Sample records for diffraction methods compound

  1. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genderen, E. van; Clabbers, M. T. B.; Center for Cellular Imaging and NanoAnalytics

    A specialized quantum area detector for electron diffraction studies makes it possible to solve the structure of small organic compound nanocrystals in non-cryo conditions by direct methods. Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e{sup −} Å{sup −2} s{sup −1}) were collected at roommore » temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014)« less

  2. A rational approach to heavy-atom derivative screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joyce, M. Gordon; Radaev, Sergei; Sun, Peter D., E-mail: psun@nih.gov

    2010-04-01

    In order to overcome the difficulties associated with the ‘classical’ heavy-atom derivatization procedure, an attempt has been made to develop a rational crystal-free heavy-atom-derivative screening method and a quick-soak derivatization procedure which allows heavy-atom compound identification. Despite the development in recent times of a range of techniques for phasing macromolecules, the conventional heavy-atom derivatization method still plays a significant role in protein structure determination. However, this method has become less popular in modern high-throughput oriented crystallography, mostly owing to its trial-and-error nature, which often results in lengthy empirical searches requiring large numbers of well diffracting crystals. In addition, the phasingmore » power of heavy-atom derivatives is often compromised by lack of isomorphism or even loss of diffraction. In order to overcome the difficulties associated with the ‘classical’ heavy-atom derivatization procedure, an attempt has been made to develop a rational crystal-free heavy-atom derivative-screening method and a quick-soak derivatization procedure which allows heavy-atom compound identification. The method includes three basic steps: (i) the selection of likely reactive compounds for a given protein and specific crystallization conditions based on pre-defined heavy-atom compound reactivity profiles, (ii) screening of the chosen heavy-atom compounds for their ability to form protein adducts using mass spectrometry and (iii) derivatization of crystals with selected heavy-metal compounds using the quick-soak method to maximize diffraction quality and minimize non-isomorphism. Overall, this system streamlines the process of heavy-atom compound identification and minimizes the problem of non-isomorphism in phasing.« less

  3. Total-scattering pair-distribution function of organic material from powder electron diffraction data.

    PubMed

    Gorelik, Tatiana E; Schmidt, Martin U; Kolb, Ute; Billinge, Simon J L

    2015-04-01

    This paper shows that pair-distribution function (PDF) analyses can be carried out on organic and organometallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction and nanodiffraction in transmission electron microscopy or nanodiffraction in scanning transmission electron microscopy modes. The methods were demonstrated on organometallic complexes (chlorinated and unchlorinated copper phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering data and avoiding beam damage of the sample are possible to resolve.

  4. Total-scattering pair-distribution function of organic material from powder electron diffraction data

    DOE PAGES

    Gorelik, Tatiana E.; Billinge, Simon J. L.; Schmidt, Martin U.; ...

    2015-04-01

    This paper shows for the first time that pair-distribution function analyses can be carried out on organic and organo-metallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction (SAED) and nanodiffraction in transmission electron microscopy (TEM) or nanodiffraction in scanning transmission electron microscopy (STEM) modes. The methods were demonstrated on organo-metallic complexes (chlorinated and unchlorinated copper-phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering datamore » and avoiding beam-damage of the sample are possible to resolve.« less

  5. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector.

    PubMed

    van Genderen, E; Clabbers, M T B; Das, P P; Stewart, A; Nederlof, I; Barentsen, K C; Portillo, Q; Pannu, N S; Nicolopoulos, S; Gruene, T; Abrahams, J P

    2016-03-01

    Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼ 0.013 e(-) Å(-2) s(-1)) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014).

  6. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector

    PubMed Central

    van Genderen, E.; Clabbers, M. T. B.; Das, P. P.; Stewart, A.; Nederlof, I.; Barentsen, K. C.; Portillo, Q.; Pannu, N. S.; Nicolopoulos, S.; Gruene, T.; Abrahams, J. P.

    2016-01-01

    Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e− Å−2 s−1) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014). PMID:26919375

  7. N-Sulfinylimine compounds, R-NSO: a chemistry family with strong temperament

    NASA Astrophysics Data System (ADS)

    Romano, R. M.; Della Védova, C. O.

    2000-04-01

    In this review, an update on the structural properties and theoretical studies of N-sulfinylimine compounds (R-NSO) is reported. They were deduced using several experimental techniques: gas-electron diffraction (GED), X-ray diffraction, 17O NMR, ultraviolet-visible absorption spectroscopy (UV-Vis), FTIR (including matrix studies of molecular randomisation) and Raman (including pre-resonant Raman spectra). Data are compared with those obtained by theoretical calculations. With these tools, excited state geometry using the time-dependent theory was calculated for these kinds of compounds. The existence of pre-resonant Raman effect was reported recently for R-NSO compounds. The configuration of R-NSO compounds was checked for this series confirming the existence of only one syn configuration. This finding is corroborated by theoretical calculations. The method of preparation is also summarised.

  8. The syntheses, molecular structure analyses and DFT studies on new benzil monohydrazone based Schiff bases

    NASA Astrophysics Data System (ADS)

    Elmacı, Gökhan; Duyar, Halil; Aydıner, Burcu; Seferoğlu, Nurgül; Naziri, Mir Abolfazl; Şahin, Ertan; Seferoğlu, Zeynel

    2018-06-01

    Benzil monohydrazone based Schiff bases were synthesized and characterized by 1H NMR, 13C NMR, HRMS as well as by single crystal X-ray diffraction. The geometries of the compounds was optimized by the DFT method and the results were compared with the X-ray diffraction data. The HOMO and LUMO energy gap and also related parameters (electronic chemical potential (μ) and global hardness (η), global electrophilicity index (ω) and softness (s)) were obtained from ground state calculations. In addition, the thermal properties of the compounds were investigated by DTA-TGA. The results showed that the compounds have good thermal properties for practical applications as optic dye.

  9. Design and simulation of a superposition compound eye system based on hybrid diffractive-refractive lenses.

    PubMed

    Zhang, Shuqing; Zhou, Luyang; Xue, Changxi; Wang, Lei

    2017-09-10

    Compound eyes offer a promising field of miniaturized imaging systems. In one application of a compound eye, superposition of compound eye systems forms a composite image by superposing the images produced by different channels. The geometric configuration of superposition compound eye systems is achieved by three micro-lens arrays with different pitches and focal lengths. High resolution is indispensable for the practicability of superposition compound eye systems. In this paper, hybrid diffractive-refractive lenses are introduced into the design of a compound eye system for this purpose. With the help of ZEMAX, two superposition compound eye systems with and without hybrid diffractive-refractive lenses were separately designed. Then, we demonstrate the effectiveness of using a hybrid diffractive-refractive lens to improve the image quality.

  10. An X-ray diffraction method for semiquantitative mineralogical analysis of Chilean nitrate ore

    USGS Publications Warehouse

    Jackson, J.C.; Ericksent, G.E.

    1997-01-01

    Computer analysis of X-ray diffraction (XRD) data provides a simple method for determining the semiquantitative mineralogical composition of naturally occurring mixtures of saline minerals. The method herein described was adapted from a computer program for the study of mixtures of naturally occurring clay minerals. The program evaluates the relative intensities of selected diagnostic peaks for the minerals in a given mixture, and then calculates the relative concentrations of these minerals. The method requires precise calibration of XRD data for the minerals to be studied and selection of diffraction peaks that minimize inter-compound interferences. The calculated relative abundances are sufficiently accurate for direct comparison with bulk chemical analyses of naturally occurring saline mineral assemblages.

  11. An x-ray diffraction method for semiquantitative mineralogical analysis of chilean nitrate ore

    USGS Publications Warehouse

    John, C.; George, J.; Ericksen, E.

    1997-01-01

    Computer analysis of X-ray diffraction (XRD) data provides a simple method for determining the semiquantitative mineralogical composition of naturally occurring mixtures of saline minerals. The method herein described was adapted from a computer program for the study of mixtures of naturally occurring clay minerals. The program evaluates the relative intensities of selected diagnostic peaks for the minerals in a given mixture, and then calculates the relative concentrations of these minerals. The method requires precise calibration of XRD data for the minerals to be studied and selection of diffraction peaks that minimize inter-compound interferences. The calculated relative abundances are sufficiently accurate for direct comparison with bulk chemical analyses of naturally occurring saline mineral assemblages.

  12. SORPTION OF LEAD ON A RUTHENIUM COMPOUND: A MACROSCOPIC AND MICROSCOPIC STUDY

    EPA Science Inventory

    The objective of this study was to elucidate the sorption mechanism of Pb on the high-affinity ruthenium compound with time at pH 6 employing batch methods and X-ray absorption fine structure (XAFS) and X-ray diffraction (XRD) spectroscopies. For the spectroscopic studies, Pb so...

  13. Crystal growth and characterization of the CMR compound La 1.2(Sr,Ca) 1.8Mn 2O 7

    NASA Astrophysics Data System (ADS)

    Velázquez, M.; Haut, C.; Hennion, B.; Revcolevschi, A.

    2000-12-01

    High-quality centimeter-sized single crystals of La 1.2Sr 1.8- yCa yMn 2O 7 (0.0⩽ y⩽0.2) were successfully grown using a floating zone method associated with an image furnace. We present the growth conditions together with a characterization of the single crystals by means of optical and electron microscopy, EDX and ICP⧸AES analysis, DTA-TGA measurements and redox titration, X-ray powder diffraction, Laue X-ray back-reflection and neutron diffraction. We also stress the main aspects of the complex thermodynamical and kinetic behaviors of these compounds.

  14. Mg(1 + x)Ir(1 - x) (x = 0, 0.037 and 0.054), a binary intermetallic compound with a new orthorhombic structure type determined from powder and single-crystal X-ray diffraction.

    PubMed

    Cerný, Radovan; Renaudin, Guillaume; Favre-Nicolin, Vincent; Hlukhyy, Viktor; Pöttgen, Rainer

    2004-06-01

    The new binary compound Mg(1 + x)Ir(1 - x) (x = 0-0.054) was prepared by melting the elements in the Mg:Ir ratio 2:3 in a sealed tantalum tube under an argon atmosphere in an induction furnace (single crystals) or by annealing cold-pressed pellets of the starting composition Mg:Ir 1:1 in an autoclave under an argon atmosphere (powder sample). The structure was independently solved from high-resolution synchrotron powder and single-crystal X-ray data: Pearson symbol oC304, space group Cmca, lattice parameters from synchrotron powder data a = 18.46948 (6), b = 16.17450 (5), c = 16.82131 (5) A. Mg(1 + x)Ir(1 - x) is a topologically close-packed phase, containing 13 Ir and 12 Mg atoms in the asymmetric unit, and has a narrow homogeneity range. Nearly all the atoms have Frank-Kasper-related coordination polyhedra, with the exception of two Ir atoms, and this compound contains the shortest Ir-Ir distances ever observed. The solution of a rather complex crystal structure from powder diffraction, which was fully confirmed by the single-crystal method, shows the power of powder diffraction in combination with the high-resolution data and the global optimization method.

  15. [Preparation and application on compound excipient of sodium stearyl fumarate and plasdone S-630].

    PubMed

    Jiang, Yan-Rong; Zhang, Zhen-Hai; Jia, Xiao-Bin

    2013-01-01

    The compound excipient containing sodium stearyl fumarate and plasdone S-630 was prepared by applying spray drying method. The basic physical properties of compound excipient were studied by solubility test, scanning electron microscope, differential scanning calorimeter, X-ray diffraction and Fourier transform infra-red spectroscopy. The effect of compound excipient on moisture absorption and ferulic acid in vitro dissolution of spray drying power of angelica were investigated. The results showed that the chemical constituents of compound excipient did not change before and after spray drying. The water soluble compound excipient can improve significantly moisture absorption and has application prospect.

  16. The structure of antrocarine E, an ergostane isolated from Antrocaryon klaineanum Pierre (Anacardiaceae).

    PubMed

    Fouokeng, Yannick; Akak, Carine Mvot; Tala, Michel Feussi; Azebaze, Anatole Guy Blaise; Dittrich, Birger; Vardamides, Juliette Catherine; Laatsch, Hartmut

    2017-03-01

    Eight compounds were isolated from the stem bark of Antrocaryon klaineanum, and their structures determined by chemical and spectroscopic methods. Among these compounds, the ergostane-type antrocarine E (1a) is a new compound, although the structure had already been published by mismatching the spectroscopic data with those of 2. In this paper, we are reporting the valid spectroscopic values for antrocarine E and X-ray diffraction results. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders.

    PubMed

    Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei

    2015-03-01

    Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods will become crucially important in the near future.

  18. Survey of conformational isomerism in (E)-2-[(4-bromophenylimino)methyl]-5-(diethylamino)phenol compound from structural and thermochemical points of view.

    PubMed

    Albayrak, Çiğdem; Kaştaş, Gökhan; Odabaşoğlu, Mustafa; Frank, René

    2012-09-01

    In this study, (E)-2-[(4-bromophenylimino)methyl]-5-(diethylamino)phenol compound was investigated by mainly focusing on conformational isomerism. For this purpose, molecular structure and spectroscopic properties of the compound were experimentally characterized by X-ray diffraction, FT-IR and UV-Vis spectroscopic techniques, and computationally by DFT method. The X-ray diffraction analysis of the compound shows the formation of two conformers (anti and eclipsed) related to the ethyl groups of the compound. The two conformers are connected to each other by non-covalent C-H⋯Br and C-H⋯π interactions. The combination of these interactions is resulted in fused R(2)(2)(10) and R(2)(4)(20) synthons which are responsible for the tape structure of crystal packing arrangement. The X-ray diffraction and FT-IR analyses also reveal the existence of enol form in the solid state. From thermochemical point of view, the computational investigation of isomerism includes three studies: the calculation of (a) the rate constants for transmission from anti or eclipsed conformations to transition state by using Eyring equation, (b) the activation energy needed for isomerism by using Arrhenius equation, (c) the equilibrium constant from anti conformer to eclipsed conformer by using the equation including the change in Gibbs free energy. The dependence of tautomerism on solvent types was studied on the basis of UV-Vis spectra recorded in different organic solvents. The results showed that the compound exists in enol form in all solvents except ethyl alcohol. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Photoelectron Diffraction and Holography Studies of 2D Materials and Interfaces

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Mikhail V.; Ogorodnikov, Ilya I.; Usachov, Dmitry Yu.; Laubschat, Clemens; Vyalikh, Denis V.; Matsui, Fumihiko; Yashina, Lada V.

    2018-06-01

    Photoelectron diffraction (XPD) and holography (XPH) are powerful spectroscopic methods that allow comprehensive exploration and characterization of certain structural properties of materials, in particular those of 2D systems and interfaces. Recent developments in XPD and XPH are especially impressive when they are applied to partially disordered systems such as intercalation compounds, doped graphene, buffer layers or adsorbates and imperfectly ordered germanene and phoshporene. In our brief review, we sum up the advances in XPD and XPH studies of 2D materials and discuss the unique opportunities granted by these two interrelated methods.

  20. Syntheses, structures and properties of two new coordination polymers based on D-camphoric acid and 2-phenyl-4,6-diamino-1,3,5-triazine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lun, Huijie; Yang, Jinghe; Jin, Linyu

    2015-05-15

    By hydrothermal method, two new coordination polymers [Co(ca)(phdat)]{sub n} (1), [Ni(ca)(phdat).0.125H{sub 2}O]{sub n} (2) (H{sub 2}ca=D-camphoric acid, phdat=2-phenyl-4,6-diamino-1,3,5-triazine) have been achieved and structurally characterized by IR, elemental analyses, X-ray single-crystal diffraction and TGA. The X-ray single-crystal diffraction reveals that compounds 1 and 2 are isostructural, both of which exhibit two-dimensional layered network built up from paddle-wheel Co{sub 2}(CO{sub 2}){sub 4}/Ni{sub 2}(CO{sub 2}){sub 4} SBUs by ca{sup 2−} ligand. In the existence of π…π stacking interactions between triazine rings and phenyl rings, the 3D networks are constructed with the hanging phdat filled between the neighboring layers. Furthermore, compounds 1–2 exhibit antiferromagneticmore » behavior and compound 2 displays a good activity for methanol oxidation. - Graphical abstract: Two new coordination compounds 1–2 have been synthesized and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses, thermogravimetric analyses, magnetic and electrochemical measurement. - Highlights: • This paper reports two new coordination polymers based on D-camphoric acid. • Both the compounds feather two-dimensional layered networks built up from paddle-wheel SBUs. • The magnetism and electrochemical property are investigated.« less

  1. Optical and diffractive properties of polymer: nanoparticles periodic structures obtained by holographic method

    NASA Astrophysics Data System (ADS)

    Smirnova, T. N.; Sakhno, O. V.; Goldberg, L.; Stumpe, J.

    2007-06-01

    The ordering of nanoparticles in polymer matrix using holographic photopolymerization is investigated. The general approach to the selection of the photopolymerizable compounds is proposed. The nonlinear and luminescent properties of obtained gratings are studied.

  2. Application of δ recycling to electron automated diffraction tomography data from inorganic crystalline nanovolumes.

    PubMed

    Rius, Jordi; Mugnaioli, Enrico; Vallcorba, Oriol; Kolb, Ute

    2013-07-01

    δ Recycling is a simple procedure for directly extracting phase information from Patterson-type functions [Rius (2012). Acta Cryst. A68, 399-400]. This new phasing method has a clear theoretical basis and was developed with ideal single-crystal X-ray diffraction data. On the other hand, introduction of the automated diffraction tomography (ADT) technique has represented a significant advance in electron diffraction data collection [Kolb et al. (2007). Ultramicroscopy, 107, 507-513]. When combined with precession electron diffraction, it delivers quasi-kinematical intensity data even for complex inorganic compounds, so that single-crystal diffraction data of nanometric volumes are now available for structure determination by direct methods. To check the tolerance of δ recycling to missing data-collection corrections and to deviations from kinematical behaviour of ADT intensities, δ recycling has been applied to differently shaped nanocrystals of various inorganic materials. The results confirm that it can phase ADT data very efficiently. In some cases even more complete structure models than those derived from conventional direct methods and least-squares refinement have been found. During this study it has been demonstrated that the Wilson-plot scaling procedure is largely insensitive to sample thickness variations and missing absorption corrections affecting electron ADT intensities.

  3. New Powder Diffraction File (PDF-4) in relational database format: advantages and data-mining capabilities.

    PubMed

    Kabekkodu, Soorya N; Faber, John; Fawcett, Tim

    2002-06-01

    The International Centre for Diffraction Data (ICDD) is responding to the changing needs in powder diffraction and materials analysis by developing the Powder Diffraction File (PDF) in a very flexible relational database (RDB) format. The PDF now contains 136,895 powder diffraction patterns. In this paper, an attempt is made to give an overview of the PDF-4, search/match methods and the advantages of having the PDF-4 in RDB format. Some case studies have been carried out to search for crystallization trends, properties, frequencies of space groups and prototype structures. These studies give a good understanding of the basic structural aspects of classes of compounds present in the database. The present paper also reports data-mining techniques and demonstrates the power of a relational database over the traditional (flat-file) database structures.

  4. Growth of high quality and large-sized Rb 0.3MoO 3 single crystals by molten salt electrolysis method

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Xiong, Rui; Yi, Fan; Yin, Di; Ke, Manzhu; Li, Changzhen; Liu, Zhengyou; Shi, Jing

    2005-05-01

    High quality and large-sized Rb 0.3MoO 3 single crystals were synthesized by molten salt electrolysis method. X-ray diffraction (XRD) patterns and rocking curves, as well as the white beam Laue diffraction of X-ray images show the crystals grown by this method have high quality. The lattice constants evaluated from XRD patterns are a0=1.87 nm, b0=0.75 nm, c0=1.00 nm, β=118.83∘. The in situ selected area electron diffraction (SAED) patterns along the [101¯], [11¯1¯] and [103¯] zone axes at room temperature indicate that the Rb 0.3MoO 3 crystal possess perfect C-centered symmetry. Temperature dependence of the resistivity shows this compound undergoes a metal to semiconductor transition at 183 K.

  5. Molecular modeling of drug-pathophysiological Mtb protein targets: Synthesis of some 2-thioxo-1, 3-thiazolidin-4-one derivatives as anti-tubercular agents

    NASA Astrophysics Data System (ADS)

    Noorulla, K. M.; Suresh, Ayyadurai Jerad; Devaraji, Vinod; Mathew, Bijo; Umesh, Devi

    2017-11-01

    Twenty novel 2-thioxo-1, 3-thiazolidin-4-one derivatives (5a-5t) were synthesized and evaluated for their antitubercular activity. The structure of the compounds was confirmed by IR, NMR and Mass Spectroscopy methods. In addition, single-crystal X-ray diffraction was performed for compound 5a. All the synthesized compounds were screened for their in-vitro antimycobacterial activity against MTB (H37RV, ATCC No: 27294) by Alamar Blue assay method. Compounds 5r, 5k, 5t displayed most potent in-vitro activity with MICs of 0.05, 0.1, 0.2 μg/ml concentrations respectively which are comparatively potent than the standards. Molecular docking and dynamics simulations were performed to find out the plausible mechanism of the titled compounds.

  6. Nano sized La2Co2O6 double perovskite synthesized by sol gel method

    NASA Astrophysics Data System (ADS)

    Solanki, Neha; Lodhi, Pavitra Devi; Choudhary, K. K.; Kaurav, Netram

    2018-05-01

    We report here the synthesis of double perovskite La2Co2O6 (LCO) compound by a sol gel route method. The double perovskite structure of LCO system was confirmed via X-ray diffraction (XRD) analysis. Further, the lattice parameter, unit cell volume and bond length were refined by means of rietveld analysis using the full proof software. Debye Scherer formula was used to determine the particle size. The compound crystallized in triclinic structure with space group P-1 in ambient condition. We also obtained Raman modes from XRD spectra of poly-crystalline LCO sample. These results were interpreted for the observation of phonon excitations in this compound.

  7. Crystallographic site swapping of La3+ ion in BaA'LaTeO6 (A' = Na, K, Rb) double perovskite type compounds: diffraction and photoluminescence evidence for the site swapping.

    PubMed

    Phatak, R; Gupta, S K; Krishnan, K; Sali, S K; Godbole, S V; Das, A

    2014-02-28

    Double perovskite type compounds of the formula BaA'LaTeO6 (A' = Na, K, Rb) were synthesized by solid state route and their crystal structures were determined by Rietveld analysis using powder X-ray diffraction and neutron diffraction data. Na compound crystallizes in the monoclinic system with P2₁/n space group whereas, K and Rb compounds crystallize in Fm3m space group. All the three compounds show rock salt type ordering at B site. Crystal structure analysis shows that La ion occupies A site in Na compound whereas, it occupies B site in K and Rb compounds according to the general formula of AA'BB'O6 for a double perovskite type compound. Effect of this crystallographic site swapping of the La ion was also observed in the photoluminescence study by doping Eu(3+) in La(3+) site. The large decrease in the intensity of the electric dipole ((5)D0-(7)F2) transition in the Rb compound compared to the Na compound indicates that Eu(3+) ion resides in the centrosymmetric octahedral environment in the Rb compound.

  8. High-Resolution Infrared and Electron-Diffraction Studies of Trimethylenecyclopropane ([3]-Radialene)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Corey; Holmes, Joshua; Nibler, Joseph W.

    2013-05-16

    Combined high-resolution spectroscopic, electron-diffraction, and quantum theoretical methods are particularly advantageous for small molecules of high symmetry and can yield accurate structures that reveal subtle effects of electron delocalization on molecular bonds. The smallest of the radialene compounds, trimethylenecyclopropane, [3]-radialene, has been synthesized and examined in the gas phase by these methods. The first high-resolution infrared spectra have been obtained for this molecule of D3h symmetry, leading to an accurate B0 rotational constant value of 0.1378629(8) cm-1, within 0.5% of the value obtained from electronic structure calculations (density functional theory (DFT) B3LYP/cc-pVTZ). This result is employed in an analysis ofmore » electron-diffraction data to obtain the rz bond lengths (in Å): C-H = 1.072 (17), C-C = 1.437 (4), and C=C = 1.330 (4). The analysis does not lead to an accurate value of the HCH angle; however, from comparisons of theoretical and experimental angles for similar compounds, the theoretical prediction of 117.5° is believed to be reliable to within 2°. The effect of electron delocalization in radialene is to reduce the single C-C bond length by 0.07 Å compared to that in cyclopropane.« less

  9. Sub-500  nm hard x ray focusing by compound long kinoform lenses.

    PubMed

    Liao, Keliang; Liu, Jing; Liang, Hao; Wu, Xuehui; Zhang, Kai; Yuan, Qingxi; Yi, Futing; Sheng, Weifan

    2016-01-01

    The focusing performance of polymethyl methacrylate compound long kinoform lenses with 70 μm aperture and 19.5 mm focal length was characterized with 8 keV x rays using the knife-edge scan method at the 4W1A transmission x-ray microscope beamline of Beijing Synchrotron Radiation Facility. The experiment result shows a best FWHM focus size of 440 nm with 31% diffraction efficiency.

  10. Dimeric Matrine-Type Alkaloids from the Roots of Sophora flavescens and Their Anti-Hepatitis B Virus Activities.

    PubMed

    Zhang, Yu-Bo; Zhan, Li-Qin; Li, Guo-Qiang; Wang, Feng; Wang, Ying; Li, Yao-Lan; Ye, Wen-Cai; Wang, Guo-Cai

    2016-08-05

    Six unusual matrine-type alkaloid dimers, flavesines A-F (1-6, respectively), together with three proposed biosynthetic intermediates (7-9) were isolated from the roots of Sophora flavescens. Compounds 1-5 were the first natural matrine-type alkaloid dimers, and compound 6 represented an unprecedented dimerization pattern constructed by matrine and (-)-cytisine. Their structures were elucidated by NMR, MS, single-crystal X-ray diffraction, and a chemical method. The hypothetical biogenetic pathways of 1-6 were also proposed. Compounds 1-9 exhibited inhibitory activities against hepatitis B virus.

  11. Examining the ground layer of St. Anthony from Padua 19th century oil painting by Raman spectroscopy, scanning electron microscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Vančo, Ľubomír; Kadlečíková, Magdaléna; Breza, Juraj; Čaplovič, Ľubomír; Gregor, Miloš

    2013-01-01

    In this paper we studied the material composition of the ground layer of a neoclassical painting. We used Raman spectroscopy (RS) as a prime method. Thereafter scanning electron microscopy combined with energy dispersive spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD) were employed as complementary techniques. The painting inspected was of the side altar in King St. Stephen's Church in Galanta (Slovakia), signed and dated by Jos. Chr. Mayer 1870. Analysis was carried out on both covered and uncovered ground layers. Four principal compounds (barite, lead white, calcite, dolomite) and two minor compounds (sphalerite, quartz) were identified. This ground composition is consistent with the 19th century painting technique used in Central Europe consisting of white pigments and white fillers. Transformation of lead white occurred under laser irradiation. Subdominant Raman peaks of the components were measured. The observed results elucidate useful partnership of RS and SEM-EDS measurements supported by X-ray powder diffraction as well as possibilities and limitations of non-destructive analysis of covered lower layers by RS.

  12. Abinitio powder x-ray diffraction and PIXEL energy calculations on thiophene derived 1,4 dihydropyridine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karthikeyan, N., E-mail: karthin10@gmail.com; Sivakumar, K.; Pachamuthu, M. P.

    We focus on the application of powder diffraction data to get abinitio crystal structure determination of thiophene derived 1,4 DHP prepared by cyclocondensation method using solid catalyst. Crystal structure of the compound has been solved by direct-space approach on Monte Carlo search in parallel tempering mode using FOX program. Initial atomic coordinates were derived using Gaussian 09W quantum chemistry software in semi-empirical approach and Rietveld refinement was carried out using GSAS program. The crystal structure of the compound is stabilized by one N-H…O and three C-H…O hydrogen bonds. PIXEL lattice energy calculation was carried out to understand the physical naturemore » of intermolecular interactions in the crystal packing, on which the total lattice energy is contributed into Columbic, polarization, dispersion, and repulsion energies.« less

  13. Aqueous phase synthesis, crystal structure and biological study of isoxazole extensions of pyrazole-4-carbaldehyde derivatives

    NASA Astrophysics Data System (ADS)

    Wazalwar, Sachin S.; Banpurkar, Anita R.; Perdih, Franc

    2017-12-01

    A series of novel isoxazol derivatives was synthesized by green route in aqueous phase at room temperature by the reaction of 3-methyl-4H-isoxazol-5-one with 3-(substituted phenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde by one-pot Knoevenagel condensation method using sodium benzoate as a catalyst. Compounds were characterized on the basis of IR, 1H NMR, mass spectroscopy and melting point determination. Crystal structures of five compounds were determined by X-ray diffraction. The compounds formed were screened for antibacterial and antifungal activity. Some compounds showed activity close to ampicillin against E. coli, S. aureus, and S. pyogenus. Two compounds showed antifungal activity against C. albicans close to standard greseofulvin.

  14. The crystallographic, spectroscopic and theoretical studies on (E)-2-(((4-chlorophenyl)imino)methyl)-5-(diethylamino)phenol and (E)-2-(((3-chlorophenyl)imino)methyl)-5-(diethylamino)phenol molecules

    NASA Astrophysics Data System (ADS)

    Demirtaş, Güneş; Dege, Necmi; Ağar, Erbil; Uzun, Sümeyye Gümüş

    2018-01-01

    Two new salicylideneaniline (SA) derivative compounds (E)-2-(((4-chlorophenyl)imino)methyl)-5-(diethylamino)phenol, compound (I), and (E)-2-(((3-chlorophenyl)imino)methyl)-5-(diethylamino)phenol, compound (II), have been synthesized and characterized by single crystal X-ray diffraction, IR spectroscopy, 1H NMR, 13C NMR and theoretical methods. Both of the compounds which are Schiff base derivatives are isomer of each other. While the compound (I) crystallizes in centrosymmetric monoclinic space group P 21/c, the compound (II) crystallizes in orthorhombic space group P 212121. The theoretical parameters of the molecules have been calculated by using Hartree-Fock (HF) and density functional theory (DFT/B3LYP) with 6-31G (d,p) basis set. These theoretical parameters have been compared with the experimental parameters obtained by XRD. The experimental geometries of the compounds have been superimposed with the theoretical geometries calculated by HF and DFT methods. Furthermore, the theoretical IR calculations, molecular electrostatic potential maps (MEP) and frontier molecular orbitals have been created for the compounds.

  15. Three New Highly Oxygenated Germacranolides from Carpesium Divaricatum and Their Cytotoxic Activity.

    PubMed

    Zhang, Tao; Si, Jin-Guang; Zhang, Qiu-Bo; Chen, Jia-Huan; Ding, Gang; Zhang, Hong-Wu; Jia, Hong-Mei; Zou, Zhong-Mei

    2018-05-03

    Three new highly oxygenated ( 2 ⁻ 4 ), and two known ( 1 and 5 ) germacranolides, were isolated from the whole plant of Carpesium divaricatum . The planar structures and relative configurations of the new compounds were determined by detailed spectroscopic analysis. The absolute configuration of 1 was established using the circular dichroism (CD) method and X-ray diffraction, and the stereochemistry of the new compounds 2 ⁻ 4 were determined using similar CD spectra with 1 . The new compound 2 and the known compound 5 exhibited potent cytotoxicity against hepatocellular cancer (Hep G2) and human cervical cancer (HeLa) cells, superior to those of the positive control cis -platin.

  16. Synthesis, Structural and Antioxidant Studies of Some Novel N-Ethyl Phthalimide Esters

    PubMed Central

    Chandraju, Siddegowda; Win, Yip-Foo; Tan, Weng Kang; Quah, Ching Kheng; Fun, Hoong-Kun

    2015-01-01

    A series of N-ethyl phthalimide esters 4(a-n) were synthesized and characterized by spectroscopic studies. Further, the molecular structure of majority of compounds were analysed by single crystal X-ray diffraction studies. The X-ray analysis revealed the importance of substituents on the crystal stability and molecular packing. All the synthesized compounds were tested for in vitro antioxidant activity by DPPH radical scavenging, FRAP and CUPRAC methods. Few of them have shown good antioxidant activity. PMID:25742494

  17. Synthesis, structural and antioxidant studies of some novel N-ethyl phthalimide esters.

    PubMed

    Chidan Kumar, C S; Loh, Wan-Sin; Chandraju, Siddegowda; Win, Yip-Foo; Tan, Weng Kang; Quah, Ching Kheng; Fun, Hoong-Kun

    2015-01-01

    A series of N-ethyl phthalimide esters 4(a-n) were synthesized and characterized by spectroscopic studies. Further, the molecular structure of majority of compounds were analysed by single crystal X-ray diffraction studies. The X-ray analysis revealed the importance of substituents on the crystal stability and molecular packing. All the synthesized compounds were tested for in vitro antioxidant activity by DPPH radical scavenging, FRAP and CUPRAC methods. Few of them have shown good antioxidant activity.

  18. Transport properties of bismuth telluride compound prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Khade, Poonam; Bagwaiya, Toshi; Bhattacharya, Shovit; Rayaprol, Sudhindra; Sahu, Ashok K.; Shelke, Vilas

    2017-05-01

    We have synthesized bismuth telluride compound using mechanical alloying and hot press sintering method. The phase formation, crystal structure was evaluated by X-ray diffraction and Raman spectroscopy. The scanning electron microscopy images indicated sub-micron sized grains. We observed low value of thermal conductivity 0.39 W/mK at room temperature as a result of grain size reduction by increasing deformation. The performance of the samples can be improved by reducing the grain size, which increases the grain boundary scattering.

  19. Lanostane triterpenoids from Ganoderma hainanense J. D. Zhao.

    PubMed

    Peng, XingRong; Liu, JieQing; Xia, JianJun; Wang, CuiFang; Li, XuYang; Deng, YuanYuan; Bao, NiMan; Zhang, ZhiRun; Qiu, MingHua

    2015-06-01

    Chemical investigation of the fruiting bodies of Ganoderma hainanense resulted in isolation of fourteen lanostane triterpenoids, including nine ganoderma acids and five ganoderma alcohols, together with five known compounds. Structural elucidation was determined using extensive spectroscopic technologies, Mosher's method and X-ray single crystal diffraction. Three of the compounds showed inhibitory activities against HL-60, SMMC-7721, A-549 and MCF-7 cells with IC50 values of 15.0-40.0 μM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Spin orbit and tetragonal crystalline field interaction in the valence band of CuInSe2-related ordered vacancy compound CuIn7Se12

    NASA Astrophysics Data System (ADS)

    Reena Philip, Rachel; Pradeep, B.; Shripathi, T.

    2005-04-01

    Thin films of the off-tie-line ordered vacancy compound CuIn7Se12 were deposited on optically flat glass substrates by multi-source co-evaporation method. The preliminary structural, compositional and morphological characterizations were done using X-ray diffraction, energy dispersive X-ray analysis and atomic force microscopy. The X-ray diffraction data were further analysed applying the Nelson-Riley method and CTB plus = experiment rule, respectively, for lattice constants (a = 5.746 Å and c = 11.78 Å) and bond length estimations (RCu-Se = 2.465 Å and RIn-Se = 2.554 Å). A detailed analysis of the optical absorption spectra of the compound, which exhibited a three-fold optical absorption structure in the fundamental gap region, yielded three characteristic direct energy gaps at 1.37, 1.48(7) and 1.72(8) eV indicative of valence band splitting, which were evaluated using Hopfield's quasi-cubic model. The 0.04 eV increase in spin-orbit splitting parameter of the compound (0.27 eV) compared to that of CuInSe2 (0.23 eV) is found to be suggestive of the smaller contribution of Cu d orbitals to hybridization (determined by the linear hybridization model) in this Cu-deficient compound. Spectral response spectra exhibit, in addition to a maximum around 1.34 ± 0.03 eV, two other defect transition peaks near 1.07 and 0.85 eV. The binding energies of Cu, In and Se in the compound were determined using X-ray photoelectron spectroscopy.

  1. Photocatalytic study and superparamagnetic nature of Zn-doped MgFe2O4 colloidal size nanocrystals prepared by solvothermal reflux method.

    PubMed

    Manohar, A; Krishnamoorthi, C

    2017-08-01

    Biocompatible Mg 1-x Zn x Fe 2 O 4 (x=0.2, 0.4, 0.5, 0.6 & 0.8) nanoparticles were synthesized by solvothermal reflux method. All compounds were crystallized in cubic spinel structure with slightly enhance of lattice parameter with biocompatible substituent Zn 2+ concentration. All compounds were shown spherical geometry with average particle diameter is around 12nm (colloidal size). The spinel structure formation was confirmed by X-ray diffraction,electron diffraction, infrared, Raman shift measurements. Infrared analysis shows oleic acid coating on the surface of nanoparticles and TGA analysis shows that oleic acid desorbs from nanoparticle by decomposition at around 400°C. UV-Vis-NIR spectra show all the compounds show energy band gap in the semiconductor range (≈ 1.9eV). All compounds show superparamagnetic characteristics at room temperature with enhanced saturated mass magnetization (M s ) with Zn 2+ concentration up to x=0.5 and then reduces with further enhance of x up to 0.8. The M s changes were ascribed to occupation of Zn 2+ at tetrahedral sites and proportional enhance of Fe 3+ at octahedral sites. The enhanced Fe 3+ concentration at octahedral sublattice leads to formation Fe 3+ -O 2- -Fe 3+ networks which favor antiferromagnetic interactions due to superexchange phenomenon. Photocatalytic activity of all compounds were studied through methylene blue (MB) degradation analysis. All compounds show ≈ 96% degradation of MB upon 70min irradiation of light on photoreactor vessel. In addition, photocatalytic activity (degradation efficiency) enhances with Zn 2+ concentration in MgFe 2 O 4 . The Zn 2+ substitution enhances both M s and photocatalytic activity biocompatible of MgFe 2 O 4 nanoparticles. Copyright © 2017. Published by Elsevier B.V.

  2. The structural and magnetic phase transitions in a ``parent'' Fe pnictide compound

    NASA Astrophysics Data System (ADS)

    Ni, Ni; Allred, Jared; Cao, Huibo; Tian, Wei; Liu, Lian; Cho, Kyuil; Krogstad, Matthew; Ma, Jie; Taddei, Keith; Tanatar, Makariy; Prozorov, Ruslan; Matsuda, Masaaki; Rosenkranz, Stephan; Uemura, Yasutomo; Jiang, Shan

    2015-03-01

    We will present transport, thermodynamic, synchrotron X-ray, neutron diffraction, μSR, ARPES and polarized optical image measurements on the ``parent'' compound of the 112 high Tc superconducting Fe pnictide family. Structural and magnetic phase transitions are revealed. Detailed magnetic structure was solved by single crystal neutron diffraction. We will discuss the similarity and difference of these transitions comparing to the parent compounds of other Fe pnictide superconductors.

  3. Synchrotron X-ray powder diffraction data of LASSBio-1515: A new N-acylhydrazone derivative compound

    NASA Astrophysics Data System (ADS)

    Costa, F. N.; Braz, D.; Ferreira, F. F.; da Silva, T. F.; Barreiro, E. J.; Lima, L. M.; Colaço, M. V.; Kuplich, L.; Barroso, R. C.

    2014-02-01

    In this work, synchrotron X-ray powder diffraction data allowed for a successful indexing of LASSBio-1515 compound, candidate to analgesic and anti-inflammatory activity. X-ray powder diffraction data collected in transmission and high-throughput geometries were used to analyze this compound. The X-ray wavelength of the synchrotron radiation used in this study was determined to be λ=1.55054 Å. LASSBio-1515 was found to be monoclinic with space group P21/c and unit cell parameters a=11.26255(16) Å, b=12.59785(16) Å, c=8.8540(1) Å, β=90.5972(7)° and V=1256.17(3) Å3.

  4. Structure determination and characterization of two rare-earth molybdenum borate compounds: LnMoBO(6) (Ln = La, Ce).

    PubMed

    Zhao, Dan; Cheng, Wen-Dan; Zhang, Hao; Hang, Shu-Ping; Fang, Ming

    2008-07-28

    The structural, optical, and electronic properties of two rare-earth molybdenum borate compounds, LnMoBO(6) (Ln = La, Ce), have been investigated by means of single-crystal X-ray diffraction, elemental analyses, and spectral measurements, as well as calculations of energy band structures, density of states, and optical response functions by the density functional method. The title compounds, which crystallize in monoclinic space group P2(1)/c, possess a similar network of interconnected [Ce(2)(MoO(4))(2)](2+) chains and [BO(2)](-) wavy chains. Novel 1D molybdenum oxide chains are contained in their three-dimensional (3D) networks. The calculated results of crystal energy band structure by the density functional theory (DFT) method show that the solid-state compound LaMoBO(6) is a semiconductor with indirect band gaps.

  5. Dielectric and transport properties of CaTiO3

    NASA Astrophysics Data System (ADS)

    Bhadala, Falguni; Suthar, Lokesh; Roy, M.; Jha, Vikash Kumar

    2018-05-01

    The ceramic sample of CaTiO3 (CTO) has been prepared by standard high temperature solid state reaction method using high purity oxides. The formation of the compound as well as structural analysis has been carried out by X-ray diffraction method. The dielectric constant and dielectric loss as a function of frequency (20kHz-10MHz) and temperature (RT-490K) have been measured. The dc conductivity has been measured and activation energy was calculated using the Arrhenius relation. The Enthalpy change (ΔH), Specific heat and Weight-loss of the compound have been measured using DTA/TGA techniques. The results are discussed in detail.

  6. Synthesis, spectroscopy and computational studies of some biologically important hydroxyhaloquinolines and their novel derivatives

    NASA Astrophysics Data System (ADS)

    Malecki, Grzegorz; Nycz, Jacek E.; Ryrych, Ewa; Ponikiewski, Lukasz; Nowak, Maria; Kusz, Joachim; Pikies, Jerzy

    2010-04-01

    A series crystalline compounds of methyl and phosphinyl derivatives of 2-methylquinolin-8-ol ( 1a) and related 5,7-dichloro-2-methylquinolin-8-ol ( 1b) were quantitatively prepared and characterized by microanalysis, IR, UV-vis and multinuclear NMR spectroscopy. Five of them have been characterized by single crystal X-ray diffraction method. The known compounds, 8-methoxy-2-methylquinoline ( 2a) and 8-methoxyquinoline ( 2d), were synthesised by a new route. NMR solution spectra at ambient temperature, showed readily diagnostic H-1 and C-13 signals from methyl groups. The geometries of the studied compounds were optimized in singlet states using the density functional theory (DFT) method with B3LYP functional. In general, the predicted bond lengths and angles are in a good agreement with the values based on the X-ray crystal structure data. Electronic spectra were calculated by TDDFT method.

  7. New phenylpropanoid and 6H-dibenzo[b,d]pyran-6-one derivatives from the stems of Dasymaschalon rostratum.

    PubMed

    Yu, Zhang-Xin; Niu, Zhi-Gang; Li, Xiao-Bao; Zheng, Cai-Juan; Song, Xin-Ming; Chen, Guang-Ying; Song, Xiao-Ping; Han, Chang-Ri; Wu, Shu-Xian

    2017-04-01

    Three new phenylpropanoid derivatives, dasymaroacid A (1), dasymaroesters B and C (2 and 3), and one new polyoxygenated 6H-dibenzo[b,d]pyran-6-one derivative dasymarolactone D (4), together with seven known compounds (5-11), were isolated from the stems of Dasymaschalon rostratum Merr. Compounds 1 and 2 are unusual phenylpropanoid derivatives with a polymethyl substituted cyclopentene conjugated diketone as a substituent, and 3 is a unique cinnamic acid detective with a polymethyl substituted cyclohexene conjugated triketone as a substituent. Their structures were elucidated by extensive spectroscopic methods and chemical method, and 4 was further confirmed by the single crystal X-ray diffraction method. Compounds 1-4 and 7 showed weak anti-HIV-1 activities with EC 50 values ranged from 16.44 to 25.91μM. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Quantitative analysis of crystalline pharmaceuticals in tablets by pattern-fitting procedure using X-ray diffraction pattern.

    PubMed

    Takehira, Rieko; Momose, Yasunori; Yamamura, Shigeo

    2010-10-15

    A pattern-fitting procedure using an X-ray diffraction pattern was applied to the quantitative analysis of binary system of crystalline pharmaceuticals in tablets. Orthorhombic crystals of isoniazid (INH) and mannitol (MAN) were used for the analysis. Tablets were prepared under various compression pressures using a direct compression method with various compositions of INH and MAN. Assuming that X-ray diffraction pattern of INH-MAN system consists of diffraction intensities from respective crystals, observed diffraction intensities were fitted to analytic expression based on X-ray diffraction theory and separated into two intensities from INH and MAN crystals by a nonlinear least-squares procedure. After separation, the contents of INH were determined by using the optimized normalization constants for INH and MAN. The correction parameter including all the factors that are beyond experimental control was required for quantitative analysis without calibration curve. The pattern-fitting procedure made it possible to determine crystalline phases in the range of 10-90% (w/w) of the INH contents. Further, certain characteristics of the crystals in the tablets, such as the preferred orientation, size of crystallite, and lattice disorder were determined simultaneously. This method can be adopted to analyze compounds whose crystal structures are known. It is a potentially powerful tool for the quantitative phase analysis and characterization of crystals in tablets and powders using X-ray diffraction patterns. Copyright 2010 Elsevier B.V. All rights reserved.

  9. [Study of selegiline and related compounds with x-ray diffraction].

    PubMed

    Simon, K; Böcskei, Z; Török, Z

    1992-09-01

    Selegiline and its parent compounds were studied by X-ray diffraction. It was established that the racemates of primary and secondary amines (p-fluoro-amphetamine, methamphetamine, p-fluoro-methamphetamine) hydrochloride do not form racemic compounds but crystalline as conglomerates, at the same time tertiary amines like selegiline and p-fluoro-selegiline hydrochlorides do. The crystalline structure of five enantiomeric hydrochlorides were determined, the CPhe-C-C-N torsion angle is anti-periplanar in all cases but in p-fluoro-amphetamine where it is gauche.

  10. Synthesis optimisation and characterisation of the organic-inorganic layered materials ZnS(m-xylylenediamine){sub 1/2} and ZnS(p-xylylenediamine){sub 1/2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luberda-Durnaś, K.; Guillén, A. González; Łasocha, W., E-mail: lasocha@chemia.uj.edu.pl

    2016-06-15

    Hybrid organic-inorganic layered materials of the type ZnS(amine){sub 1/2}, where amine=m-xylylenediamine (MXDA) or p-xylylenediamine (PXDA), were synthesised using a simple solvothermal method. Since the samples crystallised in the form of very fine powder, X-ray powder diffraction techniques were used for structural characterisation. The crystal structure studies, involving direct methods, show that both compounds crystallised in the orthorhombic crystal system, but in different space groups: ZnS(MXDA){sub 1/2} in non-centrosymmetric Ccm2{sub 1}, ZnS(PXDA){sub 1/2} in centrosymmetric Pcab. The obtained materials are built according to similar orders: semiconducting monolayers with the formula ZnS, parallel to the (010) plane, are separated by diamines. Themore » organic and inorganic fragments are connected by covalent bonds between metal atoms of the layers and nitrogen atoms of the amino groups. The optical properties of the hybrid materials differ from those of their bulk counterpart. In both compounds a blue-shift of about 0.8 or 0.9 eV was observed with reference to the bulk phase of ZnS. - Highlights: • New hybrid compounds: ZnS(MXDA){sub 1/2} and ZnS(PXDA){sub 1/2} were obtained. • Hybrids were studied using XRD, TG/DSC, XRK, SEM, UV–vis spectroscopy. • Structures of both materials were solved by powder diffraction methods.« less

  11. Dicoumarol complexes of Cu(II) based on 1,10-phenanthroline: Synthesis, X-ray diffraction studies, thermal behavior and biological evaluation

    NASA Astrophysics Data System (ADS)

    Dholariya, Hitesh R.; Patel, Ketan S.; Patel, Jiten C.; Patel, Kanuprasad D.

    2013-05-01

    A series of Cu(II) complexes containing dicoumarol derivatives and 1, 10-phenanthroline have been synthesized. Structural and spectroscopic properties of ligands were studied on the basis of mass spectra, NMR (1H and 13C) spectra, FT-IR spectrophotometry and elemental analysis, while physico-chemical, spectroscopic and thermal properties of mixed ligand complexes have been studied on the basis of infrared spectra, mass spectra, electronic spectra, powder X-ray diffraction, elemental analysis and thermogravimetric analysis. X-ray diffraction study suggested the suitable octahedral geometry for hexa-coordinated state. The kinetic parameters such as order of reaction (n), energy of activation (Ea), entropy (S*), pre-exponential factor (A), enthalpy (H*) and Gibbs free energy (G*) have been calculated using Freeman-Carroll method. Ferric-reducing antioxidant power (FRAP) of all complexes were measured. All the compounds were screened for their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Streptococcus pyogenes and Bacillus subtilis, while antifungal activity against Candida albicans and Aspergillus niger have been carried out. Also compounds against Mycobacterium tuberculosis shows clear enhancement in the anti-tubercular activity upon copper complexation.

  12. Combined Approach for the Structural Characterization of Alkali Fluoroscandates: Solid-State NMR, Powder X-ray Diffraction, and Density Functional Theory Calculations.

    PubMed

    Rakhmatullin, Aydar; Polovov, Ilya B; Maltsev, Dmitry; Allix, Mathieu; Volkovich, Vladimir; Chukin, Andrey V; Boča, Miroslav; Bessada, Catherine

    2018-02-05

    The structures of several fluoroscandate compounds are presented here using a characterization approach combining powder X-ray diffraction and solid-state NMR. The structure of K 5 Sc 3 F 14 was fully determined from Rietveld refinement performed on powder X-ray diffraction data. Moreover, the local structures of NaScF 4 , Li 3 ScF 6 , KSc 2 F 7 , and Na 3 ScF 6 compounds were studied in detail from solid-state 19 F and 45 Sc NMR experiments. The 45 Sc chemical shift ranges for six- and seven-coordinated scandium environments were defined. The 19 F chemical shift ranges for bridging and terminal fluorine atoms were also determined. First-principles calculations of the 19 F and 45 Sc NMR parameters were carried out using plane-wave basis sets and periodic boundary conditions (CASTEP), and the results were compared with the experimental data. A good agreement between the calculated shielding constants and experimental chemical shifts was obtained. This demonstrates the good potential of computational methods in spectroscopic assignments of solid-state 45 Sc NMR spectroscopy.

  13. Preparation and structure of BiCrTeO{sub 6}: A new compound in Bi–Cr–Te–O system. Thermal expansion studies of Cr{sub 2}TeO{sub 6}, Bi{sub 2}TeO{sub 6} and BiCrTeO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vats, Bal Govind; Phatak, Rohan; Krishnan, K.

    Graphical abstract: A new compound BiCrTeO{sub 6} in the Bi–Cr–Te–O system was prepared by solid state route and characterized by X-ray diffraction method. The crystal structure of BiCrTeO{sub 6} shows that there is one distinct site for bismuth (Bi) atom (pink color), one chromium rich (Cr/Te = 68/32) (blue/green color), one tellurium rich (Te/Cr = 68/32) sites (green/blue color), and one distinct site for oxygen (O) atom (red color) in the unit cell. All cations in this structure show an octahedral coordination with oxygen atoms at the corners. The thermogram (TG) of the compound in air shows that it ismore » stable up to 1103 K and decomposes thereafter. The thermal expansion behaviour of BiCrTeO{sub 6} was studied using high temperature X-ray diffraction method from room temperature to 923 K under vacuum of 10{sup −8} atmosphere and showed positive thermal expansion with the average volume thermal expansion coefficients of 16.0 × 10{sup −6}/K. - Highlights: • A new compound BiCrTeO{sub 6} in Bi–Cr–Te–O system was prepared and characterized. • The crystal structure of BiCrTeO{sub 6} was determined by Rietveld refinement method. • The structure of BiCrTeO{sub 6} shows an octahedral coordination for all the metal ions. • The thermal expansion behavior of BiCrTeO{sub 6} from room temperature to 923 K showed a positive thermal expansion. • The average volume thermal expansion coefficient for BiCrTeO{sub 6} is 16.0 × 10{sup −6}/K. - Abstract: A new compound BiCrTeO{sub 6} in Bi–Cr–Te–O system was prepared by solid state reaction of Bi{sub 2}O{sub 3}, Cr{sub 2}O{sub 3} and H{sub 6}TeO{sub 6} in oxygen and characterized by X-ray diffraction (XRD) method. It could be indexed on a trigonal lattice, with the space group P-31c, unit cell parameters a = 5.16268(7) Å and c = 9.91861(17) Å. The crystal structure of BiCrTeO{sub 6} was determined by Rietveld refinement method using the powder XRD data. Structure shows that there is one distinct site for bismuth (Bi) atom, one chromium rich (Cr/Te = 68/32), and one tellurium rich (Te/Cr = 68/32) sites, and one distinct site for oxygen (O) atom in the unit cell. All cations in this structure show an octahedral coordination with oxygen atoms at the corners. The thermogravimetric analysis (TGA) of the compound in air shows that it is stable up to 1103 K and decomposes thereafter. The thermal expansion behavior of Cr{sub 2}TeO{sub 6}, Bi{sub 2}TeO{sub 6} and BiCrTeO{sub 6} was studied using High Temperature X-ray diffraction (HTXRD) method from room temperature to 973, 873 and 923 K respectively under vacuum of 10{sup −8} atmospheres. All the compounds showed positive thermal expansion with the average volume thermal expansion coefficients of 14.38 × 10{sup −6}/K, 22.0 × 10{sup −6}/K and 16.0 × 10{sup −6}/K respectively.« less

  14. A novel organic–inorganic hybrid with Anderson type polyanions as building blocks: (C{sub 6}H{sub 10}N{sub 3}O{sub 2}){sub 2}Na(H{sub 2}O){sub 2}[Al(OH){sub 6}Mo{sub 6}O{sub 18}]·6H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thabet, Safa, E-mail: safathabet@hotmail.fr; Ayed, Brahim, E-mail: brahimayed@yahoo.fr; Haddad, Amor

    Graphical abstract: Display Omitted Highlights: ► Synthesis of a novel inorganic–organic hybrid compound based on Anderson polyoxomolybdates. ► Characterization by X-ray diffraction, IR and UV–Vis spectroscopies of the new compound. ► Potential applications in catalysis, biochemical analysis and electrical conductivity of the organic–inorganic compound. -- Abstract: A new organic–inorganic hybrid compound based on Anderson polyoxomolybdates, (C{sub 6}H{sub 10}N{sub 3}O{sub 2}){sub 2}Na(H{sub 2}O){sub 2}[Al(OH){sub 6}Mo{sub 6}O{sub 18}]·6H{sub 2}O (1) have been isolated by the conventional solution method and characterized by single-crystal X-ray diffraction, infrared, ultraviolet spectroscopy and Thermogravimetric Analysis (TGA). This compound crystallized in the triclinic system, space group P−1, withmore » a = 94.635(1) Å, b = 10.958(1) Å, c = 11.602(1) Å, α = 67.525(1)°, β = 71.049(1)°, γ = 70.124(1)° and Z = 1. The crystal structures of the compounds exhibit three-dimensional supramolecular assembly based on the extensive hydrogen bonding interactions between organic cations, sodium cations, water molecules and Anderson polyoxoanions. The infrared spectrum fully confirms the X-ray crystal structure and the UV spectrum of the title compound exhibits an absorption peak at 210 nm.« less

  15. Synthesis of amorphous carbon from bio-products by drying method

    NASA Astrophysics Data System (ADS)

    Pamungkas, Diajeng I.; Haikal, Anas; Baqiya, Malik A.; Cahyono, Yoyok; Darminto

    2018-04-01

    Amorphous carbon (a-C) has extensively been studied in the last two decades due to many superior properties. Amorphous carbon was successfully prepared by carbonization of organic compounds exposed up to 200°C. Organic compounds that used in this research were coconut sap, lontar palm sap and their derivatives. The X-ray diffraction pattern shows that carbonization of organic compounds produce amorphous carbon phase at 2θ =20°. The infrared absorption in the region from 500 to 4000 cm-1 were resolved into several peaks, which were assigned to C-H, C=C, C-O, C=O and O-H. Four point probe method was also used to measure the conductivity and band gap of each material, resulting in 1.73 - 29.6 S/m and 0.08 - 0.49 eV respectively.

  16. Probing the structure of heterogeneous diluted materials by diffraction tomography.

    PubMed

    Bleuet, Pierre; Welcomme, Eléonore; Dooryhée, Eric; Susini, Jean; Hodeau, Jean-Louis; Walter, Philippe

    2008-06-01

    The advent of nanosciences calls for the development of local structural probes, in particular to characterize ill-ordered or heterogeneous materials. Furthermore, because materials properties are often related to their heterogeneity and the hierarchical arrangement of their structure, different structural probes covering a wide range of scales are required. X-ray diffraction is one of the prime structural methods but suffers from a relatively poor detection limit, whereas transmission electron analysis involves destructive sample preparation. Here we show the potential of coupling pencil-beam tomography with X-ray diffraction to examine unidentified phases in nanomaterials and polycrystalline materials. The demonstration is carried out on a high-pressure pellet containing several carbon phases and on a heterogeneous powder containing chalcedony and iron pigments. The present method enables a non-invasive structural refinement with a weight sensitivity of one part per thousand. It enables the extraction of the scattering patterns of amorphous and crystalline compounds with similar atomic densities and compositions. Furthermore, such a diffraction-tomography experiment can be carried out simultaneously with X-ray fluorescence, Compton and absorption tomographies, enabling a multimodal analysis of prime importance in materials science, chemistry, geology, environmental science, medical science, palaeontology and cultural heritage.

  17. Crystal structure, spectroscopic studies and quantum mechanical calculations of 2-[((3-iodo-4-methyl)phenylimino)methyl]-5-nitrothiophene.

    PubMed

    Özdemir Tarı, Gonca; Gümüş, Sümeyye; Ağar, Erbil

    2015-04-15

    The title compound, 2-[((3-iodo-4-methyl)phenylimino)methyl]-5-nitrothiophene, C12H9O2N2I1S1, was synthesized and characterized by IR, UV-Vis and single-crystal X-ray diffraction technique. The molecular structure was optimized at the B3LYP, B3PW91 and PBEPBE levels of the density functional method (DFT) with the 6-311G+(d,p) basis set. Using the TD-DFT method, the electronic absorption spectra of the title compound was computed in both the gas phase and ethanol solvent. The harmonic vibrational frequencies of the title compound were calculated using the same methods with the 6-311G+(d,p) basis set. The calculated results were compared with the experimental determination results of the compound. The energetic behavior such as the total energy, atomic charges, dipole moment of the title compound in solvent media were examined using the B3LYP, B3PW91 and PBEPBE methods with the 6-311G+(d,p) basis set by applying the Onsager and the polarizable continuum model (PCM). The molecular orbitals (FMOs) analysis, the molecular electrostatic potential map (MEP) and the nonlinear optical properties (NLO) for the title compound were obtained with the same levels of theory. And then thermodynamic properties for the title compound were obtained using the same methods with the 6-311G(d,p) basis set. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Sonochemical syntheses of a new nano-sized porous lead(II) coordination polymer as precursor for preparation of lead(II) oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ranjbar, Zohreh Rashidi; Morsali, Ali

    2009-11-01

    Nano-scale of a new Pb(II) coordination polymer, {[Pb(bpacb)(OAc)]·DMF} n ( 1); bpacbH = 3,5-bis[(4-pyridylamino)carbonyl]benzoic acid], were synthesized by a sonochemical method. The nano-material was characterized by scanning electron microscopy, X-ray powder diffraction (XRD), 1H, 13C NMR, IR spectroscopy and elemental analyses. Crystal structure of compound 1 was determined by X-ray crystallography. Calcination of the nano-sized compound 1 at 700 °C under air atmospheres yields PbO nanoparticles. Thermal stability of nano-sized and single crystalline samples of compound 1 were studied and compared with each other.

  19. Ionic liquid catalyzed one-pot multi-component synthesis, characterization and antibacterial activity of novel chromeno[2,3-d]pyrimidin-8-amine derivatives

    NASA Astrophysics Data System (ADS)

    Kanakaraju, Sankari; Prasanna, Bethanamudi; Basavoju, Srinivas; Chandramouli, G. V. P.

    2012-06-01

    An efficient, simple and convenient method for the one-pot multi-component synthesis of novel chromeno[2,3-d]pyrimidin-8-amine derivatives has been accomplished by starting from α-naphthol, aryl aldehydes, malononitrile and NH4Cl. The reaction has been catalyzed by 1-butyl-3-methylimidazolium tetrafluoroborate [bmim]BF4 ionic liquid. The newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR, mass spectra, and elemental analysis. The structure of compound 4a was confirmed by single-crystal X-ray diffraction. All the synthesized compounds were evaluated for their in vitro antibacterial activity.

  20. The assembly of two isomorphous coordination compounds based on 1,4-cyclohexanedicarboxylic acid and 2,4-diamino-6-phenyl-1,3,5-triazine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xue-Fei; Wang, Xiao; Lun, Hui-Jie

    The compounds [Co(e,a-cis-1,4-chdc)(phdat)]{sub n} (1) and [Cd(e,a-cis-1,4-chdc)(phdat)]{sub n} (2) have been synthesized under hydrothermal method by using 1,4-cyclohexanedicarboxylic acid (1,4-H{sub 2}chdc), 2,4-diamino-6-phenyl-1,3,5-triazine (phdat) as well as CoCl{sub 2}·6H{sub 2}O, CdCl{sub 2}·2.5H{sub 2}O respectively and characterized by IR spectra, X-ray single-crystal diffraction, powder X-ray single-crystal diffraction (PXRD), elemental analyses and thermogravimetric analyses (TGA). The results show the compounds 1 and 2 are isomorphous and exhibit paddle-wheel dinuclear Co{sub 2}(CO{sub 2}){sub 4}/Cd{sub 2}(CO{sub 2}){sub 4} units, which are further connected to 1D chain structures by μ{sub 4}:η{sup 1}:η{sup 1}:η{sup 1}:η{sup 1} 1,4-chdc{sup 2–} ligands and extended into a 3D structures via differentmore » hydrogen bonding and π…π stacking interactions. Furthermore, compound 1 exhibits antiferromagnetic behavior and compound 2 displays luminescent behavior at solid state. - Graphical abstract: Two isomorphous coordination compounds 1–2 have been synthesized and characterized by XRD, IR spectra and TGA etc. Compound 1 and 2 display antiferromagnetic behavior and luminescent behavior respectively. - Highlights: • Two novel polymers based on 1,4-cyclohexanedicarboxylic acid have been synthesized. • Compounds 1 and 2 feather 1D chain structure built up from paddle-wheel SBUs. • The magnetism of 2 is investigated. • The electrochemical property and luminescent property of 1 are investigated.« less

  1. Structure of N-(5-ethyl-[1,3,4]-thiadiazole-2-yl)toluenesulfonamide by combined X-ray powder diffraction, 13C solid-state NMR and molecular modelling.

    PubMed

    Hangan, Adriana; Borodi, Gheorghe; Filip, Xenia; Tripon, Carmen; Morari, Cristian; Oprean, Luminita; Filip, Claudiu

    2010-12-01

    The crystal structure solution of the title compound is determined from microcrystalline powder using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct-space methods with information from (13)C solid-state NMR (SSNMR), and molecular modelling using the GIPAW (gauge including projector augmented-wave) method. The space group is Pbca with one molecule in the asymmetric unit. The proposed methodology proves very useful for unambiguously characterizing the supramolecular arrangement adopted by the N-(5-ethyl-[1,3,4]-thiadiazole-2-yl)toluenesulfonamide molecules in the crystal, which consists of extended double strands held together by C-H···π non-covalent interactions.

  2. Apparatus for use in examining the lattice of a semiconductor wafer by X-ray diffraction

    NASA Technical Reports Server (NTRS)

    Parker, D. L.; Porter, W. A. (Inventor)

    1978-01-01

    An improved apparatus for examining the crystal lattice of a semiconductor wafer utilizing X-ray diffraction techniques was presented. The apparatus is employed in a method which includes the step of recording the image of a wafer supported in a bent configuration conforming to a compound curve, produced through the use of a vacuum chuck provided for an X-ray camera. The entire surface thereof is illuminated simultaneously by a beam of incident X-rays which are projected from a distant point-source and satisfy conditions of the Bragg Law for all points on the surface of the water.

  3. Photoluminescence studies on Cd(1-x)Zn(x)S:Mn2+ nanocrystals.

    PubMed

    Sethi, Ruchi; Kumar, Lokendra; Pandey, A C

    2009-09-01

    Highly monodispersed, undoped and doped with Mn2+, binary and ternary (CdS, ZnS, Cd(1-x)Zn(x)S) compound semiconductor nanocrystals have been synthesized by co-precipitation method using citric acid as a stabilizer. As prepared sample are characterized by X-ray diffraction, Small angle X-ray scattering, Transmission electron microscope, Optical absorption and Photoluminescence spectroscopy, for their optical and structural properties. X-ray diffraction, Small angle X-ray scattering and Transmission electron microscope results confirm the preparation of monodispersed nanocrystals. Photoluminescence studies show a significant blue shift in the wavelength with an increasing concentration of Zn in alloy nanocrystals.

  4. Synthesis, characterization and corrosion inhibition properties of benzamide-2-chloro-4-nitrobenzoic acid and anthranilic acid-2-chloro-4-nitrobenzoic acid for mild steel corrosion in acidic medium

    NASA Astrophysics Data System (ADS)

    Pandey, Archana; Verma, Chandrabhan; Singh, B.; Ebenso, Eno E.

    2018-03-01

    The present study deals with the synthesis of two new compounds namely, benzamide - 2-chloro-4-nitrobenzoic acid (BENCNBA) and anthranilic acid-2-chloro-4-nitrobenzoic acid (AACNBA) using solid phase reactions. The phase diagram studies revealed that formation of the investigated compounds occurs in 1:1 molar ratio. The synthesized compounds were characterized using several spectral techniques such as FT-IR, 1H and 13C NMR, UV-Vis, powder X-ray diffraction (PXRD). Single crystal XRD (SCXRD) study showed that both BENCNBA and AACNBA compounds crystallize in triclinic crystal system with P-1 space group. Further, the presence of intermolecular hydrogen bonding between the constituent components was also supported by single crystal X-ray diffraction (SCXRD) method. Heat of mixing, entropy of fusion, roughness parameter, interfacial energy and excess thermodynamic functions have also been computed using the enthalpy of fusion values derived from differential scanning calorimeter (DSC) study. The inhibition effect of BENCNBA and AACNBA on the mild steel corrosion in hydrochloric acid solution was tested using electrochemical methods. Electrochemical impedance spectroscopy (EIS) study revealed that both BENCNBA and AACNBA behaved as interface corrosion inhibitors and showed maximum inhibition efficiencies of 95.71% and 96.42%, respectively at 400 ppm (1.23 × 10-3 M) concentration. Potentiodynamic polarization (PDP) measurements suggested that BENCNBA and AACNBA acted as mixed type corrosion inhibitors. EIS and PDP results showed that BENCNBA and AACNBA act as efficient corrosion inhibitors for mild steel and their inhibition efficiencies enhances on increasing their concentrations.

  5. Phenoxo bridged dinuclear Zn(II) Schiff base complex as new precursor for preparation zinc oxide nanoparticles: Synthesis, characterization, crystal structures and photoluminescence studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeednia, S., E-mail: sami_saeednia@yahoo.com; Iranmanesh, P.; Ardakani, M. Hatefi

    Highlights: • A novel nano-scale Zn(II) complex was synthesized by solvothermal method. • Chemical structure of the nanostructures was characterized as well as bulk complex. • The photoluminescence property of the complex was investigated at room temperature. • The thermogravimetry and differential thermal analysis were carried out. • Thermal decomposition of the nanostructures was prepared zinc oxide nanoparticles. - Abstract: Nanoparticles of a novel Zn(II) Schiff base complex, [Zn(HL)NO{sub 3}]{sub 2} (1), (H{sub 2}L = 2-[(2-hydroxy-propylimino) methyl] phenol), was synthesized by using solvothermal method. Shape, morphology and chemical structure of the synthesized nanoparticles were characterized by scanning electron microscopy (SEM),more » X-ray powder diffraction (XRD), Fourier Transform Infrared Spectoscopy (FT-IR) and UV–vis spectroscopy. Structural determination of compound 1 was determined by single-crystal X-ray diffraction. The results were revealed that the zinc complex is a centrosymmetric dimer in which deprotonated phenolates bridge the two five-coordinate metal atoms and link the two halves of the dimer. The thermal stability of compound 1 was analyzed by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The effect of the initial substrates concentration and reaction time on size and morphology of compound 1 nanostructure was investigated as well. Furthermore, the luminescent properties of the complex 1 were examined. ZnO nanoparticles with diameter between 15 and 20 nm were simply synthesized by solid-state transformation of compound 1 at 700 °C.« less

  6. Synthesis and anti-lung cancer activity of a novel arsenomolybdate compound

    NASA Astrophysics Data System (ADS)

    Zhu, Tian-Tian; Wang, Juan; Chen, Song-Hu

    2017-12-01

    The new compound based on Wells-Dawson-type arsenomolybdate: [{Cu10(pz)11Cl4}{As2IIIAs2VMo6VMo12VIO62}]·H2O (1) has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction analysis, X-ray powder diffraction (XRPD), XPS spectroscopy and thermogravimetric analysis (TG). Compound 1 is consisted of two As caps Wells-dawson-type arsenomolybdate and {Cu10(py)11} complexes by chloride bridge. In addition, the antitumor effects of the title compound 1 were studied on three human lung cancer cells (A549, SK-LU-1 and SW1573). The results showed that compared with the positive reference drug carboplatin, compound 1 displayed efficient antitumor activity.

  7. The Onium Compounds

    NASA Astrophysics Data System (ADS)

    Tsarevsky, Nicolay V.; Slaveykova, Vera; Manev, Stefan; Lazarov, Dobri

    1997-06-01

    The onium salts are of a big interest for theoretical and structural chemistry, and for organic synthesis. Some representatives of the group (e.g. ammonium salts) were known from the oldest times. Many onium salts are met the nature: ammonium salts (either as inorganic salts, and organic derivatives, e.g. aminoacids, salts of biogenic amines and alkaloids, etc.); oxonium salts (plant pigments as anthocyans are organic oxonium compounds), etc. In 1894 C. Hartmann and V. Meyer prepared the first iodonium salts - 4-iododiphenyliodonium hydrogensulfate and diphenyliodonium salts, and suggested the ending -onium for all compounds with properties similar to those of ammonium salts. Nowadays onium compounds of almost all nonmetals are synthesised and studied. A great variety of physical methods: diffraction (e.g. XRD) and spectral methods (IR-, NMR-, and UV-spectra), as well as the chemical properties and methods of preparation of onium salts have been used in determination of the structure of these compounds. The application of different onium salts is immense. Ammonium, phosphonium and sulfonium salts are used as phase-transfer catalysts; diazonium salts - for the preparation of dyes, metalochromic and pH-indicators. All the onium salts and especially diazonium and iodonium salts are very useful reagents in organic synthesis.

  8. Investigation on the structural, magnetic and magnetocaloric properties of nanocrystalline Pr-deficient Pr1-xSrxMnO3-δ manganites

    NASA Astrophysics Data System (ADS)

    Arun, B.; Athira, M.; Akshay, V. R.; Sudakshina, B.; Mutta, Geeta R.; Vasundhara, M.

    2018-02-01

    We have investigated the structural, magnetic and magnetocaloric properties of nanocrystalline Pr-deficient Pr1-xSrxMnO3-δ Perovskite manganites. Rietveld refinement of the X-ray powder diffraction patterns confirms that all the studied compounds have crystallized into an orthorhombic structure with Pbnm space group. Transmission electron microscopy analysis reveals nanocrystalline compounds with crystallite size less than 50 nm. The selected area electron diffraction patterns reveal the highly crystalline nature of the compounds and energy dispersive X-ray spectroscopic analysis shows that the obtained compositions are nearly identical with the nominal one. The oxygen stoichiometry is estimated by iodometric titration method and stoichiometric compositions are confirmed by X-ray Fluorescence Spectrometry analysis. A large bifurcation is observed in the ZFC/FC curves and Arrott plots not show a linear relation but have a convex curvature nature. The temperature dependence of inverse magnetic susceptibility at higher temperature confirms the existence of ferromagnetic clusters. The experimental results reveal that the reduction of crystallite size to nano metric scale in Pr-deficient manganites adversely influences structural, magnetic and magnetocaloric properties as compared to its bulk counterparts reported earlier.

  9. SOD activity and DNA binding properties of a new symmetric porphyrin Schiff base ligand and its metal complexes.

    PubMed

    Çay, Sevim; Köse, Muhammet; Tümer, Ferhan; Gölcü, Ayşegül; Tümer, Mehmet

    2015-12-05

    4-Methoxy-2,6-bis(hydroxymethyl)phenol (1) was prepared from the reaction of 4-methoxyphenol and formaldehyde. The compound (1) was then oxidized to the 4-methoxy-2,6-diformylphenol (2) compound. Molecular structure of compound (2) was determined by X-ray diffraction method. A new symmetric porphyrin Schiff base ligand 4-methoxy-2,6-bis[5-(4-iminophenyl)-10,15,20-triphenylporphyrin]phenol (L) was prepared from the reaction of the 5-(4-aminophenyl)-10,15,20-triphenylporphyrin (TTP-NH2) and the compound (2) in the toluene solution. The metal complexes (Cu(II), Fe(III), Mn(III), Pt(II) and Zn(II)) of the ligand (L) were synthesized and characterized by the spectroscopic and analytical methods. The DNA (fish sperm FSdsDNA) binding studies of the ligand and its complexes were performed using UV-vis spectroscopy. Additionally, superoxide dismutase activities of the porphyrin Schiff base metal complexes were investigated. Additionally, electrochemical, photoluminescence and thermal properties of the compounds were investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Synthesis and characterization of polycrystalline CdSiP2

    NASA Astrophysics Data System (ADS)

    Bereznaya, S. A.; Korotchenko, Z. V.; Sarkisov, S. Yu; Korolkov, I. V.; Kuchumov, B. M.; Saprykin, A. I.; Atuchin, V. V.

    2018-05-01

    A modified method is proposed for the CdSiP2 compound synthesis from elemental starting components. The developed technique allows completing the synthesis process within 30 h. The phase and chemical composition of the synthesized material were confirmed by the x-ray diffraction analysis and scanning electron microscopy with energy-dispersive spectroscopy. The transparent crystal block sized 3 × 3 × 2 mm3 was cut from the polycrystalline ingot and characterized by optical methods.

  11. [Fine stereo structure for natural organic molecules, a preliminary study. II. Melting point influenced by structure factors].

    PubMed

    Lu, Y; Zheng, Q; Lu, D; Ma, P; Chen, Y

    1995-06-01

    Crystal structures of two compounds from Tripterygium wilfordii Hook f. have been determined by X-ray diffraction method. Structure factors influencing melting point of solid state have been analysed. Crystal class (or space group), recrystallization solvent, force between molecules and fine changes of molecular structures will all cause melting point changes of crystal substance.

  12. Effects of graphene oxide doping on the structural and superconducting properties of YBa2Cu3O7-δ

    NASA Astrophysics Data System (ADS)

    Dadras, S.; Falahati, S.; Dehghani, S.

    2018-05-01

    In this research we reported the effects of graphene oxide (GO) doping on the structural and superconducting properties of YBa2Cu3O7-δ (YBCO) high temperature superconductors. We synthesized YBCO powder by sol-gel method. After calcination, the powder mixed with different weight percent (0, 0.1, 0.3, 0.7, 1 wt.%) of GO. Refinement of X-ray diffraction (XRD) was carried out by material analysis using diffraction (MAUD) program to obtain the structural parameters such as lattice parameters, site occupancy of different atoms and orthorhombicity value for the all samples. Results show that GO doping does not change the structure of YBCO compound, Cu (1), Cu (2) and oxygen sites occupancy. It seems that GO remains between the grains and can play the role of weak links. We found that GO addition to YBCO compound increases transition temperature (TC). The oxygen contents of the all GO-doped samples are increased with respect to the pure one. The strain (ɛ) of the samples obtained from Williamson-Hall method, varies with increasing of GO doping. The scanning electron microscopy (SEM) images of the samples show better YBCO grain connections by GO doping.

  13. Crystal structure, spectral property, antimicrobial activity and DFT calculation of N-(coumarin-3-yl)-N‧-(2-amino-5-phenyl-1,3,4-thiadiazol-2-yl) urea

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Song; Zhang, Kong-Yan; Chen, Li-Chuan; Li, Yao-Xin; Chai, Lan-Qin

    2017-10-01

    N-(coumarin-3-yl)-N‧-(2-amino-5-phenyl-1,3,4-thiadiazol-2-yl) urea was synthesized and characterized by elemental analysis, IR, 1H NMR, 13C NMR, UV-Vis and emission spectroscopy, as well as by single-crystal X-ray diffraction. X-ray crystallographic analyses have indicated that the crystal structure consists of two dimethyl sulfoxide (DMSO) solvent molecules and the structural geometry of DMSO is a trigonal pyramid in shape. In the crystal structure, a self-assembling two-dimensional (2-D) layer supramolecular architecture is formed through intermolecular hydrogen bonds, Cdbnd O···π (thiadiazole ring) and π···π stacking interactions. The geometry of the compound has been optimized by the DFT method and the results are compared with the X-ray diffraction data. The electronic transitions and spectral features of the compound were carried out by using DFT/B3LYP method. In addition, the antimicrobial activity was also studied, and the highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), and HOMO-LUMO gap were also calculated.

  14. Structural, antimicrobial and computational characterization of 1-benzoyl-3-(5-chloro-2-hydroxyphenyl)thiourea.

    PubMed

    Atiş, Murat; Karipcin, Fatma; Sarıboğa, Bahtiyar; Taş, Murat; Çelik, Hasan

    2012-12-01

    A new thiourea derivative, 1-benzoyl-3-(5-chloro-2-hydroxyphenyl)thiourea (bcht) has been synthesized from the reaction of 2-amino-4-chlorophenol with benzoyl isothiocyanate. The title compound has been characterized by elemental analyses, FT-IR, (13)C, (1)H NMR spectroscopy and the single crystal X-ray diffraction analysis. The structure of bcht derived from X-ray diffraction of a single crystal has been presented. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method using 6-311++G(d,p) basis set. The complete assignments of all vibrational modes were performed on the basis of the total energy distributions (TED). Isotropic chemical shifts ((13)C NMR and (1)H NMR) were calculated using the gauge-invariant atomic orbital (GIAO) method. Theoretical calculations of bond parameters, harmonic vibration frequencies and nuclear magnetic resonance are in good agreement with experimental results. The UV absorption spectra of the compound that dissolved in ACN and MeOH were recorded. Bcht was also screened for antimicrobial activity against pathogenic bacteria and fungi. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. CdO-NPs; synthesis from 1D new nano Cd coordination polymer, characterization and application as anti-cancer drug for reducing the viability of cancer cells

    NASA Astrophysics Data System (ADS)

    Afzalian Mend, Behnaz; Delavar, Mahmoud; Darroudi, Majid

    2017-04-01

    The hexagonal CdO nano-particles (CdO-NPs) was prepared using new nano Cd coordination polymer, [Cd(NO3)(bipy)(pzca)]n (1) as a precursor, through direct calcination process at 500 °C. The precursor (1) was synthesized by sonochemical method. The new nano compound (1) was characterized by IR spectroscopy, elemental analyses, X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and thermal gravimetric analyses. The structure of nano coordination polymer was determined by comparing the XRD pattern of nano and single-crystal of compound (1). The nano CdO was characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). In addition, the activity and efficiency of nano CdO as an anti-cancer drug was studied on cancer cells with different concentration. The results shows that the viability of cancer cells reduced above 2 μg/mL of CdO-NPs concentration.

  16. Novel pyrazolyl-s-triazine derivatives, molecular structure and antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Sharma, Anamika; Ghabbour, Hazem; Khan, Shams Tabrez; de la Torre, Beatriz G.; Albericio, Fernando; El-Faham, Ayman

    2017-10-01

    A new series of pyrazole-containing s-triazine derivatives were synthesized by reaction of the corresponding s-triazinyl hydrazine derivatives with acetylacetone in the presence of HClO4 or DMF/TEA. The former method allowed the preparation of the target products with higher yields. All compounds were fully characterized. X-ray single crystal diffraction for two representative compounds (4-(4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)morpholine and N-benzyl-4-(3,5-dimethyl-1H-pyrazol-1-yl)-6-(piperidin-1-yl)-1,3,5-triazin-2-amine) was studied and the molecular structures were optimized using the DFT/B3LYP method. The structures were found to be in agreement with X-ray structures. The antimicrobial and antifungal activity of the prepared compounds were tested against the growth of several microorganisms.

  17. New supramolecular cocrystal of 2-amino-5-chloropyridine with 3-methylbenzoic acids: Syntheses, structural characterization, Hirshfeld surfaces and quantum chemical investigations

    NASA Astrophysics Data System (ADS)

    Thanigaimani, Kaliyaperumal; Khalib, Nuridayanti Che; Temel, Ersin; Arshad, Suhana; Razak, Ibrahim Abdul

    2015-11-01

    2-amino-5-chloropyridine: 3-methylbenzoic acid [(2A5CP) (3MBA)] (I) cocrystal was synthesized and its single crystal was grown by slow evaporation technique. The structure of the grown crystal was elucidated by using single crystal X-ray diffraction technique. The cocrystal belongs to the monoclinic crystallographic system with space group P21/c, Z = 4, and a = 13.3155 (5) Å, b = 5.5980 (2) Å, c = 18.3787 (7) Å, β = 110.045 (2)°. The crystal structure is stabilized by Npyridine-H•••Odbnd C, Cdbnd O-H•••Npyridine and C-H⋯O type hydrogen bonding interactions. The presence of unionized -COOH functional group in the cocrystal was identified both by spectral methods and X-ray structural analysis. The experimental studies obtained by using the methods of single crystal X-ray analysis, powder X-ray diffraction (PXRD) analysis, FTIR, 1H NMR and 13C NMR spectroscopies confirmed the predicted cocrystal. The supramolecular assembly of the cocrystal was analyzed and discussed. The molecular geometry, vibrational frequencies of the compound in the ground state were calculated by using the density functional theory (DFT) method with 6-311++G (d,p) basis set and were compared with the experimental data. Additionally, HOMO-LUMO energy gap, natural bond orbital (NBO) analysis and nonlinear optical (NLO) properties of the compound were performed at B3LYP/6-311++G (d,p) level. Hirshfeld surfaces were used to confirm the existence of inter-molecular interactions in the compound.

  18. Allelopathic Polyketides from an Endolichenic Fungus Myxotrichum SP. by Using OSMAC Strategy.

    PubMed

    Yuan, Chao; Guo, Yu-Hua; Wang, Hai-Ying; Ma, Xiao-Jun; Jiang, Tao; Zhao, Jun-Ling; Zou, Zhong-Mei; Ding, Gang

    2016-02-03

    Three new polyketides myxotritones A-C (2-4), together with a new natural product 7,8-dihydro-7R,8S-dihydroxy-3,7-dimethyl-2-benzopyran-6-one (1) were obtained from the endolichenic fungus Myxotrichum sp. by using OMSAC (One Strain, Many Compounds) method. The planar structures of these new compounds were determined by NMR experiment and HRESIMS data, and the absolute configuration of 1 was established by X-ray diffraction, and the stereochemistry of the new compounds 2-4 were determined by same biosynthesis origin, and similar CD spectra with 1. Allelopathic test showed that compound 4 significantly retarded root elongation of Arabidopsis thaliana seed, indicating that this fungus might contribute to the defense of its host lichen. From the view of biosynthetic pathway, all four compounds 1-4 might be originated from Non-Reduced Polyketide synthase (NR-PKS).

  19. Homologous compounds of type ARO3(ZnO)m in the system Ga-Sn-Zn-O

    NASA Astrophysics Data System (ADS)

    Eichhorn, Simon; Schmid, Herbert; Assenmacher, Wilfried; Mader, Werner

    2017-02-01

    Several members of hitherto unknown homologous compounds [Sn0.5Zn0.5]GaO3(ZnO)m (m=3-7) of the general formula ARO3(ZnO)m were prepared by solid state methods from the binary oxides in sealed Pt-tubes. UV-vis measurements confirm these compounds to be transparent oxides with an optical band gap in the UV region with Eg≈3 eV. Rietveld refinements on powder samples of [Sn0.5Zn0.5]GaO3(ZnO)m proved the compounds to be isostructural with InGaO3(ZnO)m, where In3+ on octahedral sites is replaced statistically by Sn4+ and Zn2+ in equal amounts preserving an average charge of 3+. Additionally, the structure of [Sn0.5Zn0.5]GaO3(ZnO)3 has been determined from flux-grown single crystals by X-ray diffraction (R 3 ̅ m , Z=3, a=3.2387(7) Å, c=41.78(1) Å, 19 parameters, 201 independent reflections, R1=0.047, wR2=0.074). The compound [Sn0.5Zn0.5]GaO3(ZnO)3 is isostructural with InGaO3(ZnO)3. [Sn0.5Zn0.5]GaO3(ZnO)3 was furthermore analyzed by High Angle Annular Dark Field (HAADF) scanning TEM and EELS spectroscopic imaging, supporting the structure model derived from X-ray diffraction data.

  20. Penifupyrone, a new cytotoxic funicone derivative from the endophytic fungus Penicillium sp. HSZ-43.

    PubMed

    Chen, Ming-Jun; Fu, Yang-Wu; Zhou, Qun-Ying

    2014-01-01

    Penifupyrone (1), a new funicone derivative, has been isolated from the endophytic fungus Penicillium sp. HSZ-43, along with three known analogues, funicone (2), deoxyfunicone (3) and 3-O-methylfunicone (4). These structures were identified by using spectroscopic methods, including UV, MS, 1D and 2D NMR experiments. The structure of 1 was confirmed by single-crystal X-ray diffraction analysis. All the isolated compounds were evaluated for cytotoxicity against human oral epidermoid carcinoma KB cells, and compound 1 exhibited moderate cytotoxic activity with IC50 value of 4.7 μM.

  1. Synthesis and Biological Evaluation of Thiosemicarbazide Derivatives Endowed with High Activity toward Mycobacterium Bovis.

    PubMed

    Sardari, Soroush; Feizi, Samaneh; Rezayan, Ali Hossein; Azerang, Parisa; Shahcheragh, Seyyed Mohammad; Ghavami, Ghazaleh; Habibi, Azizollah

    2017-01-01

    Thiosemicarbazides are potent intermediates for the synthesis of pharmaceutical and bioactive materials and thus, they are used extensively in the field of medicinal chemistry. The imine bond (-N=CH-) in this compounds are useful in organic synthesis, in particular for the preparation of heterocycles and non-natural β-aminoacids. In this paper the synthesis of some new thiosemicarbazide derivatives by condensation reaction of various aldehydes or ketones with 4-phenylthiosemicarbazide or thiosemicarbazide is reported. This synthesis method has the advantages of high yields and good bioactivity. The structures of these compounds were confirmed by IR, mass, 1 H NMR, 13 C NMR, and single-crystal X-ray diffraction studies. All of these compounds were tested for their in-vitro anti-mycobacterial activity. The influence of the functional group and position of substituent on anti-bacterial activity of compounds is investigated too. The preliminary results indicated that all of the tested compounds showed good activity against the test organism. The compounds 11 and 30 showed the highest anti-tubercular activity (0.39 μg/mL). This synthesis method has the advantages of high yields and good bioactivity.

  2. Neutron diffraction, specific heat and magnetization studies on Nd{sub 2}CuTiO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rayaprol, S., E-mail: sudhindra@csr.res.in; Kaushik, S. D.; Kumar, Naresh

    2016-05-23

    Structural and physical properties of a double-perovskite compound, Nd{sub 2}CuTiO{sub 6} have been studied using neutron diffraction, magnetization and specific heat measurements. The compound crystallizes in an orthorhombic structure in space group Pnma. The interesting observation we make here is that, though no long range magnetic order is observed between 2 and 300 K, the low temperature specific heat and magnetic susceptibility behavior exhibits non-Fermi liquid like behavior in this insulating compound. The magnetization and specific heat data are presented and discussed in light of these observations.

  3. Structure elucidation of 3-[1-(6-methoxy-2-naphtyl)ethyl]-6-(2,4-dichlorophenyl)-7H-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazine, C 23H 18Cl 2N 4OS from synchrotron X-ray powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gündoğdu, Gülsüm; Aytaç, Sevim Peri; Müller, Melanie

    The 3-[1-(6-methoxy-2-naphtyl)ethyl]-6-(2,4-dichlorophenyl)-7H-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazine, C 23H 18Cl 2N 4OS compound was synthesized, as a member of the family of novel potential anticancer agents. The structure of the title compound was characterized by IR, 1H-NMR, mass spectroscopy, and elemental analysis, previously. In this study, the crystal structure of this compound has been determined from synchrotron X-ray powder diffraction data. The crystal structure was solved by simulated annealing and the final structure was achieved by Rietveld refinement method using soft restrains on all interatomic bond lengths and angles. This compound crystallizes in space groupP21,Z= 2, with the unit-cell parametersa= 15.55645(11) Å,b= 8.61693(6) Å,c= 8.56702(6)more » Å,β= 104.3270(4)°, andV= 1112.68(1) Å 3. In the crystal structure, strong C-H∙∙∙πand weak intermolecular hydrogen-bonding interactions link the molecules into a three-dimensional network. The molecules are in a head-to-head arrangement in the unit cell.« less

  4. 3D visualization of molecular structures in the MOGADOC database

    NASA Astrophysics Data System (ADS)

    Vogt, Natalja; Popov, Evgeny; Rudert, Rainer; Kramer, Rüdiger; Vogt, Jürgen

    2010-08-01

    The MOGADOC database (Molecular Gas-Phase Documentation) is a powerful tool to retrieve information about compounds which have been studied in the gas-phase by electron diffraction, microwave spectroscopy and molecular radio astronomy. Presently the database contains over 34,500 bibliographic references (from the beginning of each method) for about 10,000 inorganic, organic and organometallic compounds and structural data (bond lengths, bond angles, dihedral angles, etc.) for about 7800 compounds. Most of the implemented molecular structures are given in a three-dimensional (3D) presentation. To create or edit and visualize the 3D images of molecules, new tools (special editor and Java-based 3D applet) were developed. Molecular structures in internal coordinates were converted to those in Cartesian coordinates.

  5. A novel Schiff base derivative: Synthesis, two-photon absorption properties and application for bioimaging

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Fang, Bin; Kong, Lin; Li, Xiangzi; Feng, Zhijun; Wu, Yunjun; Uvdal, Kajsa; Hu, Zhangjun

    2018-06-01

    A novel donor-π-acceptor-π-donor type (D-π-A-π-D‧) Schiff base derivative (L) has been designed and synthesized. The structure of L is confirmed by single-crystal X-ray diffraction analysis as well. The photophysical properties of compound L were comprehensively investigated by using both experimental and theoretical methods. The results indicate that L exhibits large Stokes shift and moderate two-photon action (2PA) cross-section in the near infrared (NIR) region. Furthermore, the confocal microscopy imaging study demonstrates that compound L could penetrate into cells and target the cellular mitochondria compartment. Due to its low cytotoxicity, compound L provides a promising tool for directly lighting up the mitochondria compartment in living HepG2 cells.

  6. Influence of Ca2+ doped on structural and optical properties of RPO4 (R = Ce3+, Nd3+ and Pr3+) compounds

    NASA Astrophysics Data System (ADS)

    Lemdek, El Mokhtar; Benkhouja, Khalil; Touhtouh, Samira; Sbiaai, Khalid; Arbaoui, Abdezzahid; Bakasse, Mina; Hajjaji, Abdelowahed; Boughaleb, Yahia; Saez-Puche, Regino

    2013-11-01

    This paper investigates the effect of doping by Ca2+ ions on the structural and optical properties of RPO4 (R = Ce3+, Nd3+ and Pr3+) compounds. A simple ceramic method in air at 900 °C was used to prepare all compounds. The structural characterization of compounds was carried out by using X-ray powder diffraction (XRD) and IR spectroscopy. Optical properties were characterized by reflectance spectral data and by colorimeter. The results reveal a single monazite phase for x values up to 0.4. The lattice parameters of the synthesized samples decrease linearly with the reduction of ionic radius of the Ce3+. These rare earth phosphates based materials have a potential to be adopted for the eco-friendly colorants for paints and plastics.

  7. Neutron diffraction studies of the Na-ion battery electrode materials NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yahia, H. Ben; Essehli, R., E-mail: ressehli@qf.org.qa; Avdeev, M.

    The new compounds NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} were synthesized by sol-gel method and their crystal structures were determined by using neutron powder diffraction data. These compounds were characterized by galvanometric cycling and cyclic voltammetry. NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} crystallize with a stuffed α-CrPO{sub 4}-type structure. The structure consists of a 3D-framework made of octahedra and tetrahedra that are sharing corners and/or edges generating channels along [100] and [010], in which the sodium atoms are located. Of significance, in the structuresmore » of NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} a statistical disorder Ni{sup 2+}/Cr{sup 3+} was observed on both the 8g and 4a atomic positions, whereas in NaCoCr{sub 2}(PO{sub 4}){sub 3} the statistical disorder Co{sup 2+}/Cr{sup 3+} was only observed on the 8g atomic position. When tested as negative electrode materials, NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} delivered specific capacities of 352, 385, and 368 mA h g{sup −1}, respectively, which attests to the electrochemical activity of sodium in these compounds. - Highlights: • NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} were synthesized by sol-gel method. • The crystal structures were determined by using neutron powder diffraction data. • The three compounds crystallize with a stuffed α-CrPO{sub 4}-type structure. • The three compounds were tested as anodes in sodium-ion batteries. • Relatively high specific capacities were obtained for these compounds.« less

  8. Probing hydrogen positions in hydrous compounds: information from parametric neutron powder diffraction studies.

    PubMed

    Ting, Valeska P; Henry, Paul F; Schmidtmann, Marc; Wilson, Chick C; Weller, Mark T

    2012-05-21

    We demonstrate the extent to which modern detector technology, coupled with a high flux constant wavelength neutron source, can be used to obtain high quality diffraction data from short data collections, allowing the refinement of the full structures (including hydrogen positions) of hydrous compounds from in situ neutron powder diffraction measurements. The in situ thermodiffractometry and controlled humidity studies reported here reveal that important information on the reorientations of structural water molecules with changing conditions can be easily extracted, providing insight into the effects of hydrogen bonding on bulk physical properties. Using crystalline BaCl2·2H2O as an example system, we analyse the structural changes in the compound and its dehydration intermediates with changing temperature and humidity levels to demonstrate the quality of the dynamic structural information on the hydrogen atoms and associated hydrogen bonding that can be obtained without resorting to sample deuteration.

  9. Chemical characterization of 4140 steel implanted by nitrogen ions

    NASA Astrophysics Data System (ADS)

    Niño, E. D. V.; Pinto, J. L.; Dugar-Zhabon, V.; Henao, J. A.

    2012-06-01

    AISI SAE 4140 steel samples of different surface roughness which are implanted with 20 keV and 30 keV nitrogen ions at a dose of 1017 ions/cm2 are studied. The crystal phases of nitrogen compositions of the implanted samples, obtained with help of an x-ray diffraction method, are confronted with the data reported by the International Centre for Diffraction Data (ICDD) PDF-2. The implantation treatment is realized in high-voltage pulsed discharges at low pressures. The crystal structure of the implanted solid surfaces is analyzed by the x-ray diffraction technique which permits to identify the possible newly formed compounds and to identify any change in the surface structure of the treated samples. A decrease in the intensity of the plane (110), a reduction of the cell unity in values of 2-theta and a diminishing of the crystallite dimensions in comparison with non-implanted samples are observed.

  10. Diffraction contrast near heterostructure boundaries--its nature and its application.

    PubMed

    Bangert, U; Harvey, A J

    1993-03-01

    Two phenomena of diffraction contrast arising at or near III-V compound heterostructure boundaries are described and quantitatively analyzed. In the first observation alpha/delta-fringe contrast at boundaries inclined to the electron beam is discussed. Theoretical fringe profiles are generated according to the theory by Gevers et al. in 1964, which are then compared with experimental profiles. Applications to the characterization of AlGaAs/GaAs and InGaAsP/InP interfaces regarding composition, abruptness, and lattice tilt are presented. In the second study a new and very sensitive characterization technique for the direct determination of the strain in strained-layer structures is described. The method uses electron microscope images of 90 degrees-wedges, which exhibit a shift in the thickness contours due to strain relaxation at the edge, and compares these to images which are obtained theoretically by implementing finite element strain calculations in wedges in the dynamical theory of diffraction contrast. The considerable potential of this method is demonstrated on the strain analysis of strained GaInAs/GaAs structures.

  11. Crystal structure and low-energy Einstein mode in ErV{sub 2}Al{sub 20} intermetallic cage compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winiarski, Michał J., E-mail: mwiniarski@mif.pg.gda.pl; Klimczuk, Tomasz

    Single crystals of a new ternary aluminide ErV{sub 2}Al{sub 20} were grown using a self-flux method. The crystal structure was determined by powder X-ray diffraction measurements and Rietveld refinement, and physical properties were studied by means of electrical resistivity, magnetic susceptibility and specific heat measurements. These measurements reveal that ErV{sub 2}Al{sub 20} is a Curie-Weiss paramagnet down to 1.95 K with an effective magnetic moment μ{sub eff} =9.27(1) μ{sub B} and Curie-Weiss temperature Θ{sub CW} =−0.55(4) K. The heat capacity measurements show a broad anomaly at low temperatures that is attributed to the presence of a low-energy Einstein mode withmore » characteristic temperature Θ{sub E} =44 K, approximately twice as high as in the isostructural ‘Einstein solid’ VAl{sub 10.1}. - Graphical abstract: A low-energy Einstein mode is observed in a novel intermetallic cage compound ErV{sub 2}Al{sub 20} by specific heat and resistivity measurements. - Highlights: • Single crystals of a new compound ErV{sub 2}Al{sub 20} were grown by self-flux method. • Crystal structure is reported, based on powder x-ray diffraction. • ErV{sub 2}Al{sub 20} is a Curie-Weiss paramagnet. • Low-energy ‘rattling’ phonon mode (Θ{sub E}=44 K) is found in specific heat measurements.« less

  12. Synthesis and characterization of an energetic compound Cu(Mtta)2(NO3)2 and effect on thermal decomposition of ammonium perchlorate.

    PubMed

    Yang, Qi; Chen, Sanping; Xie, Gang; Gao, Shengli

    2011-12-15

    An energetic coordination compound Cu(Mtta)(2)(NO(3))(2) has been synthesized by using 1-methyltetrazole (Mtta) as ligand and its structure has been characterized by X-ray single crystal diffraction. The central copper (II) cation was coordinated by four O atoms from two Mtta ligands and two N atoms from two NO(3)(-) anions to form a six-coordinated and distorted octahedral structure. 2D superamolecular layer structure was formed by the extensive intermolecular hydrogen bonds between Mtta ligands and NO(3)(-) anions. Thermal decomposition process of the compound was predicted based on DSC and TG-DTG analyses results. The kinetic parameters of the first exothermic process of the compound were studied by the Kissinger's and Ozawa-Doyle's methods. Sensitivity tests revealed that the compound was insensitive to mechanical stimuli. In addition, compound was explored as additive to promote the thermal decomposition of ammonium perchlorate (AP) by differential scanning calorimetry. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods

    NASA Technical Reports Server (NTRS)

    Dragoi, D.; Kanik, I.; Bar-Cohen, Y.; Sherrit, S.; Tsapin, A.; Kulleck, J.

    2004-01-01

    In this work we describe an analytical method for determining the presence of organic compounds in rocks, limestone, and other composite materials. Our preliminary laboratory experiments on different rocks/limestone show that the organic component in mineralogical matrices is a minor phase on order of hundreds of ppm and can be better detected using high precision liquid chromatography (HPLC). The matrix, which is the major phase, plays an important role in embedding and protecting the organic molecules from the harsh Martian environment. Some rocks bear significant amounts of amino acids therefore, it is possible to identify these phases using powder x-ray diffraction (XRD) by crystallizing the organic. The method of detection/analysis of organics, in particular amino acids, that have been associated with life will be shown in the next section.

  14. Hydrogen bonds directed 2D → 3D interdigitated Cd(II) compound: Synthesis, crystal structure and dual-emission luminescent properties

    NASA Astrophysics Data System (ADS)

    Yu, Yuanyuan

    2017-06-01

    A new Cd(II) compound, namely [Cd2(btc)(phen)2Cl]n·n(H2O)·n(DMA) (1, H3btc = 1, 3, 5-benzenetricarboxylic acid, phen = 1,10-phenanthroline, DMA = N,N'-dimethylacetamide) has been synthesized and structurally characterized by single-crystal X-ray diffraction analysis. This compound crystallizes in monoclinic P21/n space group with a = 13.5729(7) Å, b = 20.1049(7) Å, c = 13.9450(6) Å, β = 104.671(4)°, Z = 4. Single-crystal X-ray diffraction analysis reveals that compound 1 features a 2D → 3D interdigitated framework directed by the intermolecular hydrogen bonds. In addition, the luminescent properties of compound 1 were also investigated in the solid state at room temperature.

  15. Spectroscopy and crystal structures of natural stereoisomers of neoclerodane diterpenoids from Teucrium yemense of Saudi medicinal plant

    NASA Astrophysics Data System (ADS)

    Nur-e-Alam, Mohammad; Kanthasamy, Gopikkaa; Yousaf, Muhammad; Alqahtani, Ali S.; Ghabbour, Hazem A.; Al-Rehaily, Adnan J.

    2017-11-01

    3-O-deacetylteugracilin (1) and teugracilin B (2), two natural stereoisomers, are isolated from Teucrium yemense (Defl). These two compounds are almost identical to each other, differing only at the C6 stereocenter. We now crystallise these two compounds and for the first time, determine the crystal structure through single crystal X-ray diffraction, and the stereochemistry for all positions using spectroscopic data. These techniques enable us to establish the difference between the two compounds. Careful interpretation of the results indicates that HRMS and 1 and 2D NMR spectroscopy, are in agreement with single crystal X-ray diffraction data.

  16. ELECTRON MICROSCOPE AND X-RAY DIFFRACTION STUDIES ON A HOMOLOGOUS SERIES OF SATURATED PHOSPHATIDYLCHOLINES.

    PubMed

    ELBERS, P F; VERVERGAERT, P H

    1965-05-01

    Three homologous saturated phosphatidylcholines were studied by electron microscopy after tricomplex fixation. The results are compared with those obtained by x-ray diffraction analysis of the same and some other homologous compounds, in the dry crystalline state and after tricomplex fixation. By electron microscopy alternating dark and light bands are observed which are likely to correspond to phosphatide double layers. X-Ray diffraction reveals the presence of lamellar structures of regular spacing. The layer spacings obtained by both methods are in good agreement. From the electron micrographs the width of the polar parts of the double layers can be derived directly. The width of the carboxylglycerylphosphorylcholine moiety of the layers is found by extrapolating the x-ray diffraction data to zero chain length of the fatty acids. When from this width the contribution of the carboxylglyceryl part of the molecules is subtracted, again we find good agreement with the electron microscope measurements. An attempt has been made to account for the different layer spacings measured in terms of orientation of the molecules within the double layers.

  17. Electron diffraction study of the sillenites Bi{sub 12}SiO{sub 20}, Bi{sub 25}FeO{sub 39} and Bi{sub 25}InO{sub 39}: Evidence of short-range ordering of oxygen-vacancies in the trivalent sillenites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scurti, Craig A.; Arenas, D. J.; Auvray, Nicolas

    We present an electron diffraction study of three sillenites, Bi{sub 12}SiO{sub 20}, Bi{sub 25}FeO{sub 39}, and Bi{sub 25}InO{sub 39} synthesized using the solid-state method. We explore a hypothesis, inspired by optical studies in the literature, that suggests that trivalent sillenites have additional disorder not present in the tetravalent compounds. Electron diffraction patterns of Bi{sub 25}FeO{sub 39} and Bi{sub 25}InO{sub 39} show streaks that confirm deviations from the ideal sillenite structure. Multi-slice simulations of electron-diffraction patterns are presented for different perturbations to the sillenite structure - partial substitution of the M site by Bi{sup 3+}, random and ordered oxygen-vacancies, and amore » frozen-phonon model. Although comparison of experimental data to simulations cannot be conclusive, we consider the streaks as evidence of short-range ordered oxygen-vacancies.« less

  18. Synthesis and X-ray structural investigation of (5R*,6S*)-1-benzoyl-5-methylthio-6-methoxy-1-azapenam

    NASA Astrophysics Data System (ADS)

    Krajewski, J. W.; Gluziński, P.; Grochowski, E.; Pupek, K.; Mishnyov, A.; Kemme, A.

    1992-08-01

    The compound (5R*,6S*)-1-benzoyl-5-methylthio-6-methoxy-1-azapenam ( 3) has been synthesized and its structure investigated by X-ray diffraction. The compound crystallizes in a monoclinic system, space group Cc, Z = 4, a = 12.01(1), b = 16.51(1), c = 8.048(6) Å, β = 115.87(6)°. The structure was solved by direct methods and refined by a full-matrix, least-squares procedure to give R = 0.070, Rw = 0.046, w = 1.34/(σ 2F). The expected cis configuration around the β-lactam ring was fully confirmed.

  19. Rhodomollanol A, a Highly Oxygenated Diterpenoid with a 5/7/5/5 Tetracyclic Carbon Skeleton from the Leaves of Rhododendron molle.

    PubMed

    Zhou, Junfei; Zhan, Guanqun; Zhang, Hanqi; Zhang, Qihua; Li, Ying; Xue, Yongbo; Yao, Guangmin

    2017-07-21

    A novel diterpenoid with an unprecedented carbon skeleton, rhodomollanol A (1), and a new grayanane diterpenoid, rhodomollein XXXI (2), were isolated from the leaves of Rhododendron molle. Their structures were elucidated using comprehensive spectroscopic methods and single-crystal X-ray diffraction. Compound 1 possesses a unique cis/trans/trans/cis/cis-fused 3/5/7/5/5/5 hexacyclic ring system featuring a rare 7-oxabicyclo[4.2.1]nonane core decorated with three cyclopentane units. The plausible biosynthetic pathway for 1 was proposed. Compound 1 exhibited moderate PTP1B inhibitory activity.

  20. New lanostane-type triterpenoids from the fruiting body of Ganoderma hainanense.

    PubMed

    Li, Wei; Lou, Lan-Lan; Zhu, Jian-Yong; Zhang, Jun-Sheng; Liang, An-An; Bao, Jing-Mei; Tang, Gui-Hua; Yin, Sheng

    2016-12-01

    Five new lanostane-type triterpenoids, ganoderenses A-E (1-5), two new lanostane nor-triterpenoids, ganoderenses F and G (6 and 7), along with 13 known analogues (8-20) were isolated from the fruiting body of Ganoderma hainanense. Their structures were determined by combined chemical and spectral methods, and the absolute configurations of compounds 1 and 13 were confirmed by single crystal X-ray diffraction. All compounds were evaluated for inhibitory activity against thioredoxin reductase (TrxR), a potential target for cancer chemotherapy with redox balance and antioxidant functions, but were inactive. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Inclusion compound of vitamin B6 in β-CD. Physico-chemical and structural investigations

    NASA Astrophysics Data System (ADS)

    Borodi, Gheorghe; Kacso, Irina; Farcaş, Sorin I.; Bratu, Ioan

    2009-08-01

    Structural and physico-chemical characterization of supramolecular assembly of vitamin B6 with β-cyclodextrin (β-CD) prepared by different methods (kneading, co-precipitation and freeze-drying) has been performed by using several spectroscopic techniques (FTIR, 1H NMR, UV-Vis), powder X-ray diffraction and DSC in order to evidence the inclusion compound formation. An analysis of the chemical shifts observed in the 1H-NMR spectra and of the vibrational frequency shifts led to the tentative conclusion that the vitamin B6 probably enters the cyclodextrin torus when forming the β-CD-vitamin B6 inclusion complex.

  2. Effects of styrene unit on molecular conformation and spectral properties of CNsbnd PhCHdbnd NPhCHdbnd CHPhsbnd CN

    NASA Astrophysics Data System (ADS)

    Fang, Zhengjun; Wu, Feng; Jiao, Yingchun; Wang, Nanfang; Au, Chaktong; Cao, Chenzhong; Yi, Bing

    2018-05-01

    Compound CN-PhCH=NPhCH=CHPh-CN with both stilbene and benzylidene aniline units was synthesized, and studied from the viewpoint of molecular conformation and spectroscopic property by a combined use of experimental and computational methods. The maximum UV absorption wavelength (λmax) of the compound in ethanol, acetonitrile, chloroform and cyclohexane solvents were measured, and the 13C NMR chemical shift value δC(Cdbnd N) in chloroform-d was determined. The crystal structure of the compound was determined by X-ray diffraction. The frontier molecular orbital was calculated by density functional theory method. The results show that the UV absorption spectrum of the titled compound is similar to those of Schiff bases, while there is a larger red shift of λmax comparing to that of CN-PhCH=NPh-CN. Moreover, the molecular configuration of the titled compound relative to Cdbnd N is anti-form, having a more obvious twisted structure. The spectral and structural behaviors are further supported by the results of frontier molecular orbital analyses, NBO, electrostatic potentials and TD-DFT calculations. The study provides deeper insights into the molecular conformation of Schiff bases.

  3. Syntheses, crystal structures and luminescent properties of two salts with 2-((1H-imidazol-1-yl)methyl)-1H-benzimidazole

    NASA Astrophysics Data System (ADS)

    Wang, Yong-Tao; Lü, Lin-Rui; Tang, Gui-Mei

    2018-03-01

    Two new benzimidazole salts, namely, [H2IBI]2+ 2X (X = NO3- (1), ClO4- (2) [IBI = 2-((1H-imidazol-1-yl)methyl)-1H-benzimidazole], were grown through reacting IBI and two different inorganic acids by slow evaporation method, respectively. Compounds 1 and 2 have been characterized by single-crystal X-ray diffraction, IR, UV-Vis, and thermogravimetric analyses (TGA). In both compounds, a set of hydrogen bonds (C/Nsbnd H⋯O) can be clearly observed, through which a three-dimensional framework will be generated. The luminescent spectra show the emission peaks in compounds 1 and 2 are found at 375 and 371 nm, respectively. By comparison with the free IBI, the emission maxima of compounds 1 and 2 are obviously red-shifted about 67 and 63 nm, respectively.

  4. Novel aldehyde and thiosemicarbazone derivatives: Synthesis, spectroscopic characterization, structural studies and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Karakurt, Tuncay; Tahtaci, Hakan; Subasi, Nuriye Tuna; Er, Mustafa; Ağar, Erbil

    2016-12-01

    In this study our purpose is that, synthesis and characterization of compounds containing the aldehyde and thiosemicarbazone groups and comparison of the theoretical results with the experimental results. The structures of all synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, elemental analyses techniques. The structure of compound (4) (C9H8N4O2S) was also elucidated by X-ray diffraction analysis. In addition, the theoretical IR spectrum, 1H NMR and 13C NMR chemical shift values, frontier molecular orbital values (FMO) of these molecules were analyzed by using Becke-3- Lee-Yang-Parr (B3LYP) method with LanL2DZ basis set. Finally, molecular docking studies were performed on synthesized compounds using the 4DKI beta-lactam protein structure to determine the potential binding mode of inhibitors.

  5. Investigation of third-order nonlinear and optical power limiting properties of terphenyl derivatives

    NASA Astrophysics Data System (ADS)

    Kamath, Laxminarayana; Manjunatha, K. B.; Shettigar, Seetharam; Umesh, G.; Narayana, B.; Samshuddin, S.; Sarojini, B. K.

    2014-03-01

    A series of new chalcones containing terphenyl as a core and with different functional groups has been successfully synthesized by Claisen-Schmidt condensation method in search of new nonlinear optical (NLO) materials. Molecular structural characterization for the compounds was achieved by FTIR and single crystal X-ray diffraction. The third-order NLO absorption and refraction coefficients were simultaneously determined by Z-scan technique. The measurements were performed at 532 nm with 7 ns laser pulses using a Nd:YAG laser in solution form. The Z-scan experiments reveal that the compounds exhibit strong nonlinear refraction coefficient of the order 10-11 esu and the molecular two photon absorption cross section is 10-46 cm4 s/photon. The results also show that the structures of the compounds have great impact on NLO properties. The compounds show optical power limiting behavior due to two-photon absorption (TPA).

  6. Synthesis, crystal structure, biological activity and theoretical calculations of novel isoxazole derivatives

    NASA Astrophysics Data System (ADS)

    Jin, R. Y.; Sun, X. H.; Liu, Y. F.; Long, W.; Chen, B.; Shen, S. Q.; Ma, H. X.

    2016-01-01

    Series of isoxazole derivatives were synthesized by substituted chalcones and 2-chloro-6-fluorobenzene formaldehyde oxime with 1,3-dipolar cycloaddition. The target compounds were determined by melting point, IR, 1H NMR, elemental analyses and HRMS. The crystal structure of compound 3a was detected by X-ray diffraction and it crystallizes in the triclinic space group p2(1)/c with z = 4. The molecular geometry of compound 3a was optimized using density functional theory (DFT/B3LYP) method with the 6-31G+(d,p) basis set in the ground state. From the optimized geometry of the molecule, FT-IR, FT-Raman, HOMO-LUMO and natural bond orbital (NBO) were calculated at B3LYP/6-31G+(d,p) level. Finally, the antifungal activity of the synthetic compounds were evaluated against Pythium solani, Gibberella nicotiancola, Fusarium oxysporium f.sp. niveum and Gibberella saubinetii.

  7. Advances in containment methods and plutonium recovery strategies that led to the structural characterization of plutonium(IV) tetrachloride tris-diphenylsulfoxide, PuCl 4(OSPh 2) 3

    DOE PAGES

    Schrell, Samantha K.; Boland, Kevin Sean; Cross, Justin Neil; ...

    2017-01-18

    In an attempt to further advance the understanding of plutonium coordination chemistry, we report a robust method for recycling and obtaining plutonium aqueous stock solutions that can be used as a convenient starting material in plutonium synthesis. This approach was used to prepare and characterize plutonium(IV) tetrachloride tris-diphenylsulfoxide, PuCl 4(OSPh 2) 3, by single crystal X-ray diffraction. The PuCl 4(OSPh 2) 3 compound represents a rare example of a 7-coordinate plutonium(IV) complex. Structural characterization of PuCl 4(OSPh 2) 3 by X-ray diffraction utilized a new containment method for radioactive crystals. The procedure makes use of epoxy, polyimide loops, and amore » polyester sheath to provide a robust method for safely containing and easily handling radioactive samples. Lastly, the described procedure is more user friendly than traditional containment methods that employ fragile quartz capillary tubes. Additionally, moving to polyester, instead of quartz, lowers the background scattering from the heavier silicon atoms.« less

  8. Identification of New Cocrystal Systems with Stoichiometric Diversity of Salicylic Acid Using Thermal Methods.

    PubMed

    Zhou, Zhengzheng; Chan, Hok Man; Sung, Herman H-Y; Tong, Henry H Y; Zheng, Ying

    2016-04-01

    The purpose of this work was to develop thermal methods to identify cocrystal systems with stoichiometric diversity. Differential scanning calorimetry (DSC) and hot stage microscopy (HSM) have been applied to study the stoichiometric diversity phenomenon on cocrystal systems of the model compound salicylic acid (SA) with different coformers (CCFs). The DSC method was particularly useful in the identification of cocrystal re-crystallization, especially to improve the temperature resolution using a slower heating rate. HSM was implemented as a complementary protocol to confirm the DSC results. The crystal structures were elucidated by single-crystal X-ray diffraction (SXRD). Two new cocrystal systems consisting of salicylic acid-benzamide (SA-BZD, 1:1, 1:2) and salicylic acid-isonicotinamide (SA-ISN, 1:1, 2:1) have been identified in the present work. The chemical structures of the newly discovered cocrystals SA-BZD (1:2) and SA-ISN (2:1) have been elucidated using X-ray single crystal and powder diffraction methods. The developed thermal methods could rapidly identify cocrystal systems with stoichiometric diversity, with the potential to discover new pharmaceutical cocrystals in the future.

  9. Electron spin resonance of Gd3+ in the intermetallic Gd1-xYxNi3Ga9 (0 ≤ x ≤ 0.90) compounds

    NASA Astrophysics Data System (ADS)

    Mendonça, E. C.; Silva, L. S.; Mercena, S. G.; Meneses, C. T.; Jesus, C. B. R.; Duque, J. G. S.; Souza, J. C.; Pagliuso, P. G.; Lora-Serrano, R.; Teixeira-Neto, A. A.

    2017-10-01

    In this work, experiments of X-ray diffraction, magnetic susceptibility, heat capacitance, and Electron Spin Resonance (ESR) carried out in the Gd1-xYxNi3Ga9 (0 ≤ x ≤ 0.90) compounds grown through a Ga self flux method are reported. The X-ray diffraction data indicate that these compounds crystallize in a trigonal crystal structure with a space group R32. This crystal structure is unaffected by Y-substitution, which produces a monotonic decrease of the lattice parameters. For the x = 0 compound, an antiferromagnetic phase transition is observed at TN = 19.2 K, which is continuously suppressed as a function of the Y-doping and extrapolates to zero at x ≈ 0.85. The ESR data, taken in the temperature range 15 ≤ T ≤ 300 K, show a single Dysonian Gd3+ line with nearly temperature independent g-values. The linewidth follows a Korringa-like behavior as a function of temperature for all samples. The Korringa rates (b = ΔH /ΔT ) are Y-concentration-dependent indicating a "bottleneck" regime. For the most diluted sample (x = 0.90), when it is believed that the "bottleneck" effect is minimized, we have calculated the q-dependent effective exchange interactions between Gd3+ local moments and the c-e of 〈Jf-ce 2(q ) 〉 1 /2 = 18(2) meV and Jf -c e(q =0 ) = 90(10) meV.

  10. Syntheses, crystal structures and characterization of nitrogen-rich salts based on bis (1H-tetrazol-5-yl) methanone oxime

    NASA Astrophysics Data System (ADS)

    Lin, Xinyu; Guo, Weiming; Zhang, Tianhe; Huang, Jingru; Tong, Yi; Zhang, Tonglai

    2017-08-01

    Two nitrogen-rich energetic salts (NH4)2(bto) (1) and (NH3OH)2(bto)·H2O (2) [H2bto = Bis (1H-tetrazol-5-yl) methanone oxime] were synthesized by an improved method in which water was used as solvent. These compounds were characterized by FT-IR spectroscopy, elemental analysis and single crystal X-ray diffraction. Their crystal structures were confirmed to belong to monoclinic system with space group P21 for 1 and Pc for 2, respectively. The detailed thermal behaviours were investigated by using differential scanning calorimetry (DSC) and thermogravimetric method (TG) (decomposition temperature >250 °C). The enthalpies of formation were calculated through the experimental values of combustion enthalpy. In addition, the sensitivities toward impact and friction were tested with standard methods, and those results indicated that two compounds are all insensitive (impact >40 J and friction >360 N). In short, both of the compounds show potential usages as energetic materials. The improved process opens a door for exploring nitrogen-rich salts based on Bis (1H-tetrazol-5-yl) methanone oxime.

  11. Synthesis, molecular structure and spectroscopic investigations of novel fluorinated spiro heterocycles.

    PubMed

    Islam, Mohammad Shahidul; Al-Majid, Abdullah Mohammed; Barakat, Assem; Soliman, Saied M; Ghabbour, Hazem A; Quah, Ching Kheng; Fun, Hoong-Kun

    2015-05-07

    This paper describes an efficient and regioselective method for the synthesis of novel fluorinated spiro-heterocycles in excellent yield by cascade [5+1] double Michael addition reactions. The compounds 7,11-bis(4-fluorophenyl)-2,4-dimethyl- 2,4-diazaspiro[5.5] undecane-1,3,5,9-tetraone (3a) and 2,4-dimethyl-7,11-bis (4-(trifluoromethyl)phenyl)-2,4-diazaspiro[5.5]undecane-1,3,5,9-tetraone (3b) were characterized by single-crystal X-ray diffraction, FT-IR and NMR techniques. The optimized geometrical parameters, infrared vibrational frequencies and NMR chemical shifts of the studied compounds have also been calculated using the density functional theory (DFT) method, using Becke-3-Lee-Yang-Parr functional and the 6-311G(d,p) basis set. There is good agreement between the experimentally determined structural parameters, vibrational frequencies and NMR chemical shifts of the studied compounds and those predicted theoretically. The calculated natural atomic charges using NBO method showed higher polarity of 3a compared to 3b.The calculated electronic spectra are also discussed based on the TD-DFT calculations.

  12. Synthesis and Larvicidal Activity of Novel Thenoylhydrazide Derivatives

    NASA Astrophysics Data System (ADS)

    Song, Gao-Peng; Hu, De-Kun; Tian, Hao; Li, Ya-Sheng; Cao, Yun-Shen; Jin, Hong-Wei; Cui, Zi-Ning

    2016-03-01

    A pair of chemical isomeric structures of novel N-tert-butylphenyl thenoylhydrazide compounds I and II were designed and synthesized. Their structures were characterized by MS, IR, 1H NMR, elemental analysis and X-ray single crystal diffraction. The regioselectivity of the Meerwein arylation reaction and the electrophilic substitution reaction of N-tert-butyl hydrazine were studied by density functional theory (DFT) quantum chemical method. The larvicidal tests revealed that some compounds I had excellent larvicidal activity against Culex pipiens pallens. As the candidates of insect growth regulators (IGRs), the larval growth inhibition and regulation against Culex pipiens pallens were examined for some compounds, especially I1 and I7. Compounds I1 and I7 were further indicated as an ecdysteroid agonist by reporter gene assay on the Spodoptera frugiperda cell line (Sf9 cells). Finally, a molecular docking study of compound I7 was conducted, which was not only beneficial to understand the structure-activity relationship, but also useful for development of new IGRs for the control of mosquitos.

  13. Structural analysis and antimicrobial activity of 2[1H]-pyrimidinethione/selenone derivatives

    NASA Astrophysics Data System (ADS)

    Żesławska, Ewa; Korona-Głowniak, Izabela; Szczesio, Małgorzata; Olczak, Andrzej; Żylewska, Alicja; Tejchman, Waldemar; Malm, Anna

    2017-08-01

    Four new crystal structures of sulfur and selenium analogues of 2[1H]-pyrimidinone derivatives were determined with the use of X-ray diffraction method. The molecular geometry and intermolecular interactions of the investigated molecules were analyzed in order to find the structural features and geometrical parameters, which can be responsible for antimicrobial activities. The influence of chalcogen substituents (sulfur and selenium) on the crystal packing was also studied. The main differences in the molecular structures exist in mutual arrangement of two aromatic rings. The intermolecular interactions in all investigated compounds are similar. Furthermore, the in vitro antibacterial and antifungal activities for these compounds were evaluated. Preliminary investigations have identified two highly potent antibacterial compounds containing selenium atom, which display selectivity towards staphylococci and micrococci. This selectivity was not observed for a control compound used as a drug, namely vancomycin. These compounds possess also good antifungal activity. This is the first report of biological activities of 2[1H]-pyrimidineselenone derivatives.

  14. Relationship between H2 sorption properties and aqueous corrosion mechanisms in A2Ni7 hydride forming alloys (A = Y, Gd or Sm)

    NASA Astrophysics Data System (ADS)

    Charbonnier, Véronique; Monnier, Judith; Zhang, Junxian; Paul-Boncour, Valérie; Joiret, Suzanne; Puga, Beatriz; Goubault, Lionel; Bernard, Patrick; Latroche, Michel

    2016-09-01

    Intermetallic compounds A2B7 (A = rare earth, B = transition metal) are of interest for Ni-MH batteries. Indeed they are able to absorb hydrogen reversibly and exhibit good specific capacity in electrochemical route. To understand the effect of rare earth on properties of interest such as thermodynamic, cycling stability and corrosion, we synthesized and studied three compounds: Y2Ni7, Gd2Ni7 and Sm2Ni7. Using Sieverts' method, we plot P-c-isotherms up to 10 MPa and study hydride stability upon solid-gas cycling. Electrochemical cycling was also performed, as well as calendar and cycling corrosion study. Corrosion products were characterized by means of X-ray diffraction, electron diffraction, Raman micro-spectroscopy and scanning and transmission electron microscopies. Magnetic measurements were also performed to calculate corrosion rates. A corrosion mechanism, based on the nature of corrosion products, is proposed. By combining results from solid-gas cycling, electrochemical cycling and corrosion study, we attribute the loss in capacity either to corrosion or loss of crystallinity.

  15. Nanoscale building blocks in a novel lithium arsenotungsten bronze: Synthesis and characterization

    DOE PAGES

    Zhao, Pei; Mangir Murshed, M.; Huq, Ashfia; ...

    2015-02-19

    Here we report on a novel compound Li 3AsW 7O 25 obtained by solid-state reaction and characterized by diffraction and spectroscopic methods. The bronze-type compound crystallizes in the orthorhombic space group Pbca with a=724.38(3) pm, b=1008.15(4) pm, c=4906.16(17) pm and Z=8. The structure is built up by chains of WO 6 octahedra interconnected by AsO 4 tetrahedra and WO 6 octahedra forming a polyhedral arrangement as seen in intergrowth tungsten bronzes. The X-ray single crystal structure refinement allows solving the complex arsenotungstate framework. The powder neutron diffraction data analysis locates the lithium atoms. Thermal analysis showed that Li 3AsW 7Omore » 25 is stable up to its melting at 1135(3) K followed by a decomposition at 1182(5) K. Finally, the Kubelka-Munk treatment of the UV-vis spectrum revealed a wide band gap in the range of 2.84-3.40 eV depending on the presumed electron transition type.« less

  16. [Preparation of panax notoginseng saponins-tanshinone H(A) composite method for pulmonary delivery with spray-drying method and its characterization].

    PubMed

    Wang, Hua-Mei; Fu, Ting-Ming; Guo, Li-Wei

    2013-02-01

    To prepare panax notoginseng saponins-tanshinone II(A) composite particles for pulmonary delivery, in order to explore a dry powder particle preparation method ensuring synchronized arrival of multiple components of traditional Chinese medicine compounds at absorption sites. Panax notoginseng saponins-tanshinone II(A) composite particles were prepared with spray-drying method, and characterized by scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), X-ray diffraction (XRD), infrared analysis (IR), dry laser particle size analysis, high performance liquid chromatography (HPLC) and the aerodynamic behavior was evaluated by a Next Generation Impactor (NGI). The dry powder particles produced had narrow particle size distribution range and good aerodynamic behavior, and could realize synchronized administration of multiple components. The spray-drying method is used to combine traditional Chinese medicine components with different physical and chemical properties in the same particle, and product into traditional Chinese medicine compound particles in line with the requirements for pulmonary delivery.

  17. The reaction of formic acid with RaneyTM copper

    NASA Astrophysics Data System (ADS)

    Callear, Samantha K.; Silverwood, Ian P.; Chutia, Arunabhiram; Catlow, C. Richard A.; Parker, Stewart F.

    2016-04-01

    The interaction of formic acid with RaneyTM Cu proves to be complex. Rather than the expected generation of a monolayer of bidentate formate, we find the formation of a Cu(II) compound. This process occurs by direct reaction of copper and formic acid; in contrast, previous methods are by solution reaction. This is a rare example of formic acid acting as an oxidant rather than, as more commonly found, a reductant. The combination of diffraction, spectroscopic and computational methods has allowed this unexpected process to be characterized.

  18. Crystal growth methods dedicated to low solubility actinide oxalates

    NASA Astrophysics Data System (ADS)

    Tamain, C.; Arab-Chapelet, B.; Rivenet, M.; Grandjean, S.; Abraham, F.

    2016-04-01

    Two novel crystal growth syntheses dedicated to low solubility actinide-oxalate systems and adapted to glove box handling are described. These methods based on the use of precursors of either actinide metal or oxalic acid have been optimized on lanthanide systems (analogue of actinides(III)) and then assessed on real actinide systems. They allow the synthesis of several actinide oxalate single crystals, Am2(C2O4)3(H2O)3·xH2O, Th(C2O4)2·6H2O, M2+x[PuIV2-xPuIIIx(C2O4)5]·nH2O and M1-x[PuIII1-xPuIVx(C2O4)2·H2O]·nH2O. It is the first time that these well-known compounds are formed by crystal growth methods, thus enabling direct structural studies on transuranic element systems and acquisition of basic data beyond deductions from isomorphic (or not) lanthanide compounds. Characterizations by X-ray diffraction, UV-visible solid spectroscopy, demonstrate the potentialities of these two crystal growth methods to obtain oxalate compounds.

  19. The molecular structure and vibrational spectra of N-(2,2-diphenylacetyl)- N'-(naphthalen-1yl)-thiourea by Hartree-Fock and density functional methods

    NASA Astrophysics Data System (ADS)

    Arslan, Hakan; Mansuroglu, Demet Sezgin; VanDerveer, Don; Binzet, Gun

    2009-04-01

    N-(2,2-Diphenylacetyl)- N'-(naphthalen-1yl)-thiourea (PANT) has been synthesized and characterized by elemental analysis, IR spectroscopy and 1H NMR spectroscopy. The crystal and molecular structure of the title compound has been determined from single crystal X-ray diffraction data. It crystallizes in the triclinic space group P-1, Z = 2 with a = 10.284(2) Å, b = 10.790(2) Å, c = 11.305(2) Å, α = 64.92(3)°, β = 89.88(3)°, γ = 62.99(3)°, V = 983.7(3) Å 3 and Dcalc = 1.339 Mg/m 3. The molecular structure, vibrational frequencies and infrared intensities of PANT were calculated by the Hartree-Fock and density functional theory methods (BLYP and B3LYP) using the 6-31G* basis set. The calculated geometric parameters were compared to the corresponding X-ray structure of the title compound. We obtained 22 stable conformers for the title compound; however Conformer 1 is approximately 9.53 kcal/mol more stable than Conformer 22. The comparison of the theoretical and experimental geometry of the title compound shows that the X-ray parameters fairly well reproduce the geometry of Conformer 17. The harmonic vibrations computed for this compound by the B3LYP/6-31G* method are in good agreement with the observed IR spectral data. Theoretical vibrational spectra of the title compound were interpreted by means of PEDs using the VEDA 4 program. A general better performance of the investigated methods was calculated by PAVF 1.0 program.

  20. Green synthesis of nano sized transition metal complexes containing heterocyclic Schiff base: Structural and morphology characterization and bioactivity study

    NASA Astrophysics Data System (ADS)

    Jawoor, Shailaja S.; Patil, Sangamesh A.; Kumbar, Mahantesh; Ramawadgi, Prashant B.

    2018-07-01

    In the current involvement of our research work in coordination chemistry, novel transition metal complexes were synthesized from regular reflux method and hydrothermal method using Schiff base prepared via condensation of ethyl 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate with 8-carbaldehyde-7-hydroxy-4-methylcoumarin. All the synthesized compounds were interpreted using different analytical, physicochemical and spectral methods such as magnetic moment measurement, FT-IR, 1H and 13C NMR, GCMS/ESI-MS, UV/Vis spectroscopy and TGA. The size and morphology of the nano metal complexes were determined using atomic force microscope (AFM), field emission scanning electron spectroscopy (FE-SEM) and X-ray powder diffraction (PXRD). The non-electrolytic nature of the metal complexes was confirmed by molar conductance studies. The obtained FT-IR data supports the binding of metal ion to Schiff base. Elemental analysis study suggests [ML2(H2O)2] stoichiometry, here M = Co(II), Ni(II) and Cu(II), L = deprotonated ligand. Electronic spectral results reveal six-coordinated geometry for the synthesized metal complexes. All the tested compounds show good DNA cleavage (Calf Thymus DNA) and in vitro anticancer activity (PA-I cell line), the activity results for the tested compounds are prominent and compound 9 exhibited a little enhanced activity than the other tested compounds.

  1. A 4-(o-chlorophenyl)-2-aminothiazole: Microwave assisted synthesis, spectral, thermal, XRD and biological studies

    NASA Astrophysics Data System (ADS)

    Rajmane, S. V.; Ubale, V. P.; Lawand, A. S.; Nalawade, A. M.; Karale, N. N.; More, P. G.

    2013-11-01

    A 4-(o-chlorophenyl)-2-aminothiazole (CPAT) has been synthesized by reacting o-chloroacetophenone, iodine and thiourea under microwave irradiation as a green chemistry approach. The reactions proceed selectively and within a couple of minutes giving high yields of the products. The compound was characterized by elemental, spectral (UV-visible, IR, NMR and GC-MS), XRD and thermal analyses. The TG curve of the compound was analyzed to calculate various kinetic parameters (n, E, Z, ΔS and ΔG) by using Coats-Redfern (C.R.), MacCallum-Tanner (M.T.) and Horowitz-Metzger (H.M.) method. The compound was tested for the evaluation of antibacterial activity against B. subtilis and E. coli and antifungal activity against A. niger and C. albicans. The compound was evaluated for their in vitro nematicidal activity on plant parasitic nematode Meloidogyne javanica and molluscicidal activity on fresh water helminthiasis vector snail Lymnea auricularia. The compound is biologically active in very low concentration. X-ray diffraction study suggests a triclinic crystal system for the compound.

  2. A novel Schiff base derivative: Synthesis, two-photon absorption properties and application for bioimaging.

    PubMed

    Wang, Hui; Fang, Bin; Kong, Lin; Li, Xiangzi; Feng, Zhijun; Wu, Yunjun; Uvdal, Kajsa; Hu, Zhangjun

    2018-06-05

    A novel donor-π-acceptor-π-donor type (D-π-A-π-D') Schiff base derivative (L) has been designed and synthesized. The structure of L is confirmed by single-crystal X-ray diffraction analysis as well. The photophysical properties of compound L were comprehensively investigated by using both experimental and theoretical methods. The results indicate that L exhibits large Stokes shift and moderate two-photon action (2PA) cross-section in the near infrared (NIR) region. Furthermore, the confocal microscopy imaging study demonstrates that compound L could penetrate into cells and target the cellular mitochondria compartment. Due to its low cytotoxicity, compound L provides a promising tool for directly lighting up the mitochondria compartment in living HepG2 cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. X-ray diffraction study of the caged magnetic compound DyFe 2 Zn 20 at low temperatures

    NASA Astrophysics Data System (ADS)

    Ohashi, M.; Ohashi, K.; Sawabu, M.; Miyagawa, M.; Maeta, K.; Isikawa, Y.

    2018-05-01

    We have carried out high-angle X-ray powder diffraction measurements of the caged magnetic compound DyFe2Zn20 at low temperature between 14 and 300 K. Even though a strong magnetic anisotropy exists in the magnetization and magnetic susceptibility due to strong exchange interaction between Fe and Dy, almost all X-ray powder diffraction peaks correspond to Bragg reflections of the cubic structural models not only at room temperature paramagnetic state but also at low temperature magnetic ordering state. The Debye temperature is obtained to be 227 K from the results of the volumetric thermal expansion coefficient, which is approximately coincident with that of CeRu2Zn20 (245 K) and that of pure Zn metal (235 K).

  4. Highly oxygenated stigmastane-type steroids from the aerial parts of Vernonia anthelmintica Willd.

    PubMed

    Hua, Lei; Qi, Wei-Yan; Hussain, Syed Hamid; Gao, Kun; Arfan, Mohammad

    2012-06-01

    Nine new highly oxygenated stigmastane-type steroids, vernoanthelcin A-I (1-9), and two new stigmastane-type steroidal glycosides, vernoantheloside A and B (10 and 11) were isolated from the aerial parts of Vernonia anthelmintica Willd. The structures of compounds 1-11 were determined on the basis of IR, MS, 1D-NMR, and 2D-NMR, and their absolute configurations were deduced using single-crystal X-ray diffraction and the CD exciton chirality method. Compounds 1, 5, 7, 9 and 10 were tested for their effects on estrogen biosynthesis in human ovarian granulosa-like cells (KGN cells). Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  5. A general method for the quantitative assessment of mineral pigments.

    PubMed

    Ares, M C Zurita; Fernández, J M

    2016-01-01

    A general method for the estimation of mineral pigment contents in different bases has been proposed using a sole set of calibration curves, (one for each pigment), calculated for a white standard base, thus elaborating patterns for each utilized base is not necessary. The method can be used in different bases and its validity had ev en been proved in strongly tinted bases. The method consists of a novel procedure that combines diffuse reflectance spectroscopy, second derivatives and the Kubelka-Munk function. This technique has proved to be at least one order of magnitude more sensitive than X-Ray diffraction for colored compounds, since it allowed the determination of the pigment amount in colored samples containing 0.5 wt% of pigment that was not detected by X-Ray Diffraction. The method can be used to estimate the concentration of mineral pigments in a wide variety of either natural or artificial materials, since it does not requiere the calculation of each pigment pattern in every base. This fact could have important industrial consequences, as the proposed method would be more convenient, faster and cheaper. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A Novel Coordination Polymer Based on Trinuclear Cobalt Building Blocks Cluster: Synthesis, Crystal Structure, and Properties

    NASA Astrophysics Data System (ADS)

    Lu, J. F.; Tang, Z. H.; Shi, J.; Ge, H. G.; Jiang, M.; Song, J.; Jin, L. X.

    2017-12-01

    The title compound {[Co3(μ3-OH)(μ2-H2O)2(H2O)5(BTC)2] · 6H2O} n (H3BTC is a 1,3,5-benzenetricarboxylic acid) was prepared and characterized by single crystal and powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric and elemental analyses. The single crystal X-ray diffraction reveals that the title compound consists of 1D infinite zigzag chains which were constructed by trinuclear cobalt cluster and BTC3- ligand. Neighbouring above-mentioned 1D infinite zigzag chains are further linked by intermolecular hydrogen bonding to form a 3D supermolecular structure. In addition, the luminescent properties of the title compound were investigated.

  7. Synthesis, molecular structure, Hirshfeld surface, spectral investigations and molecular docking study of 3-(5-bromo-2-thienyl)-1-(4-fluorophenyl)-3-acetyl-2-pyrazoline (2) by DFT method

    NASA Astrophysics Data System (ADS)

    Sathish, M.; Meenakshi, G.; Xavier, S.; Sebastian, S.; Periandy, S.; Ahmad, NoorAisyah; Jamalis, Joazaizulfazli; Rosli, MohdMustaqim; Fun, Hoong-Kun

    2018-07-01

    The 3-(5-Bromo-2-thienyl)-1-(4-fluorophenyl)-3-acetyl-2-pyrazoline (2) (BTFA) was synthesized from condensation of thiophenechalcone (1) and hydrazine hydrate. The compound was characterized by FT-IR, 1H and 13C NMR. Crystal structure of this compound was determined using X-ray diffraction technique. The data of the geometry is compared with the optimized structure of the compound obtained using B3LYP functional with 6-311++G (d,p) basis set. The fundamental modes of vibrations are assigned using VEDA software with the PED assignments, and compared with data obtained from theoretical methods. The deviations are widely discussed and analyzed. The intermolecular interaction of the crystal structure was analyzed using Hirshfeld and fingerprint analysis. The chemical shift of the NMR for 13C and 1H are observed and computational data are computed using Gauge independent atomic orbital (GIAO) using B3LYP/6-311++G (d,p). The electronic and optical properties like absorption of wavelengths, excitation energy, dipole moment and frontier molecular orbital energies are computed with TD-SCF method using the above theoretical method. The antiviral nature of the molecule is also analyzed and the compound is docked in non-small cell lung cancer and human collapsin response mediator protein-1study exhibits its activity.

  8. Hirshfeld surface analyses and crystal structures of supramolecular self-assembly thiourea derivatives directed by non-covalent interactions

    NASA Astrophysics Data System (ADS)

    Gumus, Ilkay; Solmaz, Ummuhan; Binzet, Gun; Keskin, Ebru; Arslan, Birdal; Arslan, Hakan

    2018-04-01

    The novel N-(bis(3,5-dimethoxybenzyl)carbamothioyl)-4-R-benzamide (R: H, Cl, CH3 and OCH3) compounds have been synthesized and characterized by FT-IR, 1H NMR and 13C NMR spectroscopy. Their crystal structures were also determined by single-crystal X-ray diffraction studies. Hirshfeld surfaces analysis and their associated two dimensional fingerprint plots of compounds were used as theoretical approach to assess driving force for crystal structure formation via the intermolecular interactions in the crystal lattices of synthesized compounds. The study of X-ray single crystal diffraction and Hirshfeld surfaces analysis of the prepared compounds shows that hydrogen bonding and other weaker interactions such as Nsbnd H⋯S, weak Csbnd H⋯S, Csbnd H⋯O, Csbnd H⋯N and Csbnd H···π intermolecular interactions and π-π stacking, among molecules of synthesized compounds participate in a cooperative way to stabilize the supramolecular structures.

  9. Replication and characterization of the compound eye of a fruit fly for imaging purpose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hefu; University of Chinese Academy of Sciences, Beijing 10039; Gong, Xianwei

    In this work, we report the replication and characterization of the compound eye of a fruit fly for imaging purpose. In the replication, soft lithography method was employed to replicate the compound eye of a fruit fly into a UV-curable polymer. The method was demonstrated to be effective and the compound eye is replicated into the polymer (NOA78) where each ommatidium has a diameter of about 30 μm and a sag height of about 7 μm. To characterize its optical property, the point spread function of the compound eye was tested and a NA of 0.386 has been obtained for the replicatedmore » polymeric ommatidium. Comparing with the NA of a real fruit fly ommatidium which was measured to be about 0.212, the replicated polymeric ommatidium has a much larger NA due to the refractive index of NOA78 is much higher than that of the material used to form the real fruit fly ommatidium. Furthermore, the replicated compound eye was used to image a photomask patterned with grating structures to test its imaging property. It is shown that the grating with a line width of 20 μm can be clearly imaged. The image of the grating formed by the replicated compound eye was shrunk by about 10 times and therefore a line width of about 2.2 μm in the image plane has been obtained, which is close to the diffraction limited resolution calculated through the measured NA. In summary, the replication method demonstrated is effective and the replicated compound eye has the great potential in optical imaging.« less

  10. Temperature and composition phase diagram in the iron-based ladder compounds Ba 1 - x Cs x Fe 2 Se 3

    DOE PAGES

    Hawai, Takafumi; Nambu, Yusuke; Ohgushi, Kenya; ...

    2015-05-28

    We investigated the iron-based ladder compounds (Ba,Cs)Fe₂Se₃. Their parent compounds BaFe₂Se₃ and CsFe₂Se₃ have different space groups, formal valences of Fe, and magnetic structures. Electrical resistivity, specific heat, magnetic susceptibility, x-ray diffraction, and powder neutron diffraction measurements were conducted to obtain a temperature and composition phase diagram of this system. Block magnetism observed in BaFe₂Se₃ is drastically suppressed with Cs doping. In contrast, stripe magnetism observed in CsFe₂Se₃ is not so fragile against Ba doping. A new type of magnetic structure appears in intermediate compositions, which is similar to stripe magnetism of CsFe₂Se₃, but interladder spin configuration is different. Intermediatemore » compounds show insulating behavior, nevertheless a finite T-linear contribution in specific heat was obtained at low temperatures.« less

  11. Quinoline derivative containing monomeric and polymeric metal carboxylates: Synthesis, crystal structure and gas adsorption study over a 2D layered framework

    NASA Astrophysics Data System (ADS)

    Gayen, Saikat; Saha, Debraj; Koner, Subratanath

    2018-06-01

    A new supramolecular metal-carboxylate framework [Co(mqc)2]n (1), and another monomeric compound [Zn (mqc)2(H2O)] (2) (mqcH = 4-methoxy 2-quinolinecarboxylic acid) have been synthesized solvothermally and characterized by single crystal X-ray diffraction, elemental analysis, IR spectra, UV-vis spectra, powdered X-ray diffraction (PXRD) and thermogravimetric analysis. Compound 1 is a 2D coordination polymer, extended to a 3D porous supramolecular network having void space in between 2D layers. Compound 1 exhibits gas uptake capacity of N2, H2, CO2 and CH4 like small gas molecules in which moderately high uptake of H2 and CO2 takes place among the 2D MOFs. While the Zn variety, compound 2 features a one-dimensional chain like structure through strong intermolecular hydrogen-bonding.

  12. Temperature and composition phase diagram in the iron-based ladder compounds Ba1-xCsxFe2Se3

    NASA Astrophysics Data System (ADS)

    Hawai, Takafumi; Nambu, Yusuke; Ohgushi, Kenya; Du, Fei; Hirata, Yasuyuki; Avdeev, Maxim; Uwatoko, Yoshiya; Sekine, Yurina; Fukazawa, Hiroshi; Ma, Jie; Chi, Songxue; Ueda, Yutaka; Yoshizawa, Hideki; Sato, Taku J.

    2015-05-01

    We investigated the iron-based ladder compounds (Ba,Cs ) Fe2Se3 . Their parent compounds BaFe2Se3 and CsFe2Se3 have different space groups, formal valences of Fe, and magnetic structures. Electrical resistivity, specific heat, magnetic susceptibility, x-ray diffraction, and powder neutron diffraction measurements were conducted to obtain a temperature and composition phase diagram of this system. Block magnetism observed in BaFe2Se3 is drastically suppressed with Cs doping. In contrast, stripe magnetism observed in CsFe2Se3 is not so fragile against Ba doping. A new type of magnetic structure appears in intermediate compositions, which is similar to stripe magnetism of CsFe2Se3 , but interladder spin configuration is different. Intermediate compounds show insulating behavior, nevertheless a finite T -linear contribution in specific heat was obtained at low temperatures.

  13. Molecular structure, vibrational spectra, NLO and MEP analysis of bis[2-hydroxy-кO-N-(2-pyridyl)-1-naphthaldiminato-кN]zinc(II)

    NASA Astrophysics Data System (ADS)

    Tanak, Hasan; Toy, Mehmet

    2013-11-01

    The molecular geometry and vibrational frequencies of bis[2-hydroxy-кO-N-(2-pyridyl)-1-naphthaldiminato-кN]zinc(II) in the ground state have been calculated by using the Hartree-Fock (HF) and density functional method (B3LYP) with 6-311G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The energetic and atomic charge behavior of the title compound in solvent media has been examined by applying the Onsager and the polarizable continuum model. To investigate second order nonlinear optical properties of the title compound, the electric dipole (μ), linear polarizability (α) and first-order hyperpolarizability (β) were computed using the density functional B3LYP and CAM-B3LYP methods with the 6-31+G(d) basis set. According to our calculations, the title compound exhibits nonzero (β) value revealing second order NLO behavior. In addition, DFT calculations of the title compound, molecular electrostatic potential (MEP), frontier molecular orbitals, and thermodynamic properties were performed at B3LYP/6-311G(d,p) level of theory.

  14. Synthesis, characterization, crystal structure and theoretical study of a compound with benzodiazole ring: antimicrobial activity and DNA binding.

    PubMed

    Latha, P; Kodisundaram, P; Sundararajan, M L; Jeyakumar, T

    2014-08-14

    2-(Thiophen-2-yl)-1-((thiophen-2-yl)methyl)-1H-1,3-benzodiazole (HL) is synthesized and characterized by elemental analysis, UV-Vis, FT-IR, (1)H, (13)C NMR, mass spectra, scanning electron microscope (SEM) and single crystal X-ray diffraction. The crystal structure is stabilized by intermolecular CH⋯N and CH⋯π interactions. The molecular structure is also optimized at the B3LYP/6-31G level using density functional theory (DFT). The structural parameters from the theory are nearer to those of crystal, the calculated total energy of coordination is -1522.814a.u. The energy of HOMO-LUMO and the energy gap are -0.20718, -0.04314, 0.16404a.u, respectively. All data obtained from the spectral studies support the structural properties of the compound HL. The benzimidazole ring is essentially planar. The in vitro biological screening effects of the synthesized compound is tested against four bacterial and four fungal strains by well diffusion method. Antioxidant property and DNA binding behaviour of the compound has been investigated using spectrophotometric method. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Crystal chemistry and thermal behavior of La doped (U, Th)O2

    NASA Astrophysics Data System (ADS)

    Keskar, Meera; Shelke, Geeta P.; Shafeeq, Muhammed; Krishnan, K.; Sali, S. K.; Kannan, S.

    2017-12-01

    X-ray diffraction, chemical and thermal studies of [(U0.2Th0.8)1-yLay]O2+x (LUTL) and [(U0.3Th0.7)1-yLay]O2+x (UTL); compounds (where y ≤ 0.4) were carried out. These compounds were synthesized by gel combustion method followed by heating in reduced atmospheres at 1673 K. To co-relate lattice parameters with metal and oxygen concentrations, reduced oxides were heated in Ar, CO2 and air atmospheres. Retention of FCC phase was confirmed in all mixed oxides with y ≤ 0.4. The cubic lattice parameters could be expressed in a linear equation of x and y as: a (Ǻ) = 5.5709 - 0.187 x + 0.032 y; [x < 0 and 0 ≤ y ≤ 0.40] for LUTL and a (Ǻ) = 5.5580 - 0.26 x + 0.015 y; [x < 0 and 0 ≤ y ≤ 0.36] for UTL. Oxidation studies and simple ionic model calculations suggested that uranium is predominantly present as a mixture of +5 and + 6 states when La/U ratio ∼2. Oxidation kinetics of mixed oxides was studied by non-isothermal method using thermogravimetry and was found to be a diffusion controlled reaction. High temperature X-ray diffraction studies of LUTL and UTL mixed oxides showed positive thermal expansion in the temperature range of 298-1273 K and % expansion increases with La concentration.

  16. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation

    NASA Astrophysics Data System (ADS)

    Matinise, N.; Fuku, X. G.; Kaviyarasu, K.; Mayedwa, N.; Maaza, M.

    2017-06-01

    The research work involves the development of better and reliable method for the bio-fabrication of Zinc oxide nanoparticles through green method using Moringa Oleifera extract as an effective chelating agent. The electrochemical activity, crystalline structure, morphology, isothermal behavior, chemical composition and optical properties of ZnO nanoparticles were studied using various characterization techniques i.e. Cyclic voltammetry (CV), X-ray powder diffraction (XRD), High resolution transmission electron microscopy (HRTEM), Selected area electron diffraction (SEAD), Differential scanning calorimetry/thermogravimetric analysis (DSC/TGA), Fourier Transform Infrared analysis (FTIR) and Ultraviolet spectroscopy studies (UV-vis). The electrochemical analysis proved that the ZnO nano has high electrochemical activity without any modifications and therefore are considered as a potential candidate in electrochemical applications. The XRD pattern confirmed the crystallinity and pure phase of the sample. DSC/TGA analysis of ZnO sample (before anneal) revealed three endothermic peaks around 140.8 °C, 223.7 °C and 389.5 °C. These endothermic peaks are attributed to the loss of volatile surfactant, conversion of zinc hydroxide to zinc oxide nanoparticles and transformation of zinc oxide into zinc nanoparticles. Mechanisms of formation of the ZnO nanoparticles via the chemical reaction of the Zinc nitrate precursor with the bioactive compounds of the Moringa oleifera are proposed for each of the major family compounds: Vitamins, Flavonoids, and Phenolic acids.

  17. Microporous Cd(II) metal-organic framework as fluorescent sensor for nitroaromatic explosives at the sub-ppm level

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Po; Han, Lu-Lu; Wang, Zhi; Guo, Ling-Yu; Sun, Di

    2016-03-01

    A novel Cd(II) metal-organic framework (MOF) based on a rigid biphenyltetracarboxylic acid, [Cd4(bptc)2(DMA)4(H2O)2·4DMA] (1) was successfully synthesized under the solvothermal condition and characterized by single-crystal X-ray diffraction and further consolidated by elemental analyses, powder X-ray diffraction (PXRD), infrared spectra (IR) and luminescent measurements. Single crystal X-ray diffraction analysis reveals that compound 1 is 4-connected PtS (Point symbol: {42·84}) network based on [Cd2(COO)4] secondary building units (SBUs). Its inherent porous and emissive characteristics make them to be a suitable fluorescent probe to sense small solvents and nitroaromatic explosives. Compound 1 shows obviously solvent-dependent emissive behaviors, especially for acetone with very high fluorescence quenching effect. Moreover, compound 1 displays excellent sensing of nitroaromatic explosives at sub-ppm level, giving a detection limit of 0.43 ppm and 0.37 ppm for nitrobenzene (NB) and p-nitrotoluene (PNT), respectively. This shows this Cd(II) MOF can be used as fluorescence probe for the detection of nitroaromatic explosives.

  18. A combined experimental and in silico characterization to highlight additional structural features and properties of a potentially new drug

    NASA Astrophysics Data System (ADS)

    Bastos, Isadora T. S.; Costa, Fanny N.; Silva, Tiago F.; Barreiro, Eliezer J.; Lima, Lídia M.; Braz, Delson; Lombardo, Giuseppe M.; Punzo, Francesco; Ferreira, Fabio F.; Barroso, Regina C.

    2017-10-01

    LASSBio-1755 is a new cycloalkyl-N-acylhydrazone parent compound designed for the development of derivatives with antinociceptive and anti-inflammatory activities. Although single crystal X-ray diffraction has been considered as the golden standard in structure determination, we successfully used X-ray powder diffraction data in the structural determination of new synthesized compounds, in order to overcome the bottle-neck due to the difficulties experienced in harvesting good quality single crystals of the compounds. We therefore unequivocally assigned the relative configuration (E) to the imine double bond and a s-cis conformation of the amide function of the N-acylhydrazone compound. These features are confirmed by a computational analysis performed on the basis of molecular dynamics calculations, which are extended not only to the structural characteristics but also to the analysis of the anisotropic atomic displacement parameters, a further information - missed in a typical powder diffraction analysis. The so inferred data were used to perform additional cycles of refinement and eventually generate a new cif file with additional physical information. Furthermore, crystal morphology prediction was performed, which is in agreement with the experimental images acquired by scanning electron microscopy, thus providing useful information on possible alternative paths for better crystallization strategies.

  19. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    DOE PAGES

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.; ...

    2016-01-01

    When appropriately activated, alkali rare-earth double phosphates of the form: M 3RE(PO 4) 2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K 3RE(PO 4) 2 with RE = Lu, Er, Ho,more » Dy, Gd, Nd, Ce, plus Y and Sc - as well as the compounds: A 3Lu(PO 4) 2, with A = Rb, and Cs. The double phosphate K 3Lu(PO 4) 2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K 3Lu(PO 4) 2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K 3Lu(PO 4) 2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K 3Yb(PO 4) 2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single-crystal growth methods structural systematics, and thermal expansion properties of the present series of alkali rare-earth double phosphates, as determined by X-ray and neutron diffraction methods, are treated here.« less

  20. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.

    When appropriately activated, alkali rare-earth double phosphates of the form: M 3RE(PO 4) 2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K 3RE(PO 4) 2 with RE = Lu, Er, Ho,more » Dy, Gd, Nd, Ce, plus Y and Sc - as well as the compounds: A 3Lu(PO 4) 2, with A = Rb, and Cs. The double phosphate K 3Lu(PO 4) 2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K 3Lu(PO 4) 2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K 3Lu(PO 4) 2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K 3Yb(PO 4) 2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single-crystal growth methods structural systematics, and thermal expansion properties of the present series of alkali rare-earth double phosphates, as determined by X-ray and neutron diffraction methods, are treated here.« less

  1. Investigations on the crystal-structure and non-ambient behaviour of K2Ca2Si8O19 - a new potassium calcium silicate

    NASA Astrophysics Data System (ADS)

    Schmidmair, Daniela; Kahlenberg, Volker; Praxmarer, Alessandra; Perfler, Lukas; Mair, Philipp

    2017-09-01

    Within the context of a systematic re-investigation of phase relationships between compounds of the ternary system K2O-CaO-SiO2 a new potassium calcium silicate with the chemical formula K2Ca2Si8O19 was synthesized via solid state reactions as well as the flux method using KCl as a solvent. Its crystal structure was determined from single-crystal X-ray diffraction data by applying direct methods. The new compound crystallizes in the triclinic space group P 1 bar . Unit cell dimensions are a = 7.4231(7) Å, b = 10.7649(10) Å, c = 12.1252(10) Å, α = 70.193(8)°, β = 83.914(7)° and γ = 88.683(7)°. K2Ca2Si8O19 is built up of corner-connected, slightly distorted [SiO4]-tetrahedra forming double-sheets, which are linked by double-chains of edge-sharing [CaO6]-octahedra. Electroneutrality of the material is provided by additional potassium atoms that are located within the voids of the silicate layers and between adjacent [Ca2O6]-double-chains. Further characterization of the compound was performed by Raman spectroscopy and differential thermal analysis. The behaviour of K2Ca2Si8O19 under high-temperature and high-pressure was investigated by in-situ high-temperature powder X-ray diffraction up to a maximum temperature of 1125 °C and a piston cylinder experiment at 1.5 GPa and 1100 °C. Additionally an overview of known double-layer silicates is given as well as a comparison of K2Ca2Si8O19 to closely related structures.

  2. Solvothermal and electrochemical synthetic method of HKUST-1 and its methane storage capacity

    NASA Astrophysics Data System (ADS)

    Wahyu Lestari, Witri; Adreane, Marisa; Purnawan, Candra; Fansuri, Hamzah; Widiastuti, Nurul; Budi Rahardjo, Sentot

    2016-02-01

    A comparison synthetic strategy of Metal-Organic Frameworks, namely, Hongkong University of Techhnology-1 {HKUST-1[Cu3(BTC)]2} (BTC = 1,3,5-benzene-tri-carboxylate) through solvothermal and electrochemical method in ethanol:water (1:1) has been conducted. The obtained material was analyzed using powder X-ray diffraction, Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Thermo-Gravimetric Analysis (TGA) and Surface Area Analysis (SAA). While the voltage in the electrochemical method are varied, ranging from 12 to 15 Volt. The results show that at 15 V the texture of the material has the best degree of crystallinity and comparable with solvothermal product. This indicated from XRD data and supported by the SEM image to view the morphology. The thermal stability of the synthesized compounds is up to 320 °C. The shape of the nitrogen sorption isotherm of the compound corresponds to type I of the IUPAC adsorption isotherm classification for microporous materials with BET surface area of 629.2 and 324.3 m2/g (for solvothermal and electrochemical product respectively) and promising for gas storage application. Herein, the methane storage capacities of these compounds are also tested.

  3. Solid state synthesis, structural, physicochemical and optical properties of an inter-molecular compound: 2-hydroxy-1, 2-diphenylethanone-4-nitro-o-phenylenediamine system

    NASA Astrophysics Data System (ADS)

    Rai, U. S.; Singh, Manjeet; Rai, R. N.

    2017-09-01

    The phase diagram of 2-hydroxy-1, 2-diphenylethanone (HDPE)-4-nitro-o-phenylenediamine (NOPDA) system, determined by the thaw-melt method, gives two eutectics E1 (m p = 66.0 °C) and E2 (m p = 155.0 °C) with 0.30 and 0.55 mol fractions of NOPDA, respectively, and an 1:1 inter-molecular compound (IMC) (m p 162.0 °C). This IMC was synthesized by adopting the green synthetic method of solid state reaction. While its formation and structure were confirmed by the X-ray diffraction and spectroscopic methods, the ORTEP view gives mode of crystal packing, C‒H…O, C‒H…N, π-π stacking and the inter-molecular hydrogen bonding in the compound. The single crystal of the IMC shows 53% transmission and emits significantly higher dual fluorescence, and the band gap was computed to be 3.04 eV. The values of solubility of the IMC, measured in the temperature range 304-322 K, satisfy the mole fraction (X) and temperature equation: Xeq= 5.1324 × 10-7 e 0.01356T.

  4. Computational and spectroscopic studies of a new Schiff base 3-hydroxy-4-methoxybenzylidene(2-hydroxyphenyl)amine and molecular structure of its corresponding zwitterionic form.

    PubMed

    Habibi, Mohammad Hossein; Shojaee, Elahe; Ranjbar, Mahnaz; Memarian, Hamid Reza; Kanayama, Akihiko; Suzuki, Takayoshi

    2013-03-15

    Computational and spectroscopic properties of a novel Schiff base compound, 3-hydroxy-4-methoxybenzylidene(2-hydroxyphenyl)amine were studied. The crystal structures of the title compound and its corresponding zwitterionic form were analyzed by X-ray diffraction. The presence of N-H, C-O and C=N stretching vibrations in IR spectrum strongly suggest that the title compound has zwitterionic form in the solid state. Molecular geometry of the title compound in the ground state has been calculated using the density functional method (DFT) at B3LYP 6-31++G(d,p) basis set and was compared with the experimental data. The calculated results of the title compound show that the optimized geometry can well reproduce the crystal structure. The molecule shows absorption bands at 345 and 363 nm in EtOH. The shoulder-shaped bands at 415 nm can be assigned to n→π(*) transitions. The absorption band is observed at 285 nm in EtOH corresponds to the π→π(*) transitions. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. 1D helical cadmium coordination polymers containing hydrazide ligand: The role of solvent and molar ratio

    NASA Astrophysics Data System (ADS)

    Notash, Behrouz

    2018-03-01

    Three new cadmium coordination polymers, [Cd(L)(NO3)2CH3OH]n, 1, {[Cd(L)2(NO3)]NO3}n, 2 and {[Cd(L)2(NO3)]NO3.H2O}n3, which L is nicotinohydrazide have been synthesized and characterized by spectroscopic methods as well as single crystal X-ray diffraction. Compounds 1-3 have been synthesized by changing solvent and metal-to-ligand ratio. X-ray crystallography showed that compounds 1-3 have different 1D helical structural motif. Semi-flexible nature of L ligand causes to syn-syn conformation which leading to form 1D helical chains coordination polymers. Compounds 2 and 3 were synthesized under the same reaction conditions with similar molar ratio, but using different solvent system. These compounds are pseudopolymorph which differs in the presence or absence of water molecule in their crystal packing. Hirshfeld surface analysis of the structures 1-3 have been performed and find the percent of participation of intermolecular interactions in the crystal packing of compounds.

  6. One-pot synthesis, quantum chemical calculations and X-ray diffraction studies of thiazolyl-coumarin hybrid compounds

    NASA Astrophysics Data System (ADS)

    Saeed, Aamer; Arif, Mubeen; Erben, Mauricio F.; Flörke, Ulrich; Simpson, Jim

    2018-06-01

    Two closely related hybrid species containing both, thiazolyl and coumarin groups, were synthesized by using two different one-pot procedures from a common precursor. The reaction of α-bromoacetylcoumarin with thioacetamide in methanol furnished 3‑(2‑methylthiazol‑4‑yl)‑2H‑chromen‑2‑one (2), whereas refluxing α‑bromoacetylcoumarin with potassium thiocyanate in ethanol afforded 3‑(2‑ethoxythiazol‑4‑yl)‑2H‑chromen‑2‑one (3). Both derivatives were fully characterized by spectroscopic methods, elemental analysis and X-ray diffraction studies. Intramolecular C4sbnd H⋯N and C5‧sbnd H⋯Odbnd C hydrogen bonds between the heterocycles determine the conformational behavior. The co-planarity of the coumarin and thiazolyl rings favors the occurrence of two remote orbital interactions involving the oxygen and nitrogen lone pairs and the corresponding σ*Csbnd H electron acceptor, as demonstrated by Natural Bond Orbital population analysis. The 2-substitution of the thiazol‑4‑yl group has little effect on the molecular structures but causes significant differences in the crystal packing of the two compounds.

  7. Thermolysis synthesis of pure phase NiO from novel sonochemical synthesized Ni(II) nano metal-organic supramolecular architecture.

    PubMed

    Hanifehpour, Younes; Morsali, Ali; Mirtamizdoust, Babak; Joo, Sang Woo; Soltani, Behzad

    2017-07-01

    Nano-structures of a new supramolecular coordination compound of divalent nickel with the pyrazol (pzH) containing the terminal azide anions, [Ni(pzH) 2 (N 3 ) 2 ] (1), with discrete molecular architecture (DMA) in solid state was synthesized via sonochemical method. The new nanostructure was characterized by scanning electron microscopy, X-ray powder diffraction, IR, and elemental analysis. Compound 1 was structurally characterized by single crystal X-ray diffraction and the single-crystal X-ray data shows that the coordination number of Ni (II) ions is six, (NiN 6 ), with four N-donor atoms from neutral "pzH" ligands and two N-donors from two terminal azide anions. The supramolecular features in these complexes are guided and controlled by weak directional intermolecular interactions. The structure of the title complex was optimized by density functional theory calculations. Calculated structural parameters and IR spectra for the title complex are consistent with the crystal structure. The NiO nanoparticles were obtained by thermolysis of 1 at 180°C with oleic acid as a surfactant. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Role of grain and grain boundary on the electrical and thermal conductivity of Bi0.9Y0.1Fe0.9Mn0.1O3 ceramics

    NASA Astrophysics Data System (ADS)

    Pandey, Rabichandra; Panda, Chandrakanta; Kumar, Pawan; Pradhan, Lagen Kumar; Kar, Manoranjan

    2017-05-01

    Role of grain and grain boundary on electrical and thermal conductivity of Bi0.9Y0.1Fe0.9Mn0.1O3 ceramic was investigated systematically. Tartaric acid modified sol gel method was used to synthesize the compound. X-ray diffraction technique was used to confirm the formation of single phase orthorhombic (Pbnm) structure. Electrical properties of the sample were measured with a wide frequency range from 100Hz to 10MHz at different temperature from 40°C to 250°C. AC impedance studies indicate the presence of grain and grain boundary effect. The negative temperature coefficient of resistance (NTCR) behaviour of the compound has been confirmed by the cole-cole plot. DC electrical and thermal conductivities of the compound were explained on the basis of grain and grain boundaries.

  9. Characterization of natural puya sand extract of Central Kalimantan by using X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Suastika, K. G.; Karelius, K.; Sudyana, I. N.

    2018-03-01

    Start Zircon sand extraction in this study use natural sand material from Kereng Pangi village of Central Kalimantan, also known as Puya sand. There are only three ways to extract the Puya sand. The first is magnetic separation, the second is immersion in HCl, and the third is reaction with NaOH. In addition, sample of each extraction step is analyzed with X-Ray Diffraction (XRD). Then based on the quantitative analysis using X'Pert Highscore Plus software, the samples are identified mostly as zircon (ZrSiO4) and silica (SiO2). Moreover, after the immersion process with HCl, the silica compound goes down and the zircon compound climbs to 74%. In the reaction process with NaOH zircon compound content further to increase to 88%.

  10. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  11. Bioisosteric ferrocenyl-containing quinolines with antiplasmodial and antitrichomonal properties

    USDA-ARS?s Scientific Manuscript database

    A series of ferrocenyl'containing quinolines and ferrocenylamines were prepared and fully characterized. The molecular structures of two ferrocenyl'containing quinolines, determined using single'crystal x'ray diffraction, revealed that the compounds crystallise in a folded conformation. The compound...

  12. Room Temperature Elastic Moduli and Vickers Hardness of Hot-Pressed LLZO Cubic Garnet

    DTIC Science & Technology

    2012-01-01

    polishing compounds, Leco, St. Joseph, MI). X - ray diffraction and scanning electron microscopy (SEM) The microstructure of the hot-pressed specimens...was examined on uncoated fracture surfaces by SEM with an accelerating voltage of 1 and 3 kV. Phase purity was evaluated from X - ray diffraction data...the micro- structure appeared to be homogenous for the two hot- pressed LLZO specimens included in this study (Fig. 1). X - ray diffraction confirmed that

  13. Two Polymorphs of an Organic-Zincophosphate Incorporating a Terephthalate Bridging Ligand in an Unusual Bonding Mode.

    PubMed

    Wang, Chih-Min; Pan, Ming-Feng; Chen, Yen-Chieh; Lin, Hsiu-Mei; Chung, Mei-Ying; Wen, Yuh-Sheng; Lii, Kwang-Hwa

    2017-07-17

    Two new polymorphs of a zinc phosphate incorporating the terephthalate organic ligand 1,4-benzenedicarboxylate (BDC), (H 2 DA)Zn 2 (cis-BDC)(HPO 4 ) 2 (1) and (H 2 DA)Zn 2 (trans-BDC)(HPO 4 ) 2 (2), where DA = 1,7-diaminoheptane, were synthesized via a hydro(solvo)thermal method at different reaction temperatures and structurally characterized by single-crystal X-ray diffraction. Interestingly, the BDC ligands, which adopt the bis-monodentate coordination model with a unusual cis type for compound 1 and with a trans linkage for compound 2, bridge the Zn atoms of the inorganic layers in the generation of two polymorphs with structural diversities (one kind of arrangement of the layered zincophosphate layer in 1; the flat and zigzag sheets of inorganic networks in 2). A simple method for tuning the optical luminescence of the title compound from blue, red, green, yellow, and pink to white emission by stirring powdered samples in lanthanide-cation-containing aqueous ethanol solutions at room temperature for 1-2 h is also presented.

  14. Th(As(III)4As(V)4O18): a mixed-valent oxoarsenic(III)/arsenic(V) actinide compound obtained under extreme conditions.

    PubMed

    Yu, Na; Klepov, Vladislav V; Kegler, Philip; Bosbach, Dirk; Albrecht-Schmitt, Thomas E; Alekseev, Evgeny V

    2014-08-18

    A high-temperature/high-pressure method was employed to investigate phase formation in the Th(NO3)4·5H2O-As2O3-CsNO3 system. It was observed that an excess of arsenic(III) in starting system leads to the formation of Th(As(III)4As(V)4O18), which is representative of a rare class of mixed-valent arsenic(III)/arsenic(V) compounds. This compound was studied with X-ray diffraction, energy-dispersive X-ray, and Raman spectroscopy methods. Crystallographic data show that Th(As(III)4As(V)4O18) is built from (As(III)4As(V)4O18)(4-) layers connected through Th atoms. The arsenic layers are found to be isoreticular to those in previously reported As2O3 and As3O5(OH), and the geometric differences between them are discussed. Bands in the Raman spectrum are assigned with respect to the presence of AsO3 and AsO4 groups.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliev, Ziya S., E-mail: ziyasaliev@gmail.com; Institute of Physics, ANAS, H.Javid ave. 131, AZ1143 Baku; Donostia International Physics Center

    Single crystals of the ternary copper compounds CuTlS and CuTlSe have been successfully grown from stoichiometric melt by using vertical Bridgman-Stockbarger method. The crystal structure of the both compounds has been determined by powder and single crystal X-Ray diffraction. They crystallize in the PbFCl structure type with two formula units in the tetragonal system, space group P4/nmm, a=3.922(2); c=8.123(6); Z=2 and a=4.087(6); c=8.195(19) Å; Z=2, respectively. The band structure of the reported compounds has been analyzed by means of full-potential linearized augmented plane-wave (FLAPW) method based on the density functional theory (DFT). Both compounds have similar band structures and aremore » narrow-gap semiconductors with indirect band gap. The resistivity measurements agree with a semiconductor behavior although anomalies are observed at low temperature. - Graphical abstract: The crystal structures of CuTl and CuTlSe are isostructural with the PbFCl-type and the superconductor LiFeAs-type tetragonal structure. The band structure calculations confirmed that they are narrow-gap semiconductors with indirect band gaps of 0.326 and 0.083 eV. The resistivity measurements, although confirming the semiconducting behavior of both compounds exhibit unusual anomalies at low temperatures. - Highlights: • Single crystals of CuTlS and CuTlSe have been successfully grown by Bridgman-Stockbarger method. • The crystal structure of the both compounds has been determined by single crystal XRD. • The band structure of the both compounds has been analyzed based on the density functional theory (DFT). • The resistivity measurements have been carried out from room temperature down to 10 K.« less

  16. Synthesis, growth, structural, thermal and optical studies of pyrrolidinium-2-carboxylate-4-nitrophenol single crystals.

    PubMed

    Swarna Sowmya, N; Sampathkrishnan, S; Vidyalakshmi, Y; Sudhahar, S; Mohan Kumar, R

    2015-06-15

    Organic nonlinear optical material, pyrrolidinium-2-carboxylate-4-nitrophenol (PCN) was synthesized and single crystals were grown by slow evaporation solution growth method. Single crystal X-ray diffraction analysis confirmed the structure and lattice parameters of PCN crystals. Infrared, Raman and NMR spectral analyses were used to elucidate the functional groups present in the compound. The thermal behavior of synthesized compound was studied by thermogravimetric and differential scanning calorimetry (TG-DSC) analyses. The photoluminescence property was studied by exciting the crystal at 360 nm. The relative second harmonic generation (SHG) efficiency of grown crystal was estimated by using Nd:YAG laser with fundamental wavelength of 1,064 nm. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. 5-phosphonato-3,4-dihydropyrimidin-2(1H)-ones: Zinc triflate-catalyzed one-pot multi-component synthesis, X-ray crystal structure and anti-inflammatory activity

    NASA Astrophysics Data System (ADS)

    Essid, Idris; Lahbib, Karima; Kaminsky, Werner; Ben Nasr, Cherif; Touil, Soufiane

    2017-08-01

    Herein we report a simple and efficient one-pot three-component synthesis of 5-phosphonato-3,4-dihydropyrimidin-2(1H)-ones, through the zinc triflate-catalyzed Biginelli-type reaction of β-ketophosphonates, aldehydes and urea. The compounds obtained were characterized by various spectroscopic tools including IR, NMR (1H, 31P, 13C) spectroscopy, mass spectrometry and single crystal X-ray diffraction. All the synthesized compounds were screened, for the first time, for anti-inflammatory activity by carrageenan-induced hind paw edema method, using female Wister rats and they showed significant anti-inflammatory activity in some cases higher than the standard indomethacin.

  18. Phase behavior and crystal structure of 3-(1-naphthyloxy)- and 3-(4-indolyloxy)-propane-1,2-diol, synthetic precursors of chiral drugs propranolol and pindolol

    NASA Astrophysics Data System (ADS)

    Bredikhin, Alexander A.; Gubaidullin, Aidar T.; Bredikhina, Zemfira A.; Fayzullin, Robert R.; Samigullina, Aida I.; Zakharychev, Dmitry V.

    2013-08-01

    Valuable precursors of popular chiral drugs propranolol and pindolol, 3-(1-naphthyloxy)-propane-1,2-diol 3 and 3-(4-indolyloxy)-propane-1,2-diol 4 were investigated by IR spectroscopy, DSC, and X-ray diffraction methods. Both compounds, crystallizing from enantiopure feed material, form "guaifenesin-like" crystal packing in which the classic H-bonded bilayers, framed in both sides by hydrophobic fragments of the molecules, acts as the basic crystal-forming motif. Diol 4 prone to spontaneous resolution and conserves its packing pattern crystallizing from racemate. Under the same conditions, diol 3 forms weakly stable solid racemic compound. Some reasons for such a behavior are identified and discussed.

  19. Compound focusing mirror and X-ray waveguide optics for coherent imaging and nano-diffraction.

    PubMed

    Salditt, Tim; Osterhoff, Markus; Krenkel, Martin; Wilke, Robin N; Priebe, Marius; Bartels, Matthias; Kalbfleisch, Sebastian; Sprung, Michael

    2015-07-01

    A compound optical system for coherent focusing and imaging at the nanoscale is reported, realised by high-gain fixed-curvature elliptical mirrors in combination with X-ray waveguide optics or different cleaning apertures. The key optical concepts are illustrated, as implemented at the Göttingen Instrument for Nano-Imaging with X-rays (GINIX), installed at the P10 coherence beamline of the PETRA III storage ring at DESY, Hamburg, and examples for typical applications in biological imaging are given. Characteristic beam configurations with the recently achieved values are also described, meeting the different requirements of the applications, such as spot size, coherence or bandwidth. The emphasis of this work is on the different beam shaping, filtering and characterization methods.

  20. Cytotoxic principles from the formosan milkweed, Asclepias curassavica.

    PubMed

    Roy, Michael C; Chang, Fang-Rong; Huang, Hsiao-Chu; Chiang, Michael Y-N; Wu, Yang-Chang

    2005-10-01

    A series of cardenolides and related compounds have been isolated from the aerial parts and roots of the ornamental milkweed, Asclepias curassavica. Their structures were determined by spectroscopic and chemical methods. Among them, three derivatives of calactinic acid methyl ester (13-15), 19-nor-16 alpha-acetoxy-10 beta-hydroxyasclepin (16), 20 beta,21-dihydroxypregna-4,6-dien-3-one (19), and 3,4-seco-urs-20(30)-en-3-oic acid (22) are new compounds. The relative configuration of calactinic acid methyl ester (12) has been confirmed by X-ray diffraction analysis on its derivative 13. Most of the cardenolides obtained showed pronounced cytotoxicity against four cancer cell lines (IC(50) 0.01 to 2.0 microg/mL).

  1. Synthesis of Polycrystalline CdSiP2 in a Gradient Temperature Field

    NASA Astrophysics Data System (ADS)

    Bereznaya, S. A.; Korotchenko, Z. V.; Kurasova, A. S.; Sarkisov, S. Yu.; Sarkisov, Yu. S.; Chernyshov, A. I.; Korolkov, I. V.; Kuchumov, B. M.; Saprykin, A. I.; Atuchin, V. V.

    2018-05-01

    A procedure for the synthesis of a CdSiP2 compound from the initial elementary components in a gradient thermal field has been developed. The phase and chemical composition of the synthesized and recrystallized material is confirmed by the data of X-ray diffraction analysis and scanning electron microscopy with an energy-dispersive system. The polycrystalline material obtained by the developed method will be used to grow bulk nonlinear optical CdSiP2 crystals.

  2. Structures and standard molar enthalpies of formation of a series of Ln(III)–Cu(II) heteronuclear compounds with pyrazine-2,3-dicarboxylic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qi; Xie, Gang; Wei, Qing

    2014-07-01

    Fifteen lanthanide–copper heteronuclear compounds, formulated as [CuLn{sub 2}(pzdc){sub 4}(H{sub 2}O){sub 6}]·xH{sub 2}O (1–6(x=2), 8(x=3), 9–10(x=4)); [CuLn{sub 2}(pzdc){sub 4}(H{sub 2}O){sub 4}]·xH{sub 2}O (7, 12–13, 15(x=4), 14(x=5), 11(x=8)) (Ln(III)=La(1); Ce(2); Pr(3); Nd(4); Sm(5); Eu(6); Gd(7); Tb(8); Dy(9); Ho(10); Er(11); Tm(12); Yb(13); Lu(14); Y(15); H{sub 2}pzdc (C{sub 6}H{sub 4}N{sub 2}O{sub 4})=pyrazine-2,3-dicarboxylic acid) have been hydrothermally synthesized. All compounds were characterized by element analysis, IR spectroscopy, single-crystal X-ray diffraction and thermal analysis. X-ray diffraction analyses confirm that all compounds are isostructural and feature a 3D brick-like framework structure with (4.6{sup 2}){sub 2}(4{sup 2}.6{sup 2}.8{sup 2})(6{sup 3}){sup 2}(6{sup 5}.8){sub 2} topology. Using 1 mol cm{supmore » −3} HCl(aq) as calorimetric solvent, with an isoperibol solution–reaction calorimeter, the standard molar enthalpies of formation of all compounds were determined by a designed thermochemical cycle. In addition, solid state luminescence properties of compounds 5, 6, 8 and 9 were studied in the solid state. - Graphical abstract: According to Hess' rule, the standard molar enthalpies of formation of Ln–Cu heterometallic coordination compounds were determined by a designed thermochemical cycle. - Highlights: • Fifteen lanthanide–copper heteronuclear isostructural compounds. • Structurally characterization by IR, X-ray diffraction and thermal analysis. • The standard molar enthalpy of formation. • Isoperibol solution–reaction calorimetry.« less

  3. Quantum-chemical calculations and electron diffraction study of the equilibrium molecular structure of vitamin K3

    NASA Astrophysics Data System (ADS)

    Khaikin, L. S.; Tikhonov, D. S.; Grikina, O. E.; Rykov, A. N.; Stepanov, N. F.

    2014-05-01

    The equilibrium molecular structure of 2-methyl-1,4-naphthoquinone (vitamin K3) having C s symmetry is experimentally characterized for the first time by means of gas-phase electron diffraction using quantum-chemical calculations and data on the vibrational spectra of related compounds.

  4. Complex compound polyvinyl alcohol-titanic acid/titanium dioxide

    NASA Astrophysics Data System (ADS)

    Prosanov, I. Yu.

    2013-02-01

    A complex compound polyvinyl alcohol-titanic acid has been produced and investigated by means of IR and Raman spectroscopy, X-ray diffraction, and synchronous thermal analysis. It is claimed that it represents an interpolymeric complex of polyvinyl alcohol and hydrated titanium oxide.

  5. Magneto-structural studies of sol-gel synthesized nanocrystalline manganese substituted nickel ferrites

    NASA Astrophysics Data System (ADS)

    Pandav, R. S.; Patil, R. P.; Chavan, S. S.; Mulla, I. S.; Hankare, P. P.

    2016-11-01

    Nanocrystalline NiFe2-xMnxO4 (2≥x≥0) ferrites were prepared by sol-gel method. X-ray diffraction patterns reveal that synthesized compounds are in single phase cubic spinel lattice for all the composition. The surface morphology of all the samples were studied by scanning electron microscopy. The particle size measured from transmission electron microscopy and X-ray diffraction patterns confirms the nanosized dimension of the as-prepared powder. The elemental analysis was carried out by energy dispersive X-ray analysis technique. Magnetic properties such as saturation magnetization, coercivity and remanence are studied as a function of increasing Mn concentration at room temperature. The saturation magnetization shows a decreasing trend with increase in Mn content. The substitution of manganese in the nickel ferrite affects the structural and magnetic properties of cubic spinels.

  6. NHC carbene supported half-sandwich hydridosilyl complexes of ruthenium: the impact of supporting ligands on Si∙∙∙H interligand interactions.

    PubMed

    Mai, Van Hung; Kuzmina, Lyudmila G; Churakov, Andrei V; Korobkov, Ilia; Howard, Judith A K; Nikonov, Georgii I

    2016-01-07

    Reaction of complex [CpRu(pyr)3][PF6] (3) with the NHC carbene IPr (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) results in the NHC complex [Cp(IPr)Ru(pyr)2][PF6] (4), which was studied by NMR specroscopy and X-ray diffraction analysis. Reaction of [Cp(IPr)Ru(pyr)2][PF6] (4) with LiAlH4 leads to the trihydride Cp(IPr)RuH3 (5) characterised by spectroscopic methods. Heating compound 5 with hydrosilanes gives the dihydrido silyl derivatives Cp(IPr)RuH2(SiR3) (6). Systematic X-ray diffraction studies suggest that complexes 6 have stronger interligand Si∙∙∙H interactions than the isolobal phosphine complexes Cp(Pr3P)RuH2(SiR3).

  7. Computational modeling of drug-resistant bacteria. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDougall, Preston

    2015-03-12

    Initial proposal summary: The evolution of antibiotic-resistant mutants among bacteria (superbugs) is a persistent and growing threat to public health. In many ways, we are engaged in a war with these microorganisms, where the corresponding arms race involves chemical weapons and biological targets. Just as advances in microelectronics, imaging technology and feature recognition software have turned conventional munitions into smart bombs, the long-term objectives of this proposal are to develop highly effective antibiotics using next-generation biomolecular modeling capabilities in tandem with novel subatomic feature detection software. Using model compounds and targets, our design methodology will be validated with correspondingly ultra-highmore » resolution structure-determination methods at premier DOE facilities (single-crystal X-ray diffraction at Argonne National Laboratory, and neutron diffraction at Oak Ridge National Laboratory). The objectives and accomplishments are summarized.« less

  8. Crystallization and preliminary X-ray diffraction analysis of mouse 3(17)α-hydroxysteroid dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Kabbani, Ossama, E-mail: ossama.el-kabbani@vcp.monash.edu.au; Ishikura, Syuhei; Wagner, Armin

    2005-07-01

    Orthorhombic crystals of mouse 3(17)α-hydroxysteroid dehydrogenase were obtained from buffered polyethylene glycol solutions. The crystals diffracted to a resolution of 1.8 Å at the Swiss Light Source beamline X06SA. The 3(17)α-hydroxysteroid dehydrogenase from mouse is involved in the metabolism of oestrogens, androgens, neurosteroids and xenobiotic compounds. The enzyme was crystallized by the hanging-drop vapour-diffusion method in space group P222{sub 1}, with unit-cell parameters a = 84.91, b = 84.90, c = 95.83 Å. The Matthews coefficient (V{sub M}) and the solvent content were 2.21 Å{sup 3} Da{sup −1} and 44.6%, respectively, assuming the presence of two molecules in the asymmetricmore » unit. Diffraction data were collected to a resolution of 1.8 Å at the Swiss Light Source beamline X06SA using a MAR CCD area detector and gave a data set with an overall R{sub merge} of 6.8% and a completeness of 91.1%.« less

  9. Crystal structure, electrical transport and phase transition in 2-methoxyanilinium hexachlorido stannate(IV) dehydrate

    NASA Astrophysics Data System (ADS)

    Karoui, Sahel; Chouaib, Hassen; Kamoun, Slaheddine

    2017-04-01

    A new organic-inorganic (C7H10NO)2[SnCl6]2H2O compound was synthesized and characterized by X-ray diffraction, thermal analysis, NMR spectroscopy and dielectric measurements. The crystal structure refinement shows that this compound crystallizes at 298 K in the monoclinic system (P21/a space group (Z = 2)). The structure was solved by Patterson method and refined to a final value of R = 0.034 for 2207 independent observed reflections. The cohesion and stability of the atomic arrangement result from the establishment of Nsbnd H⋯Cl, O(W)sbnd H(W)⋯Cl and Nsbnd H⋯O(W) hydrogen bonds between (C7H10NO)+ cations, isolated (SnCl6)2- anions and water molecules. This compound exhibits a phase transition at 305 K which was characterized by differential scanning calorimetry (DSC), X-rays powder diffraction and dielectric measurements. At high frequency, the electrical σTot.(ω,T) conductivity obey to the Jonscher's power law σTot.(ω,T) = σDC(T) + B(T) ωS(T). DC and AC conductivity in (C7H10NO)2[SnCl6]2H2O was investigated revealing that the phase transition from the monoclinic P21/a (phase I) to the monoclinic C2/c (phase II) which occurs at 305 K is characterized by a change of the mechanism of the electric transport: SPT in phase I and CBH in phase II.

  10. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties.

    PubMed

    Stoumpos, Constantinos C; Malliakas, Christos D; Kanatzidis, Mercouri G

    2013-08-05

    A broad organic-inorganic series of hybrid metal iodide perovskites with the general formulation AMI3, where A is the methylammonium (CH3NH3(+)) or formamidinium (HC(NH2)2(+)) cation and M is Sn (1 and 2) or Pb (3 and 4) are reported. The compounds have been prepared through a variety of synthetic approaches, and the nature of the resulting materials is discussed in terms of their thermal stability and optical and electronic properties. We find that the chemical and physical properties of these materials strongly depend on the preparation method. Single crystal X-ray diffraction analysis of 1-4 classifies the compounds in the perovskite structural family. Structural phase transitions were observed and investigated by temperature-dependent single crystal X-ray diffraction in the 100-400 K range. The charge transport properties of the materials are discussed in conjunction with diffuse reflectance studies in the mid-IR region that display characteristic absorption features. Temperature-dependent studies show a strong dependence of the resistivity as a function of the crystal structure. Optical absorption measurements indicate that 1-4 behave as direct-gap semiconductors with energy band gaps distributed in the range of 1.25-1.75 eV. The compounds exhibit an intense near-IR photoluminescence (PL) emission in the 700-1000 nm range (1.1-1.7 eV) at room temperature. We show that solid solutions between the Sn and Pb compounds are readily accessible throughout the composition range. The optical properties such as energy band gap, emission intensity, and wavelength can be readily controlled as we show for the isostructural series of solid solutions CH3NH3Sn(1-x)Pb(x)I3 (5). The charge transport type in these materials was characterized by Seebeck coefficient and Hall-effect measurements. The compounds behave as p- or n-type semiconductors depending on the preparation method. The samples with the lowest carrier concentration are prepared from solution and are n-type; p-type samples can be obtained through solid state reactions exposed in air in a controllable manner. In the case of Sn compounds, there is a facile tendency toward oxidation which causes the materials to be doped with Sn(4+) and thus behave as p-type semiconductors displaying metal-like conductivity. The compounds appear to possess very high estimated electron and hole mobilities that exceed 2000 cm(2)/(V s) and 300 cm(2)/(V s), respectively, as shown in the case of CH3NH3SnI3 (1). We also compare the properties of the title hybrid materials with those of the "all-inorganic" CsSnI3 and CsPbI3 prepared using identical synthetic methods.

  11. New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor

    NASA Astrophysics Data System (ADS)

    Kito, Hijiri; Iyo, Akira; Wada, Toshimi

    2011-01-01

    Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co2Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.

  12. Mechanochemical synthesis and structural characterization of three novel cocrystals of dimethylglyoxime with N-heterocyclic aromatic compounds and acetamide

    NASA Astrophysics Data System (ADS)

    Abidi, Syed Sibte Asghar; Azim, Yasser; Gupta, Abhishek Kumar; Pradeep, Chullikkattil P.

    2017-12-01

    With an aim to explore the interactions of (RR'Cdbnd Nsbnd OH) oxime moiety of dimethylglyoxime (DMG) with pyridyl ring of N-heterocyclic aromatic compounds and acetamide, three novel cocrystals of dimethylglyoxime with acridine (ACR), 1,10-phenanthroline monohydrate (PT) and acetamide (ACT) are reported. These three cocrystals were obtained with a mechanochemical synthesis approach and were characterized by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), fourier transform-infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Additionally, Hirshfeld surface analysis is used to investigate the intermolecular interaction and the crystal packing of cocrystals.

  13. Magnetic structure of Ho0.5Y0.5Mn6Sn6 compound studied by powder neutron diffraction

    NASA Astrophysics Data System (ADS)

    Li, X.-Y.; Peng, L.-C.; He, L.-H.; Zhang, S.-Y.; Yao, J.-L.; Zhang, Y.; Wang, F.-W.

    2018-05-01

    The crystallographic and magnetic structures of the HfFe6Ge6-type compound Ho0.5Y0.5Mn6Sn6 have been studied by powder neutron diffraction and in-situ Lorentz transmission electron microscopy. Besides the nonlinear thermal expansion of lattice parameters, an incommensurate conical spiral magnetic structure was determined in the temperature interval of 2-340 K. A spin reorientation transition has been observed from 50 to 300 K, where the alignment of the c-axis component of magnetic moments of the Ho sublattice and the Mn sublattice transfers from ferrimagnetic to ferromagnetic.

  14. The Crystal Structures of Potentially Tautomeric Compounds

    NASA Astrophysics Data System (ADS)

    Furmanova, Nina G.

    1981-08-01

    Data on the structures of potentially proto-, metallo-, and carbono-tropic compounds, obtained mainly by X-ray diffraction, are surveyed. The results of neutron and electron diffraction studies have also been partly used. It is shown that a characteristic feature of all the systems considered is the formation of hydrogen or secondary bonds ensuring the contribution of both possible tautomeric forms to the structure. Systematic consideration of the experimental data leads to the conclusion that there is a close relation between the crystal structure and the dynamic behaviour of the molecules in solution and that secondary and hydrogen bonds play a significant role in the tautomeric transition. The bibliography includes 152 references.

  15. Preparation and optical properties of iron-modified titanium dioxide obtained by sol-gel method

    NASA Astrophysics Data System (ADS)

    Hreniak, Agnieszka; Gryzło, Katarzyna; Boharewicz, Bartosz; Sikora, Andrzej; Chmielowiec, Jacek; Iwan, Agnieszka

    2015-08-01

    In this paper twelve TiO2:Fe powders prepared by sol-gel method were analyzed being into consideration the kind of iron compound applied. As a precursor titanium (IV) isopropoxide (TIPO) was used, while as source of iron Fe(NO3)3 or FeCl3 were tested. Fe doped TiO2 was obtained using two methods of synthesis, where different amount of iron was added (1, 5 or 10% w/w). The size of obtained TiO2:Fe particles depends on the iron compound applied and was found in the range 80-300 nm as it was confirmed by SEM technique. TiO2:Fe particles were additionally investigated by dynamic light scattering (DLS) method. Additionally, for the TiO2:Fe particles UV-vis absorption and the zeta potential were analyzed. Selected powders were additionally investigated by magnetic force microscopy (MFM) and X-ray diffraction techniques. Photocatalytic ability of Fe doped TiO2 powders was evaluated by means of cholesteryl hemisuccinate (CHOL) degradation experiment conducted under the 30 min irradiation of simulated solar light.

  16. Synthesis, characterization, antimicrobial screening and in silico studies of Schiff bases derived from trans-para-methoxycinnamaldehyde

    NASA Astrophysics Data System (ADS)

    Obasi, N. L.; Kaior, G. U.; Ibezim, A.; Ochonogor, Alfred E.; Rhyman, Lydia; Uahengo, Veikko; Lutter, Michael; Jurkschat, Klaus; Ramasami, Ponnadurai

    2017-12-01

    Two Schiff bases namely N,N‧-Bis-[3-(4-metoxy-phenyl)-allylidene]ethane-1,2-diamine (TPMC/EDA) and [3-(4-methoxy-phenyl)-allylidene]-phenyl-amine (TPMC/AN) were synthesized. They were characterized using elemental microanalysis, IR, NMR, UV and mass spectroscopies. Single crystals of TPMC/AN were also analyzed by X-ray diffraction and the compound was examined using B3LYP/6-311++G(d,p) method. A Monoclinic crystal system and space groups of P21/c were obtained for the crystal. Docking calculations on the compounds showed they interacted with fungal N-myristoyltransferase and bacteria DNA gyrase at 2.62-2.95 and 190.26-98.99 μM ranges. The predicted docked poses identified unique binding modes of the compounds and vital intermolecular interactions. The anti-microbial screening of the compounds were carried out against Escherichia coli, Bacillus subtillis, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger using agar well diffusion method. The standard drugs used were the anti-bacterial ciprofloxacin and the anti-fungal fluconazole. The compounds showed activity against all the microorganisms comparable to the used standard drugs. TPMC/EDA was more active than the standard fungal drug in the screening against the fungi strain, Aspergillus niger. It showed the MIC and IZD of 1.3 mg/ml and 9.0 mm respectively. These suggest that the compounds are potential bactericidal and fungicidal candidates.

  17. Structural characterization and physicochemical features of new hybrid compound containing chlorate anions of cadmate (II)

    NASA Astrophysics Data System (ADS)

    Lassoued, Mohamed Saber; Abdelbaky, Mohammed S. M.; Lassoued, Abdelmajid; Gadri, Abdellatif; Ammar, Salah; Ben Salah, Abdelhamid; García-Granda, Santiago

    2017-08-01

    The present paper reports the synthesis of a single crystal of a new organic-inorganic hybrid compound, with the formula (C6H14N2) CdCl4·H2O, by slow evaporation method at room temperature. It was characterized by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), Hirshfeld surface, spectroscopy measurement, thermal study and photoluminescence (PL) properties. A preliminary SCXRD structural analysis revealed that it crystallized in the monoclinic system (space group P21/c) with the following unit cell parameters: a = 12.95823(16) Å, b = 14.92449(16) Å, c = 7.13838(9) Å and β = 103.2108(12)° with Z = 4. The refinement converged to R = 0.0164 and ωR = 0.0393. Its atomic arrangement can be described as an alternation of organic and inorganic layers along the a-axis. The crystal packing was governed by the N-H⋯Cl and O-H⋯Cl hydrogen bonding interaction between the 1.2-diammoniumcyclohexane cations, the [CdCl42n-]n anions and water molecule. The Hirshfeld surface analysis was conducted to investigate intermolecular interactions and associated 2D fingerprint plots, revealing the relative contribution of these interactions in the crystal structure quantitatively. Furthermore, the room temperature infrared (IR) spectrum of the title compound was recorded and analyzed on the basis of data found in the literature. Besides, the thermal analysis studies were performed, but no phase transition was found in the temperature range between 30 and 450 °C. The optical and PL properties of the compound were investigated in the solid state at room temperature and exhibited three bands at 225, 268 and 315 nm and a strong fluorescence at 443 nm.

  18. Low-Temperature Heat Capacities and Standard Molar Enthalpy of Formation of Potassium Benzoate C7H5O2K(s)

    NASA Astrophysics Data System (ADS)

    Yang, Wei-Wei; di, You-Ying; Yin, Zhen-Fen; Kong, Yu-Xia; Tan, Zhi-Cheng

    2009-04-01

    Potassium benzoate C7H5O2K (CAS Registry No. 582-25-2) was synthesized by the method of liquid phase reaction. Chemical and elemental analyses, FTIR, and X-ray powder diffraction (XRD) techniques were applied to characterize the composition and structure of the compound. Low-temperature heat capacities of the compound were measured by a precision automated adiabatic calorimeter over the temperature range from 78 K to 398 K. A polynomial equation of the heat capacities as a function of temperature was fitted by the least-squares method. Smoothed heat capacities and thermodynamic functions of the compound were calculated based on the fitted polynomial. In accordance with Hess’s law, a reasonable thermochemical cycle was designed, and 100 mL of 1 mol · dm-3 NaOH solution was chosen as the calorimetric solvent. The standard molar enthalpies of dissolution for the reactants and products of the supposed reaction in the selected solvent were measured by an isoperibol solution-reaction calorimeter. Finally, the standard molar enthalpy of formation of the title compound C7H5O2K (s) was derived to be -(610.94 ± 0.77) kJ · mol-1.

  19. Synthesis and characterization of montmorillonite clay intercalated with molecular magnetic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martins, Marcel G.; Martins, Daniel O.T.A.; Carvalho, Beatriz L.C. de

    2015-08-15

    In this work montmorillonite (MMT) clay, whose matrix was modified with an ammonium salt (hexadecyltrimethylammonium bromide – CTAB), was employed as an inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange: a nitronyl nitroxide derivative 2-[4-(N-ethyl)-pyridinium]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (p-EtRad{sup +}) and two binuclear coordination compounds, [Ni(valpn)Ln]{sup 3+}, where H{sub 2}valpn stands for 1,3-propanediyl-bis(2-iminomethylene-6-methoxy-phenol), and Ln=Gd{sup III}; Dy{sup III}. The pristine MMT and the intercalated materials were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and magnetic measurements. The X-ray diffraction data analysis showed an increase of the interlamellar spacemore » of the intercalated MMT, indicating the intercalation of the magnetic compounds. Furthermore, the magnetic properties of the hybrid compounds were investigated, showing similar behavior as the pure magnetic guest species. - Graphical abstract: Montmorillonite clay was employed as inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange - Highlights: • Montmorillonite was employed as a host material. • Three molecular magnetic compounds were intercalated through ion exchange. • The compounds were successful intercalated maintaining the layered structure. • The hybrid materials exhibited similar magnetic behavior as the pure magnetic guest.« less

  20. Mixed ligand two dimensional Cd(ii)/Ni(ii) metal organic frameworks containing dicarboxylate and tripodal N-donor ligands: Cd(ii) MOF is an efficient luminescent sensor for detection of picric acid in aqueous media.

    PubMed

    Rachuri, Yadagiri; Parmar, Bhavesh; Bisht, Kamal Kumar; Suresh, Eringathodi

    2016-05-04

    Two dimensional metal organic frameworks (MOFs) [Cd(5-BrIP)(TIB)]n () and [Ni2(5-BrIP)2(TIB)2]n (), involving the aromatic polycarboxylate ligand 5-bromo isophthalic acid (H2BrIP), flexible tripodal ligand 1,3,5-tris(imidazol-1-ylmethyl)benzene (TIB) and Cd(ii)/Ni(ii) metal nodes have been synthesized by different methods. These compounds were characterized by various analytical methods, and variable temperature X-ray diffraction data showed thermal stability of both MOFs up to 350 °C. Phase purity as well as water stability of the MOFs were established by powder X-ray diffraction, and the structural diversity of the compounds were investigated by single-crystal X-ray diffraction. Both the MOFs are mixed ligand 2D nets, and the topology of the network can be described as a binodal 3,5-c connected net with 3,5L2 topology having the point symbol {4(2)·6(7)·8}{4(2)·6}. Sensing of picric acid [2,4,6-trinitrophenol, TNP] by luminescence quenching among a large range of nitroanalytes in aqueous phase by the Cd(ii) luminescent MOF (LMOF) were been investigated. Structural studies on 1 : 1 co-crystals () of TIB and TNP were carried out. The selective and sensitive fluorescence quenching response of towards electron-deficient TNP over other nitro analytes in aqueous phase was demonstrated by fluorescence quenching titration. Concomitant occurrence of electron transfer/energy transfer processes and electrostatic interaction favours the selective sensing of TNP. A Cd(ii) LMOF ()-coated paper strip that we developed demonstrated fast and selective response to TNP, by the complete quenching of the blue fluorescence upon excitation of the paper strip at 365 nm radiation in its presence.

  1. Structure determination of two structural analogs, named 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-fluorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C23H16F2N4S) and 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-chlorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C23H16ClFN4S) by synchrotron X-ray powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gündoğdu, Gülsüm; Aytaç, Sevim Peri; Müller, Melanie

    Two novel compounds, 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-fluorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C 23H 16F 2N 4S) (1) and 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-chlorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C 23H 16ClFN 4S) (2), have been designed and synthesized as cytotoxic agents. The compounds were characterized by infrared, proton nuclear magnetic resonance, mass spectral data, elemental analysis and X-ray powder diffraction. The present study comprises spectral data and crystal structures of these novel compounds determined from synchrotron X-ray powder diffraction data. The structure solutions were obtained by simulated annealing. The final structures were achieved by Rietveld refinement using soft restraints for all bond lengths, bond angles, and planar groups. Both compounds crystallize in space groupmore » $$P\\bar 1$$,Z= 2, with the unit-cell parametersa= 6.37433(9),b= 11.3641(2),c= 14.09115(19) Å,α= 80.1740(8)°,β= 85.1164(8)°,γ= 80.9831(10)°,V= 991.55(3) Å 3of compound (1) anda= 6.53736(6),b= 11.55725(15),c= 14.01373(13) Å,α= 80.3323(7)°,β= 84.8939(6)°,γ= 79.3954(8)°,V= 1024.08(2) Å 3of compound (2). Structural analyses reveal that the title compounds are isostructural.« less

  2. Determination of the antileukemic drug mitoguazone and seven other closely related bis(amidinohydrazones) in human blood serum by high-performance liquid chromatography.

    PubMed

    Koskinen, M; Elo, H; Lukkari, P; Riekkola, M L

    1996-10-11

    A reversed-phase (C18) HPLC method with diode-array detection was developed for the separation and determination of methylglyoxal bis(amidinohydrazone) (mitoguazone) and seven closely related aliphatic analogs thereof, namely the bis(amidinohydrazones) of glyoxal, dimethylglyoxal, ethylmethylglyoxal, methylpropylglyoxal, butylmethylglyoxal, diethylglyoxal and dipropylglyoxal. The mobile phase consisted of a non-linear binary gradient of methanol and 0.03 M aqueous sodium acetate buffer (pH 4.3). Good separation of the eight congeners was achieved. On increasing the methanol content of the eluent, the bis(amidinohydrazones) eluted in the order of increasing number of carbon atoms in the side-chains. The method was also applied to the quantitative analysis of the compounds in aqueous solution and, combined with ultrafiltration, for the separation of the eight congeners in spiked human blood serum. A separate simplified method for the quantitative determination of each of the compounds in spiked human blood serum samples was also developed. The methods developed made for the first time possible the simultaneous HPLC analysis of more than one bis(amidinohydrazones). The results obtained indicate that the bis(amidinohydrazones) studied obviously have a distinct tendency to form ion associates with acetate ions and probably also other carboxylate ions in aqueous solution. This aspect may be of biochemical significance, especially concerning the intracellular binding of the compounds. Each one of the compounds studied invariably gave rise to one peak only, this result supporting the theory that the conventional synthesis of each of the compounds gives rise to one geometrical isomer only. This result is completely in agreement with the results of previous proton and carbon NMR spectroscopic as well as X-ray diffraction studies.

  3. Synthesis of In2O3nanoparticles by thermal decomposition of a citrate gel precursor

    NASA Astrophysics Data System (ADS)

    Rey, J. F. Q.; Plivelic, T. S.; Rocha, R. A.; Tadokoro, S. K.; Torriani, I.; Muccillo, E. N. S.

    2005-06-01

    This paper describes the synthesis of indium oxide by a modified sol-gel method, and the study of thermal decomposition of the metal complex in air. The characterization of the intermediate as well as the final compounds was carried out by thermogravimetry, differential thermal analysis, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and small angle X-ray scattering. The results show that the indium complex decomposes to In2O3 with the formation of an intermediate compound. Nanoparticles of cubic In2O3 with crystallite sizes in the nanosize range were formed after calcination at temperatures up to 900°C. Calcined materials are characterized by a polydisperse distribution of spherical particles with sharp and smooth surfaces.

  4. Experimental and theoretical calculation studies on the structure elucidation and absolute configuration of calyxins from Alpinia katsumadai.

    PubMed

    Wang, Xiao-Bing; Yang, Chang-Shui; Luo, Jian-Guang; Zhang, Chao; Luo, Jun; Yang, Ming-Hua; Kong, Ling-Yi

    2017-06-01

    Six novel calyxins, named calyxin T-W, ent-calyxin T and ent-calyxin U were isolated from the seeds of Alpinia katsumadai Hayata. Their relative configurations were elucidated by means of detailed UV, IR, NMR and MS spectroscopic data. Their absolute configurations were assigned by collaborative studies on single crystal X-ray diffraction analysis, Mosher's method, electronic circular dichroism (ECD), optical rotation and theoretical calculations. These compounds are Friedel-Cranft alkylation adducts composed of coexisted diarylheptanoids and flavanone from the seeds of Alpinia katsumadai. The antiproliferative activity of the six compounds against NCI-H460, HeLa, SMMC-7721 and HCT-116 cell lines was also reported, and most of them showed moderate to strong activities. Copyright © 2017. Published by Elsevier B.V.

  5. Electrochemical Atomic Layer Epitaxy of Thin Film CdSe

    NASA Astrophysics Data System (ADS)

    Pham, L.; Kaleida, K.; Happek, U.; Mathe, M. K.; Vaidyanathan, R.; Stickney, J. L.; Radevic, M.

    2002-10-01

    Electrochemical atomic layer epitaxy (EC-ALE) is a current developmental technique for the fabrication of compound semiconductor thin films. The deposition of elements making up the compound utilizes surface limited reactions where the potential is less than that required for bulk growth. This growth method offers mono-atomic layer control, allowing the deposition of superlattices with sharp interfaces. Here we report on the EC-ALE formation of CdSe thin films on Au and Cu substrates using an automated flow cell system. The band gap was measured using IR absorption and photoconductivity and found to be consistent with the literature value of 1.74 eV at 300K and 1.85 eV at 20K. The stoichiometry of the thin film was confirmed with electron microprobe analysis and x-ray diffraction.

  6. Spectroscopic and structural studies of a new para-iodo-N-benzyl amide of salinomycin

    NASA Astrophysics Data System (ADS)

    Antoszczak, Michał; Janczak, Jan; Rutkowski, Jacek; Brzezinski, Bogumił; Huczyński, Adam

    2017-11-01

    A new para-iodo-N-benzyl amide of salinomycin was synthesized and characterized by NMR, FT-IR, DFT, single crystal X-ray diffraction and theoretical methods. The results obtained for the crystal, in solution and in gas phase provided evidence of pseudo-cyclic structure of this compound stabilized by intramolecular hydrogen bonds. It was shown that the compound studied forms stable 1:1 complexes with monovalent (Li+, Na+, K+, Rb+ and Cs+) and divalent (Mg2+, Ca2+, Sr2+ and Ba2+) cations demonstrating that the chemical modification of salinomycin carboxyl group considerably changes the ionophoretic properties of this antibiotic. For the first time, the ESI MS fragmentations of the complex of para-iodo-N-benzyl amide of salinomycin with Na+ are also discussed in details.

  7. Four new compounds from Imperata cylindrica.

    PubMed

    Liu, Xuan; Zhang, Bin-Feng; Yang, Li; Chou, Gui-Xin; Wang, Zheng-Tao

    2014-04-01

    Four new compounds, impecylone (1), deacetylimpecyloside (2), seguinoside K 4-methylether (3) and impecylenolide (4), were isolated from Imperata cylindrica along with two known compounds, impecyloside (5) and seguinoside K (6). Their structures were elucidated mainly by spectroscopic analyses including 1D- and 2D-NMR techniques, and the absolute configuration of 1 was confirmed by X-ray diffraction analysis. In calcium assay, the result indicated that compounds 1, 2, 4 and 5 cannot obviously inhibit the calcium peak value compared with the negative control, and suggested that the four compounds could not have anti-inflammatory activity.

  8. Crystal structure of the heptamolybdate(VI) (paramolybdate) ion, [Mo7O24]6-, in the ammonium and potassium tetrahydrate salts

    USGS Publications Warehouse

    Evans, H.T.; Gatehouse, B.M.; Leverett, P.

    1975-01-01

    The crystal structures of the isomorphous salts MI6 [Mo7O24],4H2O (M = NH4 or K) have been refined by three-dimensional X-ray diffraction methods. Unit cell dimensions of these monoclinic compounds, space group P21/C with Z = 4, are, ammonium salt: a = 8.3934 ?? 0.0008, b = 36.1703 ?? 0.0045, c = 10.4715 ?? 0.0011 A??, ?? = 115.958?? ?? 0.008??; and potassium salt: a = 8.15 ?? 0.02, b = 35.68 ?? 0.1, c = 10.30 ?? 0.02 A??, ?? = 115.2?? ?? 02??. By use of multiple Weissenberg patterns, 8197 intensity data (Mo-K?? radiation) for the ammonium compound and 2178 (Cu-K?? radiation) for the potassium compound were estimated visually and used to test and refine Lindqvist's proposed structure in the space group P21/c. Lindqvist's structure was confirmed and the full matrix least-squares isotropic refinement led to R 0.076 (ammonium) 0.120 (potassium), with direct unambiguous location of the cations and water molecules in the potassium compound.

  9. Adsorption isotherm studies of chromium (VI) from aqueous solutions using sol-gel hydrotalcite-like compounds.

    PubMed

    Ramos-Ramírez, Esthela; Ortega, Norma L Gutiérrez; Soto, Cesar A Contreras; Gutiérrez, Maria T Olguín

    2009-12-30

    In under-developed countries, industries such as paint and pigment manufacturing, leather tanning, chrome plating and textile processing, usually discharge effluents containing Cr(VI) and Cr(III) into municipal sanitary sewers. It has been reported that Cr(VI) acts as a powerful epithelial irritant and as a human carcinogen. In the present work, hydrotalcite-like compounds with a Mg/Al ratio=2 were synthesized by the sol-gel method. The hydrotalcite-like compounds and their corresponding thermally treated products were characterized by powder X-ray diffraction, infrared spectroscopy and N(2) adsorption. The hydrotalcite-like compounds and the heated solids were used as adsorbents for Cr(VI) in aqueous solutions. Adsorption isotherm studies of Cr(VI) from aqueous solution are described. The adsorbent capacity was determined using the Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherm models. The Cr(VI) adsorption isotherm data fit best to the Langmuir isotherm model. The maximum Cr(VI) uptake by hydrotalcite and the heated solids was determined using the Langmuir equation and was found to range between 26 and 29 mg Cr(VI)/g adsorbent.

  10. Experimental and theoretical investigations of non-centrosymmetric 8-hydroxyquinolinium dibenzoyl-(L)-tartrate methanol monohydrate single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudharsana, N.; Krishnakumar, V.; Nagalakshmi, R., E-mail: nagaphys@yahoo.com

    Graphical abstract: ORTEP diagram of HQDBT. - Highlights: • Single crystal XRD and NMR studies confirm the formation of the title compound. • SHG efficiency was found to be 0.6 times that of KDP. • First-order hyperpolarizability (β) was calculated using HF and B3LYP methods. - Abstract: A novel 8-hydroxyquinolinium dibenzoyl-(L)-tartrate methanol monohydrate crystal has been grown by slow evaporation technique. The single crystal X-ray diffraction analysis has been done for the title compound and is found to crystallize in orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}. The optical absorption cut-off wavelength is found to be 440 nm. The vibrationalmore » analysis has been carried out to assess the functional groups present in the title compound. The molecular structure of the title compound has been confirmed by nuclear magnetic resonance spectroscopy. Thermogravimetric, differential scanning calorimetric and differential thermal analyses reveal the melting point and thermal stability of the title compound. The second harmonic generation efficiency is confirmed by Kurtz–Perry powder technique. Further quantum chemical calculations are performed using Gaussian 03 software.« less

  11. Magnetic structure of the antiferromagnetic Kondo lattice compounds CeRhAl 4Si 2 and CeIrAl 4Si 2

    DOE PAGES

    Ghimire, N. J.; Calder, S.; Janoschek, M.; ...

    2015-06-01

    In this article, we have investigated the magnetic ground state of the antiferromagnetic Kondo-lattice compounds CeMAl 4Si 2(M = Rh, Ir) using neutron powder diffraction. Although both of these compounds show two magnetic transitions T N1 and T N2 in the bulk properties measurements, evidence for magnetic long-range order was only found below the lower transition T N2. Analysis of the diffraction profiles reveals a commensurate antiferromagnetic structure with a propagation vector k = (0, 0, 1/2). The magnetic moment in the ordered state of CeRhAl 4Si 2 and CeIrAl 4Si 2 were determined to be 1.14(2) and 1.41(3) μB/Ce,more » respectively, and are parallel to the crystallographic c-axis in agreement with magnetic susceptibility measurements.« less

  12. Conformational dimorphism of isochroman-1-ones in the solid state

    NASA Astrophysics Data System (ADS)

    Babjaková, Eva; Hanulíková, Barbora; Dastychová, Lenka; Kuřitka, Ivo; Nečas, Marek; Vícha, Robert

    2014-12-01

    Isochroman-1-one derivatives, which are relatives of coumarins, display a broad spectrum of biological activity; therefore, these derivatives attract the attention of chemists. A series of new isochroman-1-ones were prepared by the reaction of benzyl-derived Grignard reagents with acyl chlorides. All of the prepared compounds were characterized using single-crystal X-ray diffraction as well as FT-IR, NMR and MS techniques. Single crystal X-ray diffraction analysis revealed that the isochromanones can adopt two distinct conformations in the solid state. For one of the compounds, two polymorphs with unique forms crystallized separately under different temperatures. The packing of all of the examined crystals is stabilized via weak intramolecular C-H⋯π and/or C-H⋯O interactions. Although the closed conformer was predominantly found in the actual crystals, the open conformer is thermochemically more stable for all of the examined compounds according to DFT calculations.

  13. Synthesis of new structurally related cyanamide compounds LiM(CN{sub 2}){sub 2} where M is Al{sup 3+}, In{sup 3+} or Yb{sup 3+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubus, Mariusz, E-mail: mariusz.kubus@anorg.uni-tuebingen.de; Heinicke, Robert; Ströbele, Markus

    2015-02-15

    Highlights: • New cyanamide compounds LiM(CN{sub 2}){sub 2} where M is Al{sup 3+}, In{sup 3+} or Yb{sup 3+}. • New luminescent material LiIn(CN{sub 2}){sub 2}:Tb{sup 3+}. • Reduction in efficiency of luminescence with temperature increase. - Abstract: New ternary cyanamide compounds isostructural to LiY(CN{sub 2}){sub 2} were obtained by solid state metathesis reaction. The crystal structure of LiAl(CN{sub 2}){sub 2} was determined by single crystal X-ray diffraction, the structures of LiIn(CN{sub 2}){sub 2} and LiYb(CN{sub 2}){sub 2} were solved from X-ray powder diffraction data. Photoluminescence properties of Tb{sup 3+}-doped LiIn(CN{sub 2}){sub 2} are reported too.

  14. Sodium ion transport mechanisms in antiperovskite electrolytes Na 3OBr and Na 4OI 2: An in Situ neutron diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jinlong; Wang, Yonggang; Li, Shuai

    Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-stat battery. In this work, the sodium ionic transport pathways of the parent compound Na 3OBr, as well as the modified layered antiperovskite Na 4OI 2, were studied and compared through temperature dependent neutron diffraction combined with the maximum entropy method. In the cubic Na 3OBr antiperovskite, the nuclear density distribution maps at 500 K indicate that sodium ions ho within and among oxygen octahedra, and Br - ions are not involved in the tetragonal Namore » 4OI 2 antiperovskite, Na ions, which connect octahedra in the ab plane, have the lowest activation energy barrier. In conclusion, the transport of sodium ions along the c axis is assisted by I - ions.« less

  15. Structural, mechanical, electrical and optical properties of a new lithium boro phthalate NLO crystal synthesized by a slow evaporation method

    NASA Astrophysics Data System (ADS)

    Mohanraj, K.; Balasubramanian, D.; Jhansi, N.

    2017-11-01

    A new non-linear optical (NLO) single crystal of lithium boro phthalate (LiBP) was grown by slow solvent evaporation technique. The powder sample was subjected to powder X-ray diffraction (PXRD) to find its crystalline nature and the crystal structure of the grown crystal was determined using single crystal X-ray (SXRD) diffraction analysis. The Fourier Transform Infrared (FTIR) spectrum was recorded for grown crystal to identify the various functional groups present in the compound. The mechanical property of the LiBP single crystal was studied using Vickers microhardness tester. The dielectric constant and dielectric loss measurements were carried out for the grown crystal at various temperatures. The grown crystal was subjected to UV-Visible Spectral Studies to analyze the linear optical behavior of the grown crystal. The Kurtz-Perry Powder technique was employed to measure the Second Harmonic Generation efficiency of the grown crystal.

  16. Sodium ion transport mechanisms in antiperovskite electrolytes Na 3OBr and Na 4OI 2: An in Situ neutron diffraction study

    DOE PAGES

    Zhu, Jinlong; Wang, Yonggang; Li, Shuai; ...

    2016-06-02

    Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-stat battery. In this work, the sodium ionic transport pathways of the parent compound Na 3OBr, as well as the modified layered antiperovskite Na 4OI 2, were studied and compared through temperature dependent neutron diffraction combined with the maximum entropy method. In the cubic Na 3OBr antiperovskite, the nuclear density distribution maps at 500 K indicate that sodium ions ho within and among oxygen octahedra, and Br - ions are not involved in the tetragonal Namore » 4OI 2 antiperovskite, Na ions, which connect octahedra in the ab plane, have the lowest activation energy barrier. In conclusion, the transport of sodium ions along the c axis is assisted by I - ions.« less

  17. Telluride Misfit Layer Compounds: [(PbTe) 1.17 ] m (TiTe 2 ) n

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Daniel B.; Beekman, Matt; Disch, Sabrina

    Telluride misfit layer compounds are reported for the first time. These compounds were synthesized using a novel approach of structurally designing a precursor that would form the desired product upon low-temperature annealing, which allows the synthesis of kinetically stable products that do not appear on the equilibrium phase diagram. Four new compounds of the [(PbTe)1.17]m(TiTe2)n family are reported, and their structures were examined by a variety of X-ray diffraction techniques.

  18. Telluride Misfit Layer Compounds: [(PbTe) 1.17 ] m (TiTe 2 ) n

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Daniel B.; Beekman, Matt; Disch, Sabrina

    2014-04-09

    Telluride misfit layer compounds are reported for the first time. These compounds were synthesized using a novel approach of structurally designing a precursor that would form the desired product upon low-temperature annealing, which allows the synthesis of kinetically stable products that do not appear on the equilibrium phase diagram. Four new compounds of the [(PbTe)1.17]m(TiTe2)n family are reported, and their structures were examined by a variety of X-ray diffraction techniques.

  19. Towards solution and refinement of organic crystal structures by fitting to the atomic pair distribution function.

    PubMed

    Prill, Dragica; Juhás, Pavol; Billinge, Simon J L; Schmidt, Martin U

    2016-01-01

    A method towards the solution and refinement of organic crystal structures by fitting to the atomic pair distribution function (PDF) is developed. Approximate lattice parameters and molecular geometry must be given as input. The molecule is generally treated as a rigid body. The positions and orientations of the molecules inside the unit cell are optimized starting from random values. The PDF is obtained from carefully measured X-ray powder diffraction data. The method resembles `real-space' methods for structure solution from powder data, but works with PDF data instead of the diffraction pattern itself. As such it may be used in situations where the organic compounds are not long-range-ordered, are poorly crystalline, or nanocrystalline. The procedure was applied to solve and refine the crystal structures of quinacridone (β phase), naphthalene and allopurinol. In the case of allopurinol it was even possible to successfully solve and refine the structure in P1 with four independent molecules. As an example of a flexible molecule, the crystal structure of paracetamol was refined using restraints for bond lengths, bond angles and selected torsion angles. In all cases, the resulting structures are in excellent agreement with structures from single-crystal data.

  20. High-resolution x-ray diffraction study of the heavy-fermion compound YbBiPt

    DOE PAGES

    Ueland, B. G.; Saunders, S. M.; Bud'ko, S. L.; ...

    2015-11-30

    In this study, YbBiPt is a heavy-fermion compound possessing significant short-range antiferromagnetic correlations below a temperature of T*=0.7K, fragile antiferromagnetic order below T N = 0.4K, a Kondo temperature of T K ≈ 1K, and crystalline-electric-field splitting on the order of E/k B = 1 – 10K. Whereas the compound has a face-centered-cubic lattice at ambient temperature, certain experimental data, particularly those from studies aimed at determining its crystalline-electric-field scheme, suggest that the lattice distorts at lower temperature. Here, we present results from high-resolution, high-energy x-ray diffraction experiments which show that, within our experimental resolution of ≈ 6 – 10more » × 10 –5 Å, no structural phase transition occurs between T = 1.5 and 50 K. In combination with results from dilatometry measurements, we further show that the compound's thermal expansion has a minimum at ≈ 18 K and a region of negative thermal expansion for 9 ≲ T ≲ 18 K. Despite diffraction patterns taken at 1.6 K which indicate that the lattice is face-centered cubic and that the Yb resides on a crystallographic site with cubic point symmetry, we demonstrate that the linear thermal expansion may be modeled using crystalline-electric-field level schemes appropriate for Yb 3+ residing on a site with either cubic or less than cubic point symmetry.« less

  1. Crystallization and preliminary crystallographic analysis of the catechol 2,3-dioxygenase PheB from Bacillus stearothermophilus BR219

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimoto, Keisuke; Matsufuzi, Kazuki; Ohnuma, Hiroaki

    2006-02-01

    PheB, an extradiol-cleaving catecholic dioxygenase, was crystallized by the hanging-drop vapour-diffusion method using PEG 4000 as a precipitant. The crystal belongs to the orthorhombic system, space group P2{sub 1}2{sub 1}2{sub 1}, and diffracts to 2.3 Å resolution. Class II extradiol-cleaving catecholic dioxygenase, a key enzyme of aromatic compound degradation in bacteria, cleaves the aromatic ring of catechol by adding two O atoms. PheB is one of the class II extradiol-cleaving catecholic dioxygenases and shows a high substrate specificity for catechol derivatives, which have one aromatic ring. In order to reveal the mechanism of the substrate specificity of PheB, PheB hasmore » been crystallized by the hanging-drop vapour-diffusion method using PEG 4000 as a precipitant. The space group of the obtained crystal was P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 65.5, b = 119.2, c = 158.7 Å. The crystal diffracted to 2.3 Å resolution.« less

  2. Crystal growth, structural, low temperature thermoluminescence and mechanical properties of cubic fluoroperovskite single crystal (LiBaF3)

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Ramasamy, P.; Ramaseshan, R.; Kim, H. J.; Kim, Sunghwan; Bhagavannarayana, G.; Cheon, Jong-Kyu

    2017-10-01

    Polycrystalline compounds of LiBaF3 were synthesized using conventional solid state reaction route and the phase purity was confirmed using powder X-ray diffraction technique. Using vertical Bridgman technique single crystal was grown from melt. Rocking curve measurements have been carried out to study the structural perfection of the grown crystal. The single peak of diffraction curve clearly reveals that the grown crystal was free from the structural grain boundaries. The low temperature thermoluminescence of the X-ray irradiated sample has been analyzed and found four distinguishable peaks having maximum temperatures at 18, 115, 133 and 216 K. Activation energy (E) and frequency factor (s) for the individual peaks have been studied using Peak shape method and the computerized curve fitting method combining with the Tmax- TStop procedure. Nanoindentation technique was employed to study the mechanical behaviour of the crystal. The indentation modulus and Vickers hardness of the grown crystal have values of 135.15 GPa and 680.81 respectively, under the maximum indentation load of 10 mN.

  3. X-ray free electron laser: opportunities for drug discovery.

    PubMed

    Cheng, Robert K Y; Abela, Rafael; Hennig, Michael

    2017-11-08

    Past decades have shown the impact of structural information derived from complexes of drug candidates with their protein targets to facilitate the discovery of safe and effective medicines. Despite recent developments in single particle cryo-electron microscopy, X-ray crystallography has been the main method to derive structural information. The unique properties of X-ray free electron laser (XFEL) with unmet peak brilliance and beam focus allow X-ray diffraction data recording and successful structure determination from smaller and weaker diffracting crystals shortening timelines in crystal optimization. To further capitalize on the XFEL advantage, innovations in crystal sample delivery for the X-ray experiment, data collection and processing methods are required. This development was a key contributor to serial crystallography allowing structure determination at room temperature yielding physiologically more relevant structures. Adding the time resolution provided by the femtosecond X-ray pulse will enable monitoring and capturing of dynamic processes of ligand binding and associated conformational changes with great impact to the design of candidate drug compounds. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. Phase diagram of the Pr-Mn-O system in composition-temperature-oxygen pressure coordinates

    NASA Astrophysics Data System (ADS)

    Vedmid', L. B.; Yankin, A. M.; Fedorova, O. M.; Kozin, V. M.

    2016-05-01

    The phase relations in the Pr-Mn-O system were studied by the static method at lowered oxygen pressure in combination with thermal analysis and high-temperature X-ray diffraction. The equilibrium oxygen pressure in dissociation of PrMn2O5 and PrMnO3 was measured, and the thermodynamic characteristics of formation of these compounds from elements were calculated. The P- T- x phase diagram of the Pr-Mn-O system was constructed in the "composition-oxygen pressure-temperature" coordinates.

  5. Surface-engineered core-shell nano-size ferrites and their antimicrobial activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baraliya, Jagdish D., E-mail: jdbaraliya@yahoo.co.in; Joshi, Hiren H., E-mail: jdbaraliya@yahoo.co.in

    We report the results of biological study on core-shell structured MFe{sub 2}O{sub 4} (where M = Co, Mn, Ni) nanoparticles and influence of silica- DEG dual coating on their antimicrobial activity. Spherical MFe{sub 2}O{sub 4} nanoparticles were prepared via a Co-precipitation method. The microstructures and morphologies of these nanoparticles were studied by x-ray diffraction and FTIR. The antimicrobial activity study carried out in nutrient agar medium with addition of antimicrobial synthesis compound which is tested for its activity against different types of bacteria.

  6. Searching the Cambridge Structural Database for polymorphs.

    PubMed

    van de Streek, Jacco; Motherwell, Sam

    2005-10-01

    In order to identify all pairs of polymorphs in the Cambridge Structural Database (CSD), a method was devised to automatically compare two crystal structures. The comparison is based on simulated powder diffraction patterns, but with special provisions to deal with differences in unit-cell volumes caused by temperature or pressure. Among the 325,000 crystal structures in the Cambridge Structural Database, 35,000 pairs of crystal structures of the same chemical compound were identified and compared. A total of 7300 pairs of polymorphs were identified, of which 154 previously were unknown.

  7. Synthesis, characterization and electrical properties of a lead sodium vanadate apatite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakroun-Ouadhour, E.; Ternane, R.; Hassen-Chehimi, D. Ben

    2008-08-04

    The lacunary lead sodium vanadate apatite Pb{sub 8}Na{sub 2}(VO{sub 4}){sub 6} was synthesized by the solid-state reaction method. The compound was characterized by X-ray powder diffraction, infrared (IR) absorption spectroscopy and Raman scattering spectroscopy. By comparing the effect of vanadate and phosphate ions on electrical properties, it was concluded that Pb{sub 8}Na{sub 2}(VO{sub 4}){sub 6} apatite is better conductor than Pb{sub 8}Na{sub 2}(PO{sub 4}){sub 6} apatite.

  8. Surface-engineered core-shell nano-size ferrites and their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Baraliya, Jagdish D.; Joshi, Hiren H.

    2014-04-01

    We report the results of biological study on core-shell structured MFe2O4 (where M = Co, Mn, Ni) nanoparticles and influence of silica- DEG dual coating on their antimicrobial activity. Spherical MFe2O4 nanoparticles were prepared via a Co-precipitation method. The microstructures and morphologies of these nanoparticles were studied by x-ray diffraction and FTIR. The antimicrobial activity study carried out in nutrient agar medium with addition of antimicrobial synthesis compound which is tested for its activity against different types of bacteria.

  9. Template occluded SBA-15: An effective dissolution enhancer for poorly water-soluble drug

    NASA Astrophysics Data System (ADS)

    Tingming, Fu; Liwei, Guo; Kang, Le; Tianyao, Wang; Jin, Lu

    2010-09-01

    The aim of the present work was to improve the dissolution rate of piroxicam by inclusion into template occluded SBA-15. Our strategy involves directly introducing piroxicam into as-prepared SBA-15 occluded with P123 (EO 20PO 70EO 20) by self assembling method in acetonitrile/methylene chloride mixture solution. Ultraviolet spectrometry experiment and thermogravimetric analysis-differential scanning calorimetry (TG-DSC) profiles show that the piroxicam and P123 contents in the inclusion compound are 12 wt% and 28 wt%, respectively. X-ray powder diffraction and DSC analysis reveal that the included piroxicam is arranged in amorphous form. N 2 adsorption-desorption experiment indicates that the piroxicam has been introduced to the mesopores instead of precipitating at the outside of the silica material. The inclusion compound was submitted to in vitro dissolution tests, the results show that the piroxicam dissolve from template occluded inclusion compound more rapidly, than these from the piroxicam crystalline and template removed samples in all tested conditions. Thus a facile method to improve the dissolution rate of poorly water-soluble drug was established, and this discovery opens a new avenue for the utilization of templates used for the synthesis of mesoporous materials.

  10. OSL studies of alkali fluoroperovskite single crystals for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Raja, A.; Madhusoodanan, U.; Annalakshmi, O.; Ramasamy, P.

    2016-08-01

    This paper presents a preliminary investigation of the optically stimulated luminescence (OSL) of alkali fluoroperovskite single crystals for radiation dosimetry. The perovskite-like KMgF3, NaMgF3 and LiBaF3 polycrystalline compounds doped with rare earths (Eu2+ and Ce3+) were synthesized by standard solid state reaction technique. Phase purity of the synthesized compounds was analyzed by powder X-ray diffraction technique. Single crystals of these compounds have been grown from melt by using vertical Bridgman-Stockbarger method. The Linearly Modulated OSL and Continuous Wave OSL measurements were performed in these alkali fluorides using blue light stimulation. Thermal bleaching experiments have shown that OSL signals originate from traps which are unstable near 200 °C, thus proving the suitability of the signals for dosimetric purposes. Optical bleaching measurements were also performed for these fluoride samples. OSL dose response was studied as a function of dose which was found to increase with beta dose.

  11. Ultrasonic promoted synthesis of novel s-triazine-Schiff base derivatives; molecular structure, spectroscopic studies and their preliminary anti-proliferative activities

    NASA Astrophysics Data System (ADS)

    El-Faham, Ayman; Soliman, Saied M.; Ghabbour, Hazem A.; Elnakady, Yasser A.; Mohaya, Talal A.; Siddiqui, Mohammed R. H.; Albericio, Fernando

    2016-12-01

    Novel series of s-triazine-Schiff base derivatives were synthesized employing ultrasonic irradiation and characterized by NMR (1H and 13C), FT-IR, and elemental analysis. The use of ultrasonic irradiation has allowed the preparation of the target products with better yields in shorter reaction time and excellent purities compared to the conventional heating. X-ray single crystal diffraction experiments verified the molecular structure of four from the new prepared s-triaizne-Schiff base derivatives. The molecular structures of the studied compounds are computerized using DFT/B3LYP method. The effects of substituent at the triazine and phenyl ring on the electronic and spectroscopic properties of the studied compounds were also investigated. The natural atomic charges showed that pipridino-s-triazine derivatives are richer in electrons than those having morpholino derivatives. The anti-proliferative effects for the prepared compounds were tested against three different cancer cell lines.

  12. 1-Pentyl-3-(4-methoxy-1-naphthoyl)indole and 2-(2-methoxy-phenyl)-1-(1-pentyl-1 H-indol-3-yl)-ethanone: X-ray structures and computational studies

    NASA Astrophysics Data System (ADS)

    Nycz, Jacek E.; Malecki, Grzegorz; Zawiazalec, Marcin; Pazdziorek, Tadeusz; Skop, Patrycja

    2010-12-01

    1-Pentyl-3-(4-methoxy-1-naphthoyl)indole (shortly named JWH-081) ( 1) and 2-(2-methoxy-phenyl)-1-(1-pentyl-1 H-indol-3-yl)-ethanone (shortly named JWH-250) ( 2), are examples of cannabinoids which were characterized by FTIR, UV-Vis, multinuclear NMR spectroscopy and single crystal X-ray diffraction method. The geometries of the studied compounds were optimized in singlet states using the density functional theory (DFT) method with B3LYP functional. Electronic spectra were calculated by TDDFT method. In general, the predicted bond lengths and angles are in a good agreement with the values based on the X-ray crystal structure data.

  13. Molecular structure of hybrid imino-chalcone in the solid state: X-ray diffraction, spectroscopy study and third-order nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Custodio, J. M. F.; Santos, F. G.; Vaz, W. F.; Cunha, C. E. P.; Silveira, R. G.; Anjos, M. M.; Campos, C. E. M.; Oliveira, G. R.; Martins, F. T.; da Silva, C. C.; Valverde, C.; Baseia, B.; Napolitano, H. B.

    2018-04-01

    A comprehensive structural study of the compound (2E)-1-((E)-4-(4-methoxybenzylideneamino)phenyl)-3-(4-methoxyphenyl)prop-2-en-1-one was carried out in this work. Single crystal X-ray diffraction (SCXRD), X-ray powder diffraction (XRPD), NMR, Raman and Infrared spectroscopies, and DFT calculations were performed for characterization of this iminochalcone hybrid. Intermolecular interactions were described by Hirshfeld surface analysis derived from crystal structure. Reactivity and intramolecular charge transfer were investigated using the frontier molecular orbitals and molecular electrostatic potential. In addition, we have calculated the Nonlinear Optical Properties at the CAM-B3LYP/6-311+g(d) level of theory in the presence of different solvents (gas-phase, acetone, chloroform, dichloromethane, dimethyl sulfoxide, ethanol, methanol, and water), being found meaningful NLO parameters for our compound. At last, there is a good agreement between calculated and experimental IR spectrum, allowing the assignment of some of normal vibrational modes of the iminochalcone hybrid.

  14. Magnetic and neutron diffraction study on quaternary oxides MTeMoO6 (M = Mn and Zn)

    NASA Astrophysics Data System (ADS)

    Doi, Yoshihiro; Suzuki, Ryo; Hinatsu, Yukio; Ohoyama, Kenji

    2009-01-01

    Crystal structures and magnetic properties of quaternary oxides MTeMoO6 (M = Mn and Zn) were investigated. From the Rietveld analyses for the powder x-ray and neutron diffraction measurements, their detailed structures have been determined. Both compounds have orthorhombic structure with space group P 21212 and a charge configuration of M2+Te4+Mo6+O6. ZnTeMoO6 shows diamagnetic behavior. In this structure, M ions are arranged in a square-planar manner. The temperature dependence of the magnetic susceptibility for MnTeMoO6 shows a broad peak at ~33 K, which is due to a two-dimensional characteristic of the magnetic interaction. In addition, this compound shows an antiferromagnetic transition at 20 K. The magnetic structure was determined by the powder neutron diffraction measurement at 3.3 K. The magnetic moments of Mn2+ ions (4.45 μB) order in a collinear antiferromagnetic arrangement along the b axis.

  15. Quantitative and qualitative studies of silica in different rice samples grown in north of Iran using UV-vis, XRD and IR spectroscopy techniques.

    PubMed

    Samadi-Maybodi, Abdolraouf; Atashbozorg, Ebrahim

    2006-11-15

    Silicon is an essential trace element and is found in vegetables, fruits, cereals, water, pasta and rice (Oryza sativa). In this work, the silica content of different types of rice grains were measured. Here, we used the heteropoly blue photometric method with a double beam UV-vis spectrophotometer to determine the amount of silicon in rice samples (n=7) that were collected in the north of Iran. The samples were digested with wet-ashing method by microwave-assisted heating and then treated with ammonium molybdate to produce a yellow color compound in acidic solution (ca. pH 1.2) and then reduced to give a heteropoly compound with a blue color. Analyses were performed using standard addition method and absorbance values were measured with double beam UV-vis spectrophotometer at lambda(max)=815nm. Results indicated that the silica content was 307-451mg/kg for the samples. X-ray diffraction patterns and infra-red spectra were obtained from rice samples without any sample treatment.

  16. Nitrogen-rich salts based on the energetic [monoaquabis(N,N-bis(1H-tetrazol-5-yl)amine)-zinc(II)] anion: a promising design in the development of new energetic materials.

    PubMed

    Li, Fugang; Bi, Yangang; Zhao, Wenyuan; Zhang, Tonglai; Zhou, Zunning; Yang, Li

    2015-02-16

    Nitrogen-rich energetic salts involving various cations (lithium, 1; ammonium, 2; hydrazinium, 3; hydroxylammonium, 4; guanidinium, 5; aminoguanidinium, 6; diaminoguanidinium, 7; and triaminoguanidinium, 8) based on nitrogen-rich anion [Zn(BTA)2(H2O)](2-) (N% = 65.37, BTA = N,N-bis[1H-tetrazol-5-yl]amine anion) were synthesized with a simple method. The crystal structures of all compounds except 1, 2, and 6 were determined by single-crystal X-ray diffraction and fully characterized by elemental analysis and FT-IR spectroscopy. The thermal stabilities were investigated by differential scanning calorimetry (DSC). The DSC results show that all compounds exhibit high thermal stabilities (decomposition temperature >200 °C). Additionally, the heats of formation were calculated on the basis of the experimental constant-volume energies of combustion measured by using bomb calorimetry. Lastly, the sensitivities toward impact and friction were assessed according to Bundesamt für Materialforschung (BAM) standard methods.

  17. Identification of heavy metal origins related to chemical and morphological soil properties using several non-destructive X-ray analytical methods.

    PubMed

    Akbulut, Songul; Grieken, Renevan; Kılıc, Mehmet A; Cevik, Ugur; Rotondo, Giuliana G

    2013-03-01

    Soils are complex mixtures of organic, inorganic materials, and metal compounds from anthropogenic sources. In order to identify the pollution sources, their magnitude and development, several X-ray analytical methods were applied in this study. The concentrations of 16 elements were determined in all the soil samples using energy dispersive X-ray fluorescence spectrometry. Soils of unknown origin were observed by scanning electron microscopy equipped with a Si(Li) X-ray detector using Monte Carlo simulation approach. The mineralogical analyses were carried out using X-ray diffraction spectrometry. Due to the correlations between heavy metals and oxide compounds, the samples were analyzed also by electron probe microanalyzer (EPMA) in order to have information about their oxide contents. On the other hand, soil pH and salinity levels were identified owing to their influence between heavy metal and soil-surface chemistry. Moreover, the geoaccumulation index (I (geo)) enables the assessment of contamination by comparing current and pre-industrial concentrations.

  18. Investigation on phase transitions of 1-decylammonium hydrochloride as the potential thermal energy storage material

    NASA Astrophysics Data System (ADS)

    Dan, Wen-Yan; Di, You-Ying; He, Dong-Hua; Liu, Yu-Pu

    2011-02-01

    1-Decylammonium hydrochloride was synthesized by the method of liquid phase synthesis. Chemical analysis, elemental analysis, and X-ray single crystal diffraction techniques were applied to characterize its composition and structure. Low-temperature heat capacities of the compounds were measured with a precision automated adiabatic calorimeter over the temperature range from 78 to 380 K. Three solid-solid phase transitions have been observed at the peak temperatures of 307.52 ± 0.13, 325.02 ± 0.19, and 327.26 ± 0.07 K. The molar enthalpies and entropies of three phase transitions were determined based on the analysis of heat capacity curves. Experimental molar heat capacities were fitted to two polynomial equations of the heat capacities as a function of temperature by least square method. Smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated and tabulated at intervals of 5 K based on the fitted polynomials.

  19. Effect of severe plastic deformation on the structure and crystal-lattice distortions in the Ni3(Al, X) ( X = Ti, Nb) intermetallic compound

    NASA Astrophysics Data System (ADS)

    Kazantseva, N. V.; Pilyugin, V. P.; Danilov, S. E.; Kolosov, V. Yu.

    2015-05-01

    A systematic combined study of crystal lattice distortions caused by doping and by severe plastic deformation (SPD) of Ti- and Nb-doped Ni3Al intermetallic compound has been carried out using methods of X-ray diffraction, electron microscopy, and electrical-resistance measurements. The degree of imperfection of the alloys has been estimated based on the results obtained by all three methods. The degree of structural perfection of niobium-doped crystals was found to be higher than in the case of Ti doping. The character of stresses (tensile stresses after doping; and compressive stresses after SPD) in the crystal lattice has been established and their values have been calculated. A significant increase in the density of dislocations, point defects, and lattice curvature has been found after SPD. A nanocrystalline structure is formed in these alloys, but no complete disordering of the intermetallic phase is observed.

  20. Synthesis, characterization and biological application of four novel metal-Schiff base complexes derived from allylamine and their interactions with human serum albumin: Experimental, molecular docking and ONIOM computational study.

    PubMed

    Kazemi, Zahra; Rudbari, Hadi Amiri; Sahihi, Mehdi; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj; Gharaghani, Sajjad

    2016-09-01

    Novel metal-based drug candidate including VOL2, NiL2, CuL2 and PdL2 have been synthesized from 2-hydroxy-1-allyliminomethyl-naphthalen ligand and have been characterized by means of elemental analysis (CHN), FT-IR and UV-vis spectroscopies. In addition, (1)H and (13)C NMR techniques were employed for characterization of the PdL2 complex. Single-crystal X-ray diffraction technique was utilized to characterise the structure of the complexes. The Cu(II), Ni(II) and Pd(II) complexes show a square planar trans-coordination geometry, while in the VOL2, the vanadium center has a distorted tetragonal pyramidal N2O3 coordination sphere. The HSA-binding was also determined, using fluorescence quenching, UV-vis spectroscopy, and circular dichroism (CD) titration method. The obtained results revealed that the HSA affinity for binding the synthesized compounds follows as PdL2>CuL2>VOL2>NiL2, indicating the effect of metal ion on binding constant. The distance between these compounds and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Furthermore, computational methods including molecular docking and our Own N-layered Integrated molecular Orbital and molecular Mechanics (ONIOM) were carried out to investigate the HSA-binding of the compounds. Molecular docking calculation indicated the existence of hydrogen bond between amino acid residues of HSA and all synthesized compounds. The formation of the hydrogen bond in the HSA-compound systems leads to their stabilization. The ONIOM method was utilized in order to investigate HSA binding of compounds more precisely in which molecular mechanics method (UFF) and semi empirical method (PM6) were selected for the low layer and the high layer, respectively. The results show that the structural parameters of the compounds changed along with binding to HSA, indicating the strong interaction between the compounds and HSA. The value of binding constant depends on the extent of the resultant changes. This should be mentioned that both theoretical methods calculated the Kb values in the same sequence and are in a good agreement with the experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Magnetostructural transition in Fe{sub 5}SiB{sub 2} observed with neutron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cedervall, Johan, E-mail: johan.cedervall@kemi.uu.se; Kontos, Sofia; Hansen, Thomas C.

    2016-03-15

    The crystal and magnetic structure of Fe{sub 5}SiB{sub 2} has been studied by a combination of X-ray and neutron diffraction. Also, the magnetocrystalline anisotropy energy constant has been estimated from magnetisation measurements. High quality samples have been prepared using high temperature synthesis and subsequent heat treatment protocols. The crystal structure is tetragonal within the space group I4/mcm and the compound behaves ferromagnetically with a Curie temperature of 760 K. At 172 K a spin reorientation occurs in the compound and the magnetic moments go from aligning along the c-axis (high T) down to the ab-plane (low T). The magnetocrystalline anisotropymore » energy constant has been estimated to 0.3 MJ/m{sup 3} at 300 K. - Highlights: • The crystal and magnetic structure of Fe{sub 5}SiB{sub 2} has been studied by diffraction. • At 172 K a spin reorientation occurs in the compound. • The magnetic moments are aligned along the c-axis at high T. • The magnetic moments are aligned in the ab-plane at low T. • The magnetocrystalline anisotropy energy constant has been estimated to 0.3 MJ/m{sup 3}.« less

  2. Magnetic structure of DyFe3

    NASA Astrophysics Data System (ADS)

    Jin, Long-huan; W, J. James; J, Rhyne; R, Lemaire

    1985-06-01

    Powder neutron diffraction measurements have been carried out on the intermetallic compound DyFe3 at 4 and 295K. The magnetic structure of the compound at 4 and 295K are noncollinear but coplanar in the a-c plane, and the moments of the Dy and Fe ions lie closer to the basal plane.

  3. Ferroelectric properties of oxalate and phenanthroline based 1-D single chain molecular magnet [{FeII(Δ)FeII(Λ)}0.5{CrII(Δ)CrII(Λ)}0.5(ox)2(phen)2

    NASA Astrophysics Data System (ADS)

    Bhatt, Pramod; Mukadam, M. D.; Mandal, B. P.; Yusuf, S. M.

    2018-04-01

    The one-dimensional (1-D) single chain molecular magnet [{FeII(Δ)FeII(Λ)}0.5{CrII(Δ)CrII(Λ)}0.5(ox)2(phen)2] is hydrothermally synthesized using oxalate (ox) and phenanthroline (phen) ligands with transition metal ions (Fe and Cr). The compound is characterized using x-ray diffraction, dc magnetization measurements and P-E ferroelectric loop measurements. The diffraction analysis using Rietveld refinement confirms a single phase formation of the compound in monoclinic structure with space group of P21. The compound crystallizes in 1-D chain like structure containing two different crystallographic sites of metal ions (Δ- and Λ-), which are bridged by the ox ligand and Phen ligand. These two metals site are different in bond length and bond angles results lattice distortions. The lattice distortion induces ferroelectric behavior in the compound which is discussed in terms of lattice distortion induced dipole moments.

  4. Keto-enol tautomerism of (E)-2-[(3,4-dimethylphenylimino)methyl]-4-nitrophenol: Synthesis, X-ray, FT-IR, UV-Vis, NMR and quantum chemical characterizations

    NASA Astrophysics Data System (ADS)

    Özek Yıldırım, Arzu; Yıldırım, M. Hakkı; Albayrak Kaştaş, Çiǧdem

    2017-01-01

    (E)-2-((3,4-dimethylphenylimino)methyl)-4-nitrophenol, which is a new Schiff base compound, was synthesized and characterized by experimental and computational methods. Molecular geometry, harmonic oscillator model of aromaticity (HOMA) indices, intra- and inter-molecular interactions in the crystal structure were determined by using single crystal X-ray diffraction technique. The optimized structures, which are obtained by Gaussian and Slater type orbitals, were compared to experimental structures to determine how much correlation is found between the experimental and the calculated properties. Intramolecular and hyperconjugative interactions of bonds have been found by Natural Bond Orbital analysis. The experimental infrared spectrum of the compound has been analyzed in detail by the calculated infrared spectra and Potential Energy Distribution analysis. To find out about the correlation between the solvent polarity and the enol-keto equilibrium, experimental UV-Visible spectra of the compound were obtained in benzene, CHCl3, EtOH and DMSO solvents. In these solvents, the UV-Vis spectra and relaxed potential energy surface scan (PES) calculations have been performed to get more insight into the equilibrium dynamics. Solvent effects in UV-Vis and PES calculations have been taken into account by using Polarizable Continuum Modelling method. 1H and 13C NMR spectra of the compound (in DMSO) were analyzed. The computational study of nonlinear optical properties shows that the compound can be used for the development of nonlinear optical materials.

  5. Crystal growth methods dedicated to low solubility actinide oxalates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamain, C., E-mail: christelle.tamain@cea.fr; Arab-Chapelet, B.; Rivenet, M.

    Two novel crystal growth syntheses dedicated to low solubility actinide-oxalate systems and adapted to glove box handling are described. These methods based on the use of precursors of either actinide metal or oxalic acid have been optimized on lanthanide systems (analogue of actinides(III)) and then assessed on real actinide systems. They allow the synthesis of several actinide oxalate single crystals, Am{sub 2}(C{sub 2}O{sub 4}){sub 3}(H{sub 2}O){sub 3}·xH{sub 2}O, Th(C{sub 2}O{sub 4}){sub 2}·6H{sub 2}O, M{sub 2+x}[Pu{sup IV}{sub 2−x}Pu{sup III}{sub x}(C{sub 2}O{sub 4}){sub 5}]·nH{sub 2}O and M{sub 1−x}[Pu{sup III}{sub 1−x}Pu{sup IV}{sub x}(C{sub 2}O{sub 4}){sub 2}·H{sub 2}O]·nH{sub 2}O. It is the first timemore » that these well-known compounds are formed by crystal growth methods, thus enabling direct structural studies on transuranic element systems and acquisition of basic data beyond deductions from isomorphic (or not) lanthanide compounds. Characterizations by X-ray diffraction, UV–visible solid spectroscopy, demonstrate the potentialities of these two crystal growth methods to obtain oxalate compounds. - Graphical abstract: Two new single crystal growth methods dedicated to actinide oxalate compounds. - Highlights: • Use of diester as oxalate precursor for crystal growth of actinide oxalates. • Use of actinide oxide as precursor for crystal growth of actinide oxalates. • Crystal growth of Pu(III) and Am(III) oxalates. • Crystal growth of mixed Pu(III)/Pu(IV) oxalates.« less

  6. Mineral and Geochemical Classification From Spectroscopy/Diffraction Through Neural Networks

    NASA Astrophysics Data System (ADS)

    Ferralis, N.; Grossman, J.; Summons, R. E.

    2017-12-01

    Spectroscopy and diffraction techniques are essential for understanding structural, chemical and functional properties of geological materials for Earth and Planetary Sciences. Beyond data collection, quantitative insight relies on experimentally assembled, or computationally derived spectra. Inference on the geochemical or geophysical properties (such as crystallographic order, chemical functionality, elemental composition, etc.) of a particular geological material (mineral, organic matter, etc.) is based on fitting unknown spectra and comparing the fit with consolidated databases. The complexity of fitting highly convoluted spectra, often limits the ability to infer geochemical characteristics, and limits the throughput for extensive datasets. With the emergence of heuristic approaches to pattern recognitions though machine learning, in this work we investigate the possibility and potential of using supervised neural networks trained on available public spectroscopic database to directly infer geochemical parameters from unknown spectra. Using Raman, infrared spectroscopy and powder x-ray diffraction from the publicly available RRUFF database, we train neural network models to classify mineral and organic compounds (pure or mixtures) based on crystallographic structure from diffraction, chemical functionality, elemental composition and bonding from spectroscopy. As expected, the accuracy of the inference is strongly dependent on the quality and extent of the training data. We will identify a series of requirements and guidelines for the training dataset needed to achieve consistent high accuracy inference, along with methods to compensate for limited of data.

  7. Synthesis, molecular docking, antimycobacterial and antimicrobial evaluation of new pyrrolo[3,2-c]pyridine Mannich bases.

    PubMed

    Jose, Gilish; Suresha Kumara, Tholappanavara H; Sowmya, Haliwana B V; Sriram, Dharmarajan; Guru Row, Tayur N; Hosamani, Amar A; More, Sunil S; Janardhan, Bhavya; Harish, B G; Telkar, Sandeep; Ravikumar, Yalegara Siddappa

    2017-05-05

    In this report, we describe the synthesis and biological evaluation of a new series of pyrrolo[3,2-c]pyridine Mannich bases (7a-v). The Mannich bases were obtained in good yields by one-pot three component condensation of pyrrolo[3,2-c]pyridine scaffold (6a-c) with secondary amines and excess of formaldehyde solution in AcOH. The chemical structures of the compounds were characterized by 1 H NMR, 13 C NMR, LC/MS and elemental analysis. Single crystal X-ray diffraction has been recorded for compound 7k ([C 23 H 29 ClN 4 ] +2 , H 2 O). The in vitro antimicrobial activities of the compounds were evaluated against various bacterial and fungal strains using Agar diffusion method and Broth micro dilution method. Compounds 7e, 7f, 7r, 7t, and 7u were showed good Gram-positive antibacterial activity against S. aureus, B. flexus, C. sporogenes and S. mutans. Furthermore, in vitro antimycobacterial activity was evaluated against Mycobacterium tuberculosis H37Rv (ATCC 27294) using MABA. Compounds 7r, 7t, and 7u were showed good antitubercular activity against Mtb (MIC ≥6.25 μg/mL). Among the tested compounds, 1-((4-chloro-2-(cyclohexylmethyl)-1H-pyrrolo[3,2-c]pyridin-3-yl)methyl)piperidine-3-carboxamide (7t) was showed excellent antimycobacterial activity against Mtb (MIC <0.78 μg/mL) and low cytotoxicity against the HEK-293T cell line (SI >25). Molecular docking of the active compounds against glutamate racemase (MurI) and Mtb glutamine synthetase were explained the structure-activity observed in vitro. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Synthesis, spectroscopic, crystal structure, biological activities and theoretical studies of 2-[(2E)-2-(2-chloro-6-fluorobenzylidene)hydrazinyl]pyridine

    NASA Astrophysics Data System (ADS)

    Dilek Özçelik, Nefise; Tunç, Tuncay; Çatak Çelik, Raziye; Erzengin, Mahmut; Özışık, Hacı

    2017-05-01

    We report in this paper the synthesis, spectroscopic, crystal structure, biological activities and theoretical results of the title compound. The crystal structure was defined by the X-ray diffraction (XRD) method. In addition, this newly synthesized hydrazone derivative was also subjected to its possible antioxidant activity with free radical scavenging ability of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals using butylated hydroxytoluene (BHT) as standard antioxidant. The structural calculations were performed by the density functional theory using the B3LYP method with 6-311++G(2d,2p) basis set. The calculated values were compared with experimental results.

  9. New cyclic peptides with osteoblastic proliferative activity from Dianthus superbus.

    PubMed

    Tong, Yun; Luo, Jian-Guang; Wang, Rui; Wang, Xiao-Bing; Kong, Ling-Yi

    2012-03-01

    Two new cyclic peptides, dianthins G-H (1 and 2), together with the known dianthin E (3), were isolated from the traditional Chinese medicinal plant Dianthus superbus. The sequences of cyclic peptides 1 and 2 were elucidated as cyclo (-Gly(1)-Pro(2)-Leu(3)-Thr(4)-Leu(5)-Phe(6)-) and cyclo (-Gly(1)-Pro(2)-Val(3)-Thr(4)-Ile(5)-Phe(6)-), on the basis of ESI tandem mass fragmentation analysis, extensive 2D NMR methods and X-ray diffraction. The isolated three compounds all increase proliferation of MC3T3-E1 cells in vitro using MTT method. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Synthesis, crystal structure investigation, spectroscopic characterizations and DFT computations on a novel 1-(2-chloro-4-phenylquinolin-3-yl)ethanone

    NASA Astrophysics Data System (ADS)

    Murugavel, S.; Stephen, C. S. Jacob Prasanna; Subashini, R.; Reddy, H. Raveendranatha; AnanthaKrishnan, Dhanabalan

    2016-10-01

    The title compound 1-(2-chloro-4-phenylquinolin-3-yl)ethanone (CPQE) was synthesised effectively by chlorination of 3-acetyl-4-phenylquinolin-2(1H)-one (APQ) using POCl3 reagent. Structural and vibrational spectroscopic studies were performed by utilizing single crystal X-ray diffraction, FTIR and NMR spectral analysis along with DFT method utilizing GAUSSIAN‧ 03 software. Veda program has been employed to perform a detailed interpretation of vibrational spectra. Mulliken population analyses on atomic charges, MEP, HOMO-LUMO, NBO, Global chemical reactivity descriptors and thermodynamic properties have been examined by (DFT/B3LYP) method with the 6-311G(d,p) basis set level.

  11. Fragment-based screening by protein crystallography: successes and pitfalls.

    PubMed

    Chilingaryan, Zorik; Yin, Zhou; Oakley, Aaron J

    2012-10-08

    Fragment-based drug discovery (FBDD) concerns the screening of low-molecular weight compounds against macromolecular targets of clinical relevance. These compounds act as starting points for the development of drugs. FBDD has evolved and grown in popularity over the past 15 years. In this paper, the rationale and technology behind the use of X-ray crystallography in fragment based screening (FBS) will be described, including fragment library design and use of synchrotron radiation and robotics for high-throughput X-ray data collection. Some recent uses of crystallography in FBS will be described in detail, including interrogation of the drug targets β-secretase, phenylethanolamine N-methyltransferase, phosphodiesterase 4A and Hsp90. These examples provide illustrations of projects where crystallography is straightforward or difficult, and where other screening methods can help overcome the limitations of crystallography necessitated by diffraction quality.

  12. Fragment-Based Screening by Protein Crystallography: Successes and Pitfalls

    PubMed Central

    Chilingaryan, Zorik; Yin, Zhou; Oakley, Aaron J.

    2012-01-01

    Fragment-based drug discovery (FBDD) concerns the screening of low-molecular weight compounds against macromolecular targets of clinical relevance. These compounds act as starting points for the development of drugs. FBDD has evolved and grown in popularity over the past 15 years. In this paper, the rationale and technology behind the use of X-ray crystallography in fragment based screening (FBS) will be described, including fragment library design and use of synchrotron radiation and robotics for high-throughput X-ray data collection. Some recent uses of crystallography in FBS will be described in detail, including interrogation of the drug targets β-secretase, phenylethanolamine N-methyltransferase, phosphodiesterase 4A and Hsp90. These examples provide illustrations of projects where crystallography is straightforward or difficult, and where other screening methods can help overcome the limitations of crystallography necessitated by diffraction quality. PMID:23202926

  13. The crystal structure of the new ternary antimonide Dy 3Cu 20+xSb 11-x ( x≈2)

    NASA Astrophysics Data System (ADS)

    Fedyna, L. O.; Bodak, O. I.; Fedorchuk, A. O.; Tokaychuk, Ya. O.

    2005-06-01

    New ternary antimonide Dy 3Cu 20+xSb 11-x ( x≈2) was synthesized and its crystal structure was determined by direct methods from X-ray powder diffraction data (diffractometer DRON-3M, Cu Kα-radiation, R=6.99%,R=12.27%,R=11.55%). The compound crystallizes with the own cubic structure type: space group F 4¯ 3m, Pearson code cF272, a=16.6150(2) Å,Z=8. The structure of the Dy 3Cu 20Sb 11-x ( x≈2) can be obtained from the structure type BaHg 11 by doubling of the lattice parameter and subtraction of 16 atoms. The studied structure was compared with the structures of known compounds, which crystallize in the same space group with similar cell parameters.

  14. TL and PL studies on cubic fluoroperovskite single crystal (KMgF3: Eu2+, Ce3+)

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Madhusoodanan, U.; Annalakshmi, O.; Ramasamy, P.

    2014-04-01

    The perovskite-like KMgF3 polycrystalline compounds were synthesized by standard solid state reaction technique. Phase purity of the synthesized compounds was analyzed by powder X-ray diffraction technique. Single crystals of (0.2 mol% of EuF3 and CeF3) Co-doped KMgF3 have been grown from melt by using a vertical Bridgman-Stockbarger method. Thermoluminescence (TL) characteristics of KMgF3 samples doped with Eu2+ and Ce3+ have been studied after β-ray irradiation. At ambient conditions the photoluminescence spectra consisted of sharp line peaked of Eu2+ at 360 nm attributed to the f → f transition (6P7/2→8S7/2) could only be observed due to the energy transfer from Ce3+ to Eu2+.

  15. Physical Identification of Binary System of Gliclazide-Hydrophilic Polymers Using X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Rachmawati, H.; Yatinasari, Faizatun, Syarie, S. A.

    2008-03-01

    The formation of binary system in pharmaceutical solid state is aimed to improve the physicochemical characteristics of active compound, such as its solubility. To identify the physical change of the binary system including crystallinity or particle morphology, there are many methods can be applied. In present report, we study the physical interaction of the binary system of gliclazide and hydrophilic polymers. In this binary system, gliclazide was either dispersed or mixed with polyvinyl pirrolidone (PVP K30) or polyethylene glycol (PEG 6000). The dispersion system of gliclazide in the polymeric carriers was prepared by solvation-evaporation method, using dichloromethane/methylene chloride as an organic solvent. The physical characterization of both dispersed and mixed of gliclazide was studied using X-ray diffraction at interval 6-50 °/2θ. As a comparison, the same procedure was performed for pure gliclazide. To confirm the diffractogram of this binary system, Fourier Transform Infrared (FT-IR) spectroscopy was carried out as well. Both diffarctogram and FT-IR spectra revealed that there was no new compound formed in the solid dispersion system of gliclazide:PEG 6000 and gliclazide:PVP K30. In contrast, the solubility as well as the dissolution rate of gliclazide in the presence of both hydrophilic polymers was increased as compared to pure gliclazide. We conclude therefore that solvatation followed by evaporation of gliclazide in the presence of either PEG 6000 or PVP K30 did not alter its crystalline characteristic. The improved of gliclazide solubility in the binary system might due to other mechanism such as increased in the wettability and the hydrophylicity effect of the polymers.

  16. [Crystal structure of SMU.2055 protein from Streptococcus mutans and its small molecule inhibitors design and selection].

    PubMed

    Xiaodan, Chen; Xiurong, Zhan; Xinyu, Wu; Chunyan, Zhao; Wanghong, Zhao

    2015-04-01

    The aim of this study is to analyze the three-dimensional crystal structure of SMU.2055 protein, a putative acetyltransferase from the major caries pathogen Streptococcus mutans (S. mutans). The design and selection of the structure-based small molecule inhibitors are also studied. The three-dimensional crystal structure of SMU.2055 protein was obtained by structural genomics research methods of gene cloning and expression, protein purification with Ni²⁺-chelating affinity chromatography, crystal screening, and X-ray diffraction data collection. An inhibitor virtual model matching with its target protein structure was set up using computer-aided drug design methods, virtual screening and fine docking, and Libdock and Autodock procedures. The crystal of SMU.2055 protein was obtained, and its three-dimensional crystal structure was analyzed. This crystal was diffracted to a resolution of 0.23 nm. It belongs to orthorhombic space group C222(1), with unit cell parameters of a = 9.20 nm, b = 9.46 nm, and c = 19.39 nm. The asymmetric unit contained four molecules, with a solvent content of 56.7%. Moreover, five small molecule compounds, whose structure matched with that of the target protein in high degree, were designed and selected. Protein crystallography research of S. mutans SMU.2055 helps to understand the structures and functions of proteins from S. mutans at the atomic level. These five compounds may be considered as effective inhibitors to SMU.2055. The virtual model of small molecule inhibitors we built will lay a foundation to the anticaries research based on the crystal structure of proteins.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalsi, Deepti; Rayaprol, S.; Siruguri, V.

    We report the crystallographic properties of RE{sub 2}NiGe{sub 3} (RE=La, Ce) synthesized by arc melting. Rietveld refinement on the powder neutron diffraction (ND) data suggest both compounds are isostructural and crystallize in the non-centrosymmetric Er{sub 2}RhSi{sub 3} type structure having hexagonal space group P6{sup ¯}2c. In the crystal structure of RE{sub 2}NiGe{sub 3}, two dimensional arrangements of nickel and germanium atoms lead to the formation of hexagonal layers with rare earth atoms sandwiched between them. Magnetic susceptibility measurements performed in low fields exhibit antiferromagnetic ordering in cerium compound around (T{sub o}=) 3.2 K. Neutron diffraction measurements at 2.8 K (i.e.,more » at T« less

  18. Structure and thermal expansion of Ca9Gd(VO4)7: A combined powder-diffraction and dilatometric study of a Czochralski-grown crystal

    NASA Astrophysics Data System (ADS)

    Paszkowicz, Wojciech; Shekhovtsov, Alexei; Kosmyna, Miron; Loiko, Pavel; Vilejshikova, Elena; Minikayev, Roman; Romanowski, Przemysław; Wierzchowski, Wojciech; Wieteska, Krzysztof; Paulmann, Carsten; Bryleva, Ekaterina; Belikov, Konstantin; Fitch, Andrew

    2017-11-01

    Materials of the Ca9RE(VO4)7 (CRVO) formula (RE = rare earth) and whitlockite-related structures are considered for applications in optoelectronics, e.g., in white-light emitting diodes and lasers. In the CRVO structure, the RE atoms are known to share the site occupation with Ca atoms at two or three among four Ca sites, with partial occupancy values depending on the choice of the RE atom. In this work, the structure and quality of a Czochralski-grown crystal of this family, Ca9Gd(VO4)7 (CGVO), are studied using X-ray diffraction methods. The room-temperature structure is refined using the powder diffraction data collected at a high-resolution synchrotron beamline ID22 (ESRF, Grenoble); for comparison purposes, a laboratory diffraction pattern was collected and analyzed, as well. The site occupancies are discussed on the basis of comparison with literature data of isostructural synthetic crystals of the CRVO series. The results confirm the previously reported site-occupation scheme and indicate a tendency of the CGVO compound to adopt a Gd-deficient composition. Moreover, the thermal expansion coefficient is determined for CGVO as a function of temperature in the 302-1023 K range using laboratory diffraction data. Additionally, for CGVO and six other single crystals of the same family, thermal expansion is studied in the 298-473 K range, using the dilatometric data. The magnitude and anisotropy of thermal expansion, being of importance for laser applications, are discussed for these materials.

  19. Quantification of febuxostat polymorphs using powder X-ray diffraction technique.

    PubMed

    Qiu, Jing-bo; Li, Gang; Sheng, Yue; Zhu, Mu-rong

    2015-03-25

    Febuxostat is a pharmaceutical compound with more than 20 polymorphs of which form A is most widely used and usually exists in a mixed polymorphic form with form G. In the present study, a quantification method for polymorphic form A and form G of febuxostat (FEB) has been developed using powder X-ray diffraction (PXRD). Prior to development of a quantification method, pure polymorphic form A and form G are characterized. A continuous scan with a scan rate of 3° min(-1) over an angular range of 3-40° 2θ is applied for the construction of the calibration curve using the characteristic peaks of form A at 12.78° 2θ (I/I0100%) and form G at 11.72° 2θ (I/I0100%). The linear regression analysis data for the calibration plots shows good linear relationship with R(2)=0.9985 with respect to peak area in the concentration range 10-60 wt.%. The method is validated for precision, recovery and ruggedness. The limits of detection and quantitation are 1.5% and 4.6%, respectively. The obtained results prove that the method is repeatable, sensitive and accurate. The proposed developed PXRD method can be applied for the quantitative analysis of mixtures of febuxostat polymorphs (forms A and G). Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Experience with exchange and archiving of raw data: comparison of data from two diffractometers and four software packages on a series of lysozyme crystals.

    PubMed

    Tanley, Simon W M; Schreurs, Antoine M M; Helliwell, John R; Kroon-Batenburg, Loes M J

    2013-02-01

    The International Union of Crystallography has for many years been advocating archiving of raw data to accompany structural papers. Recently, it initiated the formation of the Diffraction Data Deposition Working Group with the aim of developing standards for the representation of these data. A means of studying this issue is to submit exemplar publications with associated raw data and metadata. A recent study on the effects of dimethyl sulfoxide on the binding of cisplatin and carboplatin to histidine in 11 different lysozyme crystals from two diffractometers led to an investigation of the possible effects of the equipment and X-ray diffraction data processing software on the calculated occupancies and B factors of the bound Pt compounds. 35.3 Gb of data were transferred from Manchester to Utrecht to be processed with EVAL. A systematic comparison shows that the largest differences in the occupancies and B factors of the bound Pt compounds are due to the software, but the equipment also has a noticeable effect. A detailed description of and discussion on the availability of metadata is given. By making these raw diffraction data sets available via a local depository, it is possible for the diffraction community to make their own evaluation as they may wish.

  1. Powder X-ray diffraction, infrared and 13C NMR spectroscopic studies of the homologous series of some solid-state zinc(II) and sodium(I) n-alkanoates

    NASA Astrophysics Data System (ADS)

    Nelson, Peter N.; Taylor, Richard A.

    2015-03-01

    A comparative study of the room temperature molecular packing and lattice structures for the homologous series of zinc(II) and sodium(I) n-alkanoates adduced from Fourier transform infrared and solid-state 13C NMR spectroscopic data in conjunction with X-ray powder diffraction measurements is carried out. For zinc carboxylates, metal-carboxyl bonding is via asymmetric bridging bidentate coordination whilst for the sodium adducts, coordination is via asymmetric chelating bidentate bonding. All compounds are packed in a monoclinic crystal system. Furthermore, the fully extended all-trans hydrocarbon chains are arranged as lamellar bilayers. For zinc compounds, there is bilayer overlap, for long chain adducts (nc > 8) but not for sodium compounds where methyl groups from opposing layers in the lamellar are only closely packed. Additionally, the hydrocarbon chains are extended along the a-axis of the unit cell for zinc compounds whilst for sodium carboxylates they are extended along the c-axis. These packing differences are responsible for different levels of Van der Waals effects in the lattices of these two series of compounds, hence, observed odd-even alternation is different. The significant difference in lattice packing observed for these two series of compounds is proposed to be due to the difference in metal-carboxyl coordination mode, arising from the different electronic structure of the central metal ions.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan; Pan, Cheng-Ling; Xiao, Li-Na

    Three new supramolecular compounds based on triethylenediamine and different polyoxometalates [W{sup VI}{sub 3}V{sup V}{sub 3}O{sub 19}H]{l_brace}[Cu(HDABCO)]{sub 2}(H{sub 2}O){r_brace} (1), [P{sub 2}Mo{sup VI}{sub 18}O{sub 62}][HDABCO]{sub 2}[H{sub 2}DABCO]{sub 2}.12 H{sub 2}O (2) and [Mo{sup VI}{sub 7.5}W{sup VI}{sub 0.5}O{sub 27}][Cu(HDABCO)]{sub 2}.2 H{sub 3}O.2 H{sub 2}O (3) (DABCO=triethylenediamine) have been synthesized hydrothermally and characterized by IR, TG, XPS and X-ray diffraction analyses. Crystal structure analyses reveal that compound 1 exhibits a face-centered cubic packing motif, compound 2 displays a supramolecular structure constructed form the 'chains' arranged hexagonally, compound 3 contains [Mo{sub 7.5}W{sub 0.5}O{sub 27}]{sub {infinity}} chain decorated by [Cu(HDABCO)]{sup 2+} cations, which was thenmore » packed into a layer structure. These results show that the same organonitrogen combining with the different POMs will yield different supramolecular networks. -- Graphical abstract: Three new supramolecular compounds based on triethylenediamine and different polyoxometalates have been hydrothermally synthesized and characterized by IR, XPS, TG, elemental analysis and X-ray diffraction analysis.« less

  3. Application of powder X-ray diffraction in studying the compaction behavior of bulk pharmaceutical powders.

    PubMed

    Bandyopadhyay, Rebanta; Selbo, Jon; Amidon, Gregory E; Hawley, Michael

    2005-11-01

    This study investigates the effects of crystal lattice deformation on the powder X-ray diffraction (PXRD) patterns of compressed polycrystalline specimen (compacts/tablets) made from molecular, crystalline powders. The displacement of molecules and the corresponding adjustment of interplanar distances (d-spacings) between diffracting planes of PNU-288034 and PNU-177553, which have crystal habits with a high aspect ratio favoring preferred orientation during tableting, are demonstrated by shifts in the diffracted peak positions. The direction of shift in diffracted peak positions suggests a reduction of interplanar d-spacing in the crystals of PNU-288034 and PNU-177553 following compaction. There is also a general reduction of peak intensities following compression at the different compressive loads. The lattice strain representing the reduction in d-spacing is proportional to the original d-spacing of the uncompressed sample suggesting that, as with systems that obey a simple Hooke's law relationship, the further apart the planes of atoms/molecules within the lattice are, the easier it is for them to approach each other under compressive stresses. For a third model compound comprising more equant-shaped crystals of PNU-141659, the shift in diffracted peak positions are consistent with an expansion of lattice spacing after compression. This apparent anomaly is supported by the PXRD studies of the bulk powder consisting of fractured crystals where also, the shift in peak position suggests expansion of the lattice planes. Thus the crystals of PNU-141659 may be fracturing under the compressive loads used to produce the compacts. Additional studies are underway to relate the PXRD observations with the bulk tableting properties of these model compounds.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, Xiaoyun; Xu, Feng, E-mail: xuf@xtal.tsinghua.edu.cn; Bell, Stephen G.

    The cytochrome P450 enzyme CYP203A1 from Rhodopseudomonas palustris binds a wide range of highly substituted aromatic compounds and may play an important role in the astonishing metabolic diversity of this organism. Crystals of CYP203A1 that diffract to 2.0 Å resolution have been obtained. Cytochrome P450 enzymes constitute a large family of haemoproteins that catalyze the monooxygenation of a great variety of endogenous and exogenous organic compounds. Cytochrome P450 203A1 (CYP203A1, RPA1009) from the metabolically versatile organism Rhodopseudomonas palustris binds a broad range of substrates, in particular substituted aromatic compounds. Crystals of CYP203A1 suitable for X-ray crystallography have been obtained andmore » diffraction data were collected in-house to 2.0 Å resolution from a single crystal. The crystals belong to space group P222, with unit-cell parameters a = 40.1, b = 95.1, c = 99.0 Å, α = β = γ = 90°. There is one protein molecule per asymmetric unit.« less

  5. Preparation, structure and properties of La0.67Pb0.33(Mn1-xCox)O3-δ

    NASA Astrophysics Data System (ADS)

    Gritzner, G.; Ammer, J.; Kellner, K.; Kavečanský, V.; Mihalik, M.; Maťaš, S.; Zentková, M.

    2008-02-01

    La0.67Pb0.33(Mn1-xCox)O3-δ ceramics with x=0, 0.01, 0.03, 0.06, 0.1 and 0.15 have been prepared in a two-step procedure. Precursor gels were made by the wet chemical malic acid method. The gels were calcined and then converted into ceramics by heat treatment at 950 °C and 1000 °C in air. X-ray diffraction showed that the compounds were phase pure. The crystal structure symmetry of the compounds was confirmed to be rhombohedral (space group R3¯c) for the whole investigated range of x. All compounds undergo a paramagnetic ferromagnetic phase transition between 335 K and 225 K. The basic magnetic characteristics such as the Curie temperature mathit{T}C, the paramagnetic Curie temperature θ, the effective magnetic moment mathit{μ}_{eff} and the saturated magnetization mathit{μ}s decrease with increasing Co doping. The ferromagnetic transition is accompanied by an anomaly in the electrical resistance for all compounds. The high-temperature insulator metal transitions (mathit{T}p) do not coincide with the relevant mathit{T}C. A large magnetoresistance peak of about 15% was observed for all compounds at mathit{T}C.

  6. Experimental and computational approaches of a novel methyl (2E)-2-{[N-(2-formylphenyl)(4-methylbenzene)sulfonamido]methyl}-3-(4-chlorophenyl)prop-2-enoate: A potential antimicrobial agent and an inhibition of penicillin-binding protein

    NASA Astrophysics Data System (ADS)

    Murugavel, S.; Vetri velan, V.; Kannan, Damodharan; Bakthadoss, Manickam

    2016-07-01

    The title compound methyl(2E)-2-{[N-(2-formylphenyl) (4-methylbenzene)sulfonamido]methyl}-3-(4-chlorophenyl) prop-2-enoate (MFMSC) has been synthesized and single crystals were grown by slow evaporation solution growth technique at room temperature. Structural and vibrational spectroscopic studies were carried out by using single crystal X-ray diffraction, FT-IR and NMR spectral analysis together with DFT method using GAUSSIAN'03 software. The detailed interpretation of the vibrational spectra has been carried out by VEDA program. NBO analysis, Mulliken charge analysis, HOMO-LUMO, MEP, Global chemical reactivity descriptors and thermodynamic properties have been analyzed. The hyperpolarisability calculation reveals the present material has a reasonably good propensity for nonlinear optical activity. The obtained antimicrobial activity results indicate that the compound shows good to moderate activity against all tested bacterial and fungal pathogens. A computational study was also carried out to predict the drug-likeness and ADMET properties of the title compound. Due to the different potential biological activity of the title compound, molecular docking study is also reported and the compound might exhibit inhibitory activity against penicillin-binding protein PBP-2X.

  7. Layered Structure and Swelling Behavior of a Multiple Hydrate-Forming Pharmaceutical Compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiang, Y.; Xu, W; Stephens, P

    2009-01-01

    Investigation of one anhydrous and four hydrated forms of a pharmaceutical compound (1) using both single-crystal and high-resolution powder X-ray diffraction methods revealed a two-dimensional framework which, upon exposure to moisture, absorbed water between the layers, causing the lattice to expand by as much as 20% of the axial length along a. The single-crystal structure was solved and refined for the pentahydrate form in space group C2 with unit cell parameters a = 36.961(5) Angstroms, b = 7.458(2) Angstroms, c = 20.691(4) Angstroms, e = 99.461(1), and V = 5626(4) Angstroms3. In the single-crystal structure the water layers were parallelmore » to the bc plane and sandwiched by the crystalline compound 1 framework. Upon a change of relative humidity, water goes in and out of the interlayer space with the retention of the layer structure of the development compound. Starting from the anhydrous form, each additional water of hydration increased the interlayer spacing of the pharmaceutical solid by 1.3 Angstroms, half the size of a water molecule. In an exploratory formulation, this expansion of interlayer spacing caused tablets to crack upon storage at high relative humidity.« less

  8. Sesquiterpenoids with PTP1B Inhibitory Activity and Cytotoxicity from the Edible Mushroom Pleurotus citrinopileatus.

    PubMed

    Tao, Qiao-Qiao; Ma, Ke; Bao, Li; Wang, Kai; Han, Jun-Jie; Wang, Wen-Zhao; Zhang, Jin-Xia; Huang, Chen-Yang; Liu, Hong-Wei

    2016-05-01

    One new perhydrobenzannulated 5,5-spiroketal sesquiterpene, pleurospiroketal F (1), as well as six new modified bisabolene sesquiterpenes pleurotins A-F (2-7) were isolated from solid-state fermentation of Pleurotus citrinopileatus. The structures of compounds 1-7 were determined by NMR and MS spectroscopic analysis. The absolute configuration of 1 was determined by X-ray diffraction analysis, while the absolute configurations of 3-7 were assigned using the in situ dimolybdenum circular dichroism method and circular dichroism data comparison. Protein tyrosine phosphatase 1B plays a crucial role as a negative regulator of the insulin-dependent signal cascades. Therefore, the protein tyrosine phosphatase 1B inhibitor can be used for treating type 2 diabetes mellitus and obesity. Compounds 2 and 6 showed moderate inhibitory effects on protein tyrosine phosphatase 1B with IC50 s of 32.1 µM and 30.5 µM, respectively. The kinetic study confirmed compound 2 to be a noncompetitive inhibitor. Compounds 1-7 did not show cytotoxic activity against cancer cell lines (IC50 > 50 µM). Georg Thieme Verlag KG Stuttgart · New York.

  9. 3-Acetyl-8-methoxy-2[H]-chromen-2-one derived Schiff bases as potent antiproliferative agents: Insight into the influence of 4(N)-substituents on the in vitro biological activity

    NASA Astrophysics Data System (ADS)

    Kalaiarasi, G.; Rex Jeya Rajkumar, S.; Aswini, G.; Dharani, S.; Fronczek, Frank R.; Prabhakaran, R.

    2018-07-01

    A series of 3-acetyl-8-methoxycoumarin appended thiosemicarbazones (1-4) was prepared from the reaction of 3-acetyl-8-methoxycoumarin with 4(N)-substituted thiosemicarbazides in a view of ascertaining their biological properties with the change of N-terminal substitution in the thiosemicarbazide moiety. Comprehensive characterization was brought about by various spectral and analytical methods. The molecular structures of all the compounds were determined by single crystal X-ray diffraction analysis. Binding studies with Calf thymus DNA (CT-DNA) and proteins such as Bovine Serum Albumin (BSA) and Human Serum Albumin (HSA) indicated an intercalative mode of binding with DNA and static quenching mechanism with proteins. The compounds cleaved plasmid DNA (pBR322) and acted well as free radical scavengers. A good spectrum of antimicrobial activity was observed against four bacterial and five fungal pathogens. The compounds exhibited profound antiproliferative activity on MCF-7 (human breast cancer) and A549 (human lung carcinoma) cell lines. Assay on human normal keratinocyte cell line HaCaT showed that the compounds were non-toxic to normal cells.

  10. Ultrafast Synthesis and Related Phase Evolution of Mg2Si and Mg2Sn Compounds

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Lu, Qiangbing; Yan, Yonggao; Su, Xianli; Tang, Xinfeng

    2017-05-01

    Both Mg2Si and Mg2Sn compounds were synthesized by an ultra-fast self-propagating high-temperature synthesis (SHS) method. The data regarding SHS were obtained via theoretical calculation combined with experiments, showing that the adiabatic temperature T ad and ignition temperature T ig of Mg2Si are a little higher than those of Mg2Sn. The mechanism of phase evolution and the concomitant microstructure evolution during the synthesis process of Mg2Si and Mg2Sn compounds were investigated by adopting SHS technique coupled with a sudden quenching treatment. Differential scanning calorimetry (DSC), field emission scanning electron microscopy (FESEM), and x-ray powder diffraction (XRD) results indicate that Mg2Si compound can be directly synthesized through the reaction of Mg and Si elements at around 850 K. Correspondingly, the formation of Mg2Sn needs to undergo melting of Sn and the subsequent feeble reaction between Mg and Sn elements before the large scale transformation at 730 K. As the groundwork, this research embodies great significance for future study on the ultrafast SHS process of the ternary Mg2Si1- x Sn x solid solutions.

  11. Clathrate formation and phase equilibria in the thiourea-bromoform system

    NASA Astrophysics Data System (ADS)

    Chekhova, G. N.; Shubin, Yu. V.; Pinakov, D. V.; Alferova, N. I.

    2008-07-01

    Phase equilibria in the thiourea (host)-bromoform (guest) binary system were studied by physicochemical analysis methods over the temperature range 270 455 K. The stoichiometry and stability region were determined for the channel-type compound CHBr3 · 2.40(2)(NH2)2CS; the compound was observed for the first time. When heated, the clathrate incongruently decomposed at 424.0 ± 0.8 K to rhombic thiourea and the guest component. The solubility isotherm of the thiourea-bromoform-acetic acid system was studied to find that the compound was thermodynamically stable at 293 K over the range of guest component concentrations 100 35 wt %. A decrease in its content in an equilibrium mother liquor resulted in the appearance of X-ray diffraction reflections of the initial host α polymorph. Rhombohedral cell parameters were determined (space group R-3 c, a = 15.89(1) Å, c = 12.40(1) Å, V = 2711(6) Å3, d calcd = 2.000 g/cm3, and d expt = 1.98(2) g/cm3). The mode of packing of bromoform molecules was compared with the organization of the guest subsystem in inclusion compounds formed by the substances studied.

  12. Study of morphology and magnetic properties of the HoNi{sub 3} crystalline and ball-milled compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajorek, Anna, E-mail: anna.bajorek@us.edu.pl; Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów; Skornia, Paweł

    2015-03-15

    The morphology and magnetic properties of the HoNi{sub 3} crystalline and ball-milled intermetallic compounds are presented. The polycrystalline HoNi{sub 3} bulk compound crystallizes in the rhombohedral PuNi{sub 3} — type of crystal structure and indicates ferrimagnetic arrangement with the Curie temperature of T{sub C} = 57 ± 2 K, the helimagnetic temperature T{sub h} = 23 ± 2 K with the total saturation magnetic moment of 6.84 μ{sub B}/f.u. at 2 K. The use of the ball-milling method leads to the formation of HoNi{sub 3} nanoflakes with typical thickness of less than 100 nm prone to agglomeration upon milling. Themore » increase of grinding duration leads to the reduction in crystallite size, which was confirmed by various complementary microscopical and diffraction studies. Moreover, the increase in milling duration results in the emergence of the relatively small coercivity (H{sub C}), remanence (M{sub r}) and a variation of the saturation magnetization (M{sub S}). - Graphical abstract: Display Omitted - Highlights: • The ball-milling method exhibits significant potential for producing RT{sub 3} nanopowders. • The AFM method was used for the first time in analysis of R–T nanoflakes morphology. • HoNi{sub 3} compound forms polycrystalline and textured nanoflakes evolving upon milling. • The decrease in crystallite size via grinding is confirmed by XRD, TEM and AFM. • The magnetic parameters were sensitive to the extension of pulverization b.« less

  13. Raman analysis of non stoichiometric Ni1-δO

    NASA Astrophysics Data System (ADS)

    Dubey, Paras; Choudhary, K. K.; Kaurav, Netram

    2018-04-01

    Thermal decomposition method was used to synthesize non-stoichiometric nickel oxide at different sintering temperatures upto 1100 °C. The structure of synthesized compounds were analyzed by X ray diffraction analysis (XRD) and magnetic ordering was studied with the help of Raman scattering spectroscopy for the samples sintered at different temperature. It was found that due to change in sintering temperature the stoichiometry of the sample changes and hence intensity of two magnon band changes. These results were interpreted as the decomposition temperature increases, which heals the defects present in the non-stoichiometric nickel oxide and antiferromagnetic spin correlation changes accordingly.

  14. Reports of the second All-Union conference on the chemistry of transplutonium elements (Dmitrovgrad, June 21-23, 1963)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-05-01

    The nine papers presented at this conference cover the following topics: the systematization, condensed description, and prediction of sets of anion exchange extraction constants on the basis of their statistical computer treatment; characteristics and uses of solid extractants containing D2EHPA and TBP for separating the transplutonium elements; enrichment of americium 242m and americium 242 by the Szilard-Chalmers method; an x-ray diffraction pattern analysis for transplutonium compounds; the radiation chemistry of americium; and the effects of alpha irradiation on the behavior of americium in perchlorate solutions.

  15. Crystal growth and properties of Ag 7_ xTaSe 6_ xI x (0 x 1)

    NASA Astrophysics Data System (ADS)

    Wada, H.; Sato, A.

    1993-03-01

    National Institute for Research in Inorganic Materials, Namiki 1-1, Tsukuba, Ibaraki 305, Japan A series of argyrodite compounds with the formula Ag7 xTaSe6 xIx (0 x 1) have been prepared for the first time by a sealed silica tube method. Single crystals have been obtained by heating at 800°C for 2 weeks. Their morphology and crystal structure have been studied by reflected-light microscopy, SEM, EDAX and X-ray diffraction. The silver ionic conductivities of the samples have been also measured.

  16. Synthesis, nucleation, growth, structural, spectral, thermal, linear and nonlinear optical studies of novel organic NLO crystal: 4-fluoro 4-nitrostilbene (FONS).

    PubMed

    Dinakaran, Paul M; Kalainathan, S

    2013-03-15

    A novel organic nonlinear optical material 4-fluoro 4-nitrostilbene (FONS), with molecular formula (C(14)H(10)FNO(2)) has been synthesized. Using ethyl methyl ketone as solvent, the synthesized material has been repeatedly recrystallized to minimize the impurities and good optical quality single crystals were harvested by slow evaporation method. Single crystal X-ray diffraction analysis reveals that the grown FONS crystal belongs to monoclinic system with noncentrosymmetric space group "P2(1)". The powder X-ray diffraction pattern of FONS has been recorded. Functional groups of the title compound were confirmed by FTIR and the molecular structure was confirmed by (1)HNMR. The UV-vis-NIR absorption study reveals no absorption in the visible region and the cut-off wavelength was found to be at 408 nm. Optical band gap (E(g)) of the grown crystal was found to be 3.27 eV and also the optical constants were determined. Thermal behaviour of the FONS has been studied by TGA/DTA analyses. From the mass spectrum, the ratio of compound formation of FONS was analyzed. The NLO property has been confirmed by Kurtz and Perry powder SHG technique and the SHG efficiency of FONS (262 mV) crystal was found to be 12 times greater than that of KDP (21.7 mV). Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Growth, spectral, thermal, dielectric, mechanical, linear and nonlinear optical, birefringence, laser damage threshold studies of semi-organic crystal: dibrucinium sulfate heptahydrate.

    PubMed

    Krishnan, P; Gayathri, K; Bhagavannarayana, G; Jayaramakrishnan, V; Gunasekaran, S; Anbalagan, G

    2013-08-01

    Dibrucinium sulfate heptahydrate (DBSH), a semi-organic nonlinear optical material, has been synthesized and single crystals were grown from water-ethanol solution at room temperature up to dimensions of 10×7×2 mm(3). The unit cell parameters were determined from single crystal and powder X-ray diffraction studies. The structural perfection of the grown crystal has been analyzed by high-resolution X-ray diffraction (HRXRD) study. FTIR and Raman studies were performed to identify the functional groups present in the title compound. The activation energy (E), entropy (ΔS), enthalpy (ΔH) and Gibbs free energy (ΔG), of the thermal decomposition reaction have been derived from thermo gravimetric (TGA) and differential thermal (DTA) analysis curves, using Coats-Redfern method. The variation of dielectric properties of the grown crystal with respect to frequency has been investigated at different temperatures. Microhardness measurements revealed the mechanical strength of grown crystal. The optical parameters, the optical band gap E(g) and width of localized states Eu were determined using the transmittance data in the spectral range 200-800 nm. The relative second harmonic efficiency of the compound is found to be 1.4 times greater than that of KDP. Birefringence and Laser damage threshold studies were carried out for the grown crystal. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. A roadmap to uranium ionic liquids: anti-crystal engineering.

    PubMed

    Yaprak, Damla; Spielberg, Eike T; Bäcker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja-Verena

    2014-05-19

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO2(2+) unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim to establish structure-property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. These materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A roadmap to uranium ionic liquids: Anti-crystal engineering

    DOE PAGES

    Yaprak, Damla; Spielberg, Eike T.; Bäcker, Tobias; ...

    2014-04-15

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C 4mim) cation. As dithiocarbamate ligands binding to the UO 2 2+ unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand withmore » the aim to establish structure–property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. As a result, these materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery.« less

  20. Towards solution and refinement of organic crystal structures by fitting to the atomic pair distribution function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prill, Dragica; Juhas, Pavol; Billinge, Simon J. L.

    2016-01-01

    In this study, a method towards the solution and refinement of organic crystal structures by fitting to the atomic pair distribution function (PDF) is developed. Approximate lattice parameters and molecular geometry must be given as input. The molecule is generally treated as a rigid body. The positions and orientations of the molecules inside the unit cell are optimized starting from random values. The PDF is obtained from carefully measured X-ray powder diffraction data. The method resembles `real-space' methods for structure solution from powder data, but works with PDF data instead of the diffraction pattern itself. As such it may bemore » used in situations where the organic compounds are not long-range-ordered, are poorly crystalline, or nanocrystalline. The procedure was applied to solve and refine the crystal structures of quinacridone (β phase), naphthalene and allopurinol. In the case of allopurinol it was even possible to successfully solve and refine the structure in P1 with four independent molecules. As an example of a flexible molecule, the crystal structure of paracetamol was refined using restraints for bond lengths, bond angles and selected torsion angles. In all cases, the resulting structures are in excellent agreement with structures from single-crystal data.« less

  1. Performance evaluation of spatial compounding in the presence of aberration and adaptive imaging

    NASA Astrophysics Data System (ADS)

    Dahl, Jeremy J.; Guenther, Drake; Trahey, Gregg E.

    2003-05-01

    Spatial compounding has been used for years to reduce speckle in ultrasonic images and to resolve anatomical features hidden behind the grainy appearance of speckle. Adaptive imaging restores image contrast and resolution by compensating for beamforming errors caused by tissue-induced phase errors. Spatial compounding represents a form of incoherent imaging, whereas adaptive imaging attempts to maintain a coherent, diffraction-limited aperture in the presence of aberration. Using a Siemens Antares scanner, we acquired single channel RF data on a commercially available 1-D probe. Individual channel RF data was acquired on a cyst phantom in the presence of a near field electronic phase screen. Simulated data was also acquired for both a 1-D and a custom built 8x96, 1.75-D probe (Tetrad Corp.). The data was compounded using a receive spatial compounding algorithm; a widely used algorithm because it takes advantage of parallel beamforming to avoid reductions in frame rate. Phase correction was also performed by using a least mean squares algorithm to estimate the arrival time errors. We present simulation and experimental data comparing the performance of spatial compounding to phase correction in contrast and resolution tasks. We evaluate spatial compounding and phase correction, and combinations of the two methods, under varying aperture sizes, aperture overlaps, and aberrator strength to examine the optimum configuration and conditions in which spatial compounding will provide a similar or better result than adaptive imaging. We find that, in general, phase correction is hindered at high aberration strengths and spatial frequencies, whereas spatial compounding is helped by these aberrators.

  2. X-Ray Diffraction Studies of the Structure of Ordered Polymers and Related Electro-Active Materials

    DTIC Science & Technology

    1990-12-31

    benzothiazole, 2-[2-(N,N-diethylamino)-5-nitropHenyl]benzothiazole, and 2-(trimethylsilylethynyl)-4-nitro-N,N-dimethylaniline. In all four compounds , the alkyl...nitrophenyl]benzothiazole, and 2-(trimethylsilylethynyl)-4-nitro-N,N-dimethylaniline isee Preprint 2 for details). In all four compounds , the alkyl groups...septiphenyl (DPSP), and 1,2.4- Iriphenylbenzene TPS). The fm four compounds have the genral smcurn (1) where n - I and R - H for PQP. n a I and R

  3. High pressure effects on U L 3 x-ray absorption in partial fluorescence yield mode and single crystal x-ray diffraction in the heavy fermion compound UCd 11

    DOE PAGES

    Nasreen, Farzana; Antonio, Daniel; VanGennep, Derrick; ...

    2016-02-15

    © 2016 IOP Publishing Ltd. We report a study of high pressure x-ray absorption (XAS) performed in the partial fluorescence yield mode (PFY) at the U L 3 edge (0-28.2 GPa) and single crystal x-ray diffraction (SXD) (0-20 GPa) on the UCd 11 heavy fermion compound at room temperature. Under compression, the PFY-XAS results show that the white line is shifted by +4.1(3) eV at the highest applied pressure of 28.2 GPa indicating delocalization of the 5f electrons. The increase in full width at half maxima and decrease in relative amplitude of the white line with respect to the edgemore » jump point towards 6d band broadening under high pressure. A bulk modulus of K 0 = 62(1) GPa and its pressure derivative, = 4.9(2) was determined from high pressure SXD results. Both the PFY-XAS and diffraction results do not show any sign of a structural phase transition in the applied pressure range.« less

  4. X-Ray Diffraction Studies on Metal Deposition in Group D Streptococci

    PubMed Central

    Tucker, Fayne L.; Thomas, John W.; Appleman, Milo D.; Goodman, Stewart H.; Donohue, Jerry

    1966-01-01

    Tucker, Fayne L. (University of Southern California, Los Angeles), John W. Thomas, Milo D. Appleman, Stewart H. Goodman, and Jerry Donohue. X-ray diffraction studies on metal deposition in group D streptococci. J. Bacteriol. 92:1311–1314. 1966.—Streptococcus faecalis N83 and S. faecium K6A reduced several compounds of Group VI elements to the elemental form, but reduced none of several compounds tested containing elements of other groups. The elemental tellurium deposited by S. faecium K6A was in general of a larger particle size than that deposited by S. faecalis N83 as judged from X-ray diffraction analysis. The particle size of the deposited tellurium was correlated with the blackness of the precipitate produced by cells growing in the presence of tellurite. A black and gray variation was observed in S. faecium K6A which was considered to be due to particle size, the amount of tellurium present, and the location of the deposited tellurium. The gray color of S. faecium K6A was not due to the presence of any oxidized tellurium products. PMID:4958879

  5. A combined temperature-dependent electron and single-crystal X-ray diffraction study of the fresnoite compound Rb 2V 4+V 25+O 8

    NASA Astrophysics Data System (ADS)

    Withers, Ray L.; Höche, Thomas; Liu, Yun; Esmaeilzadeh, Saeid; Keding, Ralf; Sales, Brian

    2004-10-01

    High-purity Rb2V3O8 has been grown and temperature-dependent electron and single-crystal X-ray diffraction used to carefully investigate its fresnoite-type reciprocal lattice. In contrast to other recently investigated representatives of the fresnoite family of compounds, Rb2V3O8 is not incommensurately modulated with an incommensurate basal plane primary modulation wave vector given by q∼0.3 <110>*. A careful low-temperature electron diffraction study has, however, revealed the existence of weak incommensurate satellite reflections characterized by the primitive primary modulation wave vector q1∼0.16c*. The reciprocal space positioning of these incommensurate satellite reflections, the overall (3+1)-d superspace group symmetry, as well as the shapes of the refined displacement ellipsoids determined from single-crystal XRD refinement, are all consistent with their arising from a distinct type of condensed rigid unit modes (RUMs) of distortion of the Rb2V3O8 parent structure.

  6. Synthesis, crystal structure analysis, spectral investigations, DFT computations and molecular dynamics and docking study of 4-benzyl-5-oxomorpholine-3-carbamide, a potential bioactive agent

    NASA Astrophysics Data System (ADS)

    Murthy, P. Krishna; Sheena Mary, Y.; Shyma Mary, Y.; Panicker, C. Yohannan; Suneetha, V.; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.; Suchetan, P. A.

    2017-04-01

    4-benzyl-5-oxomorpholine-3-carbamide has been synthesized; single crystals were grown by slow evaporation solution growth technique at room temperature and characterized by single crystal X-ray diffraction, FT-IR, FT-Raman and 1H-NMR. The compound crystallizes in the monoclinic space group P21/n. The molecular geometry of the compound was optimized by using Density Functional Theory (DFT/B3LYP) method with 6-311++G(d,p) basis set in the ground state and geometric parameters are in agreement with the X-ray analysis results of the structure. The experimental vibrational spectra were compared with the calculated spectra and each vibrational wave number was assigned on the basis of potential energy distribution (PED). The electronic and charge transfer properties have been explained on the basis of highest occupied molecular orbital's (HOMOs) and lowest unoccupied molecular orbital's (LUMOs). Besides molecular electrostatic potential (MEP), frontier molecular orbital's (FMOs), some global reactivity descriptors, thermodynamic properties, non-linear optical (NLO) behavior and Mullikan charge analysis of the title compound were computed with the same method in gas phase, theoretically. Potential reactive sites of the title compound have been identified by average local ionization energy and Fukui functions, both mapped to the electron density surface. Bond dissociation energies for all single acyclic bonds have been calculated in order to investigate autoxidation and degradation properties of the title compound. Atoms with pronounced interactions with water molecules have been detected by calculations of radial distribution functions after molecular dynamics simulations. The experimental results are compared with the theoretical calculations using DFT methods for the fortification of the paper. Further the docking studies revealed that the title compound as a docked ligand forms a stable complex with pyrrole inhibitor with a binding affinity value of -7.5 kcal/mol. This suggests that the title compound might exhibit inhibitory activity against pyrrole inhibitor. To confirm the potential practical applicability of the title compound antimicrobial activity was tested against gram negative and gram positive bacteria.

  7. Structural and theoretical study of 1-[1-oxo-3-phenyl-(2-benzosulfonamide)-propyl amido] - anthracene-9,10-dione to be i-motif inhibitor

    NASA Astrophysics Data System (ADS)

    Vatsal, Manu; Devi, Vandna; Awasthi, Pamita

    2018-04-01

    The 1-[1-oxo-3-phenyl-(2-benzosulfonamide)-propyl amido] - anthracene-9,10-dione (BPAQ) an analogue of anthracenedione class of antibiotic has been synthesized. To characterize molecular functional groups FT-IR and FT-Raman spectrum were recorded and vibrational frequencies were assigned accordingly. The optimized geometrical parameters, vibrational assignments, chemical shifts and thermodynamic properties of title compound were computed by ab initio calculations at Density Functional Theory (DFT) method with 6-31G(d,p) as basis set. The calculated harmonic vibrational frequencies of molecule were then analysed in comparison to experimental FT-IR and Raman spectrum. Gauge independent atomic orbital (GIAO) method was used for determining, (1H) and carbon (13C) nuclear magnetic resonance (NMR) spectra of the molecule. Molecular parameters were calculated along with its periodic boundary conditions calculation (PBC) analysis supported by X-ray diffraction studies. The frontier molecular orbital (HOMO, LUMO) analysis describes charge distribution and stability of the molecule which concluded that nucleophilic substitution is more preferred and the mullikan charge analysis also confirmed the same. Further the title compound showed an inhibitory action at d(TCCCCC), an intermolecular i-motif sequence, hence molecular docking study suggested the inhibitory activity of the compound at these junction.

  8. Synthesis, characterization, crystal structure and theoretical studies of 4-[(E)-(3-chloro-4-hydroxyphenyl) diazenyl]-1, 5-dimethyl-2-phenyl-1, 2-dihydro-3H-pyrazol-3-one

    NASA Astrophysics Data System (ADS)

    Athira, L. S.; Lakshmi, C. S. Nair; Balachandran, S.; Arul Dhas, D.; Hubert Joe, I.

    2017-11-01

    Crystals of new heterocyclic azo compound of 4-aminoantipyrine, 4-[(E)-(3-chloro-4-hydroxyphenyl)diazenyl]-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one have been grown by slow evaporation method at room temperature and its structural characterization was performed by X- ray diffraction method. The spectroscopic characterization was also performed by FT-IR, UV-Vis, 13C and 1H NMR techniques. The compound crystallizes in the monoclinic CC space group with cell dimensions a = 12.4842 (13), b = 16.4492 (16), c = 8.3389 (8) and β = 102.698 (3)°. The phenyl ring attached to the pyrazolone moiety is disordered over two positions with an occupancy ratio 52:48. The components of the disorder were refined. DFT calculations have been performed by using B3LYP/6-311G (d,p) level basis set. The calculated vibrational frequency showed a red shift for Cdbnd O and OH stretching. The natural bond orbital analysis of monomer, dimer and trimer structures reveals the absence of intramolecular hydrogen bonding; however intermolecular hydrogen bonding is observed. The cationic and anionic reactive sites of compound have been visualized on MEP surface.

  9. Hydrogen bonding interactions and supramolecular assemblies in 2-amino guanidinium 4-methyl benzene sulphonate crystal structure: Hirshfeld surfaces and computational calculations

    NASA Astrophysics Data System (ADS)

    Muthuraja, P.; Joselin Beaula, T.; Balachandar, S.; Bena Jothy, V.; Dhandapani, M.

    2017-10-01

    2-aminoguanidinium 4-methyl benzene sulphonate (AGMS), an organic compound with big assembly of hydrogen bonding interactions was crystallized at room temperature. The structure of the compound was confirmed by FT-IR, NMR and single crystal X-ray diffraction analysis. Numerous hydrogen bonded interactions were found to form supramolecular assemblies in the molecular structure. Fingerprint plots of Hirshfeld surface analysis spells out the interactions in various directions. The molecular structure of AGMS was optimised by HF, MP2 and DFT (B3LYP and CAM-B3LYP) methods at 6-311G (d,p) basis set and the geometrical parameters were compared. Electrostatic potential calculations of the reactants and product confirm the transfer of proton. Optical properties of AGMS were ascertained by UV-Vis absorbance and reflectance spectra. The band gap of AGMS is found to be 2.689 eV. Due to numerous hydrogen bonds, the crystal is thermally stable up to 200 °C. Hyperconjugative interactions which are responsible for the second hyperpolarizabilities were accounted by NBO analysis. Static and frequency dependent optical properties were calculated at HF and DFT methods. The hyperpolarizabilities of AGMS increase rapidly at frequencies 0.0428 and 0.08 a.u. compared to static one. The compound exhibits violet and blue emission.

  10. X-ray diffraction study of the molecular propolis films deposited from an alcohol solution onto the cleavage surfaces of layered V2VI3 compounds

    NASA Astrophysics Data System (ADS)

    Drapak, S. I.; Gavrylyuk, S. V.; Kaminskii, V. M.; Kovalyuk, Z. D.

    2008-09-01

    The structures of the molecular propolis films deposited from an alcohol solution on the (0001) cleavage surface of layered bismuth selenide and telluride are studied by X-ray diffraction. Despite the chemical interaction between the semiconductor substrates and the organic-substance components, the molecular structural ordering of the propolis films is shown to be identical to that in the films of this substance on the surface of amorphous glass substrates. The chemical and deformation interaction between the organic substance and the layered V2VI3 compounds is found to result in the formation of an organic-inorganic sandwich nanostructure at a distance of ˜0.3 μm from the layered crystal-propolis film interface.

  11. Water-Free Rare Earth-Prussian Blue Type Analogues: Synthesis, Structure, Computational Analysis, and Magnetic Data of {Ln[superscript III](DMF)[subscript 6]Fe[superscript III](CN)[subcsript 6]}[subscript infinity] (Ln = Rare Earths Excluding Pm)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Duane C.; Liu, Shengming; Chen, Xuenian

    2009-11-04

    Water-free rare earth(III) hexacyanoferrate(III) complexes, {l_brace}Ln(DMF){sub 6}({mu}-CN){sub 2}Fe(CN){sub 4}{r_brace}{sub {infinity}} (DMF = N,N-dimethylformamide; Ln = Sm, 1; Eu, 2; Gd, 3; Tb, 4; Dy, 5; Ho, 6; Er, 7; Tm, 8; Yb, 9; Lu, 10; Y, 11; La, 12; Ce, 13; Pr, 14; Nd, 15), were synthesized in dry DMF through the metathesis reactions of [(18-crown-6)K]{sub 3}Fe(CN){sub 6} with LnX{sub 3}(DMF){sub n} (X = Cl or NO{sub 3}). Anhydrous DMF solutions of LnX{sub 3}(DMF){sub n} were prepared at room temperature from LnCl{sub 3} or LnX{sub 3} {center_dot} nH{sub 2}O under a dynamic vacuum. All compounds were characterized by IR, X-raymore » powder diffraction (except for 10), and single crystal X-ray diffraction (except for 2, 7, 10). Infrared spectra reveal that a monotonic, linear relationship exists between the ionic radius of the lanthanide and the {nu}{sub {mu}-CN} stretching frequency of 1-10, 12-15 while 11 deviates slightly from the ionic radius relationship. X-ray powder diffraction data are in agreement with powder patterns calculated from single crystal X-ray diffraction results, a useful alternative for bulk sample confirmation when elemental analysis data are difficult to obtain. Eight-coordinate Ln(III) metal centers are observed for all structures. trans-cyanide units of [Fe(CN){sub 6}]{sup 3-} formed isocyanide linkages to Ln(III) resulting in one-dimensional polymeric chains. Structures of compounds 1-9 and 11 are isomorphous, crystallizing in the space group C2/c. Structures of compounds 12-15 are also isomorphous, crystallizing in the space group P2/n. One unique polymeric chain exists in the structures of 1-9 and 11 while two unique polymeric chains exist in structures of 12-15. One of the polymeric chains of 12-15 is similar to that observed for 1-9, 11 while the other is more distorted and has a shorter Ln-Fe distance. Magnetic susceptibility measurements for compounds 3-6, 8, 11 were performed on polycrystalline samples of the compounds.« less

  12. Preparation and guest-uptake protocol for a porous complex useful for 'crystal-free' crystallography.

    PubMed

    Inokuma, Yasuhide; Yoshioka, Shota; Ariyoshi, Junko; Arai, Tatsuhiko; Fujita, Makoto

    2014-02-01

    We recently reported a new method for single-crystal X-ray diffraction (SCD) analysis that does not require the crystallization of the target compound. In this 'crystal-free' crystallography, a tiny crystal of a porous complex is soaked in the solution of the target guest. The guest molecules are absorbed and oriented in the crystal pores and can be analyzed by X-ray diffraction. We describe here a detailed synthetic protocol for the preparation of uniform single crystals of the porous host complex and for the subsequent guest uptake. The protocol describes our most versatile porous complex, which is prepared from commercially available ZnI2 and 2,4,6-tri(4-pyridyl)-1,3,5-triazine. The host complex has large pores with a cross-section of 8 × 5 Å(2). Single crystals of the complex are grown from layered solutions of the two components. The pores of the as-synthesized complex are filled with nitrobenzene, which is replaced with the inert solvent cyclohexane. This solvent exchange is essential for the rapid and effective inclusion of target compounds. The most crucial and delicate step is the selection of high-quality single crystals from the mixture of crystals of various shapes and sizes. We suggest using the facial indices of the single crystals as a criterion for crystal selection. Single-crystal samples for X-ray analysis can be prepared by immersing the selected crystals in a cyclohexane/dichloromethane solution of target compound. After a very slow evaporation of the solvent, typically over 2 d, the final crystal can be picked and directly subjected to SCD analysis. The protocol can be completed within ∼16 d.

  13. A Sequential Method to Prepare Polymorphs and Solvatomorphs of [Fe(1,3-bpp)2 ](ClO4 )2 ⋅nH2 O (n=0, 1, 2) with Varying Spin-Crossover Behaviour.

    PubMed

    Bartual-Murgui, Carlos; Codina, Carlota; Roubeau, Olivier; Aromí, Guillem

    2016-08-26

    Two polymorphs of the spin crossover (SCO) compound [Fe(1,3-bpp)2 ](ClO4 )2 (1 and 2; 1,3-bpp=2-(pyrazol-1-yl)-6-(pyrazol-3-yl)pyridine) were prepared using a novel, stepwise procedure. Crystals of 1 deposit from dry solvents, while 2 is obtained from a solid-state procedure, by sequentially removing lattice H2 O molecules from the solvatomorph [Fe(1,3-bpp)2 ](ClO4 )2 ⋅2 H2 O (2⋅2 H2 O), using single-crystal-to-single-crystal (SCSC) transformations. Hydrate 2⋅2 H2 O is obtained through the same reaction as 1, now with 2.5 % of water added. Compounds 2 and 2⋅2 H2 O are unstable in the atmosphere and absorb or lose one equivalent of water, respectively, to both yield the stable solvatomorph [Fe(1,3-bpp)2 ](ClO4 )2 ⋅H2 O (2⋅H2 O), also following SCSC processes. The four derivatives have been characterised by single-crystal X-ray diffraction (SCXRD). Furthermore, the homogeneity of the various compounds as well as their SCSC interconversions have been confirmed by powder X-ray diffraction (PXRD). Polymorphs 1 and 2 exhibit abrupt SCO behaviour near room temperature with T1/2↑ =279/316 K and T1/2↓ =276/314 K (near 40 K of shift) and different cooperativity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Two halide-containing cesium manganese vanadates: synthesis, characterization, and magnetic properties

    DOE PAGES

    Smith Pellizzeri, Tiffany M.; McGuire, Michael A.; McMillen, Colin D.; ...

    2018-01-24

    In this study, two new halide-containing cesium manganese vanadates have been synthesized by a high-temperature (580 °C) hydrothermal synthetic method from aqueous brine solutions. One compound, Cs 3Mn(VO 3) 4Cl, (1) was prepared using a mixed cesium hydroxide/chloride mineralizer, and crystallizes in the polar noncentrosymmetric space group Cmm2, with a = 16.7820(8) Å, b = 8.4765(4) Å, c = 5.7867(3) Å. This structure is built from sinusoidal zig-zag (VO 3) n chains that run along the b-axis and are coordinated to Mn 2+ containing (MnO 4Cl) square-pyramidal units that are linked together to form layers. The cesium cations reside betweenmore » the layers, but also coordinate to the chloride ion, forming a cesium chloride chain that also propagates along the b-axis. The other compound, Cs 2Mn(VO 3) 3F, (2) crystallizes in space group Pbca with a = 7.4286(2) Å, b = 15.0175(5) Å, c = 19.6957(7) Å, and was prepared using a cesium fluoride mineralizer. The structure is comprised of corner sharing octahedral Mn 2+ chains, with trans fluoride ligands acting as bridging units, whose ends are capped by (VO 3) n vanadate chains to form slabs. The cesium atoms reside between the manganese vanadate layers, and also play an integral part in the structure, forming a cesium fluoride chain that runs along the b-axis. Both compounds were characterized by single-crystal X-ray diffraction, powder X-ray diffraction, and single-crystal Raman spectroscopy. Additionally, the magnetic properties of 2 were investigated. Lastly, above 50 K, it displays behavior typical of a low dimensional system with antiferromagnetic interactions, as to be expected for linear chains of manganese(II) within the crystal structure.« less

  15. Purification, crystallization and preliminary crystallographic studies of the TLDc domain of oxidation resistance protein 2 from zebrafish

    PubMed Central

    Alsarraf, Husam M. A. B.; Laroche, Fabrice; Spaink, Herman; Thirup, Søren; Blaise, Mickael

    2011-01-01

    Cell metabolic processes are constantly producing reactive oxygen species (ROS), which have deleterious effects by triggering, for example, DNA damage. Numerous enzymes such as catalase, and small compounds such as vitamin C, provide protection against ROS. The TLDc domain of the human oxidation resistance protein has been shown to be able to protect DNA from oxidative stress; however, its mechanism of action is still not understood and no structural information is available on this domain. Structural information on the TLDc domain may therefore help in understanding exactly how it works. Here, the purification, crystallization and preliminary crystallographic studies of the TLDc domain from zebrafish are reported. Crystals belonging to the orthorhombic space group P21212 were obtained and diffracted to 0.97 Å resolution. Selenomethionine-substituted protein could also be crystallized; these crystals diffracted to 1.1 Å resolution and the structure could be solved by SAD/MAD methods. PMID:22102041

  16. Structural and electrical properties of LiCo3/5Cu2/5VO4 ceramics

    NASA Astrophysics Data System (ADS)

    Ram, Moti

    2010-05-01

    The LiCo3/5Cu2/5VO4 compound is prepared by a solution-based chemical method and characterized by the techniques of X-ray diffraction, scanning electron microscopy and complex impedance spectroscopy. The X-ray diffraction study shows an orthorhombic unit cell structure of the material with lattice parameters a=13.8263 (30) Å, b=8.7051 (30) Å and c=3.1127 (30) Å. The nature of scanning electron micrographs of a sintered pellet of the material reveals that grains of unequal sizes (˜0.2-3 μm) present an average grain size with a polydisperse distribution on the surface of the sample. Complex plane diagrams indicate grain interior and grain boundary contributions to the electrical response in the material. The electrical conductivity study reveals that electrical conduction in the material is a thermally activated process. The frequency dependence of the a.c. conductivity obeys Jonscher’s universal law.

  17. Sibutramine characterization and solubility, a theoretical study

    NASA Astrophysics Data System (ADS)

    Aceves-Hernández, Juan M.; Nicolás Vázquez, Inés; Hinojosa-Torres, Jaime; Penieres Carrillo, Guillermo; Arroyo Razo, Gabriel; Miranda Ruvalcaba, René

    2013-04-01

    Solubility data from sibutramine (SBA) in a family of alcohols were obtained at different temperatures. Sibutramine was characterized by using thermal analysis and X-ray diffraction technique. Solubility data were obtained by the saturation method. The van't Hoff equation was used to obtain the theoretical solubility values and the ideal solvent activity coefficient. No polymorphic phenomena were found from the X-ray diffraction analysis, even though this compound is a racemic mixture of (+) and (-) enantiomers. Theoretical calculations showed that the polarisable continuum model was able to reproduce the solubility and stability of sibutramine molecule in gas phase, water and a family of alcohols at B3LYP/6-311++G (d,p) level of theory. Dielectric constant, dipolar moment and solubility in water values as physical parameters were used in those theoretical calculations for explaining that behavior. Experimental and theoretical results were compared and good agreement was obtained. Sibutramine solubility increased from methanol to 1-octanol in theoretical and experimental results.

  18. Synthesis, Characterization, and Mechanism of Formation of Janus-Like Nanoparticles of Tantalum Silicide-Silicon (TaSi2/Si)

    PubMed Central

    Nomoev, Andrey V.; Bardakhanov, Sergey P.; Schreiber, Makoto; Bazarova, Dashima Zh.; Baldanov, Boris B.; Romanov, Nikolai A.

    2014-01-01

    Metal-semiconductor Janus-like nanoparticles with the composition tantalum silicide-silicon (TaSi2/Si) were synthesized for the first time by means of an evaporation method utilizing a high-power electron beam. The composition of the synthesized particles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), selective area electron diffraction (SAED), and energy dispersive X-ray fluorescence (EDX) analysis. The system is compared to previously synthesized core-shell type particles in order to show possible differences responsible for the Janus-like structure forming instead of a core-shell architecture. It is proposed that the production of Janus-like as opposed to core-shell or monophase particles occurs due to the ability of Ta and Si to form compounds and the relative content of Ta and Si atoms in the produced vapour. Based on the results, a potential mechanism of formation for the TaSi2/Si nanoparticles is discussed. PMID:28346996

  19. Synthesis, Characterization, and Mechanism of Formation of Janus-Like Nanoparticles of Tantalum Silicide-Silicon (TaSi₂/Si).

    PubMed

    Nomoev, Andrey V; Bardakhanov, Sergey P; Schreiber, Makoto; Bazarova, Dashima Zh; Baldanov, Boris B; Romanov, Nikolai A

    2014-12-25

    Metal-semiconductor Janus-like nanoparticles with the composition tantalum silicide-silicon (TaSi₂/Si) were synthesized for the first time by means of an evaporation method utilizing a high-power electron beam. The composition of the synthesized particles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), selective area electron diffraction (SAED), and energy dispersive X-ray fluorescence (EDX) analysis. The system is compared to previously synthesized core-shell type particles in order to show possible differences responsible for the Janus-like structure forming instead of a core-shell architecture. It is proposed that the production of Janus-like as opposed to core-shell or monophase particles occurs due to the ability of Ta and Si to form compounds and the relative content of Ta and Si atoms in the produced vapour. Based on the results, a potential mechanism of formation for the TaSi₂/Si nanoparticles is discussed.

  20. Synthesis, structure and magnetic properties of Sr{sub 2}Fe{sub 1-x}Ga{sub x}MoO{sub 6} (0 {<=} x {<=} 0.6) double perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azad, Abul K., E-mail: aka7@st-andrews.ac.uk; Khan, Abdullah; Eriksson, Sten-G.

    2009-12-15

    Polycrystalline Sr{sub 2}Fe{sub 1-x}Ga{sub x}MoO{sub 6} (0 {<=} x {<=} 0.6) materials have been synthesized by solid state reaction method and studied by neutron powder diffraction (NPD) and magnetization measurements. Rietveld analysis of the temperature dependent NPD data shows that the compounds crystallize in the tetragonal symmetry in the space group I4/m. The anti-site (AS) defects concentration increases with Ga doping, giving rise to highly B-site disordered materials. Ga doping at the Fe-site decreases the cell volume. The evolution of bond lengths and the cation oxidation states was determined from the Rietveld refinement data. The saturation magnetization and Curie temperaturemore » decreased with the increasing Ga content in the samples. Low temperature neutron diffraction data analysis and magnetization measurements confirm the magnetic interaction as ferrimagnetic in the sample.« less

  1. A metasurface-based prism analogue for terahertz rainbow spectrum manipulation

    NASA Astrophysics Data System (ADS)

    Zheng, Shen; Li, Chao; Li, Shichao; Zhang, Xiaojuan; Fang, Guangyou

    2017-06-01

    Optical prisms can spread compound light spatially into a rainbow and have widespread applications in spectroscopy and imaging. Limited by the natural materials as well as technologies, there has been no natural counterpart of the optical prism that works in the Terahertz (THz) band so far. In this letter, a THz prism analogue based on metasurfaces working in the transmission diffraction mechanism is first proposed to generate the THz rainbow spectrum. The physics of different modes excited by the interaction between the incident wave and the metasurface is investigated in theory and simulation. A coherent enhancement method was developed to improve the mode competition of the rainbow spectrum over other unwanted leaky modes to guarantee the high transfer efficiency of the wavelength dependent transmission diffraction. The experimental results show that the prism analogue can spread the incident spectrum from 0.15 to 0.22 THz in an angular scope of about 30.8° with comparatively high transferring efficiency.

  2. Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica

    NASA Astrophysics Data System (ADS)

    Sett, Arghya; Gadewar, Manoj; Sharma, Pragya; Deka, Manab; Bora, Utpal

    2016-06-01

    In this study, we report a novel method of gold nanoparticle (AuNP) synthesis using aqueous fruit extract of Dillenia indica. The phytochemicals present in the fruit extract act as an effective reducing and capping agent to synthesize AuNPs. The synthesized AuNPs were characterized by spectrophotometry, transmission electron microscopy (TEM), x-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. TEM studies revealed the particles of various sizes and mainly spherical in shape. Selected-area electron diffraction (SAED) patterns and high-resolution transmission electron microscopy (HRTEM) images confirmed the crystallinity of the particles. The XRD patterns showed peaks at (111), (200), (220) which exhibited preferential orientation of the AuNPs as face-centered cubic crystal. FTIR measurements confirmed the coating of phenolic compounds on the AuNPs indicating a possible role of biomolecules for the capping and efficient stabilization of the AuNPs. The synthesized AuNPs did not show any form of cytotoxicity in the normal fibroblast cell line L929.

  3. Dielectric and ac ionic conductivity investigation of Li2SrP2O7

    NASA Astrophysics Data System (ADS)

    Ajili, O.; Louati, B.; Guidara, K.

    2018-07-01

    The pyrophosphate Li2SrP2O7 compound has been synthesized by the classic ceramic method and characterized by X-ray diffraction, IR, Raman and electrical impedance spectroscopy. Detailed electrical properties of the compound were analyzed as a function of frequency (209 Hz-1 MHz) and temperature (519-628) K. Impedance analysis exhibits the grain and grain boundary contribution to the electrical response of the sample. The temperature dependence of these contribution obey the Arrhenius law with activation energies (1.03 ± 0.05) and (1.25 ± 0.05) eV, respectively. The ac conductivity for grain contribution was interpreted using the universal Jonscher's power law. The temperature dependence of frequency exponent s was investigated to understand the conduction mechanism. The correlated barrier hopping model was found to be the best model describing the conduction mechanism.

  4. Dielectric and ac ionic conductivity investigation of Li2SrP2O7

    NASA Astrophysics Data System (ADS)

    Ajili, O.; Louati, B.; Guidara, K.

    2018-02-01

    The pyrophosphate Li2SrP2O7 compound has been synthesized by the classic ceramic method and characterized by X-ray diffraction, IR, Raman and electrical impedance spectroscopy. Detailed electrical properties of the compound were analyzed as a function of frequency (209 Hz-1 MHz) and temperature (519-628) K. Impedance analysis exhibits the grain and grain boundary contribution to the electrical response of the sample. The temperature dependence of these contribution obey the Arrhenius law with activation energies (1.03 ± 0.05) and (1.25 ± 0.05) eV, respectively. The ac conductivity for grain contribution was interpreted using the universal Jonscher's power law. The temperature dependence of frequency exponent s was investigated to understand the conduction mechanism. The correlated barrier hopping model was found to be the best model describing the conduction mechanism.

  5. Fast Extraction and Detection of 4-Methylimidazole in Soy Sauce Using Magnetic Molecularly Imprinted Polymer by HPLC.

    PubMed

    Feng, Zufei; Lu, Yan; Zhao, Yingjuan; Ye, Helin

    2017-11-02

    On the basis of magnetic molecularly imprinted polymer (MMIP) solid-phase extraction coupled with high performance liquid chromatography, we established a new method for the determination of the 4-methylimidazole (4-MEI) in soy sauce. Scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) were used to characterize the synthesized MMIPs. To evaluate the polymers, batch rebinding experiments were carried out. The binding strength and capacity were determined from the derived Freundlich isotherm (FI) equation. The selective recognition capability of MMIPs was investigated with a reference compound and a structurally similar compound. As a selective pre-concentration sorbents for 4-methylimidazole in soy sauce, the MMIPs showed a satisfied recoveries rate of spiked samples, ranged from 97% to 105%. As a result, the prepared MMIPs could be applied to selectively pre-concentrate and determine 4-methylimidazole in soy sauce samples.

  6. Self-assembling of dihydroxypropyl 5,6-dihydrothymine derivatives

    NASA Astrophysics Data System (ADS)

    Cetina, Mario; Makarević, Janja; Nura-Lama, Afërdita

    2010-09-01

    ( R, S)-1-(2',3'-Dibenzoyloxypropyl)-5,6-dihydrothymine ( 2) was synthesized from ( R, S)-1-(2',3'-dihydroxypropyl)-5,6-dihydrothymine and its structure has been analyzed by X-ray diffraction, NMR and FTIR spectroscopic methods. The molecular structure and supramolecular assembling of 2 is compared with the structure of its dimesyloxypropyl analogue ( 1). Compound 1 crystallizes as cocrystal of two diastereoisomers, while 2 crystallizes as a racemic mixture. Main hydrogen-bonded motif in both compounds is dimer formed by pair of N sbnd H···O( dbnd C) hydrogen bonds, which are further linked by C sbnd H···O hydrogen bonds. Phenyl rings of dibenzoyl-dihydropyrimidine moieties of 2 participate also in supramolecular aggregation via three C sbnd H···π interactions. Hydrogen bonding as driving force of 2 self-assembly was proving by the NMR and FTIR spectroscopy.

  7. Synthesis, growth and characterization of 3-nitroacetanilide—A new organic nonlinear optical crystal by Bridgman technique

    NASA Astrophysics Data System (ADS)

    Lenin, M.; Ramasamy, P.

    2008-10-01

    Single crystals of 3-nitroacetanilide, an organic nonlinear optical material has been grown by the Bridgman-Stockbarger method. The single crystal X-ray diffraction (XRD) data revealed the noncentrosymmetric crystal structure, which is an essential criterion for second harmonic generation. The crystalline nature of the grown crystals was confirmed using powder XRD techniques. The functional group of the compound is identified by FTIR spectrum. The thermal stability and its tendency to grow as single crystal in solution and in melt have been identified for the new title compound. The UV-vis spectrum of mNAA shows the lower optical cut off at 400 nm and was transparent in the visible region. The second harmonic generation efficiency was found using Kurtz powder technique. The dielectric constant and dielectric loss of the crystal were measured as a function of frequency and temperature, and the results are discussed.

  8. Neutron investigation of Nd 2- x- yCe xLa yCuO 4 (0 ⩽ x ⩽ 0.2; y = 0.5, 1)

    NASA Astrophysics Data System (ADS)

    Gutmann, M.; Allenspach, P.; Fauth, F.; Furrer, A.; Zolliker, M.; Rosenkranz, S.; Eccleston, R. S.

    1997-02-01

    We present neutron diffraction and crystal field (CF) spectroscopy results obtained for the electron-doped superconductor precursor material Nd 2- x- yCe xLa yCuO 4 (0 ⩽ x ⩽ 0.2; y = 0.5, 1). Samples were prepared via a sol-gel methods. The lattice constants as a function of Ce-doping show the well-known behavior common to this class of compounds, i.e. the a parameter increases while the c parameter decreases with increasing Ce amount. The presence of La expands the unit cell in all directions compared to the mother compound Nd 2CuO 4 while preserving the T‧-structure for the above mentioned range. The CF spectra clearly show the presence of electronic inhomogeneities associated with electron doping from Ce 4+ on one Cu-site in the CuO 2-planes.

  9. Synthesis and spectral characterization of hydrazone derivative of furfural using experimental and DFT methods.

    PubMed

    Babu, N Ramesh; Subashchandrabose, S; Ali Padusha, M Syed; Saleem, H; Erdoğdu, Y

    2014-01-01

    The Spectral Characterization of (E)-1-(Furan-2-yl) methylene)-2-(1-phenylvinyl) hydrazine (FMPVH) were carried out by using FT-IR, FT-Raman and UV-Vis., Spectrometry. The B3LYP/6-311++G(d,p) level of optimization has been performed on the title compound. The conformational analysis was performed for this molecule, in which the cis and trans conformers were studied for spectral characterization. The recorded spectral results were compared with calculated results. The optimized bond parameters of FMPVH molecule was compared with X-ray diffraction data of related molecule. To study the intra-molecular charge transfers within the molecule the Lewis (bonding) and Non-Lewis (anti-bonding) structural calculation was performed. The Non-linear optical behavior of the title compound was measured using first order hyperpolarizability calculation. The atomic charges were calculated and analyzed. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Highly oxygenated lanostane-type triterpenoids and their bioactivity from the fruiting body of Ganoderma gibbosum.

    PubMed

    Pu, De-Bing; Zheng, Xi; Gao, Jun-Bo; Zhang, Xing-Jie; Qi, Yan; Li, Xiao-Si; Wang, Yong-Mei; Li, Xiao-Nian; Li, Xiao-Li; Wan, Chun-Ping; Xiao, Wei-Lie

    2017-06-01

    Eight new highly oxygenated lanostane triterpenes, gibbosic acids A-H (1-8), along with three known ones (9-11), were isolated from the fruiting body of Ganoderma gibbosum. The structures of new isolates were assigned by NMR and HRESIMS experiments. The absolute configurations of 1 were further confirmed by single crystal X-ray diffraction data and computational ECD methods. Immunoregulatory effect and anti-inflammatory activities of these compounds were screened in murine lymphocyte proliferation assay and in lipopolysaccharide (LPS)-stimulated RAW-264.7 macrophages, respectively. Compound 2 exhibited immunostimulatory effect both in lymphocyte proliferation assay without any induction and ConA-induced mitogenic activity of T-lymphocyte, and the proportion of lymphocyte proliferation at the concentration of 0.1μM are 20.01% and 21.40%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A new approach for the recovery of precious metals from solution and from leachates derived from electronic scrap.

    PubMed

    Macaskie, L E; Creamer, N J; Essa, A M M; Brown, N L

    2007-03-01

    A new approach is described for the recovery of precious metals (PMs: Au, Pd and Ag) with >99% efficiency from aqueous solution utilising biogas produced during the aerobic growth of Klebsiella pneumoniae. Gold was recovered from electronic scrap leachate ( approximately 95%) by this method, with some selectivity against Cu. The recovered PM solids all contained metal and sulphur as determined by energy dispersive X-ray microanalysis (EDX). X-ray powder diffraction analysis (XRD) showed no crystalline metal sulphur compounds but a crystalline palladium amine was recorded. Silver was recovered as a sulphide (found by EDX), carbonate and oxide (found by XRD). EDX analysis of the Au-precipitate showed mainly gold and sulphur, with some metallic Au(0) detected by XRD. The gold compound was shock-sensitive; upon grinding it detonated to leave a sooty black deposit.

  12. Synthesis and characterization of nanosized lithium manganate and its derivatives

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad Javed; Zahoor, Sabia

    Spinel lithium manganese oxide, LiMn 2O 4 and its derivatives are prepared by the sol-gel method. The lattice constant of the pure material is calculated as 8.23 Å. Different transition metal cations of chromium, iron, cobalt, nickel, copper and zinc (0.05 and 0.15 M) are doped in place of manganese in the LiMn 2O 4. X-ray powder diffraction data show that the spinel framework preserved its integrity upon doping. Formation of a single phase and the purity of the samples are confirmed by X-ray powder diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The crystallite size of the samples is calculated by use of the Scherrer formula and is found to be within a range of 43-66 nm. The electrical conductivity of the samples is determined over a temperature range of 200-300 K by means of four-point probe method. An increasing trend of conductivity with increase in temperature is noted for all the samples. The parent compound LiMn 2O 4 has a conductivity value of 3.47 × 10 -4 ohm -1 cm -1 at room temperature. This value increases on doping with the above-mentioned transition metal cations.

  13. Synthesis, X-ray diffraction method, spectroscopic characterization (FT-IR, 1H and 13C NMR), antimicrobial activity, Hirshfeld surface analysis and DFT computations of novel sulfonamide derivatives

    NASA Astrophysics Data System (ADS)

    Demircioğlu, Zeynep; Özdemir, Fethi Ahmet; Dayan, Osman; Şerbetçi, Zafer; Özdemir, Namık

    2018-06-01

    Synthesized compounds of N-(2-aminophenyl)benzenesulfonamide 1 and (Z)-N-(2-((2-nitrobenzylidene)amino)phenyl)benzenesulfonamide 2 were characterized by antimicrobial activity, FT-IR, 1H and 13C NMR. Two new Schiff base ligands containing aromatic sulfonamide fragment of (Z)-N-(2-((3-nitrobenzylidene)amino)phenyl)benzenesulfonamide 3 and (Z)-N-(2-((4-nitrobenzylidene)amino)phenyl)benzenesulfonamide 4 were synthesized and investigated by spectroscopic techniques including 1H and 13C NMR, FT-IR, single crystal X-ray diffraction, Hirshfeld surface, theoretical method analyses and by antimicrobial activity. The molecular geometry obtained from the X-ray structure determination was optimized Density Functional Theory (DFT/B3LYP) method with the 6-311++G(d,p) basis set in ground state. From the optimized geometry of the molecules of 3 and 4, the geometric parameters, vibrational wavenumbers and chemical shifts were computed. The optimized geometry results, which were well represented the X-ray data, were shown that the chosen of DFT/B3LYP 6-311G++(d,p) was a successful choice. After a successful optimization, frontier molecular orbitals, chemical activity, non-linear optical properties (NLO), molecular electrostatic mep (MEP), Mulliken population method, natural population analysis (NPA) and natural bond orbital analysis (NBO), which cannot be obtained experimentally, were calculated and investigated.

  14. LCP crystallization and X-ray diffraction analysis of VcmN, a MATE transporter from Vibrio cholerae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusakizako, Tsukasa; Tanaka, Yoshiki; Hipolito, Christopher J.

    A V. cholerae MATE transporter was crystallized using the lipidic cubic phase (LCP) method. X-ray diffraction data sets were collected from single crystals obtained in a sandwich plate and a sitting-drop plate to resolutions of 2.5 and 2.2 Å, respectively. Multidrug and toxic compound extrusion (MATE) transporters, one of the multidrug exporter families, efflux xenobiotics towards the extracellular side of the membrane. Since MATE transporters expressed in bacterial pathogens contribute to multidrug resistance, they are important therapeutic targets. Here, a MATE-transporter homologue from Vibrio cholerae, VcmN, was overexpressed in Escherichia coli, purified and crystallized in lipidic cubic phase (LCP). X-raymore » diffraction data were collected to 2.5 Å resolution from a single crystal obtained in a sandwich plate. The crystal belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 52.3, b = 93.7, c = 100.2 Å. As a result of further LCP crystallization trials, crystals of larger size were obtained using sitting-drop plates. X-ray diffraction data were collected to 2.2 Å resolution from a single crystal obtained in a sitting-drop plate. The crystal belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 61.9, b = 91.8, c = 100.9 Å. The present work provides valuable insights into the atomic resolution structure determination of membrane transporters.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashida, Misa; Malac, Marek; Egerton, Ray F.

    Electron tomography is a method whereby a three-dimensional reconstruction of a nanoscale object is obtained from a series of projected images measured in a transmission electron microscope. We developed an electron-diffraction method to measure the tilt and azimuth angles, with Kikuchi lines used to align a series of diffraction patterns obtained with each image of the tilt series. Since it is based on electron diffraction, the method is not affected by sample drift and is not sensitive to sample thickness, whereas tilt angle measurement and alignment using fiducial-marker methods are affected by both sample drift and thickness. The accuracy ofmore » the diffraction method benefits reconstructions with a large number of voxels, where both high spatial resolution and a large field of view are desired. The diffraction method allows both the tilt and azimuth angle to be measured, while fiducial marker methods typically treat the tilt and azimuth angle as an unknown parameter. The diffraction method can be also used to estimate the accuracy of the fiducial marker method, and the sample-stage accuracy. A nano-dot fiducial marker measurement differs from a diffraction measurement by no more than ±1°.« less

  16. X-ray and neutron diffraction studies of crystallinity in hydroxyapatite coatings.

    PubMed

    Girardin, E; Millet, P; Lodini, A

    2000-02-01

    To standardize industrial implant production and make comparisons between different experimental results, we have to be able to quantify the crystallinity of hydroxyapatite. Methods of measuring crystallinity ratio were developed for various HA samples before and after plasma spraying. The first series of methods uses X-ray diffraction. The advantage of these methods is that X-ray diffraction equipment is used widely in science and industry. In the second series, a neutron diffraction method is developed and the results recorded are similar to those obtained by the modified X-ray diffraction methods. The advantage of neutron diffraction is the ability to obtain measurements deep inside a component. It is a nondestructive method, owing to the very low absorption of neutrons in most materials. Copyright 2000 John Wiley & Sons, Inc.

  17. Synthesis, crystal structure and characterization of a new organic-inorganic hybrid material 4-(ammonium methyl) pipyridinium hexachloro stanate (II) trihydrate

    NASA Astrophysics Data System (ADS)

    Lassoued, Mohamed Saber; Abdelbaky, Mohammed S. M.; Lassoued, Abdelmajid; Ammar, Salah; Gadri, Abdellatif; Ben Salah, Abdelhamid; García-Granda, Santiago

    2018-03-01

    The present paper undertakes the study of (C6H16N2) SnCl6·3H2O which is a new hybrid compound. It was prepared and characterized by single crystal X-ray diffraction, X-ray powder, Hirshfeld surface, Spectroscopy measurement, thermal study and photoluminescence properties. The single crystal X-ray diffraction studies revealed that the compound crystallizes in monoclinic Cc space group with cell parameters a = 8.3309(9) Å, b = 22.956(2) Å, c = 9.8381(9) Å, β = 101.334(9) ° and Z = 4. The atomic arrangement shows an alternation of organic and inorganic entities. The cohesion between these entities is performed via Nsbnd H⋯Cl, Nsbnd H⋯O, Osbnd H⋯Cl and Osbnd H⋯O hydrogen bonding to form a three-dimensional network. Hirshfeld surface analysis was used to investigate intermolecular interactions, as well 2D finger plots were conducted to reveal the contribution of these interactions in the crystal structure quantitatively. The X-ray powder is in agreement with the X-ray structure. Scanning electron microscope (SEM) was carried out. Furthermore, the room temperature infrared (IR) spectrum of the title compound was recorded and analyzed on the basis of data found in the literature. Solid state 13C NMR spectrum shows four signals, confirming the solid state structure determined by X-ray diffraction. Besides, the thermal analysis studies were performed, but no phase transition was found in the temperature range between 30 and 450 °C. The optical and PL properties of the compound were investigated in the solid state at room temperature and exhibited three bands at 348 and 401 cm-1 and a strong fluorescence at 480 nm.

  18. Synthesis, spectroscopic, thermal, voltammetric studies and biological activity of crystalline complexes of pyridine-2,6-dicarboxylic acid and 8-hydroxyquinoline

    NASA Astrophysics Data System (ADS)

    Çolak, Alper Tolga; Çolak, Ferdağ; Yeşilel, Okan Zafer; Büyükgüngör, Orhan

    2009-11-01

    Two new compounds (8-H 2Q) 2[M(dipic) 2]·6H 2O (M = Co ( 1) and Ni ( 2), 8-HQ = 8-hydroxyquinoline, dipic = dipicolinate) have been prepared and characterized by elemental analysis, spectral (IR and UV-vis), thermal analyses, magnetic measurements and single-crystal X-ray diffraction techniques. Both 1 and 2 consist two 8-hydroxyquinolinium cations, one bis(dipicolinate)M(II) anion [M = Co(II), Ni(II)] and six uncoordinated water molecules. Both 1 and 2 crystallize in the monoclinic space group C2/c. In the compounds anion, each dipic ligand simultaneously exhibits tridentate coordination modes through N atom of pyridine ring and oxygen atoms of the carboxylate groups. The crystal packing of 1 and 2 is a composite of intermolecular hydrogen bonding and C-O⋯π interactions. The in vitro antibacterial and antifungal activities of 1 and 2 were evaluated by the agar well diffusion method by MIC tests. Both new compounds showed the same antimicrobial activity against Gram-positive bacteria and yeast and fungi expect Gram-negative bacteria.

  19. Energy transfer from Pr3+ to Gd3+ ions in BaB8O13 phosphor for phototherapy lamps

    NASA Astrophysics Data System (ADS)

    Tamboli, Sumedha; Nair, Govind B.; Dhoble, S. J.; Burghate, D. K.

    2018-04-01

    A series of BaB8O13 phosphors doped with different concentrations of Gd3+ ions and co-doped with Pr3+ ions were synthesized by solid state synthesis method. X-ray powder diffraction (XRD) analysis confirmed the formation of the compound in a crystalline and homogeneous form. Scanning Electron Microscopy (SEM) was performed to study the surface morphology of the compound and Fourier Transform Infrared (FT-IR) spectroscopy measurements determined the nature of bonding between elements of the compounds. The photoluminescence (PL) excitation spectra of BaB8O13:Gd3+ phosphor showed excitation peaks at 246 nm, 252 nm and 274 nm. The prominent emission peak was observed at 313 nm which is in narrow band ultraviolet B (NB-UVB) range. Energy transfer was achieved by co-doping Pr3+ ions with Gd3+ ions. PL decay time was also measured for BaB8O13: Gd3+, Pr3+ phosphor. Emission at 313 nm can be used for the treatment of skin diseases.

  20. Lattice and Valence Electronic Structures of Crystalline Octahedral Molybdenum Halide Clusters-Based Compounds, Cs2[Mo6X14] (X = Cl, Br, I), Studied by Density Functional Theory Calculations.

    PubMed

    Saito, Norio; Cordier, Stéphane; Lemoine, Pierric; Ohsawa, Takeo; Wada, Yoshiki; Grasset, Fabien; Cross, Jeffrey S; Ohashi, Naoki

    2017-06-05

    The electronic and crystal structures of Cs 2 [Mo 6 X 14 ] (X = Cl, Br, I) cluster-based compounds were investigated by density functional theory (DFT) simulations and experimental methods such as powder X-ray diffraction, ultraviolet-visible spectroscopy, and X-ray photoemission spectroscopy (XPS). The experimentally determined lattice parameters were in good agreement with theoretically optimized ones, indicating the usefulness of DFT calculations for the structural investigation of these clusters. The calculated band gaps of these compounds reproduced those experimentally determined by UV-vis reflectance within an error of a few tenths of an eV. Core-level XPS and effective charge analyses indicated bonding states of the halogens changed according to their sites. The XPS valence spectra were fairly well reproduced by simulations based on the projected electron density of states weighted with cross sections of Al K α , suggesting that DFT calculations can predict the electronic properties of metal-cluster-based crystals with good accuracy.

  1. Formation, Physicochemical Characterization, and Thermodynamic Stability of the Amorphous State of Drugs and Excipients.

    PubMed

    Martino, Piera Di; Magnoni, Federico; Peregrina, Dolores Vargas; Gigliobianco, Maria Rosa; Censi, Roberta; Malaj, Ledjan

    2016-01-01

    Drugs and excipients used for pharmaceutical applications generally exist in the solid (crystalline or amorphous) state, more rarely as liquid materials. In some cases, according to the physicochemical nature of the molecule, or as a consequence of specific technological processes, a compound may exist exclusively in the amorphous state. In other cases, as a consequence of specific treatments (freezing and spray drying, melting and co-melting, grinding and compression), the crystalline form may convert into a completely or partially amorphous form. An amorphous material shows physical and thermodynamic properties different from the corresponding crystalline form, with profound repercussions on its technological performance and biopharmaceutical properties. Several physicochemical techniques such as X-ray powder diffraction, thermal methods of analysis, spectroscopic techniques, gravimetric techniques, and inverse gas chromatography can be applied to characterize the amorphous form of a compound (drug or excipient), and to evaluate its thermodynamic stability. This review offers a survey of the technologies used to convert a crystalline solid into an amorphous form, and describes the most important techniques for characterizing the amorphous state of compounds of pharmaceutical interest.

  2. A benzil and isoflavone from Iris tenuifolia.

    PubMed

    Choudhary, Muhammad Iqbal; Hareem, Sumaira; Siddiqui, Hina; Anjum, Shazia; Ali, Shamsher; Atta-Ur-Rahman; Zaidi, Mudassir Israr

    2008-06-01

    Two compounds, tenuifodione (1) and tenuifone (2), and 12 known compounds, izalpinin (3), alpinone (4), arborinone (5), irilin B (6), irisone A (7), irisone B (8), betavulgarin (9), beta-sitosterol (10), 5,7-dihydroxy-2',6-dimethoxyisoflavone (11), 2',5-dihdroxy-6,7-methylenedioxy flavanone (12), irisoid A (13) and ethyl-beta-d-glucopyranoside (14) were isolated from the whole plant of Iris tenuifolia Pall. All compounds, except 12, were isolated for the first time from this plant. Compounds 2, 3 and 11 have shown a considerable DPPH radical scavenging activity. Structures of these compounds were identified on the basis of spectroscopic techniques, including 2D NMR. Compounds 3, 5 and 7 were also subjected to single-crystal X-ray diffraction analysis and their structures were unambiguously deduced.

  3. Structure and magnetic properties of flux grown single crystals of Co3-xFexSn2S2 shandites

    NASA Astrophysics Data System (ADS)

    Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki

    2016-01-01

    We report a successful single crystal growth of the shandite-type half-metallic ferromagnet Co3Sn2S2, and its Fe-substituted compounds, Co3-xFexSn2S2, by employing the flux method. Although Fe3Sn2S2 is unstable phase, we found that using the self Sn flux enables us to obtain single phase crystals up to x=0.53. The chemical composition of the grown plate-shaped single crystals was examined using wavelength-dispersive X-ray spectroscopy. The shandite structure with R 3 ̅m symmetry was confirmed by powder X-ray diffraction and the crystal structure parameters were refined using the Rietveld method. Magnetization measurements show suppression of the ferromagnetic order upon Fe-substitution , as well as in other substituted systems such as In- and Ni-substituted Co3Sn2S2. The almost identical magnetic phase diagrams of the Fe- and In-substituted compounds indicate that the electron number is dominantly significant to the magnetism in the Co-based shandite.

  4. Synthesis, molecular structure, FT-IR and XRD investigations of 2-(4-chlorophenyl)-2-oxoethyl 2-chlorobenzoate: a comparative DFT study.

    PubMed

    Chidan Kumar, C S; Fun, Hoong Kun; Tursun, Mahir; Ooi, Chin Wei; Chandraju, Siddegowda; Quah, Ching Kheng; Parlak, Cemal

    2014-04-24

    2-(4-Chlorophenyl)-2-oxoethyl 2-chlorobenzoate has been synthesized, its structural and vibrational properties have been reported using FT-IR and single-crystal X-ray diffraction (XRD) studies. The conformational analysis, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of the synthesized compound (C15H10Cl2O3) have been examined by means of Becke-3-Lee-Yang-Parr (B3LYP) density functional theory (DFT) method together with 6-31++G(d,p) basis set. Furthermore, reliable conformational investigation and vibrational assignments have been made by the potential energy surface (PES) and potential energy distribution (PED) analyses, respectively. Calculations are performed with two possible conformations. The title compound crystallizes in orthorhombic space group Pbca with the unit cell dimensions a=12.312(5) Å, b=8.103(3) Å, c=27.565(11) Å, V=2750.0(19) Å(3). B3LYP method provides satisfactory evidence for the prediction of vibrational wavenumbers and structural parameters. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. First-principles study of Al2Sm intermetallic compound on structural, mechanical properties and electronic structure

    NASA Astrophysics Data System (ADS)

    Lin, Jingwu; Wang, Lei; Hu, Zhi; Li, Xiao; Yan, Hong

    2017-02-01

    The structural, thermodynamic, mechanical and electronic properties of cubic Al2Sm intermetallic compound are investigated by the first-principles method on the basis of density functional theory. In light of the strong on-site Coulomb repulsion between the highly localized 4f electrons of Sm atoms, the local spin density approximation approach paired with additional Hubbard terms is employed to achieve appropriate results. Moreover, to examine the reliability of this study, the experimental value of lattice parameter is procured from the analysis of the TEM image and diffraction pattern of Al2Sm phase in the AZ31 alloy to verify the authenticity of the results originated from the computational method. The value of cohesive energy reveals Al2Sm to be a stable in absolute zero Kelvin. According to the stability criteria, the subject of this work is mechanically stable. Afterward, elastic moduli are deduced by performing Voigt-Reuss-Hill approximation. Furthermore, elastic anisotropy and anisotropy of sound velocity are discussed. Finally, the calculation of electronic density of states is implemented to explore the underlying mechanism of structural stability.

  6. Infrared mapping resolves soft tissue preservation in 50 million year-old reptile skin.

    PubMed

    Edwards, N P; Barden, H E; van Dongen, B E; Manning, P L; Larson, P L; Bergmann, U; Sellers, W I; Wogelius, R A

    2011-11-07

    Non-destructive Fourier Transform InfraRed (FTIR) mapping of Eocene aged fossil reptile skin shows that biological control on the distribution of endogenous organic components within fossilized soft tissue can be resolved. Mapped organic functional units within this approximately 50 Myr old specimen from the Green River Formation (USA) include amide and sulphur compounds. These compounds are most probably derived from the original beta keratin present in the skin because fossil leaf- and other non-skin-derived organic matter from the same geological formation do not show intense amide or thiol absorption bands. Maps and spectra from the fossil are directly comparable to extant reptile skin. Furthermore, infrared results are corroborated by several additional quantitative methods including Synchrotron Rapid Scanning X-Ray Fluorescence (SRS-XRF) and Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). All results combine to clearly show that the organic compound inventory of the fossil skin is different from the embedding sedimentary matrix and fossil plant material. A new taphonomic model involving ternary complexation between keratin-derived organic molecules, divalent trace metals and silicate surfaces is presented to explain the survival of the observed compounds. X-ray diffraction shows that suitable minerals for complex formation are present. Previously, this study would only have been possible with major destructive sampling. Non-destructive FTIR imaging methods are thus shown to be a valuable tool for understanding the taphonomy of high-fidelity preservation, and furthermore, may provide insight into the biochemistry of extinct organisms.

  7. Infrared mapping resolves soft tissue preservation in 50 million year-old reptile skin

    PubMed Central

    Edwards, N. P.; Barden, H. E.; van Dongen, B. E.; Manning, P. L.; Larson, P. L.; Bergmann, U.; Sellers, W. I.; Wogelius, R. A.

    2011-01-01

    Non-destructive Fourier Transform InfraRed (FTIR) mapping of Eocene aged fossil reptile skin shows that biological control on the distribution of endogenous organic components within fossilized soft tissue can be resolved. Mapped organic functional units within this approximately 50 Myr old specimen from the Green River Formation (USA) include amide and sulphur compounds. These compounds are most probably derived from the original beta keratin present in the skin because fossil leaf- and other non-skin-derived organic matter from the same geological formation do not show intense amide or thiol absorption bands. Maps and spectra from the fossil are directly comparable to extant reptile skin. Furthermore, infrared results are corroborated by several additional quantitative methods including Synchrotron Rapid Scanning X-Ray Fluorescence (SRS-XRF) and Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). All results combine to clearly show that the organic compound inventory of the fossil skin is different from the embedding sedimentary matrix and fossil plant material. A new taphonomic model involving ternary complexation between keratin-derived organic molecules, divalent trace metals and silicate surfaces is presented to explain the survival of the observed compounds. X-ray diffraction shows that suitable minerals for complex formation are present. Previously, this study would only have been possible with major destructive sampling. Non-destructive FTIR imaging methods are thus shown to be a valuable tool for understanding the taphonomy of high-fidelity preservation, and furthermore, may provide insight into the biochemistry of extinct organisms. PMID:21429928

  8. Synthesis, spectroscopic, and molecular structure characterizations of some azo derivatives of 2-hydroxyacetophenone

    NASA Astrophysics Data System (ADS)

    Albayrak, Çiğdem; Gümrükçüoğlu, İsmail E.; Odabaşoğlu, Mustafa; İskeleli, Nazan Ocak; Ağar, Erbil

    2009-08-01

    Some novel azo compounds were prepared by the reaction of 2-hydroxyacetophenone with aniline and its substituted derivatives. The structures of synthesized azo compounds were determined by IR, UV-Vis, 1H NMR and 13C NMR spectroscopic techniques and the structures of some of these compounds were also determined by X-ray diffraction studies. Structural analysis using IR in solid state shows that the azo form is favoured in the azo compounds whereas UV-Vis analysis of the azo compounds in solution has shown that there is a azo and ionic form. The azo compounds in the basic solvents dimethylformamide (DMF) and dimethylsulfoxide (DMSO) are both azo and ionic form while these compounds in ethyl alcohol (EtOH) and chloroform (CHCl 3) are only azo form.

  9. Sensitivity Analysis and Simulation of Theoretical Response of Ceramics to Strong Magnetic Fields

    DTIC Science & Technology

    2016-09-01

    Weapons and Materials Research Directorate, ARL Approved for public release; distribution is unlimited. FOR OFFICIAL USE ONLY...Compounds. 2013;551:568–577. 4. Terada N, Suzuki HS, Suzuki TS, Kitazawa H, Sakka Y, Kaneko K, Metoki N. In situ neutron diffraction study of...TS, Kitazawa H, Sakka Y, Kaneko K, Metoki N. Neutron diffraction texture analysis for alpha-Al2O3 oriented by a high magnetic field and sintering

  10. Additional evidence from x-ray powder diffraction patterns that icosahedral quasi-crystals of intermetallic compounds are twinned cubic crystals

    PubMed Central

    Pauling, Linus

    1988-01-01

    Analysis of the measured values of Q for the weak peaks (small maxima, usually considered to be background fluctuations, “noise”) on the x-ray powder diffraction curves for 17 rapidly quenched alloys leads directly to the conclusion that they are formed by an 820-atom or 1012-atom primitive cubic structure that by icosahedral twinning produces the so-called icosahedral quasi-crystals. PMID:16593948

  11. Synthesis, stereochemistry determination, pharmacological studies and quantum chemical analyses of bisthiazolidinone derivative

    NASA Astrophysics Data System (ADS)

    Mushtaque, Md.; Avecilla, Fernando; Hafeez, Zubair Bin; Jahan, Meriyam; Khan, Md. Shahzad; Rizvi, M. Moshahid A.; Khan, Mohd. Shahid; Srivastava, Anurag; Mallik, Anwesha; Verma, Saurabh

    2017-01-01

    A new compound (3) bisthaizolidinone derivative was synthesized by Knoevenagel condensation reaction. The structure of synthesized compound was elucidated by different spectral techniques and X-ray diffraction studies. The stereochemistry of the compound (3) was determined by 1Hsbnd 1H NOESY, 1Hsbnd 1H NMR COSY and single crystal X-ray diffraction studies as (Z, Z)-configuration. The computational quantum chemical studies of compound(3) like, IR, UV, NBO analysis were performed by DFT with Becke-3-Lee-Yang-Parr (B3LYP) exchange-correlation functional in combination with 6-311++G(d,p) basis sets. The DNA-binding of compound (3) exhibited a moderate binding constant (Kb = 1 × 105 Lmol-1) with hypochromic shift. The molecular docking displayed good binding affinity -7.18 kcal/mol. The MTT assay of compound (3) was screened against different cancerous cell lines, HepG2, Siha, Hela and MCF-7. Studies against these cell lines depicted that the screened compound (3) showed potent inhibitory activity against HepG2 cell (IC50 = 7.5 μM) followed by MCF-7 (IC50 = 52.0 μM), Siha (IC50 = 66.98 μM), Hela (IC50 = 74.83 μM) cell lines, and non-toxic effect against non-cancerous HEK-293 cells (IC50 = 287.89 μM) at the concentration range (0-300) μM. Furthermore, cell cycle perturbation was performed on HepG2 & Siha cell lines and observed that cells were arrested in G2/M in HepG2, and G0/G1 in Siha cell lines with respect to untreated control. Hence, compound (3) possesses potent anti-cancerous activity against HepG2 cell line.

  12. Observation of Vacancies, Faults, and Superstructures in Ln5Mo2O12 (Ln = La, Y, and Lu) Compounds with Direct Mo-Mo Bonding.

    PubMed

    Colabello, Diane M; Sobalvarro, Elizabeth M; Sheckelton, John P; Neuefeind, Joerg C; McQueen, Tyrel M; Khalifah, Peter G

    2017-11-06

    Among oxide compounds with direct metal-metal bonding, the Y 5 Mo 2 O 12 (A 5 B 2 O 12 ) structural family of compounds has a particularly intriguing low-dimensional structure due to the presence of bioctahedral B 2 O 10 dimers arranged in one-dimensional edge-sharing chains along the direction of the metal-metal bonds. Furthermore, these compounds can have a local magnetic moment due to the noninteger oxidation state (+4.5) of the transition metal, in contrast to the conspicuous lack of a local moment that is commonly observed when oxide compounds with direct metal-metal bonding have integer oxidation states resulting from the lifting of orbital degeneracy typically induced by the metal-metal bonding. Although a monoclinic C2/m structure has been previously proposed for Ln 5 Mo 2 O 12 (Ln = La-Lu and Y) members of this family based on prior single crystal diffraction data, it is found that this structural model misses many important structural features. On the basis of synchrotron powder diffraction data, it is shown that the C2/m monoclinic unit cell represents a superstructure relative to a previously unrecognized orthorhombic Immm subcell and that the superstructure derives from the ordering of interchangeable Mo 2 O 10 and LaO 6 building blocks. The superstructure for this reason is typically highly faulted, as evidenced by the increased breadth of superstructure diffraction peaks associated with a coherence length of 1-2 nm in the c* direction. Finally, it is shown that oxygen vacancies can occur when Ln = La, producing an oxygen deficient stoichiometry of La 5 Mo 2 O 11.55 and an approximately 10-fold reduction in the number of unpaired electrons due to the reduction of the average Mo valence from +4.5 to +4.05, a result confirmed by magnetic susceptibility measurements. This represents the first observation of oxygen vacancies in this family of compounds and provides an important means of continuously tuning the magnetic interactions within the one-dimensional octahedral chains of this system.

  13. Observation of Vacancies, Faults, and Superstructures in Ln 5Mo 2O 12 (Ln = La, Y, and Lu) Compounds with Direct Mo–Mo Bonding

    DOE PAGES

    Colabello, Diane M.; Sobalvarro, Elizabeth M.; Sheckelton, John P.; ...

    2017-10-26

    Among oxide compounds with direct metal–metal bonding, the Y 5Mo 2O 12 (A 5B 2O 12) structural family of compounds has a particularly intriguing low-dimensional structure due to the presence of bioctahedral B 2O 10 dimers arranged in one-dimensional edge-sharing chains along the direction of the metal–metal bonds. Furthermore, these compounds can have a local magnetic moment due to the noninteger oxidation state (+4.5) of the transition metal, in contrast to the conspicuous lack of a local moment that is commonly observed when oxide compounds with direct metal–metal bonding have integer oxidation states resulting from the lifting of orbital degeneracymore » typically induced by the metal–metal bonding. Although a monoclinic C2/m structure has been previously proposed for Ln 5Mo 2O 12 (Ln = La–Lu and Y) members of this family based on prior single crystal diffraction data, it is found that this structural model misses many important structural features. On the basis of synchrotron powder diffraction data, it is shown in this paper that the C2/m monoclinic unit cell represents a superstructure relative to a previously unrecognized orthorhombic Immm subcell and that the superstructure derives from the ordering of interchangeable Mo 2O 10 and LaO 6 building blocks. The superstructure for this reason is typically highly faulted, as evidenced by the increased breadth of superstructure diffraction peaks associated with a coherence length of 1–2 nm in the c* direction. Finally, it is shown that oxygen vacancies can occur when Ln = La, producing an oxygen deficient stoichiometry of La 5Mo 2O 11.55 and an approximately 10-fold reduction in the number of unpaired electrons due to the reduction of the average Mo valence from +4.5 to +4.05, a result confirmed by magnetic susceptibility measurements. Finally, this represents the first observation of oxygen vacancies in this family of compounds and provides an important means of continuously tuning the magnetic interactions within the one-dimensional octahedral chains of this system.« less

  14. Observation of Vacancies, Faults, and Superstructures in Ln 5Mo 2O 12 (Ln = La, Y, and Lu) Compounds with Direct Mo–Mo Bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colabello, Diane M.; Sobalvarro, Elizabeth M.; Sheckelton, John P.

    Among oxide compounds with direct metal–metal bonding, the Y 5Mo 2O 12 (A 5B 2O 12) structural family of compounds has a particularly intriguing low-dimensional structure due to the presence of bioctahedral B 2O 10 dimers arranged in one-dimensional edge-sharing chains along the direction of the metal–metal bonds. Furthermore, these compounds can have a local magnetic moment due to the noninteger oxidation state (+4.5) of the transition metal, in contrast to the conspicuous lack of a local moment that is commonly observed when oxide compounds with direct metal–metal bonding have integer oxidation states resulting from the lifting of orbital degeneracymore » typically induced by the metal–metal bonding. Although a monoclinic C2/m structure has been previously proposed for Ln 5Mo 2O 12 (Ln = La–Lu and Y) members of this family based on prior single crystal diffraction data, it is found that this structural model misses many important structural features. On the basis of synchrotron powder diffraction data, it is shown in this paper that the C2/m monoclinic unit cell represents a superstructure relative to a previously unrecognized orthorhombic Immm subcell and that the superstructure derives from the ordering of interchangeable Mo 2O 10 and LaO 6 building blocks. The superstructure for this reason is typically highly faulted, as evidenced by the increased breadth of superstructure diffraction peaks associated with a coherence length of 1–2 nm in the c* direction. Finally, it is shown that oxygen vacancies can occur when Ln = La, producing an oxygen deficient stoichiometry of La 5Mo 2O 11.55 and an approximately 10-fold reduction in the number of unpaired electrons due to the reduction of the average Mo valence from +4.5 to +4.05, a result confirmed by magnetic susceptibility measurements. Finally, this represents the first observation of oxygen vacancies in this family of compounds and provides an important means of continuously tuning the magnetic interactions within the one-dimensional octahedral chains of this system.« less

  15. Urea and deuterium mixtures at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelly, M., E-mail: m.donnelly-2@sms.ed.ac.uk; Husband, R. J.; Frantzana, A. D.

    2015-03-28

    Urea, like many network forming compounds, has long been known to form inclusion (guest-host) compounds. Unlike other network formers like water, urea is not known to form such inclusion compounds with simple molecules like hydrogen. Such compounds if they existed would be of interest both for the fundamental insight they provide into molecular bonding and as potential gas storage systems. Urea has been proposed as a potential hydrogen storage material [T. A. Strobel et al., Chem. Phys. Lett. 478, 97 (2009)]. Here, we report the results of high-pressure neutron diffraction studies of urea and D{sub 2} mixtures that indicate nomore » inclusion compound forms up to 3.7 GPa.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Na; Huang, Rudan, E-mail: huangrd@bit.edu.cn

    Six new inorganic–organic hybrids based on rigid triangular N-containing ligands, NaCu{sup I}{sub 2}(tib){sub 4}(H{sub 2}O){sub 4}[H{sub 2}PW{sup V}W{sup VI}{sub 11}O{sub 40}][H{sub 2}PW{sup VI}{sub 12}O{sub 40}]·6H{sub 2}O (1), Cu{sup II}{sub 3}(tib){sub 4}Cl{sub 4}[H{sub 2}PW{sup VI}{sub 12}O{sub 40}]{sub 2}·4H{sub 2}O (2), Co(tib){sub 2}[PW{sup V}{sub 3}W{sup VI}{sub 9}O{sub 38}]·5H{sub 2}O (3), Cu{sup II}{sub 3}(tib){sub 2}[P{sub 2}Mo{sup VI}{sub 5}O{sub 22}(O{sub 2})]·4H{sub 2}O (4), Mn(pytpy){sub 2}Mo{sup VI}{sub 4}O{sub 13} (5) and Co(pytpy){sub 2}Mo{sup VI}{sub 4}O{sub 13} (6) (tib=1,3,5-tris(1-imidazolyl)benzene, pytpy=4’-(4”-pyridyl)2,4’:6’,4”-terpyridine), have been hydrothermally synthesized. Single crystal X-ray diffraction studies revealed that compounds 1–4 display two-dimensional (2D) layered structures, and in compounds 1–3, the adjacent Keggin anionsmore » link with each other by W–O–W covalent interactions to form 1D inorganic chains. Compounds 5–6 are 3D “pillar-layer” frameworks based on bimetal–oxide layers pillared by the pytpy ligands. The compounds have been characterized by elemental analysis, powder X−ray diffraction, X-ray photoelectron spectroscopy and thermo gravimetric analyses. Moreover, the electrochemical and catalytic properties of compound 1 have been investigated as well. - Graphical abstract: Six new inorganic–organic hybrids based on rigid triangular N-containing ligands have been obtained under hydrothermal conditions and characterized by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, and thermogravimetric (TG) analyses. Compounds 1–4 display two-dimensional (2D) layers structure, and in compounds 1–3, the adjacent Keggin anions link with each other by W–O–W covalent interactions to form 1D inorganic Keggin anions chains. Compounds 5–6 are 3D “pillar-layer” frameworks based on bimetal–oxide layers pillared by the pytpy ligands. - Highlights: • MOFs based on POMs have been prepared. • Six new compounds based on rigid triangular N-containing ligands. • The adjacent POMs only share the oxygen atom to form a 1D inorganic Keggin chains.« less

  17. Energy and Biocides Storage Compounds: Synthesis and Characterization of Energetic Bridged Bis(triiodoazoles).

    PubMed

    He, Chunlin; Zhao, Gang; Hooper, Joseph P; Shreeve, Jean'ne M

    2017-11-06

    Energetic bridged triiodopyrazoles and triiodoimidazoles were designed and synthsized by reacting potassium triiodopyrazolate or triiodoimidazolate with corresponding dichloro compounds. All compounds were fully characterized by 1 H and 13 C NMR spectroscopy, IR spectroscopy, and elemental analyses. The structure of compound 1 was further confirmed by single-crystal X-ray diffraction. All of the compounds exhibit good thermal stability with decomposition temperatures between 199 and 270 °C and high densities ranging from 2.804 to 3.358 g/cm 3 . The detonation performances and the detonation products were calculated by CHEETAH 7. Compound 3 (D v = 4765 m s -1 ; P = 17.9 GPa) and compound 7 (D v = 4841 m s -1 ; P = 18.5 GPa) show comparable detonation pressure to TNT, and high iodine content makes them promising as energy and biocides storage compounds.

  18. Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    1999-01-01

    A luminescent semiconductor nanocrystal compound is described which is capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation (luminescing) in a narrow wavelength band and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The luminescent semiconductor nanocrystal compound is linked to an affinity molecule to form an organo luminescent semiconductor nanocrystal probe capable of bonding with a detectable substance in a material being analyzed, and capable of emitting electromagnetic radiation in a narrow wavelength band and/or absorbing, scattering, or diffracting energy when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam. The probe is stable to repeated exposure to light in the presence of oxygen and/or other radicals. Further described is a process for making the luminescent semiconductor nanocrystal compound and for making the organo luminescent semiconductor nanocrystal probe comprising the luminescent semiconductor nanocrystal compound linked to an affinity molecule capable of bonding to a detectable substance. A process is also described for using the probe to determine the presence of a detectable substance in a material.

  19. Spectral methods in edge-diffraction theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, J.M.

    Spectral methods for the construction of uniform asymptotic representations of the field diffracted by an aperture in a plane screen are reviewed. These are separated into contrasting approaches, roughly described as physical and geometrical. It is concluded that the geometrical methods provide a direct route to the construction of uniform representations that are formally identical to the equivalent-edge-current concept. Some interpretive and analytical difficulties that complicate the physical methods of obtaining uniform representations are analyzed. Spectral synthesis proceeds directly from the ray geometry and diffraction coefficients, without any intervening current representation, and the representation is uniform at shadow boundaries andmore » caustics of the diffracted field. The physical theory of diffraction postulates currents on the diffracting screen that give rise to the diffracted field. The difficulties encountered in evaluating the current integrals are throughly examined, and it is concluded that the additional data provided by the physical theory of diffraction (diffraction coefficients off the Keller diffraction cone) are not actually required for obtaining uniform asymptotics at the leading order. A new diffraction representation that generalizes to arbitrary plane-convex apertures a formula given by Knott and Senior [Proc. IEEE 62, 1468 (1974)] for circular apertures is deduced. 34 refs., 1 fig.« less

  20. Synthesis and characterization of Ca-doped LaMnAsO

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Straszheim, Warren E.; Das, Pinaki; Islam, Farhan; Heitmann, Thomas W.; McQueeney, Robert J.; Vaknin, David

    2018-05-01

    We report on our attempt to hole-dope the antiferromagnetic semiconductor LaMnAsO by substitution of the La3 + site by Ca2 +. We use neutron and x-ray diffraction, magnetic susceptibility, and transport techniques to characterize polycrystalline (La1 -xCax)MnAsO samples prepared by solid-state reaction and find that the parent compound is highly resistant to substitution with an upper limit x ≤0.01 . Magnetic susceptibility of the parent and the x =0.002 (xnom=0.04 ) compounds indicate a negligible presence of magnetic impurities (i.e., MnO or MnAs). Rietveld analysis of neutron and x-ray diffraction data shows the preservation of both the tetragonal (P 4 /n m m ) structure upon doping and the antiferromagnetic ordering temperature, TN=355 ±5 K.

  1. Thermal behaviour and microanalysis of coal subbituminus

    NASA Astrophysics Data System (ADS)

    Heriyanti; Prendika, W.; Ashyar, R.; Sutrisno

    2018-04-01

    Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) is used to study the thermal behaviour of sub-bituminous coal. The DSC experiment was performed in air atmosphere up to 125 °C at a heating rate of 25 °C min1. The DSC curve showed that the distinct transitional stages in the coal samples studied. Thermal heating temperature intervals, peak and dissociation energy of the coal samples were also determined. The XRD analysis was used to evaluate the diffraction pattern and crystal structure of the compounds in the coal sample at various temperatures (25-350 °C). The XRD analysis of various temperatures obtained compounds from the coal sample, dominated by quartz (SiO2) and corundum (Al2O3). The increase in temperature of the thermal treatment showed a better crystal formation.

  2. The single-crystal structure of the organic superconductor betaCO-(BEDT-TTF)2I3 from a powder grain.

    PubMed

    Madsen; Burghammer; Fiedler; Müller

    1999-08-01

    Synchrotron radiation diffraction data have been collected at 200 K on a microscopic single crystal (dimensions 12 x 10 x 2 µm) of the title compound, where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene, C(10)H(8)S(8). The quality of the diffraction data allowed a full structure refinement and enabled the determination of structural details such as the conformations of the ethylene groups as well as the occupancy of the triiodide sites. The compound was found to be slightly iodine-deficient and better described as beta(CO)-(BEDT-TTF)(2)I(3-x) [x = 0.014 (3)]. One of the ethylene groups of the BEDT-TTF cation is disordered at this temperature and exists in two distinct conformations with occupancies which are identical within the standard uncertainty.

  3. Synthesis and Crystal Structure of Dibromido{2-[(4-tert-butylmethylphenyl) iminomethyl]pyridine-κ2 N, N'}Zinc

    NASA Astrophysics Data System (ADS)

    Khalaj, M.; Ghazanfarpour-Darjani, M.; Seftejani, F. B.; Lalegani, A.

    2017-12-01

    The title compound [Zn( dip)Br2] was synthesized using the Schiff base bidentate ligand (E)-4- tert-butyl- N-(pyridine-2-ylmethylene)benzeneamine ( dip) and zinc(II) bromide salts. It has been characterized by elemental analysis, X-ray diffraction, and optical spectroscopy. The X-ray diffraction analysis demonstrates that in this structure, the zinc(II) ion is located on an inversion center and exhibits a ZnN2Br2 tetrahedral geometry. In this structure the dip ligand is coordinated with zinc(II) ion in a cyclic-bidentate fashion forming a five-membered metallocyclic ring. The compound crystallizes in the monoclinic sp. gr. P21/ m with a = 9.2700(13) Å, b = 7.6128(11) Å, c = 12.3880(17) Å, and β = 97.021(3)°.

  4. A diffraction based study of the deformation mechanisms in anomalously ductile B2 intermetallics

    NASA Astrophysics Data System (ADS)

    Mulay, Rupalee Prashant

    For many decades, the brittle nature of most intermetallic compounds (e.g. NiAl) has been the limiting factor in their practical application. Many B2 (CsCl prototypical structure) intermetallics are known to exhibit slip on the <001>{110} slip mode, which provides only 3 independent slip systems and, hence, is unable to satisfy the von Mises (a.k.a. Taylor) criterion for polycrystalline ductility. As a result, inherent polycrystalline ductility is unexpected. Recent discovery of a number of ductile B2 intermetallics has raised questions about possible violation of the von Mises criterion by these alloys. These ductile intermetallic compounds are MR (metal (M) combined with a rare earth metal or group IV refractory metal (R)) alloys and are stoichiometric, ordered compounds. Single crystal slip trace analyses have only identified the presence of <100>{011} or <100>{010} slip systems. More than 100 other B2 MR compounds are known to exist and many of them have already been shown to be ductile (e.g., CuY, AgY, CuDy, CoZr, CoTi, etc.). Furthermore, these alloys exhibit a large Bauschinger effect. The present work uses several diffraction based techniques including electron back scattered diffraction (EBSD), X-ray diffraction (XRD) and in-situ neutron diffraction; in conjunction with scanning electron microscopy (SEM), transmission electron microscopy (TEM), mechanical testing, and crystal plasticity modeling, to elucidate the reason for ductility in select B2 alloys, explore the spread of this ductility over the B2 family, and understand the Bauschinger effect in these alloys. Several possible explanations (e.g., slip of <111> dislocations, strong texture, phase transformations and twinning) for the anomalous ductility were explored. An X-ray diffraction based analysis ruled out texture, phase purity and departure from order as explanations for the anomalous ductility in MR alloys. In-situ neutron diffraction and post deformation SEM, EBSD, and TEM were unable to detect any evidence for phase transformations in CoTi and CoZr. Also, post deformation characterization did not reveal any evidence of twinning. However, TEM based g·b analysis and EBSD based in-grain misorientation axis (IGMA) analysis showed that beyond a transition in the strain hardening behavior in CoTi, slip modes involving dislocations with <110> and <111> Burgers vectors are activated. The slip of such dislocations can reduce stress concentrations that could otherwise lead to premature fracture, thus providing a satisfying explanation for the anomalous ductility of CoTi and related compounds, like CoZr. Dislocation self-energy calculations accounting for elastic anisotropy suggest that the choice of slip direction in these alloys is mobility-, rather than source-, limited. The reach of this "ductilizing effect" over B2 alloys was explored by producing, characterizing, and testing a number of simple metal-rare earth metal compounds, namely MgY, MgNd and MgCe. MgR intermetallics with the B2 structure were found to be brittle and exhibit a cleavage type fracture indicating that the ductilizing effect is not as widespread as was initially thought. MgY and MgNd were found to primarily cleave along the {100} planes, while MgCe was found to cleave on the {111} planes. A large Bauschinger effect was observed in several of the anomalously ductile B2 compounds, such that the material actually begins to yield in the reverse direction on unloading. When only the primary slip mode <100>{011} is active in CoZr (prior to a transition in strain hardening), the buildup of intergranular stresses is large and is chiefly responsible for the observed Bauschinger effect. However, past the aforementioned transition in strain hardening, the effect of intergranular stresses diminishes. The results demonstrate that the activation of hard, secondary slip modes causes the internal strains to develop more uniformly among the grains, thus reducing the intergranular stresses which cause the Bauschinger effect. Crystal plasticity modeling, which accounts for the initial paucity of independent slip modes and allows for the activation of complementary hard slip modes, reproduces these trends in the Bauschinger effect and provides additional evidence that the experimental observations have correctly identified the cause of the anomalous ductility.

  5. Near-field diffraction from amplitude diffraction gratings: theory, simulation and results

    NASA Astrophysics Data System (ADS)

    Abedin, Kazi Monowar; Rahman, S. M. Mujibur

    2017-08-01

    We describe a computer simulation method by which the complete near-field diffract pattern of an amplitude diffraction grating can be generated. The technique uses the method of iterative Fresnel integrals to calculate and generate the diffraction images. Theoretical background as well as the techniques to perform the simulation is described. The program is written in MATLAB, and can be implemented in any ordinary PC. Examples of simulated diffraction images are presented and discussed. The generated images in the far-field where they reduce to Fraunhofer diffraction pattern are also presented for a realistic grating, and compared with the results predicted by the grating equation, which is applicable in the far-field. The method can be used as a tool to teach the complex phenomenon of diffraction in classrooms.

  6. High Pressure X-Ray Diffraction Studies of Bi2-xSbxTe3 (x = 0,1,2)

    NASA Astrophysics Data System (ADS)

    Jacobsen, M. K.; Kumar, R. S.; Cornelius, A. L.; Sinogeiken, S. V.; Nico, M. F.

    2007-12-01

    Recently, pressure tuning of the thermoelectric figure of merit has been reported for several materials Bi2Te3 based thermoelectric materials [2],[10],[12]. In order to investigate the bulk properties of Bi2Te3, Sb2Te3, and their solid solution in detail, we have performed structural studies up to 20 GPa. Our diffraction results show that all three compounds transform from the ambient pressure structure to a high pressure phase between 7 and 10 GPa. In addition, these diffraction results have been converted to Vinet and Holzapfel equations of state to test the claim of electronic topological transitions in these structures [3].

  7. Cajanusflavanols A-C, Three Pairs of Flavonostilbene Enantiomers from Cajanus cajan.

    PubMed

    He, Qi-Fang; Wu, Zhen-Long; Huang, Xiao-Jun; Zhong, Yuan-Lin; Li, Man-Mei; Jiang, Ren-Wang; Li, Yao-Lan; Ye, Wen-Cai; Wang, Ying

    2018-02-02

    Three pairs of new flavonostilbene enantiomers, cajanusflavanols A-C (1-3), along with their putative biogenetic precursors 4-6, were isolated from Cajanus cajan. Compound 1 possesses an unprecedented carbon skeleton featuring a unique highly functionalized cyclopenta[1,2,3-de]isobenzopyran-1-one tricyclic core. Compounds 2 and 3 are the first examples of methylene-unit-linked flavonostilbenes. Their structures with absolute configurations were elucidated by spectroscopic analyses, X-ray diffraction, and computational calculations. Compounds 1 and 2 exhibited significant in vitro anti-inflammatory activities.

  8. A high-pressure van der Waals compound in solid nitrogen-helium mixtures

    NASA Technical Reports Server (NTRS)

    Vos, W. L.; Finger, L. W.; Hemley, R. J.; Hu, J. Z.; Mao, H. K.; Schouten, J. A.

    1992-01-01

    A detailed diamond anvil-cell study using synchrotron X-ray diffraction, Raman scattering, and optical microscopy has been conducted for the He-N system, with a view to the weakly-bound van der Waals molecule interactions that can be formed in the gas phase. High pressure is found to stabilize the formation of a stoichiometric, solid van der Waals compound of He(N2)11 composition which may exemplify a novel class of compounds found at high pressures in the interiors of the outer planets and their satellites.

  9. Sub-25-nm laboratory x-ray microscopy using a compound Fresnel zone plate.

    PubMed

    von Hofsten, Olov; Bertilson, Michael; Reinspach, Julia; Holmberg, Anders; Hertz, Hans M; Vogt, Ulrich

    2009-09-01

    Improving the resolution in x-ray microscopes is of high priority to enable future applications in nanoscience. However, high-resolution zone-plate optics often have low efficiency, which makes implementation in laboratory microscopes difficult. We present a laboratory x-ray microscope based on a compound zone plate. The compound zone plate utilizes multiple diffraction orders to achieve high resolution while maintaining reasonable efficiency. We analyze the illumination conditions necessary for this type of optics in order to suppress stray light and demonstrate microscopic imaging resolving 25 nm features.

  10. Properties of pure single crystals of actinide compounds

    NASA Astrophysics Data System (ADS)

    Vogt, O.

    1989-07-01

    Actinide research started with substances of poor quality and a multitude of "unexplainable" results mostly found on powder samples of doubtful quality exerted some pressure on the crystal growers. As an example we may mention the measurements on UP. Type I antiferromagnetism was found below 123 K by neutron diffraction experiments on powdered samples. At 23 K another transition becomes apparent in susceptibility measurements. The change of the magnetic moments associated with this transition remained unexplained. It was only after the discovery of multi k structures in other actinide compounds that the need was seen to perform even inelastic neutron diffraction experiments on single crystals so that finally the true nature of the transition in UP could be revealed. NpAs is another illustrative example for the fact that sometimes it takes decades to get a clear understanding for things even so simple as macroscopic magnetic properties. The main reason for the need of single crystals is certainly the anisotropy of the magnetic moment encountered in all actinide compounds. Self-heating effects may prevent research on big crystals or might call for isotopic purity of certain samples.

  11. Magnetic properties of transition metal fluorides MF2 (M=Mn, Fe, Co, Ni) via high-energy photon diffraction

    NASA Astrophysics Data System (ADS)

    Strempfer, J.; Rütt, U.; Bayrakci, S.; Brückel, Th.; Jauch, W.

    2004-01-01

    We present an overview of recent results from nonresonant magnetic diffraction experiments on the antiferromagnetic compounds MnF2, FeF2, CoF2, and NiF2 using high-energy synchrotron radiation of photon energies above 100 keV. New results are presented on the determination of the spin and of the L/S ratio for CoF2 and NiF2. For CoF2, the saturation value of the long-range-ordered pure spin Sz component Sz=1.11(1) is considerably lower than the value Sz=3/2 for the free Co2+ ion. This is in contrast to our results for NiF2, where the full spin of the free transition-metal ion was found, Sz=0.98(1). The temperature dependence of the magnetization in the critical region as well as in the low-temperature region is also presented. For all compounds, Ising behavior is found in the critical regime, whereas the crossover to the low-temperature spin-wave behavior varies. We attribute this to different anisotropies in this series of compounds.

  12. Molecular and crystal structure of 2-{( E)-[(4-Methylphenyl)imino]methyl}-4-nitrophenol: A redetermination

    NASA Astrophysics Data System (ADS)

    Kaynar, Nihal Kan; Tanak, Hasan; Şahin, Songul; Dege, Necmi; Ağar, Erbil; Yavuz, Metin

    2016-03-01

    The crystal structure of the title compound, C14H12N2O3, was recently determined as a mixture of its neutral (OH containing) and zwitterionic (NH containing) forms, in a 0.60 (4): 0.40 (4) ratio using the X-ray determination. In this study, the title compound has been characterized by FT-IR and X-ray diffraction. The redetermination showed that the title compound has only enol (OH) form because of lack of the NH stretching vibration in FT-IR spectrum. In addition, the molecular structure and tautomerism of the title compound have been discussed.

  13. Molecular and crystal structure of 2-((E)-[(4-Methylphenyl)imino]methyl)-4-nitrophenol: A redetermination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaynar, Nihal Kan, E-mail: nihal-kan84@windowslive.com; Tanak, Hasan; Şahin, Songul

    The crystal structure of the title compound, C{sub 14}H{sub 12}N{sub 2}O{sub 3}, was recently determined as a mixture of its neutral (OH containing) and zwitterionic (NH containing) forms, in a 0.60 (4): 0.40 (4) ratio using the X-ray determination. In this study, the title compound has been characterized by FT-IR and X-ray diffraction. The redetermination showed that the title compound has only enol (OH) form because of lack of the NH stretching vibration in FT-IR spectrum. In addition, the molecular structure and tautomerism of the title compound have been discussed.

  14. The spectroscopic (FT-IR, UV-vis), Fukui function, NLO, NBO, NPA and tautomerism effect analysis of (E)-2-[(2-hydroxy-6-methoxybenzylidene)amino]benzonitrile.

    PubMed

    Demircioğlu, Zeynep; Kaştaş, Çiğdem Albayrak; Büyükgüngör, Orhan

    2015-03-15

    A new o-hydroxy Schiff base, (E)-2-[(2-hydroxy-6-methoxybenzylidene)amino]benzonitrile was isolated and investigated by experimental and theoretical methodologies. The solid state molecular structure was determined by X-ray diffraction method. The vibrational spectral analysis was carried out by using FT-IR spectroscopy in the range of 4000-400cm(-)(1). Theoretical calculations were performed by density functional theory (DFT) method using 6-31G(d,p) basis set. The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The UV-vis spectrum of the compound was recorded in the region 200-800 nm in several solvents and electronic properties such as excitation energies, and wavelengths were calculated by TD-DFT/B3LYP method. The most prominent transitions were corresponds to π→π∗. Hybrid density functional theory (DFT) was used to investigate the enol-imine and keto-amine tautomers of titled compound. The titled compound showed the preference of enol form, as supported by X-ray and spectroscopic analysis results. The geometric and molecular properties were compaired for both enol-imine and keto-amine forms. Additionally, geometry optimizations in solvent media were performed with the same level of theory by the integral equation formalism polarizable continuum (IEF-PCM). Stability of the molecule arises from hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond has been analyzed using natural bond orbital (NBO) analysis. Mulliken population method and natural population analysis (NPA) have been studied. Also, condensed Fukui function and relative nucleophilicity indices calculated from charges obtained with orbital charge calculation methods (NPA). Molecular electrostatic potential (MEP) and non linear optical (NLO) properties are also examined. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Using containerless methods to develop amorphous pharmaceuticals.

    PubMed

    Weber, J K R; Benmore, C J; Suthar, K J; Tamalonis, A J; Alderman, O L G; Sendelbach, S; Kondev, V; Yarger, J; Rey, C A; Byrn, S R

    2017-01-01

    Many pipeline drugs have low solubility in their crystalline state and require compounding in special dosage forms to increase bioavailability for oral administration. The use of amorphous formulations increases solubility and uptake of active pharmaceutical ingredients. These forms are rapidly gaining commercial importance for both pre-clinical and clinical use. Synthesis of amorphous drugs was performed using an acoustic levitation containerless processing method and spray drying. The structure of the products was investigated using in-situ high energy X-ray diffraction. Selected solvents for processing drugs were investigated using acoustic levitation. The stability of amorphous samples was measured using X-ray diffraction. Samples processed using both spray drying and containerless synthesis were compared. We review methods for making amorphous pharmaceuticals and present data on materials made by containerless processing and spray drying. It was shown that containerless processing using acoustic levitation can be used to make phase-pure forms of drugs that are known to be difficult to amorphize. The stability and structure of the materials was investigated in the context of developing and making clinically useful formulations. Amorphous compounds are emerging as an important component of drug development and for the oral delivery of drugs with low solubility. Containerless techniques can be used to efficiently synthesize small quantities of pure amorphous forms that are potentially useful in pre-clinical trials and for use in the optimization of clinical products. Developing new pharmaceutical products is an essential enterprise to improve patient outcomes. The development and application of amorphous pharmaceuticals to increase absorption is rapidly gaining importance and it provides opportunities for breakthrough research on new drugs. There is an urgent need to solve problems associated with making formulations that are both stable and that provide high bioavailability. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Penicimenolides A-F, Resorcylic Acid Lactones from Penicillium sp., isolated from the Rhizosphere Soil of Panax notoginseng.

    PubMed

    An, Ya-Nan; Zhang, Xue; Zhang, Tian-Yuan; Zhang, Meng-Yue; Qian-Zhang; Deng, Xiao-Yu; Zhao, Feng; Zhu, Ling-Juan; Wang, Guan; Zhang, Jie; Zhang, Yi-Xuan; Liu, Bo; Yao, Xin-Sheng

    2016-06-08

    Five new 12-membered resorcylic acid lactone derivatives, penicimenolides A-E (1-5), one new ring-opened resorcylic acid lactone derivative penicimenolide F (6), and six known biogenetically related derivatives (7-12) were isolated from the culture broth of a strain of Penicillium sp. (NO. SYP-F-7919), a fungus obtained from the rhizosphere soil of Panax notoginseng collected from the Yunnan province of China. Their structures were elucidated by extensive NMR analyses, a modified Mosher's method, chemical derivatization and single crystal X-ray diffraction analysis. Compounds 2-4 exhibited potent cytotoxicity against the U937 and MCF-7 tumour cell lines and showed moderate cytotoxic activity against the SH-SY5Y and SW480 tumour cell lines. The substitution of an acetyloxy or 2-hydroxypropionyloxy group at C-7 significantly increased the cytotoxic activity of the resorcylic acid lactone derivatives. Subsequently, the possible mechanism of compound 2 against MCF-7 cells was preliminarily investigated by in silico analysis and experimental validation, indicating compound 2 may act as a potential MEK/ERK inhibitor. Moreover, proteomics analysis was performed to explore compound 2-regulated concrete mechanism underlying MEK/ERK pathway, which is still need further study in the future. In addition, compounds 2-4 and 7 exhibited a significant inhibitory effect on NO production induced by LPS.

  17. Investigations in space-related molecular biology. [cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens

    NASA Technical Reports Server (NTRS)

    Fernandez-Moran, H.; Pritzker, A. N.

    1974-01-01

    Improved instrumentation and preparation techniques for high resolution, high voltage cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens are reported. Computer correlated ultrastructural and biochemical work on hydrated and dried cell membranes and related biological systems provided information on membrane organization, ice crystal formation and ordered water, RNA virus linked to cancer, lunar rock samples, and organometallic superconducting compounds. Apollo 11, 12, 14, and 15 specimens were analyzed

  18. Phase transition sequence in ferroelectric Aurivillius compounds investigated by single crystal X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Boullay, P.; Tellier, J.; Mercurio, D.; Manier, M.; Zuñiga, F. J.; Perez-Mato, J. M.

    2012-09-01

    The investigation of the phase transition sequence in SrBi2Ta2O9 (SBT) and SrBi2Nb2O9 (SBN) is reported using single-crystal X-ray diffraction. By monitoring specific reflections as a function of temperature, sensitive either to the superstructure formation or to polar displacements, it was possible to check the existence or not of an intermediate phase. This latter was confirmed in SBT, but within experimental accuracy could not be detected in SBN.

  19. An x-ray diffraction study of some mesoionic 2,3-diphenyltetrazoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luboradzki, R.; Kozminski, W.; Stefaniak, L.

    1993-02-01

    An X-my diffraction study is reported for four molecules of mesoionic 2,3-diphenyltetrazoles. The results confirm a dipolar [open quotes]mesoionic[close quotes] structure, aromatic character of the tetrazole ring and no conjugation between the phenyl and tetrazole rings. The geometry of the exocyclic group is discussed in detail. The molecular parameters of the compounds investigated are correlated with [sup 13]C and [sup 15]N nmr data. The results obtained are compared with similar structures which have already been studied.

  20. Synthesis, Structure and Antitumour Properties of a New 1,2-Propylenediaminetetraacetate-Ruthenium(III) Compound

    PubMed Central

    Vilaplana, R.; Romero, M. A.; Quirós, M.; Salas, J. M.

    1995-01-01

    A novel complex formed by ruthenium (III) and the sequestering ligand 1,2-propylenediaminetetraacetic acid (PDTA) has been synthetized and characterized. The structure of the monomeric compound, studied by X-ray diffraction , shows an almost symmetric octahedral geometry around the metal ion, with two chlorine atoms in a cis conformation. The antitumour activity against a variety of murine and human cancers is reported. PMID:18472768

  1. Application of focused-beam flat-sample method to synchrotron powder X-ray diffraction with anomalous scattering effect

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Katsuya, Y.; Matsushita, Y.

    2013-03-01

    The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe2O4 and Fe3O4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe2+/Fe3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.

  2. Rietveld analysis using powder diffraction data with anomalous scattering effect obtained by focused beam flat sample method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Masahiko, E-mail: masahiko@spring8.or.jp; Katsuya, Yoshio, E-mail: katsuya@spring8.or.jp; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp

    2016-07-27

    Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe{sub 2}O{sub 4} (inverse spinel structure) using X-rays near Fe K absorptionmore » edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe{sub 2}O{sub 4} crystal structure.« less

  3. Pestalpolyols A-D, Cytotoxic Polyketides from Pestalotiopsis sp. cr013.

    PubMed

    Li, Jing; Xie, Jin; Yang, Yin-He; Li, Xiao-Lian; Zeng, Ying; Zhao, Pei-Ji

    2015-09-01

    Four novel polyketides, named pestalpolyols A (1), B (2), C (3), and D (4), were isolated from solid fermentation products of Pestalotiopsis sp. cr013. Their structures were elucidated by extensive spectroscopic methods, including 1D and 2D nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry experiments, and the absolute configuration was confirmed by single-crystal X-ray diffraction analysis using the anomalous scattering of Cu Kα radiation. The inhibitory activities of compounds 1, 2, and 4 against five human tumor lines were tested in vitro, and showed IC50 values 2.3-31.2 µM. Georg Thieme Verlag KG Stuttgart · New York.

  4. Mollanol A, a diterpenoid with a new C-nor-D-homograyanane skeleton from the fruits of Rhododendron molle.

    PubMed

    Li, Yong; Liu, Yun-Bao; Liu, Yang-Lan; Wang, Chen; Wu, Lian-Qiu; Li, Li; Ma, Shuang-Gang; Qu, Jing; Yu, Shi-Shan

    2014-08-15

    Two new grayanoids, mollanol A (1) and rhodomollein XXV (2), were isolated from the fruits of Rhododendron molle. Their structures were elucidated by spectroscopic methods and X-ray diffraction analyses. Mollanol A (1) possesses a new C-nor-D-homograyanane carbon skeleton, while rhodomollein XXV (2) is the first example of an 11,16-epoxygrayanane and features a caged oxa-tricyclo[3.3.1.0(3.7)]nonane ring system. Plausible biogenetic pathways for 1 were proposed. Compound 1 exhibited transcriptional activation effects on the xbp1 upstream promoter in IEC-6, 293T, and RAW264.7 cells.

  5. Mössbauer study on the thermal decomposition of potassium tris (oxalato) ferrate(III) trihydrate and bis (oxalato) ferrate(II) dihydrate

    NASA Astrophysics Data System (ADS)

    Ladriere, J.

    1992-04-01

    The thermal decompositions of K3Fe(ox)3 3 H2O and K2Fe(ox)2 2 H2O in nitrogen have been studied using Mössbauer spectroscopy, X-ray diffraction and thermal analysis methods in order to determine the nature of the solid residues obtained after each stage of decomposition. Particularly, after dehydration at 113°C, the ferric complex is reduced into a ferrous compound, with a quadrupole splitting of 3.89 mm/s, which corresponds to the anhydrous form of K2Fe(ox)2 2 H2O.

  6. ent-Kaurane Diterpenoids with Neuroprotective Properties from Corn Silk ( Zea mays).

    PubMed

    Qi, Xiao-Li; Zhang, Ying-Ying; Zhao, Peng; Zhou, Le; Wang, Xiao-Bo; Huang, Xiao-Xiao; Lin, Bin; Song, Shao-Jiang

    2018-05-25

    Thirteen new ent-kaurane diterpenoids, stigmaydenes A-M (1-13), together with two known compounds (14, 15), were isolated from the crude extract of corn silk ( Zea mays). The structures of the compounds were confirmed by comprehensive spectroscopic analyses. The absolute configuration of compound 1 was defined by single-crystal X-ray diffraction. The absolute configurations of the compounds were also confirmed by comparison of experimental and calculated specific rotations. The compounds were evaluated for their neuroprotective effects against H 2 O 2 -induced SH-SY5Y cell injury, and compound 8 was active at 100 μM, as determined by flow cytometry (annexin V-FITC/PI staining) and Hoechst 33258 staining. The results suggested that compound 8 could protect neuronal cells from H 2 O 2 -induced injury by inhibiting apoptosis in SH-SY5Y cells.

  7. Anomalous Diffraction in Crystallographic Phase Evaluation

    PubMed Central

    Hendrickson, Wayne A.

    2014-01-01

    X-ray diffraction patterns from crystals of biological macromolecules contain sufficient information to define atomic structures, but atomic positions are inextricable without having electron-density images. Diffraction measurements provide amplitudes, but the computation of electron density also requires phases for the diffracted waves. The resonance phenomenon known as anomalous scattering offers a powerful solution to this phase problem. Exploiting scattering resonances from diverse elements, the methods of multiwavelength anomalous diffraction (MAD) and single-wavelength anomalous diffraction (SAD) now predominate for de novo determinations of atomic-level biological structures. This review describes the physical underpinnings of anomalous diffraction methods, the evolution of these methods to their current maturity, the elements, procedures and instrumentation used for effective implementation, and the realm of applications. PMID:24726017

  8. Preparation, Crystal Structure, Dielectric Properties, and Magnetic Behavior of Ba 2Fe 2Ti 4O 13

    NASA Astrophysics Data System (ADS)

    Vanderah, T. A.; Huang, Q.; Wong-Ng, W.; Chakoumakos, B. C.; Goldfarb, R. B.; Geyer, R. G.; Baker-Jarvis, J.; Roth, R. S.; Santoro, A.

    1995-11-01

    The preparation, crystal structure, dielectric properties, and magnetic behavior of the new compound Ba2Fe2Ti4O13 are reported. Structural studies carried out by single-crystal X-ray diffraction and neutron powder diffraction show that this phase is isostructural with K2Ti6O13 and Ba2ZnTi5O13 (C2/m (No. 12); a = 15.216(1), b = 3.8979(3), c = 9.1350(6) Å, β = 98.460(7)°; V = 535.90(8) Å3; Z = 2). The cations Fe3+ and Ti4+ are partially ordered among distorted octahedral sites with Ba2+ occupying eleven-coordinated polyhedra. Ba2Fe2Ti4O13 exhibits TE0 resonance near 10 GHz with a dielectric constant of ∼28 and a dielectric loss tangent of 2 × 10-3. The compound displays complex paramagnetic behavior with marked field dependence; the magnetization at 80 kA/m is several orders of magnitude smaller than that of most ferrites. Spin-glass effects have not been observed; however, weak collective interactions are clearly present. No magnetic ordering has been detected by neutron diffraction down to 13 K.

  9. [Physicochemical properties of suplatast tosilate racemate and enantiomers].

    PubMed

    Ushio, T; Endo, K; Yamamoto, K

    1996-11-01

    The physicochemical properties of the enantiomer and racemates of suplatast tosilate (ST) were investigated by means of infrared spectroscopy, solid-state 13C CP/MAS NMR spectroscopy, thermal analysis, and X-ray diffraction analysis, and by measuring the solubility and hygroscopy. The infrared and NMR spectra and X-ray diffraction pattern of the enantiomer were distinctly different from those of the racemate. The melting point of the enantiomer was lower than that of the racemate by 5 degrees C, while the solubility of the enantiomer was 1.3 times higher than that of the racemate. The hygroscopic rate of the enantiomer was greater than that of the racemate. These results suggested that ST was classified into a racemic compound crystal. Furthermore, by comparing the relative peak intensity ratios on X-ray diffraction patterns of the crystals with various optical purities prepared by recrystallization, it was found that a mixture of racemic compound crystals and either of racemic mixture crystals or racemic solid solutions was obtained by recrystallization of ST in the content of 0 to 64%ee, while the recrystallization of ST in the content of more than 64%ee led to the formation of racemic mixture crystals or racemic solid solutions.

  10. Synthesis, characterization and computational studies of 3-{(E)-[(2-hydroxyphenyl)imino]methyl}benzene-1,2-diol and molecular structure of its zwitterionic form

    NASA Astrophysics Data System (ADS)

    Ezeorah, Julius Chigozie; Ossai, Valentine; Obasi, Lawrence Nnamdi; Elzagheid, Mohamed I.; Rhyman, Lydia; Lutter, Michael; Jurkschat, Klaus; Dege, Necmi; Ramasami, Ponnadurai

    2018-01-01

    The Schiff base 3-{(E)-[(2-hydroxyphenyl)imino]methyl}benzene-1,2-diol was synthesized by the condensation of 2,3-dihydroxybenzaldehyde and 2-aminophenol in water at room temperature. The crystal was grown using two solvents (dry methanol and 60% methanol). The compound was characterized using elemental microanalysis, IR, NMR, UV spectroscopies and single-crystal X-ray diffraction crystallography. The X-ray structure reveals that the Schiff base crystallizes as a methanol solvate in dry methanol with triclinic crystal system, space group P-1 and Z = 2 in the unit cell and as a non-methanol solvate in 60% methanol with triclinic crystal system, space group P-1 and Z = 4 in the unit cell. The compound showed absorption bands at 272, 389, 473 and 602 nm in DMSO. These bands were assigned as π → π ∗, n → π∗ and n-σ∗ transitions. The 473 and 602 nm bands in DMSO reveal that the compound exists in tautomeric forms. The presence of N-H, C-O and Cdbnd N stretching vibrations in the IR spectrum indicates that the compound is zwitterionic in the solid state. This study was supplemented using density functional theory method.

  11. Hydrolysis of Mg(BH4)2 and its coordination compounds as a way to obtain hydrogen

    NASA Astrophysics Data System (ADS)

    Solovev, Mikhail V.; Chashchikhin, Oleg V.; Dorovatovskii, Pavel V.; Khrustalev, Victor N.; Zyubin, A. S.; Zyubina, T. S.; Kravchenko, O. V.; Zaytsev, Alexey A.; Dobrovolsky, Yu. A.

    2018-02-01

    Three ligand-stabilized Mg(BH4)2-based complexes have been synthesized and evaluated as potential hydrogen storage media for portable fuel cell applications. The new borohydrides: Mg(BH4)2 × 0.5Et2O and Mg(BH4)2 × diglyme (diglyme - CH3O(CH2)2O(CH2)2OCH3) have been synthesized and examined by X-ray single crystal diffraction method. Hydrolysis reactions of the compounds liberate hydrogen in quantities ranging from 46 to 96% of the theoretical yield. The hydrolysis of Mg(BH4)2 and other borohydrides is also accompanied by the diborane formation. The amount of liberated diborane depends on the Mg-coordination environment. To explain this fact quantum-chemical calculations have been performed. It is shown that formation of Mg-O-Mg-bridges enables the side process of diborane generation. It means that the size and denticity of the ligand directly affects the amount of released diborane. In general, the larger the ligand and the higher its denticity, the smaller is amount of diborane produced. The new compound Mg(BH4)2 × diglyme decomposes without diborane formation that allows one to be considered as a new promising chemical hydrogen storage compound for the practical usage.

  12. Structural and magnetic behavior of (Ni, Cu) substituted Nd0.67Sr0.33MnO3 perovskite compounds

    NASA Astrophysics Data System (ADS)

    Arun, B.; Sudakshina, B.; Akshay, V. R.; Chandrasekhar, K. Devi; Yang, H. D.; Vasundhara, M.

    2018-05-01

    Structural and magnetic phase transition of Ni and Cu substituted Nd0.67Sr0.33MnO3 perovskite compounds have been investigated. The Rietveld refinement of X-ray powder diffraction patterns confirms that both compounds have crystallized into an orthorhombic structure with Pbnm space group same as that of Nd0.67Sr0.33MnO3 compound. X-ray absorption spectra studies completely ruled out the possibility of existence of any impurities. Both compounds do not obey the Curie-Weiss law indicates the presence of some ferromagnetic clusters within the paramagnetic matrix. Ni substituted compound shows a lower value of TC and Cu substituted compound shows a higher value of TC than that of the parent. Non-saturating tendency of magnetization is more prominently seen in the case of Cu substituted compound, indicating an increase in the AFM component.

  13. Structures of chloralide, ?-lactic acid chloralide, malic acid chloralide and citric acid chloralide

    NASA Astrophysics Data System (ADS)

    Koh, L. L.; Huang, H. H.; Chia, L. H. L.; Liang, E. P.

    1995-06-01

    The crystal and molecular structures of chloralide ( 1), D-lactic acid chloralide ( 2), malic acid chloralide ( 3) and citric acid chloralide ( 4) have been determined by X-ray diffraction methods. Compound 1 crystallizes in the monoclinic space group, {P2 1}/{c}, a = 6.201(2), b = 17.11(2), c = 10.357(6) Å, β = 95.21(4)°, Z = 4; compound 2 in the monoclinic space group P2 1, a = 7.600(4), b = 5.902(4), c = 9.743(6) Å, β = 99.20(5), Z = 2; compound 3 in the monoclinic space group {P2 1}/{c}, a = 16.500(6), b = 5.819(3), c = 10.120(4) Å, β = 91.41(3), Z = 4; compound 4 in the monoclinic space group {P2 1}/{c}, a = 12.041(3), b = 6.1190(10), c = 17.259(4) Å, β = 101.85(2), Z = 4. The five-membered ring systems of all the compounds are slightly twisted out-of-plane, that of compound 4 being the most puckered. The CCl 3 group is trans to the second CCl 3 group in 1, to the CH 3 group in 2 and to the CH 2COOH group in 3. The two CH 2COOH groups in 4 are disposed axially with respect to the ring. Dipole moment and Kerr constant data for D-lactic acid chloralide suggest a structure in solution which is consistent with the X-ray results. The IR spectra of 2, 3 and 4 are discussed in relation to the structures of these compounds.

  14. Experimental and molecular modeling investigation of isopropyl 4-(biphenyl-4-Yl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate

    NASA Astrophysics Data System (ADS)

    Yıldırım, Sema Öztürk; ćetin, Gökalp; Büyükmumcu, Zeki; Şimşek, Rahime; Şafak, Cihat; Butcher, Ray J.; Pekdur, Özlem Savaş

    2018-02-01

    The most important effect of 1,4-dihydropyridine (1,4-DHP) derivatives with various biological activities is to reduce the influx of extracellular Ca2+ ions. Because of this feature, many 1,4-DHP derivatives have been identified as potent calcium channel blockers and have been included in the treatment as antihypertensive agents. On the other hand, the biphenyl group is an important group in the molecule of biologically active compounds. The active compounds are obtained by introducing the biphenyl group into the structure of various compounds. In this study, the biphenyl group was introduced into the 1,4-DHP ring to reach to hexahydroquinoline (HHQ) derivative as an active calcium channel blocker compound. The structure of the compound was proved by IR, 1H-NMR, Mass spectroscopy, X-ray crystallography and elemental analysis. The cytotoxic properties of the compound has been determined, and biological activity assays continue. The crystal structure of C28H31NO3 was determined by single crystal X-ray diffraction: monoclinic, space group C c, a = 11.9713(3) Å, b = 18.7893(5) Å, c = 10.7358(3) Å, β = 102.411(4)°, Z = 4. The title molecule is twisted with the dihedral angle between two phenyl rings being 50.86(10)°. The optimized geometries of the title compound have been obtained employing DFT method. The calculated geometrical parameters were found to be in agreement with the experimental data.

  15. Experimental (13C NMR, 1H NMR, FT-IR, single-crystal X-ray diffraction) and DFT studies on 3,4-bis(isoproylamino)cyclobut-3-ene-1,2-dione.

    PubMed

    Süleymanoğlu, Nevin; Ustabaş, Reşat; Alpaslan, Yelda Bingöl; Eyduran, Fatih; Ozyürek, Cengiz; Iskeleli, Nazan Ocak

    2011-12-01

    In this work, 3,4-bis(isoproylamino)cyclobut-3-ene-1,2-dione C(10)H(16)N(2)O(2) (I), was synthesized and characterized by (13)C NMR, (1)H NMR, FT-IR, UV-vis spectroscopy and single-crystal X-ray diffraction. DFT method with 6-31G(d,p) basis set has been used to calculate the optimized geometrical parameters, atomic charges, vibrational frequencies and chemical shift values. The calculated vibrational frequencies and chemical shift values are compared with experimental FT-IR and NMR spectra. The results of the calculation shows good agreement between experimental and calculated values of the compound I. The existence of N-H⋯O type intermolecular ve C-H⋯O type intramolecular hydrogen bonds can be deduced from differences between experimental and calculated results of FT-IR and NMR. In addition, the molecular electrostatic potential map and frontier molecular orbitals and electronic absorption spectra were performed at B3LYP/6-31G(d,p) level of theory. HOMO-LUMO electronic transition of 4.90 eV are derived from the contribution of the bands π→π* and n→π* The spectral results obtained from FT-IR, NMR and X-ray of I revealed that the compound I is in predominantly enamine tautomeric form, which was supported by DFT calculations. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Synthesis, crystal structures and luminescence properties of new multi-component co-crystals of isostructural Co(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Tella, Adedibu C.; Owalude, Samson O.; Omotoso, Mary F.; Olatunji, Sunday J.; Ogunlaja, Adeniyi S.; Alimi, Lukman O.; Popoola, Olugbenga K.; Bourne, Susan A.

    2018-04-01

    Two novel isostructural compounds containing multi-component co-crystals [M(C6H4NO2)2(H2O)2](C9H6O6)2 (M = Co (1), Zn (2), C6H4NO2 = Picolinic acid, C9H6O6 = Trimesic acid) have been synthesized. The compounds were characterized by elemental analysis, FT-IR, UV-Visible and 1H NMR spectroscopies as well as thermal and single crystal X-ray diffraction analyses. Single crystal X-ray diffraction analysis reveals that 1 and 2 are isostructural. Compound 1 crystallizes in triclinic space group (P-1, with a = 5.154 (10) Å, b = 11.125 (2) Å, c = 14.113 (3) Å, α = 91.01 (3)°, β = 100.54 (3)°, and γ = 102.71 (3)°). In a similar fashion, compound 2 crystallizes in triclinic space group (P-1, with a = 5.1735 (3) Å, b = 11.0930 (10) Å, c = 14.1554 (8) Å, α = 91.70 (3)°, β = 100.26 (3)°, γ = 102.90 (3)°). The metal (II) cation presents distorted MN2O4 octahedral geometry with H2O molecules coordinated to the metal in equatorial position while the picolinic acid molecules are axially coordinated through the pyridine N atom. The two trimesic acid molecules are not part of the first coordination sphere. Compounds 1 and 2 constitute an example of a class of coordination compound of multicomponent crystals having trimesic acid outside the coordination sphere where it is neither protonated or deprotonated. The two compounds were investigated for luminiscence properties.

  17. Large Area Atomically Flat Surfaces via Exfoliation of Bulk Bi 2Se 3 Single Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melamed, Celeste L.; Ortiz, Brenden R.; Gorai, Prashun

    In this paper, we present an exfoliation method that produces cm 2-area atomically flat surfaces from bulk layered single crystals, with broad applications such as for the formation of lateral heterostructures and for use as substrates for van der Waals epitaxy. Single crystals of Bi 2Se 3 were grown using the Bridgman method and examined with X-ray reciprocal space maps, Auger spectroscopy, low-energy electron diffraction, and X-ray photoelectron spectroscopy. An indium-bonding exfoliation technique was developed that produces multiple ~100 um thick atomically flat, macroscopic (>1 cm 2) slabs from each Bi 2Se 3 source crystal. Two-dimensional X-ray diffraction and reciprocalmore » space maps confirm the high crystalline quality of the exfoliated surfaces. Atomic force microscopy reveals that the exfoliated surfaces have an average root-mean-square (RMS) roughness of ~0.04 nm across 400 μm 2 scans and an average terrace width of 70 um between step edges. First-principles calculations reveal exfoliation energies of Bi 2Se 3 and a number of other layered compounds, which demonstrate relevance of our method across the field of 2D materials. While many potential applications exist, excellent lattice matching with the III-V alloy space suggests immediate potential for the use of these exfoliated layered materials as epitaxial substrates for photovoltaic development.« less

  18. Large Area Atomically Flat Surfaces via Exfoliation of Bulk Bi 2Se 3 Single Crystals

    DOE PAGES

    Melamed, Celeste L.; Ortiz, Brenden R.; Gorai, Prashun; ...

    2017-09-12

    In this paper, we present an exfoliation method that produces cm 2-area atomically flat surfaces from bulk layered single crystals, with broad applications such as for the formation of lateral heterostructures and for use as substrates for van der Waals epitaxy. Single crystals of Bi 2Se 3 were grown using the Bridgman method and examined with X-ray reciprocal space maps, Auger spectroscopy, low-energy electron diffraction, and X-ray photoelectron spectroscopy. An indium-bonding exfoliation technique was developed that produces multiple ~100 um thick atomically flat, macroscopic (>1 cm 2) slabs from each Bi 2Se 3 source crystal. Two-dimensional X-ray diffraction and reciprocalmore » space maps confirm the high crystalline quality of the exfoliated surfaces. Atomic force microscopy reveals that the exfoliated surfaces have an average root-mean-square (RMS) roughness of ~0.04 nm across 400 μm 2 scans and an average terrace width of 70 um between step edges. First-principles calculations reveal exfoliation energies of Bi 2Se 3 and a number of other layered compounds, which demonstrate relevance of our method across the field of 2D materials. While many potential applications exist, excellent lattice matching with the III-V alloy space suggests immediate potential for the use of these exfoliated layered materials as epitaxial substrates for photovoltaic development.« less

  19. Valence fluctuating compound α-YbAlB4 studied by 174Yb Mössbauer spectroscopy and X-ray diffraction using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Oura, Momoko; Ikeda, Shugo; Masuda, Ryo; Kobayashi, Yasuhiro; Seto, Makoto; Yoda, Yoshitaka; Hirao, Naohisa; Kawaguchi, Saori I.; Ohishi, Yasuo; Suzuki, Shintaro; Kuga, Kentaro; Nakatsuji, Satoru; Kobayashi, Hisao

    2018-05-01

    The structural properties and the Yb 4 f electronic state of the valence fluctuating α-YbAlB4 have been investigated by powder X-ray diffraction under pressure and 174Yb Mössbauer spectroscopy with magnetic fields at low temperature, respectively, using synchrotron radiation. Powder X-ray diffraction patterns showed that the crystal structure does not change up to p ∼ 18 GPa at 8 K and the volume decreases smoothly. However, the pressure dependence of the difference in the structure factor between the (060) and (061) diffraction lines changes at ∼ 3.4 GPa, indicating the change of atomic coordination parameters. The 174Yb Mössbauer spectroscopy measurements at 2 K with 10 and 50 kOe suggest that the electrical quadrupole interaction changes by applied magnetic fields.

  20. Beam propagation modeling of modified volume Fresnel zone plates fabricated by femtosecond laser direct writing.

    PubMed

    Srisungsitthisunti, Pornsak; Ersoy, Okan K; Xu, Xianfan

    2009-01-01

    Light diffraction by volume Fresnel zone plates (VFZPs) is simulated by the Hankel transform beam propagation method (Hankel BPM). The method utilizes circularly symmetric geometry and small step propagation to calculate the diffracted wave fields by VFZP layers. It is shown that fast and accurate diffraction results can be obtained with the Hankel BPM. The results show an excellent agreement with the scalar diffraction theory and the experimental results. The numerical method allows more comprehensive studies of the VFZP parameters to achieve higher diffraction efficiency.

  1. UV-laser-based longitudinal illuminated diffuser (LID) incorporating diffractive and Lambertian reflectance for the disinfection of beverages

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd

    2010-08-01

    A novel laser beam shaping system was designed to demonstrate the potential of using high power UV laser sources for large scale disinfection of liquids used in the production of food products, such as juices, beer, milk and other beverage types. The design incorporates a patented assembly of optical components including a diffractive beam splitting/shaping element and a faceted pyramidal or conically shaped Lambertian diffuser made from a compression molded PTFE compounds. When properly sintered to an appropriate density, as an example between 1.10 and 1.40 grams per cubic centimeter, the compressed PTFE compounds show a ~99% reflectance at wavelengths ranging from 300 nm to 1500 nm, and a ~98.5% refection of wavelengths from 250 nm to 2000 nm [1]. The unique diffuser configuration also benefits from the fact that the PTFE compounds do not degrade when exposed to ultraviolet radiation as do barium sulfate materials and silver or aluminized mirror coatings [2]. These components are contained within a hermetically sealed quartz tube. Once assembled a laser beam is directed through one end of the tube. This window takes the form of a computer generated diffractive splitter or other diffractive shaper element to split the laser beam into a series of spot beamlets, circular rings or other geometric shapes. As each of the split beamlets or rings cascade downward, they illuminate various points along the tapered PTFE cone or faceted pyramidal form. As they strike the surface they each diffuse in a Lambertian reflectance pattern creating a pseudo-uniform circumferential illuminator along the length of the quartz tube enclosing the assembly. The compact tubular structure termed Longitudinal Illuminated Diffuser (LID) provides a unique UV disinfection source that can be placed within a centrifugal reactor or a pipe based reactor chamber. This paper will review the overall design principle, key component design parameters, preliminary analytic and bench operational testing results.

  2. Design, synthesis, and characterization of (1-(4-aryl)- 1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates against Mycobacterium tuberculosis

    PubMed Central

    Venugopala, Katharigatta N; Dharma Rao, G B; Bhandary, Subhrajyoti; Pillay, Melendhran; Chopra, Deepak; Aldhubiab, Bandar E; Attimarad, Mahesh; Alwassil, Osama Ibrahim; Harsha, Sree; Mlisana, Koleka

    2016-01-01

    The novel (1-(4-aryl)-1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives were synthesized by the click reaction of the dihydropyrimidinones, bearing a terminal alkynyl group, with various substituted aryl azides at room temperature using a catalytic amount of Cu(OAc)2 and sodium ascorbate in a 1:2 ratio of acetone and water as a solvent. The newly synthesized compounds were characterized by a number of spectroscopic techniques, such as infrared, liquid chromatography-mass spectrometry, 1H, and 13C nuclear magnetic resonance along with single crystal X-ray diffraction. The current procedure for the synthesis of 1,2,3-triazole hybrids with dihydropyrimidinones is appropriate for the synthesis of a library of analogs 7a-l and the method accessible here is operationally simple and has excellent yields. The title compounds 7a-l were evaluated for their in vitro antitubercular activity against H37RV and multidrug-resistant strains of Mycobacterium tuberculosis by resazurin microplate assay plate method and it was found that compound 7d was promising against H37RV and multidrug-resistant strains of M. tuberculosis at 10 and 15 μg/mL, respectively. PMID:27601885

  3. Design, synthesis, and characterization of (1-(4-aryl)- 1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates against Mycobacterium tuberculosis.

    PubMed

    Venugopala, Katharigatta N; Dharma Rao, G B; Bhandary, Subhrajyoti; Pillay, Melendhran; Chopra, Deepak; Aldhubiab, Bandar E; Attimarad, Mahesh; Alwassil, Osama Ibrahim; Harsha, Sree; Mlisana, Koleka

    2016-01-01

    The novel (1-(4-aryl)-1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives were synthesized by the click reaction of the dihydropyrimidinones, bearing a terminal alkynyl group, with various substituted aryl azides at room temperature using a catalytic amount of Cu(OAc)2 and sodium ascorbate in a 1:2 ratio of acetone and water as a solvent. The newly synthesized compounds were characterized by a number of spectroscopic techniques, such as infrared, liquid chromatography-mass spectrometry, (1)H, and (13)C nuclear magnetic resonance along with single crystal X-ray diffraction. The current procedure for the synthesis of 1,2,3-triazole hybrids with dihydropyrimidinones is appropriate for the synthesis of a library of analogs 7a-l and the method accessible here is operationally simple and has excellent yields. The title compounds 7a-l were evaluated for their in vitro antitubercular activity against H37RV and multidrug-resistant strains of Mycobacterium tuberculosis by resazurin microplate assay plate method and it was found that compound 7d was promising against H37RV and multidrug-resistant strains of M. tuberculosis at 10 and 15 μg/mL, respectively.

  4. Synthesis of TiCr2 intermetallic compound from mechanically activated starting powders via calcio-thermic co-reduction

    NASA Astrophysics Data System (ADS)

    Bayat, O.; Khavandi, A. R.; Ghasemzadeh, R.

    2017-05-01

    Effect of mechanical activation of TiO2 and Cr2O3 oxides as starting materials was investigated for direct synthesis of TiCr2. Differential thermal analysis (DTA) indicated that increasing the ball milling time resulted in lower exothermic reaction temperatures between molten Ca-Cr2O3 and molten Ca-TiO2. A model-free Kissinger type method was applied to DTA data to evaluate the reaction kinetics. The results reveal that the activation energy of the exothermic reactions decreased with increasing the milling time. The structure, oxygen content, and average particle sizes of the obtained TiCr2 product were affected by the ball milling time of the starting materials. Increasing the milling time from 10 to 40 h decreased the average particle size and oxygen content of the obtained TiCr2 from 10 to 2 μm and from 1690 to 1290 ppm, respectively. The X-ray diffraction (XRD) results showed that TiCr2 compounds with metastable bcc phase can be produced using nano-sized starting materials, while only a slight amount of bcc phase can be obtained in the TiCr2 compounds, using micron-sized starting materials. The TiCr2 obtained by this method had a hydrogen absorption capability of 0.63 wt % and the kinetics of the hydrogen absorption increased for the 40 h milled sample.

  5. Structural and magnetic phase transitions in Cs2[FeCl5(H2O)].

    PubMed

    Fröhlich, Tobias; Stein, Jonas; Bohatý, Ladislav; Becker, Petra; Gukasov, Arsen; Braden, Markus

    2018-06-05

    The compound [Formula: see text] is magnetoelectric but not multiferroic with an erythrosiderite-related structure. We present a comprehensive investigation of its structural and antiferromagnetic phase transitions by polarization microscopy, pyroelectric measurements, x-ray diffraction and neutron diffraction. At about [Formula: see text] K, the compound changes its symmetry from Cmcm to I2/c, with a doubling of the original c-axis. This transformation is associated with rotations of the [Formula: see text] octahedra and corresponds to an ordering of the [Formula: see text] molecules and of the related [Formula: see text] bonds. A significant ferroelectric polarization can be excluded for this transition by precise pyrocurrent measurements. The antiferromagnetic phase transition occurring at [Formula: see text] results in the magnetic space group [Formula: see text], which perfectly agrees with previous measurements of the linear magnetoelectric effect and magnetization.

  6. Synthesis and characterization of Ca-doped LaMnAsO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yong; Straszheim, Warren E.; Das, Pinaki

    Here, we report on our attempt to hole-dope the antiferromagnetic semiconductor LaMnAsO by substitution of the La 3+ site by Ca 2+. We use neutron and x-ray diffraction, magnetic susceptibility, and transport techniques to characterize polycrystalline (La 1–xCa x)MnAsO samples prepared by solid-state reaction and find that the parent compound is highly resistant to substitution with an upper limit x ≤ 0.01. Magnetic susceptibility of the parent and the x = 0.002(x nom = 0.04) compounds indicate a negligible presence of magnetic impurities (i.e., MnO or MnAs). Rietveld analysis of neutron and x-ray diffraction data shows the preservation of bothmore » the tetragonal (P4/nmm) structure upon doping and the antiferromagnetic ordering temperature, T N = 355 ± 5 K.« less

  7. Synthesis and characterization of a multifunctional inorganic-organic hybrid mixed-valence copper(I/II) coordination polymer: {[CuCN][Cu(isonic)2]}n

    NASA Astrophysics Data System (ADS)

    Liu, Dong-Sheng; Chen, Wen-Tong; Ye, Guang-Ming; Zhang, Jing; Sui, Yan

    2017-12-01

    A new multifunctional mixed-valence copper(I/II) coordination polymer, {[CuCN][Cu(isonic)2]}n(1) (Hisonic = isonicotinic acid), was synthesized by treating isonicotinic acid and 5-amino-tetrazolate (Hatz = 5-amino-tetrazolate) with copper(II) salts under hydrothermal conditions, and characterized by elemental analysis, infrared spectroscopy, and single crystal X-ray diffraction, respectively. The X-ray diffraction analysis reveals that compound exhibit noncentrosymmetric polar packing arrangement. It is three-dimensional (3D) framework with (3,5)-connected 'seh-3' topological network constructed from metal organic framework {[Cu(isonic)2]}n and the inorganic linear chain{Cu(CN)}n subunits. A remarkable feature of 1 is the rhombic open channels that are occupied by a linear chain of {Cu(CN)}n. Impressively compound 1 displays not only a second harmonic generation (SHG) response, but also a ferroelectric behavior and magnetic properties.

  8. Molecular, crystal, and electronic structure of the cobalt(II) complex with 10-(2-benzothiazolylazo)-9-phenanthrol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linko, R. V., E-mail: rlinko@mail.ru; Sokol, V. I.; Polyanskaya, N. A.

    2013-05-15

    The reaction of 10-(2-benzothiazolylazo)-9-phenanthrol (HL) with cobalt(II) acetate gives the coordination compound [CoL{sub 2}] {center_dot} CHCl{sub 3} (I). The molecular and crystal structure of I is determined by X-ray diffraction. The coordination polyhedron of the Co atom in complex I is an octahedron. The anion L acts as a tridentate chelating ligand and is coordinated to the Co atom through the phenanthrenequinone O1 atom and the benzothiazole N1 atom of the moieties L and the N3 atom of the azo group to form two five-membered metallocycles. The molecular and electronic structures of the compounds HL, L, and CoL{sub 2} aremore » studied at the density functional theory level. The results of the quantum-chemical calculations are in good agreement with the values determined by X-ray diffraction.« less

  9. Crystal Structure of the Caged Magnetic Compound DyFe2Zn20 at Low Temperature Magnetic Ordering State

    NASA Astrophysics Data System (ADS)

    Kishii, Nobuya; Tateno, Shota; Ohashi, Masashi; Isikawa, Yosikazu

    We have carried out X-ray powder diffraction and thermal expansion measurements of the caged magnetic compound DyFe2Zn20. Even though a strong magnetic anisotropy exists in the magnetization and magnetic susceptibility due to strong exchange interaction between Fe and Dy, almost all X-ray powder diffraction peaks at 14 K correspond to Bragg reflections of the cubic structural models not only at room temperature paramagnetic state but also at low temperature magnetic ordering state. Although the temperature change of the lattice constant is isotropic, an anomalous behavior was observed in the thermal expansion coefficient around 15 K, while the anomaly around TC = 53 K is not clear. The results indicate that the volume change is not caused by the ferromagnetic interaction between Fe and Dy but by the exchange interaction between two Dy ions.

  10. Synthesis and characterization of Ca-doped LaMnAsO

    DOE PAGES

    Liu, Yong; Straszheim, Warren E.; Das, Pinaki; ...

    2018-05-18

    Here, we report on our attempt to hole-dope the antiferromagnetic semiconductor LaMnAsO by substitution of the La 3+ site by Ca 2+. We use neutron and x-ray diffraction, magnetic susceptibility, and transport techniques to characterize polycrystalline (La 1–xCa x)MnAsO samples prepared by solid-state reaction and find that the parent compound is highly resistant to substitution with an upper limit x ≤ 0.01. Magnetic susceptibility of the parent and the x = 0.002(x nom = 0.04) compounds indicate a negligible presence of magnetic impurities (i.e., MnO or MnAs). Rietveld analysis of neutron and x-ray diffraction data shows the preservation of bothmore » the tetragonal (P4/nmm) structure upon doping and the antiferromagnetic ordering temperature, T N = 355 ± 5 K.« less

  11. Controlled dehydration improves the diffraction quality of two RNA crystals.

    PubMed

    Park, HaJeung; Tran, Tuan; Lee, Jun Hyuck; Park, Hyun; Disney, Matthew D

    2016-11-03

    Post-crystallization dehydration methods, applying either vapor diffusion or humidity control devices, have been widely used to improve the diffraction quality of protein crystals. Despite the fact that RNA crystals tend to diffract poorly, there is a dearth of reports on the application of dehydration methods to improve the diffraction quality of RNA crystals. We use dehydration techniques with a Free Mounting System (FMS, a humidity control device) to recover the poor diffraction quality of RNA crystals. These approaches were applied to RNA constructs that model various RNA-mediated repeat expansion disorders. The method we describe herein could serve as a general tool to improve diffraction quality of RNA crystals to facilitate structure determinations.

  12. Experimental study of the Ca-Mg-Zn system using diffusion couples and key alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Nan; Kevorkov, Dmytro; Bridier, Florent; Medraj, Mamoun

    2011-03-01

    Nine diffusion couples and 32 key samples were prepared to map the phase diagram of the Ca-Mg-Zn system. Phase relations and solubility limits were determined for binary and ternary compounds using scanning electron microscopy, electron probe microanalysis and x-ray diffraction (XRD). The crystal structure of the ternary compounds was studied by XRD and electron backscatter diffraction. Four ternary intermetallic (IM) compounds were identified in this system: Ca3MgxZn15-x (4.6<=x<=12 at 335 °C, IM1), Ca14.5Mg15.8Zn69.7 (IM2), Ca2Mg5Zn13 (IM3) and Ca1.5Mg55.3Zn43.2 (IM4). Three binary compounds were found to have extended solid solubility into ternary systems: CaZn11, CaZn13 and Mg2Ca form substitutional solid solutions where Mg substitutes for Zn atoms in the first two compounds, and Zn substitutes for both Ca and Mg atoms in Mg2Ca. The isothermal section of the Ca-Mg-Zn phase diagram at 335 °C was constructed on the basis of the obtained experimental results. The morphologies of the diffusion couples in the Ca-Mg-Zn phase diagram at 335 °C were studied. Depending on the terminal compositions of the diffusion couples, the two-phase regions in the diffusion zone have either a tooth-like morphology or contain a matrix phase with isolated and/or dendritic precipitates.

  13. Compositional Tuning, Crystal Growth, and Magnetic Properties of Iron Phosphate Oxide

    NASA Astrophysics Data System (ADS)

    Tarne, Michael

    Iron phosphate oxide, Fe3PO4O 3, is a crystalline solid featuring magnetic Fe3+ ions on a complex lattice composed of closely-spaced triangles. Previous work from our research group on this compound has proposed a helical magnetic structure below T = 163 K attributed to J1 - J2 competing interactions between nearest-neighbor and next-nearest-neighbor iron atoms. This was based on neutron powder diffraction featuring unique broad, flat-topped magnetic reflections due to needle-like magnetic domains. In order to confirm the magnetic structure and origins of frustration, this thesis will expand upon the research focused on this compound. The first chapter focuses on single crystal growth of Fe3PO 4O3. While neutron powder diffraction provides insight to the magnetic structure, powder and domain averaging obfuscate a conclusive structure for Fe3PO4O3 and single crystal neutron scattering is necessary. Due to the incongruency of melting, single crystal growth has proven challenging. A number of techniques including flux growth, slow cooling, and optical floating zone growth were attempted and success has been achieved via heterogenous chemical vapor transport from FePO 4 using ZrCl4 as a transport agent. These crystals are of sufficient size for single crystal measurements on modern neutron diffractometers. Dilution of the magnetic sublattice in frustrated magnets can also provide insight into the nature of competing spin interactions. Dilution of the Fe 3+ lattice in Fe3PO4O3 is accomplished by substituting non-magnetic Ga3+ to form the solid solution series Fe3-xGaxPO4O3 with x = 0, 0.012, 0.06, 0.25, 0.5, 1.0, 1.5. The magnetic susceptibility and neutron powder diffraction data of these compounds are presented. A dramatic decrease of the both the helical pitch length and the domain size is observed with increasing x; for x > 0.5, the compounds lack long range magnetic order. The phases that do exhibit magnetic order show a decrease in helical pitch with increasing x as determined from the magnitude of the magnetic propagation vector. This trend can be qualitatively reproduced by increasing the ratio of J2/ J1 in the Heisenberg model. Intriguingly, the domain size extracted from peak broadening of the magnetic reflections is nearly equal to the pitch length for each value of x, which suggests that the two qualities are linked in this unusual antiferromagnet. The last chapter focuses on the oxyfluoride Fe3PO7-x Fx. Through fluorination using low-temperature chimie douce reactions with polytetrafluoroethylene, the magnetic properties show changes in the magnetic susceptibility, isothermal magnetization, and neutron powder diffraction. The magnetic susceptibility shows a peak near T = 13 K and a zero field cooled/field cooled splitting at T = 78 K. The broad, flat-topped magnetic reflections in the powder neutron diffraction exhibit a decrease in width and increase in intensity. The changes in the neutron powder diffraction suggest an increase in correlation length in the ab plane of the fluorinated compound. Iron phosphate oxide is a unique lattice showing a rich magnetic phase diagram in both the gallium-substituted and fluorinated species. While mean-field interactions are sufficient to describe interactions in the solid solution series Fe3-xGaxPO4O3, the additional magnetic transitions in Fe3PO7-xFx suggest a more complicated set of interactions.

  14. Experimental and theoretical studies on tautomeric structures of a newly synthesized 2,2‧(hydrazine-1,2-diylidenebis(propan-1-yl-1-ylidene))diphenol

    NASA Astrophysics Data System (ADS)

    Karakurt, Tuncay; Cukurovali, Alaaddin; Subasi, Nuriye Tuna; Onaran, Abdurrahman; Ece, Abdulilah; Eker, Sıtkı; Kani, Ibrahim

    2018-02-01

    In the present study, a single crystal of a Schiff base, 2,2‧(hydrazine-1,2-diylidenebis(propan-1-yl-1-ylidene))diphenol, was synthesized. The structure of the synthesized crystal was confirmed by 1H and 13C NMR spectroscopic and X-ray diffraction analysis techniques. Experimental and theoretical studies were carried out on two tautomeric structures. It has been observed that the title compound studied can be in two different tautomeric forms, phenol-imine and keto-amine. Theoretical calculations have been performed to support experimental results. Accordingly, the geometric parameters of the compound were optimized by the density functional theory (DFT) method using the Gaussian 09 and Quantum Espresso (QE) packet program was used for periodic boundary conditions (PBC) studies. Furthermore, the compound was also tested for in vitro antifungal activity against Sclerotinia sclerotiorum, Alternaria solani, Fusarium oxysporum f. sp. lycopersici and Monilinia fructigena plant pathogens. Promising inhibition profiles were observed especially towards A. solani. Finally, molecular docking studies and post-docking procedure based on Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) were also carried out to get insight into the compound's binding interactions with the potential. Although theoretical calculations showed that the phenol-imine form was more stable, keto-amine form was predicted to have better binding affinity which was concluded to result from loss of rotational entropy in phenol-imine upon binding. The results obtained here from both experimental and computational methods might serve as a potential lead in the development of novel anti-fungal agents.

  15. Thermally stimulated luminescence studies of undoped, Cu- and Mn-doped CaSO4 compounds

    NASA Astrophysics Data System (ADS)

    Manam, J.; Das, S.

    Thermally stimulated luminescence (TSL) of undoped and doped CaSO4 with activators such as Cu and Mn has been investigated. The polycrystalline samples of undoped and doped CaSO4 are prepared by the melting method. The formation of CaSO4 compound is confirmed by X-ray diffraction and Fourier transform infrared studies. Scanning electron microscopic studies of CaSO4 are also carried out. The TSL glow curves of undoped CaSO4, Cu- and Mn-doped CaSO4 are studied. Comparison of the thermoluminescence (TL) intensity of the most intensive glow peak of Cu-doped CaSO4 compound with that of undoped CaSO4 shows that addition of Cu impurity in CaSO4 compound enhances the TL intensity by about four times. However, the addition of Mn impurity to undoped CaSO4 increases the TL intensity by about three times when compared with that of undoped CaSO4. The TL-dose dependence of all three samples was studied and was observed to be almost linear in the studied range of irradiation time. Among the samples studied, namely undoped CaSO4 and Cu- and Mn-doped CaSO4, Cu-doped CaSO4 is found to be the most sensitive. The trap parameters, namely order of kinetics (b), activation energy (E) and frequency factor (s) associated with the most intensive glow peaks of CaSO4:Mn, CaSO4:Cu and CaSO4 phosphors were determined using the glow curve shape (Chen's) method.

  16. Co(II), Ni(II), Cu(II) and Zn(II) complexes of tridentate ONO donor Schiff base ligand: Synthesis, characterization, thermal, non-isothermal kinetics and DFT calculations

    NASA Astrophysics Data System (ADS)

    Kusmariya, Brajendra S.; Mishra, A. P.

    2017-02-01

    We report here four mononuclear Co(II), Ni(II), Cu(II) and Zn(II) coordination compounds of general formula [M(L)2] {L = dcp; M = CoII, CuII & ZnII} and [M(L)(H2O)]·H2O {L = dcp; M = NiII} derived from tridentate 2,4-dichloro-6-{[(3-chloro-2-hydroxy-5-nitrophenyl)imino]methyl}phenol (dcp) ligand. These compounds were synthesized and characterized by elemental analysis, FT-IR, uv-vis, 1H NMR, molar conductance, magnetic moment, thermal, PXRD and SEM-EDX. The Powder X-ray Diffraction patterns and SEM analyses showed the crystalline nature of synthesized compounds. The peak broadening was explained in terms of crystallite size and the lattice strain using Scherrer and Williamson-Hall method. Thermogravimetric analysis was performed to determine the thermal stability of synthesized compounds under nitrogen atmosphere up to 820 K at 10 Kmin-1 heating rate. The kinetic and thermodynamic parameters of thermal decomposition were calculated using Coats-Redfern (C-R), Piloyan-Novikova (P-N) and Horowitz-Metzger (H-M) methods assuming first order degradation. The calculated optical band gap values of complexes were found to be in semiconducting range. To support the experimental findings, and derive some fruitful information viz. frequency calculations, HOMO-LUMO, energy gap (ΔE), molecular electrostatic potential (MEP), spin density, absorption spectra etc.; theoretical calculations by means of DFT and TD-DFT at B3LYP level were incorporated.

  17. Expression, purification, crystallization and initial crystallographic characterization of the p-hydroxybenzoate hydroxylase from Corynebacterium glutamicum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Soo-Young; Kang, Beom Sik; Kim, Ghyung-Hwa

    2007-11-01

    PHBH from Corynebacterium glutamicum was crystallized using the hanging-drop vapour-diffusion method in the presence of NaH{sub 2}PO{sub 4} and K{sub 2}HPO{sub 4} as precipitants. X-ray diffraction data were collected to a maximum resolution of 2.5 Å on a synchrotron beamline. p-Hydroxybenzoate hydroxylase (PHBH) is an FAD-dependent monooxygenase that catalyzes the hydroxylation of p-hydroxybenzoate (pOHB) to 3,4-dihydroxybenzoate in an NADPH-dependent reaction and plays an important role in the biodegradation of aromatic compounds. PHBH from Corynebacterium glutamicum was crystallized using the hanging-drop vapour-diffusion method in the presence of NaH{sub 2}PO{sub 4} and K{sub 2}HPO{sub 4} as precipitants. X-ray diffraction data were collectedmore » to a maximum resolution of 2.5 Å on a synchrotron beamline. The crystal belongs to the hexagonal space group P6{sub 3}22, with unit-cell parameters a = b = 94.72, c = 359.68 Å, γ = 120°. The asymmetric unit contains two molecules, corresponding to a packing density of 2.65 Å{sup 3} Da{sup −1}. The structure was solved by molecular replacement. Structure refinement is in progress.« less

  18. New solid state forms of antineoplastic 5-fluorouracil with anthelmintic piperazine

    NASA Astrophysics Data System (ADS)

    Moisescu-Goia, C.; Muresan-Pop, M.; Simon, V.

    2017-12-01

    The aim of the present study was to asses the formation of solid forms between the 5-fluorouracil chemotherapy drug and the anthelmintic piperazine. Two new solid forms of antineoplastic agent 5-fluorouracil with anthelmintic piperazine were obtained by liquid assisted ball milling and slurry crystallization methods. The Nsbnd H hydrogen bonding donors and C = O hydrogen bonding acceptors of 5-fluorouracil allow to form co-crystals with other drugs delivering improved properties for medical applications, as proved for other compounds of pharmaceutical interest. Both new solid forms were investigated using X-ray powder diffraction (XRD), differential thermal analysis (DTA) and Fourier transform infrared (FTIR) spectroscopy. The XRD results show that by both methods were successfully synthesized new solid forms of 5-fluorouracil with piperazine. According to FTIR results the form prepared by lichid assisted grinding process was obtained as co-crystal and the other one, prepared by slurry method, resulted as a salt.

  19. Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Turcotte, Raphaël; Rutledge, Danette J.; Bélanger, Erik; Dill, Dorothy; Macklin, Wendy B.; Côté, Daniel C.

    2016-08-01

    Myelin plays an essential role in the nervous system and its disruption in diseases such as multiple sclerosis may lead to neuronal death, thus causing irreversible functional impairments. Understanding myelin biology is therefore of fundamental and clinical importance, but no tools currently exist to describe the fine spatial organization of myelin sheaths in vivo. Here we demonstrate intravital quantification of the myelin molecular structure using a microscopy method based on polarization-resolved coherent Raman scattering. Developmental myelination was imaged noninvasively in live zebrafish. Longitudinal imaging of individual axons revealed changes in myelin organization beyond the diffraction limit. Applied to promyelination drug screening, the method uniquely enabled the identification of focal myelin regions with differential architectures. These observations indicate that the study of myelin biology and the identification of therapeutic compounds will largely benefit from a method to quantify the myelin molecular organization in vivo.

  20. The effect of TM doping on the superconducting properties of ZrNi2-xTMxGa (TM = Cu, Co) Heusler compounds

    NASA Astrophysics Data System (ADS)

    Basaula, Dharma Raj; Brock, Jeffrey; Khan, Mahmud

    2018-05-01

    We have explored the structural and superconducting properties of ZrNi2-xTMxGa (TM = Cu, Co) Heusler compounds via x-ray diffraction, scanning electron mi croscopy, electrical resistivity, dc magnetization and ac susceptibility measurements. All samples crystallized in the cubic L21 structure at room temperature. For x ≤ 0.25, all the ZrNi2-xCuxGa compounds showed superconducting properties and a decrease in TC with increasing Cu concentration. The dc magnetization data suggested type-II superconductivity for all the Cu-doped compounds. Contrary to the ZrNi2-xCuxGa compounds, no superconductivity was observed in the ZrNi2-xCoxGa compounds. Substitution of Ni by a small concentration of Co destroyed superconductivity in the Co-doped compounds. The experimental results are discussed and possible explanations are provided.

  1. Oxide compounds on Ni-Cr alloys.

    PubMed

    Baran, G R

    1984-11-01

    Five Ni-Cr alloys were studied in order to identify the compounds formed on the alloy surface during oxidation under conditions similar to those encountered during dental laboratory procedures prior to application of porcelain. After the alloys were oxidized, the films covering the surfaces were removed with the aid of a Br-methanol solution. X-ray diffraction was used to analyze the compounds formed. Oxides of nearly all elements contained by the alloys were found after low-temperature (650 degrees C) oxidation, while NiO and particularly Cr2O3 were predominant after oxidation at high temperatures (1000 degrees C).

  2. Enhanced magnetization in morphologically and magnetically distinct BiFeO3 and La0.7Sr0.3MnO3 composites

    NASA Astrophysics Data System (ADS)

    Pillai, Shreeja; Reshi, Hilal Ahmad; Bagwaiya, Toshi; Banerjee, Alok; Shelke, Vilas

    2017-09-01

    Nanomaterials exhibit properties different from those of their bulk counterparts. The modified magnetic characteristics of manganite nanoparticles were exploited to improve magnetization in multiferroic BiFeO3 compound. We studied the composite of two morphologically and magnetically distinct compounds BiFeO3 (BFO) and La0.7Sr0.3MnO3 (LSMO). The microcrystalline BiFeO3 sample was prepared by solid state reaction method and the nanocrystalline La0.7Sr0.3MnO3 by sol-gel method. Composites with nominal compositions (1-x)BiFeO3-(x)La0.7Sr0.3MnO3 were prepared by modified solid state reaction method. The phase purity and crystal structures were checked by using X-ray diffraction. The formation of composites with phase separated BFO and LSMO was confirmed using Raman and Fourier Transform Infrared spectroscopy studies. The composite samples showed relatively high value of magnetization with finite coercivity. This improvement in magnetic behavior is ascribed to the coexistence of multiple magnetic orderings in composite samples. We scrutinized the possibility of oxygen vacancy or Fe mixed valency formation in the samples using X-ray photoelectron spectroscopy technique.

  3. Characterization of the X-ray coherence properties of an undulator beamline at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Guangxu; Highland, Matthew J.; Thompson, Carol

    In anticipation of the increased use of coherent X-ray methods and the need to upgrade beamlines to match improved source quality, here the coherence properties of the X-rays delivered by beamline 12ID-D at the Advanced Photon Source have been characterized. The measured X-ray divergence, beam size, brightness and coherent flux at energies up to 26 keV are compared with the calculated values from the undulator source, and the effects of beamline optics such as a mirror, monochromator and compound refractive lenses are evaluated. Diffraction patterns from slits as a function of slit width are analyzed using wave propagation theory tomore » obtain the beam divergence and thus coherence length. Imaging of the source using a compound refractive lens was found to be the most accurate method for determining the vertical divergence. While the brightness and coherent flux obtained without a monochromator ('pink beam') agree well with those calculated for the source, those measured with the monochromator were a factor of three to six lower than the source, primarily because of vertical divergence introduced by the monochromator. As a result, the methods described herein should be widely applicable for measuring the X-ray coherence properties of synchrotron beamlines.« less

  4. Characterization of the X-ray coherence properties of an undulator beamline at the Advanced Photon Source

    DOE PAGES

    Ju, Guangxu; Highland, Matthew J.; Thompson, Carol; ...

    2018-06-13

    In anticipation of the increased use of coherent X-ray methods and the need to upgrade beamlines to match improved source quality, here the coherence properties of the X-rays delivered by beamline 12ID-D at the Advanced Photon Source have been characterized. The measured X-ray divergence, beam size, brightness and coherent flux at energies up to 26 keV are compared with the calculated values from the undulator source, and the effects of beamline optics such as a mirror, monochromator and compound refractive lenses are evaluated. Diffraction patterns from slits as a function of slit width are analyzed using wave propagation theory tomore » obtain the beam divergence and thus coherence length. Imaging of the source using a compound refractive lens was found to be the most accurate method for determining the vertical divergence. While the brightness and coherent flux obtained without a monochromator ('pink beam') agree well with those calculated for the source, those measured with the monochromator were a factor of three to six lower than the source, primarily because of vertical divergence introduced by the monochromator. As a result, the methods described herein should be widely applicable for measuring the X-ray coherence properties of synchrotron beamlines.« less

  5. Mössbauer, TEM/SAED and XRD investigation on waste dumps of the Valea lui Stan gold mines

    NASA Astrophysics Data System (ADS)

    Constantinescu, Serban Grigore; Udubasa, Sorin S.; Udubasa, Gheorghe; Kuncser, Victor; Popescu-Pogrion, Nicoleta; Mercioniu, Ionel; Feder, Marcel

    2012-03-01

    The complementary investigation techniques, Mössbauer spectroscopy, transmission electron microscopy with selected area electron diffraction (TEM/SAED), X-ray diffraction (XRD) have been used to investigate the fate of the Valea lui Stan, Romania, gold-ore nanoscale-minerals during the long time of residence in the waste dumps. The preliminary investigations showed such waste dumps to contain significant amount of metals which cannot be identified by conventional methods. An intense research activity started up in order to evaluate the possibilities to recycle Valea lui Stan waste dumps and to recover metals by chemical or phytoextraction procedures. The waste dumps naturally show different mineral constituents with clay minerals as major phases, observed by XRD-technique. Although the waste dumps materials have whitish-yellowish colours, MÖSSBAUER technique evidences the presence of the finely dispersed iron bearing minerals. The authors are focusing to inspect and analyze Fe-compounds in the samples collected from Valea lui Stan's waste dumps in order to identify the magnetic phases by Mössbauer technique.

  6. Language extraction from zinc sulfide

    NASA Astrophysics Data System (ADS)

    Varn, Dowman Parks

    2001-09-01

    Recent advances in the analysis of one-dimensional temporal and spacial series allow for detailed characterization of disorder and computation in physical systems. One such system that has defied theoretical understanding since its discovery in 1912 is polytypism. Polytypes are layered compounds, exhibiting crystallinity in two dimensions, yet having complicated stacking sequences in the third direction. They can show both ordered and disordered sequences, sometimes each in the same specimen. We demonstrate a method for extracting two-layer correlation information from ZnS diffraction patterns and employ a novel technique for epsilon-machine reconstruction. We solve a long-standing problem---that of determining structural information for disordered materials from their diffraction patterns---for this special class of disorder. Our solution offers the most complete possible statistical description of the disorder. Furthermore, from our reconstructed epsilon-machines we find the effective range of the interlayer interaction in these materials, as well as the configurational energy of both ordered and disordered specimens. Finally, we can determine the 'language' (in terms of the Chomsky Hierarchy) these small rocks speak, and we find that regular languages are sufficient to describe them.

  7. Cytotoxic 14-Membered Macrolides from a Mangrove-Derived Endophytic Fungus, Pestalotiopsis microspora.

    PubMed

    Liu, Shuai; Dai, Haofu; Makhloufi, Gamall; Heering, Christian; Janiak, Christoph; Hartmann, Rudolf; Mándi, Attila; Kurtán, Tibor; Müller, Werner E G; Kassack, Matthias U; Lin, Wenhan; Liu, Zhen; Proksch, Peter

    2016-09-23

    Seven new 14-membered macrolides, pestalotioprolides C (2), D-H (4-8), and 7-O-methylnigrosporolide (3), together with four known analogues, pestalotioprolide B (1), seiricuprolide (9), nigrosporolide (10), and 4,7-dihydroxy-13-tetradeca-2,5,8-trienolide (11), were isolated from the mangrove-derived endophytic fungus Pestalotiopsis microspora. Their structures were elucidated by analysis of NMR and MS data and by comparison with literature data. Single-crystal X-ray diffraction analysis was used to confirm the absolute configurations of 1, 2, and 10, while Mosher's method and the TDDFT-ECD approach were applied to determine the absolute configurations of 5 and 6. Compounds 3-6 showed significant cytotoxicity against the murine lymphoma cell line L5178Y with IC50 values of 0.7, 5.6, 3.4, and 3.9 μM, respectively, while compound 5 showed potent activity against the human ovarian cancer cell line A2780 with an IC50 value of 1.2 μM. Structure-activity relationships are discussed. Coculture of P. microspora with Streptomyces lividans caused a roughly 10-fold enhanced accumulation of compounds 5 and 6 compared to axenic fungal control.

  8. Synthesis, molecular structure, FT-IR, Raman, XRD and theoretical investigations of (2E)-1-(5-chlorothiophen-2-yl)-3-(naphthalen-2-yl)prop-2-en-1-one.

    PubMed

    Chidan Kumar, Chandraju Sadolalu; Fun, Hoong Kun; Parlak, Cemal; Rhyman, Lydia; Ramasami, Ponnadurai; Tursun, Mahir; Chandraju, Siddegowda; Quah, Ching Kheng

    2014-11-11

    A novel (2E)-1-(5-chlorothiophen-2-yl)-3-(naphthalen-2-yl)prop-2-en-1-one [C17H11ClOS] compound has been synthesized and its structure has been characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The isomers, optimized geometrical parameters, normal mode frequencies and corresponding vibrational assignments of the compound have been examined by means of the density functional theory method, employing, the Becke-3-Lee-Yang-Parr functional and the 6-311+G(3df,p) basis set. Reliable vibrational assignments and molecular orbitals have been investigated by the potential energy distribution and natural bonding orbital analyses, respectively. The compound crystallizes in the monoclinic space group P2₁/c with the unit cell parameters a=5.7827(8)Å, b=14.590(2)Å, c=16.138(2)Å and β=89.987 (°). The CC bond of the central enone group adopts an E configuration. There is a good agreement between the theoretically predicted structural parameters and vibrational frequencies and those obtained experimentally. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Comparative theoretical and experimental study on novel tri-quinoline system and its anticancer studies

    NASA Astrophysics Data System (ADS)

    Gayathri, Kasirajan; Radhika, Ramachandran; Shankar, Ramasamy; Malathi, Mahalingam; Savithiri, Krishnaswamy; Sparkes, Hazel A.; Howard, Judith A. K.; Mohan, Palathurai Subramaniam

    2017-04-01

    A novel compound 2-chloro-3,6-bis-(quinolin-8-yloxymethyl)-quinoline 3 bearing a tri-quinoline moiety has been synthesized from 2-chloro-3,6-dimethyl quinoline 1 and 8-hydroxy quinoline 2 using dry acetone and K2CO3 as a base. 3 has been characterized by using FT-IR, FT-Raman, UV-Vis, 1H NMR, 13C NMR spectra and single crystal X-ray diffraction methods. We have also made a combined experimental and theoretical study on the molecular structure, vibrational spectra, NMR, FT-IR, FT-Raman and UV-Vis spectra of 2-chloro-3,6-bis-(quinolin-8-yloxymethyl)-quinoline. The theoretical studies of the title compound have been evaluated by using density functional theory calculations using B3LYP/6-31+G(d,p) and M06-2X/6-31+G(d,p) level of theories. The calculated theoretical values were found to be in good agreement with the experimental findings. The single crystal structure 3 crystallized in the orthorhombic space group Pna21. The compound 3 exhibits higher cytotoxicity in human cervical cancer cell lines (HeLa) than human breast cancer cell lines (MCF7).

  10. Sonochemical synthesis and structural characterization of a new nanostructured Co(II) supramolecular coordination polymer with Lewis base sites as a new catalyst for Knoevenagel condensation.

    PubMed

    Joharian, Monika; Abedi, Sedigheh; Morsali, Ali

    2017-11-01

    A new Co(II) mixed-ligand coordination supramolecular polymer with composition [Co 2 (ppda)(4-bpdh) 2 (NO 3 ) 2 ] n (1) (where, ppda=p-phenylenediacrylic acid, 4-bpdh=2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene) was synthesized using solvothermal, mechanochemical and sonochemical methods. Compound 1 and the new nanostructure have been characterized by single-crystal X-ray, infrared spectroscopy (IR), powder X-ray diffraction (PXRD) analysis and scanning electron microscopy (SEM). The thermal stability of compound 1 was also studied by thermal gravimetric analysis (TGA). The surface area of these compounds was determined by BET. The single-crystal X-ray data shows a new interesting two-dimensional coordination polymer (CP). In addition, the effect of various sonication concentrations of initial reagents, power of ultrasound irradiation and also the time on the size and morphology of nano-structured coordination polymer 1 were evaluated. Moreover, it has been demonstrated that the nanostructure of the CP1 can be used as a catalyst in Knoevenagel condensation reaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Ultrasonic-assisted synthesis of nano lead(II) coordination polymer as precursors for preparation of lead(II) oxide nano-structures: Thermal, optical properties and XRD studies.

    PubMed

    Ghavidelaghdam, Elham; Shahverdizadeh, Gholam Hossein; Motameni Tabatabai, Javad; Mirtamizdoust, Babak

    2018-04-01

    Nano structure of a lead (II) coordination polymer [Pb 2 (C 2 Cl 3 O 2 ) 2 (NO 3 ) 2 (C l2 H 8 N 2 ) 2 ] n (1), has been synthesized by a sonochemical method in different concentrations. The nano particles were characterized by scanning electron microscopy (SEM) X-ray powder diffraction (XRD), FT-IR spectroscopy and elemental analyses. The thermal stability of nano structure is closely investigated via thermal gravimetric (TGA), and compared with crystalline structure. The compounds are then heated to 600 °C to produce PbO nano particles. The resulting PbO is characterized through XRD and SEM analyses. Concentration of initial reagents effects on size and morphology of nano-structured compound 1 have been studied and show that low concentrations of initial reagents decreased particles size and leaded to uniform nano particles morphology. The photoluminescence properties of the prepared compound, as crystalline and as nanoparticles, have been investigated. The result showed a good correlation between the size and emission wavelength. Copyright © 2017. Published by Elsevier B.V.

  12. Synthesis, pharmacology, crystal properties, and quantitative solvation studies from a drug transport perspective for three new 1,2,4-thiadiazoles.

    PubMed

    Perlovich, German L; Volkova, Tatyana V; Proshin, Alexey N; Sergeev, Dmitriy Yu; Bui, Cong Trinh; Petrova, Ludmila N; Bachurin, Sergey O

    2010-09-01

    A novel 1,2,4-thiadiazoles were synthesized. Crystal structures of these compounds were solved by X-ray diffraction experiments and comparative analysis of molecular conformational states, packing architecture, and hydrogen bonds networks were carried out. Thermodynamic aspects of sublimation processes of studied compounds were determined using temperature dependencies of vapor pressure. Thermophysical characteristics of the molecular crystals were obtained and compared with the sublimation and structural parameters. Solubility and solvation processes of 1,2,4-thiadiazoles in buffer, n-hexane and n-octanol were studied within the wide range of temperature intervals and thermodynamic functions were calculated. Specific and nonspecific interactions of molecules resolved in crystals and solvents were estimated and compared. Distribution processes of compounds in buffer/n-octanol and buffer/n-hexane systems (describing different types of membranes) were investigated. Analysis of transfer processes of studied molecules from the buffer to n-octanol/n-hexane phases was carried out by the diagram method with evaluation of the enthalpic and entropic terms. This approach allows us to design drug molecules with optimal passive transport properties. Calcium-blocking properties of the substances were evaluated.

  13. The influence of the relative thermal expansion and electric permittivity on phase transitions in the perovskite-type bidimensional layered NH3(CH2)3NH3CdBr4 compound

    NASA Astrophysics Data System (ADS)

    Staśkiewicz, Beata; Staśkiewicz, Anna

    2017-07-01

    Hydrothermal method has been used to synthesized the layered hybrid compound NH3(CH2)3NH3CdBr4 of perovskite architecture. Structural, dielectric and dilatometric properties of the compound have been analyzed. Negative thermal expansion (NTE) effect in the direction perpendicular to the perovskite plane as well as an unusual phase sequence have been reported based on X-ray diffraction analysis. Electric permittivity measurements evidenced the phase transitions at Tc1=326/328 K and Tc2=368/369 K. Relative linear expansion measurements almost confirmed these temperatures of phase transitions. Anomalies of electric permittivity and expansion behavior connected with the phase transitions are detected at practically the same temperatures as those observed earlier in differential scanning calorimetry (DSC), infrared (IR), far infrared (FIR) and Raman spectroscopy studies. Mechanism of the phase transitions is explained. Relative linear expansion study was prototype to estimate critical exponent value β for continuous phase transition at Tc1. It has been inferred that there is a strong interplay between the distortion of the inorganic network, those hydrogen bonds and the intermolecular interactions of the organic component.

  14. Investigation of two o-hydroxy Schiff bases in terms of prototropy and radical scavenging activity

    NASA Astrophysics Data System (ADS)

    Albayrak Kaştaş, Çiğdem; Kaştaş, Gökhan; Güder, Aytaç; Gür, Mahmut; Muğlu, Halit; Büyükgüngör, Orhan

    2017-02-01

    Two Schiff bases, namely (E)-4,6-dibromo-3-methoxy-2-[(phenylimino)methyl]phenol (1) and (Z)-2,4-dibromo-6-[(4-buthylphenylamino)methylene]-5-methoxycyclohexa-2,4-dienone (2), have been investigated by considering solvent, substituent and temperature dependence of prototropy, and scavenging activities. Experimental (X-ray diffraction, UV-vis and NMR) and computational (DFT) techniques have been used to obtain key data on prototropy and other properties of interest. X-ray and UV-vis results underline the variability in the structural preferences of the compounds with respect to the phase and solvent media conditions. This kind of tautomeric behavior has been elaborated by 1H NMR and 13C NMR experiments performed at room and low temperatures. Radical scavenging properties of two compounds have been probed for their usage potentials as therapeutic agent and ingredient in medicinal and food industries, respectively. For this purpose, three different test methods (DPPH, ABTS•+ and DMPD•+) have been used. It has been found from in vivo and in vitro studies that the compound 2 could be interesting as an active component in pharmaceutical industry or as an additive in food industry when its antiradical activity is considered.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaonan; Lin, Kun; Gao, Qilong

    As one class of the most important intermetallic compounds, the binary Laves-phase is well-known for their abundant magnetic properties. Samarium-iron alloy system, SmFe 2, is a prototypical Laves compound that shows strong negative magnetostriction but relatively weak magnetocrystalline anisotropy. SmFe 2 has been identified as a cubic Fdmore » $$ \\overline{3}\\ $$m structure at room temperature, however, the cubic symmetry does not match the spontaneous magnetization along the [111] cubic direction. Here we studied the crystal structure of SmFe 2 by high-resolution synchrotron X-ray powder diffraction and X-ray total scattering methods. SmFe 2 is found to adopt a centrosymmetric trigonal R$$ \\overline{3}\\ $$m structure at room temperature, which transforms to an orthorhombic Imma structure at 200 K. This transition is in agreement with the changes of easy magnetization direction from [111] cubic to [110] cubic direction, and is further evidenced by the inflexion of thermal expansion behavior, the sharp decline of the magnetic susceptibility in the FC-ZFC curve, and the anomaly in the specific heat capacity measurement. The revised structure and phase transformation of SmFe 2 could be useful to understand the magnetostriction and related physical properties of other RM 2-type pseudo-cubic Laves-phase intermetallic compounds.« less

  16. Structural and magnetic properties of RTiNO{sub 2} (R=Ce, Pr, Nd) perovskite nitride oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Spencer H.; Huang, Zhenguo, E-mail: zhenguo@uow.edu.au; Cheng, Zhenxiang

    2015-03-15

    Neutron powder diffraction indicates that CeTiNO{sub 2} and PrTiNO{sub 2} crystallize with orthorhombic Pnma symmetry (Ce: a=5.5580(5), b=7.8369(7), and c=5.5830(4) Å; Pr: a=5.5468(5), b=7.8142(5), and c=5.5514(5) Å) as a result of a{sup –}b{sup +}a{sup –} tilting of the titanium-centered octahedra. Careful examination of the NPD data, confirms the absence of long range anion order in both compounds, while apparent superstructure reflections seen in electron diffraction patterns provide evidence for short range anion order. Inverse magnetic susceptibility plots reveal that the RTiNO{sub 2} (R=Ce, Pr, Nd) compounds are paramagnetic with Weiss constants that vary from −28 to −42 K. Effective magneticmore » moments for RTiNO{sub 2} (R=Ce, Pr, Nd) are 2.43 μ{sub B}, 3.63 μ{sub B}, and 3.47 μ{sub B}, respectively, in line with values expected for free rare-earth ions. Deviations from Curie–Weiss behavior that occur below 150 K for CeTiNO{sub 2} and below 30 K for NdTiNO{sub 2} are driven by magnetic anisotropy, spin–orbit coupling, and crystal field effects. - Graphical abstract: The structure and magnetism of the oxide nitride perovskites RTiNO{sub 2} (R=Ce, Pr, Nd) have been explored. The average symmetry is shown to be Pnma with a random distribution of oxide and nitride ions and a{sup −}b{sup +}a{sup −} tilting of the titanium-centered octahedra, but electron diffraction shows evidence for short range anion order. All three compounds are paramagnetic but deviations from the Curie Weiss law are seen below 150 K for R=Ce and below 30 K for R=Nd. - Highlights: • The oxide nitride perovskites RTiNO{sub 2} (R=Ce, Pr) have been prepared and their structures determined. • Diffraction measurements indicate short range cis-order of O and N, but no long range order. • Compounds are paramagnetic with Weiss constants that vary from −28 to −42 K. • CeTiO{sub 2}N and NdTiO{sub 2}N deviate from Curie–Weiss behavior below 150 and 30 K, respectively.« less

  17. Surface Modification Technique of Cathode Materials for LI-ION Battery

    NASA Astrophysics Data System (ADS)

    Jia, Yongzhong; Han, Jinduo; Jing, Yan; Jin, Shan; Qi, Taiyuan

    Cathode materials for Li-ion battery LiMn2O4 and LiCo0.1Mn1.9O4 were prepared by soft chemical method. Carbon, which was made by decomposing organic compounds, was used as modifying agent. Cathode material matrix was mixed with water solution that had contained organic compound such as cane sugar, soluble amylum, levulose et al. These mixture were reacted at 150 200 °C for 0.5 4 h in a Teflon-lined autoclave to get a series of homogeneously C-coated cathode materials. The new products were analyzed by X-ray diffraction (XRD) and infrared (IR). Morphology of cathode materials was characterized by scanning electron microscope (SEM) and transition electron microscope (TEM). The new homogeneously C-coated products that were used as cathode materials of lithium-ion battery had good electrochemical stability and cycle performance. This technique has free-pollution, low cost, simpleness and easiness to realize the industrialization of the cathode materials for Li-ion battery.

  18. TL and PL studies on cubic fluoroperovskite single crystal (KMgF{sub 3}: Eu{sup 2+}, Ce{sup 3+})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, D. Joseph, E-mail: josephd@ssn.edu.in; Ramasamy, P.; Madhusoodanan, U.

    2014-04-24

    The perovskite-like KMgF{sub 3} polycrystalline compounds were synthesized by standard solid state reaction technique. Phase purity of the synthesized compounds was analyzed by powder X-ray diffraction technique. Single crystals of (0.2 mol% of EuF{sub 3} and CeF{sub 3}) Co-doped KMgF{sub 3} have been grown from melt by using a vertical Bridgman-Stockbarger method. Thermoluminescence (TL) characteristics of KMgF{sub 3} samples doped with Eu{sub 2+} and Ce{sub 3+} have been studied after β-ray irradiation. At ambient conditions the photoluminescence spectra consisted of sharp line peaked of Eu{sub 2+} at 360 nm attributed to the f → f transition ({sup 6}P{sub 7/2}→{sup 8}S{submore » 7/2}) could only be observed due to the energy transfer from Ce{sub 3+} to Eu{sub 2+}.« less

  19. Study of hopping type conduction from AC conductivity in multiferroic composite

    NASA Astrophysics Data System (ADS)

    Pandey, Rabichandra; Guha, Shampa; Pradhan, Lagen Kumar; Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan

    2018-05-01

    0.5BiFe0.80Ti0.20O3-0.5Co0.5Ni0.5Fe2O4(BFTO-CNFO) multiferroic composite was prepared by planetary ball mill method. X-ray diffraction analysis confirms the formation of the compound with the simultaneous presence of spinel Co0.5Ni0.5Fe2O4 (CNFO) and perovskite BiFe0.80Ti0.20O3 (BFTO) phase. Temperature dependent dielectric permittivity and loss tangent were studied with a frequency range of 100Hz to 1MHz. AC conductivity study was performed to analyze the electrical conduction behaviour in the composite. Johnscher's power law was employed to the AC conductivity data to understand the hopping of localized charge carrier in the compound. The binding energy, minimum hopping distance and density of states of the charge carriers in the composite were evaluated from the AC conductivity data. Minimum hopping distance is found to be in order of Angstrom (Å).

  20. A comparative study on the experimentally derived electron densities of three protease inhibitor model compounds.

    PubMed

    Grabowsky, Simon; Pfeuffer, Thomas; Morgenroth, Wolfgang; Paulmann, Carsten; Schirmeister, Tanja; Luger, Peter

    2008-07-07

    In order to contribute to a rational design of optimised protease inhibitors which can covalently block the nucleophilic amino acids of the proteases' active sites, we have chosen three model compounds (aziridine , oxirane and acceptor-substituted olefin ) for the examination of their electron-density distribution. Therefore, high-resolution low temperature (9, 27 and 100 K) X-ray diffraction experiments on single-crystals were carried out with synchrotron and conventional X-radiation. It could be shown by the analysis of the electron density using mainly Bader's Theory of Atoms in Molecules, Volkov's EPMM method for interaction energies, electrostatic potentials and Gatti's Source Function that aziridine is most suitable for drug design in this field. A regioselective nucleophilic attack at carbon atom C1 could be predicted and even hints about the reaction's stereoselectivity could be obtained. Moreover, the comparison between two data sets of aziridine (conventional X-ray source vs. synchrotron radiation) gave an estimate concerning the reproducibility of the quantitative results.

  1. AC and DC conductivity study on Ca substituted bismuth ferrite

    NASA Astrophysics Data System (ADS)

    Pandey, Rabichandra; Pradhan, Lagen Kumar; Kumar, Sunil; Kar, Manoranjan

    2018-05-01

    Bi0.95Ca0.05FeO3 multiferroic compound was synthesized by the citric acid modified sol-gel method. Crystal structure of Bi0.95Ca0.05FeO3 is studied by the X-ray diffraction (XRD) technique. The ac impedance analysis of the compound has been carried out in a wide range of frequency (100 Hz - 1MHz) as well as temperature (40-2500C). Frequency variation of dielectric constant at different temperatures can be understood by the modified Debye formula. The activation energy was found to be 0.48eV, which was obtained by employing Arrhenius equation. The AC conductivity of the sample follows the Johnscher's power law which indicates the presence of hopping type conduction in localized charged states. To understand the conduction mechanism with localized charge states, the DC resistivity data were analyzed by Mott's variable range hopping (VRH) model. The activation energy calculated from Debye relaxation time, AC conductivity and DC resistivity are comparable to each other.

  2. Synthesis and characterization of CdO nano particles by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Vadgama, V. S.; Vyas, R. P.; Jogiya, B. V.; Joshi, M. J.

    2017-05-01

    Cadmium Oxide (CdO) is an inorganic compound and one of the main precursors to other cadmium compounds. It finds applications in cadmium plating, storage batteries, in transparent conducting film, etc. Here, an attempt is made to synthesize CdO nano particles by sol-gel technique. The gel was prepared using cadmium nitrate tetra hydrate (Cd(NO3)2.4H2O) and aqueous ammonium hydroxide (NH4OH) as a precursor. The synthesized powder is further characterized by techniques like Powder X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and Thermal gravimetric analysis (TGA). Powder XRD analysis suggested the nano-crystalline nature of the sample with the cubic crystal system. Nano scaled particles of spherical morphology with the size ranging from 50-100 nm are observed from TEM images. While, FT-IR study is used to confirm the presence of different functional groups. Thermo-gravimetric analysis suggests the highly thermally stable nature of the samples. The results are discussed.

  3. Growth and preparation of lead-potassium-niobate (PKN) single crystals specimens

    NASA Astrophysics Data System (ADS)

    Pandey, R. K.

    1982-12-01

    Lead-potassium-niobate, Pb2KNb5O15 (PKN) is a member of the family of tungsten-bronze materials of the type A6B10O30. It is both ferroelastic and ferroelectric and it can be considered as a pseudo-binary compound represented by 2PbNb2O6.KNbO3. Its piezoelectric and electromechanical properties make it the leading substrate material for the fabrication of temperature compensated surface-acoustic-wave (SAW) devices. However, it is very difficult to synthesize PKN as a large, crack-free and chemically homogeneous single crystal. This report deals primarily with the problems encountered in crystal growth of PKN and suggests means to circumvent them. Furthermore, it describes two new methods - top seeded and solution growth - to synthesize crack-free, stoichiometrically uniform large single crystals of the compound. Also the results of PKN characterization by means of X-ray diffraction and dielectric, optical and electrical conductivity measurements are presented and discussed here.

  4. The partial substitution of copper with nickel oxide on the Structural and electrical properties of HgBa2 Ca2 Cu3xNix O8+δ superconducting compound

    NASA Astrophysics Data System (ADS)

    Jasim, K. A.; Mohammed, L. A.

    2018-05-01

    The present study the partial substitution of copper with nickel on of HgBa2Ca2Cu3xNix O8+δ superconducting compound where x=002040608. Samples were prepared by solid state reaction method with sintering temperature 850C0 for 24h. By using x-ray powder diffraction the structure of the samples were studied. The XRD analyses showed the structures of polycrystalline with tetragonal diagram with majority 1223 phase and the change of the nickel concentrations produce a change in lattice parameters of the lattice a b and c axis c/a density of mass ρm and volume fraction Vphase. Four probe apparatus was used to test the electrical resistivity to defined the critical temperature at zero resistivity Tc offset Optimum Tc offset was found from HgBa2Ca2Cu24Ni06O8+δ sample with transition temperature its equal to 137K.

  5. Synthesis, characterization, and pharmacological studies of ferrocene-1H-1,2,3-triazole hybrids

    NASA Astrophysics Data System (ADS)

    Haque, Ashanul; Hsieh, Ming-Fa; Hassan, Syed Imran; Haque Faizi, Md. Serajul; Saha, Anannya; Dege, Necmi; Rather, Jahangir Ahmad; Khan, Muhammad S.

    2017-10-01

    A series of ferrocene-1H-1,2,3-triazole hybrids namely 1-(4-nitrophenyl)-4-ferrocenyl-1H-1,2,3-triazole (1), 1-(4,4‧-dinitro-2-biphenyl)-4-ferrocenyl-1H-1,2,3-triazole (2), 1-(3-chloro-4-fluorophenyl)-4-ferrocenyl-1H-1,2,3-triazole (3), 1-(4-bromophenyl)-4-ferrocenyl-1H-1,2,3-triazole (4) and 1-(2-nitrophenyl)-4-ferrocenyl-1H-1,2,3-triazole (5) were designed and synthesized by copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction. All the new hybrids were characterized by microanalyses, NMR (1H and 13C), UV-vis, IR, ESI-MS and electrochemical techniques. Crystal structure of the compound (3) was solved by single crystal X-ray diffraction method. The structural (single crystal) and spectroscopic (UV-Vis. and IR) properties of the compound 3 have been analyzed and compared by complementary quantum modeling. Hybrids 1-5 exhibited low toxicity and demonstrated neuroprotective effect.

  6. Structural characterization and antimicrobial activities of transition metal complexes of a hydrazone ligand

    NASA Astrophysics Data System (ADS)

    Bakale, Raghavendra P.; Naik, Ganesh N.; Machakanur, Shrinath S.; Mangannavar, Chandrashekhar V.; Muchchandi, Iranna S.; Gudasi, Kalagouda B.

    2018-02-01

    A hydrazone ligand has been synthesized by the condensation of 2-nitrobenzaldehyde and hydralazine, and its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been reported. Structural characterization of the ligand and its metal complexes has been performed by various spectroscopic [IR, NMR, UV-Vis, Mass], thermal and other physicochemical methods. The structure of the ligand and its Ni(II) complex has been characterized by single crystal X-ray diffraction studies. All the synthesized compounds have been screened for in vitro antimicrobial activity. The antibacterial activity is tested against Gram-positive strains Enterococcus faecalis, Streptococcus mutans and Staphylococcus aureus and Gram-negative strains Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae using ciprofloxacin as the reference standard. Antifungal activity is tested against Candida albicans, Aspergillus fumigatus and Aspergillus niger using ketoconazole as the reference standard. The minimum inhibitory concentration (MIC) was determined for test compounds as well as for reference standard. Ligand, Cu(II) and Zn(II) complexes have shown excellent activity against Candida albicans.

  7. Dark-field phase retrieval under the constraint of the Friedel symmetry in coherent X-ray diffraction imaging.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Nakasako, Masayoshi

    2014-11-17

    Coherent X-ray diffraction imaging (CXDI) is a lensless imaging technique that is suitable for visualizing the structures of non-crystalline particles with micrometer to sub-micrometer dimensions from material science and biology. One of the difficulties inherent to CXDI structural analyses is the reconstruction of electron density maps of specimen particles from diffraction patterns because saturated detector pixels and a beam stopper result in missing data in small-angle regions. To overcome this difficulty, the dark-field phase-retrieval (DFPR) method has been proposed. The DFPR method reconstructs electron density maps from diffraction data, which are modified by multiplying Gaussian masks with an observed diffraction pattern in the high-angle regions. In this paper, we incorporated Friedel centrosymmetry for diffraction patterns into the DFPR method to provide a constraint for the phase-retrieval calculation. A set of model simulations demonstrated that this constraint dramatically improved the probability of reconstructing correct electron density maps from diffraction patterns that were missing data in the small-angle region. In addition, the DFPR method with the constraint was applied successfully to experimentally obtained diffraction patterns with significant quantities of missing data. We also discuss this method's limitations with respect to the level of Poisson noise in X-ray detection.

  8. Polymers for electronics and spintronics.

    PubMed

    Bujak, Piotr; Kulszewicz-Bajer, Irena; Zagorska, Malgorzata; Maurel, Vincent; Wielgus, Ireneusz; Pron, Adam

    2013-12-07

    This critical review is devoted to semiconducting and high spin polymers which are of great scientific interest in view of further development of the organic electronics and the emerging organic spintronic fields. Diversified synthetic strategies are discussed in detail leading to high molecular mass compounds showing appropriate redox (ionization potential (IP), electron affinity (EA)), electronic (charge carrier mobility, conductivity), optoelectronic (electroluminescence, photoconductivity) and magnetic (magnetization, ferromagnetic spin interactions) properties and used as active components of devices such as n- and p-channel field effect transistors, ambipolar light emitting transistors, light emitting diodes, photovoltaic cells, photodiodes, magnetic photoswitches, etc. Solution processing procedures developed with the goal of depositing highly ordered and oriented films of these polymers are also described. This is completed by the description of principal methods that are used for characterizing these macromolecular compounds both in solution and in the solid state. These involve various spectroscopic methods (UV-vis-NIR, UPS, pulse EPR), electrochemistry and spectroelectrochemistry, magnetic measurements (SQUID), and structural and morphological investigations (X-ray diffraction, STM, AFM). Finally, four classes of polymers are discussed in detail with special emphasis on the results obtained in the past three years: (i) high IP, (ii) high |EA|, (iii) low band gap and (iv) high spin ones.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Yahia, Hamdi, E-mail: benyahia.hamdi@voila.fr; Rodewald, Ute Ch.; Boulahya, Khalid

    Graphical abstract: The new compounds RE{sub 4}O{sub 4}[AsO{sub 4}]Cl (RE = La, Pr, Nd, Sm, Eu, Gd) were synthesised by solid state reaction via a salt flux route and investigated by HRTEM, SAED, and single crystal X-ray diffraction. - Highlights: • We discovered the series of RE{sub 4}O{sub 4}[AsO{sub 4}]Cl (RE = La, Pr, Nd, Sm, Eu, Gd) compounds. • The RE{sub 4}O{sub 4}[AsO{sub 4}]Cl single crystals were grown using NaCl/KCl flux. • The RE{sub 4}O{sub 4}[AsO{sub 4}]Cl structures were solved using single crystal X-ray diffraction data. • The layered RE{sub 4}O{sub 4}[AsO{sub 4}]Cl compounds were further characterized using HRTEMmore » and SAED. • We observed an alternation of ordered-[RE{sub 4}O{sub 4}]{sup 4+} and disordered-[ClAsO{sub 4}]{sup 4–} layers. - Abstract: The new compounds RE{sub 4}O{sub 4}[AsO{sub 4}]Cl (RE = La, Pr, Nd, Sm, Eu, Gd) were synthesised by solid state reaction via a salt flux route and investigated by HRTEM, SAED, and single crystal X-ray diffraction. The samples crystallise with a tetragonal cell, space group P4{sub 2}/mnm and Z = 2. Their crystal structure consists of an alternation of [RE{sub 4}O{sub 4}]{sup 4+} and [ClAsO{sub 4}]{sup 4–} layers. The [RE{sub 4}O{sub 4}]{sup 4+} layer contains ORE{sub 4/4} tetrahedra which share common edges. The anions AsO{sub 4}{sup 3–} and Cl{sup –} are located between these layers in disordered manner. SAED and HRTEM experiments confirmed this structural model and enabled us to propose an ordered model for the [ClAsO{sub 4}]{sup 4–} layers.« less

  10. In situ X-ray and neutron diffraction of the Ruddlesden–Popper compounds (RE 2–xSr x)₀.₉₈(Fe₀.₈Co₀.₂) 1–yMg yO 4–δ (RE=La, Pr): Structure and CO₂ stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatzichristodoulou, C., E-mail: ccha@dtu.dk; Hauback, B.C.; Hendriksen, P.V.

    2013-05-01

    The crystal structure of the Ruddlesden–Popper compounds (La₁.₀Sr₁.₀)₀.₈Fe₁.₀Co₀.₂O 4–δ and (La₁.₂Sr₀.₈)₀.₉₈(Fe₀.₈Co₀.₂)₀.₈Mg₀.₂O 4–δ was investigated at 1000 °C in N₂ (a O₂=1×10₋₄ by in-situ powder neutron diffraction. In-situ powder X-ray diffraction (PXD) was also employed to investigate the temperature dependence of the lattice parameters of the compounds in air and the oxygen activity dependence of the lattice parameters at 800 °C and 1000 °C. The thermal and chemical expansion coefficients, determined along the two crystallographic directions of the tetragonal unit cell, are highly anisotropic. The equivalent pseudo-cubic thermal and chemical expansion coefficients are in agreement with values determined by dilatometry. Themore » chemical stability in CO₂ containing environments of various Ruddlesden–Popper compounds with chemical formula (RE 2-xSr x)₀.₉₈(Fe₀.₈Co₀.₂) 1-yMg yO 4–δ (RE=La, Pr), as well as their stability limit in H₂/H₂O=4.5 were also determined by in-situ PXD for x=0.9, 1.0 and y=0, 0.2. - Graphical abstract: Influence of electronic configuration on bond length, lattice parameters and anisotropic thermal and chemical expansion. Highlights: • The thermal and chemical expansion coefficients are largely anisotropic. • The expansion of the perovskite layers is constrained along the a direction. • The studied compositions show remarkable thermodynamic stability upon reduction. • The thermal and chemical expansion coefficients are lower than related perovskites. • The investigated materials decompose in CO₂ containing atmospheres.« less

  11. Multiple defocused coherent diffraction imaging: method for simultaneously reconstructing objects and probe using X-ray free-electron lasers.

    PubMed

    Hirose, Makoto; Shimomura, Kei; Suzuki, Akihiro; Burdet, Nicolas; Takahashi, Yukio

    2016-05-30

    The sample size must be less than the diffraction-limited focal spot size of the incident beam in single-shot coherent X-ray diffraction imaging (CXDI) based on a diffract-before-destruction scheme using X-ray free electron lasers (XFELs). This is currently a major limitation preventing its wider applications. We here propose multiple defocused CXDI, in which isolated objects are sequentially illuminated with a divergent beam larger than the objects and the coherent diffraction pattern of each object is recorded. This method can simultaneously reconstruct both objects and a probe from the coherent X-ray diffraction patterns without any a priori knowledge. We performed a computer simulation of the prposed method and then successfully demonstrated it in a proof-of-principle experiment at SPring-8. The prposed method allows us to not only observe broad samples but also characterize focused XFEL beams.

  12. Synthesis and characterization of 3-acetoxy-2-methyl-N-(phenyl)benzamide and 3-acetoxy-2-methyl-N-(4- methylphenyl)benzamide

    NASA Astrophysics Data System (ADS)

    Kırca, Başak Koşar; Çakmak, Şükriye; Kütük, Halil; Odabaşoğlu, Mustafa; Büyükgüngör, Orhan

    2018-01-01

    This study treats about two successfully synthesized secondary amide compounds 3-Acetoxy-2-methyl-N-(phenyl)benzamide, I and 3-Acetoxy-2-methyl-N-(4-methylphenyl)benzamide, II. Compounds were characterized by FTIR, 1H NMR, 13C NMR and X-ray single crystal diffraction analysis techniques. Single crystal X-ray diffraction analyses show that while I crystallized in the orthorhombic system with space group Pbca, II crystallized in the triclinic system with space group P-1 and the asymmetric unit of II consists of two crystallographically independent molecules. Lattice constants are a = 7.9713 (3) Å, b = 9.5059 (3) Å, c = 37.1762 (2) Å, Z = 8 for I and a = 7.5579 (8) Å, b = 8.8601 (8) Å, c = 23.363 (3) Å, α = 97.011 (9) °, β = 96.932 (9)°, γ = 90.051 (8)°, Z = 4 for II. Crystallographic studies also show that the supramolecular structures were stabilized by intramolecular, intermolecular hydrogen bonds and Csbnd H … π interactions for both compounds. Characteristic amide bonds were observed in IR and NMR spectra.

  13. Molybdenum Oxide Nitrides of the Mo2(O,N,□)5 Type: On the Way to Mo2O5.

    PubMed

    Weber, Dominik; Huber, Manop; Gorelik, Tatiana E; Abakumov, Artem M; Becker, Nils; Niehaus, Oliver; Schwickert, Christian; Culver, Sean P; Boysen, Hans; Senyshyn, Anatoliy; Pöttgen, Rainer; Dronskowski, Richard; Ressler, Thorsten; Kolb, Ute; Lerch, Martin

    2017-08-07

    Blue-colored molybdenum oxide nitrides of the Mo 2 (O,N,□) 5 type were synthesized by direct nitridation of commercially available molybdenum trioxide with a mixture of gaseous ammonia and oxygen. Chemical composition, crystal structure, and stability of the obtained and hitherto unknown compounds are studied extensively. The average oxidation state of +5 for molybdenum is proven by Mo K near-edge X-ray absorption spectroscopy; the magnetic behavior is in agreement with compounds exhibiting Mo V O 6 units. The new materials are stable up to ∼773 K in an inert gas atmosphere. At higher temperatures, decomposition is observed. X-ray and neutron powder diffraction, electron diffraction, and high-resolution transmission electron microscopy reveal the structure to be related to VNb 9 O 24.9 -type phases, however, with severe disorder hampering full structure determination. Still, the results demonstrate the possibility of a future synthesis of the potential binary oxide Mo 2 O 5 . On the basis of these findings, a tentative suggestion on the crystal structure of the potential compound Mo 2 O 5 , backed by electronic-structure and phonon calculations from first principles, is given.

  14. Geometrically frustrated magnetic structures of the heavy-fermion compound CePdAl studied by powder neutron diffraction

    NASA Astrophysics Data System (ADS)

    Dönni, A.; Ehlers, G.; Maletta, H.; Fischer, P.; Kitazawa, H.; Zolliker, M.

    1996-12-01

    The heavy-fermion compound CePdAl with ZrNiAl-type crystal structure (hexagonal space group 0953-8984/8/50/043/img8) was investigated by powder neutron diffraction. The triangular coordination symmetry of magnetic Ce atoms on site 3f gives rise to geometrical frustration. CePdAl orders below 0953-8984/8/50/043/img9 with an incommensurate antiferromagnetic propagation vector 0953-8984/8/50/043/img10, and a longitudinal sine-wave (LSW) modulated spin arrangement. Magnetically ordered moments at Ce(1) and Ce(3) coexist with frustrated disordered moments at Ce(2). The experimentally determined magnetic structure is in agreement with group theoretical symmetry analysis considerations, calculated by the program MODY, which confirm that for Ce(2) an ordered magnetic moment parallel to the magnetically easy c-axis is forbidden by symmetry. Further low-temperature experiments give evidence for a second magnetic phase transition in CePdAl between 0.6 and 1.3 K. Magnetic structures of CePdAl are compared with those of the isostructural compound TbNiAl, where a non-zero ordered magnetic moment for the geometrically frustrated Tb(2) atoms is allowed by symmetry.

  15. Synthesis, crystal structures and spectroscopic properties of triazine-based hydrazone derivatives; a comparative experimental-theoretical study.

    PubMed

    Arshad, Muhammad Nadeem; Bibi, Aisha; Mahmood, Tariq; Asiri, Abdullah M; Ayub, Khurshid

    2015-04-03

    We report here a comparative theoretical and experimental study of four triazine-based hydrazone derivatives. The hydrazones are synthesized by a three step process from commercially available benzil and thiosemicarbazide. The structures of all compounds were determined by using the UV-Vis., FT-IR, NMR (1H and 13C) spectroscopic techniques and finally confirmed unequivocally by single crystal X-ray diffraction analysis. Experimental geometric parameters and spectroscopic properties of the triazine based hydrazones are compared with those obtained from density functional theory (DFT) studies. The model developed here comprises of geometry optimization at B3LYP/6-31G (d, p) level of DFT. Optimized geometric parameters of all four compounds showed excellent correlations with the results obtained from X-ray diffraction studies. The vibrational spectra show nice correlations with the experimental IR spectra. Moreover, the simulated absorption spectra also agree well with experimental results (within 10-20 nm). The molecular electrostatic potential (MEP) mapped over the entire stabilized geometries of the compounds indicated their chemical reactivates. Furthermore, frontier molecular orbital (electronic properties) and first hyperpolarizability (nonlinear optical response) were also computed at the B3LYP/6-31G (d, p) level of theory.

  16. Brasilenyne and cis-dihydrorhodophytin: Antifeedant medium-ring haloethers from a sea hare (Aplysia brasiliana)

    PubMed Central

    Kinnel, R. B.; Dieter, R. K.; Meinwald, J.; Van Engen, D.; Clardy, J.; Eisner, T.; Stallard, M. O.; Fenical, W.

    1979-01-01

    Two straight-chain C15 fish antifeedants have been isolated from the sea hare Aplysia brasiliana. Chemical, spectral, and x-ray diffraction studies led to the characterization of these medium-ring ethers as brasilenyne (2) and cis-dihydrorhodophytin (3). The oxonin ring system of 2 is novel in nature. Biosynthetic considerations permit the postulation that a third compound, a noncrystalline congener of these compounds, is cis-isodihydrohodophytin (4). PMID:16592687

  17. Crystallization of a Keplerate-type polyoxometalate into a superposed kagome-lattice with huge channels.

    PubMed

    Saito, Masaki; Ozeki, Tomoji

    2012-09-07

    Crystal structures of two Sr(2+) salts of the Keplerate-type polyoxometalate, [Mo(VI)(72)Mo(V)(60)O(372)(CH(3)COO)(30)(H(2)O)(72)](42-), have been determined by single crystal X-ray diffraction. One compound exhibits a superposed kagome-lattice with huge channels whose diameters measure approximately 3.0 nm, while the arrangement of the Keplerate anions in the other compound approximates to a distorted cubic close packing.

  18. Effect of CdS Growth Time on the Optical Properties of One-Pot Preparation of CdS-Ag2S Binary Compounds

    NASA Astrophysics Data System (ADS)

    Karimipour, M.; Izadian, L.; Molaei, M.

    2018-02-01

    CdS-Ag2S binary nanoparticles were synthesized using a facile one-pot microwave irradiation method. The effect of initial nucleation of CdS quantum dots (QDs) using 3 min, 5 min, and 7 min of microwave irradiation on the optical properties of the final compound was studied. The composition and crystal structure of the compounds were verified using energy dispersive x-ray spectroscopy and x-ray diffraction. They revealed that existence of Ag and Cd elements with an atomic ratio of 0.19 crystalizes in the form of monoclinic Ag2S and hexagonal CdS. Scanning electron microscope images showed a spherical morphology of the resultant compound, and transmission electron microscope images showed the formation of fine particles of CdS-Ag2S composites with an average size of 5-7 nm and 10-14 nm for CdS and Ag2S, respectively. Photoluminescence spectroscopy revealed that the initial growth time of CdS has a crucial effect on the emission of binary compounds such that for 3 min and 5 min of irradiation of CdS solution, the binary compound obtains strong red and considerable near-IR emission (850 nm), but for longer time, it rapidly quenches. The results indicate that the strong red emission can be tuned from 600 nm up to 700 nm with prolonging nucleation time of CdS. This study also emphasized that the origin of red emission strongly depends on the size and defects created in the CdS QDs.

  19. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles

    PubMed Central

    Arunachalam, Kantha Deivi; Arun, Lilly Baptista; Annamalai, Sathesh Kumar; Arunachalam, Aarrthy M

    2015-01-01

    Background Gymnema sylvestre is an ethno-pharmacologically important medicinal plant used in many polyherbal formulations for its potential health benefits. Silver nanoparticles (SNPs) were biofunctionalized using aqueous leaf extracts of G. sylvestre. The anticancer properties of the bioactive compounds and the biofunctionalized SNPs were compared using the HT29 human adenoma colon cancer cell line. Methods The preliminary phytochemical screening for bioactive compounds from aqueous extracts revealed the presence of alkaloids, triterpenes, flavonoids, steroids, and saponins. Biofunctionalized SNPs were synthesized using silver nitrate and characterized by ultraviolet–visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and X-ray diffraction for size and shape. The characterized biofunctionalized G. sylvestre were tested for its in vitro anticancer activity against HT29 human colon adenocarcinoma cells. Results The biofunctionlized G. sylvestre SNPs showed the surface plasmon resonance band at 430 nm. The scanning electron microscopy images showed the presence of spherical nanoparticles of various sizes, which were further determined using the Scherrer equation. In vitro cytotoxic activity of the biofunctionalized green-synthesized SNPs (GSNPs) indicated that the sensitivity of HT29 human colon adenocarcinoma cells for cytotoxic drugs is higher than that of Vero cell line for the same cytotoxic agents and also higher than the bioactive compound of the aqueous extract. Conclusion Our results show that the anticancer properties of the bioactive compounds of G. sylvestre can be enhanced through biofunctionalizing the SNPs using the bioactive compounds present in the plant extract without compromising their medicinal properties. PMID:25565802

  20. Designing a diverse high-quality library for crystallography-based FBDD screening.

    PubMed

    Tounge, Brett A; Parker, Michael H

    2011-01-01

    A well-chosen set of fragments is able to cover a large chemical space using a small number of compounds. The actual size and makeup of the fragment set is dependent on the screening method since each technique has its own practical limits in terms of the number of compounds that can be screened and requirements for compound solubility. In this chapter, an overview of the general requirements for a fragment library is presented for different screening platforms. In the case of the FBDD work at Johnson & Johnson Pharmaceutical Research and Development, L.L.C., our main screening technology is X-ray crystallography. Since every soaked protein crystal needs to be diffracted and a protein structure determined to delineate if a fragment binds, the size of our initial screening library cannot be a rate-limiting factor. For this reason, we have chosen 900 as the appropriate primary fragment library size. To choose the best set, we have developed our own mix of simple property ("Rule of 3") and "bad" substructure filtering. While this gets one a long way in terms of limiting the fragment pool, there are still tens of thousands of compounds to choose from after this initial step. Many of the choices left at this stage are not drug-like, so we have developed an FBDD Score to help select a 900-compound set. The details of this score and the filtering are presented. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Synthesis, characterization, spectroscopic properties and DFT study of a new pyridazinone family

    NASA Astrophysics Data System (ADS)

    Arrue, Lily; Rey, Marina; Rubilar-Hernandez, Carlos; Correa, Sebastian; Molins, Elies; Norambuena, Lorena; Zarate, Ximena; Schott, Eduardo

    2017-11-01

    Nitrogen compounds are widely investigated due to their pharmacological properties such as antihypertensive, antinociceptive, antibacterial, antifungal, analgesic, anticancer and inhibition activities and lately even as pesticide. In this context, we present the synthesis of new compounds: (E)-6-(3,4-dimethoxyphenyl)-3-(3-(3,4-dimethoxyphenyl)acryloyl)-1-(4-R-phenyl)- 5,6-dihydropyridazin-4(1H)-one (with R = sbnd H(1), -Cl(2), -Br(3), sbnd I(4) and sbnd COOH(5)) that was carried out by reaction of (1E, 6E)-1,7-bis(3,4-dimethoxyphenyl)hepta-1,6-diene-3,5-dione with a substituted phenylamine with general formula p-R-C6H4sbnd NH2 (R = sbnd H (1), sbnd Cl (2), -Br(3), sbnd I(4) and sbnd COOH(5)). This is the first synthesis report of a pyridazinone using as precursors a curcuminoid derivative and a diazonium salt formed in situ. All compounds were characterized by EA, FT-IR, UV-Vis, Emission,1H- and13C-NMR spectroscopy and the crystalline and molecular structure of 4 was solved by X-rays diffraction method. DFT and TD-DFT quantum chemical calculations were also employed to characterize the compounds and provide a rational explanation to the spectroscopic properties. To assess the biological activity of the systems, we focused on pesticide tests on compound 2, which showed an inhibitory effect in plant growth of Agrostis tenuis Higland.

  2. Electron Diffraction Using Transmission Electron Microscopy

    PubMed Central

    Bendersky, Leonid A.; Gayle, Frank W.

    2001-01-01

    Electron diffraction via the transmission electron microscope is a powerful method for characterizing the structure of materials, including perfect crystals and defect structures. The advantages of electron diffraction over other methods, e.g., x-ray or neutron, arise from the extremely short wavelength (≈2 pm), the strong atomic scattering, and the ability to examine tiny volumes of matter (≈10 nm3). The NIST Materials Science and Engineering Laboratory has a history of discovery and characterization of new structures through electron diffraction, alone or in combination with other diffraction methods. This paper provides a survey of some of this work enabled through electron microscopy. PMID:27500060

  3. Functionalization of lamellar molybdenum disulphide nanocomposite with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Lavayen, V.; O'Dwyer, C.; Ana, M. A. Santa; Mirabal, N.; Benavente, E.; Cárdenas, G.; González, G.; Torres, C. M. Sotomayor

    2007-01-01

    This work explores the functionalization of an organic-inorganic MoS2 lamellar compound, prepared by a chemical liquid deposition method (CLD), that has an interlamellar distance of ∼5.2 nm, using clusters of gold nanoparticles. The gold nanoparticles have a mean diameter of 1.2 nm, a stability of ∼85 days, and a zeta potential measured to be ζ = -6.8 mV (solid). The nanoparticles are localized in the hydrophilic zones, defined by the presence of amine groups of the surfactant between the lamella of MoS2. SEM, TEM, EDAX and electron diffraction provide conclusive evidence of the interlamellar insertion of the gold nanoparticles in the MoS2.

  4. Synthesis, structural, thermal and optical studies of 1-ethyl-2,6-dimethyl-4-hydroxy pyridinium halides.

    PubMed

    Dhanuskodi, S; Manivannan, S; Kirschbaum, K

    2006-05-15

    1-Ethyl-2,6-dimethyl-4-hydroxy pyridinium chloride dihydrate and bromide dihydrate salts have been synthesized and their single crystals were grown by the slow evaporation of aqueous solution at 30 degrees C. The grown crystals were characterized by elemental analysis, FT-NMR and FT-IR techniques to confirm the formation of the expected compound. Optical transmittance window in aqueous solution was found to be 275-1100 nm by UV-vis-NIR technique. Thermogravimetric and differential thermal analyses reveal thermal stability and the presence of two water molecules in the crystal lattices. The crystal structure of chloride salt was also determined by X-ray diffraction method.

  5. Crystal structure and electrochemical characteristics of non-AB 5 type La-Ni system alloys

    NASA Astrophysics Data System (ADS)

    Shi, Siqi; Ouyang, Chuying; Lei, Minsheng

    The La-Ni system compounds have been prepared by arc-melting method under Ar atmosphere. X-ray diffraction analysis reveals that the as-prepared alloys consist of different phases. The electrochemical properties, including activation, maximum discharge capacity, high rate chargeability (HRC), and high rate dischargeability (HRD) of these alloy electrodes have been studied through the charge-discharge recycle testing at different temperatures and charge (or discharge) currents. Among the La-Ni alloy electrodes studied, LaNi 2.28 alloy has the most excellent high rate charging performance, and La 2Ni 7 alloy exhibit the highest high rate dischargeability, while La 7Ni 3 alloy is capable of discharging at low temperature.

  6. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage

    NASA Astrophysics Data System (ADS)

    Raja, K.; Saravanakumar, A.; Vijayakumar, R.

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.

  7. Synthesis and electrochemical characterizations of spinel LiMn1.94MO4 (M = Mn0.06, Mg0.06, Si0.06, (Mg0.03Si0.03)) compounds as cathode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Hongyuan; Liu, Xingquan; Cheng, Cai; Li, Qiang; Zhang, Zheng; Wu, Yue; Chen, Bing; Xiong, Weiqiang

    2015-05-01

    The spinel LiMn1.94MO4 (M = Mn0.06, Mg0.06, Si0.06, (Mg0.03Si0.03)) compounds are successfully synthesized by citric acid-assisted sol-gel method. The crystal structures and morphologies of synthesized compounds are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. All the compounds possess the cubic spinel structure of LiMn2O4 with space group of Fd-3m. The electrochemical properties of synthesized compounds are investigated by galvanostatic charge-discharge test, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results show that the Si-doping can increase the discharge capacity of LiMn2O4 due to the more expanded and regular MnO6 octahedra. In particular, for the LiMn1.94Mg0.03Si0.03O4 compound, the addition of Si4+ ions can make up for the shortage of Mg-doping in term of the discharge capacity. As a result, the Mg2+ and Si4+ co-doping has the effect of synergistic enhancement, which can make full use of the respective advantages of Mg-doping and Si-doping. The optimal LiMn1.94Mg0.03Si0.03O4 can deliver the initial discharge capacity of 128.3 mAh g-1 with good capacity retention of 92.8% after 100 cycles at 0.5 C in the voltage range of 3.20-4.35 V. Compared with the undoped LiMn2O4, the co-doped compound also presents superior rate performance, especially the capacity recovery performance.

  8. Aspherical-atom modeling of coordination compounds by single-crystal X-ray diffraction allows the correct metal atom to be identified.

    PubMed

    Dittrich, Birger; Wandtke, Claudia M; Meents, Alke; Pröpper, Kevin; Mondal, Kartik Chandra; Samuel, Prinson P; Amin Sk, Nurul; Singh, Amit Pratap; Roesky, Herbert W; Sidhu, Navdeep

    2015-02-02

    Single-crystal X-ray diffraction (XRD) is often considered the gold standard in analytical chemistry, as it allows element identification as well as determination of atom connectivity and the solid-state structure of completely unknown samples. Element assignment is based on the number of electrons of an atom, so that a distinction of neighboring heavier elements in the periodic table by XRD is often difficult. A computationally efficient procedure for aspherical-atom least-squares refinement of conventional diffraction data of organometallic compounds is proposed. The iterative procedure is conceptually similar to Hirshfeld-atom refinement (Acta Crystallogr. Sect. A- 2008, 64, 383-393; IUCrJ. 2014, 1,61-79), but it relies on tabulated invariom scattering factors (Acta Crystallogr. Sect. B- 2013, 69, 91-104) and the Hansen/Coppens multipole model; disordered structures can be handled as well. Five linear-coordinate 3d metal complexes, for which the wrong element is found if standard independent-atom model scattering factors are relied upon, are studied, and it is shown that only aspherical-atom scattering factors allow a reliable assignment. The influence of anomalous dispersion in identifying the correct element is investigated and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Epitaxial growth of a mono-crystalline metastable AuIn layer at the Au/InP(001) interface

    NASA Astrophysics Data System (ADS)

    Renda, M.; Morita, K.

    1990-01-01

    Thermal annealing of a gold layer deposited on the InP(001)-p(2×4) surface has been studied in-situ by means of LEED, AES and RBS techniques and by post analysis of RBS-channeling and glancing incidence X-ray diffraction. A clean LEED pattern of p(2×2) spots was observed for the specimen annealed for 10 min at 300°C. The composition ratio of Au/In in the epitaxial compound layer was found to be 49/51 by RBS and several at% of P was also detected by post sputter-AES analysis. It was also found that the epitaxial layer shows a clear channeling dip for an incident ion beam which is aligned along the <001> axis of InP substrate. The glancing incidence X-ray diffraction analysis indicates diffraction peaks from the pseudo-orthorombic phase of AuIn. From these experimental results, it is concluded that the epitaxial Au-compound layer is a mono-crystalline metastable phase of AuIn, of which every three atomic rows of Au or In in the [110] direction would be situated on every four atomic rows in the [010] direction of the In(001) face of the InP crystal.

  10. Applications of cyclodextrins in medical textiles - review.

    PubMed

    Radu, Cezar-Doru; Parteni, Oana; Ochiuz, Lacramioara

    2016-02-28

    This paper presents data on the general properties and complexing ability of cyclodextrins and assessment methods (phase solubility, DSC tests and X-ray diffraction, FTIR spectra, analytical method). It focuses on the formation of drug deposits on the surface of a textile underlayer, using a cyclodextrin compound favoring the inclusion of a drug/active principle and its release onto the dermis of patients suffering from skin disorders, or for protection against insects. Moreover, it presents the kinetics, duration, diffusion flow and release media of the cyclodextrin drug for in vitro studies, as well as the release modeling of the active principle. The information focuses on therapies: antibacterial, anti-allergic, antifungal, chronic venous insufficiency, psoriasis and protection against insects. The pharmacodynamic agents/active ingredients used on cotton, woolen and synthetic textile fabrics are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effective holographic recordings in the photopolymer nanocomposites with functionalized silica nanoparticle and polyurethane matrix

    NASA Astrophysics Data System (ADS)

    Han, Samsook; Lee, Muncheul; Kim, Byung Kyu

    2011-11-01

    Effective holographic nanocomposites were developed by the surface-functionalized silica nanoparticles and two acrylate monomers/polyurethane (PU) matrix polymer. The functionalization was done with silane compounds carrying long alkyl chain or vinyl group. We evaluated the holographic nanocomposite films by the diffraction efficiency, volume shrinkage, optical loss, and the film morphology. It was found that acrylate monomers/PU system gave higher diffraction efficiency than those of two monomers due to the high refractive index mismatch between the acrylate-rich and PU-rich regions. With the modification of silica particle, up to 35% of particle loading was possible to give a maximum diffraction efficiency of 93.6% for a film of 20 μm in thickness, along with improved refractive index modulation and the sensitivity.

  12. Investigation of the commensurate magnetic structure in the heavy-fermion compound CePt 2 In 7 using magnetic resonant x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, Nicolas; Wermeille, Didier; Casati, Nicola

    In this paper, we investigated the magnetic structure of the heavy-fermion compound CePt 2In 7 below T N = 5.34 (2) K using magnetic resonant x-ray diffraction at ambient pressure. The magnetic order is characterized by a commensurate propagation vector k 1/2 = (1/2, 1/2, 1/2) with spins lying in the basal plane. Our measurements did not reveal the presence of an incommensurate order propagating along the high-symmetry directions in reciprocal space but cannot exclude other incommensurate modulations or weak scattering intensities. The observed commensurate order can be described equivalently by either a single-k structure or by a multi-k structure.more » Furthermore we explain how a commensurate-only ordering may explain the broad distribution of internal fields observed in nuclear quadrupolar resonance experiments [Sakai et al., Phys. Rev. B 83, 140408 (2011)] that was previously attributed to an incommensurate order. We also report powder x-ray diffraction showing that the crystallographic structure of CePt 2In 7 changes monotonically with pressure up to P = 7.3 GPa at room temperature. The determined bulk modulus B 0 = 81.1 (3) GPa is similar to those of the Ce-115 family. Broad diffraction peaks confirm the presence of pronounced strain in polycrystalline samples of CePt 2In 7. Lastly, we discuss how strain effects can lead to different electronic and magnetic properties between polycrystalline and single crystal samples.« less

  13. Investigation of the commensurate magnetic structure in the heavy-fermion compound CePt 2 In 7 using magnetic resonant x-ray diffraction

    DOE PAGES

    Gauthier, Nicolas; Wermeille, Didier; Casati, Nicola; ...

    2017-08-10

    In this paper, we investigated the magnetic structure of the heavy-fermion compound CePt 2In 7 below T N = 5.34 (2) K using magnetic resonant x-ray diffraction at ambient pressure. The magnetic order is characterized by a commensurate propagation vector k 1/2 = (1/2, 1/2, 1/2) with spins lying in the basal plane. Our measurements did not reveal the presence of an incommensurate order propagating along the high-symmetry directions in reciprocal space but cannot exclude other incommensurate modulations or weak scattering intensities. The observed commensurate order can be described equivalently by either a single-k structure or by a multi-k structure.more » Furthermore we explain how a commensurate-only ordering may explain the broad distribution of internal fields observed in nuclear quadrupolar resonance experiments [Sakai et al., Phys. Rev. B 83, 140408 (2011)] that was previously attributed to an incommensurate order. We also report powder x-ray diffraction showing that the crystallographic structure of CePt 2In 7 changes monotonically with pressure up to P = 7.3 GPa at room temperature. The determined bulk modulus B 0 = 81.1 (3) GPa is similar to those of the Ce-115 family. Broad diffraction peaks confirm the presence of pronounced strain in polycrystalline samples of CePt 2In 7. Lastly, we discuss how strain effects can lead to different electronic and magnetic properties between polycrystalline and single crystal samples.« less

  14. Synthesis, crystal structure, and thermal behavior of the rare earth sulfates (H{sub 5}O{sub 2})M(SO{sub 4}){sub 2} (M = Ho, Er, Y)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wickleder, M.S.

    1998-10-01

    The compounds (H{sub 5}O{sub 2})M(SO{sub 4}){sub 2} (M = Ho, Er, Y) were obtained from the metal oxides M{sub 2}O{sub 3} (M = Ho, Er,m Y) using diluted sulfuric acid (80%). The crystal structure of the isotypic compounds has been determined from single-crystal data by direct and Fourier methods. The characteristic feature of the crystal structure is a network of edge-sharing [MO{sub 8}] trigon dodecahedra and [SO{sub 4}] tetrahedra providing channels along [111] which are occupied by disordered H{sub 5}O{sub 2}{sup +} ions. In situ X-ray powder investigations exhibit that the compounds are also formed as intermediate phases during themore » reaction of the hydrogen sulfates M(HSO{sub 4}){sub 3} (M = Ho, Er, Y) with water. According to DSC measurements and temperature-dependent powder diffraction studies, the thermal decomposition of the title compounds follows a two-step mechanism. Around 150 C, two molecules of water are driven off, yielding M(HSO{sub 4})(SO{sub 4}) (M = Ho, Er, Y), and finally, at 320 C, H{sub 2}SO{sub 4} (H{sub 2}O + SO{sub 3}) is released to give the anhydrous sulfates M{sub 2}(SO{sub 4}){sub 3}.« less

  15. Powder X-ray diffraction, infrared and conductivity studies of AgSbMP{sub 3}O{sub 12} (M = Al, Ga, Fe and Cr)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rambabu, G.; Anantharamulu, N.; Koteswara Rao, K.

    2008-06-03

    New Nasicon type of compounds of composition AgSbMP{sub 3}O{sub 12} (M = Al, Ga, Fe and Cr) are synthesized by solid-state method. All the compounds crystallize in the hexagonal lattice with space group R3-barc. The infrared spectra of these compounds show characteristic bands due to PO{sub 4} group. The frequency independent conductivity of these compounds shows Arrhenius type behavior and the activation energy for conduction is in the range 0.40-0.55 eV. Frequency independent conductivity ({sigma}{sub dc}) studies and frequency dependent ({sigma}{sub ac}) impedance measurements correlate well. The Cole-Cole plots do not show any spikes on the lower frequency side indicatingmore » negligible electrode effects. The activation energies obtained from the plots of log {sigma}{sub dc}T versus 1/T, log {sigma}{sub ac}(0) versus 1/T and log {tau} versus 1/T are approximately the same. The peak width at half height for electric modulus (M'') plot is {approx}1.24 decades for all samples, which is close to 1.14 decades observed for Debye solid. The height of electric modulus (M'') obtained from the experimental plots are close to that of M'' (max) = C{sub 0}/2C indicating the Debye nature of the samples.« less

  16. Synthesis, spectral characterization, molecular structure and pharmacological studies of N'-(1, 4-naphtho-quinone-2yl) isonicotinohyWdrazide

    NASA Astrophysics Data System (ADS)

    Kavitha Rani, P. R.; Fernandez, Annette; George, Annie; Remadevi, V. K.; Sudarsanakumar, M. R.; Laila, Shiny P.; Arif, Muhammed

    2015-01-01

    A simple and efficient procedure was employed for the synthesis of N'-(1,4-naphtho-quinone-2-yl) isonicotinohydrazide (NIH) by the reaction of 2-hydroxy-1,4-naphthaquinone (lawsone) and isonicotinoyl hydrazine in methanol using ultrasonic irradiation. Lawsone is the principal dye, isolated from the leaves of henna (Lawsonia inermis). Structural modification was done on the molecule aiming to get a more active derivative. The structure of the parent compound and the derivative was characterized by elemental analyses, infrared, electronic, 1H, 13C NMR and GC-MS spectra. The fluorescence spectral investigation of the compound was studied in DMSO and ethanol. Single crystal X-ray diffraction studies reveal that NIH crystallizes in monoclinic space group. The DNA cleavage study was monitored by gel electrophoresis method. The synthesized compound was found to have significant antioxidant activity against DPPH radical (IC50 = 58 μM). The in vitro cytotoxic studies of the derivative against two human cancer cell lines MCF-7 (human breast cancer) and HCT-15 (human colon carcinoma cells) using MTT assay revealed that the compound exhibited higher cytotoxic activity with a lower IC50 value indicating its efficiency in killing the cancer cells even at low concentrations. These results suggest that the structural modifications performed on lawsone could be considered a good strategy to obtain a more active drug.

  17. Formation of TbCu7-type CeFe10Zr0.8 by rapid solidification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, C; Pinkerton, FE; Herbst, JF

    2013-08-25

    We report the discovery of a new ternary compound prepared by melt spinning induction melted ingot of nominal composition CeFe11Zr. The sample melt spun at v(s) = 25 m/s exhibits the hexagonal TbCu7-type structure of space group P6/mmm. Through fitting the experimental X-ray diffraction pattern by Rietveld method, we have successfully derived the crystal structure of the new compound melt spun at v(s) = 25 m/s to be CeFe10Zr0.8. Subsequent density function theory calculation fully supports the chemical stability of the new ternary compound. Annealing test showed that the melt spun CeFe10Zr0.8 is stable up to 700 degrees C andmore » annealing at higher temperature would cause it to decompose into hexagonal Ce2Fe17-type structure and ZrFe2. The Curie temperature measurement found that CeFe10Zr0.8 boasts a T-c = 181 degrees C, which is higher than the Tc values of all known Ce-Fe binary compounds, and 30 degrees C higher than that of Ce2Fe14B. These interesting properties stimulate continued search for new Ce-based permanent magnets that could be a cost effective solution to engineering needs in the future. (c) 2013 Elsevier B.V. All rights reserved.« less

  18. Improving the Carprofen Solubility: Synthesis of the Zn2Al-LDH Hybrid Compound.

    PubMed

    Capsoni, Doretta; Quinzeni, Irene; Bruni, Giovanna; Friuli, Valeria; Maggi, Lauretta; Bini, Marcella

    2018-01-01

    The development of efficient strategies for drug delivery is considerably desired. Indeed, often several issues such as the drug solubility, the control of the drug release rate, the targeted delivery of drugs, the drug bioavailability, and the minimization of secondary effects still present great obstacles. Different methodologies have been proposed, but the use of nano-hybrids compounds that combine organic and inorganic substances seems particularly promising. An interesting inorganic host is the layered double hydroxide (LDH) with a sheets structure and formula [M 2+ 1-x M 3+ x (OH) 2 ](A n- ) x/n yH 2 O (M 2+  = Zn, Mg; M 3+  = Al; A n-  = nitrates, carbonates, chlorides). The possibility to exchange these counterions with drug molecules makes these systems ideal candidates for the drug delivery. In this article, we synthesize by co-precipitation method the hybrid compound Carprofen-Zn 2 Al-LDH. Carprofen, a poorly soluble anti-inflammatory drug, could also benefit of the association with a natural antacid such as LDH, to reduce the gastric irritation after its administration. Through X-ray diffraction and Fourier-transformed infrared spectroscopy (FT-IR), we could verify the effective drug intercalation into LDH. The dissolution tests clearly demonstrate a significant improvement of the drug release rate when carprofen is in the form of hybrid compound. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. New metal-organic frameworks of [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La, Ce) and [Ce2(C2O4)(C6H6O7)2] . 4H2O

    NASA Astrophysics Data System (ADS)

    Weng, Sheng-Feng; Wang, Yun-Hsin; Lee, Chi-Shen

    2012-04-01

    Two novel materials, [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La(1a), Ce(1b)) and [Ce2(C2O4)(C6H6O7)2] . 4H2O (2), with a metal-organic framework (MOF) were prepared with hydrothermal reactions and characterized with photoluminescence, magnetic susceptibility, thermogravimetric analysis and X-ray powder diffraction in situ. The crystal structures were determined by single-crystal X-ray diffraction. Compound 1 crystallized in triclinic space group P1¯ (No. 2); compound 2 crystallized in monoclinic space group P21/c (No. 14). The structure of 1 is built from a 1D MOF, composed of deprotonated citric ligands of three kinds. Compound 2 contains a 2D MOF structure consisting of citrate and oxalate ligands; the oxalate ligand arose from the decomposition in situ of citric acid in the presence of CuII ions. Photoluminescence spectra of compounds 1b and 2 revealed transitions between the 5d1 excited state and two levels of the 4f1 ground state (2F5/2 and 2F7/2). Compounds 1b and 2 containing CeIII ion exhibit a paramagnetic property with weak antiferromagnetic interactions between the two adjacent magnetic centers.

  20. Physical and Chemical Characterization of Therapeutic Iron Containing Materials: A Study of Several Superparamagnetic Drug Formulations with the β-FeOOH or Ferrihydrite Structure

    NASA Astrophysics Data System (ADS)

    Funk, Felix; Long, Gary J.; Hautot, Dimitri; Büchi, Ruth; Christl, Iso; Weidler, Peter G.

    2001-03-01

    The effectiveness of therapeutically used iron compounds is related to their physical and chemical properties. Four different iron compounds used in oral, intravenous, and intramuscular therapy have been examined by X-ray powder diffraction, iron-57 Mössbauer spectroscopy, transmission electron microscopy, BET surface area measurement, potentiometric titration and studied through dissolution kinetics determinations using acid, reducing and chelating agents. All compounds are nanosized with particle diameters, as determined by X-ray diffraction, ranging from 1 to 4.1 nm. The superparamagnetic blocking temperatures, as determined by Mössbauer spectroscopy, indicate that the relative diameters of the aggregates range from 2.5 to 4.1 nm. Three of the iron compounds have an akaganeite-like structure, whereas one has a ferrihydrite-like structure. As powders the particles form large and dense aggregates which have a very low surface area on the order of 1 m2 g-1. There is evidence, however, that in a colloidal solution the surface area is increased by two to three orders of magnitude, presumably as a result of the break up of the aggregates. Iron release kinetics by acid, chelating and reducing agents reflect the high surface area, the size and crystallinity of the particles, and the presence of the protective carbohydrate layer coating the iron compound. Within a physiologically relevant time period, the iron release produced by acid or large chelating ligands is small. In contrast, iron is rapidly mobilized by small organic chelating agents, such as oxalate, or by chelate-forming reductants, such as thioglycolate.

  1. Crystal structure of YbCu6In6 and mixed valence behavior of Yb in YbCu(6-x)In(6+x) (x = 0, 1, and 2) solid solution.

    PubMed

    Subbarao, Udumula; Peter, Sebastian C

    2012-06-04

    High quality single crystals of YbCu(6)In(6) have been grown using the flux method and characterized by means of single crystal X-ray diffraction data. YbCu(6)In(6) crystallizes in the CeMn(4)Al(8) structure type, tetragonal space group I4/mmm, and the lattice constants are a = b = 9.2200(13) Å and c = 5.3976(11) Å. The crystal structure of YbCu(6)In(6) is composed of pseudo-Frank-Kasper cages filled with one ytterbium atom in each ring. The neighboring cages share corners along [100] and [010] to build the three-dimensional network. YbCu(6-x)In(6+x) (x = 0, 1, and 2) solid solution compounds were obtained from high frequency induction heating and characterized using powder X-ray diffraction. The magnetic susceptibilities of YbCu(6-x)In(6+x) (x = 0, 1, and 2) were investigated in the temperature range 2-300 K and showed Curie-Weiss law behavior above 50 K, and the experimentally measured magnetic moment indicates mixed valent ytterbium. A deviation in inverse susceptibility data at 200 K suggests a valence transition from Yb(2+) to Yb(3+) as the temperature decreases. An increase in doping of Cu at the Al2 position enhances the disorder in the system and enhancement in the trivalent nature of Yb. Electrical conductivity measurements show that all compounds are of a metallic nature.

  2. Bifunctional catalyst of graphite-encapsulated iron compound nanoparticle for magnetic carbon nanotubes growth by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Saraswati, Teguh Endah; Prasiwi, Oktaviana Dewi Indah; Masykur, Abu; Anwar, Miftahul

    2017-01-01

    The carbon nanotube has widely taken great attractive in carbon nanomaterial research and application. One of its preparation methods is catalytic chemical vapor deposition (CCVD) using catalyst i.e. iron, nickel, etc. Generally, except the catalyst, carbon source gasses as the precursor are still required. Here, we report the use of the bifunctional material of Fe3O4/C which has an incorporated core/shell structures of carbon-encapsulated iron compound nanoparticles. The bifunctional catalyst was prepared by submerged arc discharge that simply performed using carbon and carbon/iron oxide electrodes in ethanol 50%. The prepared material was then used as a catalyst in thermal chemical vapor deposition at 800°C flown with ethanol vapor as the primer carbon source in a low-pressure condition. This catalyst might play a dual role as a catalyst and secondary carbon source for growing carbon nanotubes at the time. The synthesized products were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The successful formation of carbon nanotubes was assigned by the shifted X-ray diffracted peak of carbon C(002), the iron oxides of Fe3O4 and γ-Fe2O3, and the other peaks which were highly considered to the other carbon allotropes with sp2 hybridization structures. The other assignment was studied by electron microscopy which successfully observed the presence of single-wall carbon nanotubes. In addition, the as-prepared carbon nanotubes have a magnetic property which was induced by the remaining of metal catalyst inside the CNT.

  3. Neutron diffraction study of Tb0.5Ho0.5Mn2Si2

    NASA Astrophysics Data System (ADS)

    Pandey, Swati; Siruguri, Vasudeva; Rawat, Rajeev

    2018-02-01

    The magnetic properties of tetragonal polycrystalline intermetallic compound Tb0.5Ho0.5Mn2Si2 have been investigated using temperature dependent dc magnetic susceptibility and neutron powder diffraction studies. Results of high temperature susceptibility data shows anomaly at TN = 510 K while low temperature susceptibility data indicate two successive anomalies at T1 = 11 K and T2 = 25 K. Metamagnetic transition is observed in magnetization versus field curves. Our neutron diffraction results indicate three different magnetic regions with different magnetic structures. Neutron diffraction data shows that below T2, the intensities of some of the nuclear peaks get enhanced indicating ferromagnetic ordering, while additional magnetic reflections are observed below T1, indicating antiferromagnetic order. Ordering of rare earth sublattice at low temperature rearranges the ordering of Mn sublattice and results in reorientation of Mn spins at T1. At 2 K Tb/Ho moments are aligned along c-axis while Mn moments are aligned perpendicular to c-axis.

  4. Rauvomines A and B, Two Monoterpenoid Indole Alkaloids from Rauvolfia vomitoria.

    PubMed

    Zeng, Jun; Zhang, Dong-Bo; Zhou, Pan-Pan; Zhang, Qi-Li; Zhao, Lei; Chen, Jian-Jun; Gao, Kun

    2017-08-04

    Two unusual normonoterpenoid indole alkaloids rauvomine A (1) and rauvomine B (2), together with two known compounds peraksine (3) and alstoyunine A (4), were isolated from the aerial parts of Rauvolfia vomitoria. The structures with absolute configurations of 1 and 2 were elucidated by spectroscopic analysis, single-crystal X-ray diffraction, and electronic circular dichroism (ECD) calculations. Compound 2 is a novel C 18 normonoterpenoid indole alkaloid with a substituted cyclopropane ring that forms an unusual 6/5/6/6/3/5 hexcyclic rearranged ring system. The plausible biogenetic pathways of 1 and 2 were proposed. Compound 2 exhibited significant anti-inflammatory activity.

  5. Structural, vibrational, thermal and optical studies of organic single crystal: Benzotriazolium p-toluene sulfonate (BTPTS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, R. Ramesh; Sathya, P.; Gopalakrishnan, R., E-mail: krgkrishnan@yahoo.com

    Benzotriazolium p-toluene sulfonate (BTPTS) was grown by solution growth technique. The powder X-ray diffraction analysis was carried out to evaluate crystal system of the compound. LeBail Profile fitting analysis was performed to extract the individual peak intensities. FTIR spectrum analysis was recorded to study vibration frequencies of the prepared organic salt. Thermal studies were carried out using TG-DSC analysis. Optical absorption and energy band gap of the title compound was evaluated by UV-Vis spectral study.

  6. Separation and imaging diffractions by a sparsity-promoting model and subspace trust-region algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Caixia; Zhao, Jingtao; Wang, Yanfei; Wang, Chengxiang; Geng, Weifeng

    2017-03-01

    The small-scale geologic inhomogeneities or discontinuities, such as tiny faults, cavities or fractures, generally have spatial scales comparable to or even smaller than the seismic wavelength. Therefore, the seismic responses of these objects are coded in diffractions and an attempt to high-resolution imaging can be made if we can appropriately image them. As the amplitudes of reflections can be several orders of magnitude larger than those of diffractions, one of the key problems of diffraction imaging is to suppress reflections and at the same time to preserve diffractions. A sparsity-promoting method for separating diffractions in the common-offset domain is proposed that uses the Kirchhoff integral formula to enforce the sparsity of diffractions and the linear Radon transform to formulate reflections. A subspace trust-region algorithm that can provide globally convergent solutions is employed for solving this large-scale computation problem. The method not only allows for separation of diffractions in the case of interfering events but also ensures a high fidelity of the separated diffractions. Numerical experiment and field application demonstrate the good performance of the proposed method in imaging the small-scale geological features related to the migration channel and storage spaces of carbonate reservoirs.

  7. Vibrational, DFT, and thermal analysis of 2,4,6-triamino-1,3,5-triazin-1-ium 3-(prop-2-enoyloxy) propanoate acrylic acid monosolvate monohydrate

    NASA Astrophysics Data System (ADS)

    Sangeetha, V.; Govindarajan, M.; Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Anbalagan, G.

    2013-12-01

    New organic crystals of 2,4,6-triamino-1,3,5-triazin-1-ium 3-(prop-2-enoyloxy) propanoate acrylic acid monosolvate monohydrate (MAC) have been obtained from aqueous solution by the slow solvent evaporation method at room temperature. Single crystal X-ray diffraction analysis reveals that the compound crystallises in the triclinic system with centrosymmetric space group P-1. FT-IR and FT-Raman spectra of MAC have been recorded and analyzed. The molecular geometry and vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimization based on density functional theory (DFT) B3LYP method with 6-31G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction data. The theoretical results show that the optimized geometry can well reproduce the crystal structure, and the calculated vibrational frequency values show good agreement with experimental values. A study of the electronic properties, such as HOMO and LUMO energies and Molecular electrostatic potential (MEP) were performed. Mulliken charges and NBO charges of the title molecule were also calculated and interpreted. Thermogravimetric analysis has been done to study the thermal behaviour of MAC. The 13C and 1H nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results.

  8. Temperature-controlled two new Co(II) compounds with distinct topological networks: Syntheses, crystal structures and catalytic properties

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Hua; Long, Xu; Liu, Jing-Li; Zhang, Shuan; Zhang, Guang-Hui

    2018-04-01

    Two new Co(II) coordination compounds, namely [Co2(bptc)(bpp)2]n (1) and [Co(bptc)0.5(bpp)]n (2) (H4bptc = biphenyl-3,3‧,5,5‧-tetracarboxylic acid, bpp = 1,3-di(4-pyridyl)propane), have been hydrothermally synthesized from the same reactants via tuning the reaction temperature. Single crystal X-ray diffraction analyses revealed that both 1 and 2 feature 2D sheet motifs. Topological analyses revealed that compounds 1 and 2 show distinct topological networks. Under the weak Van der Waals interactions, the 2D sheet motifs of compounds 1 and 2 are further packed into 2D→3D interdigitated supramolecular frameworks. Moreover, the two Co(II) compounds show high catalytic activities for degradation of methyl orange (MO) in a Fenten-like process.

  9. New dihydro-β-agarofuran sesquiterpenes from Parnassia wightiana wall: isolation, identification and cytotoxicity against cancer cells.

    PubMed

    Lv, Chao; Zheng, Zuo-Lue; Miao, Fang; Geng, Hui-Ling; Zhou, Le; Liu, La-Ping

    2014-06-20

    Five new (4-8) and three known (1-3) dihydro-β-agarofuran sesquiterpene polyesters were isolated from the whole plants of Parnassia wightiana. The structures of all compounds were elucidated through spectroscopic analysis including 2D-NMR and HR-MS. The absolute configuration of these compounds was established by X-ray diffraction analysis, comparison of NOESY spectra and biogenetic means. The cytotoxities of compounds 2-8 were evaluated in vitro against HL-60, SMMC-7721, A549, MCF-7 and SW480 cell lines. Compounds 5-7 exhibited the highest activities with IC₅₀ values of 11.8-30.1 μM in most cases. The SAR revealed that the introduction of hydroxyl group was able to significantly improve the activities of the compounds for most of the cell lines.

  10. Quantitative assessment of image motion blur in diffraction images of moving biological cells

    NASA Astrophysics Data System (ADS)

    Wang, He; Jin, Changrong; Feng, Yuanming; Qi, Dandan; Sa, Yu; Hu, Xin-Hua

    2016-02-01

    Motion blur (MB) presents a significant challenge for obtaining high-contrast image data from biological cells with a polarization diffraction imaging flow cytometry (p-DIFC) method. A new p-DIFC experimental system has been developed to evaluate the MB and its effect on image analysis using a time-delay-integration (TDI) CCD camera. Diffraction images of MCF-7 and K562 cells have been acquired with different speed-mismatch ratios and compared to characterize MB quantitatively. Frequency analysis of the diffraction images shows that the degree of MB can be quantified by bandwidth variations of the diffraction images along the motion direction. The analytical results were confirmed by the p-DIFC image data acquired at different speed-mismatch ratios and used to validate a method of numerical simulation of MB on blur-free diffraction images, which provides a useful tool to examine the blurring effect on diffraction images acquired from the same cell. These results provide insights on the dependence of diffraction image on MB and allow significant improvement on rapid biological cell assay with the p-DIFC method.

  11. Two series of reactant's ratio-dependent lanthanide organic frameworks derived from nicotinic acid N-oxide and oxalate: synthesis, crystal structures and luminescence properties.

    PubMed

    Yu, Yanyan; Zhang, Lijuan; Zhou, Yunshan; Zuhra, Zareen

    2015-03-14

    Two series of lanthanide(III)–organic frameworks with the molecular formula [Ln2(NNO)2(OX)2(H2O)4]n (Ln = Eu 1, Tb 2, Sm 3, Dy 4, Gd 5) and [Ln2(NNO)4(OX)(H2O)2]n (Ln = Eu 6, Tb 7, Sm 8, Dy 9, Gd 10) were synthesized successfully under the same hydrothermal conditions with nicotinic N-oxide (HNNO) and oxalic acid (H2OX) as the mixed ligands merely through varying the molar ratio of the reactants. The compounds were characterized by IR, elemental analysis, UV, TG-DTA and powder X-ray diffraction (XRD). X-ray single-crystal diffraction analyses of compounds 1 and 7 selected as representatives and powder XRD analysis of the compounds revealed that both the series of compounds feature three-dimensional (3-D) open frameworks, and crystallize in the triclinic P1 space group while with different unit cell parameters. In compound 1, pairs of Eu(3+) ions and pairs of NNO(−) ligands connect with each other alternately to form a 1-D infinite Eu-NNO double chain, the adjacent 1-D double-chains are then joined together through OX(2−) ligands leading to a 2D layer, the 2-D layers are further ‘pillared’ by OX(2−) ligands resulting in a 3-D framework. In compound 7, the 1-D Tb-NNO infinite chain and its 2-D layer are formed in an almost similar fashion to that in compound 1. The difference between the structures of the two compounds 1 and 7 is that the adjacent 2-D layers in compound 7 are further connected by NNO(−) ligands resulting in a 3-D framework. The photoluminescence properties and energy transfer mechanism of the compounds were studied systematically. The energy level of the lowest triplet states of the HNNO ligand (23148 cm(−1)) was determined based on the phosphorescence spectrum of compound 5 at 77 K. The (5)D0 (Eu(3+)) and (5)D4 (Tb(3+)) emission lifetimes are 0.46 ms, 0.83 ms, 0.69 ms and 0.89 ms and overall quantum yields are 1.03%, 3.29%, 2.58% and 3.78% for the compounds 1, 2, 6 and 7, respectively.

  12. Anion ordering, magnetic structure and properties of the vacancy ordered perovskite Ba{sub 3}Fe{sub 3}O{sub 7}F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemens, Oliver, E-mail: oliver.clemens@nano.tu-darmstadt.de; Karlsruher Institut für Technologie, Institut für Nanotechnologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen; University of Birmingham, School of Chemistry, Birmingham B152TT

    2016-11-15

    This article describes a detailed investigation of the crystallographic and magnetic structure of perovskite type Ba{sub 3}Fe{sub 3}O{sub 7}F by a combined analysis of X-ray and neutron powder diffraction data. Complete ordering of vacancies within the perovskite lattice could be confirmed. In addition, the structure of the anion sublattice was studied by means of the valence bond method, which suggested partial ordering of the fluoride ions on two of the six crystallographically different anion sites. Moreover, the compound was found to show G-type antiferromagnetic ordering of Fe moments, in agreement with magnetometric measurements as well as previously recorded {sup 57}Femore » Mössbauer spectroscopy data. - Graphical abstract: The vacancy and anion ordered structure of Ba{sub 3}Fe{sub 3}O{sub 7}F is described together with its magnetic properties. - Highlights: • Ba{sub 3}Fe{sub 3}O{sub 7}F possesses a unique vacancy order not found for other perovskite type compounds. • The valence bond method was used to locate oxide and fluoride ions. • Fluoride ions are distributed only on two of the six anion sites in Ba{sub 3}Fe{sub 3}O{sub 7}F. • The compound shows G-type antiferromagnetic ordering of magnetic moments. • The magnetic structure could be refined in one of the maximal magnetic subgroups of the nuclear structure.« less

  13. Migration velocity analysis using residual diffraction moveout: a real-data example

    NASA Astrophysics Data System (ADS)

    Gonzalez, Jaime A. C.; de Figueiredo, José J. S.; Coimbra, Tiago A.; Schleicher, Jörg; Novais, Amélia

    2016-08-01

    Unfocused seismic diffraction events carry direct information about errors in the migration-velocity model. The residual-diffraction-moveout (RDM) migration-velocity-analysis (MVA) method is a recent technique that extracts this information by means of adjusting ellipses or hyperbolas to uncollapsed migrated diffractions. In this paper, we apply this method, which has been tested so far only on synthetic data, to a real data set from the Viking Graben. After application of a plane-wave-destruction (PWD) filter to attenuate the reflected energy, the diffractions in the real data become interpretable and can be used for the RDM method. Our analysis demonstrates that the reflections need not be completely removed for this purpose. Beyond the need to identify and select diffraction events in post-stack migrated sections in the depth domain, the method has a very low computational cost and processing time. To reach an acceptable velocity model of comparable quality as one obtained with common-midpoint (CMP) processing, only two iterations were necessary.

  14. Investigation of nanocrystalline zinc chromite obtained by two soft chemical routes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gingasu, Dana; Mindru, Ioana, E-mail: imandru@yahoo.com; Culita, Daniela C.

    2014-01-01

    Graphical abstract: - Highlights: • Two soft chemical routes to synthesize zinc chromites are described. • Glycine is used as chelating agent (precursor method) and fuel (solution combustion method). • The synthesized chromites have crystallite size in the range of 18–27 nm. • An antiferromagnetic (AFM) transition is observed at about T{sub N} ∼ 18 K. - Abstract: Zinc chromite (ZnCr{sub 2}O{sub 4}) nanocrystalline powders were obtained by two different chemical routes: the precursor method and the solution combustion method involving glycine-nitrates. The complex compound precursors, [ZnCr{sub 2}(NH{sub 2}CH{sub 2}COO){sub 8}]·9H{sub 2}O and [ZnCr{sub 2}(NH{sub 2}CH{sub 2}COOH){sub 4.5}]·(NO{sub 3}){sub 8}·6H{submore » 2}O, were characterized by chemical analysis, infrared spectroscopy (IR), ultraviolet–visible spectroscopy (UV–vis) and thermal analysis. The structure, morphology, surface chemistry and magnetic properties of ZnCr{sub 2}O{sub 4} powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), infrared and Raman spectroscopy (RS), ultraviolet–visible spectroscopy (UV–vis) and magnetic measurements. X-ray diffraction patterns indicated the chromite spinel phase with good crystallinity and an average crystallite size of approximately 18–27 nm. The band gap values ranged between 3.31 and 3.33 eV. The magnetic measurements indicated an antiferromagnetic transition at T{sub N} ∼ 17.5/18 K.« less

  15. Processes for manufacturing multifocal diffractive-refractive intraocular lenses

    NASA Astrophysics Data System (ADS)

    Iskakov, I. A.

    2017-09-01

    Manufacturing methods and design features of modern diffractive-refractive intraocular lenses are discussed. The implantation of multifocal intraocular lenses is the most optimal method of restoring the accommodative ability of the eye after removal of the natural lens. Diffractive-refractive intraocular lenses are the most widely used implantable multifocal lenses worldwide. Existing methods for manufacturing such lenses implement various design solutions to provide the best vision function after surgery. The wide variety of available diffractive-refractive intraocular lens designs reflects the demand for this method of vision correction in clinical practice and the importance of further applied research and development of new technologies for designing improved lens models.

  16. Structural analysis of aluminium substituted nickel ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, H. S.; Sangwa, Neha

    2018-05-01

    Aluminium substituted nickel ferrite nanoparticles were synthesized by High Energy Ball milling (HEBM) of the mixture of α-NiO, α-Al2O3 and α-Fe2O3 followed by annealing at 1000˚C. X-ray diffraction (XRD) and Energy dispersive spectroscopy analysis (EDS) characterization was done for Aluminium substituted nickel ferrite. The structural analysis reveals the formation of the single phase compound. The average grain size was estimated by X-ray diffraction technique ranges from 30 to 10 nm with the increasing concentration of Aluminium. EDS spectra conforms the homogeneous mixing and purity of ferrite.

  17. X-ray absorption spectroscopy and neutron diffraction study of the perovskite-type rare-earth cobaltites

    NASA Astrophysics Data System (ADS)

    Sikolenko, V.; Efimova, E.; Franz, A.; Ritter, C.; Troyanchuk, I. O.; Karpinsky, D.; Zubavichus, Y.; Veligzhanin, A.; Tiutiunnikov, S. I.; Sazonov, A.; Efimov, V.

    2018-05-01

    Correlations between local and long-range structure distortions in the perovskite-type RE1-xSrxCoO3-δ (RE = La, Pr, Nd; x = 0.0 and 0.5) compounds have been studied at room temperature by extended X-ray absorption fine structure (EXAFS) at the Co K-edge and high-resolution neutron powder diffraction (NPD). The use of two complementary experimental techniques allowed us to explore the influence of the type of rare-earth element and strontium substitution on unusual behavior of static and dynamic features of both the Co-O bond lengths.

  18. High-throughput and in situ EDXRD investigation on the formation of two new metal aminoethylphosphonates - Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) and Ca(OH)(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3}){center_dot}2H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Corinna; Feyand, Mark; Rothkirch, Andre

    2012-04-15

    The system Ca{sup 2+}/2-aminoethylphosphonic acid/H{sub 2}O/NaOH was systematically investigated using high-throughput methods. The experiments led to one new compound Ca(O{sub 3}PC{sub 2} H{sub 4}NH{sub 2}) (1) and the crystal structure was determined using in house X-ray powder diffraction data (monoclinic, P2{sub 1}/c, a=9.7753(3), b=6.4931(2), c=8.4473(2) A, {beta}=106.46(2) Degree-Sign , V=514.20(2) A{sup 3}, Z=4). The formation of 1 was investigated by in situ energy dispersive X-ray diffraction measurements (EDXRD) at beamline F3 at HASYLAB (light source DORIS III), DESY, Hamburg. An intermediate, Ca(OH)(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3}){center_dot}2H{sub 2}O (2), was observed and could be isolated from the reaction mixture at ambientmore » temperatures by quenching the reaction. The crystal structure of 2 was determined from XRPD data using synchrotron radiation (monoclinic, P2{sub 1}/m, a=11.2193(7), b=7.1488(3), c=5.0635(2) A, {beta}=100.13(4) Degree-Sign , V=399.78(3) A{sup 3}, Z=2). - Graphical abstarct: The detailed in situ energy dispersive X-ray diffraction (EDXRD) investigation on the formation of the new inorganic-organic hybrid compound Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) leads to the discovery of a new crystalline intermediate phase. Both crystal structures were elucidated using X-ray powder diffraction data. Highlights: Black-Right-Pointing-Pointer High-throughput investigation led to new metal aminoethylphosphonate Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}). Black-Right-Pointing-Pointer The formation of Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) was followed by in situ EDXRD measurements. Black-Right-Pointing-Pointer The crystalline intermediate Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3})(OH){center_dot}2H{sub 2}O was discovered. Black-Right-Pointing-Pointer Isolation of Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3})(OH){center_dot}2H{sub 2}O was accomplished by quenching experiments. Black-Right-Pointing-Pointer The structures were determined using X-ray powder diffraction data.« less

  19. Determination of the hydrogen-bond network and the ferrimagnetic structure of a rockbridgeite-type compound, [Formula: see text].

    PubMed

    Röska, B; Park, S-H; Behal, D; Hess, K-U; Günther, A; Benka, G; Pfleiderer, C; Hoelzel, M; Kimura, T

    2018-06-13

    Applying neutron powder diffraction, four unique hydrogen positions were determined in a rockbridgeite-type compound, [Formula: see text] [Formula: see text]. Its honeycomb-like H-bond network running without interruption along the crystallographic [Formula: see text] axis resembles those in alkali sulphatic and arsenatic oxyhydroxides. They provide the so-called dynamically disordered H-bond network over which protons are superconducting in a vehicle mechanism. This is indicated by dramatic increases of dielectric constant and loss factor at room temperature. The relevance of static and dynamic disorder of OH and HOH groups are explained in terms of a high number of structural defects at octahedral chains alternatingly half-occupied by [Formula: see text] cations. The structure is built up by unusual octahedral doublet, triplet, and quartet clusters of aliovalent 3d transition metal cations, predicting complicate magnetic ordering and interaction. The ferrimagnetic structure below the Curie temperature [Formula: see text]-83 K could be determined from the structure analysis with neutron diffraction data at 25 K.

  20. Green synthesis, characterization and some physico-chemical studies on a novel intermolecular compound; 4-nitro-o-phenylenediamine-N, N-dimethylaminobenzaldehyde system

    NASA Astrophysics Data System (ADS)

    Rai, U. S.; Singh, Manjeet; Rai, R. N.

    2017-09-01

    An inter-molecular compound (IMC) L1 was synthesized by taking 1:1 molar ratio of p-nitro-o-phenylenediamine (NOPDA) and N, N-dimethylaminobenzaldehyde (DMAB) via thermally initiated solid state reaction. It was characterized by X-ray diffraction, spectral and optical studies. The single crystal of the (L1) was grown from saturated solution of ethanol using slow evaporation technique at 29 °C. From the single crystal X-ray diffraction analysis, it can be inferred that it crystallizes in triclinic unit cell with P-1 space group (CCDC No 1422765). Absorption spectrum of IMC (L1) shows a band at 318 nm attributed to the intra-molecular charge-transfer (ICT) excited state absorption and the other band at 376 nm is due to n→π* transition. The IMC (L1) shows a strong fluorescence at 418 nm with a Stokes shift (≈100 nm) and quantum efficiency (0.22) upon excitation in methyl alcohol at 318 nm.

  1. Iodine Intercalation of Bundles of Single Wall Carbon Nanotubes (SWNT)

    NASA Astrophysics Data System (ADS)

    Grigorian, L.; Fang, S. L.; Williams, K. A.; Sumanasekera, G. U.; Dickey, E. C.; Eklund, P. C.; Pennycock, S.; Rinzler, A. G.; Smalley, R. E.

    1998-03-01

    We have been able to intercalate iodine into the interstitial channels within the rope lattice by direct contact of SWNT mats with molten iodine. These continuously filled channels were observed by Z-contrast STEM imaging. The intercalated iodine atoms provide a ``chemical wedge'' which expands the rope lattice as found from x-ray powder diffraction. At low doping level, Raman-active modes and photoluminescence were used to identify the intercalated species as (I_3)^-I2 linear polyiodide chains. The observed upshift of the high-frequency tangential Raman mode, as well as decreased values of four-probe electrical resistance and thermopower are all consistent with electron transfer from SWNT to iodine. At higher doping level, another iodine-SWNT compound was formed as evidenced by a different x-ray diffraction pattern and Raman spectrum. This new compound exhibits a number of new Raman lines, apparently unrelated to the intercalated iodine, in addition to the usual SWNT Raman modes. We discuss possible mechanisms responsible for activating new Raman modes in SWNT.

  2. The first 3-D LaIII-SrII heterometallic complex: Synthesis, structure and luminescent properties

    NASA Astrophysics Data System (ADS)

    Hong, Zhiwei; Ran, Jingwen; Li, Tao; Chen, Yanmei

    2016-10-01

    The first 3-D LaIII-SrII heterometallic complex, namely [La2Sr(pda)4(H2O)4]n·6nH2O (1, H2pda = pyridine-2,6-dicarboxylic acid), has been successfully synthesized under solvothermal conditions. Single crystal X-ray diffraction analysis reveals that complex 1 features a 3-D porous framework and displays a new topology. The crystal structure can be simplified to a 4,6-connected 3-D network with Schläfli symbol of {34·42·88·9}2{34·42}. The crystals also have been characterized by X-ray powder diffraction, elemental analysis, thermal analysis, and IR spectroscopy. The infrared spectral analysis indicates that complex 1 is a carboxylate coordinated compound, several water molecules exist in the compound. The thermal study shows that there are ten water molecules in the crystal structure. The luminescent property has also been investigated. It shows a blue-purple fluorescence emission.

  3. Intramolecular π-π Interactions in Flexibly Linked Partially Fluorinated Bisarenes in the Gas Phase.

    PubMed

    Blomeyer, Sebastian; Linnemannstöns, Marvin; Nissen, Jan Hendrick; Paulus, Jannik; Neumann, Beate; Stammler, Hans-Georg; Mitzel, Norbert W

    2017-10-16

    Three compounds with phenyl and pentafluorophenyl rings bridged by (CH 2 ) 3 and (CH 2 ) 2 SiMe 2 units were synthesized by hydrosilylation and C-C coupling reactions. Their solid-state structures are dominated by intermolecular π stacking interactions, primarily leading to dimeric or chain-type aggregates. Analysis of free molecules in the gas phase by electron diffraction revealed the most abundant conformer to be significantly stabilized by intramolecular π-π interactions. For the silicon compounds, structures characterized by σ-π interactions between methyl and pentafluorophenyl groups are second lowest in energy and cannot be excluded completely by the gas electron diffraction experiments. C 6 H 5 (CH 2 ) 3 C 6 F 5 , in contrast, is present as a single conformer. The gas-phase structures served as a reference for the evaluation of a series of (dispersion-corrected) quantum-chemical calculations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Magnetic and magnetoresistance properties of La0.7Sr0.3(Mn,Сo)O3

    NASA Astrophysics Data System (ADS)

    Troyanchuk, I. O.; Karpinsky, D. V.; Bushinsky, M. V.; Sikolenko, V. V.; Gavrilov, S. A.; Silibin, M. V.

    2017-11-01

    Magnetic and magnetotransport properties of La0.7Sr0.3Mn1-xCoxO3 ceramics have been investigated by neutron powder diffraction, magnetization and electrical measurements. It is shown that substitution by cobalt ions leads to a decrease of magnetic transition temperature down to 140 K for the compound with x = 0.33. The compounds with cobalt content 0.4 < x < 0.6 are characterized by a presence of small ferromagnetic component due to exchange interactions between cobalt and manganese ions with maximal transition temperature of about 190 K observed for x = 0.5. Further increase of the dopant concentration diminishes ferromagnetic interactions. An evolution of electronic configuration of manganese and cobalt ions upon chemical substitution as well as related changes in the exchange interactions which determine the type of the magnetic state are discussed. Based on the neutron diffraction results and magnetometry data the preliminary magnetic phase diagram has been constructed.

  5. Structural features of single crystals of LuB{sub 12} upon a transition to the cage-glass phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotina, N. B., E-mail: nb-bolotina@mail.ru; Verin, I. A.; Shitsevalova, N. Yu.

    2016-03-15

    The unit-cell parameters of dodecaboride LuB{sub 12}, which undergoes a transition to the cage-glass phase, have been determined for the first time in the temperature range of 50–75 K by X-ray diffraction, and the single-crystal structure of this compound is established at 50 K. Nonlinear changes in the unit-cell parameters correspond to anomalies in the physical properties near the glass-transition temperature T* ~ 50–70 K. This compound has cubic symmetry at room temperature, and it is reduced to tetragonal symmetry at lower temperatures. Based on the X-ray diffraction data and relying on the physical properties of the crystals, the structuremore » model, in which a small part (~15%) of Lu atoms are displaced from the 2a sites at the centers of the B{sub 24} cuboctahedra to the 16n sites of sp. gr. I4/mmm, seems preferable.« less

  6. Yes, one can obtain better quality structures from routine X-ray data collection.

    PubMed

    Sanjuan-Szklarz, W Fabiola; Hoser, Anna A; Gutmann, Matthias; Madsen, Anders Østergaard; Woźniak, Krzysztof

    2016-01-01

    Single-crystal X-ray diffraction structural results for benzidine dihydrochloride, hydrated and protonated N,N,N,N-peri(dimethylamino)naphthalene chloride, triptycene, dichlorodimethyltriptycene and decamethylferrocene have been analysed. A critical discussion of the dependence of structural and thermal parameters on resolution for these compounds is presented. Results of refinements against X-ray data, cut off to different resolutions from the high-resolution data files, are compared to structural models derived from neutron diffraction experiments. The Independent Atom Model (IAM) and the Transferable Aspherical Atom Model (TAAM) are tested. The average differences between the X-ray and neutron structural parameters (with the exception of valence angles defined by H atoms) decrease with the increasing 2θmax angle. The scale of differences between X-ray and neutron geometrical parameters can be significantly reduced when data are collected to the higher, than commonly used, 2θmax diffraction angles (for Mo Kα 2θmax > 65°). The final structural and thermal parameters obtained for the studied compounds using TAAM refinement are in better agreement with the neutron values than the IAM results for all resolutions and all compounds. By using TAAM, it is still possible to obtain accurate results even from low-resolution X-ray data. This is particularly important as TAAM is easy to apply and can routinely be used to improve the quality of structural investigations [Dominiak (2015 ▸). LSDB from UBDB. University of Buffalo, USA]. We can recommend that, in order to obtain more adequate (more accurate and precise) structural and displacement parameters during the IAM model refinement, data should be collected up to the larger diffraction angles, at least, for Mo Kα radiation to 2θmax = 65° (sin θmax/λ < 0.75 Å(-1)). The TAAM approach is a very good option to obtain more adequate results even using data collected to the lower 2θmax angles. Also the results of translation-libration-screw (TLS) analysis and vibrational entropy values are more reliable for 2θmax > 65°.

  7. Experimental method for testing diffraction properties of reflection waveguide holograms.

    PubMed

    Xie, Yi; Kang, Ming-Wu; Wang, Bao-Ping

    2014-07-01

    Waveguide holograms' diffraction properties include peak wavelength and diffraction efficiency, which play an important role in determining their display performance. Based on the record and reconstruction theory of reflection waveguide holograms, a novel experimental method for testing diffraction properties is introduced and analyzed in this paper, which uses a plano-convex lens optically contacted to the surface of the substrate plate of the waveguide hologram, so that the diffracted light beam can be easily detected. Then an experiment is implemented. The designed reconstruction wavelength of the test sample is 530 nm, and its diffraction efficiency is 100%. The experimental results are a peak wavelength of 527.7 nm and a diffraction efficiency of 94.1%. It is shown that the tested value corresponds well with the designed value.

  8. Study on High Resolution Membrane-Based Diffractive Optical Imaging on Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Jiao, J.; Wang, B.; Wang, C.; Zhang, Y.; Jin, J.; Liu, Z.; Su, Y.; Ruan, N.

    2017-05-01

    Diffractive optical imaging technology provides a new way to realize high resolution earth observation on geostationary orbit. There are a lot of benefits to use the membrane-based diffractive optical element in ultra-large aperture optical imaging system, including loose tolerance, light weight, easy folding and unfolding, which make it easy to realize high resolution earth observation on geostationary orbit. The implementation of this technology also faces some challenges, including the configuration of the diffractive primary lens, the development of high diffraction efficiency membrane-based diffractive optical elements, and the correction of the chromatic aberration of the diffractive optical elements. Aiming at the configuration of the diffractive primary lens, the "6+1" petal-type unfold scheme is proposed, which consider the compression ratio, the blocking rate and the development complexity. For high diffraction efficiency membrane-based diffractive optical element, a self-collimating method is proposed. The diffraction efficiency is more than 90 % of the theoretical value. For the chromatic aberration correction problem, an optimization method based on schupmann is proposed to make the imaging spectral bandwidth in visible light band reach 100 nm. The above conclusions have reference significance for the development of ultra-large aperture diffractive optical imaging system.

  9. Synthesis of PbS/TiO2 nanocomposite materials using the sol-gel process via the incorporation of lead thiolates

    NASA Astrophysics Data System (ADS)

    Patel, Khushikumari

    PbS/TiO2 nanocomposites were prepared by two methods using the sol-gel process: a one step process and a multi-step process. The incorporation of 3-mercaptopropionic acid, followed by the addition of Pb2+ generated covalently incorporated lead thiolate precursors which can then be converted to PbS/TiO2 nanocomposites by controlled thermal decomposition. Various ratios of bifunctional linker to matrix were used to monitor the incorporation of functional groups of the ceramic matrix, and the sol-gel process was used to produce a high yield ceramic materials. This allows solutions to chemically bind and form solid state ceramics, while allowing complex compounds to combine with a high degree of homogeneity. 3-mercaptoproprionic acid, was added to the titania gel, and as a source of sulfur component to bind to the titania. PbS/TiO2 nanocomposites were studied using FTIR spectroscopy. The covalent bonding between PbS and the titania ceramics was also confirmed with the signal intensity in the infrared spectra. The success of the covalent bond between the thiolate and ceramics led to possibility of nanocomposites. X-ray diffraction was used analyze the structure of the nanocomposites X-ray diffraction results showed lead sulfide nanocrystals in the ceramic matrix as well as the size of the particles. The presence of crystalline PbS and particle size was determined using powder X-ray diffraction.

  10. Zinc oxide crystal whiskers as a novel sorbent for solid-phase extraction of flavonoids.

    PubMed

    Wang, Licheng; Shangguan, Yangnan; Hou, Xiudan; Jia, Yong; Liu, Shujuan; Sun, Yingxin; Guo, Yong

    2017-08-15

    As a novel solid-phase extraction material, zinc oxide crystal whiskers were used to extract flavonoid compounds and showed good extraction abilities. X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy and surface area/pore volume characterized the sorbent. The zinc oxide was packed into a solid-phase extraction micro-column and its extraction ability was evaluated by four model flavonoid compounds. The sample loading and elution parameters were optimized and the zinc oxide based analytical method for flavonoids was established. It showed that the method has wide linearities from 1 to 150μg/L and low limits of detection at 0.25μg/L. The relative standard deviations of a single column repeatability and column to column reproducibility were less than 6.8% and 10.6%. Several real samples were analyzed by the established method and satisfactory results were obtained. The interactions between flavonoids and zinc oxide were calculated and proved to be from the Van der Waals' forces between the 4p and 5d orbitals from zinc atom and the neighboring π orbitals from flavonoid phenyl groups. Moreover, the zinc oxide crystal whiskers showed good stability and could be reused more than 50 times under the operation conditions. This work proves that the zinc oxide crystal whiskers are a good candidate for flavonoids enrichment. Copyright © 2017. Published by Elsevier B.V.

  11. Network dimensionality and ligand flexibility in lanthanide terephthalate hydrates

    NASA Astrophysics Data System (ADS)

    Zehnder, Ralph A.; Renn, Robert A.; Pippin, Ethan; Zeller, Matthias; Wheeler, Kraig A.; Carr, Jason A.; Fontaine, Nick; McMullen, Nathan C.

    2011-01-01

    Various lanthanide open framework materials incorporating the terephthalate (TP) entity were prepared using hydrothermal synthesis methods at a moderate temperature of 170 °C. The compounds Nd 2(TP) 3(H 2O) 4( 1), Er 2(TP) 3(H 2O) 4( 2), Yb 2(TP) 3(H 2O) 2( 3), Yb 2(TP) 3(H 2O) 6( 4), and Yb 2(TP) 3(H 2O) 8·2H 2O ( 5), were characterized by single crystal structural analysis and FT-IR spectroscopy. While compounds 1 and 2 have been reported before on the basis of powder X-ray diffraction, the structural characterization of any ytterbium terephthalate species is unprecedented. Compounds 1- 5 crystallize in triclinic settings with space group P-1. The compounds are compared with their previously reported Er and Tb-counterparts and the reduction of the dimensionality of the resulting networks from 3D over 2D to 1D with increasing level of hydration is discussed. Compounds 1, 2, and 3 with the lowest water content assemble in three-dimensional network lattices. Compounds 4 and 5, however, form 2D layered systems and 1D rod like chains, respectively, which are held together by hydrogen bonds originating from coordinating H 2O. The crystal lattices of the 3D networks experience higher levels of tension as can be seen by increasing out-of-plane torsion with regard to the terephthalate carboxylate groups. Moreover, there seems to be a correlation between the level of strain on the aromatic ligands and the reduction of the number of carboxylate oxygen atoms that are part of the coordination polyhedra.

  12. A simple X-ray source of two orthogonal beams for small samples imaging

    NASA Astrophysics Data System (ADS)

    Hrdý, J.

    2018-04-01

    A simple method for simultaneous imaging of small samples by two orthogonal beams is proposed. The method is based on one channel-cut crystal which is oriented such that the beam is diffracted on two crystallographic planes simultaneously. These planes are symmetrically inclined to the crystal surface. The beams are three times diffracted. After the first diffraction the beam is split. After the second diffraction the split beams become parallel. Finally, after the third diffraction the beams become convergent and may be used for imaging. The corresponding angular relations to obtain orthogonal beams are derived.

  13. Synthesis and characterization of some low and negative thermal expansion materials

    NASA Astrophysics Data System (ADS)

    Varga, Tamas

    2005-12-01

    The high-pressure behavior of several negative thermal expansion materials was studied by different methods. In-situ high-pressure x-ray and neutron diffraction studies on several compounds of the orthorhombic Sc 2W3O12 structure revealed an unusual "bulk modulus collapse" at the orthorhombic to monoclinic phase transition. In some members of the A2M3O12 family, a second phase transition and/or pressure-induced amorphization were also seen at higher pressure. The mechanism for volume contraction on compression is different from that on heating. A combined in-situ high pressure x-ray diffraction and absorption spectroscopic study has been carried out for the first time. The pressure-induced amorphization in cubic ZrW2O8 and ZrMo 2O8 was studied by following the changes in the local coordination environments of the metals. A significant change in the average tungsten coordination was found in ZrW2O8, and a less pronounced change in the molybdenum coordination in ZrMo2O8 on amorphization. A kinetically frustrated phase transition to a high-pressure crystalline phase or a kinetically hindered decomposition, are likely driving forces of the amorphization. A complementary ex-situ study confirmed the greater distortion of the framework tetrahedra in ZrW2O8, and revealed a similar distortion of the octahedra in both compounds. The possibility of stabilizing the low thermal expansion high-temperature structure in AM2O7 compounds to lower temperatures through stuffing of ZrP2O7 was explored. Although the phase transition temperature was suppressed in MIxZr 1-xMIIIxP2O7 compositions, the chemical modification employed was not successful in stabilizing the high-temperature structure to around room temperature. An attempt has been made to control the thermal expansion properties in materials of the (MIII0.5MV 0.5)P2O7-type through the choice of the metal cations and through manipulating the ordering of the cations by different heat treatment conditions. Although controlled heat treatment resulted in only short-range cation ordering, the choice of the MIII cation had a marked effect on the thermal expansion behavior of the materials. Different grades of fluorinert were examined as pressure-transmitting media for high-pressure diffraction studies. All of the fluorinerts studied became nonhydrostatic at relatively low pressures (˜1 GPa).

  14. High-resolution x-ray diffraction study of the heavy-fermion compound YbBiPt

    NASA Astrophysics Data System (ADS)

    Ueland, B. G.; Saunders, S. M.; Bud'Ko, S. L.; Schmiedeshoff, G. M.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.

    YbBiPt is a heavy-fermion compound possessing significant short-range antiferromagnetic correlations below T* = 0 . 7 K, fragile antiferromagnetic order below TN = 0 . 4 K, a Kondo temperature of TK ~ 1 K, and crystalline-electric-field splitting (CEF) on the order of E /kB = 1 - 10 K. Its lattice is face-centered cubic at ambient temperature, but certain data, particularly those from studies aimed at determining the CEF level scheme, suggest that the lattice distorts at lower temperature. Here, we present results from high-energy x-ray diffraction experiments which show that, within our experimental resolution of ~ 6 - 10 ×10-5 Å, no structural phase transition occurs between 1 . 5 and 50 K. Despite this result, we demonstrate that the compound's thermal expansion may be modeled using CEF level schemes appropriate for Yb3+ residing on a site with either cubic or less than cubic point symmetry. Work at the Ames Laboratory was supported by the US DOE, BES, DMSE, under Contract No. DE-AC02-07CH11358. Work at Occidental College was supported by the NSF under DMR-1408598. This research used resources at the Advanced Photon Source a US DOE, Office of Science, User Facility.

  15. Physical properties of the Ce 2 M Al 7 Ge 4 heavy-fermion compounds ( M = Co , Ir , Ni , Pd )

    DOE PAGES

    Ghimire, N. J.; Cary, S. K.; Eley, S.; ...

    2016-05-23

    Here, we report the synthesis, crystal structure, and characterization by means of single-crystal x-ray diffraction, neutron powder diffraction, and magnetic, thermal, and transport measurements of the new heavy-fermion compounds Ce 2MAl 7Ge 4 (M=Co,Ir,Ni,Pd). These compounds crystallize in a noncentrosymmetric tetragonal space group Pmore » $$\\bar{4}$$2 1m, consisting of layers of square nets of Ce atoms separated by Ge-Al and M-Al-Ge blocks. Ce 2CoAl 7Ge 4,Ce 2IrAl 7Ge 4, and Ce 2NiAl 7Ge 4 order magnetically below TM=1.8, 1.6, and 0.8 K, respectively. There is no evidence of magnetic ordering in Ce 2PdAl 7Ge 4 down to 0.4 K. Furthermore, the small amount of entropy released in the magnetic state of Ce 2MAl 7Ge 4 (M = Co, Ir, Ni) and the reduced specific heat jump at T M suggest a strong Kondo interaction in these materials. Ce 2PdAl 7Ge 4 shows non-Fermi liquid behavior, possibly due to the presence of a nearby quantum critical point.« less

  16. Ferroelectric Nematic and Ferrielectric Smectic Mesophases in an Achiral Bent-Core Azo Compound.

    PubMed

    Kumar, Jitendra; Prasad, Veena

    2018-03-22

    Here, we report the observation of ferroelectric nematic and ferrielectric smectic mesophases in an achiral bent-core azo compound consisting of nonsymmetrical molecules with a lateral fluoro substitution on one of the wings. These mesophases are enantiotropic in nature with fairly low transition temperatures and wide mesophase ranges. The liquid crystalline properties of this compound are investigated using polarizing optical microscope, differential scanning calorimeter, X-ray diffraction, and electro-optical studies. As revealed by X-ray diffraction measurements, the nematic mesophase is composed of skewed cybotactic clusters and, in the smectic mesophase, the molecules are tilted with respect to the layer normal. The polar order in these mesophases was confirmed by the electro-optical switching and dielectric spectroscopy measurements. The dielectric study in the nematic mesophase shows a single relaxation process at low frequency ( f < 1 kHz) measured in the range 10 Hz to 5 MHz, which is attributed to the collective motion of the molecules within cybotactic clusters. The formation of local polar order in these clusters leads to a ferroelectric-like polar switching in the nematic mesophase. Of particular interest is the fact that the smectic phase exhibits a field induced ferrielectric state, which can be exploited for designing of the potential optical devices due to multistate switching.

  17. Spin reorientation and magnetoelastic coupling in Tb 6Fe 1-xCo xBi 2 (x = 0, 0.125, 0.25, 0.375) alloy system

    DOE PAGES

    Koehler, Michael R.; Garlea, Vasile O.; McGuire, Michael A.; ...

    2014-07-05

    Tb 6FeBi 2 adopts a noncentrosymmetric crystal structure and orders ferromagnetically at T C1 = 250 K with an additional magnetic transition at T C2 = 60 K. The low temperature magnetoelastic response in this material is strong, and is enhanced by cobalt substitution. In this paper, the temperature dependence of the atomic and magnetic structure of Tb 6Fe 1-xCo xBi 2 (x = 0, 0.125, 0.25, and 0.375) is reported from powder X-ray diffraction (XRD) and powder neutron diffraction (PND) measurements. Below the Néel temperature a ferrimagnetic ordering between the terbium and iron moments exists in all compounds studied.more » Related to the enhanced magnetostructural response, the Co-doped compounds undergo a crystallographic phase transition below about 60 K. This transition also involves a canting of the magnetic moments away from the c-axis. The structural transition is sluggish and not fully completed in the parent Tb 6FeBi 2 compound, where a mixture of monoclinic and hexagonal phases is identified below 60 K. Lastly, the spin reorientation transition is discussed in terms of competing exchange interactions and magnetocrystalline anisotropies of the two Tb sites and Fe/Co sublattices.« less

  18. Noniterative approach to the missing data problem in coherent diffraction imaging by phase retrieval.

    PubMed

    Nakajima, Nobuharu

    2010-07-20

    When a very intense beam is used for illuminating an object in coherent x-ray diffraction imaging, the intensities at the center of the diffraction pattern for the object are cut off by a beam stop that is utilized to block the intense beam. Until now, only iterative phase-retrieval methods have been applied to object reconstruction from a single diffraction pattern with a deficiency of central data due to a beam stop. As an alternative method, I present a noniterative solution in which an interpolation method based on the sampling theorem for the missing data is used for object reconstruction with our previously proposed phase-retrieval method using an aperture-array filter. Computer simulations demonstrate the reconstruction of a complex-amplitude object from a single diffraction pattern with a missing data area, which is generally difficult to treat with the iterative methods because a nonnegativity constraint cannot be used for such an object.

  19. Thermoelectric properties of Ge 1-xSn xTe crystals grown by vertical Bridgman method

    NASA Astrophysics Data System (ADS)

    Wu, C. C.; Ferng, N. J.; Gau, H. J.

    2007-06-01

    Single crystals of Ge 1-xSn xTe compounds with x=0, 0.8, 0.9 and 1.0 were grown by vertical Bridgman method. The crystalline phase and stochiometry for these crystals were investigated by X-ray diffraction, metallographic microscope as well as electron-probe microanalysis (EPMA). Electrical property of the as-grown samples was characterized using room temperature resistivity and Hall measurements. The thermoelectric behaviors for the Ge 1-xSn xTe crystals were studied by means of thermal and carrier transport measurements. Temperature dependences of resistivity, Seebeck coefficient and thermal conductivity for the various compositions of Ge 1-xSn xTe were analyzed. A two-valence band model was proposed to describe the temperature dependence of thermoelectric property of the Ge 1-xSn xTe crystals. The dimensionless thermoelectric figure of merit ZT for the alloys was evaluated and discussed.

  20. A 1:1 pharmaceutical cocrystal of myricetin in combination with uncommon piracetam conformer: X-ray single crystal analysis and mechanochemical synthesis

    NASA Astrophysics Data System (ADS)

    Sowa, Michał; Ślepokura, Katarzyna; Matczak-Jon, Ewa

    2014-01-01

    Combination of two Active Pharmaceutical Ingredients, myricetin and piracetam, yields a 1:1 cocrystal characterized by X-ray single-crystal and powder diffraction, Raman spectroscopy, 1H NMR, thermal analysis (DSC and TG-DTA) methods. Constituents of the cocrystalline phase were also investigated in terms of Hirshfeld surfaces. Compounds in their neutral forms cocrystallize in the Pna21 space group of orthorhombic system. Notably, piracetam adopts an uncommon conformation, not encountered in its cocrystals previously described. In the crystal lattice, a three-dimensional hydrogen-bonded network is observed, including formation of a 2D molecular scaffolding motif. A scale-up procedure is readily available with use of solvent-drop grinding method, in which application of a variety of common solvents leads to formation of the cocrystal, as confirmed by XRPD and Raman spectroscopy.

  1. Structural and electrical properties of cobalt-doped 4H-SrMnO_{3-δ} perovskites obtained by the hydrothermal method

    NASA Astrophysics Data System (ADS)

    ben Rguiga, N.; Álvarez-Serrano, I.; López, M. L.; Chérif, W.; Alonso, J. A.

    2018-02-01

    A mild hydrothermal method was adapted to prepare the SrMn_{1-x}CoxO_{3-δ} (0 ≤ x ≤ 0.2) compounds. They showed hexagonal-4H perovskite-type structure with space group P63/mmc, and cell parameters a ˜ 5.45 and c ˜ 9.08 Å, as deduced from X-ray and neutron diffraction data. The mean atomic concentrations indicated global stoichiometries close to the nominal ones whereas electron microscopy analyses pointed out to heterogeneity at the nanoscale. The characterization of the electrical response by means of impedance measurements, suggested a semiconductor behavior mainly ascribed to bulk contributions. Relaxation and conduction processes were analyzed. The materials showed mixed electronic-ionic conduction above ˜ 400 K, when ionic conduction between intergrains becomes favored. Microstructural homogeneity was revealed as the key factor controlling the electrical response.

  2. Phenolic Polyketides from the Co-Cultivation of Marine-Derived Penicillium sp. WC-29-5 and Streptomyces fradiae 007

    PubMed Central

    Wang, Yi; Wang, Liping; Zhuang, Yibin; Kong, Fandong; Zhang, Cuixian; Zhu, Weiming

    2014-01-01

    Penicillium sp. WC-29-5 was co-cultured with Streptomyces fradiae 007 to produce five natural products (1–3, 4a and 4b) that were isolated and characterized by spectroscopic analysis. Interestingly, these compounds were found to be different from those produced in discrete fungal and bacterial controls. Among these compounds, the absolute configurations of compounds 4a and 4b were determined for the first time by X-ray single crystal diffraction experiments and electronic circular dichroism (ECD) calculations. An evaluation of the cytotoxic activities of these compounds revealed that 4b was moderately cytotoxic towards HL-60 and H1975 tumor cells with IC50 values of 3.73 and 5.73 µM, respectively, whereas compound 4a was only moderately cytotoxic towards H1975 cells with an IC50 value of 3.97 µM. PMID:24714124

  3. TiO2-V2O5 nanocomposites as alternative energy storage substances for photocatalysts.

    PubMed

    Ngaotrakanwiwat, Pailin; Meeyoo, Vissanu

    2012-01-01

    TiO2-V2O5 was prepared and evaluated as an energy storage material for photocatalysts with high capacity and initial charging rate. The compound was successfully obtained by sol-gel technique and effects of compound composition and calcination temperature on the energy storage ability were investigated. The synthesized compounds were characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy equipped with energy-dispersive X-ray analysis (SEM-EDX) and transmission electron microscopy (TEM). The results reveals that the compound of Ti:V molar ratio equal to 1:0.11 calcined at 550 degrees C exhibited superior energy storage ability than parent substances and 1.7-times higher capacity and 2.3-times higher initial charging rate compared to WO3, indicating that the compound is a remarkable alternative to conventional energy storage substances.

  4. Phenolic polyketides from the co-cultivation of marine-derived Penicillium sp. WC-29-5 and Streptomyces fradiae 007.

    PubMed

    Wang, Yi; Wang, Liping; Zhuang, Yibin; Kong, Fandong; Zhang, Cuixian; Zhu, Weiming

    2014-04-04

    Penicillium sp. WC-29-5 was co-cultured with Streptomyces fradiae 007 to produce five natural products (1-3, 4a and 4b) that were isolated and characterized by spectroscopic analysis. Interestingly, these compounds were found to be different from those produced in discrete fungal and bacterial controls. Among these compounds, the absolute configurations of compounds 4a and 4b were determined for the first time by X-ray single crystal diffraction experiments and electronic circular dichroism (ECD) calculations. An evaluation of the cytotoxic activities of these compounds revealed that 4b was moderately cytotoxic towards HL-60 and H1975 tumor cells with IC₅₀ values of 3.73 and 5.73 µM, respectively, whereas compound 4a was only moderately cytotoxic towards H1975 cells with an IC₅₀ value of 3.97 µM.

  5. New Dihydro-β-agarofuran Sesquiterpenes from Parnassia wightiana Wall: Isolation, Identification and Cytotoxicity against Cancer Cells

    PubMed Central

    Lv, Chao; Zheng, Zuo-Lue; Miao, Fang; Geng, Hui-Ling; Zhou, Le; Liu, La-Ping

    2014-01-01

    Five new (4–8) and three known (1–3) dihydro-β-agarofuran sesquiterpene polyesters were isolated from the whole plants of Parnassia wightiana. The structures of all compounds were elucidated through spectroscopic analysis including 2D-NMR and HR-MS. The absolute configuration of these compounds was established by X-ray diffraction analysis, comparison of NOESY spectra and biogenetic means. The cytotoxities of compounds 2–8 were evaluated in vitro against HL-60, SMMC-7721, A549, MCF-7 and SW480 cell lines. Compounds 5–7 exhibited the highest activities with IC50 values of 11.8–30.1 μM in most cases. The SAR revealed that the introduction of hydroxyl group was able to significantly improve the activities of the compounds for most of the cell lines. PMID:24955789

  6. N-Acetonitrile Functionalized Nitropyrazoles: Precursors to Insensitive Asymmetric N-Methylene-C Linked Azoles.

    PubMed

    Kumar, Dheeraj; Imler, Gregory H; Parrish, Damon A; Shreeve, Jean'ne M

    2017-06-12

    Properties of energetic compounds obtained by linking energetic pyrazoles to tetrazoles by means of N-methylene-C bridges can be fine-tuned. Reactions of pyrazole derivatives with chloroacetonitrile followed by conversion of the cyano group to tetrazole using click reactions in the presence of zinc chloride result in asymmetric N-methylene-C bridged azole-based energetic compounds. All the compounds were thoroughly characterized by IR and NMR [ 1 H, 13 C { 1 H}, 15 N] spectroscopy, elemental analysis, and differential scanning calorimetry (DSC), and for two compounds, further supported by single-crystal X-ray diffraction studies. Heats of formation and detonation performances were calculated using Gaussian 03 and EXPLO5 v6.01 programs, respectively. Initial studies show that this new approach is promising for synthesizing less sensitive energetic compounds with fine-tuned properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Benzoquinones and terphenyl compounds as phosphodiesterase-4B inhibitors from a fungus of the order Chaetothyriales (MSX 47445).

    PubMed

    El-Elimat, Tamam; Figueroa, Mario; Raja, Huzefa A; Graf, Tyler N; Adcock, Audrey F; Kroll, David J; Day, Cynthia S; Wani, Mansukh C; Pearce, Cedric J; Oberlies, Nicholas H

    2013-03-22

    Three bioactive compounds were isolated from an organic extract of an ascomycete fungus of the order Chaetothyriales (MSX 47445) using bioactivity-directed fractionation as part of a search for anticancer leads from filamentous fungi. Of these, two were benzoquinones [betulinan A (1) and betulinan C (3)], and the third was a terphenyl compound, BTH-II0204-207:A (2). The structures were elucidated using a set of spectroscopic and spectrometric techniques; the structure of the new compound (3) was confirmed via single-crystal X-ray diffraction. Compounds 1-3 were evaluated for cytotoxicity against a human cancer cell panel, for antimicrobial activity against Staphylococcus aureus and Candida albicans, and for phosphodiesterase (PDE4B2) inhibitory activities. The putative binding mode of 1-3 with PDE4B2 was examined using a validated docking protocol, and the binding and enzyme inhibitory activities were correlated.

  8. Synthesis, structure, spectroscopic investigations, and computational studies of optically pure β-ketoamide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mtat, D.; Touati, R.; Guerfel, T., E-mail: taha-guerfel@yahoo.fr

    2016-12-15

    Chemical preparation, X-ray single crystal diffraction, IR and NMR spectroscopic investigations of a novel nonlinear optical organic compound (C{sub 17}H{sub 22}NO{sub 2}Cl) are described. The compound crystallizes in the orthorhombic system with the non-centrosymmetric sp. gr. P2{sub 1}2{sub 1}2{sub 1}. In the crystal structure, molecules are interconnected by N–H…O hydrogen bonds forming infinite chains along a axis. The Hirshfeld surface and associated fingerprint plots of the compound are presented to explore the nature of intermolecular interactions and their relative contributions in building the solid-state architecture. The molecular HOMO–LUMO compositions and their respective energy gaps are also drawn to explain themore » activity of the compound. The first hyperpolarizability β{sub tot} of the title compound is determined using DFT calculations. The optical properties are also investigated by UV–Vis absorption spectrum.« less

  9. Synthesis, characterization and optical properties of NH4Dy(PO3)4

    NASA Astrophysics Data System (ADS)

    Chemingui, S.; Ferhi, M.; Horchani-Naifer, K.; Férid, M.

    2014-09-01

    Polycrystalline powders of NH4Dy(PO3)4 polyphosphate have been grown by the flux method. This compound was found to be isotopic with NH4Ce(PO3)4 and RbHo(PO3)4. It crystallizes in the monoclinic space group P21/n with unit cell parameters a=10.474(6) Å, b=9.011(4) Å, c=10.947(7) Å and β=106.64(3)°. The title compound has been transformed to triphosphate Dy(PO3)3 after calcination at 800 °C. Powder X-ray diffraction, infrared and Raman spectroscopies and the differential thermal analysis have been used to identify these materials. The spectroscopic properties have been investigated through absorption, excitation, emission spectra and decay curves of Dy3+ ion in both compounds at room temperature. The emission spectra show the characteristic emission bands of Dy3+ in the two compounds, before and after calcination. The integrated emission intensity ratios of the yellow to blue (IY/IB) transitions and the chromaticity properties have been determined from emission spectra. The decay curves are found to be double-exponential. The non-exponential behavior of the decay rates was related to the resonant energy transfer as well as cross-relaxation between the donor and acceptor Dy3+ ions. The determined properties have been discussed as function of crystal structure of both compounds. They reveal that NH4Dy(PO3)4 is promising for white light generation but Dy(PO3)3 is potential candidates in field emission display (FED) and plasma display panel (PDP) devices.

  10. Sonochemical synthesis, characterization, and effects of temperature, power ultrasound and reaction time on the morphological properties of two new nanostructured mercury(II) coordination supramolecule compounds.

    PubMed

    Hayati, Payam; Rezvani, Ali Reza; Morsali, Ali; Molina, Daniel Ruiz; Geravand, Samira; Suarez-Garcia, Salvio; Villaecija, Miguel Angel Moreno; García-Granda, S; Mendoza-Meroño, Rafael; Retailleau, Pascal

    2017-07-01

    Two new mercury(II) coordination supramolecular compounds (CSCs) (1D and 0D), [Hg(L)(I) 2 ] n (1) and [Hg 2 (L') 2 (SCN) 2 ]·2H 2 O (2) (L=2-amino-4-methylpyridine and L'=2,6-pyridinedicarboxlic acid), have been synthesized under different experimental conditions. Micrometric crystals (bulk) or nano-sized materials have been obtained depending on using the branch tube method or sonochemical irradiation. All materials have been characterized by field emission scanning electron microscope (FESEM), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD) and FT-IR spectroscopy. Single crystal X-ray analyses on compounds 1 and 2 show that Hg 2+ ions are 4-coordinated and 5-coordinated, respectively. Topological analysis shows that the compound 1 and 2 have 2C1, sql net. The thermal stability of compounds 1 and 2 in bulk and nano-size has been studied by thermal gravimetric (TG), differential thermal analyses (DTA) for 1 and differential scanning calorimetry (DSC) for 2, respectively. Also, by changing counter ions were obtained various structures 1 and 2 (1D and 0D, respectively). The role of different parameters like power of ultrasound irradiation, reaction time and temperature on the growth and morphology of the nano-structures are studied. Results suggest that increasing power ultrasound irradiation and temperature together with reducing reaction time and concentration of initial reagents leads to a decrease in particle size. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Preparation of Ferroelectric Thin Films of Bismuth Layer Structured Compounds

    NASA Astrophysics Data System (ADS)

    Watanabe, Hitoshi; Mihara, Takashi; Yoshimori, Hiroyuki; Araujo, Carlos

    1995-09-01

    Ferroelectric thin films of bismuth layer structured compounds, SrBi2Ta2O9, SrBi2Nb2O9, SrBi4Ti4O15 and their solid solutions, were formed onto a sputtered platinum layer on a silicon substrate using spin-on technique and metal-organic decomposition (MOD) method. X-ray diffraction (XRD) analysis and some electrical measurements were performed on the prepared thin films. XRD results of SrBi2(Ta1- x, Nb x)2O9 films (0≤x≤1) showed that niobium ions substitute for tantalum ions in an arbitrary ratio without any change of the layer structure and lattice constants. Furthermore, XRD results of SrBi2 xTa2O9 films (0≤x≤1.5) indicated that the formation of the bismuth layer structure does not always require an accurate bismuth content. The layer structure was formed above 50% of the stoichiometric bismuth content in the general formula. SrBi2(Ta1- x, Nb x)2O9 films with various Ta/Nb ratios have large enough remanent polarization for nonvolatile memory application and have shown high fatigue resistance against 1011 cycles of full switching of the remanent polarization. Mixture films of the three compounds were also investigated.

  12. N-(4-Nitrobenzoyl)-N'-(1,5-dimethyl-3-oxo-2-phenyl-1H-3(2H)-pyrazolyl)-thiourea hydrate: Synthesis, spectroscopic characterization, X-ray structure and DFT studies

    NASA Astrophysics Data System (ADS)

    Arslan, N. Burcu; Kazak, Canan; Aydın, Fatma

    2012-04-01

    The title molecule (C19H17N5O4S·H2O) was synthesized and characterized by IR-NMR spectroscopy, MS and single-crystal X-ray diffraction. The molecular geometry, vibrational frequencies and gauge-independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method with 6-31G(d) basis set, and compared with the experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies and 1H and 13C NMR chemical shift values show good agreement with experimental data. To determine conformational flexibility, the molecular energy profile of the title compound was obtained with respect to the selected torsion angle, which was varied from -180° to +180° in steps of 10°. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis and thermodynamic properties of the compound were investigated by theoretical calculations.

  13. Structures, chemotaxonomic significance, cytotoxic and Na(+),K(+)-ATPase inhibitory activities of new cardenolides from Asclepias curassavica.

    PubMed

    Zhang, Rong-Rong; Tian, Hai-Yan; Tan, Ya-Fang; Chung, Tse-Yu; Sun, Xiao-Hui; Xia, Xue; Ye, Wen-Cai; Middleton, David A; Fedosova, Natalya; Esmann, Mikael; Tzen, Jason T C; Jiang, Ren-Wang

    2014-11-28

    Five new cardenolide lactates (1–5) and one new dioxane double linked cardenolide glycoside (17) along with 15 known compounds (6–16 and 18–21) were isolated from the ornamental milkweed Asclepias curassavica. Their structures were elucidated by extensive spectroscopic methods (IR, UV, MS, 1D- and 2D-NMR). The molecular structures and absolute configurations of 1–3 and 17 were further confirmed by single-crystal X-ray diffraction analysis. Simultaneous isolation of dioxane double linked cardenolide glycosides (17–21) and cardenolide lactates (1–5) provided unique chemotaxonomic markers for this genus. Compounds 1–21 were evaluated for the inhibitory activities against DU145 prostate cancer cells. The dioxane double linked cardenolide glycosides showed the most potent cytotoxic effect followed by normal cardenolides and cardenolide lactates, while the C21 steroids were non-cytotoxic. Enzymatic assay established a correlation between the cytotoxic effects in DU145 cancer cells and the Ki for the inhibition of Na(+),K(+)-ATPase. Molecular docking analysis revealed relatively strong H-bond interactions between the bottom of the binding cavity and compounds 18 or 20, and explained why the dioxane double linked cardenolide glycosides possessed higher inhibitory potency on Na(+),K(+)-ATPase than the cardenolide lactate.

  14. Diphosphine- and CO-Induced Fragmentation of Chloride-bridged Dinuclear Complex and Cp*Ir(mu-Cl)(3)Re(CO)(3) and Attempted Synthesis of Cp*Ir(mu-Cl)(3)Mn(CO)(3): Spectroscopic Data and X-ray Diffraction Structures of the Pentamethylcyclopentadienyl Compounds [Cp*IrCl{(Z)-Ph2PCH = CHPPh2}][Cl]center dot 2CHCl(3) and Cp*Ir(CO)Cl-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammons, Casey; Wang, Xiaoping; Nesterov, Vladimir

    2010-01-01

    The confacial bioctahedral compound Cp*Ir(mu-Cl)(3)Re(CO)(3) (1) undergoes rapid fragmentation in the presence of the unsaturated diphosphine ligand (Z)-Ph2PCH = CHPPh2 to give the mononuclear compounds [Cp*IrCl {(Z)-Ph2PCH = CHPPh2}][Cl] (2) and fac-ClRe(CO)(3)[(Z)-Ph2PCH = CHPPh2] (3). 2 has been characterized by H-1 and P-31 NMR spectroscopy and X-ray diffraction analysis. 2 center dot 2CHCl(3) crystallizes in the monoclinic space group C2/c, a = 35.023 (8) angstrom, b = 10.189 (2) angstrom, c = 24.003 (6) angstrom, b = 103.340 (3), V = 8,335 (3) angstrom 3, Z = 8, and d(calc) = 1.647 Mg/m(3); R = 0.0383, R-w = 0.1135 formore » 8,178 reflections with I> 2 sigma(I). The Ir(III) center in 2 exhibits a six-coordinate geometry and displays a chelating diphosphine group. Compound 1 reacts with added CO with fragmentation to yield the known compounds Cp*Ir(CO)Cl-2 (4) and ClRe(CO)(5) (5) in near quantitative yield by IR spectroscopy. Using the protocol established by our groups for the synthesis of 1, we have explored the reaction of [Cp*IrCl2](2) with ClMn(CO)(5) as a potential route to Cp*Ir(mu-Cl)(3)Mn(CO)(3); unfortunately, 4 was the only product isolated from this reaction. The solid-state structure of 4 was determined by X-ray diffraction analysis. 4 crystallizes in the triclinic space group P-1, a = 7.4059 (4) angstrom, b = 7.8940 (4) angstrom, c = 11.8488 (7) angstrom, alpha = 80.020 (1), beta = 79.758 (1), gamma = 68.631 (1), V = 630.34 (6) angstrom(3), Z = 2, and d(calc) = 2.246 Mg/m(3); R = 0.0126, R-w = 0.0329 for 2,754 reflections with I> 2 sigma(I). The expected three-legged piano-stool geometry in 4 has been crystallographically confirmed.« less

  15. Molecular structure, FT-IR, NBO, HOMO and LUMO, MEP and first order hyperpolarizability of (2E)-1-(2,4-Dichlorophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one by HF and density functional methods.

    PubMed

    Sheena Mary, Y; Yohannan Panicker, C; Anto, P L; Sapnakumari, M; Narayana, B; Sarojini, B K

    2015-01-25

    (2E)-1-(2,4-Dichlorophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one is synthesized by using 2,4-dichloroacetophenone and 3,4,5-trimethoxybenzaldehyde in ethanol. The structure of the compound was confirmed by IR and single crystal X-ray diffraction studies. FT-IR spectrum of (2E)-1-(2,4-dichloro-phenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one was recorded and analyzed. The crystal structure is also described. The vibrational wavenumbers were computed using HF and DFT methods and are assigned with the help of potential energy distribution method. The first hyperpolarizability and infrared intensities are also reported. The geometrical parameters of the title compound obtained from XRD studies are in agreement with the calculated (DFT) values. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The HOMO and LUMO analysis are used to determine the charge transfer within the molecule. MEP was performed by the DFT method. From the MEP map of the title molecule, negative region is mainly localized over the electronegative oxygen atoms, in the carbonyl group and the oxygen atom O4 of the methoxy group and the maximum positive region is localized on the phenyl rings. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Thermoluminescence dosimetric characteristics on cubic fluoroperovskite single crystal (KMgF3:Eu2+, Ce3+)

    NASA Astrophysics Data System (ADS)

    Joseph Daniel, D.; Madhusoodanan, U.; Annalakshmi, O.; Jose, M. T.; Ramasamy, P.

    2015-07-01

    This paper describes investigation of thermoluminescence radiation dosimetry characteristics of Eu2+ doped Potassium Magnesium Fluoride (KMgF3) single crystal co-doped with Ce3+ ions. The perovskite-like KMgF3 polycrystalline compounds were synthesized by standard solid state reaction technique. Phase purity of the synthesized compounds was analyzed by powder X-ray diffraction technique. Single crystals of KMgF3 have been grown from melt by using a vertical Bridgman-Stockbarger method. Thermoluminescence (TL) characteristics of KMgF3 samples doped with Eu2+ and Ce3+ have been studied after β-ray irradiation at room temperature. Order of kinetics (b), activation energy (E), and frequency factor (s) were determined by Chen's method and variable heating rate method. Results show that the TL glow peak of the KMgF3 samples obeys second-order kinetics. Analysis of the main dosimetric peak by using the methods mentioned above revealed that activation energy (E) is about 1.2 eV and the frequency factor (s) is in the range 1010-1011 s-1. The TL glow curve structure of the sample remained stable for higher doses of 90Sr/90Y beta source and it shows linearity up to 180 Gy. The time dependent fading behavior of the TL characteristics has also been investigated and is found to be quite stable over long time duration. The characteristic Eu2+ emissions are observed in the TL emission spectra.

  17. New class of single-source precursors for the synthesis of main group-transition metal oxides: heterobimetallic Pb-Mn beta-diketonates.

    PubMed

    Zhang, Haitao; Yang, Jen-Hsien; Shpanchenko, Roman V; Abakumov, Artem M; Hadermann, Joke; Clérac, Rodolphe; Dikarev, Evgeny V

    2009-09-07

    Heterometallic lead-manganese beta-diketonates have been isolated in pure form by several synthetic methods that include solid-state and solution techniques. Two compounds with different Pb/Mn ratios, PbMn(2)(hfac)(6) (1) and PbMn(hfac)(4) (2) (hfac = hexafluoroacetylacetonate), can be obtained in quantitative yield by using different starting materials. Single crystal X-ray investigation revealed that the solid-state structure of 1 contains trinuclear molecules in which lead metal center is sandwiched between two [Mn(hfac)(3)] units, while 2 consists of infinite chains of alternating [Pb(hfac)(2)] and [Mn(hfac)(2)] fragments. The heterometallic structures are held together by strong Lewis acid-base interactions between metal atoms and diketonate ligands acting in chelating-bridging fashion. Spectroscopic investigation confirmed the retention of heterometallic structures in solutions of non-coordinating solvents as well as upon sublimation-deposition procedure. Thermal decomposition of heterometallic diketonates has been systematically investigated in a wide range of temperatures and annealing times. For the first time, it has been shown that thermal decomposition of heterometallic diketonates results in mixed-metal oxides, while both the structure of precursors and the thermolysis conditions have a significant influence on the nature of the resulting oxides. Five different Pb-Mn oxides have been detected by X-ray powder diffraction when studying the decomposition of 1 and 2 in the temperature range 500-800 degrees C. The phase that has been previously reported as "Pb(0.43)MnO(2.18)" was synthesized in the pure form by decomposition of 1, and crystallographically characterized. The orthorhombic unit cell parameters of this oxide, obtained by electron diffraction technique, have been subsequently refined using X-ray powder diffraction data. Besides that, a previously unknown lead-manganese oxide has been obtained at low temperature decomposition and short annealing times. The parameters of its monoclinically distorted unit cell have been determined. The EDX analysis revealed that this compound has a Pb/Mn ratio close to 1:4 and contains no appreciable amount of fluorine.

  18. Origin of the magnetoelectric effect in the Cs2FeCl5.D2O compound

    NASA Astrophysics Data System (ADS)

    Fabelo, Oscar; Rodríguez-Velamazán, J. Alberto; Canadillas-Delgado, Laura; Mazzuca, Lidia; Campo, Javier; Millán, Ángel; Chapon, Laurent C.; Rodríguez-Carvajal, Juan

    2017-09-01

    Cs2FeCl5.D2O has been identified as a linear magnetoelectric material, although the correlation of this property with the magnetic structures of this compound has not been adequately studied. We have used single-crystal and powder neutron diffraction to obtain detailed information about its nuclear and magnetic structures. From the nuclear structure analysis, we describe the occurrence of a phase transition related to the reorganization of the [FeCl5.D2O] -2 ions and the Cs+ counterion. The magnetic structure was determined at zero magnetic field at 1.8 K using single-crystal diffraction and its temperature evolution was recorded using powder diffraction. The symmetry analysis of the magnetic structure is compatible with the occurrence of the magnetoelectric effect. Moreover, the evolution of the magnetic structure as a function of the external magnetic field has also been studied. The reorientation of the magnetic moments under applied external field along the easy axis (b axis at low temperature) is compatible with the occurrence of a spin-flop transition. The application of a magnetic field below TN compels the magnetic moments to flip from the b axis to the a c plane (with a small induced component along the b axis), for a critical magnetic field of ca. 1.2 T.

  19. The influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly(lactic acid) composites.

    PubMed

    Razak, Nur Inani Abdul; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Rayung, Marwah; Saad, Wan Zuhainis

    2014-03-07

    Bleaching treatment of kenaf fiber was performed in alkaline medium containing hydrogen peroxide solution maintained at pH 11 and 80 °C for 60 min. The bleached kenaf fiber was analyzed using Fourier Transform Infrared (FTIR) and X-ray Diffraction (XRD) analysis. The bleached kenaf fiber was then compounded with poly-(lactic acid) (PLA) via a melt blending method. The mechanical (tensile, flexural and impact) performance of the product was tested. The fiber treatment improved the mechanical properties of PLA/bleached kenaf fiber composites. Scanning electron micrograph (SEM) morphological analysis showed improvement of the interfacial adhesion between the fiber surface and polymer matrix.

  20. Mössbauer study of iron-based perovskite-type materials as potential catalysts for ethyl acetate oxidation

    NASA Astrophysics Data System (ADS)

    Paneva, D.; Dimitrov, M.; Velinov, N.; Kolev, H.; Kozhukharov, V.; Tsoncheva, T.; Mitov, I.

    2010-03-01

    La-Sr-Fe perovskite-type oxides were prepared by the nitrate-citrate method. The basic object of this study is layered Ruddlesden-Popper phase LaSr3Fe3O10. The phase composition and structural properties of the obtained materials are investigated by Mössbauer spectroscopy, X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and temperature programmed reduction (TPR). The preliminary catalytic tests show a high potential of these materials for volatile organic compounds (VOCs) elimination as they possess high conversion ability and selectivity to total oxidation of ethyl acetate. Catalytic performance of LaSr3Fe3O10 is depended on the stability of structure and Fe4+-oxidation state.

Top