = 4-8) has been developed at the Ministry of the Environment (MOE) utilizing a triple quadrupole mass spectrometer. Optimization of instrumental parameters using the analyte of interest in a direct insertion probe (DIP) resulted in sensitivities approaching those obtainable by high-resolution mass spectrometric (HRMS) methods. All congeners of dioxins and furans were detected in the femtogram range. Results on selected samples indicated that for some matrices, fewer chemical interferences were observed by MS/MSmore » than by HRMS. The technique used to optimize the instrument for chlorinated dibenzo-p-dioxins (CDDs) and chlorinated dibenzofurans (CDFs) analysis is adaptable to other analytes.« less

  5. Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.

    PubMed

    Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J

    1996-06-01

    For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.

  6. The Use of Gas Chromatography and Mass Spectrometry to Introduce General Chemistry Students to Percent Mass and Atomic Mass Calculations

    ERIC Educational Resources Information Center

    Pfennig, Brian W.; Schaefer, Amy K.

    2011-01-01

    A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…

  7. Polymeric spatial resolution test patterns for mass spectrometry imaging using nano-thermal analysis with atomic force microscopy

    DOE PAGES

    Tai, Tamin; Kertesz, Vilmos; Lin, Ming -Wei; ...

    2017-05-11

    As the spatial resolution of mass spectrometry imaging technologies has begun to reach into the nanometer regime, finding readily available or easily made resolution reference materials has become particularly challenging for molecular imaging purposes. This study describes the fabrication, characterization and use of vertical line array polymeric spatial resolution test patterns for nano-thermal analysis/atomic force microscopy/mass spectrometry chemical imaging.

  8. Peptide Analysis Using Tandem Mass Spectrometry

    DTIC Science & Technology

    1989-06-01

    to give pyroglutamic acid during storage, eliminating ammonia. It is almost absent in the spectrum of a freshly-prepared sample and is not seen in...USING TANDEM MASS SPECTROMETRY INTRODUCTION S The objective of the project was to determine the complete amino acid sequence of the large polypeptide...Ubiquitin by use of fast atom bombardment (FAB) ionization and tandem mass spectrometry. The peptide containing 76 amino acid residues was available

  9. 3D printing of graphene-doped target for "matrix-free" laser desorption/ionization mass spectrometry.

    PubMed

    Wang, Dingyi; Huang, Xiu; Li, Jie; He, Bin; Liu, Qian; Hu, Ligang; Jiang, Guibin

    2018-03-13

    We report a graphene-doped resin target fabricated via a 3D printing technique for laser desorption/ionization mass spectrometry analysis. The graphene doped in the target acts as an inherent laser absorber and ionization promoter, thus permitting the direct analysis of samples without adding matrix. This work reveals a new strategy for easy designing and fabrication of functional mass spectrometry devices.

  10. Fractional Analysis of Escherichia coli O157:H7 by Mass Spectrometry-Based Proteomics

    DTIC Science & Technology

    2012-10-01

    column with the Dionex UltiMate 3000 (Thermo Scientific Dionex , Sunnyvale, CA). The resolved peptides were electrosprayed into a linear ion trap MS... chromatography -tandem mass spectrometry, followed by biochemical pathway mapping using the Kyoto Encyclopedia of Genes and Genomes. The fimbriae-specific subset...15. SUBJECT TERMS 3T3 murine fibroblasts Cell toxicity Liquid chromatography Mass spectrometry LC-MS Ricin Ricinus communis

  11. Polymeric spatial resolution test patterns for mass spectrometry imaging using nano-thermal analysis with atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Tamin; Kertesz, Vilmos; Lin, Ming -Wei

    As the spatial resolution of mass spectrometry imaging technologies has begun to reach into the nanometer regime, finding readily available or easily made resolution reference materials has become particularly challenging for molecular imaging purposes. This study describes the fabrication, characterization and use of vertical line array polymeric spatial resolution test patterns for nano-thermal analysis/atomic force microscopy/mass spectrometry chemical imaging.

  12. Extraction and Analysis of Sulfur Mustard (HD) from Various Food Matrices by Gas ChromatographyMass Spectrometry

    DTIC Science & Technology

    2016-01-01

    EXTRACTION AND ANALYSIS OF SULFUR MUSTARD (HD) FROM VARIOUS FOOD MATRICES BY GAS CHROMATOGRAPHY–MASS...Sulfur Mustard (HD) from Various Food Matrices by Gas Chromatography–Mass Spectrometry 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...spectrometry was used to analyze sulfur mustard (HD) in various food matrices. The development of a solid-phase extraction method using a normal

  13. Development of stereotactic mass spectrometry for brain tumor surgery.

    PubMed

    Agar, Nathalie Y R; Golby, Alexandra J; Ligon, Keith L; Norton, Isaiah; Mohan, Vandana; Wiseman, Justin M; Tannenbaum, Allen; Jolesz, Ferenc A

    2011-02-01

    Surgery remains the first and most important treatment modality for the majority of solid tumors. Across a range of brain tumor types and grades, postoperative residual tumor has a great impact on prognosis. The principal challenge and objective of neurosurgical intervention is therefore to maximize tumor resection while minimizing the potential for neurological deficit by preserving critical tissue. To introduce the integration of desorption electrospray ionization mass spectrometry into surgery for in vivo molecular tissue characterization and intraoperative definition of tumor boundaries without systemic injection of contrast agents. Using a frameless stereotactic sampling approach and by integrating a 3-dimensional navigation system with an ultrasonic surgical probe, we obtained image-registered surgical specimens. The samples were analyzed with ambient desorption/ionization mass spectrometry and validated against standard histopathology. This new approach will enable neurosurgeons to detect tumor infiltration of the normal brain intraoperatively with mass spectrometry and to obtain spatially resolved molecular tissue characterization without any exogenous agent and with high sensitivity and specificity. Proof of concept is presented in using mass spectrometry intraoperatively for real-time measurement of molecular structure and using that tissue characterization method to detect tumor boundaries. Multiple sampling sites within the tumor mass were defined for a patient with a recurrent left frontal oligodendroglioma, World Health Organization grade II with chromosome 1p/19q codeletion, and mass spectrometry data indicated a correlation between lipid constitution and tumor cell prevalence. The mass spectrometry measurements reflect a complex molecular structure and are integrated with frameless stereotaxy and imaging, providing 3-dimensional molecular imaging without systemic injection of any agents, which can be implemented for surgical margins delineation of any organ and with a rapidity that allows real-time analysis.

  14. Direct olive oil analysis by mass spectrometry: A comparison of different ambient ionization methods.

    PubMed

    Lara-Ortega, Felipe J; Beneito-Cambra, Miriam; Robles-Molina, José; García-Reyes, Juan F; Gilbert-López, Bienvenida; Molina-Díaz, Antonio

    2018-04-01

    Analytical methods based on ambient ionization mass spectrometry (AIMS) combine the classic outstanding performance of mass spectrometry in terms of sensitivity and selectivity along with convenient features related to the lack of sample workup required. In this work, the performance of different mass spectrometry-based methods has been assessed for the direct analyses of virgin olive oil for quality purposes. Two sets of experiments have been setup: (1) direct analysis of untreated olive oil using AIMS methods such as Low-Temperature Plasma Mass Spectrometry (LTP-MS) or paper spray mass spectrometry (PS-MS); or alternatively (2) the use of atmospheric pressure ionization (API) mass spectrometry by direct infusion of a diluted sample through either atmospheric pressure chemical ionization (APCI) or electrospray (ESI) ionization sources. The second strategy involved a minimum sample work-up consisting of a simple olive oil dilution (from 1:10 to 1:1000) with appropriate solvents, which originated critical carry over effects in ESI, making unreliable its use in routine; thus, ESI required the use of a liquid-liquid extraction to shift the measurement towards a specific part of the composition of the edible oil (i.e. polyphenol rich fraction or lipid/fatty acid profile). On the other hand, LTP-MS enabled direct undiluted mass analysis of olive oil. The use of PS-MS provided additional advantages such as an extended ionization coverage/molecular weight range (compared to LTP-MS) and the possibility to increase the ionization efficiency towards nonpolar compounds such as squalene through the formation of Ag + adducts with carbon-carbon double bounds, an attractive feature to discriminate between oils with different degree of unsaturation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Seng, Piseth; Drancourt, Michel; Gouriet, Frédérique; La Scola, Bernard; Fournier, Pierre-Edouard; Rolain, Jean Marc; Raoult, Didier

    2009-08-15

    Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry accurately identifies both selected bacteria and bacteria in select clinical situations. It has not been evaluated for routine use in the clinic. We prospectively analyzed routine MALDI-TOF mass spectrometry identification in parallel with conventional phenotypic identification of bacteria regardless of phylum or source of isolation. Discrepancies were resolved by 16S ribosomal RNA and rpoB gene sequence-based molecular identification. Colonies (4 spots per isolate directly deposited on the MALDI-TOF plate) were analyzed using an Autoflex II Bruker Daltonik mass spectrometer. Peptidic spectra were compared with the Bruker BioTyper database, version 2.0, and the identification score was noted. Delays and costs of identification were measured. Of 1660 bacterial isolates analyzed, 95.4% were correctly identified by MALDI-TOF mass spectrometry; 84.1% were identified at the species level, and 11.3% were identified at the genus level. In most cases, absence of identification (2.8% of isolates) and erroneous identification (1.7% of isolates) were due to improper database entries. Accurate MALDI-TOF mass spectrometry identification was significantly correlated with having 10 reference spectra in the database (P=.01). The mean time required for MALDI-TOF mass spectrometry identification of 1 isolate was 6 minutes for an estimated 22%-32% cost of current methods of identification. MALDI-TOF mass spectrometry is a cost-effective, accurate method for routine identification of bacterial isolates in <1 h using a database comprising > or =10 reference spectra per bacterial species and a 1.9 identification score (Brucker system). It may replace Gram staining and biochemical identification in the near future.

  16. Characterization of crude oil biomarkers using comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Mogollón, Noroska Gabriela Salazar; Prata, Paloma Santana; Dos Reis, Jadson Zeni; Neto, Eugênio Vaz Dos Santos; Augusto, Fabio

    2016-09-01

    Oil samples from Recôncavo basin (NE Brazil), previously analyzed by traditional techniques such as gas chromatography coupled to tandem mass spectrometry, were evaluated using comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry and comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry along with simplified methods of samples preparation to evaluate the differences and advantages of these analytical techniques to better understand the development of the organic matter in this basin without altering the normal distribution of the compounds in the samples. As a result, the geochemical parameters calculated by comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry described better the origin, maturity, and biodegradation of both samples probably by increased selectivity, resolution, and sensitivity inherent of the multidimensional technique. Additionally, the detection of the compounds such as, the C(14α-) homo-26-nor-17α-hopane series, diamoretanes, nor-spergulanes, C19 -C26 A-nor-steranes and 4α-methylsteranes resolved and detected by comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry were key to classify and differentiate these lacustrine samples according to their maturity and deposition conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Rapid detection of cocaine, benzoylecgonine and methylecgonine in fingerprints using surface mass spectrometry.

    PubMed

    Bailey, Melanie J; Bradshaw, Robert; Francese, Simona; Salter, Tara L; Costa, Catia; Ismail, Mahado; P Webb, Roger; Bosman, Ingrid; Wolff, Kim; de Puit, Marcel

    2015-09-21

    Latent fingerprints provide a potential route to the secure, high throughput and non-invasive detection of drugs of abuse. In this study we show for the first time that the excreted metabolites of drugs of abuse can be detected in fingerprints using ambient mass spectrometry. Fingerprints and oral fluid were taken from patients attending a drug and alcohol treatment service. Gas chromatography mass spectrometry (GC-MS) was used to test the oral fluid of patients for the presence of cocaine and benzoylecgonine. The corresponding fingerprints were analysed using Desorption Electrospray Ionization (DESI) which operates under ambient conditions and Ion Mobility Tandem Mass Spectrometry Matrix Assisted Laser Desorption Ionization (MALDI-IMS-MS/MS) and Secondary Ion Mass Spectrometry (SIMS). The detection of cocaine, benzoylecgonine (BZE) and methylecgonine (EME) in latent fingerprints using both DESI and MALDI showed good correlation with oral fluid testing. The sensitivity of SIMS was found to be insufficient for this application. These results provide exciting opportunities for the use of fingerprints as a new sampling medium for secure, non-invasive drug detection. The mass spectrometry techniques used here offer a high level of selectivity and consume only a small area of a single fingerprint, allowing repeat and high throughput analyses of a single sample.

  18. Novel product ions of 2-aminoanilide and benzimidazole Ag(I) complexes using electrospray ionization with multi-stage tandem mass spectrometry.

    PubMed

    Johnson, Byron S; Burinsky, David J; Burova, Svetlana A; Davis, Roman; Fitzgerald, Russ N; Matsuoka, Richard T

    2012-05-15

    The 2-aminoaniline scaffold is of significant value to the pharmaceutical industry and is embedded in a number of pharmacophores including 2-aminoanilides and benzimidazoles. A novel application of coordination ion spray mass spectrometry (CIS-MS) for interrogating the silver ion (Ag(+)) complexes of a homologous series of these compounds using multi-stage tandem mass spectrometry is described. Unlike the ubiquitous alkali metal ion complexes, Ag(+) complexes of 2-aminoanilides and benzimidazoles were found to yield [M - H](+) ions in significant abundance via gas-phase elimination of the metal hydride (AgH) resulting in unique product ion cascades. Sample introduction was by liquid chromatography with mass spectrometry analysis performed on a hybrid linear ion trap/orbitrap instrument capable of high-resolution measurements. Rigorous structural characterization by multi-stage tandem mass spectrometry using [M +  H](+), [M - H](-) and [M - H](+) precursor ions derived from ESI and CIS experiments was performed for the homologous series of 2-aminoanilide and benzimidazole compounds. A full tabular comparison of structural information resulting from these product ion cascades was produced. Multi-stage tandem mass spectrometry of [M - H](+) ions resulting from Ag(+) complexes of 2-aminoanilides and benzimidazoles in CIS-MS experiments produced unique product ion cascades that exhibited complementary structural information to that obtained from tandem mass spectrometry of [M  +  H](+) and [M - H](-) ions by electrospray ionization (ESI). These observations may be broadly applicable to other compounds that are observed to form Ag(+) complexes and eliminate AgH. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Quantitative Thin-Layer Chromatography/Mass Spectrometry Analysis of Caffeine Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Michael J; Deibel, Michael A.; Tomkins, Bruce A

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methodsmore » determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.« less

  20. The Effect of a Receding Saline Lake (The Salton Sea) on Airborne Particulate Matter Composition.

    PubMed

    Frie, Alexander L; Dingle, Justin H; Ying, Samantha C; Bahreini, Roya

    2017-08-01

    The composition of ambient particulate matter (PM) and its sources were investigated at the Salton Sea, a shrinking saline lake in California. To investigate the influence of playa exposure on PM composition, PM samples were collected during two seasons and at two sites around the Salton Sea. To characterize source composition, soil samples were collected from local playa and desert surfaces. PM and soil samples were analyzed for 15 elements using mass spectrometry and X-ray diffraction. The contribution of sources to PM mass and composition was investigated using Al-referenced enrichment factors (EFs) and source factors resolved from positive matrix factorization (PMF). Playa soils were found to be significantly enriched in Ca, Na, and Se relative to desert soils. PMF analysis resolved the PM 10 data with four source factors, identified as Playa-like, Desert-like, Ca-rich, and Se. Playa-like and desert-like sources were estimated to contribute to a daily average of 8.9% and 45% of PM 10 mass, respectively. Additionally, playa sources were estimated to contribute to 38-68% of PM 10 Na. PM 10 Se concentrations showed strong seasonal variations, suggesting a seasonal cycle of Se volatilization and recondensation. These results support the importance of playas as a source of PM mass and a controlling factor of PM composition.

  1. Isolation and physico-chemical characterisation of extracellular polymeric substances produced by the marine bacterium Vibrio parahaemolyticus.

    PubMed

    Kavita, Kumari; Mishra, Avinash; Jha, Bhavanath

    2011-03-01

    A marine bacterial strain identified as Vibrio parahaemolyticus by 16S rRNA gene (HM355955) sequencing and gas chromatography (GC) coupled with MIDI was selected from a natural biofilm by its capability to produce extracellular polymeric substances (EPS). The EPS had an average molecule size of 15.278 μm and exhibited characteristic diffraction peaks at 5.985°, 9.150° and 22.823°, with d-spacings of 14.76661, 9.29989 and 3.89650 Å, respectively. The Fourier-transform infrared spectroscopy (FTIR) spectrum revealed aliphatic methyl, primary amine, halide groups, uronic acid and saccharides. Gas chromatography mass spectrometry (GCMS) confirmed the presence of arabinose, galactose, glucose and mannose. (1)HNMR (nuclear magnetic resonance) revealed functional groups characteristic of polysaccharides. The EPS were amorphous in nature (CI(xrd) 0.092), with a 67.37% emulsifying activity, thermostable up to 250°C and displayed pseudoplastic rheology. MALDI-TOF-TOF analysis revealed a series of masses, exhibiting low-mass peaks (m/z) corresponding to oligosaccharides and higher-mass peaks for polysaccharides consisting of different ratios of pentose and hexose moieties. This is the first report of a detailed characterisation of the EPS produced by V. parahaemolyticus, which could be further explored for biotechnological and industrial use.

  2. Raman validity for crystallite size La determination on reticulated vitreous carbon with different graphitization index

    NASA Astrophysics Data System (ADS)

    Baldan, M. R.; Almeida, E. C.; Azevedo, A. F.; Gonçalves, E. S.; Rezende, M. C.; Ferreira, N. G.

    2007-11-01

    The graphitization index provided by X-ray diffraction (XRD) and Raman spectrometry for reticulated vitreous carbon (RVC) substrates, carbonized at different heat treatment temperatures (HTT), is investigated. A systematic study of the dependence between the disorder-induced D and G Raman bands is presented. The crystallite size La was obtained for both X-ray diffraction and Raman spectrometry techniques. Particularly, the validity for La determination, from Raman spectra, is pointed out comparing the commonly used formula based on peaks amplitude ratio ( ID/ IG) and the recent proposed equation that uses the integrated intensities of D and G bands. The results discrepancy is discussed taken into account the strong contribution of the line broadening presented in carbon materials heat treated below 2000 °C.

  3. Deposition of ultra thin CuInS₂ absorber layers by ALD for thin film solar cells at low temperature (down to 150 °C).

    PubMed

    Schneider, Nathanaelle; Bouttemy, Muriel; Genevée, Pascal; Lincot, Daniel; Donsanti, Frédérique

    2015-02-06

    Two new processes for the atomic layer deposition of copper indium sulfide (CuInS₂) based on the use of two different sets of precursors are reported. Metal chloride precursors (CuCl, InCl₃) in combination with H2S imply relatively high deposition temperature (Tdep = 380 °C), and due to exchange reactions, CuInS₂ stoechiometry was only achieved by depositing In₂S3 layers on a CuxS film. However, the use of acac- metal precursors (Cu(acac)₂, In(acac)₃) allows the direct deposition of CuInS₂ at temperature as low as 150 °C, involving in situ copper-reduction, exchange reaction and diffusion processes. The morphology, crystallographic structure, chemical composition and optical band gap of thin films were investigated using scanning electronic microscope, x-ray diffraction under grazing incidence conditions, x-ray fluorescence, energy dispersive spectrometry, secondary ion mass spectrometry, x-ray photoelectron spectroscopy and UV-vis spectroscopy. Films were implemented as ultra-thin absorbers in a typical CIS-solar cell architecture and allowed conversion efficiencies up to 2.8%.

  4. Contents and occurrence of cadmium in the coals from Guizhou province, China.

    PubMed

    Song, Dangyu; Wang, Mingshi; Zhang, Junying; Zheng, Chuguang

    2008-10-01

    Eleven raw coal samples were collected from Liuzhi, Suicheng, Zunyi, Xingren, Xingyi, and Anlong districts in Guizhou Province, Southwest China. The content of cadmium (Cd) in coal was determined using inductively coupled plasma mass-spectrometry (ICP-MS). Cd contents ranged from 0.146 to 2.74 ppm (whole coal basis), with an average of 1.09 ppm. In comparison with the arithmetic means of Cd in Chinese coal (0.25 ppm), this is much higher. In order to find its occurrence in coal, float-sink analysis and a coal flotation test by progressive release were conducted on two raw coal samples. The content of the Cd and ash yield of the flotation products were determined. The organic matter was removed by low-temperature ashing (LTA). X-ray diffraction (XRD) was used to differentiate the main, minor, and trace minerals in the LTA from different flotation subproducts. Quartz, kaolinite, pyrite, and calcite were found to dominate the mineral matters, with a proportion of anatase, muscovite, and illite. Then quantitative analysis of minerals in LTA was conducted using material analysis using diffraction (MAUD) based on the Rietveld refinement method. Results show that Cd has a strong association with kaolinite.

  5. Phase progression of γ-Al2O3 nanoparticles synthesized in a solvent-deficient environment.

    PubMed

    Smith, Stacey J; Amin, Samrat; Woodfield, Brian F; Boerio-Goates, Juliana; Campbell, Branton J

    2013-04-15

    Our simple and uniquely cost-effective solvent-deficient synthetic method produces 3-5 nm Al2O3 nanoparticles which show promise as improved industrial catalyst-supports. While catalytic applications are sensitive to the details of the atomic structure, a diffraction analysis of alumina nanoparticles is challenging because of extreme size/microstrain-related peak broadening and the similarity of the diffraction patterns of various transitional Al2O3 phases. Here, we employ a combination of X-ray pair-distribution function (PDF) and Rietveld methods, together with solid-state NMR and thermogravimetry/differential thermal analysis-mass spectrometry (TG/DTA-MS), to characterize the alumina phase-progression in our nanoparticles as a function of calcination temperature between 300 and 1200 °C. In the solvent-deficient synthetic environment, a boehmite precursor phase forms which transitions to γ-Al2O3 at an extraordinarily low temperature (below 300 °C), but this γ-Al2O3 is initially riddled with boehmite-like stacking-fault defects that steadily disappear during calcination in the range from 300 to 950 °C. The healing of these defects accounts for many of the most interesting and widely reported properties of the γ-phase.

  6. Application of Laser Mass Spectrometry to Art and Archaeology

    NASA Technical Reports Server (NTRS)

    Gulian, Lase Lisa E.; Callahan, Michael P.; Muliadi, Sarah; Owens, Shawn; McGovern, Patrick E.; Schmidt, Catherine M.; Trentelman, Karen A.; deVries, Mattanjah S.

    2011-01-01

    REMPI laser mass spectrometry is a combination of resonance enhanced multiphoton ionization spectroscopy and time of flight mass spectrometry, This technique enables the collection of mass specific optical spectra as well as of optically selected mass spectra. Analytes are jet-cooled by entrainment in a molecular beam, and this low temperature gas phase analysis has the benefit of excellent vibronic resolution. Utilizing this method, mass spectrometric analysis of historically relevant samples can be simplified and improved; Optical selection of targets eliminates the need for chromatography while knowledge of a target's gas phase spectroscopy allows for facile differentiation of molecules that are in the aqueous phase considered spectroscopically indistinguishable. These two factors allow smaller sample sizes than commercial MS instruments, which in turn will require less damage to objects of antiquity. We have explored methods to optimize REMPI laser mass spectrometry as an analytical tool to archaeology using theobromine and caffeine as molecular markers in Mesoamerican pottery, and are expanding this approach to the field of art to examine laccaic acid in shellacs.

  7. Mass spectrometry methods for the analysis of biodegradable hybrid materials

    NASA Astrophysics Data System (ADS)

    Alalwiat, Ahlam

    This dissertation focuses on the characterization of hybrid materials and surfactant blends by using mass spectrometry (MS), tandem mass spectrometry (MS/MS), liquid chromatography (LC), and ion mobility (IM) spectrometry combined with measurement and simulation of molecular collision cross sections. Chapter II describes the principles and the history of mass spectrometry (MS) and liquid chromatography (LC). Chapter III introduces the materials and instrumentation used to complete this dissertation. In chapter IV, two hybrid materials containing poly(t-butyl acrylate) (PtBA) or poly(acrylic acid) (PAA) blocks attached to a hydrophobic peptide rich in valine and glycine (VG2), as well as the poly(acrylic acid) (PAA) and VG2 peptide precursor materials, are characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), electrospray ionization mass spectrometry (ESI-MS) and ion mobility mass spectrometry (IM-MS). Collision cross-sections and molecular modeling have been used to determine the final architecture of both hybrid materials. Chapter V investigates a different hybrid material, [BMP-2(HA)2 ], comprised of a dendron with two polyethylene glycol (PEG) branches terminated by a hydroxyapatite binding peptide (HA), and a focal point substituted with a bone morphogenic protein mimicking peptide (BMP-2). MALDI-MS, ESI-MS and IM-MS have been used to characterize the HA and BMP-2 peptides. Collisionally activated dissociation (CAD) and electron transfer dissociation (ETD) have been employed in double stage (i.e. tandem) mass spectrometry (MS/MS) experiments to confirm the sequences of the two peptides HA and BMP-2. The MALDI-MS, ESI-MS and IM-MS methods were also applied to characterize the [BMP-2(HA)2] hybrid material. Collision cross-section measurements and molecular modeling indicated that [BMP-2(HA)2] can attain folded or extended conformation, depending on its degree of protonation (charge state). Chapter VI focuses on the analysis of alkyl polyglycoside (APG) surfactants by MALDI-MS and ESI-MS, MS/MS, and by combining MS and with ion mobility (IM) and/or ultra-performance liquid chromatography (UPLC) separation in LC-IM and LC-IM-MS experiments. Chapter VII summaries this dissertation's findings.

  8. Ion mobility-mass spectrometry as a tool to investigate protein-ligand interactions.

    PubMed

    Göth, Melanie; Pagel, Kevin

    2017-07-01

    Ion mobility-mass spectrometry (IM-MS) is a powerful tool for the simultaneous analysis of mass, charge, size, and shape of ionic species. It allows the characterization of even low-abundant species in complex samples and is therefore particularly suitable for the analysis of proteins and their assemblies. In the last few years even complex and intractable species have been investigated successfully with IM-MS and the number of publications in this field is steadily growing. This trend article highlights recent advances in which IM-MS was used to study protein-ligand complexes and in particular focuses on the catch and release (CaR) strategy and collision-induced unfolding (CIU). Graphical Abstract Native mass spectrometry and ion mobility-mass spectrometry are versatile tools to follow the stoichiometry, energetics, and structural impact of protein-ligand binding.

  9. Analytical aspects of hydrogen exchange mass spectrometry

    PubMed Central

    Engen, John R.; Wales, Thomas E.

    2016-01-01

    The analytical aspects of measuring hydrogen exchange by mass spectrometry are reviewed. The nature of analytical selectivity in hydrogen exchange is described followed by review of the analytical tools required to accomplish fragmentation, separation, and the mass spectrometry measurements under restrictive exchange quench conditions. In contrast to analytical quantitation that relies on measurements of peak intensity or area, quantitation in hydrogen exchange mass spectrometry depends on measuring a mass change with respect to an undeuterated or deuterated control, resulting in a value between zero and the maximum amount of deuterium that could be incorporated. Reliable quantitation is a function of experimental fidelity and to achieve high measurement reproducibility, a large number of experimental variables must be controlled during sample preparation and analysis. The method also reports on important qualitative aspects of the sample, including conformational heterogeneity and population dynamics. PMID:26048552

  10. Mass spectrometry: a revolution in clinical microbiology?

    PubMed

    Lavigne, Jean-Philippe; Espinal, Paula; Dunyach-Remy, Catherine; Messad, Nourredine; Pantel, Alix; Sotto, Albert

    2013-02-01

    Recently, different bacteriological laboratory interventions that decrease reporting time have been developed. These promising new broad-based techniques have merit, based on their ability to identify rapidly many bacteria, organisms difficult to grow or newly emerging strains, as well as their capacity to track disease transmission. The benefit of rapid reporting of identification and/or resistance of bacteria can greatly impact patient outcomes, with an improvement in the use of antibiotics, in the reduction of the emergence of multidrug resistant bacteria and in mortality rates. Different techniques revolve around mass spectrometry (MS) technology: matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), PCR combined with electrospray ionization-mass spectrometry (PCR/ESIMS), iPLEX MassArray system and other new evolutions combining different techniques. This report emphasizes the (r)evolution of these technologies in clinical microbiology.

  11. Negative ion electrospray ionization mass spectrometry of nucleoside phosphoramidate monoesters: elucidation of novel rearrangement mechanisms by multistage mass spectrometry incorporating in-source deuterium labelling.

    PubMed

    Xu, Peng-Xiang; Hu, An-Fu; Hu, Dan; Gao, Xiang; Zhao, Yu-Fen

    2008-10-01

    Several O-2',3'-isopropylideneuridine-O-5'-phosphoramidate monoesters were synthesized and analyzed by negative ion electrospray ionization tandem mass spectrometry (ESI-MS(n)). Two kinds of novel rearrangement reactions were observed due to the difference in the amino acid in the nucleoside phosphoramidate monoesters, and possible mechanisms were proposed. One involves a five-membered cyclic transition state. The other is formation of a stable five-membered ring intermediate by Michael addition. Results were confirmed by tandem mass spectrometry and isotopically labeled hydrogen atoms. Furthermore, the internal hydrogen exchange between active hydrogen and methyl acrylate in the heated capillary of the mass spectrometer was found. The characteristic fragmentation behavior in ESI-MS may be used to monitor this kind of compounds in the biological metabolism.

  12. Laser mass spectrometry of chemical warfare agents using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Weickhardt, C.; Grun, C.; Grotemeyer, J.

    1998-12-01

    Fast relaxation processes in excited molecules such as IC, ISC, and fragmentation are observed in many environmentally and technically relevant substances. They cause severe problems to resonance ionization mass spectrometry because they reduce the ionization yield and lead to mass spectra which do not allow the identification of the compound. By the use of ultrashort laser pulses these problems can be overcome and the advantages of REMPI over conventional ionization techniques in mass spectrometry can be regained. This is demonstrated using soil samples contaminated with a chemical warfare agent.

  13. Bibliometric mapping: eight decades of analytical chemistry, with special focus on the use of mass spectrometry.

    PubMed

    Waaijer, Cathelijn J F; Palmblad, Magnus

    2015-01-01

    In this Feature we use automatic bibliometric mapping tools to visualize the history of analytical chemistry from the 1920s until the present. In particular, we have focused on the application of mass spectrometry in different fields. The analysis shows major shifts in research focus and use of mass spectrometry. We conclude by discussing the application of bibliometric mapping and visualization tools in analytical chemists' research.

  14. Mass spectrometry in life science research.

    PubMed

    Lehr, Stefan; Markgraf, Daniel

    2016-12-01

    Investigating complex signatures of biomolecules by mass spectrometry approaches has become indispensable in molecular life science research. Nowadays, various mass spectrometry-based omics technologies are available to monitor qualitative and quantitative changes within hundreds or thousands of biological active components, including proteins/peptides, lipids and metabolites. These comprehensive investigations have the potential to decipher the pathophysiology of disease development at a molecular level and to monitor the individual response of pharmacological treatment or lifestyle intervention.

  15. GCMS/MS Analyses of Biological Samples in Support of Evaluation of Toxicity Associated with Intravenous Exposure to VX Stereoisomers in Guinea Pigs

    DTIC Science & Technology

    2017-07-01

    14. ABSTRACT: This report documents the results of the gas chromatography–tandem mass spectrometry analyses of blood, tissues, and organs (heart...quantified using chemical ionization mass spectrometry with isotope dilution. 15. SUBJECT TERMS Gas chromatography–tandem mass spectrometry (GC–MS...characterize the pharmacokinetics of the individual stereoisomers and their racemic mixtures. This report details the results of gas chromatography–tandem

  16. Advanced mass spectrometry-based methods for the analysis of conformational integrity of biopharmaceutical products

    PubMed Central

    Bobst, Cedric E.; Kaltashov, Igor A.

    2012-01-01

    Mass spectrometry has already become an indispensable tool in the analytical armamentarium of the biopharmaceutical industry, although its current uses are limited to characterization of covalent structure of recombinant protein drugs. However, the scope of applications of mass spectrometry-based methods is beginning to expand to include characterization of the higher order structure and dynamics of biopharmaceutical products, a development which is catalyzed by the recent progress in mass spectrometry-based methods to study higher order protein structure. The two particularly promising methods that are likely to have the most significant and lasting impact in many areas of biopharmaceutical analysis, direct ESI MS and hydrogen/deuterium exchange, are focus of this article. PMID:21542797

  17. xTract: software for characterizing conformational changes of protein complexes by quantitative cross-linking mass spectrometry.

    PubMed

    Walzthoeni, Thomas; Joachimiak, Lukasz A; Rosenberger, George; Röst, Hannes L; Malmström, Lars; Leitner, Alexander; Frydman, Judith; Aebersold, Ruedi

    2015-12-01

    Chemical cross-linking in combination with mass spectrometry generates distance restraints of amino acid pairs in close proximity on the surface of native proteins and protein complexes. In this study we used quantitative mass spectrometry and chemical cross-linking to quantify differences in cross-linked peptides obtained from complexes in spatially discrete states. We describe a generic computational pipeline for quantitative cross-linking mass spectrometry consisting of modules for quantitative data extraction and statistical assessment of the obtained results. We used the method to detect conformational changes in two model systems: firefly luciferase and the bovine TRiC complex. Our method discovers and explains the structural heterogeneity of protein complexes using only sparse structural information.

  18. MULTISPECTRAL IDENTIFICATION OF ALKYL AND CHLOROALKYL PHOSPHATES FROM AN INDUSTRIAL EFFLUENT

    EPA Science Inventory

    Multispectral techniques (gas chromatography combined with low and high resolution electron-impact mass spectrometry, low and high resolution chemical ionization mass spectrometry, and Fourier transform infrared mass spectroscopy) were used to identify 13 alkyl and chloralkyl pho...

  19. The potential of combining ion trap/MS/MS and TOF/MS for identification of emerging contaminants

    USGS Publications Warehouse

    Ferrer, I.; Furlong, E.T.; Heine, C.E.; Thurman, E.M.

    2002-01-01

    The use of a method combining ion trap tandem mass spectrometry (MS/MS) and time of flight mass spectrometry (TOF/MS) for identification of emerging contaminates was discussed. The two tools together complemented each other in sensitivity, fragmentation and accurate mass determination. Liquid chromatography/electrospray ionization/ion-trap tandem mass spectrometry (LC/ESI/MS/MS), in positive ion mode of operation, was used to separate and identify specific compounds. Diagnostic fragment ions were obtained for a polyethyleneglycol(PEG) homolog by ion trap MS/MS, and fragments were measured by TOF/MS. It was observed that the combined method gave an exact mass measurement that differed from the calculated mass.

  20. Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.

    1998-06-01

    As for Fourier transform infrared (FT-IR) interferometry and nuclear magnetic resonance (NMR) spectroscopy, the introduction of pulsed Fourier transform techniques revolutionized ion cyclotron resonance mass spectrometry: increased speed (factor of 10,000), increased sensitivity (factor of 100), increased mass resolution (factor of 10,000-an improvement not shared by the introduction of FT techniques to IR or NMR spectroscopy), increased mass range (factor of 500), and automated operation. FT-ICR mass spectrometry is the most versatile technique for unscrambling and quantifying ion-molecule reaction kinetics and equilibria in the absence of solvent (i.e., the gas phase). In addition, FT-ICR MS has the following analytically important features: speed (~1 second per spectrum); ultrahigh mass resolution and ultrahigh mass accuracy for analysis of mixtures and polymers; attomole sensitivity; MSn with one spectrometer, including two-dimensional FT/FT-ICR/MS; positive and/or negative ions; multiple ion sources (especially MALDI and electrospray); biomolecular molecular weight and sequencing; LC/MS; and single-molecule detection up to 108 Dalton. Here, some basic features and recent developments of FT-ICR mass spectrometry are reviewed, with applications ranging from crude oil to molecular biology.

  1. Rapid Characterization of Microorganisms by Mass Spectrometry—What Can Be Learned and How?

    NASA Astrophysics Data System (ADS)

    Fenselau, Catherine C.

    2013-08-01

    Strategies for the rapid and reliable analysis of microorganisms have been sought to meet national needs in defense, homeland security, space exploration, food and water safety, and clinical diagnosis. Mass spectrometry has long been a candidate technique because it is extremely rapid and can provide highly specific information. It has excellent sensitivity. Molecular and fragment ion masses provide detailed fingerprints, which can also be interpreted. Mass spectrometry is also a broad band method—everything has a mass—and it is automatable. Mass spectrometry is a physiochemical method that is orthogonal and complementary to biochemical and morphological methods used to characterize microorganisms.

  2. Mass Spectrometry in the Home and Garden

    NASA Astrophysics Data System (ADS)

    Pulliam, Christopher J.; Bain, Ryan M.; Wiley, Joshua S.; Ouyang, Zheng; Cooks, R. Graham

    2015-02-01

    Identification of active components in a variety of chemical products used directly by consumers is described at both trace and bulk levels using mass spectrometry. The combination of external ambient ionization with a portable mass spectrometer capable of tandem mass spectrometry provides high chemical specificity and sensitivity as well as allowing on-site monitoring. These experiments were done using a custom-built portable ion trap mass spectrometer in combination with the ambient ionization methods of paper spray, leaf spray, and low temperature plasma ionization. Bactericides, garden chemicals, air fresheners, and other products were examined. Herbicide applied to suburban lawns was detected in situ on single leaves 5 d after application.

  3. Clinical review: improving the measurement of serum thyroglobulin with mass spectrometry.

    PubMed

    Hoofnagle, Andrew N; Roth, Mara Y

    2013-04-01

    Serum thyroglobulin (Tg) measurements are central to the management of patients treated for differentiated thyroid carcinoma. For decades, Tg measurements have relied on methods that are subject to interference by commonly found substances in human serum and plasma, such as Tg autoantibodies. As a result, many patients need additional imaging studies to rule out cancer persistence or recurrence that could be avoided with more sensitive and specific testing methods. The aims of this review are to: 1) briefly review the interferences common to Tg immunoassays; 2) introduce readers to liquid chromatography-tandem mass spectrometry as a method for quantifying proteins in human serum/plasma; and 3) discuss the potential benefits and limitations of the method in the quantification of serum Tg. Mass spectrometric methods have traditionally lacked the sensitivity, robustness, and throughput to be useful clinical assays. These methods failed to meet the necessary clinical benchmarks due to the nature of the mass spectrometry workflow and instrumentation. Over the past few years, there have been major advances in reagents, automation, and instrumentation for the quantification of proteins using mass spectrometry. More recently, methods using mass spectrometry to detect and quantify Tg have been developed and are of sufficient quality to be used in the management of patients. Novel serum Tg assays that use mass spectrometry may avoid the issue of autoantibody interference and other problems with currently available immunoassays for Tg. Prospective studies are needed to fully understand the potential benefits of novel Tg assays to patients and care providers.

  4. COMPARATIVE EVALUATION OF GC/MS (GAS CHROMATOGRAPHY/MASS SPECTROMETRY) DATA ANALYSIS PROCESSING

    EPA Science Inventory

    Mass spectra obtained by fused silica capillary gas chromatography/mass spectrometry/data system (GC/MS/DS) analysis of mixtures of organic chemicals adsorbed on Tenax GC cartridges was subjected to manual and automated interpretative techniques. Synthetic mixtures (85 chemicals ...

  5. CHARACTERIZATION OF CRYPTOSPORIDIUM PARVUM BY MATRIX-ASSISTED LASER DESORPTION -- IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    Matrix assisted laser desorption/ionization (MALDI) mass spectrometry was used to investigate whole and freeze thawed Cryptosporidium parvum oocysts. Whole oocysts revealed some mass spectral features. Reproducible patterns of spectral markers and increased sensitivity were obtai...

  6. ANALYSIS OF POLYCYCLIC AROMATIC HYDROCARBONS BY ION TRAP TANDEM MASS SPECTROMETRY

    EPA Science Inventory

    An ion-trap mass spectrometer with a wave board and tandem mass spectrometry software was used to analyze gas chromatographically separated polycyclic aromatic hydrocarbons (PAHs) by using collision-induced dissociation (CID). The nonresonant (multiple collision) mode was used to...

  7. NEGATIVE-ION MASS SPECTROMETRY OF SULFONYLUREA HERBICIDES

    EPA Science Inventory

    Sulfonylurea herbicides have been studied using neg-ion desorption chem.-ionization (DCI) mass spectrometry (MS) and DCI-MS/MS techniques. Both {M-H]- and M.- ions were obsd. in the DCI mass spectra. The collisonally activated dissocn. (CAD) spectra were characteristic of the str...

  8. Rapid high-throughput characterisation, classification and selection of recombinant mammalian cell line phenotypes using intact cell MALDI-ToF mass spectrometry fingerprinting and PLS-DA modelling.

    PubMed

    Povey, Jane F; O'Malley, Christopher J; Root, Tracy; Martin, Elaine B; Montague, Gary A; Feary, Marc; Trim, Carol; Lang, Dietmar A; Alldread, Richard; Racher, Andrew J; Smales, C Mark

    2014-08-20

    Despite many advances in the generation of high producing recombinant mammalian cell lines over the last few decades, cell line selection and development is often slowed by the inability to predict a cell line's phenotypic characteristics (e.g. growth or recombinant protein productivity) at larger scale (large volume bioreactors) using data from early cell line construction at small culture scale. Here we describe the development of an intact cell MALDI-ToF mass spectrometry fingerprinting method for mammalian cells early in the cell line construction process whereby the resulting mass spectrometry data are used to predict the phenotype of mammalian cell lines at larger culture scale using a Partial Least Squares Discriminant Analysis (PLS-DA) model. Using MALDI-ToF mass spectrometry, a library of mass spectrometry fingerprints was generated for individual cell lines at the 96 deep well plate stage of cell line development. The growth and productivity of these cell lines were evaluated in a 10L bioreactor model of Lonza's large-scale (up to 20,000L) fed-batch cell culture processes. Using the mass spectrometry information at the 96 deep well plate stage and phenotype information at the 10L bioreactor scale a PLS-DA model was developed to predict the productivity of unknown cell lines at the 10L scale based upon their MALDI-ToF fingerprint at the 96 deep well plate scale. This approach provides the basis for the very early prediction of cell lines' performance in cGMP manufacturing-scale bioreactors and the foundation for methods and models for predicting other mammalian cell phenotypes from rapid, intact-cell mass spectrometry based measurements. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Mass Defect from Nuclear Physics to Mass Spectral Analysis.

    PubMed

    Pourshahian, Soheil

    2017-09-01

    Mass defect is associated with the binding energy of the nucleus. It is a fundamental property of the nucleus and the principle behind nuclear energy. Mass defect has also entered into the mass spectrometry terminology with the availability of high resolution mass spectrometry and has found application in mass spectral analysis. In this application, isobaric masses are differentiated and identified by their mass defect. What is the relationship between nuclear mass defect and mass defect used in mass spectral analysis, and are they the same? Graphical Abstract ᅟ.

  10. Surface analysis of lipids by mass spectrometry: more than just imaging.

    PubMed

    Ellis, Shane R; Brown, Simon H; In Het Panhuis, Marc; Blanksby, Stephen J; Mitchell, Todd W

    2013-10-01

    Mass spectrometry is now an indispensable tool for lipid analysis and is arguably the driving force in the renaissance of lipid research. In its various forms, mass spectrometry is uniquely capable of resolving the extensive compositional and structural diversity of lipids in biological systems. Furthermore, it provides the ability to accurately quantify molecular-level changes in lipid populations associated with changes in metabolism and environment; bringing lipid science to the "omics" age. The recent explosion of mass spectrometry-based surface analysis techniques is fuelling further expansion of the lipidomics field. This is evidenced by the numerous papers published on the subject of mass spectrometric imaging of lipids in recent years. While imaging mass spectrometry provides new and exciting possibilities, it is but one of the many opportunities direct surface analysis offers the lipid researcher. In this review we describe the current state-of-the-art in the direct surface analysis of lipids with a focus on tissue sections, intact cells and thin-layer chromatography substrates. The suitability of these different approaches towards analysis of the major lipid classes along with their current and potential applications in the field of lipid analysis are evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Analysis of metal-binding proteins separated by non-denaturating gel electrophoresis using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Becker, J Susanne; Mounicou, Sandra; Zoriy, Miroslav V; Becker, J Sabine; Lobinski, Ryszard

    2008-09-15

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) have become established as very efficient and sensitive biopolymer and elemental mass spectrometric techniques for studying metal-binding proteins (metalloproteins) in life sciences. Protein complexes present in rat tissues (liver and kidney) were separated in their native state in the first dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, nickel, chromium, cadmium and lead, were detected by scanning the gel bands using quadrupole LA-ICP-MS with and without collision cell as a microanalytical technique. Several proteins were identified by using MALDI-TOF-MS together with a database search. For example, on one protein band cut from the BN-PAGE gel and digested with the enzyme trypsin, two different proteins - protein FAM44B and cathepsin B precursor - were identified. By combining biomolecular and elemental mass spectrometry, it was possible to characterize and identify selected metal-binding rat liver and kidney tissue proteins.

  12. Developments in Plasma-Source Mass Spectrometry

    DTIC Science & Technology

    1988-07-11

    Spectrometry 12 PERSONAL AUTHOR(S) Gary M. Hieftje and George H. Vickers 13a. TYPE OF REPORT b.TMCOEE . TEO POTYerMohay 5.AGCUN Technical FROM TO 11 July...4134006 TECHNICAL REPORT NO. 41 DEVELOPMENTS IN PLASMA-SOURCE MASS SPECTROMETRY by Gary M. Hieftje and George H. Vickers Acessoo i or * NTIS GRMX Prepared...G. M. Hieftje , and A. T. Zander, Spectrochim. Acta 1987, 42B, 29 60 Determination of Lead Isotope Ratios by Inductively Coupled Plasma-Mass

  13. Assessment of Non-traditional Isotopic Ratios by Mass Spectrometry for Analysis of Nuclear Activities. Annual Report 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biegalski, Steven R.; Buchholz, Bruce A.

    2011-08-24

    The objective of this work is to identify isotopic ratios suitable for analysis via mass spectrometry that distinguish between commercial nuclear reactor fuel cycles, fuel cycles for weapons grade plutonium, and products from nuclear weapons explosions. Methods will also be determined to distinguish the above from medical and industrial radionuclide sources. Mass spectrometry systems will be identified that are suitable for field measurement of such isotopes in an expedient manner.

  14. Protein denaturation improves enzymatic digestion efficiency for direct tissue analysis using mass spectrometry

    NASA Astrophysics Data System (ADS)

    Setou, M.; Hayasaka, T.; Shimma, S.; Sugiura, Y.; Matsumoto, M.

    2008-12-01

    Molecular identification using high-sensitivity tandem mass spectrometry is essential for protein analysis on the tissue surface. Here we report an improved digestion protocol for protein identification directly on the tissue surface using mass spectrometry. By denaturation process and the use of detergent-supplemented trypsin solution, we could successfully detect and identify many molecules such as tubulin, neurofilament, and synaptosomal-associated 25 kDa protein directly from a mouse cerebellum section.

  15. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  16. Evaluation of Ion Mobility-Mass Spectrometry for Comparative Analysis of Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Ferguson, Carly N.; Gucinski-Ruth, Ashley C.

    2016-05-01

    Analytical techniques capable of detecting changes in structure are necessary to monitor the quality of monoclonal antibody drug products. Ion mobility mass spectrometry offers an advanced mode of characterization of protein higher order structure. In this work, we evaluated the reproducibility of ion mobility mass spectrometry measurements and mobiligrams, as well as the suitability of this approach to differentiate between and/or characterize different monoclonal antibody drug products. Four mobiligram-derived metrics were identified to be reproducible across a multi-day window of analysis. These metrics were further applied to comparative studies of monoclonal antibody drug products representing different IgG subclasses, manufacturers, and lots. These comparisons resulted in some differences, based on the four metrics derived from ion mobility mass spectrometry mobiligrams. The use of collision-induced unfolding resulted in more observed differences. Use of summed charge state datasets and the analysis of metrics beyond drift time allowed for a more comprehensive comparative study between different monoclonal antibody drug products. Ion mobility mass spectrometry enabled detection of differences between monoclonal antibodies with the same target protein but different production techniques, as well as products with different targets. These differences were not always detectable by traditional collision cross section studies. Ion mobility mass spectrometry, and the added separation capability of collision-induced unfolding, was highly reproducible and remains a promising technique for advanced analytical characterization of protein therapeutics.

  17. Structural characterisation of medically relevant protein assemblies by integrating mass spectrometry with computational modelling.

    PubMed

    Politis, Argyris; Schmidt, Carla

    2018-03-20

    Structural mass spectrometry with its various techniques is a powerful tool for the structural elucidation of medically relevant protein assemblies. It delivers information on the composition, stoichiometries, interactions and topologies of these assemblies. Most importantly it can deal with heterogeneous mixtures and assemblies which makes it universal among the conventional structural techniques. In this review we summarise recent advances and challenges in structural mass spectrometric techniques. We describe how the combination of the different mass spectrometry-based methods with computational strategies enable structural models at molecular levels of resolution. These models hold significant potential for helping us in characterizing the function of protein assemblies related to human health and disease. In this review we summarise the techniques of structural mass spectrometry often applied when studying protein-ligand complexes. We exemplify these techniques through recent examples from literature that helped in the understanding of medically relevant protein assemblies. We further provide a detailed introduction into various computational approaches that can be integrated with these mass spectrometric techniques. Last but not least we discuss case studies that integrated mass spectrometry and computational modelling approaches and yielded models of medically important protein assembly states such as fibrils and amyloids. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  18. Profiling the metabolic signals involved in chemical communication between microbes using imaging mass spectrometry.

    PubMed

    Stasulli, Nikolas M; Shank, Elizabeth A

    2016-11-01

    The ability of microbes to secrete bioactive chemical signals into their environment has been known for over a century. However, it is only in the last decade that imaging mass spectrometry has provided us with the ability to directly visualize the spatial distributions of these microbial metabolites. This technology involves collecting mass spectra from multiple discrete locations across a biological sample, yielding chemical ‘maps’ that simultaneously reveal the distributions of hundreds of metabolites in two dimensions. Advances in microbial imaging mass spectrometry summarized here have included the identification of novel strain- or coculture-specific compounds, the visualization of biotransformation events (where one metabolite is converted into another by a neighboring microbe), and the implementation of a method to reconstruct the 3D subsurface distributions of metabolites, among others. Here we review the recent literature and discuss how imaging mass spectrometry has spurred novel insights regarding the chemical consequences of microbial interactions.

  19. Applications of Mass Spectrometry to Structural Analysis of Marine Oligosaccharides

    PubMed Central

    Lang, Yinzhi; Zhao, Xia; Liu, Lili; Yu, Guangli

    2014-01-01

    Marine oligosaccharides have attracted increasing attention recently in developing potential drugs and biomaterials for their particular physical and chemical properties. However, the composition and sequence analysis of marine oligosaccharides are very challenging for their structural complexity and heterogeneity. Mass spectrometry (MS) has become an important technique for carbohydrate analysis by providing more detailed structural information, including molecular mass, sugar constituent, sequence, inter-residue linkage position and substitution pattern. This paper provides an overview of the structural analysis based on MS approaches in marine oligosaccharides, which are derived from some biologically important marine polysaccharides, including agaran, carrageenan, alginate, sulfated fucan, chitosan, glycosaminoglycan (GAG) and GAG-like polysaccharides. Applications of electrospray ionization mass spectrometry (ESI-MS) are mainly presented and the general applications of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) are also outlined. Some technical challenges in the structural analysis of marine oligosaccharides by MS have also been pointed out. PMID:24983643

  20. Two competing ionization processes in ESI-MS analysis of N-(1,3-diphenylallyl)benzenamines: formation of the unusual [M-H]+ ion versus the regular [M+H]+ ion.

    PubMed

    Fang, Liwen; Dong, Cheng; Guo, Cheng; Xu, Jianxing; Liu, Qiaoling; Qu, Zhirong; Jiang, Kezhi

    2018-06-01

    A series of N-(1,3-diphenylallyl)benzenamine derivatives (M) were investigated by electrospray ionization mass spectrometry in the positive-ion mode. Both the anomalous [M-H] + and the regular [M+H] + were observed in the ESI mass spectra. The occurrence of [M-H] + has been supported by accurate mass spectrometry, liquid chromatography mass spectrometry, and tandem mass spectrometry analysis. Calculation results indicated that formation of [M-H] + is attributed to the ion-molecule reaction of M with the protonated ESI solvent molecule (e.g. CH 3 OH 2 + ) via hydride abstraction from a tertiary C sp3 -H. The competing ionization processes leading to [M-H] + or [M+H] + were significantly affected by the concentration of formic acid in the electrospray ionization solvent and the proton affinity of the N atom.

  1. Electrospray and MALDI mass spectrometry in the identification of spermicides in criminal investigations.

    PubMed

    Hollenbeck, T P; Siuzdak, G; Blackledge, R D

    1999-07-01

    Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry have been used to examine evidence in a sexual assault investigation. Because condoms are being used increasingly by sexual assailants and some condom brands include the spermicide nonoxynol-9 (nonylphenoxy polyethoxyethanol) in the lubricant formulation, the recovery, and identification of nonoxynol-9 from evidence items may assist in proving corpus delicti. A method was developed for the recovery of nonoxynol-9 from internal vaginal swabs and for its identification by reverse phase liquid chromatography/electrospray ionization mass spectrometry (LC ESI-MS), nanoelectrospray ionization (nanoESI) mass spectrometry, and high resolution MALDI Fourier transform mass spectrometry (MALDI-FTMS). The method was tested on extracts from precoitus, immediate postcoitus, and four-hours postcoitus vaginal swabs provided by a volunteer whose partner does not normally use condoms, but for this trial used a condom having a water-soluble gel-type lubricant that includes 5% nonoxynol-9 in its formulation. Subsequently, LC ESI-MS was used to identify traces of nonoxynol-9 from the internal vaginal swab of a victim of a sexual assault.

  2. May the Best Molecule Win: Competition ESI Mass Spectrometry

    PubMed Central

    Laughlin, Sarah; Wilson, W. David

    2015-01-01

    Electrospray ionization mass spectrometry has become invaluable in the characterization of macromolecular biological systems such as nucleic acids and proteins. Recent advances in the field of mass spectrometry and the soft conditions characteristic of electrospray ionization allow for the investigation of non-covalent interactions among large biomolecules and ligands. Modulation of genetic processes through the use of small molecule inhibitors with the DNA minor groove is gaining attention as a potential therapeutic approach. In this review, we discuss the development of a competition method using electrospray ionization mass spectrometry to probe the interactions of multiple DNA sequences with libraries of minor groove binding molecules. Such an approach acts as a high-throughput screening method to determine important information including the stoichiometry, binding mode, cooperativity, and relative binding affinity. In addition to small molecule-DNA complexes, we highlight other applications in which competition mass spectrometry has been used. A competitive approach to simultaneously investigate complex interactions promises to be a powerful tool in the discovery of small molecule inhibitors with high specificity and for specific, important DNA sequences. PMID:26501262

  3. Recent developments in cyanide detection: A review

    PubMed Central

    Ma, Jian; Dasgupta, Purnendu K.

    2010-01-01

    The extreme toxicity of cyanide and environmental concerns from its continued industrial use continue to generate interest in facile and sensitive methods for cyanide detection. In recent years there is also additional recognition of HCN toxicity from smoke inhalation and potential use of cyanide as a weapon of terrorism. This review summarizes the literature since 2005 on cyanide measurement in different matrices ranging from drinking water and wastewater, to cigarette smoke and exhaled breath to biological fluids like blood, urine and saliva. The dramatic increase in the number of publications on cyanide measurement is indicative of the great interest in this field not only from analytical chemists, but also researchers from diverse environmental, medical, forensic and clinical arena. The recent methods cover both established and emerging analytical disciplines and include naked eye visual detection, spectrophotometry/colorimetry, capillary electrophoresis with optical absorbance detection, fluorometry, chemiluminescence, near-infrared cavity ring down spectroscopy, atomic absorption spectrometry, electrochemical methods (potentiometry/amperometry/ion chromatography-pulsed amperometry), mass spectrometry (selected ion flow tube mass spectrometry, electrospray ionization mass spectrometry, gas chromatography-mass spectrometry), gas chromatography (nitrogen phosphorus detector, electron capture detector) and quartz crystal mass monitors. PMID:20599024

  4. [Separation and identification of 5 glycosidic flavor precursors in tobacco by ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry].

    PubMed

    Wu, Xinhua; Zhu, Ruizhi; Ren, Zhuoying; Wang, Kai; Mou, Dingrong; Wei, Wanzhi; Miao, Mingming

    2009-11-01

    A qualitative method for the identification of 5 main glycosidic flavor precursors in tobacco was developed by using ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI MS/MS) and gas chromatography-mass spectrometry (GC-MS). The glycosidic flavor precursors in tobacco were extracted with methanol, cleaned up with an XAD-2 column. The aglycones were later released by enzyme-mediated hydrolysis under the condition of pH 5. The 5 volatile aglycone moieties were identified by GC-MS standard spectra library. The precursor ions of glycosides were determined by using electrospray ionization mass spectrometry in negative ion mode, then the 5 glycosidic flavor precursors were identified by using product ion scan (MS2) finally, using UPLC-ESI MS/MS, separation and identification of 5 glycosidic flavor precursors were accomplished on an RP-C,8 column in the multiple reaction monitoring (MRM) mode by using methanol and acetic acid-ammonium acetate aqueous solution as eluent. This work lays a foundation for the analysis of glycosidic flavor precursors without the standards by using liquid chromatography-mass spectrometry.

  5. Electrochemistry coupled online to liquid chromatography-mass spectrometry for fast simulation of biotransformation reactions of the insecticide chlorpyrifos.

    PubMed

    Mekonnen, Tessema F; Panne, Ulrich; Koch, Matthias

    2017-05-01

    An automated method is presented for fast simulation of (bio)transformation products (TPs) of the organophosphate insecticide chlorpyrifos (CPF) based on electrochemistry coupled online to liquid chromatography-mass spectrometry (EC-LC-MS). Oxidative TPs were produced by a boron doped diamond (BDD) electrode, separated by reversed phase HPLC and online detected by electrospray ionization-mass spectrometry (ESI-MS). Furthermore, EC oxidative TPs were investigated by HPLC-tandem mass spectrometry (LC-MS/MS) and FT-ICR high resolution mass spectrometry (HRMS) and compared to in vitro assay metabolites (rat and human liver microsomes). Main phase I metabolites of CPF: chlorpyrifos oxon (CPF oxon), trichloropyridinol (TCP), diethylthiophosphate (DETP), diethylphosphate (DEP), desethyl chlorpyrifos (De-CPF), and desethyl chlorpyrifos oxon (De-CPF oxon), were successfully identified by the developed EC-LC-MS method. The EC-LC-MS method showed similar metabolites compared to the in vitro assay with possibilities of determining reactive species. Our results reveal that online EC-(LC)-MS brings an advantage on time of analysis by eliminating sample preparation steps and matrix complexity compared to conventional in vivo or in vitro methods.

  6. Tin-Assisted Synthesis of ɛ -Ga2O3 by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Kracht, M.; Karg, A.; Schörmann, J.; Weinhold, M.; Zink, D.; Michel, F.; Rohnke, M.; Schowalter, M.; Gerken, B.; Rosenauer, A.; Klar, P. J.; Janek, J.; Eickhoff, M.

    2017-11-01

    The synthesis of ɛ -Ga2O3 and β -Ga2O3 by plasma-assisted molecular beam epitaxy on (001 )Al2O3 substrates is studied. The growth window of β -Ga2O3 in the Ga-rich regime, usually limited by the formation of volatile gallium suboxide, is expanded due to the presence of tin during the growth process, which stabilizes the formation of gallium oxides. X-ray diffraction, transmission electron microscopy, time-of-flight secondary-ion mass spectrometry, Raman spectroscopy, and atomic force microscopy are used to analyze the influence of tin on the layer formation. We demonstrate that it allows the synthesis of phase-pure ɛ -Ga2O3 . A growth model based on the oxidation of gallium suboxide by reduction of an intermediate sacrificial tin oxide is suggested.

  7. Powder properties of hydrogenated ball-milled graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y., E-mail: y.zhang062012@gmail.com; Wedderburn, J.; Harris, R.

    2014-12-15

    Ball milling is an effective way of producing defective and nanostructured graphite. In this work, the hydrogen storage properties of graphite, ball-milled in a tungsten carbide milling pot under 3 bar hydrogen for various times (0–40 h), were investigated by TGA-Mass Spectrometry, XRD, SEM and laser diffraction particle size analysis. For the conditions used in this study, 10 h is the optimum milling time resulting in desorption of 5.5 wt% hydrogen upon heating under argon to 990 °C. After milling for 40 h, the graphite became significantly more disordered, and the amount of desorbed hydrogen decreased. After milling up tomore » 10 h, the BET surface area increased while particle size decreased; however, there is no apparent correlation between these parameters, and the hydrogen storage properties of the hydrogenated ball-milled graphite.« less

  8. Morphology and structure of Ti-doped diamond films prepared by microwave plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, Xuejie; Lu, Pengfei; Wang, Hongchao; Ren, Yuan; Tan, Xin; Sun, Shiyang; Jia, Huiling

    2018-06-01

    Ti-doped diamond films were deposited through a microwave plasma chemical vapor deposition (MPCVD) system for the first time. The effects of the addition of Ti on the morphology, microstructure and quality of diamond films were systematically investigated. Secondary ion mass spectrometry results show that Ti can be added to diamond films through the MPCVD system using tetra n-butyl titanate as precursor. The spectra from X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy and the images from scanning electron microscopy of the deposited films indicate that the diamond phase clearly exists and dominates in Ti-doped diamond films. The amount of Ti added obviously influences film morphology and the preferred orientation of the crystals. Ti doping is beneficial to the second nucleation and the growth of the (1 1 0) faceted grains.

  9. Heterogeneous catalytic ozonation of hydroquinone using sewage sludge-derived carbonaceous catalysts.

    PubMed

    Xu, Jinglu; Yu, Yang; Ding, Kang; Liu, Zhiying; Wang, Lei; Xu, Yanhua

    2018-03-01

    This study converted sewage sludge into a carbonaceous catalyst via pyrolysis and employed it in the ozonation of hydroquinone. The catalyst was characterized by Mössbauer spectroscopy, X-ray photoelectron spectroscopy, temperature programmed desorption, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. Intermediate products were detected by gas chromatography-mass spectrometry, and a pathway for hydroquinone degradation was proposed. The results showed that sludge pyrolyzed at 700 °C promoted hydroquinone degradation, compared with commercial activated carbon derived from coal. When the catalyst dose was 0.5 g/L, the hydroquinone (200 mg/L) removal rate reached 97.86% after exposure to ozone (the ozone concentration was 17 mg/L and the flow rate was 50 mL/min) for 60 min. The results indicated that basic groups contributed to the catalysis.

  10. Autonomous Metabolomics for Rapid Metabolite Identification in Global Profiling

    DOE PAGES

    Benton, H. Paul; Ivanisevic, Julijana; Mahieu, Nathaniel G.; ...

    2014-12-12

    An autonomous metabolomic workflow combining mass spectrometry analysis with tandem mass spectrometry data acquisition was designed to allow for simultaneous data processing and metabolite characterization. Although previously tandem mass spectrometry data have been generated on the fly, the experiments described herein combine this technology with the bioinformatic resources of XCMS and METLIN. We can analyze large profiling datasets and simultaneously obtain structural identifications, as a result of this unique integration. Furthermore, validation of the workflow on bacterial samples allowed the profiling on the order of a thousand metabolite features with simultaneous tandem mass spectra data acquisition. The tandem mass spectrometrymore » data acquisition enabled automatic search and matching against the METLIN tandem mass spectrometry database, shortening the current workflow from days to hours. Overall, the autonomous approach to untargeted metabolomics provides an efficient means of metabolomic profiling, and will ultimately allow the more rapid integration of comparative analyses, metabolite identification, and data analysis at a systems biology level.« less

  11. [Clinical application of mass spectrometry in the pediatric field: current topics].

    PubMed

    Yamaguchi, Seiji

    2013-09-01

    Mass spectrometry, including tandem mass spectrometry (MS/MS) and gas chromatography-mass spectrometry (GC/MS), is becoming prominent in the diagnosis of metabolic disorders in the pediatric field. It enables biochemical diagnosis of metabolic disorders from the metabolic profiles obtained by MS/MS and/or GC/MS. In neonatal mass screening for inherited metabolic disease (IMD) using MS/MS, amino acids and acylcarnitines on dried blood spots are analyzed. The target diseases include amino acidemia, urea cycle disorder, organic acidemia, and fatty acid oxidation disorder. In the MS/MS screening, organic acid analysis using GC/MS is required for differential and/or definite diagnosis of the IMDs. GC/MS data processing, however, is difficult, and metabolic diagnosis often requires the necessary skills and expertize. We developed an automated system of GC/MS data processing and autodiagnosis, and the biochemical diagnosis using GC/MS became markedly easier and user-friendly. Mass spectrometric techniques will expand from research laboratories to clinical laboratories in the near future.

  12. Laser Microprobe Mass Spectrometry 1: Basic Principles and Performance Characteristics.

    ERIC Educational Resources Information Center

    Denoyer, Eric; And Others

    1982-01-01

    Describes the historical development, performance characteristics (sample requirements, analysis time, ionization characteristics, speciation capabilities, and figures of merit), and applications of laser microprobe mass spectrometry. (JN)

  13. Size, weight and position: ion mobility spectrometry and imaging MS combined.

    PubMed

    Kiss, András; Heeren, Ron M A

    2011-03-01

    Size, weight and position are three of the most important parameters that describe a molecule in a biological system. Ion mobility spectrometry is capable of separating molecules on the basis of their size or shape, whereas imaging mass spectrometry is an effective tool to measure the molecular weight and spatial distribution of molecules. Recent developments in both fields enabled the combination of the two technologies. As a result, ion-mobility-based imaging mass spectrometry is gaining more and more popularity as a (bio-)analytical tool enabling the determination of the size, weight and position of several molecules simultaneously on biological surfaces. This paper reviews the evolution of ion-mobility-based imaging mass spectrometry and provides examples of its application in analytical studies of biological surfaces.

  14. Mass Spectrometry in Clinical Laboratory: Applications in Therapeutic Drug Monitoring and Toxicology.

    PubMed

    Garg, Uttam; Zhang, Yan Victoria

    2016-01-01

    Mass spectrometry (MS) has been used in research and specialized clinical laboratories for decades as a very powerful technology to identify and quantify compounds. In recent years, application of MS in routine clinical laboratories has increased significantly. This is mainly due to the ability of MS to provide very specific identification, high sensitivity, and simultaneous analysis of multiple analytes (>100). The coupling of tandem mass spectrometry with gas chromatography (GC) or liquid chromatography (LC) has enabled the rapid expansion of this technology. While applications of MS are used in many clinical areas, therapeutic drug monitoring, drugs of abuse, and clinical toxicology are still the primary focuses of the field. It is not uncommon to see mass spectrometry being used in routine clinical practices for those applications.

  15. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOEpatents

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  16. Analysis of the Proteome of Hair-Cell Stereocilia by Mass Spectrometry

    PubMed Central

    Krey, Jocelyn F.; Wilmarth, Philip A.; David, Larry L.; Barr-Gillespie, Peter G.

    2017-01-01

    Characterization of proteins that mediate mechanotransduction by hair cells, the sensory cells of the inner ear, is hampered by the scarcity of these cells and their sensory organelle, the hair bundle. Mass spectrometry, with its high sensitivity and identification precision, is the ideal method for determining which proteins are present in bundles and what proteins they interact with. We describe here the isolation of mouse hair bundles, as well as preparation of bundle-protein samples for mass spectrometry. We also describe protocols for data-dependent (shotgun) and parallel-reaction-monitoring (targeted) mass spectrometry that allow us to identify and quantify proteins of the hair bundle. These sensitive methods are particularly useful for comparing proteomes of wild-type and mice with deafness mutations affecting hair-bundle proteins. (120 words; maximum 250) PMID:28109437

  17. The diverse and expanding role of mass spectrometry in structural and molecular biology.

    PubMed

    Lössl, Philip; van de Waterbeemd, Michiel; Heck, Albert Jr

    2016-12-15

    The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  18. Generation, Characterization and Applications of Fullerenes

    NASA Astrophysics Data System (ADS)

    Liu, Shengzhong

    A contact-arc sputtering configuration has been adopted and optimized in order to generate fullerene-containing soot. Several stages of design improvements have made our equipment more effective in terms of yield and production rate. Upon modification of Wudl's Soxhlet separation procedure, we have been able to significantly speed up C_ {60} separation and higher fullerene enrichment. At least ten more separable HPLC peaks after C_ {84} have been observed for the first time. Preliminary laser desorption time of flight mass spectra suggest that our enriched higher fullerene sample possibly contains, C_{86}, C_{88}, C_ {90}, C_{92} , C_{94} and C _{96} in addition to the previously isolated smaller fullerenes C_ {60}, C_{70} , C_{76}, C _{78}(D_2), C_{78}(C_ {rm 2v}) and C_{84 }. Among these, C_{86 }, C_{88}, C_{92} show up for the first time in separable amounts and the controversial species --C_{94} appears present too. HPLC has been successfully used for high fullerene separation, pure C_{76}, C_{84} samples so far having been obtained. Fullerene decomposition (especially of higher fullerenes) in the column has been clearly identified. We defined HPLC peaks indicate that the oxidation process may follow certain "well defined" routes. A yellow epoxide band containing various oxides of C_{60 } has been extracted and characterized using mass spectrometry. Characterizations of pure C _{60} and C_{70 } include HPLC, mass spectrometry, vibrational IR and Raman spectroscopy, STM, TEM etc. Our Raman measurements completed the full assignment of C_{60 } fundamental modes and supplied more structural information on C_{70}. STM imaging supplied clear pictures of both C_ {60} and C_{70} molecular topologies. Especially for C _{70}, both the long and the short axes of the molecule have been clearly resolved. TEM observations involving imaging, diffraction and electron energy loss spectroscopy of crystalline C_{60} and C_{70} were performed. The room temperature lattice structure of C _{70} was determined for the first time. C_{60} single crystals have been obtained from cyclohexane solution and X-ray diffraction has been successfully employed. Diffraction data sets collected with three crystals at different temperatures show that at these temperatures the molecules are statistically distributed in two molecular orientations within the cubic lattice. Fullerenes have been applied for diamond nucleation and second-harmonic generation. We have discovered that activated fullerenes, especially C_{70 } can be used as diamond nucleation sites on non-diamond substrates. A speculative diamond nucleation model is proposed which may provide a means of better understanding the mechanism of diamond nucleation. The second harmonic generation intensity of C_{60} thin films has been measured as a function of film temperature and poling field voltage. The largest value of chi_sp{rm pol} {(2)} is about fifteen times larger than that of quartz.

  19. Fossilized microorganisms from the Emperor Seamounts: implications for the search for a subsurface fossil record on Earth and Mars.

    PubMed

    Ivarsson, M; Lausmaa, J; Lindblom, S; Broman, C; Holm, N G

    2008-12-01

    We have observed filamentous carbon-rich structures in samples drilled at 3 different seamounts that belong to the Emperor Seamounts in the Pacific Ocean: Detroit (81 Ma), Nintoku (56 Ma), and Koko Seamounts (48 Ma). The samples consist of low-temperature altered basalts recovered from all 3 seamounts. The maximum depth from which the samples were retrieved was 954 meters below seafloor (mbsf). The filamentous structures occur in veins and fractures in the basalts, where they are attached to the vein walls and embedded in vein-filling minerals like calcite, aragonite, and gypsum. The filaments were studied with a combination of optical microscopy, environmental scanning electron microscopy (ESEM), Raman spectroscopy, and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Minerals were identified by a combination of optical microscopy, X-ray diffraction, Raman spectrometry, and energy dispersive spectrometry on an environmental scanning electron microscope. Carbon content of the filaments ranges between approximately 10 wt % and approximately 50 wt % and is not associated with carbonates. These results indicate an organic origin of the carbon. The presence of C(2)H(4), phosphate, and lipid-like molecules in the filaments further supports a biogenic origin. We also found microchannels in volcanic glass enriched in carbon (approximately 10-40 wt %) compatible with putative microbial activity. Our findings suggest new niches for life in subseafloor environments and have implications for further exploration of the subseafloor biosphere on Earth and beyond.

  20. Fossilized Microorganisms from the Emperor Seamounts: Implications for the Search for a Subsurface Fossil Record on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Ivarsson, M.; Lausmaa, J.; Lindblom, S.; Broman, C.; Holm, N. G.

    2008-12-01

    We have observed filamentous carbon-rich structures in samples drilled at 3 different seamounts that belong to the Emperor Seamounts in the Pacific Ocean: Detroit (81 Ma), Nintoku (56 Ma), and Koko Seamounts (48 Ma). The samples consist of low-temperature altered basalts recovered from all 3 seamounts. The maximum depth from which the samples were retrieved was 954 meters below seafloor (mbsf). The filamentous structures occur in veins and fractures in the basalts, where they are attached to the vein walls and embedded in vein-filling minerals like calcite, aragonite, and gypsum. The filaments were studied with a combination of optical microscopy, environmental scanning electron microscopy (ESEM), Raman spectroscopy, and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Minerals were identified by a combination of optical microscopy, X-ray diffraction, Raman spectrometry, and energy dispersive spectrometry on an environmental scanning electron microscope. Carbon content of the filaments ranges between ˜10 wt % and ˜50 wt % and is not associated with carbonates. These results indicate an organic origin of the carbon. The presence of C2H4, phosphate, and lipid-like molecules in the filaments further supports a biogenic origin. We also found microchannels in volcanic glass enriched in carbon (˜10 40 wt %) compatible with putative microbial activity. Our findings suggest new niches for life in subseafloor environments and have implications for further exploration of the subseafloor biosphere on Earth and beyond.

  1. Study of Simvastatin Self-Association Using Electrospray-Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Vetrova, E. V.; Lekar, A. V.; Filonova, O. V.; Borisenko, S. N.; Maksimenko, E. V.; Borisenko, N. I.

    2015-07-01

    Self-association of simvastatin, which is widely used to treat coronary heart disease, was investigated using electrospray-ionization mass spectrometry. Formation of simvastatin self-associates in various solvents was demonstrated using mass spectrometry. Solvation effects were shown to play a special role in the formation of the self-associates. Self-associates containing from two to fi ve simvastatin molecules were detected in mass spectra of an aqueous MeOH (20%) solution of simvastatin. The formation of simvastatin self-associates could compete with the complexation of supramolecular structures during the synthesis of new generation drugs.

  2. Nuclear Forensics: Measurements of Uranium Oxides Using Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)

    DTIC Science & Technology

    2010-03-01

    Isotope Ratio Analysis of Actinides , Fission Products, and Geolocators by High- efficiency Multi-collector Thermal Ionization Mass Spectrometry...Information, 1999. Hou, Xiaolin, and Per Roos. “ Critical Comparison of radiometric and Mass Spectrometric Methods for the Determination of...NUCLEAR FORENSICS: MEASUREMENTS OF URANIUM OXIDES USING TIME-OF-FLIGHT SECONDARY ION MASS

  3. Linear electric field mass spectrometry

    DOEpatents

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  4. High-mass diffraction in the QCD dipole picture

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Navelet, H.; Peschanski, R.

    1998-05-01

    Using the QCD dipole picture of the BFKL pomeron, the cross-section of single diffractive dissociation of virtual photons at high energy and large diffractively excited masses is calculated. The calculation takes into account the full impact-parameter phase-space and thus allows to obtain an exact value of the triple BFKL Pomeron vertex. It appears large enough to compensate the perturbative 6-gluon coupling factor (α/π)3 thus suggesting a rather appreciable diffractive cross-section.

  5. Application of Solid Phase Microextraction Coupled with Gas Chromatography/Mass Spectrometry as a Rapid Method for Field Sampling and Analysis of Chemical Warfare Agents and Toxic Industrial Chemicals

    DTIC Science & Technology

    2003-01-01

    PHASE MICROEXTRACTION COUPLED WITH GAS CHROMATOGRAPHY/MASS SPECTROMETRY AS A RAPID METHOD FOR FIELD SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS...SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS AND TOXIC INDUSTRIAL CHEMICALS 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...GAS CHROMATOGRAPHY/MASS SPECTROMETRY AS A RAPID METHOD FOR FIELD SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS AND TOXIC INDUSTRIAL CHEMICALS

  6. Mass spectrometry in systems biology an introduction.

    PubMed

    Dunn, Warwick B

    2011-01-01

    The qualitative detection, quantification, and structural characterization of analytes in biological systems are important requirements for objectives to be fulfilled in systems biology research. One analytical tool applied to a multitude of systems biology studies is mass spectrometry, particularly for the study of proteins and metabolites. Here, the role of mass spectrometry in systems biology will be assessed, the advantages and disadvantages discussed, and the instrument configurations available described. Finally, general applications will be briefly reviewed. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Analysis of chirality by femtosecond laser ionization mass spectrometry.

    PubMed

    Horsch, Philipp; Urbasch, Gunter; Weitzel, Karl-Michael

    2012-09-01

    Recent progress in the field of chirality analysis employing laser ionization mass spectrometry is reviewed. Emphasis is given to femtosecond (fs) laser ionization work from the author's group. We begin by reviewing fundamental aspects of determining circular dichroism (CD) in fs-laser ionization mass spectrometry (fs-LIMS) discussing an example from the literature (resonant fs-LIMS of 3-methylcyclopentanone). Second, we present new data indicating CD in non-resonant fs-LIMS of propylene oxide. Copyright © 2012 Wiley Periodicals, Inc., A Wiley Company.

  8. Evaporation Rates of Chemical Warfare Agents Using 5-CM Wind Tunnels I. CASARM Sulfur Mustard (HD) from Glass

    DTIC Science & Technology

    2008-10-01

    Blank CONTENTS 1. INTRODUCTION 9 2. EXPERIMENTAL PROCEDURES 9 2.1 Wind Tunnel 9 2.2 Agent 10 2.3 Gas Chromatography /Mass Spectrometry Detection 10...protective equipment. 2.3 Gas Chromatography /Mass Spectrometry Detection (GC/MSD) The GC/MSD analysis of the thermal desorption tubes was performed on a...coupled to thermal desorption tubes that were analyzed using gas chromatography /mass spectrometry detection (GC/MSD). Differences between the tunnels

  9. Iron-Isotopic Fractionation Studies Using Multiple Collector Inductively Coupled Plasma Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Zhang, C.; Barling, J.; Roe, J. E.; Nealson, K. H.

    1999-01-01

    The importance of Fe biogeochemistry has stimulated interest in Fe isotope fractionation. Recent studies using thermal ionization mass spectrometry (TIMS) and a "double spike" demonstrate the existence of biogenic Fe isotope effects. Here, we assess the utility of multiple-collector inductively-coupled plasma mass spectrometry(MC-ICP-MS) with a desolvating sample introduction system for Fe isotope studies, and present data on Fe biominerals produced by a thermophilic bacterium. Additional information is contained in the original extended abstract.

  10. A mass spectrometry-based multiplex SNP genotyping by utilizing allele-specific ligation and strand displacement amplification.

    PubMed

    Park, Jung Hun; Jang, Hyowon; Jung, Yun Kyung; Jung, Ye Lim; Shin, Inkyung; Cho, Dae-Yeon; Park, Hyun Gyu

    2017-05-15

    We herein describe a new mass spectrometry-based method for multiplex SNP genotyping by utilizing allele-specific ligation and strand displacement amplification (SDA) reaction. In this method, allele-specific ligation is first performed to discriminate base sequence variations at the SNP site within the PCR-amplified target DNA. The primary ligation probe is extended by a universal primer annealing site while the secondary ligation probe has base sequences as an overhang with a nicking enzyme recognition site and complementary mass marker sequence. The ligation probe pairs are ligated by DNA ligase only at specific allele in the target DNA and the resulting ligated product serves as a template to promote the SDA reaction using a universal primer. This process isothermally amplifies short DNA fragments, called mass markers, to be analyzed by mass spectrometry. By varying the sizes of the mass markers, we successfully demonstrated the multiplex SNP genotyping capability of this method by reliably identifying several BRCA mutations in a multiplex manner with mass spectrometry. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Comprehensive evaluation of direct injection mass spectrometry for the quantitative profiling of volatiles in food samples

    PubMed Central

    2016-01-01

    Although qualitative strategies based on direct injection mass spectrometry (DIMS) have recently emerged as an alternative for the rapid classification of food samples, the potential of these approaches in quantitative tasks has scarcely been addressed to date. In this paper, the applicability of different multivariate regression procedures to data collected by DIMS from simulated mixtures has been evaluated. The most relevant factors affecting quantitation, such as random noise, the number of calibration samples, type of validation, mixture complexity and similarity of mass spectra, were also considered and comprehensively discussed. Based on the conclusions drawn from simulated data, and as an example of application, experimental mass spectral fingerprints collected by direct thermal desorption coupled to mass spectrometry were used for the quantitation of major volatiles in Thymus zygis subsp. zygis chemotypes. The results obtained, validated with the direct thermal desorption coupled to gas chromatography–mass spectrometry method here used as a reference, show the potential of DIMS approaches for the fast and precise quantitative profiling of volatiles in foods. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644978

  12. Dacarbazine.

    PubMed

    Al-Badr, Abdullah A; Alodhaib, Mansour M

    2016-01-01

    Dacarbazine is a cell cycle nonspecific antineoplastic alkylating agent used in the treatment of metastatic malignant melanoma. This chapter contains the descriptions of the drug: nomenclature, formulae, chemical structure, elemental composition, and appearance. The uses and applications of dacarbazine and the methods that were used for its preparation are reported. The methods which were used for the physical characterization of the drug are ionization constant, solubility, X-ray powder diffraction pattern, crystal structure, melting point, and differential scanning calorimetry. The profile contains the spectra of the drug: ultraviolet spectrum, vibrational spectrum, nuclear magnetic resonance spectra, and mass spectrum. The compendial methods of analysis for dacarbazine include the United States Pharmacopeia methods, British Pharmacopeia methods, and International Pharmacopeia methods. Other reported methods that are used for the analysis of the drug are high-performance liquid chromatography, high-performance liquid chromatography-mass spectrometry, and polarography. Metabolism, pharmacokinetics, and stability studies on dacarbazine are also included. Reviews of some analytical methods and physicochemical properties of the drug as well as the most important enzymes that are involved in the prodrug activation are provided. Sixty-four references are listed at the end of this monograph. © 2016 Elsevier Inc. All rights reserved.

  13. Sonocatalytic removal of naproxen by synthesized zinc oxide nanoparticles on montmorillonite.

    PubMed

    Karaca, Melike; Kıranşan, Murat; Karaca, Semra; Khataee, Alireza; Karimi, Atefeh

    2016-07-01

    ZnO/MMT nanocomposite as sonocatalyst was prepared by immobilizing synthesized ZnO on the montmorillonite surface. The characteristics of as-prepared nanocomposite were studied by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD) techniques. The synthesized samples were used as a catalyst for sonocatalytic degradation of naproxen. ZnO/MMT catalyst in the presence of ultrasound irradiation was more effective compared to pure ZnO nanoparticles and MMT particles in the sonocatalysis of naproxen. The effect of different operational parameters on the sonocatalytic degradation of naproxen including initial drug concentration, sonocatalyst dosage, solution pH, ultrasonic power and the presence of organic and inorganic scavengers were evaluated. It was found that the presence of the scavengers suppressed the sonocatalytic degradation efficiency. The reusability of the nanocomposite was examined in several consecutive runs, and the degradation efficiency decreased only 2% after 5 repeated runs. The main intermediates of naproxen degradation were determined by gas chromatography-mass spectrometry (GC-Mass). Copyright © 2016 Elsevier B.V. All rights reserved.

  14. IDENTIFICATION OF POLLUTANTS IN A MUNICIPAL WELL USING HIGH RESOLUTION MASS SPECTROMETRY

    EPA Science Inventory

    An elevated incidence of childhood cancer was observed near a contaminated site. Trace amounts of several isomeric compounds were detected by gas chromatography/mass spectrometry (GC/MS) in a concentrated extract of municipal well water. No matching library mass spectra were foun...

  15. Identification of polychlorinated styrene compounds in heron tissues by gas-liquid chromatography-mass spectrometry

    USGS Publications Warehouse

    Reichel, W.L.; Prouty, R.M.; Gay, M.L.

    1977-01-01

    Unknown compounds detected in Ardea herodias tissues are identified by gas-liquid chromatography-mass spectrometry as residues of octachlorostyrene. Heptachlorostyrene and hexachlorostyrene were tentatively identified.

  16. Mass Spectrometry Approaches for Identification and Quantitation of Therapeutic Monoclonal Antibodies in the Clinical Laboratory.

    PubMed

    Ladwig, Paula M; Barnidge, David R; Willrich, Maria A V

    2017-05-01

    Therapeutic monoclonal antibodies (MAbs) are an important class of drugs used to treat diseases ranging from autoimmune disorders to B cell lymphomas to other rare conditions thought to be untreatable in the past. Many advances have been made in the characterization of immunoglobulins as a result of pharmaceutical companies investing in technologies that allow them to better understand MAbs during the development phase. Mass spectrometry is one of the new advancements utilized extensively by pharma to analyze MAbs and is now beginning to be applied in the clinical laboratory setting. The rise in the use of therapeutic MAbs has opened up new challenges for the development of assays for monitoring this class of drugs. MAbs are larger and more complex than typical small-molecule therapeutic drugs routinely analyzed by mass spectrometry. In addition, they must be quantified in samples that contain endogenous immunoglobulins with nearly identical structures. In contrast to an enzyme-linked immunosorbent assay (ELISA) for quantifying MAbs, mass spectrometry-based assays do not rely on MAb-specific reagents such as recombinant antigens and/or anti-idiotypic antibodies, and time for development is usually shorter. Furthermore, using molecular mass as a measurement tool provides increased specificity since it is a first-order principle unique to each MAb. This enables rapid quantification of MAbs and multiplexing. This review describes how mass spectrometry can become an important tool for clinical chemists and especially immunologists, who are starting to develop assays for MAbs in the clinical laboratory and are considering mass spectrometry as a versatile platform for the task. Copyright © 2017 Ladwig et al.

  17. Atmospheric pressure ionization-tandem mass spectrometry of the phenicol drug family.

    PubMed

    Alechaga, Élida; Moyano, Encarnación; Galceran, M Teresa

    2013-11-01

    In this work, the mass spectrometry behaviour of the veterinary drug family of phenicols, including chloramphenicol (CAP) and its related compounds thiamphenicol (TAP), florfenicol (FF) and FF amine (FFA), was studied. Several atmospheric pressure ionization sources, electrospray (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization were compared. In all atmospheric pressure ionization sources, CAP, TAP and FF were ionized in both positive and negative modes; while for the metabolite FFA, only positive ionization was possible. In general, in positive mode, [M + H](+) dominated the mass spectrum for FFA, while the other compounds, CAP, TAP and FF, with lower proton affinity showed intense adducts with species present in the mobile phase. In negative mode, ESI and atmospheric pressure photoionization showed the deprotonated molecule [M-H](-), while atmospheric pressure chemical ionization provided the radical molecular ion by electron capture. All these ions were characterized by tandem mass spectrometry using the combined information obtained by multistage mass spectrometry and high-resolution mass spectrometry in a quadrupole-Orbitrap instrument. In general, the fragmentation occurred via cyclization and losses or fragmentation of the N-(alkyl)acetamide group, and common fragmentation pathways were established for this family of compounds. A new chemical structure for the product ion at m/z 257 for CAP, on the basis of the MS(3) and MS(4) spectra is proposed. Thermally assisted ESI and selected reaction monitoring are proposed for the determination of these compounds by ultra high-performance liquid chromatography coupled to tandem mass spectrometry, achieving instrumental detection limits down to 0.1 pg. Copyright © 2013 John Wiley & Sons, Ltd.

  18. 40 CFR 63.2354 - What performance tests, design evaluations, and performance evaluations must I conduct?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of Gaseous Organic Compounds by Direct Interface Gas Chromatography-Mass Spectrometry (incorporated... Method for Determination of Gaseous Organic Compounds by Direct Interface Gas Chromatography-Mass... Interface Gas Chromatography-Mass Spectrometry (incorporated by reference, see § 63.14),; or (B) For target...

  19. Introduction of Mass Spectrometry in an First-Semester General Chemistry Laboratory Course: Quantification of Mtbe or Dmso in Water

    ERIC Educational Resources Information Center

    Solow, Mike

    2004-01-01

    Quantification of a contaminant in water provides the first-year general chemistry students with a tangible application of mass spectrometry. The relevance of chemistry to assessing and solving environmental problems is highlighted for students when they perform mass spectroscopy experiments.

  20. Mass Spectrometry for the Masses

    ERIC Educational Resources Information Center

    Persinger, Jared D.; Hoops, Geoffrey, C.; Samide, Michael J.

    2004-01-01

    A simple, qualitative experiment is developed for implementation, where the gas chromatography-mass spectrometry (GC-MS) plays an important role, into the laboratory curriculum of a chemistry course designed for nonscience majors. This laboratory experiment is well suited for the students as it helps them to determine the validity of their…

  1. Affinity purification and mass spectrometry: an attractive choice to investigate protein-protein interactions in plant immunity

    USDA-ARS?s Scientific Manuscript database

    Affinity purification of protein complexes from biological tissues, followed by liquid chromatography- tandem mass spectrometry (AP-MS/MS), has ballooned in recent years due to sizeable increases in nucleic acid sequence data essential for interpreting mass spectra, improvements in affinity purifica...

  2. The simulacrum system as a construct for mass spectrometry of triacylglycerols and others

    USDA-ARS?s Scientific Manuscript database

    A construct called a simulacrum is defined that provides all possible solutions to a sum of two mass spectral abundances, based on values (abundances) or ratios of those values. The defined construct is applied to atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) of triacylglyce...

  3. Linear electric field mass spectrometry

    DOEpatents

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  4. Analysis of psilocybin and psilocin in Psilocybe subcubensis Guzmán by ion mobility spectrometry and gas chromatography-mass spectrometry.

    PubMed

    Keller, T; Schneider, A; Regenscheit, P; Dirnhofer, R; Rücker, T; Jaspers, J; Kisser, W

    1999-01-11

    A new method has been developed for the rapid analysis of psilocybin and/or psilocin in fungus material using ion mobility spectrometry. Quantitative analysis was performed by gas chromatography-mass spectrometry after a simple one-step extraction involving homogenization of the dried fruit bodies of fungi in chloroform and derivatization with MSTFA. The proposed methods resulted in rapid procedures useful in analyzing psychotropic fungi for psilocybin and psilocin.

  5. High-accuracy mass spectrometry for fundamental studies.

    PubMed

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions.

  6. Recent applications of mass spectrometry in forensic toxicology

    NASA Astrophysics Data System (ADS)

    Foltz, Rodger L.

    1992-09-01

    This review encompasses applications of mass spectrometry reported during the years 1989, 1990 and 1991 for the analysis of cannabinoids, cocaine, opiates, amphetamines, lysergic acid diethylamide (LSD), and their metabolites in physiological specimens.

  7. Evaluating lipid mediator structural complexity using ion mobility spectrometry combined with mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyle, Jennifer E.; Aly, Noor; Zheng, Xueyun

    Lipid mediators (LMs) are broadly defined as a class of bioactive lipophilic molecules that regulate cell-to-cell communication events with many having a strong correlation with various human diseases and conditions. LMs are usually analyzed with liquid chromatography and mass spectrometry (LC-MS), but their numerous isomers greatly complicate the measurements with essentially identical fragmentation spectra and LC separations not always sufficient for distinguishing the features. In this work, we characterized LMs having specific categories using ion mobility spectrometry coupled with mass spectrometry (IMS-MS). The IMS collision cross sections and MS m/z values displayed distinct trends for each LM category studied. LC-IMS-MSmore » analyses on flu infected mouse tissue samples also illustrated the presence of additional LM species not in our databases.« less

  8. Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry in Metabolomics and Lipidomics.

    PubMed

    Ghaste, Manoj; Mistrik, Robert; Shulaev, Vladimir

    2016-05-25

    Metabolomics, along with other "omics" approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in analytical and bioanalytical sciences. It offers exceptionally high resolution and the highest degree of structural confirmation. Many metabolomics studies have been conducted using HRMS over the past decade. In this review, we will explore the latest developments in Fourier transform mass spectrometry (FTMS) and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing HRMS data.

  9. Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry in Metabolomics and Lipidomics

    PubMed Central

    Ghaste, Manoj; Mistrik, Robert; Shulaev, Vladimir

    2016-01-01

    Metabolomics, along with other “omics” approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in analytical and bioanalytical sciences. It offers exceptionally high resolution and the highest degree of structural confirmation. Many metabolomics studies have been conducted using HRMS over the past decade. In this review, we will explore the latest developments in Fourier transform mass spectrometry (FTMS) and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing HRMS data. PMID:27231903

  10. Acrylamide: formation, occurrence in food products, detection methods, and legislation.

    PubMed

    Arvanitoyannis, Ioannis S; Dionisopoulou, Niki

    2014-01-01

    This review aims at summarizing the most recent updates in the field of acrylamide (AA) formation (mechanism, conditions) and the determination of AA in a number of foods (fried or baked potatoes, chips, coffee, bread, etc). The methods applied for AA detection [Capillary Electrophoresis-Mass Spectrometry (CE-MS), Liquid Chromatography-Mass Spectrometry (LC-MS), Non-Aqueous Capillary Electrophoresis (NACE), High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS), Pressurized Fluid Extraction (PFE), Matrix Solid-Phase Dispersion (MSPD), Gas Chromatography-Mass Spectrometry (GC-MS), Solid-Phase MicroExtraction-Gas Chromatography (SPME-GC), Enzyme Linked Immunosorbent Assay (ELISA), and MicroEmulsion ElectroKinetic Chromatography (MEEKC) are presented and commented. Several informative figures and tables are included to show the effect of conditions (temperature, time) on the AA formation. A section is also included related to AA legislation in EU and US.

  11. Enrichment of low-molecular-weight proteins from biofluids for biomarker discovery.

    PubMed

    Chertov, Oleg; Simpson, John T; Biragyn, Arya; Conrads, Thomas P; Veenstra, Timothy D; Fisher, Robert J

    2005-01-01

    The dramatic progress in mass spectrometry-based methods of protein identification has triggered a new quest for disease-associated biomarkers. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and its variant surface-enhanced laser desorption/ionization mass spectrometry, provide effective means to explore the less studied information slice of the human serum proteome -- low-molecular-weight proteins and peptides. These low-molecular-weight proteins and peptides are promising for the detection of important biomarkers. Due to the significant experimental problems imposed by high-abundance and high-molecular-weight proteins, it is important to effectively remove these species prior to mass spectrometry analysis of the low-molecular-weight serum and plasma proteomes. In this review, the advantages afforded by recently introduced methods for prefractionation of serum, as they pertain to the detection and identification of biomarkers, will be discussed.

  12. [Imaging Mass Spectrometry in Histopathologic Analysis].

    PubMed

    Yamazaki, Fumiyoshi; Seto, Mitsutoshi

    2015-04-01

    Matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS) enables visualization of the distribution of a range of biomolecules by integrating biochemical information from mass spectrometry with positional information from microscopy. IMS identifies a target molecule. In addition, IMS enables global analysis of biomolecules containing unknown molecules by detecting the ratio of the molecular weight to electric charge without any target, which makes it possible to identify novel molecules. IMS generates data on the distribution of lipids and small molecules in tissues, which is difficult to visualize with either conventional counter-staining or immunohistochemistry. In this review, we firstly introduce the principle of imaging mass spectrometry and recent advances in the sample preparation method. Secondly, we present findings regarding biological samples, especially pathological ones. Finally, we discuss the limitations and problems of the IMS technique and clinical application, such as in drug development.

  13. The Role of Mass Spectrometry-Based Metabolomics in Medical Countermeasures Against Radiation

    PubMed Central

    Patterson, Andrew D.; Lanz, Christian; Gonzalez, Frank J.; Idle, Jeffrey R.

    2013-01-01

    Radiation metabolomics can be defined as the global profiling of biological fluids to uncover latent, endogenous small molecules whose concentrations change in a dose-response manner following exposure to ionizing radiation. In response to the potential threat of nuclear or radiological terrorism, the Center for High-Throughput Minimally Invasive Radiation Biodosimetry (CMCR) was established to develop field-deployable biodosimeters based, in principle, on rapid analysis by mass spectrometry of readily and easily obtainable biofluids. In this review, we briefly summarize radiation biology and key events related to actual and potential nuclear disasters, discuss the important contributions the field of mass spectrometry has made to the field of radiation metabolomics, and summarize current discovery efforts to use mass spectrometry-based metabolomics to identify dose-responsive urinary constituents, and ultimately to build and deploy a noninvasive high-throughput biodosimeter. PMID:19890938

  14. Integrating Mass Spectrometry of Intact Protein Complexes into Structural Proteomics

    PubMed Central

    Hyung, Suk-Joon; Ruotolo, Brandon T.

    2013-01-01

    Summary Mass spectrometry analysis of intact protein complexes has emerged as an established technology for assessing the composition and connectivity within dynamic, heterogeneous multiprotein complexes at low concentrations and in the context of mixtures. As this technology continues to move forward, one of the main challenges is to integrate the information content of such intact protein complex measurements with other mass spectrometry approaches in structural biology. Methods such as H/D exchange, oxidative foot-printing, chemical cross-linking, affinity purification, and ion mobility separation add complementary information that allows access to every level of protein structure and organization. Here, we survey the structural information that can be retrieved by such experiments, demonstrate the applicability of integrative mass spectrometry approaches in structural proteomics, and look to the future to explore upcoming innovations in this rapidly-advancing area. PMID:22611037

  15. Laser desorption mass spectrometry for biomolecule detection and its applications

    NASA Astrophysics Data System (ADS)

    Winston Chen, C. H.; Sammartano, L. J.; Isola, N. R.; Allman, S. L.

    2001-08-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications.

  16. Quantitative Caffeine Analysis Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Michael J; Deibel, Michael A.; Tomkins, Bruce A

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methodsmore » determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.« less

  17. Mass Spectrometry-Based Proteomics for Pre-Eclampsia and Preterm Birth

    PubMed Central

    Law, Kai P.; Han, Ting-Li; Tong, Chao; Baker, Philip N.

    2015-01-01

    Pregnancy-related complications such as pre-eclampsia and preterm birth now represent a notable burden of adverse health. Pre-eclampsia is a hypertensive disorder unique to pregnancy. It is an important cause of maternal death worldwide and a leading cause of fetal growth restriction and iatrogenic prematurity. Fifteen million infants are born preterm each year globally, but more than one million of those do not survive their first month of life. Currently there are no predictive tests available for diagnosis of these pregnancy-related complications and the biological mechanisms of the diseases have not been fully elucidated. Mass spectrometry-based proteomics have all the necessary attributes to provide the needed breakthrough in understanding the pathophysiology of complex human diseases thorough the discovery of biomarkers. The mass spectrometry methodologies employed in the studies for pregnancy-related complications are evaluated in this article. Top-down proteomic and peptidomic profiling by laser mass spectrometry, liquid chromatography or capillary electrophoresis coupled to mass spectrometry, and bottom-up quantitative proteomics and targeted proteomics by liquid chromatography mass spectrometry have been applied to elucidate protein biomarkers and biological mechanism of pregnancy-related complications. The proteomes of serum, urine, amniotic fluid, cervical-vaginal fluid, placental tissue, and cytotrophoblastic cells have all been investigated. Numerous biomarkers or biomarker candidates that could distinguish complicated pregnancies from healthy controls have been proposed. Nevertheless, questions as to the clinically utility and the capacity to elucidate the pathogenesis of the pre-eclampsia and preterm birth remain to be answered. PMID:26006232

  18. Ligand induced structural isomerism in phosphine coordinated gold clusters revealed by ion mobility mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ligare, Marshall R.; Baker, Erin S.; Laskin, Julia

    Structural isomerism in ligated gold clusters is revealed using electrospray ionization ion mobility spectrometry mass spectrometry. Phosphine ligated Au8 clusters are shown to adopt more “extended” type structures with increasing exchange of methyldiphenylphosphine (MePPh2) for triphenylphosphine (PPh3). These ligand-dependant structure-property relationships are critical to applications of clusters in catalysis.

  19. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques

    NASA Technical Reports Server (NTRS)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2002-01-01

    The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

  20. Profiling Changes in Histone Post-translational Modifications by Top-Down Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Mowei; Wu, Si; Stenoien, David L.

    Top-down mass spectrometry is a valuable tool for charactering post-translational modifications on histones for understanding of gene control and expression. In this protocol, we describe a top-down workflow using liquid chromatography coupled to mass spectrometry for fast global profiling of changes in histone proteoforms between a wild-type and a mutant of a fungal species. The proteoforms exhibiting different abundances can be subjected to further targeted studies by other mass spectrometric or biochemical assays. This method can be generally adapted for preliminary screening for changes in histone modifications between samples such as wild-type vs. mutant, and control vs. disease.

  1. Determination of the sequences of protein-derived peptides and peptide mixtures by mass spectrometry

    PubMed Central

    Morris, Howard R.; Williams, Dudley H.; Ambler, Richard P.

    1971-01-01

    Micro-quantities of protein-derived peptides have been converted into N-acetylated permethyl derivatives, and their sequences determined by low-resolution mass spectrometry without prior knowledge of their amino acid compositions or lengths. A new strategy is suggested for the mass spectrometric sequencing of oligopeptides or proteins, involving gel filtration of protein hydrolysates and subsequent sequence analysis of peptide mixtures. Finally, results are given that demonstrate for the first time the use of mass spectrometry for the analysis of a protein-derived peptide mixture, again without prior knowledge of the protein or components within the mixture. PMID:5158904

  2. Tiopronin Gold Nanoparticle Precursor Forms Aurophilic Ring Tetramer

    PubMed Central

    Simpson, Carrie A.; Farrow, Christopher L.; Tian, Peng; Billinge, Simon J.L.; Huffman, Brian J.; Harkness, Kellen M.; Cliffel, David E.

    2010-01-01

    In the two step synthesis of thiolate-monolayer protected clusters (MPCs), the first step of the reaction is a mild reduction of gold(III) by thiols that generates gold(I) thiolate complexes as intermediates. Using tiopronin (Tio) as the thiol reductant, the characterization of the intermediate Au4Tio4 complex was accomplished with various analytical and structural techniques. Nuclear magnetic resonance (NMR), elemental analysis, thermogravimetric analysis (TGA), and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) were all consistent with a cyclic gold(I)-thiol tetramer structure, and final structural analysis was gathered through the use of powder diffraction and pair distribution functions (PDF). Crystallographic data has proved challenging for almost all previous gold(I)-thiolate complexes. Herein, a novel characterization technique when combined with standard analytical assessment to elucidate structure without crystallographic data proved invaluable to the study of these complexes. This in conjunction with other analytical techniques, in particular mass spectrometry, can elucidate a structure when crystallographic data is unavailable. In addition, luminescent properties provided evidence of aurophilicity within the molecule. The concept of aurophilicity has been introduced to describe a select group of gold-thiolate structures, which possess unique characteristics, mainly red photoluminescence and a distinct Au-Au intramolecular distance indicating a weak metal-metal bond as also evidenced by the structural model of the tetramer. Significant features of both the tetrameric and aurophilic properties of the intermediate gold(I) tiopronin complex are retained after borohydride reduction to form the MPC, including gold(I) tiopronin partial rings as capping motifs, or “staples”, and weak red photoluminescence that extends into the Near Infrared region. PMID:21067183

  3. Bio-inorganic synthesis of ZnO powders using recombinant His-tagged ZnO binding peptide as a promoter.

    PubMed

    Song, Lei; Liu, Yingying; Zhang, Zhifang; Wang, Xi; Chen, Jinchun

    2010-10-01

    Inorganic-binding peptides termed as genetically engineered polypeptides for inorganics (GEPIs), are small peptide sequences selected via combinatorial biology-based protocols of phage or cell surface display technologies. Recent advances in nanotechnology and molecular biology allow the engineering of these peptides with specific affinity to inorganics, often used as molecular linkers or assemblers, to facilitate materials synthesis, which provides a new insight into the material science and engineering field. As a case study on this biomimetic application, here we report a novel biosynthetic ZnO binding protein and its application in promoting bio-inorganic materials synthesis. In brief, the gene encoding a ZnO binding peptide(ZBP) was genetically fused with His(6)-tag and GST-tag using E.coli expression vector pET-28a (+) and pGEX-4T-3. The recombinant protein GST-His-ZBP was expressed, purified with Ni-NTA system, identified by SDS-PAGE electrophoresis and Western blot analysis and confirmed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analysis. Affinity adsorption test demonstrated that the fusion protein had a specific avidity for ZnO nanoparticles (NPs). Results from the bio-inorganic synthesis experiment indicated that the new protein played a promoting part in grain refinement and accelerated precipitation during the formation of the ultra-fine precursor powders in the Zn(OH)(2) sol. X-ray diffraction (XRD) analysis on the final products after calcining the precursor powders showed that hexagonal wurtzite ZnO crystals were obtained. Our work suggested a novel approach to the application about the organic-inorganic interactions.

  4. Short communication: Evaluation of MALDI-TOF mass spectrometry and a custom reference spectra expanded database for the identification of bovine-associated coagulase-negative staphylococci.

    PubMed

    Cameron, M; Perry, J; Middleton, J R; Chaffer, M; Lewis, J; Keefe, G P

    2018-01-01

    This study evaluated MALDI-TOF mass spectrometry and a custom reference spectra expanded database for the identification of bovine-associated coagulase-negative staphylococci (CNS). A total of 861 CNS isolates were used in the study, covering 21 different CNS species. The majority of the isolates were previously identified by rpoB gene sequencing (n = 804) and the remainder were identified by sequencing of hsp60 (n = 56) and tuf (n = 1). The genotypic identification was considered the gold standard identification. Using a direct transfer protocol and the existing commercial database, MALDI-TOF mass spectrometry showed a typeability of 96.5% (831/861) and an accuracy of 99.2% (824/831). Using a custom reference spectra expanded database, which included an additional 13 in-house created reference spectra, isolates were identified by MALDI-TOF mass spectrometry with 99.2% (854/861) typeability and 99.4% (849/854) accuracy. Overall, MALDI-TOF mass spectrometry using the direct transfer method was shown to be a highly reliable tool for the identification of bovine-associated CNS. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Direct antigen detection from immunoprecipitated beads using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; a new method for immunobeads-mass spectrometry (iMS).

    PubMed

    Shimada, Takashi; Toyama, Atsuhiko; Aoki, Chikage; Aoki, Yutaka; Tanaka, Koichi; Sato, Taka-Aki

    2011-12-15

    One-step detection of biological molecules is one of the principal techniques for clinical diagnosis, and the potential of mass spectrometry for biomarker detection has been a promising new approach in the field of medical sciences. We demonstrate here a new and high-sensitivity method that we termed immunobeads-mass spectrometry (iMS), which combines conventional immunoprecipitation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The key feature of iMS is the MS-compatible condition of immunoprecipitation using detergents with a monosaccaride-C8 alkyl chain or a disaccharide-C10 alkyl chain, and the minimized number of steps required for high-sensitivity detection of target peptides in serum or biological fluid. This was achieved by optimizing the wash buffer and subjecting the immunobeads directly to MALDI-TOF MS analysis. Using this method, we showed that 1 fmol of amyloid beta peptide spiked in serum was readily detectable, demonstrating the powerful tool of iMS as a biomarker detection method. Copyright © 2011 John Wiley & Sons, Ltd.

  6. A comparative study of 129I content in environmental standard materials IAEA-375, NIST SRM 4354 and NIST SRM 4357 by Thermal Ionization Mass Spectrometry and Accelerator Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, John; Adamic, Mary; Snyder, Darin

    Iodine environmental measurements have consistently been backed up in the literature by standard materials like IAEA-375, Chernobyl Soil. There are not many other sources of a certified reference material for 129I content for mass spectrometry measurements. Some that have been found in the literature include NIST-4354 and NIST-4357. They are still available at the time of this writing. They don’t have certified content or isotopic values. There has been some work in the literature to show that iodine is present, but there hasn’t been enough to establish a consensus value. These materials have been analyzed at INL through two separatemore » mass spectrometry techniques. They involve a combustion method of the starting material in oxygen, followed by TIMS analysis and a leaching preparation analyzed by accelerator mass spectrometry. Combustion/TIMS preparation of NIST SRM-4354 resulted in a 129I/127I ratio of 1.92 x 10-6 which agrees with AMS measurements which measured the 129I/127I ratio to be 1.93 x 10-6.« less

  7. ALTERNATIVE DISINFECTANTS FOR DRINKING WATER

    EPA Science Inventory

    Using a combination of spectral identification techniques - gas chromatography coupled with low-and high-resolution electron-impact mass spectrometry (GC/EI-MS), low-and high-resolution chemical ionization mass spectrometry (GC/CI-MS), and Fourier transform infrared spectroscopy ...

  8. Technological Development of High-Performance MALDI Mass Spectrometry Imaging for the Study of Metabolic Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feenstra, Adam D.

    This thesis represents efforts made in technological developments for the study of metabolic biology in plants, specifically maize, using matrix-assisted laser desorption/ ionization-mass spectrometry imaging.

  9. Plasma Desorption Mass Spectrometry: Coming of Age.

    ERIC Educational Resources Information Center

    Cotter, Robert J.

    1988-01-01

    Discusses the history and development of Plasma Desorption Mass Spectrometry to determine molecular weights and structures of proteins and polymers. Outlines theory, instrumentation, and sample preparation commonly used. Gives several examples of resulting spectra. (ML)

  10. Methods for recalibration of mass spectrometry data

    DOEpatents

    Tolmachev, Aleksey V [Richland, WA; Smith, Richard D [Richland, WA

    2009-03-03

    Disclosed are methods for recalibrating mass spectrometry data that provide improvement in both mass accuracy and precision by adjusting for experimental variance in parameters that have a substantial impact on mass measurement accuracy. Optimal coefficients are determined using correlated pairs of mass values compiled by matching sets of measured and putative mass values that minimize overall effective mass error and mass error spread. Coefficients are subsequently used to correct mass values for peaks detected in the measured dataset, providing recalibration thereof. Sub-ppm mass measurement accuracy has been demonstrated on a complex fungal proteome after recalibration, providing improved confidence for peptide identifications.

  11. Parametric Power Spectral Density Analysis of Noise from Instrumentation in MALDI TOF Mass Spectrometry

    PubMed Central

    Shin, Hyunjin; Mutlu, Miray; Koomen, John M.; Markey, Mia K.

    2007-01-01

    Noise in mass spectrometry can interfere with identification of the biochemical substances in the sample. For example, the electric motors and circuits inside the mass spectrometer or in nearby equipment generate random noise that may distort the true shape of mass spectra. This paper presents a stochastic signal processing approach to analyzing noise from electrical noise sources (i.e., noise from instrumentation) in MALDI TOF mass spectrometry. Noise from instrumentation was hypothesized to be a mixture of thermal noise, 1/f noise, and electric or magnetic interference in the instrument. Parametric power spectral density estimation was conducted to derive the power distribution of noise from instrumentation with respect to frequencies. As expected, the experimental results show that noise from instrumentation contains 1/f noise and prominent periodic components in addition to thermal noise. These periodic components imply that the mass spectrometers used in this study may not be completely shielded from the internal or external electrical noise sources. However, according to a simulation study of human plasma mass spectra, noise from instrumentation does not seem to affect mass spectra significantly. In conclusion, analysis of noise from instrumentation using stochastic signal processing here provides an intuitive perspective on how to quantify noise in mass spectrometry through spectral modeling. PMID:19455245

  12. Membrane protein separation and analysis by supercritical fluid chromatography-mass spectrometry.

    PubMed

    Zhang, Xu; Scalf, Mark; Westphall, Michael S; Smith, Lloyd M

    2008-04-01

    Membrane proteins comprise 25-30% of the human genome and play critical roles in a wide variety of important biological processes. However, their hydrophobic nature has compromised efforts at structural characterization by both X-ray crystallography and mass spectrometry. The detergents that are generally used to solubilize membrane proteins interfere with the crystallization process essential to X-ray studies and cause severe ion suppression effects that hinder mass spectrometric analysis. In this report, the use of supercritical fluid chromatography-mass spectrometry for the separation and analysis of integral membrane proteins and hydrophobic peptides is investigated. It is shown that detergents are rapidly and effectively separated from the proteins and peptides, yielding them in a state suitable for direct mass spectrometric analysis.

  13. High-Field Asymmetric-Waveform Ion Mobility Spectrometry and Electron Detachment Dissociation of Isobaric Mixtures of Glycosaminoglycans

    NASA Astrophysics Data System (ADS)

    Kailemia, Muchena J.; Park, Melvin; Kaplan, Desmond A.; Venot, Andre; Boons, Geert-Jan; Li, Lingyun; Linhardt, Robert J.; Amster, I. Jonathan

    2014-02-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is shown to be capable of resolving isomeric and isobaric glycosaminoglycan negative ions and to have great utility for the analysis of this class of molecules when combined with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and tandem mass spectrometry. Electron detachment dissociation (EDD) and other ion activation methods for tandem mass spectrometry can be used to determine the sites of labile sulfate modifications and for assigning the stereochemistry of hexuronic acid residues of glycosaminoglycans (GAGs). However, mixtures with overlapping mass-to-charge values present a challenge, as their precursor species cannot be resolved by a mass analyzer prior to ion activation. FAIMS is shown to resolve two types of mass-to-charge overlaps. A mixture of chondroitin sulfate A (CSA) oligomers with 4-10 saccharides units produces ions of a single mass-to-charge by electrospray ionization, as the charge state increases in direct proportion to the degree of polymerization for these sulfated carbohydrates. FAIMS is shown to resolve the overlapping charge. A more challenging type of mass-to-charge overlap occurs for mixtures of diastereomers. FAIMS is shown to separate two sets of epimeric GAG tetramers. For the epimer pairs, the complexity of the separation is reduced when the reducing end is alkylated, suggesting that anomers are also resolved by FAIMS. The resolved components were activated by EDD and the fragment ions were analyzed by FTICR-MS. The resulting tandem mass spectra were able to distinguish the two epimers from each other.

  14. Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity.

    PubMed

    Kalb, Suzanne R; Boyer, Anne E; Barr, John R

    2015-08-31

    Mass spectrometry has recently become a powerful technique for bacterial identification. Mass spectrometry approaches generally rely upon introduction of the bacteria into a matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometer with mass spectrometric recognition of proteins specific to that organism that form a reliable fingerprint. With some bacteria, such as Bacillus anthracis and Clostridium botulinum, the health threat posed by these organisms is not the organism itself, but rather the protein toxins produced by the organisms. One such example is botulinum neurotoxin (BoNT), a potent neurotoxin produced by C. botulinum. There are seven known serotypes of BoNT, A-G, and many of the serotypes can be further differentiated into toxin variants, which are up to 99.9% identical in some cases. Mass spectrometric proteomic techniques have been established to differentiate the serotype or toxin variant of BoNT produced by varied strains of C. botulinum. Detection of potent biological toxins requires high analytical sensitivity and mass spectrometry based methods have been developed to determine the enzymatic activity of BoNT and the anthrax lethal toxins produced by B. anthracis. This enzymatic activity, unique for each toxin, is assessed with detection of the toxin-induced cleavage of strategically designed peptide substrates by MALDI-TOF mass spectrometry offering unparalleled specificity. Furthermore, activity assays allow for the assessment of the biological activity of a toxin and its potential health risk. Such methods have become important diagnostics for botulism and anthrax. Here, we review mass spectrometry based methods for the enzymatic activity of BoNT and the anthrax lethal factor toxin.

  15. Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity

    PubMed Central

    Kalb, Suzanne R.; Boyer, Anne E.; Barr, John R.

    2015-01-01

    Mass spectrometry has recently become a powerful technique for bacterial identification. Mass spectrometry approaches generally rely upon introduction of the bacteria into a matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometer with mass spectrometric recognition of proteins specific to that organism that form a reliable fingerprint. With some bacteria, such as Bacillus anthracis and Clostridium botulinum, the health threat posed by these organisms is not the organism itself, but rather the protein toxins produced by the organisms. One such example is botulinum neurotoxin (BoNT), a potent neurotoxin produced by C. botulinum. There are seven known serotypes of BoNT, A–G, and many of the serotypes can be further differentiated into toxin variants, which are up to 99.9% identical in some cases. Mass spectrometric proteomic techniques have been established to differentiate the serotype or toxin variant of BoNT produced by varied strains of C. botulinum. Detection of potent biological toxins requires high analytical sensitivity and mass spectrometry based methods have been developed to determine the enzymatic activity of BoNT and the anthrax lethal toxins produced by B. anthracis. This enzymatic activity, unique for each toxin, is assessed with detection of the toxin-induced cleavage of strategically designed peptide substrates by MALDI-TOF mass spectrometry offering unparalleled specificity. Furthermore, activity assays allow for the assessment of the biological activity of a toxin and its potential health risk. Such methods have become important diagnostics for botulism and anthrax. Here, we review mass spectrometry based methods for the enzymatic activity of BoNT and the anthrax lethal factor toxin. PMID:26404376

  16. Characterization of Compounds in Psoralea corylifolia Using High-Performance Liquid Chromatography Diode Array Detection, Time-of-Flight Mass Spectrometry and Quadrupole Ion Trap Mass Spectrometry.

    PubMed

    Tan, Guangguo; Yang, Tiehong; Miao, Huayan; Chen, Hao; Chai, Yifeng; Wu, Hong

    2015-10-01

    High-performance liquid chromatography with diode array detection (HPLC-DAD), time-of-flight mass spectrometry (HPLC-TOFMS) and quadrupole ion trap mass spectrometry (HPLC-QITMS) were used for separation and identification of multi-components in Psoralea corylifolia. Benefiting from combining the accurate mass measurement of HPLC-TOFMS to generate elemental compositions, the complementary multilevel structural information provided by HPLC-QITMS and the characteristic UV spectra obtained from HPLC-DAD, 24 components in P. corylifolia were identified. The five groups of isomers were differentiated based on the fragmentation behaviors in QITMS and UV spectra. It can be concluded that an effective method based on the combination of HPLC-DAD, HPLC-TOFMS and HPLC-QITMS for identification of chemical components in P. corylifolia was established. The results provide essential data for further pharmacological and clinical studies of P. corylifolia and facilitate the rapid quality control of the crude drug. © Crown copyright 2015.

  17. Detection of trace ink compounds in erased handwritings using electrospray-assisted laser desorption ionization mass spectrometry.

    PubMed

    Kao, Yi-Ying; Cheng, Sy-Chyi; Cheng, Chu-Nian; Shiea, Jentaie; Ho, Hsiu-O

    2014-06-01

    Writings made with erasable pens on paper surfaces can either be rubbed off with an eraser or rendered invisible by changing the temperature of the ink. However, trace ink compounds still remain in the paper fibers even after rubbing or rendering. The detection of these ink compounds from erased handwritings will be helpful in knowing the written history of the paper. In this study, electrospray-assisted laser desorption ionization/mass spectrometry was used to characterize trace ink compounds remaining in visible and invisible ink lines. The ink compounds were desorbed from the paper surface by irradiating the handwritings with a pulsed laser beam; the desorbed analytes were subsequently ionized in an electrospray plume and detected by a quadrupole time-of-flight mass spectrometry mass analyzer. Because of the high spatial resolution of the laser beam, electrospray-assisted laser desorption ionization/mass spectrometry analysis resulted in minimal damage to the sample documents. Copyright © 2014 John Wiley & Sons, Ltd.

  18. A mass spectrometry primer for mass spectrometry imaging

    PubMed Central

    Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2011-01-01

    Mass spectrometry imaging (MSI), a rapidly growing subfield of chemical imaging, employs mass spectrometry (MS) technologies to create single- and multi-dimensional localization maps for a variety of atoms and molecules. Complimentary to other imaging approaches, MSI provides high chemical specificity and broad analyte coverage. This powerful analytical toolset is capable of measuring the distribution of many classes of inorganics, metabolites, proteins and pharmaceuticals in chemically and structurally complex biological specimens in vivo, in vitro, and in situ. The MSI approaches highlighted in this Methods in Molecular Biology volume provide flexibility of detection, characterization, and identification of multiple known and unknown analytes. The goal of this chapter is to introduce investigators who may be unfamiliar with MS to the basic principles of the mass spectrometric approaches as used in MSI. In addition to guidelines for choosing the most suitable MSI method for specific investigations, cross-references are provided to the chapters in this volume that describe the appropriate experimental protocols. PMID:20680583

  19. High resolution laser mass spectrometry bioimaging.

    PubMed

    Murray, Kermit K; Seneviratne, Chinthaka A; Ghorai, Suman

    2016-07-15

    Mass spectrometry imaging (MSI) was introduced more than five decades ago with secondary ion mass spectrometry (SIMS) and a decade later with laser desorption/ionization (LDI) mass spectrometry (MS). Large biomolecule imaging by matrix-assisted laser desorption/ionization (MALDI) was developed in the 1990s and ambient laser MS a decade ago. Although SIMS has been capable of imaging with a moderate mass range at sub-micrometer lateral resolution from its inception, laser MS requires additional effort to achieve a lateral resolution of 10μm or below which is required to image at the size scale of single mammalian cells. This review covers untargeted large biomolecule MSI using lasers for desorption/ionization or laser desorption and post-ionization. These methods include laser microprobe (LDI) MSI, MALDI MSI, laser ambient and atmospheric pressure MSI, and near-field laser ablation MS. Novel approaches to improving lateral resolution are discussed, including oversampling, beam shaping, transmission geometry, reflective and through-hole objectives, microscope mode, and near-field optics. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Detection of new emerging type-A trichothecenes by untargeted mass spectrometry.

    PubMed

    González-Jartín, Jesús M; Alfonso, Amparo; Sainz, María J; Vieytes, Mercedes R; Botana, Luis M

    2018-02-01

    Mycotoxins occur naturally as agricultural contaminants all over the world. The toxic effects of some of their metabolites are known and their presence regulated in food and feed. This paper describes two methods for the detection of toxins of type-A trichothecenes group, and their modified forms, using mass spectrometry. Ultra-performance liquid chromatography coupled to mass spectrometry-ion trap-time of flight (UPLC-MS-IT-TOF) was employed to characterize the fragmentation pathways of 10 type-A trichothecenes, and characteristic ions were tentatively identified in scan mode through their accurate masses. Unknown signals were detected in a F. sporotrichioides extract, which afterwards were identified as seven modified forms of neosolaniol (NEO) and T-2 toxin. Then, UPLC coupled to tandem mass spectrometry (MS/MS) was employed to develop a precursor ion scanning method that can be used as a screening tool to detect any modified type-A trichothecenes. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Determination of 241Am in sediments by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS).

    PubMed

    Agarande, M; Benzoubir, S; Bouisset, P; Calmet, D

    2001-08-01

    Trace levels (pg kg(-1)) of 241Am in sediments were determined by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS) using a microconcentric nebulizer. 241Am was isolated from major elements like Ca and Fe by different selective precipitations. In further steps. Am was first separated from other transuranic elements and purified by anion exchange and extraction chromatography prior to the mass spectrometric measurements. The ID HR ICP-MS results are compared with isotope dilution alpha spectrometry.

  2. Major roles for minor bacterial lipids identified by mass spectrometry.

    PubMed

    Garrett, Teresa A

    2017-11-01

    Mass spectrometry of lipids, especially those isolated from bacteria, has ballooned over the past two decades, affirming in the process the complexity of the lipidome. With this has come the identification of new and interesting lipid structures. Here is an overview of several novel lipids, from both Gram-negative and Gram-positive bacteria with roles in health and disease, whose structural identification was facilitated using mass spectrometry. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. LC-IMS-MS Feature Finder. Detecting Multidimensional Liquid Chromatography, Ion Mobility, and Mass Spectrometry Features in Complex Datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowell, Kevin L.; Slysz, Gordon W.; Baker, Erin Shammel

    2013-09-05

    We introduce a command line software application LC-IMS-MS Feature Finder that searches for molecular ion signatures in multidimensional liquid chromatography-ion mobility spectrometry-mass spectrometry (LC-IMS-MS) data by clustering deisotoped peaks with similar monoisotopic mass, charge state, LC elution time, and ion mobility drift time values. The software application includes an algorithm for detecting and quantifying co-eluting chemical species, including species that exist in multiple conformations that may have been separated in the IMS dimension.

  4. Mass spectrometry for biomarker development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  5. Affinity purification combined with mass spectrometry to identify herpes simplex virus protein-protein interactions.

    PubMed

    Meckes, David G

    2014-01-01

    The identification and characterization of herpes simplex virus protein interaction complexes are fundamental to understanding the molecular mechanisms governing the replication and pathogenesis of the virus. Recent advances in affinity-based methods, mass spectrometry configurations, and bioinformatics tools have greatly increased the quantity and quality of protein-protein interaction datasets. In this chapter, detailed and reliable methods that can easily be implemented are presented for the identification of protein-protein interactions using cryogenic cell lysis, affinity purification, trypsin digestion, and mass spectrometry.

  6. Introducing Graduate Students to High-Resolution Mass Spectrometry (HRMS) Using a Hands-On Approach

    ERIC Educational Resources Information Center

    Stock, Naomi L.

    2017-01-01

    High-resolution mass spectrometry (HRMS) features both high resolution and high mass accuracy and is a powerful tool for the analysis and quantitation of compounds, determination of elemental compositions, and identification of unknowns. A hands-on laboratory experiment for upper-level undergraduate and graduate students to investigate HRMS is…

  7. Assembly of a Vacuum Chamber: A Hands-On Approach to Introduce Mass Spectrometry

    ERIC Educational Resources Information Center

    Bussie`re, Guillaume; Stoodley, Robin; Yajima, Kano; Bagai, Abhimanyu; Popowich, Aleksandra K.; Matthews, Nicholas E.

    2014-01-01

    Although vacuum technology is essential to many aspects of modern physical and analytical chemistry, vacuum experiments are rarely the focus of undergraduate laboratories. We describe an experiment that introduces students to vacuum science and mass spectrometry. The students first assemble a vacuum system, including a mass spectrometer. While…

  8. Depth-Resolved Cathodoluminescence of Thorium Dioxide

    DTIC Science & Technology

    2013-03-01

    exhibited more of an energy dependency than the cut and polished sample. However, in a companion study, ime of flight secondary ion mass spectrometry...Ion Mass Spectrometry (TOF SIMS) ......................17 2.7 Atomic Force Microscope (AFM...1 TOF SIMS……….Time of Flight Secondary Ion Mass Spectroscopy……………….62 1 DEPTH

  9. Advantages of Molecular Weight Identification during Native MS Screening.

    PubMed

    Khan, Ahad; Bresnick, Anne; Cahill, Sean; Girvin, Mark; Almo, Steve; Quinn, Ronald

    2018-05-09

    Native mass spectrometry detection of ligand-protein complexes allowed rapid detection of natural product binders of apo and calcium-bound S100A4 (a member of the metal binding protein S100 family), T cell/transmembrane, immunoglobulin (Ig), and mucin protein 3, and T cell immunoreceptor with Ig and ITIM (immunoreceptor tyrosine-based inhibitory motif) domains precursor protein from extracts and fractions. Based on molecular weight common hits were detected binding to all four proteins. Seven common hits were identified as apigenin 6- C - β - D -glucoside 8- C - α - L -arabinoside, sweroside, 4',5-dihydroxy-7-methoxyflavanone-6- C -rutinoside, loganin acid, 6- C -glucosylnaringenin, biochanin A 7- O -rutinoside and quercetin 3- O -rutinoside. Mass guided isolation and NMR identification of hits confirmed the mass accuracy of the ligand in the ligand-protein MS complexes. Thus, molecular weight ID from ligand-protein complexes by electrospray ionization Fourier transform mass spectrometry allowed rapid dereplication. Native mass spectrometry using electrospray ionization Fourier transform mass spectrometry is a tool for dereplication and metabolomics analysis. Georg Thieme Verlag KG Stuttgart · New York.

  10. Broad Separation of Isomeric Lipids by High-Resolution Differential Ion Mobility Spectrometry with Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bowman, Andrew P.; Abzalimov, Rinat R.; Shvartsburg, Alexandre A.

    2017-08-01

    Maturation of metabolomics has brought a deeper appreciation for the importance of isomeric identity of lipids to their biological role, mirroring that for proteoforms in proteomics. However, full characterization of the lipid isomerism has been thwarted by paucity of rapid and effective analytical tools. A novel approach is ion mobility spectrometry (IMS) and particularly differential or field asymmetric waveform IMS (FAIMS) at high electric fields, which is more orthogonal to mass spectrometry. Here we broadly explore the power of FAIMS to separate lipid isomers, and find a 75% success rate across the four major types of glycero- and phospho- lipids ( sn, chain length, double bond position, and cis/ trans). The resolved isomers were identified using standards, and (for the first two types) tandem mass spectrometry. These results demonstrate the general merit of incorporating high-resolution FAIMS into lipidomic analyses.

  11. Publications - GMC 427 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 427 Publication Details Title: Gas Chromatography coupled to Tandem Mass Spectrometry (GC/MS Tandem Mass Spectrometry (GC/MS/MS) analyses of cuttings for 16 Arctic Slope wells: Alaska Division of

  12. Understanding the molecular signatures in leaves and flowers by desorption electrospray ionization mass spectrometry (DESI MS) imaging.

    PubMed

    Hemalatha, R G; Pradeep, T

    2013-08-07

    The difference in size, shape, and chemical cues of leaves and flowers display the underlying genetic makeup and their interactions with the environment. The need to understand the molecular signatures of these fragile plant surfaces is illustrated with a model plant, Madagascar periwinkle (Catharanthus roseus (L.) G. Don). Flat, thin layer chromatographic imprints of leaves/petals were imaged using desorption electrospray ionization mass spectrometry (DESI MS), and the results were compared with electrospray ionization mass spectrometry (ESI MS) of their extracts. Tandem mass spectrometry with DESI and ESI, in conjunction with database records, confirmed the molecular species. This protocol has been extended to other plants. Implications of this study in identifying varietal differences, toxic metabolite production, changes in metabolites during growth, pest/pathogen attack, and natural stresses are shown with illustrations. The possibility to image subtle features like eye color of petals, leaf vacuole, leaf margin, and veins is demonstrated.

  13. Proteomics, lipidomics, metabolomics: a mass spectrometry tutorial from a computer scientist's point of view.

    PubMed

    Smith, Rob; Mathis, Andrew D; Ventura, Dan; Prince, John T

    2014-01-01

    For decades, mass spectrometry data has been analyzed to investigate a wide array of research interests, including disease diagnostics, biological and chemical theory, genomics, and drug development. Progress towards solving any of these disparate problems depends upon overcoming the common challenge of interpreting the large data sets generated. Despite interim successes, many data interpretation problems in mass spectrometry are still challenging. Further, though these challenges are inherently interdisciplinary in nature, the significant domain-specific knowledge gap between disciplines makes interdisciplinary contributions difficult. This paper provides an introduction to the burgeoning field of computational mass spectrometry. We illustrate key concepts, vocabulary, and open problems in MS-omics, as well as provide invaluable resources such as open data sets and key search terms and references. This paper will facilitate contributions from mathematicians, computer scientists, and statisticians to MS-omics that will fundamentally improve results over existing approaches and inform novel algorithmic solutions to open problems.

  14. Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Tyler; Kuznetsov, Ilya; Willingham, David

    The purpose of this research was to characterize Extreme Ultraviolet Time-of-Flight (EUV TOF) Laser Ablation Mass Spectrometry for high spatial resolution elemental and isotopic analysis. We compare EUV TOF results with Secondary Ionization Mass Spectrometry (SIMS) to orient the EUV TOF method within the overall field of analytical mass spectrometry. Using the well-characterized NIST 61x glasses, we show that the EUV ionization approach produces relatively few molecular ion interferences in comparison to TOF SIMS. We demonstrate that the ratio of element ion to element oxide ion is adjustable with EUV laser pulse energy and that the EUV TOF instrument hasmore » a sample utilization efficiency of 0.014%. The EUV TOF system also achieves a lateral resolution of 80 nm and we demonstrate this lateral resolution with isotopic imaging of closely spaced particles or uranium isotopic standard materials.« less

  15. Cross-Linking and Mass Spectrometry Methodologies to Facilitate Structural Biology: Finding a Path through the Maze

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkley, Eric D.; Cort, John R.; Adkins, Joshua N.

    2013-09-01

    Multiprotein complexes, rather than individual proteins, make up a large part of the biological macromolecular machinery of a cell. Understanding the structure and organization of these complexes is critical to understanding cellular function. Chemical cross-linking coupled with mass spectrometry is emerging as a complementary technique to traditional structural biology methods and can provide low-resolution structural information for a multitude of purposes, such as distance constraints in computational modeling of protein complexes. In this review, we discuss the experimental considerations for successful application of chemical cross-linking-mass spectrometry in biological studies and highlight three examples of such studies from the recent literature.more » These examples (as well as many others) illustrate the utility of a chemical cross-linking-mass spectrometry approach in facilitating structural analysis of large and challenging complexes.« less

  16. Characterization of a novel miniaturized burst-mode infrared laser system for IR-MALDESI mass spectrometry imaging.

    PubMed

    Ekelöf, Måns; Manni, Jeffrey; Nazari, Milad; Bokhart, Mark; Muddiman, David C

    2018-03-01

    Laser systems are widely used in mass spectrometry as sample probes and ionization sources. Mid-infrared lasers are particularly suitable for analysis of high water content samples such as animal and plant tissues, using water as a resonantly excited sacrificial matrix. Commercially available mid-IR lasers have historically been bulky and expensive due to cooling requirements. This work presents a novel air-cooled miniature mid-IR laser with adjustable burst-mode output and details an evaluation of its performance for mass spectrometry imaging. The miniature laser was found capable of generating sufficient energy for complete ablation of animal tissue in the context of an IR-MALDESI experiment with exogenously added ice matrix, yielding several hundred confident metabolite identifications. Graphical abstract The use of a novel miniature 2.94 μm burst-mode laser in IR-MALDESI allows for rapid and sensitive mass spectrometry imaging of a whole mouse.

  17. Collaborative trial validation study of two methods, one based on high performance liquid chromatography-tandem mass spectrometry and on gas chromatography-mass spectrometry for the determination of acrylamide in bakery and potato products.

    PubMed

    Wenzl, Thomas; Karasek, Lubomir; Rosen, Johan; Hellenaes, Karl-Erik; Crews, Colin; Castle, Laurence; Anklam, Elke

    2006-11-03

    A European inter-laboratory study was conducted to validate two analytical procedures for the determination of acrylamide in bakery ware (crispbreads, biscuits) and potato products (chips), within a concentration range from about 20 microg/kg to about 9000 microgg/kg. The methods are based on gas chromatography-mass spectrometry (GC-MS) of the derivatised analyte and on high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) of native acrylamide. Isotope dilution with isotopically labelled acrylamide was an integral part of both methods. The study was evaluated according to internationally accepted guidelines. The performance of the HPLC-MS/MS method was found to be superior to that of the GC-MS method and to be fit-for-the-purpose.

  18. Visualization of metallodrugs in single cells by secondary ion mass spectrometry imaging.

    PubMed

    Wu, Kui; Jia, Feifei; Zheng, Wei; Luo, Qun; Zhao, Yao; Wang, Fuyi

    2017-07-01

    Secondary ion mass spectrometry, including nanoscale secondary ion mass spectrometry (NanoSIMS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), has emerged as a powerful tool for biological imaging, especially for single cell imaging. SIMS imaging can provide information on subcellular distribution of endogenous and exogenous chemicals, including metallodrugs, from membrane through to cytoplasm and nucleus without labeling, and with high spatial resolution and chemical specificity. In this mini-review, we summarize recent progress in the field of SIMS imaging, particularly in the characterization of the subcellular distribution of metallodrugs. We anticipate that the SIMS imaging method will be widely applied to visualize subcellular distributions of drugs and drug candidates in single cells, exerting significant influence on early drug evaluation and metabolism in medicinal and pharmaceutical chemistry. Recent progress of SIMS applications in characterizing the subcellular distributions of metallodrugs was summarized.

  19. Sequencing Cyclic Peptides by Multistage Mass Spectrometry

    PubMed Central

    Mohimani, Hosein; Yang, Yu-Liang; Liu, Wei-Ting; Hsieh, Pei-Wen; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2012-01-01

    Some of the most effective antibiotics (e.g., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of mass spectrometry based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage mass spectrometry, and show its advantages over single stage mass spectrometry. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria. PMID:21751357

  20. Discovery and characterization of antibody variants using mass spectrometry-based comparative analysis for biosimilar candidates of monoclonal antibody drugs.

    PubMed

    Li, Wenhua; Yang, Bin; Zhou, Dongmei; Xu, Jun; Ke, Zhi; Suen, Wen-Chen

    2016-07-01

    Liquid chromatography mass spectrometry (LC-MS) is the most commonly used technique for the characterization of antibody variants. MAb-X and mAb-Y are two approved IgG1 subtype monoclonal antibody drugs recombinantly produced in Chinese hamster ovary (CHO) cells. We report here that two unexpected and rare antibody variants have been discovered during cell culture process development of biosimilars for these two approved drugs through intact mass analysis. We then used comprehensive mass spectrometry-based comparative analysis including reduced light, heavy chains, and domain-specific mass as well as peptide mapping analysis to fully characterize the observed antibody variants. The "middle-up" mass comparative analysis demonstrated that the antibody variant from mAb-X biosimilar candidate was caused by mass variation of antibody crystalline fragment (Fc), whereas a different variant with mass variation in antibody antigen-binding fragment (Fab) from mAb-Y biosimilar candidate was identified. Endoproteinase Lys-C digested peptide mapping and tandem mass spectrometry analysis further revealed that a leucine to glutamine change in N-terminal 402 site of heavy chain was responsible for the generation of mAb-X antibody variant. Lys-C and trypsin coupled non-reduced and reduced peptide mapping comparative analysis showed that the formation of the light-heavy interchain trisulfide bond resulted in the mAb-Y antibody variant. These two cases confirmed that mass spectrometry-based comparative analysis plays a critical role for the characterization of monoclonal antibody variants, and biosimilar developers should start with a comprehensive structural assessment and comparative analysis to decrease the risk of the process development for biosimilars. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Comprehensive comparison of liquid chromatography selectivity as provided by two types of liquid chromatography detectors (high resolution mass spectrometry and tandem mass spectrometry): "where is the crossover point?".

    PubMed

    Kaufmann, A; Butcher, P; Maden, K; Walker, S; Widmer, M

    2010-07-12

    The selectivity of mass traces obtained by monitoring liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was compared. A number of blank extracts (fish, pork kidney, pork liver and honey) were separated by ultra performance liquid chromatography (UPLC). Detected were some 100 dummy transitions respectively dummy exact masses (traces). These dummy masses were the product of a random generator. The range of the permitted masses corresponded to those which are typical for analytes (e.g. veterinary drugs). The large number of monitored dummy traces ensured that endogenous compounds present in the matrix extract, produced a significant number of detectable chromatographic peaks. All obtained chromatographic peaks were integrated and standardized. Standardisation was done by dividing these absolute peak areas by the average response of a set of 7 different veterinary drugs. This permitted a direct comparison between the LC-HRMS and LC-MS/MS data. The data indicated that the selectivity of LC-HRMS exceeds LC-MS/MS, if high resolution mass spectrometry (HRMS) data is recorded with a resolution of 50,000 full width at half maximum (FWHM) and a corresponding mass window. This conclusion was further supported by experimental data (MS/MS based trace analysis), where a false positive finding was observed. An endogenous matrix compound present in honey matrix behaved like a banned nitroimidazole drug. This included identical retention time and two MRM traces, producing an MRM ratio between them, which perfectly matched the ratio observed in the external standard. HRMS measurement clearly resolved the interfering matrix compound and unmasked the false positive MS/MS finding. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Quantitative correlations between collision induced dissociation mass spectrometry coupled with electrospray ionization or atmospheric pressure chemical ionization mass spectrometry - Experiment and theory

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka; Spiteller, Michael

    2018-04-01

    The problematic that we consider in this paper treats the quantitative correlation model equations between experimental kinetic and thermodynamic parameters of coupled electrospray ionization (ESI) mass spectrometry (MS) or atmospheric pressure chemical ionization (APCI) mass spectrometry with collision induced dissociation mass spectrometry, accounting for the fact that the physical phenomena and mechanisms of ESI- and APCI-ion formation are completely different. There are described forty two fragment reactions of three analytes under independent ESI- and APCI-measurements. The developed new quantitative models allow us to study correlatively the reaction kinetics and thermodynamics using the methods of mass spectrometry, which complementary application with the methods of the quantum chemistry provide 3D structural information of the analytes. Both static and dynamic quantum chemical computations are carried out. The object of analyses are [2,3-dimethyl-4-(4-methyl-benzoyl)-2,3-di-p-tolyl-cyclobutyl]-p-tolyl-methanone (1) and the polycyclic aromatic hydrocarbons derivatives of dibenzoperylen (2) and tetrabenzo [a,c,fg,op]naphthacene (3), respectively. As far as (1) is known to be a product of [2π+2π] cycloaddition reactions of chalcone (1,3-di-p-tolyl-propenone), however producing cyclic derivatives with different stereo selectivity, so that the study provide crucial data about the capability of mass spectrometry to provide determine the stereo selectivity of the analytes. This work also first provides quantitative treatment of the relations '3D molecular/electronic structures'-'quantum chemical diffusion coefficient'-'mass spectrometric diffusion coefficient', thus extending the capability of the mass spectrometry for determination of the exact 3D structure of the analytes using independent measurements and computations of the diffusion coefficients. The determination of the experimental diffusion parameters is carried out within the 'current monitoring method' evaluating the translation diffusion of charged analytes, while the theoretical modelling of MS ions and computations of theoretical diffusion coefficients are based on the Arrhenius type behavior of the charged species under ESI- and APCI-conditions. Although the study provide certain sound considerations for the quantitative relations between the reaction kinetic-thermodynamics and 3D structure of the analytes together with correlations between 3D molecular/electronic structures-quantum chemical diffusion coefficient-mass spectrometric diffusion coefficient, which contribute significantly to the structural analytical chemistry, the results have importance to other areas such as organic synthesis and catalysis as well.

  3. Accurate mass measurement by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. II. Measurement of negative radical ions using porphyrin and fullerene standard reference materials.

    PubMed

    Shao, Zhecheng; Wyatt, Mark F; Stein, Bridget K; Brenton, A Gareth

    2010-10-30

    A method for the accurate mass measurement of negative radical ions by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) is described. This is an extension to our previously described method for the accurate mass measurement of positive radical ions (Griffiths NW, Wyatt MF, Kean SD, Graham AE, Stein BK, Brenton AG. Rapid Commun. Mass Spectrom. 2010; 24: 1629). The porphyrin standard reference materials (SRMs) developed for positive mode measurements cannot be observed in negative ion mode, so fullerene and fluorinated porphyrin compounds were identified as effective SRMs. The method is of immediate practical use for the accurate mass measurement of functionalised fullerenes, for which negative ion MALDI-TOFMS is the principal mass spectrometry characterisation technique. This was demonstrated by the accurate mass measurement of six functionalised C(60) compounds. Copyright © 2010 John Wiley & Sons, Ltd.

  4. LC-IMS-MS Feature Finder: detecting multidimensional liquid chromatography, ion mobility and mass spectrometry features in complex datasets.

    PubMed

    Crowell, Kevin L; Slysz, Gordon W; Baker, Erin S; LaMarche, Brian L; Monroe, Matthew E; Ibrahim, Yehia M; Payne, Samuel H; Anderson, Gordon A; Smith, Richard D

    2013-11-01

    The addition of ion mobility spectrometry to liquid chromatography-mass spectrometry experiments requires new, or updated, software tools to facilitate data processing. We introduce a command line software application LC-IMS-MS Feature Finder that searches for molecular ion signatures in multidimensional liquid chromatography-ion mobility spectrometry-mass spectrometry (LC-IMS-MS) data by clustering deisotoped peaks with similar monoisotopic mass, charge state, LC elution time and ion mobility drift time values. The software application includes an algorithm for detecting and quantifying co-eluting chemical species, including species that exist in multiple conformations that may have been separated in the IMS dimension. LC-IMS-MS Feature Finder is available as a command-line tool for download at http://omics.pnl.gov/software/LC-IMS-MS_Feature_Finder.php. The Microsoft.NET Framework 4.0 is required to run the software. All other dependencies are included with the software package. Usage of this software is limited to non-profit research to use (see README). rds@pnnl.gov. Supplementary data are available at Bioinformatics online.

  5. Basic poly(propylene glycols) as reference compounds for internal mass calibration in positive-ion matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Gross, Jürgen H

    2017-12-01

    Basic poly(propylene glycols), commercially available under the trade name Jeffamine, are evaluated for their potential use as internal mass calibrants in matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry. Due to their basic amino endgroups Jeffamines are expected to deliver [M+H] + ions in higher yields than neutral poly(propylene glycols) or poly(ethylene glycols). Aiming at accurate mass measurements and molecular formula determinations by matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry, four Jeffamines (M-600, M-2005, D-400, D-230) were thus compared. As a result, Jeffamine M-2005 is introduced as a new mass calibrant for positive-ion matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry in the range of m/z 200-1200 and the reference mass list is provided. While Jeffamine M-2005 is compatible with α-cyano-4-hydroxycinnamic acid, 2,5-dihydroxybenzoic acid, and 2-[(2 E)-3-(4- tert-butylphenyl)-2-methylprop-2-enylidene]malonitrile matrix, its use in combination with 2-[(2 E)-3-(4- tert-butylphenyl)-2-methylprop-2-enylidene]malonitrile provides best results due to low laser fluence requirements. Applications to PEG 300, PEG 600, the ionic liquid trihexyl(tetradecyl)-phosphonium tris(pentafluoroethyl)-trifluorophosphate, and [60]fullerene demonstrate mass accuracies of 2-5 ppm.

  6. The role of ion mobility spectrometry-mass spectrometry in the analysis of protein reference standards.

    PubMed

    Pritchard, Caroline; O'Connor, Gavin; Ashcroft, Alison E

    2013-08-06

    To achieve comparability of measurement results of protein amount of substance content between clinical laboratories, suitable reference materials are required. The impact on measurement comparability of potential differences in the tertiary and quaternary structure of protein reference standards is as yet not well understood. With the use of human growth hormone as a model protein, the potential of ion mobility spectrometry-mass spectrometry as a tool to assess differences in the structure of protein reference materials and their interactions with antibodies has been investigated here.

  7. Qualitative characterization of Desmodium adscendens constituents by high-performance liquid chromatography-diode array ultraviolet-electrospray ionization multistage mass spectrometry.

    PubMed

    Baiocchi, Claudio; Medana, Claudio; Giancotti, Valeria; Aigotti, Riccardo; Dal Bello, Frederica; Massolino, Cristina; Gastaldi, Daniela; Grandi, Maurizio

    2013-01-01

    The many effects of the African medicinal herb Desmodium adscendens were studied in the 1980s and 1990s. In spite of this, a comprehensive analytical protocol for the quality control of its constituents (soyasaponins, alkaloids and flavonoids) has not yet been formulated and reported. This study deals with the optimization of extraction conditions from the plant and qualitative identification of the constituents by HPLC-diode array UV and multistage mass spectrometry. Plant constituents were extracted from leaves by liquid-liquid and solid matrix dispersion extraction. Separation was achieved via RP-C18 liquid chromatographywith UV and MS(n) detection and mass spectrometry analysis was conducted by electrospray ionization ion trap or orbitrap mass spectrometry. High resolution mass spectrometry (HRMS) was used for structural identification of active molecules relating to soyasaponins and alkaloids. The flavonoid fragmentations were preliminarily studied by HRMS in order to accurately characterize the more common neutral losses. However, the high number of isomeric species induced us to make recourse to a more extended chromatographic separation in order to enable useful tandem mass spectrometry and ultraviolet spectral interpretation to propose a reasonable chemical classification of these polyphenols. 35 compounds of this class were identified herein with respect to the five reported in literature in this way we made up a comprehensive protocol for the qualitative analysis of the high complexity content of this plant. This result paves the way for both reliable quality control of potential phytochemical medicaments and possible future systematic clinical studies.

  8. Unravelling associations between unassigned mass spectrometry peaks with frequent itemset mining techniques.

    PubMed

    Vu, Trung Nghia; Mrzic, Aida; Valkenborg, Dirk; Maes, Evelyne; Lemière, Filip; Goethals, Bart; Laukens, Kris

    2014-01-01

    Mass spectrometry-based proteomics experiments generate spectra that are rich in information. Often only a fraction of this information is used for peptide/protein identification, whereas a significant proportion of the peaks in a spectrum remain unexplained. In this paper we explore how a specific class of data mining techniques termed "frequent itemset mining" can be employed to discover patterns in the unassigned data, and how such patterns can help us interpret the origin of the unexpected/unexplained peaks. First a model is proposed that describes the origin of the observed peaks in a mass spectrum. For this purpose we use the classical correlative database search algorithm. Peaks that support a positive identification of the spectrum are termed explained peaks. Next, frequent itemset mining techniques are introduced to infer which unexplained peaks are associated in a spectrum. The method is validated on two types of experimental proteomic data. First, peptide mass fingerprint data is analyzed to explain the unassigned peaks in a full scan mass spectrum. Interestingly, a large numbers of experimental spectra reveals several highly frequent unexplained masses, and pattern mining on these frequent masses demonstrates that subsets of these peaks frequently co-occur. Further evaluation shows that several of these co-occurring peaks indeed have a known common origin, and other patterns are promising hypothesis generators for further analysis. Second, the proposed methodology is validated on tandem mass spectrometral data using a public spectral library, where associations within the mass differences of unassigned peaks and peptide modifications are explored. The investigation of the found patterns illustrates that meaningful patterns can be discovered that can be explained by features of the employed technology and found modifications. This simple approach offers opportunities to monitor accumulating unexplained mass spectrometry data for emerging new patterns, with possible applications for the development of mass exclusion lists, for the refinement of quality control strategies and for a further interpretation of unexplained spectral peaks in mass spectrometry and tandem mass spectrometry.

  9. Cytochemical studies of planetary microorganisms - Explorations in exobiology

    NASA Technical Reports Server (NTRS)

    Lederberg, J.

    1972-01-01

    Analytical methodology using gas chromatography and mass spectrography for improved physiological monitoring of astronauts is developed. Reported research covers the following topics: (1) Chlorination of DNA bases; (2) mass fragmentography; (3) mass spectrometry; (4) urine analysis for metabolic constituents; (5) analysis of natural products by mass spectrometry; (6) computer identification of unknown molecular compounds; (7) fluorescent sorter for cell separation; (8) Mariner Mars 1971 orbital photography; and (9) Viking Lander imagery.

  10. PET-modified red mud as catalysts for oxidative desulfurization reactions.

    PubMed

    do Prado, Nayara T; Heitmann, Ana P; Mansur, Herman S; Mansur, Alexandra A; Oliveira, Luiz C A; de Castro, Cinthia S

    2017-07-01

    This work describes the synthesis of catalysts based on red mud/polyethylene terephthalate (PET) composites and their subsequent heat treatment under N 2 atmosphere. The materials were characterized by scanning electron microscopy (SEM), temperature programmed reduction (TPR), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric (TG) analysis and N 2 adsorption/desorption. The catalysts were evaluated in the oxidative desulfurization reaction of dibenzothiophene (DBT) in a biphasic system. The results indicated that the PET impregnation on red mud increased the affinity of the catalyst with the nonpolar phase (fuel), in which the contaminant was dissolved, allowing a higher conversion (up to 80%) and selectivity to the corresponding dibenzothiophene sulfone. The sulfone compound is more polar than DBT and diffused into the polar solvent as indicated by the data obtained via gas chromatography-mass spectrometry (GC-MS). Copyright © 2017. Published by Elsevier B.V.

  11. Hydrothermal carbonization of Opuntia ficus-indica cladodes: Role of process parameters on hydrochar properties.

    PubMed

    Volpe, Maurizio; Goldfarb, Jillian L; Fiori, Luca

    2018-01-01

    Opuntia ficus-indica cladodes are a potential source of solid biofuel from marginal, dry land. Experiments assessed the effects of temperature (180-250°C), reaction time (0.5-3h) and biomass to water ratio (B/W; 0.07-0.30) on chars produced via hydrothermal carbonization. Multivariate linear regression demonstrated that the three process parameters are critically important to hydrochar solid yield, while B/W drives energy yield. Heating value increased together with temperature and reaction time and was maximized at intermediate B/W (0.14-0.20). Microscopy shows evidence of secondary char formed at higher temperatures and B/W ratios. X-ray diffraction, thermogravimetric data, microscopy and inductively coupled plasma mass spectrometry suggest that calcium oxalate in the raw biomass remains in the hydrochar; at higher temperatures, the mineral decomposes into CO 2 and may catalyze char/tar decomposition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Titan's Lakes in a Beaker

    NASA Astrophysics Data System (ADS)

    Hodyss, R. P.

    2017-12-01

    The surface of Titan presents a complex, varied surfaced, with mountains, plains, dunes, rivers, lakes and seas, composed of a layer of organics over a water ice bedrock. Over the past 10 years, our group at JPL has developed a variety of techniques to study the chemistry of Titan's organic surface under relevant temperature and pressure conditions (90-100 K, 1.5 bar). Dissolution, precipitation, and both covalent and non-covalent chemical processes are examined using Raman and infrared spectroscopy, mass spectrometry, optical microscopy, and synchrotron X-ray powder diffraction. Despite the low temperatures, our experiments are revealing that a rich and active organic chemistry is possible on Titan's surface. Laboratory experiments like these can provide crucial insights into the geological processes occurring Titan's surface, and help explain the wealth of observational data returned by the Cassini/Huygens mission. This type of data is also critical for the development of future missions to Titan.

  13. Unsymmetric Mono- and Dinuclear Platinum(IV) Complexes Featuring an Ethylene Glycol Moiety: Synthesis, Characterization, and Biological Activity

    PubMed Central

    Pichler, Verena; Heffeter, Petra; Valiahdi, Seied M.; Kowol, Christian R.; Egger, Alexander; Berger, Walter; Jakupec, Michael A.; Galanski, Markus; Keppler, Bernhard K.

    2014-01-01

    Eight novel mononuclear and two dinuclear platinum(IV) complexes were synthesized and characterized by elemental analysis, one- and two-dimensional NMR spectroscopy, mass spectrometry, and reversed-phase HPLC (log kw) and in one case by X-ray diffraction. Cytotoxicity of the compounds was studied in three human cancer cell lines (CH1, SW480, and A549) by means of the MTT assay, featuring IC50 values to the low micromolar range. Furthermore a selected set of compounds was investigated in additional cancer cell lines (P31 and P31/cis, A2780 and A2780/cis, SW1573, 2R120, and 2R160) with regard to their resistance patterns, offering a distinctly different scheme compared to cisplatin. To gain further insights into the mode of action, drug uptake, DNA synthesis inhibition, cell cycle effects, and induction of apoptosis were determined for two characteristic substances. PMID:23194425

  14. Plasma immersion ion implantation for reducing metal ion release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, C.; Garcia, J. A.; Maendl, S.

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment.more » Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.« less

  15. Strain engineering in epitaxial Ge1- x Sn x : a path towards low-defect and high Sn-content layers

    NASA Astrophysics Data System (ADS)

    Margetis, Joe; Yu, Shui-Qing; Bhargava, Nupur; Li, Baohua; Du, Wei; Tolle, John

    2017-12-01

    The plastic strain relaxation of CVD-grown Ge1-x Sn x layers was investigated in x = 0.09 samples with thicknesses of 152, 180, 257, 570, and 865 nm. X-ray diffraction-reciprocal space mapping was used to determine the strain, composition, and the nature of defects in each layer. Secondary ion mass spectrometry was used to examine the evolution of the compositional profile. These results indicate that growth beyond the critical thickness results in the spontaneous formation of a relaxed and highly defective 9% Sn layer followed by a low defect 12% Sn secondary layer. We find that this growth method can be used to engineer thick, strain-relaxed, and low defect density layers. Furthermore we utilize this strain-dependent Sn incorporation behavior to achieve Sn compositions of 17.5%. Photoluminesence of these layers produces light emission at 3.1 μm.

  16. Efficient Removal of Uranium from Aqueous Solution by Reduced Graphene Oxide-Zn0.5Ni0.5Fe2O4 Ferrite-Polyaniline Nanocomposite

    NASA Astrophysics Data System (ADS)

    Tran, Dat Quang; Pham, Hung Thanh; Do, Hung Quoc

    2017-06-01

    Reduced graphene oxide-Zn0.5Ni0.5Fe2O4 ferrite-polyaniline nanocomposite (RGO-ZNF-PANI) was synthesized by a three-step method. The prepared samples were characterized by x-ray diffraction, Raman spectroscopy, scanning electron microscopy and vibrating sample magnetometer. In particular, we found that this material is capable of effectively removing uranium from an aquatic environment. This is confirmed by our experimental results using the method of inductively coupled plasma mass spectrometry. Adsorptive behaviour of uranium from an aqueous solution on the RGO-ZNF-PANI nanocomposite was examined as a function of pH, contact time, and equilibrium. Uranium concentration was carried out by batch techniques. The adsorption isotherm agrees well with the Langmuir model, having a maximum sorption capacity of 1885 mg/g, at pH 5 and 25°C.

  17. Investigating Li 2NiO 2–Li 2CuO 2 Solid Solutions as High-Capacity Cathode Materials for Li-Ion Batteries

    DOE PAGES

    Xu, Jing; Renfrew, Sara; Marcus, Matthew A.; ...

    2017-05-11

    Li 2Ni 1–xCu xO 2 solid solutions were prepared by a solid-state method to study the correlation between composition and electrochemical performance. Cu incorporation improved the phase purity of Li 2Ni 1–xCu xO 2 with orthorhombic Immm structure, resulting in enhanced capacity. However, the electrochemical profiles suggested Cu incorporation did not prevent irreversible phase transformation during the electrochemical process, instead, it likely influenced the phase transformation upon lithium removal. By combining ex situ X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and differential electrochemical mass spectrometry (DEMS) measurements, this study elucidates the relevant phase transformation (e.g., crystal structure, local environment, andmore » charge compensation) and participation of electrons from lattice oxygen during the first cycle in these complex oxides.« less

  18. Synthesis of permethyldodecaborate and paramagnetic dodecaborate salt

    DOEpatents

    Hawthorne, M. Frederick; Peymann, Toralf

    2002-01-01

    The dodecamethyl closo-borane dianion [closo-B.sub.12 (CH.sub.3).sub.12 ].sup.2- and anion [closo-B.sub.12 (CH.sub.3).sub.12 ].sup.- were synthesized and characterized. Dodecamethyl-closo dodecaborate (2-) was produced from [closo-B.sub.12 H.sub.12 ].sup.2-, using trimethylaluminum, and methyl iodide and modified Friedel-Crafts reaction conditions. The anion was produced from the dianion by chemical oxidation using ceric (4) ammonium nitrate in acetonitrile. The anion and dianion were both characterized by .sup.1 H and .sup.11 B NMR spectroscopy, high-resolution fast atom bombardment (FAB) mass spectrometry, cyclic voltammetry, and single-crystal X-ray diffraction. The "camouflaged" polyhedral borane anion [closo-B.sub.12 (CH.sub.3).sub.12 ].sup.2-, can be used as a precursor to materials that offer a broad spectrum of novel applications ranging from drug applications and supramolecular chemistry to use as a weakly-coordinating dianion.

  19. When is an imine not an imine? Unusual reactivity of a series of Cu(II) imine-pyridine complexes and their exploitation for the Henry reaction.

    PubMed

    Cooper, Christine J; Jones, Matthew D; Brayshaw, Simon K; Sonnex, Benjamin; Russell, Mark L; Mahon, Mary F; Allan, David R

    2011-04-14

    In this paper we report the synthesis and solid-state structures for a series of pyridine based Cu(II) complexes and preliminary data for the asymmetric Henry reaction. Interestingly, the solid-state structures indicate the incorporation of an alcohol into one of the imine groups of the ligand, forming a rare α-amino ether group. The complexes have been studied via single crystal X-ray diffraction, EPR spectroscopy and mass spectrometry. Intriguingly, it has been observed that the alcohol only adds to one of the imine moieties. Density functional theory (DFT) calculations have also been employed to rationalise the observed structures. The Cu(II) complexes have been tested in the asymmetric Henry reaction (benzaldehyde + nitromethane or nitroethane) with ee's up to 84% being achieved as well as high conversions and modest diastereoselectivities. © The Royal Society of Chemistry 2011

  20. Energetics of a uranothorite (Th 1–xU xSiO 4) solid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xiaofeng; Szenknect, Stephanie; Mesbah, Adel

    High-temperature oxide melt solution calorimetric measurements were completed to determine the enthalpies of formation of the uranothorite, (USiO 4) x–(ThSiO 4) 1–x, solid solution. Phase-pure samples with x values of 0, 0.11, 0.21, 0.35, 0.71, and 0.84 were prepared, purified, and characterized by powder X-ray diffraction, electron probe microanalysis, thermogravimetric analysis and differential scanning calorimetry coupled with in situ mass spectrometry, and high-temperature oxide melt solution calorimetry. This work confirms the energetic metastability of coffinite, USiO 4, and U-rich intermediate silicate phases with respect to a mixture of binary oxides. Furthermore, variations in unit cell parameters and negative excess volumesmore » of mixing, coupled with strongly exothermic enthalpies of mixing in the solid solution, suggest short-range cation ordering that can stabilize intermediate compositions, especially near x = 0.5.« less

  1. Withanolides derived from Physalis peruviana (Poha) with potential anti-inflammatory activity.

    PubMed

    Sang-Ngern, Mayuramas; Youn, Ui Joung; Park, Eun-Jung; Kondratyuk, Tamara P; Simmons, Charles J; Wall, Marisa M; Ruf, Michael; Lorch, Sam E; Leong, Ethyn; Pezzuto, John M; Chang, Leng Chee

    2016-06-15

    Three new withanolides, physaperuvin G (1), with physaperuvins I (2), and J (3), along with seven known derivatives (4-10), were isolated from the aerial parts of Physalis peruviana. The structures of 1-3 were determined by NMR, X-ray diffraction, and mass spectrometry. Compounds 1-10 were evaluated in lipopolysaccharide (LPS)-activated murine macrophage RAW 264.7 cells. Compounds 4, 5, and 10 with potent nitric oxide inhibitory activity in LPS-activated RAW 264.7 cells, with IC50 values in the range of 0.32-7.8μM. In addition, all compounds were evaluated for potential to inhibit tumor necrosis factor-alpha (TNF-α)-activated nuclear factor-kappa B (NF-κB) activity with transfected human embryonic kidney cells 293. Compounds 4-7 inhibited TNF-α-induced NF-κB activity with IC50 values in the range of 0.04-5.6μM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Adding nickel formate in alkali lignin to increase contents of alkylphenols and aromatics during fast pyrolysis.

    PubMed

    Geng, Jing; Wang, Wen-Liang; Yu, Yu-Xiang; Chang, Jian-Min; Cai, Li-Ping; Shi, Sheldon Q

    2017-03-01

    The composition of pyrolysis vapors obtained from alkali lignin pyrolysis with the additive of nickel formate was examined using the pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). Characterization of bio-chars was performed using X-ray diffraction (XRD). Results showed that the nickel formate significantly increased liquid yield, simplified the types of alkali lignin pyrolysis products and increased individual component contents. The additive of nickel formate increased contents of alkylphenols and aromatics from alkali lignin pyrolysis. With an increase in temperature, a greater amount of the relative contents can be achieved. The nickel formate was thermally decomposed to form hydrogen, resulting in hydrodeoxygenation of alkali lignin during pyrolysis. It was also found that Ni is in favor of producing alkylphenols. The analysis based on the experimental result provided evidences used to propose reaction mechanism for pyrolysis of nickel formate-assisted alkali lignin. Copyright © 2016. Published by Elsevier Ltd.

  3. Self-Assembly of New Arene-Ruthenium Rectangles Containing Triptycene Building Block and Their Application in Fluorescent Detection of Nitro Aromatics

    PubMed Central

    Dubey, Abhishek; Mishra, Anurag; Min, Jin Wook; Lee, Min Hyung; Kim, Hyunuk; Stang, Peter J.; Chi, Ki-Whan

    2014-01-01

    A suite of two new tetraruthenium metallarectangles 5 and 6 have been obtained from [2 + 2] self-assemblies between dipyridylethynyltriptycene 2 and one of the two dinuclear arene ruthenium clips, [Ru2 (μ-η4-OO∩OO) (η6-p-cymene)2][OTf]2 ; (OO∩OO = oxalate 3; 6,11-dihydroxy-5,12-naphthacenedionato (dotq) 4; OTf = triflate). These molecular rectangles are fully characterized by 1H NMR spectroscopy, electrospray mass spectrometry. A single crystal of 6 was suitable for X-ray diffraction structural characterization. These new metallarectangles showed fluorescence behavior in solution, have been examined for emission quenching effects with various aromatic compounds, and show high quenching selectivity and sensitivity towards nitroaromatics, particularly picric acid and trinitrotoluene. Excited-state charge transfer from the rectangles to nitro aromatic substrates can be used to develop selective fluorescent sensors for nitro aromatics. PMID:26321767

  4. Energetics of a uranothorite (Th 1–xU xSiO 4) solid solution

    DOE PAGES

    Guo, Xiaofeng; Szenknect, Stephanie; Mesbah, Adel; ...

    2016-10-11

    High-temperature oxide melt solution calorimetric measurements were completed to determine the enthalpies of formation of the uranothorite, (USiO 4) x–(ThSiO 4) 1–x, solid solution. Phase-pure samples with x values of 0, 0.11, 0.21, 0.35, 0.71, and 0.84 were prepared, purified, and characterized by powder X-ray diffraction, electron probe microanalysis, thermogravimetric analysis and differential scanning calorimetry coupled with in situ mass spectrometry, and high-temperature oxide melt solution calorimetry. This work confirms the energetic metastability of coffinite, USiO 4, and U-rich intermediate silicate phases with respect to a mixture of binary oxides. Furthermore, variations in unit cell parameters and negative excess volumesmore » of mixing, coupled with strongly exothermic enthalpies of mixing in the solid solution, suggest short-range cation ordering that can stabilize intermediate compositions, especially near x = 0.5.« less

  5. ANALYSIS OF SELECTED CHEMICAL GROUPS BY LIQUID CHROMATOGRAPHY/MASS SPECTROMETRY

    EPA Science Inventory

    The use of the moving-belt liquid chromatographic interface in combination with mass spectrometry was evaluated for determining detection limits of selected members of various chemical classes. mong the chemical classes examined were benzidines, nitrosoamines, anilines, nitroarom...

  6. Chemical Composition of Latent Fingerprints by Gas Chromatography-Mass Spectrometry

    ERIC Educational Resources Information Center

    Hartzell-Baguley, Brittany; Hipp, Rachael E.; Morgan, Neal R.; Morgan, Stephen L.

    2007-01-01

    An experiment in which gas chromatography-mass spectrometry (GC-MS) is used for latent fingerprint extraction and analysis on glass beads or glass slides is conducted. The results determine that the fingerprint residues are gender dependent.

  7. MICELLAR ELECTROKINETIC CHROMATOGRAPHY-MASS SPECTROMETRY (R823292)

    EPA Science Inventory

    The combination of micellar electrokinetic chromatography (MEKC) with mass spectrometry (MS) is very attractive for the direct identification of analyte molecules, for the possibility of selectivity enhancement, and for the structure confirmation and analysis in a MS-MS mode. The...

  8. Characterization of brines and evaporites of Lake Katwe, Uganda

    NASA Astrophysics Data System (ADS)

    Kasedde, Hillary; Kirabira, John Baptist; Bäbler, Matthäus U.; Tilliander, Anders; Jonsson, Stefan

    2014-03-01

    Lake Katwe brines and evaporites were investigated to determine their chemical, mineralogical and morphological composition. 30 brine samples and 3 solid salt samples (evaporites) were collected from different locations of the lake deposit. Several analytical techniques were used to determine the chemical composition of the samples including Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), Inductively Coupled Plasma-Sector Field Mass Spectrometry (ICP-SFMS), ion chromatography, and potentiometric titration. The mineralogical composition and morphology of the evaporites was determined using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Physical parameters of the lake brines such as density, electrical conductivity, pH, and salinity were also studied. The results show that the lake brines are highly alkaline and rich in Na+, Cl-, CO32-, SO42-, and HCO3- with lesser amounts of K+, Mg2+, Ca2+, Br-, and F- ions. The brines show an intermediate transition between Na-Cl and Na-HCO3 water types. Among the trace metals, the lake brines were found to be enriched in B, I, Sr, Fe, Mo, Ba, and Mn. The solid salts are composed of halite mixed with other salts such as hanksite, burkeite and trona. It was also observed that the composition of the salts varies considerably even within the same grades.

  9. A newly validated and characterized spectrophotometric method for determination of a three water pollutants metal ions

    NASA Astrophysics Data System (ADS)

    Mohamed, Marwa E.; Frag, Eman Y. Z.; Mohamed, Mona A.

    2018-01-01

    A simple, fast and accurate spectrophotometric method had been developed to determine lead (II), chromium (III) and barium (II) ions in pure forms and in spiked water samples using thoron (THO) as a reagent forming colored complexes. It was found that the formed complexes absorbed maximally at 539, 540 and 538 nm for Pb(II)-THO, Cr(III)-THO and Ba(II)-THO complexes, respectively. The optimum experimental conditions for these complexes had been studied carefully. Beer's law was obeyed in the range 1-35, 1-70, and 1-45 μg mL- 1 for Pb (II), Cr(III) and Ba(II) ions with THO reagent, respectively. Different parameters such as linearity, selectivity, recovery, limits of quantification and detection, precision and accuracy were also evaluated in order to validate the proposed method. The results showed that, THO was effective in simultaneous determination of Pb(II), Cr(III) and Ba(III) ions in pure forms and in spiked water samples. Also, the results of the proposed method were compared with that obtained from atomic absorption spectrometry. The isolated solid complexes had been characterized using elemental analysis, X-ray powder diffraction (XRD), IR, mass spectrometry and TD-DFT calculations. Their biological activities were investigated against different types of bacteria and fungi organisms.

  10. Atmospheric-Pressure Chemical Vapor Deposition of Iron Pyrite Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Nicholas; Cheng, Ming; Perkins, Craig L.

    2012-10-23

    Iron pyrite (cubic FeS{sub 2}) is a promising candidate absorber material for earth-abundant thin-film solar cells. In this report, single-phase, large-grain, and uniform polycrystalline pyrite thin films are fabricated on glass and molybdenum-coated glass substrates by atmospheric-pressure chemical vapor deposition (AP-CVD) using the reaction of iron(III) acetylacetonate and tert-butyl disulfide in argon at 300 C, followed by sulfur annealing at 500--550 C to convert marcasite impurities to pyrite. The pyrite-marcasite phase composition depends strongly on the concentration of sodium in the growth substrate and the sulfur partial pressure during annealing. Phase and elemental composition of the films are characterized bymore » X-ray diffraction, Raman spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, Rutherford backscattering spectrometry, and X-ray photoelectron spectroscopy. The in-plane electrical properties are surprisingly insensitive to phase and elemental impurities, with all films showing p-type, thermally activated transport with a small activation energy ({approx}30 meV), a room- temperature resistivity of {approx}1 {Omega} cm, and low mobility. These ubiquitous electrical properties may result from robust surface effects. These CVD pyrite thin films are well suited to fundamental electrical studies and the fabrication of pyrite photovoltaic device stacks.« less

  11. Electrochemical reduction behavior of simplified simulants of vitrified radioactive waste in molten CaCl2

    NASA Astrophysics Data System (ADS)

    Katasho, Yumi; Yasuda, Kouji; Nohira, Toshiyuki

    2018-05-01

    The electrochemical reduction of two types of simplified simulants of vitrified radioactive waste, simulant 1 (glass component only: SiO2, B2O3, Na2O, Al2O3, CaO, Li2O, and ZnO) and simulant 2 (also containing long-lived fission product oxides, ZrO2, Cs2O, PdO, and SeO2), was investigated in molten CaCl2 at 1103 K. The behavior of each element was predicted from the potential-pO2- diagram constructed from thermodynamic data. After the immersion of simulant 1 into molten CaCl2 without electrolysis, the dissolution of Na, Li, and Cs was confirmed by inductively coupled plasma atomic emission spectrometry and mass spectrometry analysis of the samples. The scanning electron microscopy/energy dispersive X-ray and X-ray diffraction analyses of simulants 1 and 2 electrolyzed at 0.9 V vs. Ca2+/Ca confirmed that most of SiO2 had been reduced to Si. After the electrolysis of simulants 1 and 2, Al, Zr, and Pd remained in the solid phase. In addition, SeO2 was found to remain partially in the solid phase and partially evaporate, although a small quantity dissolved into the molten salt.

  12. Resonance Ionization Mass Spectrometry System for Measurement of Environmental Samples

    NASA Astrophysics Data System (ADS)

    Pibida, L.; McMahon, C. A.; Nörtershäuser, W.; Bushaw, B. A.

    2002-10-01

    A resonance ionization mass spectrometry (RIMS) system has been developed at the National Institute of Standards and Technology (NIST) for sensitive and selective determination of radio-cesium in the environment. The overall efficiency was determined to be 4×10-7 with a combined (laser and mass spectrometer) selectivity of 108 for both 135Cs and 137Cs with respect to 133Cs. RIMS isotopic ratio measurements of 135Cs/ 137Cs were performed on a nuclear fuel burn-up sample and compared to measurements on a similar system at Pacific Northwest National Laboratory (PNNL) and to conventional thermal ionization mass spectrometry (TIMS). Results of preliminary RIMS investigations on a freshwater lake sediment sample are also discussed.

  13. LILBID-mass spectrometry of the mitochondrial preprotein translocase TOM.

    PubMed

    Mager, Frauke; Sokolova, Lucie; Lintzel, Julia; Brutschy, Bernhard; Nussberger, Stephan

    2010-11-17

    In the present work we applied a novel mass spectrometry method termed laser-induced liquid bead ion desorption mass spectrometry (LILBID-MS) to the outer mitochondrial membrane protein translocon TOM to analyze its subunit composition and stoichiometry. With TOM core complex, purified at high pH, we demonstrate that a TOM core complex of Neurospora crassa is composed of at least two Tom40 and Tom22 molecules, respectively, and more than five small Tom subunits between 5.5 and 6.4 kDa. We show that the multiprotein complex has a total molecular mass higher than 170 depending on the number of Tom5, Tom6 and Tom7 molecules bound.

  14. LILBID-mass spectrometry of the mitochondrial preprotein translocase TOM

    NASA Astrophysics Data System (ADS)

    Mager, Frauke; Sokolova, Lucie; Lintzel, Julia; Brutschy, Bernhard; Nussberger, Stephan

    2010-11-01

    In the present work we applied a novel mass spectrometry method termed laser-induced liquid bead ion desorption mass spectrometry (LILBID-MS) to the outer mitochondrial membrane protein translocon TOM to analyze its subunit composition and stoichiometry. With TOM core complex, purified at high pH, we demonstrate that a TOM core complex of Neurospora crassa is composed of at least two Tom40 and Tom22 molecules, respectively, and more than five small Tom subunits between 5.5 and 6.4 kDa. We show that the multiprotein complex has a total molecular mass higher than 170 depending on the number of Tom5, Tom6 and Tom7 molecules bound.

  15. Purification and crystallization of the ABC-type transport substrate-binding protein OppA from Thermoanaerobacter tengcongensis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Jinlan; Li, Xiaolu; Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We truncated the signal peptide of OppA{sub TTE0054} to make it express in Escherichia coli as a soluble protein. Black-Right-Pointing-Pointer Crystals of OppA{sub TTE0054} were grown by sitting-drop vapor diffusion method. Black-Right-Pointing-Pointer The crystal of OppA{sub TTE0054} diffracted to 2.25 A. -- Abstract: Di- and oligopeptide- binding protein OppAs play important roles in solute and nutrient uptake, sporulation, biofilm formation, cell wall muropeptides recycling, peptide-dependent quorum-sensing responses, adherence to host cells, and a variety of other biological processes. Soluble OppA from Thermoanaerobacter tengcongensis was expressed in Escherichia coli. The protein was found to be >95% pure with SDS-PAGEmore » after a series of purification steps and the purity was further verified by mass spectrometry. The protein was crystallized using the sitting-drop vapour-diffusion method with PEG 400 as the precipitant. Crystal diffraction extended to 2.25 A. The crystal belonged to space group C222{sub 1}, with unit-cell parameters of a = 69.395, b = 199.572, c = 131.673 A, and {alpha} = {beta} = {gamma} = 90 Degree-Sign .« less

  16. Characterisation of mineralogical forms of barium and trace heavy metal impurities in commercial barytes by EPMA, XRD and ICP-MS.

    PubMed

    Ansari, T M; Marr, I L; Coats, A M

    2001-02-01

    This study was carried out to characterise the mineralogical forms of barium and the trace heavy metal impurities in commercial barytes of different origins using electron probe microanalysis (EPMA), X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS). Qualitative EPMA results show the presence of typically eight different minerals in commercial barytes including barite (BaSO4), barium feldspar, galena (PbS), pyrite (FeS2), sphalerite (ZnS), quartz (SiO2), and silicates, etc. Quantitative EPMA confirms that the barite crystals in the barytes contain some strontium and a little calcium, whereas trace heavy metals occur in the associated minerals. Analysis of aqua regia extracts of barytes samples by ICP-MS has shown the presence of a large number of elements in the associated minerals. Arsenic, copper and zinc concentrations correlate closely in all 10 samples. The findings suggest that barytes is not, as traditionally thought, an inert mineral, but is a potentially toxic substance due to its associated heavy metal impurities, which can be determined by an aqua regia digest without the need for complete dissolution of the barite itself. X-ray powder diffraction was not informative as the complex barite pattern masks the very weak lines from the small amounts of associated minerals.

  17. Rational design of Ag/TiO2 nanosystems by a combined RF-sputtering/sol-gel approach.

    PubMed

    Armelao, Lidia; Barreca, Davide; Bottaro, Gregorio; Gasparotto, Alberto; Maccato, Chiara; Tondello, Eugenio; Lebedev, Oleg I; Turner, Stuart; Van Tendeloo, Gustaaf; Sada, Cinzia; Stangar, Urska Lavrencic

    2009-12-21

    The present work is devoted to the preparation of Ag/TiO(2) nanosystems by an original synthetic strategy, based on the radio-frequency (RF) sputtering of silver particles on titania-based xerogels prepared by the sol-gel (SG) route. This approach takes advantage of the synergy between the microporous xerogel structure and the infiltration power characterizing RF-sputtering, whose combination enables the obtainment of a tailored dispersion of Ag-containing particles into the titania matrix. In addition, the system's chemico-physical features can be tuned further through proper ex situ thermal treatments in air at 400 and 600 degrees C. The synthesized composites are extensively characterized by the joint use of complementary techniques, that is, X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), secondary ion mass spectrometry (SIMS), glancing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron diffraction (ED), high-angle annular dark field scanning TEM (HAADF-STEM), energy-filtered TEM (EF-TEM) and optical absorption spectroscopy. Finally, the photocatalytic performances of selected samples in the decomposition of the azo-dye Plasmocorinth B are preliminarily investigated. The obtained results highlight the possibility of tailoring the system characteristics over a broad range, directly influencing their eventual functional properties.

  18. A NEW HIGH RESOLUTION MASS SPECTROMETRY TECHNIQUE FOR IDENTIFYING PHARMACEUTICALS AND POTENTIAL ENDOCRINE DISRUPTORS IN DRINKING WATER SOURCES

    EPA Science Inventory

    A New High Resolution Mass Spectrometry Technique for Identifying Pharmaceuticals and Potential Endocrine Disruptors in Drinking Water Sources

    Andrew H. Grange and G. Wayne Sovocool U.S.EPA, ORD, NERL, ESD, ECB, P.O. Box 93478, Las Vegas, NV 891933478

    Mass spectra...

  19. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 1: Identifying Proteins Based on Molecular Mass

    ERIC Educational Resources Information Center

    Arnquist, Isaac J.; Beussman, Douglas J.

    2007-01-01

    Biological mass spectrometry is an important analytical technique in drug discovery, proteomics, and research at the biology-chemistry interface. Currently, few hands-on opportunities exist for undergraduate students to learn about this technique. With the 2002 Nobel Prize being awarded, in part, for the development of biological mass…

  20. ON SITE SOLID-PHASE EXTRACTION AND LABORATORY ANALYSIS OF ULTRA-TRACE SYNTHETIC MUSKS IN MUNICIPAL SEWAGE EFFLUENT USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY. FULL-SCAN MODE

    EPA Science Inventory

    Fragrance materials such as synthetic musks in aqueous samples, are normally determined by gas chromatography/mass spectrometry in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of I -L samples. Full-scan mass spectra are requ...

  1. Identifying Gel-Separated Proteins Using In-Gel Digestion, Mass Spectrometry, and Database Searching: Consider the Chemistry

    ERIC Educational Resources Information Center

    Albright, Jessica C.; Dassenko, David J.; Mohamed, Essa A.; Beussman, Douglas J.

    2009-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is an important bioanalytical technique in drug discovery, proteomics, and research at the biology-chemistry interface. This is an especially powerful tool when combined with gel separation of proteins and database mining using the mass spectral data. Currently, few hands-on…

  2. A SIMPLE AND RAPID MATRIX-ASSISTED LASER DESORPTION/IONIZATION TIME OF FLIGHT MASS SPECTROMETRY METHOD TO SCREEN FISH PLASMA SAMPLES FOR ESTROGEN-RESPONSIVE BIOMARKERS

    EPA Science Inventory

    In this study, we describe and evaluate the performance of a simple and rapid mass spectral method for screening fish plasma for estrogen-responsive biomarkers using matrix assisted laster desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) couopled with a short...

  3. Source identification of western Oregon Douglas-Fir wood cores using mass spectrometry and random forest Classification

    Treesearch

    Kristen Finch; Edgard Espinoza; F. Andrew Jones; Richard Cronn

    2017-01-01

    Premise of the study: We investigated whether wood metabolite profiles from direct analysis in real time (time-of-flight) mass spectrometry (DART-TOFMS) could be used to determine the geographic origin of Douglas-fir wood cores originating from two regions in western Oregon, USA. Methods: Three annual ring mass...

  4. Stable Isotope Labeling Strategy for Curcumin Metabolite Study in Human Liver Microsomes by Liquid Chromatography-Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gao, Dan; Chen, Xiaowu; Yang, Xiaomei; Wu, Qin; Jin, Feng; Wen, Hongliang; Jiang, Yuyang; Liu, Hongxia

    2015-04-01

    The identification of drug metabolites is very important in drug development. Nowadays, the most widely used methods are isotopes and mass spectrometry. However, the commercial isotopic labeled reagents are usually very expensive, and the rapid and convenient identification of metabolites is still difficult. In this paper, an 18O isotope labeling strategy was developed and the isotopes were used as a tool to identify drug metabolites using mass spectrometry. Curcumin was selected as a model drug to evaluate the established method, and the 18O labeled curcumin was successfully synthesized. The non-labeled and 18O labeled curcumin were simultaneously metabolized in human liver microsomes (HLMs) and analyzed by liquid chromatography/mass spectrometry (LC-MS). The two groups of chromatograms obtained from metabolic reaction mixture with and without cofactors were compared and analyzed using Metabolynx software (Waters Corp., Milford, MA, USA). The mass spectra of the newly appearing chromatographic peaks in the experimental sample were further analyzed to find the metabolite candidates. Their chemical structures were confirmed by tandem mass spectrometry. Three metabolites, including two reduction products and a glucuronide conjugate, were successfully detected under their specific HLMs metabolic conditions, which were in accordance with the literature reported results. The results demonstrated that the developed isotope labeling method, together with post-acquisition data processing using Metabolynx software, could be used for fast identification of new drug metabolites.

  5. Computational analyses of spectral trees from electrospray multi-stage mass spectrometry to aid metabolite identification.

    PubMed

    Cao, Mingshu; Fraser, Karl; Rasmussen, Susanne

    2013-10-31

    Mass spectrometry coupled with chromatography has become the major technical platform in metabolomics. Aided by peak detection algorithms, the detected signals are characterized by mass-over-charge ratio (m/z) and retention time. Chemical identities often remain elusive for the majority of the signals. Multi-stage mass spectrometry based on electrospray ionization (ESI) allows collision-induced dissociation (CID) fragmentation of selected precursor ions. These fragment ions can assist in structural inference for metabolites of low molecular weight. Computational investigations of fragmentation spectra have increasingly received attention in metabolomics and various public databases house such data. We have developed an R package "iontree" that can capture, store and analyze MS2 and MS3 mass spectral data from high throughput metabolomics experiments. The package includes functions for ion tree construction, an algorithm (distMS2) for MS2 spectral comparison, and tools for building platform-independent ion tree (MS2/MS3) libraries. We have demonstrated the utilization of the package for the systematic analysis and annotation of fragmentation spectra collected in various metabolomics platforms, including direct infusion mass spectrometry, and liquid chromatography coupled with either low resolution or high resolution mass spectrometry. Assisted by the developed computational tools, we have demonstrated that spectral trees can provide informative evidence complementary to retention time and accurate mass to aid with annotating unknown peaks. These experimental spectral trees once subjected to a quality control process, can be used for querying public MS2 databases or de novo interpretation. The putatively annotated spectral trees can be readily incorporated into reference libraries for routine identification of metabolites.

  6. POTAMOS mass spectrometry calculator: computer aided mass spectrometry to the post-translational modifications of proteins. A focus on histones.

    PubMed

    Vlachopanos, A; Soupsana, E; Politou, A S; Papamokos, G V

    2014-12-01

    Mass spectrometry is a widely used technique for protein identification and it has also become the method of choice in order to detect and characterize the post-translational modifications (PTMs) of proteins. Many software tools have been developed to deal with this complication. In this paper we introduce a new, free and user friendly online software tool, named POTAMOS Mass Spectrometry Calculator, which was developed in the open source application framework Ruby on Rails. It can provide calculated mass spectrometry data in a time saving manner, independently of instrumentation. In this web application we have focused on a well known protein family of histones whose PTMs are believed to play a crucial role in gene regulation, as suggested by the so called "histone code" hypothesis. The PTMs implemented in this software are: methylations of arginines and lysines, acetylations of lysines and phosphorylations of serines and threonines. The application is able to calculate the kind, the number and the combinations of the possible PTMs corresponding to a given peptide sequence and a given mass along with the full set of the unique primary structures produced by the possible distributions along the amino acid sequence. It can also calculate the masses and charges of a fragmented histone variant, which carries predefined modifications already implemented. Additional functionality is provided by the calculation of the masses of fragments produced upon protein cleavage by the proteolytic enzymes that are most widely used in proteomics studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Staying Alive: Measuring Intact Viable Microbes with Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Forsberg, Erica; Fang, Mingliang; Siuzdak, Gary

    2017-01-01

    Mass spectrometry has traditionally been the technology of choice for small molecule analysis, making significant inroads into metabolism, clinical diagnostics, and pharmacodynamics since the 1960s. In the mid-1980s, with the discovery of electrospray ionization (ESI) for biomolecule analysis, a new door opened for applications beyond small molecules. Initially, proteins were widely examined, followed by oligonucleotides and other nonvolatile molecules. Then in 1991, three intriguing studies reported using mass spectrometry to examine noncovalent protein complexes, results that have been expanded on for the last 25 years. Those experiments also raised the questions: How soft is ESI, and can it be used to examine even more complex interactions? Our lab addressed these questions with the analyses of viruses, which were initially tested for viability following electrospray ionization and their passage through a quadrupole mass analyzer by placing them on an active medium that would allow them to propagate. This observation has been replicated on multiple different systems, including experiments on an even bigger microbe, a spore. The question of analysis was also addressed in the early 2000s with charge detection mass spectrometry. This unique technology could simultaneously measure mass-to-charge and charge, allowing for the direct determination of the mass of a virus. More recent experiments on spores and enveloped viruses have given us insight into the range of mass spectrometry's capabilities (reaching 100 trillion Da), beginning to answer fundamental questions regarding the complexity of these organisms beyond proteins and genes, and how small molecules are integral to these supramolecular living structures.

  8. Mass spectrometry and tandem mass spectrometry of citrus limonoids.

    PubMed

    Tian, Qingguo; Schwartz, Steven J

    2003-10-15

    Methods for atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) of citrus limonoid aglycones and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of limonoid glucosides are reported. The fragmentation patterns of four citrus limonoid aglycones (limonin, nomilin, obacunone, and deacetylnomilin) and six limonoid glucosides, that is, limonin 17-beta-D-glucopyranoside (LG), nomilin 17-beta-D-glucopyranoside (NG), nomilinic acid 17-beta-D-glucopyranoside (NAG), deacetyl nomilinic acid 17-beta-D-glucopyranoside (DNAG), obacunone 17-beta-D-glucopyranoside (OG), and obacunoic acid 17-beta-D-glucopyranoside (OAG) were investigated using a quadruple mass spectrometer in low-energy collisionally activated dissociation (CAD). The four limonoid aglycones and four limonoid glucosides (LG, OG, NAG, and DNAG) were purified from citrus seeds; the other two limonoid glucosides (NG and OAG) were tentatively identified in the crude extract of grapefruit seeds by ESI mass spectrometry in both positive and negative ion analysis. Ammonium hydroxide or acetic acid was added to the mobile phase to facilitate ionization. During positive ion APCI analysis of limonoid aglycones, protonated molecular ion, [M + H]+, or adduct ion, [M + NH3 + H]-, was formed as base peaks when ammonium hydroxide was added to the mobile phase. Molecular anions or adduct ions with acetic acid ([M + HOAc - H] and [M + HOAc]-) or a deprotonated molecular ion were produced during negative ion APCI analysis of limonoid aglycones, depending on the mobile-phase modifier used. Positive ion ESI-MS of limonoid glucosides produced adduct ions of [M + H + NH3]+, [M + Na]+, and [M + K]+ when ammonium hydroxide was added to the mobile phase. After collisionally activated dissociation (CAD) of the limonoid aglycone molecular ions in negative ion APCI analysis, fragment ions indicated structural information of the precursor ions, showing the presence of methyl, carboxyl, and oxygenated ring structure. CAD of the adduct ion [M + H + NH3]+ of limonoid glucosides produced the aglycone moiety corresponding to each glucoside. The combination of mass spectrometry and tandem mass spectrometry provides a powerful technique for identification and characterization of citrus limonoids.

  9. Trends in biochemical and biomedical applications of mass spectrometry

    NASA Astrophysics Data System (ADS)

    Gelpi, Emilio

    1992-09-01

    This review attempts an in-depth evaluation of progress and achievements made since the last 11th International Mass Spectrometry Conference in the application of mass spectrometric techniques to biochemistry and biomedicine. For this purpose, scientific contributions in this field at major international meetings have been monitored, together with an extensive appraisal of literature data covering the period from 1988 to 1991. A bibliometric evaluation of the MEDLINE database for this period provides a total of almost 4000 entries for mass spectrometry. This allows a detailed study of literature and geographical sources of the most frequent applications, of disciplines where mass spectrometry is most active and of types of sample and instrumentation most commonly used. In this regard major efforts according to number of publications (over 100 literature reports) are concentrated in countries like Canada, France, Germany, Italy, Japan, Sweden, UK and the USA. Also, most of the work using mass spectrometry in biochemistry and biomedicine is centred on studies on biotransformation, metabolism, pharmacology, pharmacokinetics and toxicology, which have been carried out on samples of blood, urine, plasma and tissue, by order of frequency of use. Human and animal studies appear to be evenly distributed in terms of the number of reports published in the literature in which the authors make use of experimental animals or describe work on human samples. Along these lines, special attention is given to the real usefulness of mass spectrometry (MS) technology in routine medical practice. Thus the review concentrates on evaluating the progress made in disease diagnosis and overall patient care. As regards prevailing techniques, GCMS continues to be the mainstay of the state of the art methods for multicomponent analysis, stable isotope tracer studies and metabolic profiling, while HPLC--MS and tandem MS are becoming increasingly important in biomedical research. However, despite the relatively large number of mass spectrometry reports in the biomedical sciences very few true routine applications are described, and recent technological innovations in instrumentation such as FABMS, electrospray, plasma or laser desorption have contributed relatively much more to structural biology, especially in biopolymer studies of macromolecules rather than to real life biomedical applications on patients and clinical problems.

  10. Absorption Mode FT-ICR Mass Spectrometry Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode formore » Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.« less

  11. [Clinical and analytical toxicology of opiate, cocaine and amphetamine].

    PubMed

    Feliu, Catherine; Fouley, Aurélie; Millart, Hervé; Gozalo, Claire; Marty, Hélène; Djerada, Zoubir

    2015-01-01

    In several circumstances, determination and quantification of illicit drugs in biological fluids are determinant. Contexts are varied such as driving under influence, traffic accident, clinical and forensic toxicology, doping analysis, chemical submission. Whole blood is the favoured matrix for the quantification of illicit drugs. Gas chromatography coupled with mass spectrometry (GC-MS) is the gold standard for these analyses. All methods developed must be at least equivalent to gas chromatography coupled with a mass spectrometer. Nowadays, new technologies are available to biologists and clinicians: liquid chromatography coupled with a mass spectrometry (LC/MS) or coupled with a tandem mass spectrometer (LC/MS/MS). The aim of this paper is to describe the state of the art regarding techniques of confirmation by mass spectrometry used for quantification of conventional drugs except cannabis.

  12. Manganese oxide nanoparticle-assisted laser desorption/ionization mass spectrometry for medical applications

    NASA Astrophysics Data System (ADS)

    Taira, Shu; Kitajima, Kenji; Katayanagi, Hikaru; Ichiishi, Eiichiro; Ichiyanagi, Yuko

    2009-06-01

    We prepared and characterized manganese oxide magnetic nanoparticles (d =5.6 nm) and developed nanoparticle-assited laser desorption/ionization (nano-PALDI) mass spectrometry. The nanoparticles had MnO2 and Mn2O3 cores conjugated with hydroxyl and amino groups, and showed paramagnetism at room temperature. The nanoparticles worked as an ionization assisting reagent in mass spectroscopy. The mass spectra showed no background in the low m/z. The nanoparticles could ionize samples of peptide, drug and proteins (approx. 5000 Da) without using matrix, i.e., 2,5-dihydroxybenzoic acid (DHB), 4-hydroxy-α-cinnamic acid (CHCA) and liquid matrix, as conventional ionization assisting reagents. Post source decay spectra by nano-PALDI mass spectrometry will yield information of the chemical structure of analytes.

  13. Soil Sample Dissolution Development by Ultrawave Digester, Followed by Isotopic Separation and Analysis

    DTIC Science & Technology

    2017-01-09

    uranium, americium, and thorium were analyzed, along with other transition and rare earth metals, utilizing inductively coupled plasma- mass spectrometry...inductively coupled plasma- mass spectrometry and/or alpha spectrometry, following digestion. For validation of the microwave protocol, radioactive... actinide elements. HF is a hazardous acid to work with and it is highly toxic. In this evaluation and validation, the actinides are of particular

  14. A four dimensional separation method based on continuous heart-cutting gas chromatography with ion mobility and high resolution mass spectrometry.

    PubMed

    Lipok, Christian; Hippler, Jörg; Schmitz, Oliver J

    2018-02-09

    A two-dimensional GC (2D-GC) method was developed and coupled to an ion mobility-high resolution mass spectrometer, which enables the separation of complex samples in four dimensions (2D-GC, ion mobilility spectrometry and mass spectrometry). This approach works as a continuous multiheart-cutting GC-system (GC+GC), using a long modulation time of 20s, which allows the complete transfer of most of the first dimension peaks to the second dimension column without fractionation, in comparison to comprehensive two-dimensional gas chromatography (GCxGC). Hence, each compound delivers only one peak in the second dimension, which simplifies the data handling even when ion mobility spectrometry as a third and mass spectrometry as a fourth dimension are introduced. The analysis of a plant extract from Calendula officinales shows the separation power of this four dimensional separation method. The introduction of ion mobility spectrometry provides an additional separation dimension and allows to determine collision cross sections (CCS) of the analytes as a further physicochemical constant supporting the identification. A CCS database with more than 800 standard substances including drug-like compounds and pesticides was used for CCS data base search in this work. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. MALDI imaging mass spectrometry analysis-A new approach for protein mapping in multiple sclerosis brain lesions.

    PubMed

    Maccarrone, Giuseppina; Nischwitz, Sandra; Deininger, Sören-Oliver; Hornung, Joachim; König, Fatima Barbara; Stadelmann, Christine; Turck, Christoph W; Weber, Frank

    2017-03-15

    Multiple sclerosis is a disease of the central nervous system characterized by recurrent inflammatory demyelinating lesions in the early disease stage. Lesion formation and mechanisms leading to lesion remyelination are not fully understood. Matrix Assisted Laser Desorption Ionisation Mass Spectrometry imaging (MALDI-IMS) is a technology which analyses proteins and peptides in tissue, preserves their spatial localization, and generates molecular maps within the tissue section. In a pilot study we employed MALDI imaging mass spectrometry to profile and identify peptides and proteins expressed in normal-appearing white matter, grey matter and multiple sclerosis brain lesions with different extents of remyelination. The unsupervised clustering analysis of the mass spectra generated images which reflected the tissue section morphology in luxol fast blue stain and in myelin basic protein immunohistochemistry. Lesions with low remyelination extent were defined by compounds with molecular weight smaller than 5300Da, while more completely remyelinated lesions showed compounds with molecular weights greater than 15,200Da. An in-depth analysis of the mass spectra enabled the detection of cortical lesions which were not seen by routine luxol fast blue histology. An ion mass, mainly distributed at the rim of multiple sclerosis lesions, was identified by liquid chromatography and tandem mass spectrometry as thymosin beta-4, a protein known to be involved in cell migration and in restorative processes. The ion mass of thymosin beta-4 was profiled by MALDI imaging mass spectrometry in brain slides of 12 multiple sclerosis patients and validated by immunohistochemical analysis. In summary, our results demonstrate the ability of the MALDI-IMS technology to map proteins within the brain parenchyma and multiple sclerosis lesions and to identify potential markers involved in multiple sclerosis pathogenesis and/or remyelination. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Investigation into accurate mass capability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, with respect to radical ion species.

    PubMed

    Wyatt, Mark F; Stein, Bridget K; Brenton, A Gareth

    2006-05-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) has been shown to be an effective technique for the characterization of organometallic, coordination, and highly conjugated compounds. The preferred matrix is 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB), with radical ions observed. However, MALDI-TOFMS is generally not favored for accurate mass measurement. A specific method had to be developed for such compounds to assure the quality of our accurate mass results. Therefore, in this preliminary study, two methods of data acquisition, and both even-electron (EE+) ion and odd-electron (OE+.) radical ion mass calibration standards, have been investigated to establish the basic measurement technique. The benefit of this technique is demonstrated for a copper compound for which ions were observed by MALDI, but not by electrospray (ESI) or liquid secondary ion mass spectrometry (LSIMS); a mean mass accuracy error of -1.2 ppm was obtained.

  17. High-Performance Liquid Chromatography-Mass Spectrometry.

    ERIC Educational Resources Information Center

    Vestal, Marvin L.

    1984-01-01

    Reviews techniques for online coupling of high-performance liquid chromatography with mass spectrometry, emphasizing those suitable for application to nonvolatile samples. Also summarizes the present status, strengths, and weaknesses of various techniques and discusses potential applications of recently developed techniques for combined liquid…

  18. Environmental Mass Spectrometry: Emerging Contaminants and Current Issues (2010 Review)

    EPA Science Inventory

    This biennial review covers developments in environmental mass spectrometry for emerging environmental contaminants over the period of 2008-2009. A few significant references that appeared between January and February 2010 are also included. Analytical Chemistry’s current polic...

  19. EMERGING POLLUTANTS, MASS SPECTROMETRY, AND COMMUNICATING SCIENCE: PHARMACEUTICALS IN THE ENVIRONMENT

    EPA Science Inventory


    Historically fundamental to amassing our understanding of environmental processes and chemical pollution is the realm of mass spectrometry (MS) - the mainstay of analytical
    chemistry - the workhorse that supplies definitive data that environmental scientists and engineers...

  20. MASS SPECTROMETRY OF INDIVIDUAL AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    Typically, in real-time aerosol mass spectrometry (RTAMS), individual airborne particles
    are ablated and ionized with a single focused laser pulse. This technique yields information that
    permits bulk characterization of the particle, but information about the particle's sur...

  1. Conventional and Advanced Separations in Mass Spectrometry-Based Metabolomics: Methodologies and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyman, Heino M.; Zhang, Xing; Tang, Keqi

    2016-02-16

    Metabolomics is the quantitative analysis of all metabolites in a given sample. Due to the chemical complexity of the metabolome, optimal separations are required for comprehensive identification and quantification of sample constituents. This chapter provides an overview of both conventional and advanced separations methods in practice for reducing the complexity of metabolite extracts delivered to the mass spectrometer detector, and covers gas chromatography (GC), liquid chromatography (LC), capillary electrophoresis (CE), supercritical fluid chromatography (SFC) and ion mobility spectrometry (IMS) separation techniques coupled with mass spectrometry (MS) as both uni-dimensional and as multi-dimensional approaches.

  2. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOEpatents

    Brennan, T.M.; Hammons, B.E.; Tsao, J.Y.

    1992-12-15

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth. 3 figs.

  3. Mass spectrometry-compatible silver staining of histones resolved on acetic acid-urea-Triton PAGE.

    PubMed

    Pramod, Khare Satyajeet; Bharat, Khade; Sanjay, Gupta

    2009-05-01

    Acetic acid-Urea-Triton (AUT) PAGE is commonly used method to separate histone variants and their post-translationally modified forms. Coomassie staining is the preferred method for protein visualization; however, its sensitivity is less than that of silver staining. Though silver staining of histones in AUT-PAGE has been reported, the method is time-consuming, dependent on prior staining by Amido black and has not been reported suitable for mass spectrometry. Here, we propose 'SDS-Silver' method for rapid, sensitive and mass spectrometry-compatible staining of histones resolved on AUT-PAGE.

  4. MSX-3D: a tool to validate 3D protein models using mass spectrometry.

    PubMed

    Heymann, Michaël; Paramelle, David; Subra, Gilles; Forest, Eric; Martinez, Jean; Geourjon, Christophe; Deléage, Gilbert

    2008-12-01

    The technique of chemical cross-linking followed by mass spectrometry has proven to bring valuable information about the protein structure and interactions between proteic subunits. It is an effective and efficient way to experimentally investigate some aspects of a protein structure when NMR and X-ray crystallography data are lacking. We introduce MSX-3D, a tool specifically geared to validate protein models using mass spectrometry. In addition to classical peptides identifications, it allows an interactive 3D visualization of the distance constraints derived from a cross-linking experiment. Freely available at http://proteomics-pbil.ibcp.fr

  5. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOEpatents

    Brennan, Thomas M.; Hammons, B. Eugene; Tsao, Jeffrey Y.

    1992-01-01

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth.

  6. High molecular weight non-polar hydrocarbons as pure model substances and in motor oil samples can be ionized without fragmentation by atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Hourani, Nadim; Kuhnert, Nikolai

    2012-10-15

    High molecular weight non-polar hydrocarbons are still difficult to detect by mass spectrometry. Although several studies have targeted this problem, lack of good self-ionization has limited the ability of mass spectrometry to examine these hydrocarbons. Failure to control ion generation in the atmospheric pressure chemical ionization (APCI) source hampers the detection of intact stable gas-phase ions of non-polar hydrocarbon in mass spectrometry. Seventeen non-volatile non-polar hydrocarbons, reported to be difficult to ionize, were examined by an optimized APCI methodology using nitrogen as the reagent gas. All these analytes were successfully ionized as abundant and intact stable [M-H](+) ions without the use of any derivatization or adduct chemistry and without significant fragmentation. Application of the method to real-life hydrocarbon mixtures like light shredder waste and car motor oil was demonstrated. Despite numerous reports to the contrary, it is possible to ionize high molecular weight non-polar hydrocarbons by APCI, omitting the use of additives. This finding represents a significant step towards extending the applicability of mass spectrometry to non-polar hydrocarbon analyses in crude oil, petrochemical products, waste or food. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Surface tuning laser desorption/ionization mass spectrometry (STLDI-MS) for the analysis of small molecules using quantum dots.

    PubMed

    Abdelhamid, Hani Nasser; Chen, Zhen-Yu; Wu, Hui-Fen

    2017-08-01

    In most applications of quantum dots (QDs) for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS), one side of QDs is supported by a solid substrate (stainless - steel plate), whereas the other side is in contact with the target analytes. Therefore, the surface capping agent of QDs is a key parameter for laser desorption/ionization mass spectrometry (LDI-MS). Cadmium telluride quantum dots (CdTe QDs) modified with different capping agents are synthesized, characterized, and applied for surface tuning laser desorption/ionization mass spectrometry (STLDI-MS). Data shows that CdTe quantum dot modified cysteine (cys@CdTe QDs) has an absorption that matches with the wavelength of the N 2 laser (337 nm). The synergistic effect of large surface area and absorption of the laser irradiation of cys@CdTe QDs enhances the LDI-MS process for small - molecule analysis, including α-, β-, and γ-cyclodextrin, gramicidin D, perylene, pyrene, and triphenylphosphine. Cys@CdTe QDs are also applied using Al foils as substrates. Aluminum foil combined with cys@CdTe QDs enhances the ionization efficiency and is cheap compared to traditional matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) with a stainless - steel plate.

  8. "EMERGING" POLLUTANTS, MASS SPECTROMETRY, AND ...

    EPA Pesticide Factsheets

    A foundation for Environmental Science - Mass Spectrometry: Historically fundamental to amassing our understanding of environmental processes and chemical pollution is the realm of mass spectrometry - the mainstay of analytical chemistry - the workhorse that supplies much of the definitive data that environmental scientists rely upon for identifying the molecular compositions (and ultimately the structures) of chemicals. This is not to ignore the complementary, critical roles played by the adjunct practices of sample enrichment (via any of various means of selective extraction) and analyte separation (via the myriad forms of chromatography and electrophoresis).While the power of mass spectrometry has long been highly visible to the practicing environmental chemist, it borders on continued obscurity to the lay public and most non-chemists. Even though mass spectrometry has played a long, historic (and largely invisible) role in establishing or undergirdidng our existing knowledge about environmental processes and pollution, what recognition it does enjoy is usually relegated to that of a tool. It is ususally the relevance of ssignificance of the knowledge acquired from the application of the tool that has ultimate meaning to the public and science at large - not how the knowledge was acquired. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in

  9. Analysis of hydroxamate siderophores in soil solution using liquid chromatography with mass spectrometry and tandem mass spectrometry with on-line sample preconcentration.

    PubMed

    Olofsson, Madelen A; Bylund, Dan

    2015-10-01

    A liquid chromatography with electrospray ionization mass spectrometry method was developed to quantitatively and qualitatively analyze 13 hydroxamate siderophores (ferrichrome, ferrirubin, ferrirhodin, ferrichrysin, ferricrocin, ferrioxamine B, D1 , E and G, neocoprogen I and II, coprogen and triacetylfusarinine C). Samples were preconcentrated on-line by a switch-valve setup prior to analyte separation on a Kinetex C18 column. Gradient elution was performed using a mixture of an ammonium formate buffer and acetonitrile. Total analysis time including column conditioning was 20.5 min. Analytes were fragmented by applying collision-induced dissociation, enabling structural identification by tandem mass spectrometry. Limit of detection values for the selected ion monitoring method ranged from 71 pM to 1.5 nM with corresponding values of two to nine times higher for the multiple reaction monitoring method. The liquid chromatography with mass spectrometry method resulted in a robust and sensitive quantification of hydroxamate siderophores as indicated by retention time stability, linearity, sensitivity, precision and recovery. The analytical error of the methods, assessed through random-order, duplicate analysis of soil samples extracted with a mixture of 10 mM phosphate buffer and methanol, appears negligible in relation to between-sample variations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Metabolomic Strategies Involving Mass Spectrometry Combined with Liquid and Gas Chromatography.

    PubMed

    Lopes, Aline Soriano; Cruz, Elisa Castañeda Santa; Sussulini, Alessandra; Klassen, Aline

    2017-01-01

    Amongst all omics sciences, there is no doubt that metabolomics is undergoing the most important growth in the last decade. The advances in analytical techniques and data analysis tools are the main factors that make possible the development and establishment of metabolomics as a significant research field in systems biology. As metabolomic analysis demands high sensitivity for detecting metabolites present in low concentrations in biological samples, high-resolution power for identifying the metabolites and wide dynamic range to detect metabolites with variable concentrations in complex matrices, mass spectrometry is being the most extensively used analytical technique for fulfilling these requirements. Mass spectrometry alone can be used in a metabolomic analysis; however, some issues such as ion suppression may difficultate the quantification/identification of metabolites with lower concentrations or some metabolite classes that do not ionise as well as others. The best choice is coupling separation techniques, such as gas or liquid chromatography, to mass spectrometry, in order to improve the sensitivity and resolution power of the analysis, besides obtaining extra information (retention time) that facilitates the identification of the metabolites, especially when considering untargeted metabolomic strategies. In this chapter, the main aspects of mass spectrometry (MS), liquid chromatography (LC) and gas chromatography (GC) are discussed, and recent clinical applications of LC-MS and GC-MS are also presented.

  11. Magnetic porous β-cyclodextrin polymer for magnetic solid-phase extraction of microcystins from environmental water samples.

    PubMed

    Zhang, Wenmin; Lin, Mingxia; Wang, Meili; Tong, Ping; Lu, Qiaomei; Zhang, Lan

    2017-06-23

    Microcystins (MCs) are cyclic heptapeptide toxins and tumor promoters produced by cyanobacteria, which threaten the health of humans. In this study, magnetic porous β-cyclodextrin polymer (Fe 3 O 4 @SiO 2 @P-CDP) was synthesized and characterized by transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectrometry, Fourier transform infrared spectrometry, X-ray diffraction, nitrogen adsorption porosimetry and vibrating sample magnetometer. The synthesized Fe 3 O 4 @SiO 2 @P-CDP particles were then used for magnetic solid-phase extraction (MSPE) of MCs from environmental water samples, and exhibited excellent extraction performance, especially for MC-RR. Coupled with high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS), a simple, efficient and sensitive method for determination of trace levels of MCs was established. After the optimization of conditions, wide linear ranges (2.0-1000pgmL -1 ), good linearity (r 2 ≥0.9996) and acceptable repeatability (RSD≤9.4%, n=5) were obtained. The limits of detection (LODs, S/N=3) and limits of quantification (LOQs, S/N=10) for three MCs (MC-LR, MC-RR and MC-YR) were in the range of 1.0-2.0pgmL -1 and 2.0-5.0pgmL -1 , respectively. Typical water samples were analyzed by the developed method, and trace levels of MC-LR and MC-RR were detected. The results demonstrate that the developed method has great potential for the determination of MCs in complicated matrix. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A rational approach to heavy-atom derivative screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joyce, M. Gordon; Radaev, Sergei; Sun, Peter D., E-mail: psun@nih.gov

    2010-04-01

    In order to overcome the difficulties associated with the ‘classical’ heavy-atom derivatization procedure, an attempt has been made to develop a rational crystal-free heavy-atom-derivative screening method and a quick-soak derivatization procedure which allows heavy-atom compound identification. Despite the development in recent times of a range of techniques for phasing macromolecules, the conventional heavy-atom derivatization method still plays a significant role in protein structure determination. However, this method has become less popular in modern high-throughput oriented crystallography, mostly owing to its trial-and-error nature, which often results in lengthy empirical searches requiring large numbers of well diffracting crystals. In addition, the phasingmore » power of heavy-atom derivatives is often compromised by lack of isomorphism or even loss of diffraction. In order to overcome the difficulties associated with the ‘classical’ heavy-atom derivatization procedure, an attempt has been made to develop a rational crystal-free heavy-atom derivative-screening method and a quick-soak derivatization procedure which allows heavy-atom compound identification. The method includes three basic steps: (i) the selection of likely reactive compounds for a given protein and specific crystallization conditions based on pre-defined heavy-atom compound reactivity profiles, (ii) screening of the chosen heavy-atom compounds for their ability to form protein adducts using mass spectrometry and (iii) derivatization of crystals with selected heavy-metal compounds using the quick-soak method to maximize diffraction quality and minimize non-isomorphism. Overall, this system streamlines the process of heavy-atom compound identification and minimizes the problem of non-isomorphism in phasing.« less

  13. Ambient ionisation mass spectrometry for in situ analysis of intact proteins

    PubMed Central

    Kocurek, Klaudia I.; Griffiths, Rian L.

    2018-01-01

    Abstract Ambient surface mass spectrometry is an emerging field which shows great promise for the analysis of biomolecules directly from their biological substrate. In this article, we describe ambient ionisation mass spectrometry techniques for the in situ analysis of intact proteins. As a broad approach, the analysis of intact proteins offers unique advantages for the determination of primary sequence variations and posttranslational modifications, as well as interrogation of tertiary and quaternary structure and protein‐protein/ligand interactions. In situ analysis of intact proteins offers the potential to couple these advantages with information relating to their biological environment, for example, their spatial distributions within healthy and diseased tissues. Here, we describe the techniques most commonly applied to in situ protein analysis (liquid extraction surface analysis, continuous flow liquid microjunction surface sampling, nano desorption electrospray ionisation, and desorption electrospray ionisation), their advantages, and limitations and describe their applications to date. We also discuss the incorporation of ion mobility spectrometry techniques (high field asymmetric waveform ion mobility spectrometry and travelling wave ion mobility spectrometry) into ambient workflows. Finally, future directions for the field are discussed. PMID:29607564

  14. Structure Determination of Natural Products by Mass Spectrometry.

    PubMed

    Biemann, Klaus

    2015-01-01

    I review laboratory research on the development of mass spectrometric methodology for the determination of the structure of natural products of biological and medical interest, which I conducted from 1958 to the end of the twentieth century. The methodology was developed by converting small peptides to their corresponding polyamino alcohols to make them amenable to mass spectrometry, thereby making it applicable to whole proteins. The structures of alkaloids were determined by analyzing the fragmentation of a known alkaloid and then using the results to deduce the structures of related compounds. Heparin-like structures were investigated by determining their molecular weights from the mass of protonated molecular ions of complexes with highly basic, synthetic peptides. Mass spectrometry was also employed in the analysis of lunar material returned by the Apollo missions. A miniaturized gas chromatograph mass spectrometer was sent to Mars on board of the two Viking 1976 spacecrafts.

  15. Desorption electrospray ionization mass spectrometry of DNA nucleobases: implications for a liquid film model.

    PubMed

    Qiu, Bo; Luo, Hai

    2009-05-01

    Desorption electrospray ionization (DESI) mass spectrometry has been implemented on a commercial ion-trap mass spectrometer and used to optimize mass spectrometric conditions for DNA nucleobases: adenine, cytosine, thymine, and guanine. Experimental parameters including spray voltage, distance between mass spectrometer inlet and the sampled spot, and nebulizing gas inlet pressure were optimized. Cluster ions including some magic number clusters of nucleobases were observed for the first time using DESI mass spectrometry. The formation of the cluster species was found to vary with the nucleobases, acidification of the spray solvent, and the deposited sample amount. All the experimental results can be explained well using a liquid film model based on the two-step droplet pick-up mechanism. It is further suggested that solubility of the analytes in the spray solvent is an important factor to consider for their studies by using DESI. 2009 John Wiley & Sons, Ltd.

  16. MULTI-DIMENSIONAL MASS SPECTROMETRY-BASED SHOTGUN LIPIDOMICS AND NOVEL STRATEGIES FOR LIPIDOMIC ANALYSES

    PubMed Central

    Han, Xianlin; Yang, Kui; Gross, Richard W.

    2011-01-01

    Since our last comprehensive review on multi-dimensional mass spectrometry-based shotgun lipidomics (Mass Spectrom. Rev. 24 (2005), 367), many new developments in the field of lipidomics have occurred. These developments include new strategies and refinements for shotgun lipidomic approaches that use direct infusion, including novel fragmentation strategies, identification of multiple new informative dimensions for mass spectrometric interrogation, and the development of new bioinformatic approaches for enhanced identification and quantitation of the individual molecular constituents that comprise each cell’s lipidome. Concurrently, advances in liquid chromatography-based platforms and novel strategies for quantitative matrix-assisted laser desorption/ionization mass spectrometry for lipidomic analyses have been developed. Through the synergistic use of this repertoire of new mass spectrometric approaches, the power and scope of lipidomics has been greatly expanded to accelerate progress toward the comprehensive understanding of the pleiotropic roles of lipids in biological systems. PMID:21755525

  17. Seed Storage Proteins as a System for Teaching Protein Identification by Mass Spectrometry in Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Wilson, Karl A.; Tan-Wilson, Anna

    2013-01-01

    Mass spectrometry (MS) has become an important tool in studying biological systems. One application is the identification of proteins and peptides by the matching of peptide and peptide fragment masses to the sequences of proteins in protein sequence databases. Often prior protein separation of complex protein mixtures by 2D-PAGE is needed,…

  18. Carcinogenicity of Embedded Tungsten Alloys in Mice

    DTIC Science & Technology

    2011-03-01

    year carcinogenicity (Aim 1) and serial euthanasia (Aim 2) studies were analyzed for metal content using inductively coupled-plasma mass spectrometry...inductively coupled- plasma mass spectrometer (PQ ExCell ICPMS System, ThermoElemental, Franklin, MA) equipped with a Cetac ASX500 Autosampler. High...Metal analysis using inductively coupled-plasma mass spectrometry showed that both the tungsten/nickel/cobalt and tungsten/nickel/iron

  19. The Role of Naturally Occurring Stable Isotopes in Mass Spectrometry, Part II: The Instrumentation

    PubMed Central

    Bluck, Les; Volmer, Dietrich A.

    2013-01-01

    In the second instalment of this tutorial, the authors explain the instrumentation for measuring naturally occurring stable isotopes, specifically the magnetic sector mass spectrometer. This type of instrument remains unrivalled in its performance for isotope ratio mass spectrometry (IRMS) and the reader is reminded of its operation and its technical advantages for isotope measurements. PMID:23772101

  20. ON-SITE SOLID-PHASE EXTRACTION AND LABORATORY ANALYSIS OF ULTRA-TRACE SYNTHETIC MUSKS IN MUNICIPAL SEWAGE EFFLUENT USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY IN THE FULL-SCAN MODE

    EPA Science Inventory

    Fragrance materials such as synthetic musks in aqueous samples, are normally determined by gas chromatography/mass spectrometry in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of I -L samples. Full-scan mass spectra are requ...

  1. Laser ablation synthesis of arsenic-phosphide Asm Pn clusters from As-P mixtures. Laser desorption ionisation with quadrupole ion trap time-of-flight mass spectrometry: The mass spectrometer as a synthesizer.

    PubMed

    Kubáček, Pavel; Prokeš, Lubomír; Pamreddy, Annapurna; Peña-Méndez, Eladia María; Conde, José Elias; Alberti, Milan; Havel, Josef

    2018-05-30

    Only a few arsenic phosphides are known. A high potential for the generation of new compounds is offered by Laser Ablation Synthesis (LAS) and when Laser Desorption Ionization (LDI) is coupled with simultaneous Time-Of-Flight Mass Spectrometry (TOFMS), immediate identification of the clusters can be achieved. LAS was used for the generation of arsenic phosphides via laser ablation of phosphorus-arsenic mixtures while quadrupole ion trap time-of-flight mass spectrometry (QIT-TOFMS) was used to acquire the mass spectra. Many new As m P n ± clusters (479 binary and 369 mono-elemental) not yet described in the literature were generated in the gas phase and their stoichiometry determined. The likely structures for some of the observed clusters arbitrary selected (20) were computed by density functional theory (DFT) optimization. LAS is an advantageous approach for the generation of new As m P n clusters, while mass spectrometry was found to be an efficient technique for the determination of cluster stoichiometry. The results achieved might inspire the synthesis of new materials. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Applicability of hybrid linear ion trap-high resolution mass spectrometry and quadrupole-linear ion trap-mass spectrometry for mycotoxin analysis in baby food.

    PubMed

    Rubert, Josep; James, Kevin J; Mañes, Jordi; Soler, Carla

    2012-02-03

    Recent developments in mass spectrometers have created a paradoxical situation; different mass spectrometers are available, each of them with their specific strengths and drawbacks. Hybrid instruments try to unify several advantages in one instrument. In this study two of wide-used hybrid instruments were compared: hybrid quadrupole-linear ion trap-mass spectrometry (QTRAP®) and the hybrid linear ion trap-high resolution mass spectrometry (LTQ-Orbitrap®). Both instruments were applied to detect the presence of 18 selected mycotoxins in baby food. Analytical parameters were validated according to 2002/657/CE. Limits of quantification (LOQs) obtained by QTRAP® instrument ranged from 0.45 to 45 μg kg⁻¹ while lower limits of quantification (LLOQs) values were obtained by LTQ-Orbitrap®: 7-70 μg kg⁻¹. The correlation coefficients (r) in both cases were upper than 0.989. These values highlighted that both instruments were complementary for the analysis of mycotoxin in baby food; while QTRAP® reached best sensitivity and selectivity, LTQ-Orbitrap® allowed the identification of non-target and unknowns compounds. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Mass Spectrometry Parameters Optimization for the 46 Multiclass Pesticides Determination in Strawberries with Gas Chromatography Ion-Trap Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Fernandes, Virgínia C.; Vera, Jose L.; Domingues, Valentina F.; Silva, Luís M. S.; Mateus, Nuno; Delerue-Matos, Cristina

    2012-12-01

    Multiclass analysis method was optimized in order to analyze pesticides traces by gas chromatography with ion-trap and tandem mass spectrometry (GC-MS/MS). The influence of some analytical parameters on pesticide signal response was explored. Five ion trap mass spectrometry (IT-MS) operating parameters, including isolation time (IT), excitation voltage (EV), excitation time (ET), maximum excitation energy or " q" value (q), and isolation mass window (IMW) were numerically tested in order to maximize the instrument analytical signal response. For this, multiple linear regression was used in data analysis to evaluate the influence of the five parameters on the analytical response in the ion trap mass spectrometer and to predict its response. The assessment of the five parameters based on the regression equations substantially increased the sensitivity of IT-MS/MS in the MS/MS mode. The results obtained show that for most of the pesticides, these parameters have a strong influence on both signal response and detection limit. Using the optimized method, a multiclass pesticide analysis was performed for 46 pesticides in a strawberry matrix. Levels higher than the limit established for strawberries by the European Union were found in some samples.

  4. Quantitation of acrylamide in foods by high-resolution mass spectrometry.

    PubMed

    Troise, Antonio Dario; Fiore, Alberto; Fogliano, Vincenzo

    2014-01-08

    Acrylamide detection still represents one of the hottest topics in food chemistry. Solid phase cleanup coupled to liquid chromatography separation and tandem mass spectrometry detection along with GC-MS detection are nowadays the gold standard procedure for acrylamide quantitation thanks to high reproducibility, good recovery, and low relative standard deviation. High-resolution mass spectrometry (HRMS) is particularly suitable for the detection of low molecular weight amides, and it can provide some analytical advantages over other MS techniques. In this paper a liquid chromatography (LC) method for acrylamide determination using HRMS detection was developed and compared to LC coupled to tandem mass spectrometry. The procedure applied a simplified extraction, no cleanup steps, and a 4 min chromatography. It proved to be solid and robust with an acrylamide mass accuracy of 0.7 ppm, a limit of detection of 2.65 ppb, and a limit of quantitation of 5 ppb. The method was tested on four acrylamide-containing foods: cookies, French fries, ground coffee, and brewed coffee. Results were perfectly in line with those obtained by LC-MS/MS.

  5. Submicron mass spectrometry imaging of single cells by combined use of mega electron volt time-of-flight secondary ion mass spectrometry and scanning transmission ion microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siketić, Zdravko; Bogdanović Radović, Ivančica; Jakšić, Milko

    In order to better understand biochemical processes inside an individual cell, it is important to measure the molecular composition at the submicron level. One of the promising mass spectrometry imaging techniques that may be used to accomplish this is Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), using MeV energy heavy ions for excitation. MeV ions have the ability to desorb large intact molecules with a yield that is several orders of magnitude higher than conventional SIMS using keV ions. In order to increase the spatial resolution of the MeV TOF-SIMS system, we propose an independent TOF trigger using a STIM (scanningmore » transmission ion microscopy) detector that is placed just behind the thin transmission target. This arrangement is suitable for biological samples in which the STIM detector simultaneously measures the mass distribution in scanned samples. The capability of the MeV TOF-SIMS setup was demonstrated by imaging the chemical composition of CaCo-2 cells.« less

  6. Recent advances in applying mass spectrometry and systems biology to determine brain dynamics.

    PubMed

    Scifo, Enzo; Calza, Giulio; Fuhrmann, Martin; Soliymani, Rabah; Baumann, Marc; Lalowski, Maciej

    2017-06-01

    Neurological disorders encompass various pathologies which disrupt normal brain physiology and function. Poor understanding of their underlying molecular mechanisms and their societal burden argues for the necessity of novel prevention strategies, early diagnostic techniques and alternative treatment options to reduce the scale of their expected increase. Areas covered: This review scrutinizes mass spectrometry based approaches used to investigate brain dynamics in various conditions, including neurodegenerative and neuropsychiatric disorders. Different proteomics workflows for isolation/enrichment of specific cell populations or brain regions, sample processing; mass spectrometry technologies, for differential proteome quantitation, analysis of post-translational modifications and imaging approaches in the brain are critically deliberated. Future directions, including analysis of cellular sub-compartments, targeted MS platforms (selected/parallel reaction monitoring) and use of mass cytometry are also discussed. Expert commentary: Here, we summarize and evaluate current mass spectrometry based approaches for determining brain dynamics in health and diseases states, with a focus on neurological disorders. Furthermore, we provide insight on current trends and new MS technologies with potential to improve this analysis.

  7. Study of oxygen/tetraethoxysilane plasmas in a helicon reactor using optical emission spectroscopy and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Aumaille, K.; Granier, A.; Schmidt, M.; Grolleau, B.; Vallée, C.; Turban, G.

    2000-08-01

    Oxygen/tetraethoxysilane (O2/TEOS) plasmas created in a low-pressure (2 mTorr) rf helicon reactor have been studied by optical emission spectroscopy and mass spectrometry as a function of the rf (13.56 MHz) power injected into the plasma, which is varied from 25 to 300 W. Complementary measurements for the interpretation of the mass spectrometric data have also been carried out using the threshold ionization mass spectrometry technique. It is shown that valuable information on the parent molecules is obtained by both optical emission spectroscopy and threshold ionization mass spectrometry techniques. At low rf power TEOS molecules and organic compounds like hydrocarbons (CH4, C2H2) and alcohols (CH3CH2OH) as well as H2, H2O, CO, O2, CO2 are observed. At high rf power TEOS and O2 molecules are totally or mostly depleted, the share of hydrocarbons decreases and carbon monoxide, carbon dioxide, water and hydrogen become the essential parts of the gas phase.

  8. Steroid Profiling by Gas Chromatography–Mass Spectrometry and High Performance Liquid Chromatography–Mass Spectrometry for Adrenal Diseases

    PubMed Central

    McDonald, Jeffrey G.; Matthew, Susan

    2012-01-01

    The ability to measure steroid hormone concentrations in blood and urine specimens is central to the diagnosis and proper treatment of adrenal diseases. The traditional approach has been to assay each steroid hormone, precursor, or metabolite using individual aliquots of serum, each with a separate immunoassay. For complex diseases, such as congenital adrenal hyperplasia and adrenocortical cancer, in which the assay of several steroids is essential for management, this approach is time consuming and costly, in addition to using large amounts of serum. Gas chromatography/mass spectrometry profiling of steroid metabolites in urine has been employed for many years but only in a small number of specialized laboratories and suffers from slow throughput. The advent of commercial high-performance liquid chromatography instruments coupled to tandem mass spectrometers offers the potential for medium- to high-throughput profiling of serum steroids using small quantities of sample. Here, we review the physical principles of mass spectrometry, the instrumentation used for these techniques, the terminology used in this field and applications to steroid analysis. PMID:22170384

  9. Accelerator mass spectrometry of strontium-90 for homeland security, environmental monitoring and human health

    NASA Astrophysics Data System (ADS)

    Tumey, Scott J.; Brown, Thomas A.; Hamilton, Terry E.; Hillegonds, Darren J.

    2008-05-01

    Strontium-90 is one of the most hazardous materials managed by agencies charged with protecting the public from radiation. Traditional radiometric methods have been limited by low sample throughput and slow turnaround times. Mass spectrometry offers the advantage of shorter analysis times and the ability to measure samples immediately after processing, however conventional mass spectrometric techniques are susceptible to molecular isobaric interferences that limit their overall sensitivity. In contrast, accelerator mass spectrometry is insensitive to molecular interferences and we have therefore begun developing a method for determination of 90Sr by accelerator mass spectrometry. Despite a pervasive interference from 90Zr, our initial development has yielded an instrumental background of ∼108 atoms (75 mBq) per sample. Further refinement of our system (e.g. redesign of our detector, use of alternative target materials) is expected to push the background below 106 atoms, close to the theoretical limit for AMS. Once we have refined our system and developed suitable sample preparation protocols, we will utilize our capability in applications to homeland security, environmental monitoring and human health.

  10. ENVIRONMENTAL MASS SPECTROMETRY: EMERGING CONTAMINANTS AND CURRENT ISSUES, 2006

    EPA Science Inventory

    This biennial review covers developments in Environmental Mass Spectrometry over the period of 2004-2005. A few significant references that appeared between January and February 2006 are also included. Analytical Chemistry's current policy is to limit reviews to include 100-200 s...

  11. Webinar Presentation: Suspect Screening of Environmental Organic Acids in Human Serum Using High-resolution Mass Spectrometry (HRMS)

    EPA Pesticide Factsheets

    This presentation, Suspect Screening of Environmental Organic Acids in Human Serum Using High-resolution Mass Spectrometry (HRMS), was given at the NIEHS/EPA Children's Centers 2016 Webinar Series: Exposome held on May 11, 2016.

  12. IDENTIFICATION OF NEW OZONE DISINFECTION BY PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Using a combination of spectral identification techniques-gas chromatography coupled with low- and high-resolution electron-impact mass spectrometry (GC/EI-MS), low- and high-resolution chemical ionization mass spectrometry (GC/CI-MS), and infrared spectroscopy (GC/ IR)-we identi...

  13. Pyrolysis Mass Spectrometry of Complex Organic Materials.

    ERIC Educational Resources Information Center

    Meuzelaar, Henk L. C.; And Others

    1984-01-01

    Illustrates the state of the art in pyrolysis mass spectrometry techniques through applications in: (1) structural determination and quality control of synthetic polymers; (2) quantitative analysis of polymer mixtures; (3) classification and structural characterization of fossil organic matter; and (4) nonsupervised numerical extraction of…

  14. APPLICATION OF MULTISPECTRAL TECHNIQUES TO THE PRECISE IDENTIFICATION OF ALDEHYDES IN THE ENVIRONMENT

    EPA Science Inventory

    By using gas chromatography coupled with low- and high-resolution electron impact mass spectrometry, low- and high-resolution chemical ionization mass spectrometry, and Fourier transform infrared spectroscopy, eight straight-chain aldehydes were identified in a water sample taken...

  15. STRUCTURAL DETERMINATION AND QUANTITATIVE ANALYSIS OF BACTERIAL PHOSPHOLIPIDS USING LIQUID CHROMATOGRAPHY/ELECTROSPRAY IONIZATION/MASS SPECTROMETRY

    EPA Science Inventory

    This report presents a comprehensive spectral analysis of common bacterial phospholipids using electrospray/mass spectrometry (ESI/MS) under both negative and positive ionization conditions. Phospholipids under positive ionization yield sodium-adduct molecular ions which are mos...

  16. A general method for targeted quantitative cross-linking mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NM...

  17. Diagnosing Prion Diseases: Mass Spectrometry-Based Approaches

    USDA-ARS?s Scientific Manuscript database

    Mass spectrometry is an established means of quantitating the prions present in infected hamsters. Calibration curves relating the area ratios of the selected analyte peptides and their oxidized analogs to stable isotope labeled internal standards were prepared. The limit of detection (LOD) and limi...

  18. Tandem Extraction/Liquid Chromatography-Mass Spectrometry Protocol for the Analysis of Acrylamide and Surfactant-related Compounds in Complex Aqueous Environmental Samples

    EPA Science Inventory

    The development of a liquid chromatography‐mass spectrometry (LC‐MS)‐based strategy for the detection and quantitation of acrylamide and surfactant‐related compounds in aqueous complex environmental samples.

  19. Detection of pyrethroid pesticides and their environmental degradation products in duplicate diet samples

    EPA Science Inventory

    The abstract is for an oral presentation at the Asilomar Conference on Mass Spectrometry: Mass Spectrometry in Environmental Chemistry, Toxicology, and Health. It describes analytical method development and sample results for determination of pyrethroid pesticides and environme...

  20. Structural Analysis of Titan's Tholins by Ultra-High Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Vuitton, V.; Frisari, M.; Thissen, R.; Dutuit, O.; Bonnet, J.-Y.; Quirico, E.; Sciamma O'Brien, E.; Szopa, C.; Carrasco, N.; Somogyi, A.; Smith, M.; Hörst, S. M.; Yelle, R.

    2010-04-01

    We propose here a systematic ultra-high resolution mass spectrometry and MS/MS study in order to provide a more coherent and complete characterization of the structure of the molecules making up the soluble fraction of the Titan tholins.

Top