Sample records for diffraction residual stress

  1. Numerical and neutron diffraction measurement of residual stress distribution in dissimilar weld

    DOE PAGES

    Eisazadeh, Hamid; Bunn, Jeffrey R.; Aidun, Daryush K.

    2017-01-01

    In this study, a model considering an asymmetric power heat distribution, temperature-dependent material properties, strain hardening and phase transformation was developed to predict temperature field and residual stress distribution in GTA dissimilar weld between austenitic stainless steel (304) and low carbon steel (1018). The effect of martensite formation on longitudinal and transverse residual stress distributions were investigated using both FE model and neutron diffraction measurement. The results indicate that martensitic phase has a significant influence on both residual stress components, i.e., transverse and longitudinal, and it not only can change the distribution shape of residual stress near the weld centermore » line but, also, can alter the peak value of the residual stresses. The calculated temperature and weld zone profile were in agreement with the experimental results. Favorable general agreement was also found between the calculated residual stress distribution and residual stress measurements by the neutron diffraction method.« less

  2. Numerical and neutron diffraction measurement of residual stress distribution in dissimilar weld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisazadeh, Hamid; Bunn, Jeffrey R.; Aidun, Daryush K.

    In this study, a model considering an asymmetric power heat distribution, temperature-dependent material properties, strain hardening and phase transformation was developed to predict temperature field and residual stress distribution in GTA dissimilar weld between austenitic stainless steel (304) and low carbon steel (1018). The effect of martensite formation on longitudinal and transverse residual stress distributions were investigated using both FE model and neutron diffraction measurement. The results indicate that martensitic phase has a significant influence on both residual stress components, i.e., transverse and longitudinal, and it not only can change the distribution shape of residual stress near the weld centermore » line but, also, can alter the peak value of the residual stresses. The calculated temperature and weld zone profile were in agreement with the experimental results. Favorable general agreement was also found between the calculated residual stress distribution and residual stress measurements by the neutron diffraction method.« less

  3. Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings

    NASA Astrophysics Data System (ADS)

    Stegemann, Robert; Cabeza, Sandra; Lyamkin, Viktor; Bruno, Giovanni; Pittner, Andreas; Wimpory, Robert; Boin, Mirko; Kreutzbruck, Marc

    2017-03-01

    The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction (ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth.

  4. Study on the residual stress relaxation in girth-welded steel pipes under bending load using diffraction methods

    DOE PAGES

    Hempel, Nico; Bunn, Jeffrey R.; Nitschke-Pagel, Thomas; ...

    2017-02-02

    This research is dedicated to the experimental investigation of the residual stress relaxation in girth-welded pipes due to quasi-static bending loads. Ferritic-pearlitic steel pipes are welded with two passes, resulting in a characteristic residual stress state with high tensile residual stresses at the weld root. Also, four-point bending is applied to generate axial load stress causing changes in the residual stress state. These are determined both on the outer and inner surfaces of the pipes, as well as in the pipe wall, using X-ray and neutron diffraction. Focusing on the effect of tensile load stress, it is revealed that notmore » only the tensile residual stresses are reduced due to exceeding the yield stress, but also the compressive residual stresses for equilibrium reasons. Furthermore, residual stress relaxation occurs both parallel and perpendicular to the applied load stress.« less

  5. Study on the residual stress relaxation in girth-welded steel pipes under bending load using diffraction methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hempel, Nico; Bunn, Jeffrey R.; Nitschke-Pagel, Thomas

    This research is dedicated to the experimental investigation of the residual stress relaxation in girth-welded pipes due to quasi-static bending loads. Ferritic-pearlitic steel pipes are welded with two passes, resulting in a characteristic residual stress state with high tensile residual stresses at the weld root. Also, four-point bending is applied to generate axial load stress causing changes in the residual stress state. These are determined both on the outer and inner surfaces of the pipes, as well as in the pipe wall, using X-ray and neutron diffraction. Focusing on the effect of tensile load stress, it is revealed that notmore » only the tensile residual stresses are reduced due to exceeding the yield stress, but also the compressive residual stresses for equilibrium reasons. Furthermore, residual stress relaxation occurs both parallel and perpendicular to the applied load stress.« less

  6. Three-dimensional welding residual stresses evaluation based on the eigenstrain methodology via X-ray measurements at the surface

    NASA Astrophysics Data System (ADS)

    Ogawa, Masaru

    2014-12-01

    In order to assure structural integrity for operating welded structures, it is necessary to evaluate crack growth rate and crack propagation direction for each observed crack non-destructively. Here, three dimensional (3D) welding residual stresses must be evaluated to predict crack propagation. Today, X-ray diffraction is used and the ultrasonic method has been proposed as non-destructive method to measure residual stresses. However, it is impossible to determine residual stress distributions in the thickness direction. Although residual stresses through a depth of several tens of millimeters can be evaluated non-destructively by neutron diffraction, it cannot be used as an on-site measurement technique. This is because neutron diffraction is only available in special irradiation facilities. Author pays attention to the bead flush method based on the eigenstrain methodology. In this method, 3D welding residual stresses are calculated by an elastic Finite Element Method (FEM) analysis from eigenstrains which are evaluated by an inverse analysis from released strains by strain gauges in the removal of the reinforcement of the weld. Here, the removal of the excess metal can be regarded as non-destructive treatment because toe of weld which may become crack starters can be eliminated. The effectiveness of the method has been proven for welded plates and pipes even with relatively lower bead height. In actual measurements, stress evaluation accuracy becomes poorer because measured values of strain gauges are affected by processing strains on the machined surface. In the previous studies, the author has developed the bead flush method that is free from the influence of the affecting strains by using residual strains on surface by X-ray diffraction. However, stress evaluation accuracy is not good enough because of relatively poor measurement accuracy of X-ray diffraction. In this study, a method to improve the estimation accuracy of residual stresses in this method is formulated, and it is shown numerically that inner welding residual stresses can be estimated accurately from the residual strains measured by X-ray diffraction.

  7. Residual-stress measurement in socket welded joints by neutron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, M.; Ishiwata, M.; Minakawa, N.

    1994-12-31

    Neutron diffraction measurements of lattice strains provide spatial maps of residual stress near welds in ferritic steel socket joints. The highest tensile stresses in the welds are found in axial, radial and hoop direction at the weld root. However, the highest tensile stress in the axial direction is about 110MPa. Balancing compressive stresses are found near the surface of the socket weld fusion zone. Heat treatment at 600 C for 2 hours is sufficient to relieve residual stress in socket welds.

  8. A new nondestructive instrument for bulk residual stress measurement using tungsten kα1 X-ray.

    PubMed

    Ma, Ce; Dou, Zuo-Yong; Chen, Li; Li, Yun; Tan, Xiao; Dong, Ping; Zhang, Jin; Zheng, Lin; Zhang, Peng-Cheng

    2016-11-01

    We describe an experimental instrument used for measuring nondestructively the residual stress using short wavelength X-ray, tungsten k α1 . By introducing a photon energy screening technology, the monochromatic X-ray diffraction of tungsten k α1 was realized using a CdTe detector. A high precision Huber goniometer is utilized in order to reduce the error in residual stress measurement. This paper summarizes the main performance of this instrument, measurement depth, stress error, as opposed to the neutron diffraction measurements of residual stress. Here, we demonstrate an application on the determination of residual stress in an aluminum alloy welded by the friction stir welding.

  9. Dependence of magnetic permeability on residual stresses in alloyed steels

    NASA Astrophysics Data System (ADS)

    Hristoforou, E.; Ktena, A.; Vourna, P.; Argiris, K.

    2018-04-01

    A method for the monitoring of residual stress distribution in steels has been developed based on non-destructive surface magnetic permeability measurements. In order to investigate the potential utilization of the magnetic method in evaluating residual stresses, the magnetic calibration curves of various ferromagnetic alloyed steels' grade (AISI 4140, TRIP and Duplex) were examined. X-Ray diffraction technique was used for determining surface residual stress values. The overall measurement results have shown that the residual stress determined by the magnetic method was in good agreement with the diffraction results. Further experimental investigations are required to validate the preliminary results and to verify the presence of a unique normalized magnetic stress calibration curve.

  10. Neutron diffraction studies of laser welding residual stresses

    NASA Astrophysics Data System (ADS)

    Petrov, Peter I.; Bokuchava, Gizo D.; Papushkin, Igor V.; Genchev, Gancho; Doynov, Nikolay; Michailov, Vesselin G.; Ormanova, Maria A.

    2016-01-01

    The residual stress and microstrain distribution induced by laser beam welding of the low-alloyed C45 steel plate was investigated using high-resolution time-of-flight (TOF) neutron diffraction. The neutron diffraction experiments were performed on FSD diffractometer at the IBR-2 pulsed reactor in FLNP JINR (Dubna, Russia). The experiments have shown that the residual stress distribution across weld seam exhibit typical alternating sign character as it was observed in our previous studies. The residual stress level is varying in the range from -60 MPa to 450 MPa. At the same time, the microstrain level exhibits sharp maxima at weld seam position with maximal level of 4.8·10-3. The obtained experimental results are in good agreement with FEM calculations according to the STAAZ model. The provided numerical model validated with measured data enables to study the influence of different conditions and process parameters on the development of residual welding stresses.

  11. Study of residual stresses in CT test specimens welded by electron beam

    NASA Astrophysics Data System (ADS)

    Papushkin, I. V.; Kaisheva, D.; Bokuchava, G. D.; Angelov, V.; Petrov, P.

    2018-03-01

    The paper reports result of residual stress distribution studies in CT specimens reconstituted by electron beam welding (EBW). The main aim of the study is evaluation of the applicability of the welding technique for CT specimens’ reconstitution. Thus, the temperature distribution during electron beam welding of a CT specimen was calculated using Green’s functions and the residual stress distribution was determined experimentally using neutron diffraction. Time-of-flight neutron diffraction experiments were performed on a Fourier stress diffractometer at the IBR-2 fast pulsed reactor in FLNP JINR (Dubna, Russia). The neutron diffraction data estimates yielded a maximal stress level of ±180 MPa in the welded joint.

  12. Determination of Multiple Near-Surface Residual Stress Components in Laser Peened Aluminum Alloy via the Contour Method

    NASA Astrophysics Data System (ADS)

    Toparli, M. Burak; Fitzpatrick, Michael E.; Gungor, Salih

    2015-09-01

    In this study, residual stress fields, including the near-surface residual stresses, were determined for an Al7050-T7451 sample after laser peening. The contour method was applied to measure one component of the residual stress, and the relaxed stresses on the cut surfaces were then measured by X-ray diffraction. This allowed calculation of the three orthogonal stress components using the superposition principle. The near-surface results were validated with results from incremental hole drilling and conventional X-ray diffraction. The results demonstrate that multiple residual stress components can be determined using a combination of the contour method and another technique. If the measured stress components are congruent with the principal stress axes in the sample, then this allows for determination of the complete stress tensor.

  13. Triaxial X-Ray Diffraction Method and its Application to Monitor Residual Stress in Surface Layers after High-Feed Milling

    NASA Astrophysics Data System (ADS)

    Zaušková, Lucia; Czán, Andrej; Šajgalík, Michal; Pobijak, Jozef; Mikloš, Matej

    2017-10-01

    High-feed milling is a milling method characteristic with shallow depth of cut and high feed rate to maximize the amount of removed metal from a part, generating residual stresses in the surface and subsurface layers of the machined parts. The residual stress has a large influence on the functional properties of the components. The article is focused on the application of triaxial x-ray diffraction method to monitor residual stresses after high feed milling. Significance of triaxial measuring method is the capability of measuring in different angles so it is possible to acquire stress tensor containing normal and shear stress components.

  14. X-ray diffraction analysis of residual stress in zirconia dental composites

    NASA Astrophysics Data System (ADS)

    Allahkarami, Masoud

    Dental restoration ceramic is a complex system to be characterized. Beside its essential biocompatibility, and pleasant appearance, it requires being mechanically strong in a catastrophic loading environment. Any design is restricted with geometry boundary and material property limits. Inspired by natural teeth, a multilayer ceramic is a smart way of achieving an enhanced restoration. Bi-layers of zirconia core covered by porcelain are known as one of the best multilayer restorations. Residual stresses may be introduced into a bi-layer dental ceramic restoration during its entire manufacturing process due to thermal expansion and elastic property mismatch. It is impossible to achieve a free of residual stresses bi-layer zirconia-porcelain restoration. The idea is to take the advantage of residual stress in design in such a way to prevent the crack initiation and progression. The hypothesis is a compressive residual stress at external contact surface would be enabling the restoration to endure a greater tensile stress. Optimizing the layers thickness, manufacturing process, and validating 3D simulations require development of new techniques of thickness, residual stresses and phase transformation measurement. In the present work, a combined mirco-tomography and finite element based method were adapted for thickness measurement. Two new 2D X-ray diffraction based techniques were adapted for phase transformation area mapping and combined phase transformation and residual stress measurement. Concerning the complex geometry of crown, an efficient method for X-ray diffraction data collection mapping on a given curved surface was developed. Finally a novel method for 3D dimensional x-ray diffraction data collection and visualization were introduced.

  15. Type I and type II residual stress in iron meteorites determined by neutron diffraction measurements

    NASA Astrophysics Data System (ADS)

    Caporali, Stefano; Pratesi, Giovanni; Kabra, Saurabh; Grazzi, Francesco

    2018-04-01

    In this work we present a preliminary investigation by means of neutron diffraction experiment to determine the residual stress state in three different iron meteorites (Chinga, Sikhote Alin and Nantan). Because of the very peculiar microstructural characteristic of this class of samples, all the systematic effects related to the measuring procedure - such as crystallite size and composition - were taken into account and a clear differentiation in the statistical distribution of residual stress in coarse and fine grained meteorites were highlighted. Moreover, the residual stress state was statistically analysed in three orthogonal directions finding evidence of the existence of both type I and type II residual stress components. Finally, the application of von Mises approach allowed to determine the distribution of type II stress.

  16. Residual stresses and plastic deformation in GTA-welded steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, P.C.; Keijser, T.H. de; Ouden, G. den

    1993-03-01

    Residual stresses and plastic deformation in single pass GTA welded low-carbon steel were studied by means of x-ray diffraction in combination with optical microscopy and hardness measurements. The residual stresses and the amount of plastic deformation (microstrain) were obtained from x-ray diffraction line positions and line broading. Since the plates were polished before welding, it was possible to observe in the optical microscope two types of Lueders bands. During heating curved Lueders bands and during cooling straight Lueders bands perpendicular to the weld are formed. The curved Lueders bands extend over a larger distance from the weld than the straightmore » Lueders bands. The amount of plastic deformation as obtained from the x-ray diffraction analysis is in agreement with these observations. An explanation is offered for the stresses measured in combination with plastic deformations observed. It is concluded that in the present experiments plastic deformation is the main cause of the residual stresses.« less

  17. An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Wu, Amanda S.; Brown, Donald W.; Kumar, Mukul; Gallegos, Gilbert F.; King, Wayne E.

    2014-12-01

    Additive manufacturing (AM) technology provides unique opportunities for producing net-shape geometries at the macroscale through microscale processing. This level of control presents inherent trade-offs necessitating the establishment of quality controls aimed at minimizing undesirable properties, such as porosity and residual stresses. Here, we perform a parametric study into the effects of laser scanning pattern, power, speed, and build direction in powder bed fusion AM on residual stress. In an effort to better understand the factors influencing macroscale residual stresses, a destructive surface residual stress measurement technique (digital image correlation in conjunction with build plate removal and sectioning) has been coupled with a nondestructive volumetric evaluation method ( i.e., neutron diffraction). Good agreement between the two measurement techniques is observed. Furthermore, a reduction in residual stress is obtained by decreasing scan island size, increasing island to wall rotation to 45 deg, and increasing applied energy per unit length (laser power/speed). Neutron diffraction measurements reveal that, while in-plane residual stresses are affected by scan island rotation, axial residual stresses are unchanged. We attribute this in-plane behavior to misalignment between the greatest thermal stresses (scan direction) and largest part dimension.

  18. Minimization of Residual Stress in an Al-Cu Alloy Forged Plate by Different Heat Treatments

    NASA Astrophysics Data System (ADS)

    Dong, Ya-Bo; Shao, Wen-Zhu; Jiang, Jian-Tang; Zhang, Bao-You; Zhen, Liang

    2015-06-01

    In order to improve the balance of mechanical properties and residual stress, various quenching and aging treatments were applied to Al-Cu alloy forged plate. Residual stresses determined by the x-ray diffraction method and slitting method were compared. The surface residual stress measured by x-ray diffraction method was consistent with that measured by slitting method. The residual stress distribution of samples quenched in water with different temperatures (20, 60, 80, and 100 °C) was measured, and the results showed that the boiling water quenching results in a 91.4% reduction in residual stress magnitudes compared with cold water quenching (20 °C), but the tensile properties of samples quenched in boiling water were unacceptably low. Quenching in 80 °C water results in 75% reduction of residual stress, and the reduction of yield strength is 12.7%. The residual stress and yield strength level are considerable for the dimensional stability of aluminum alloy. Quenching samples into 30% polyalkylene glycol quenchants produced 52.2% reduction in the maximum compressive residual stress, and the reduction in yield strength is 19.7%. Moreover, the effects of uphill quenching and thermal-cold cycling on the residual stress were also investigated. Uphill quenching and thermal-cold cycling produced approximately 25-40% reduction in residual stress, while the effect on tensile properties is quite slight.

  19. Microscopic stress characterisation of functional iron-based alloys by white X-ray microbeam diffraction

    NASA Astrophysics Data System (ADS)

    Kwon, E. P.; Sato, S.; Fujieda, S.; Shinoda, K.; Kajiwara, K.; Sato, M.; Suzuki, S.

    2018-01-01

    Microscopic residual stress evolution in an austenite (γ) grain during a shape-memory process in an Fe-Mn-Si-Cr alloy was investigated using the white X-ray microbeam diffraction technique. The stresses were measured on a coarse grain, which had an orientation near <144>, parallel to the tensile loading direction with a high Schmid factor for a martensitic transformation. The magnitude of the residual stresses in a grain of the sample, which was subjected to a 23 % tensile strain and subsequent shape-recovery heating, was found to be very small and comparable to that prior to tensile deformation. Measurements of the recovery strain and microstructural analyses using electron backscatter diffraction suggested that the low residual stresses could be attributed to the significant shape recovery caused by a highly reversible martensitic transformation in the grain with a particular orientation.

  20. Thermal stress effects in intermetallic matrix composites

    NASA Technical Reports Server (NTRS)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  1. Amplified effect of mild plastic anisotropy on residual stress and strain anisotropy

    DOE PAGES

    Prime, Michael B.

    2017-07-01

    Axisymmetric indentation of a geometrically axisymmetric disk produced residual stresses by non-uniform plastic deformation. The 2024 aluminum plate used to make the disk exhibited mild plastic anisotropy with about 10% lower strength in the transverse direction compared to the rolling and through-thickness directions. Residual stresses and strains in the disk were measured with neutron diffraction, slitting, the contour method, x-ray diffraction and hole drilling. Surprisingly, the residual-stress anisotropy measured in the disk was about 40%, the residual-strain anisotropy was an impressive 100%, and the residual stresses were higher in the weaker direction. The high residual stress anisotropy relative to themore » mild plastic anisotropy and the direction of the highest stress are explained by considering the mechanics of indentation: constraint on deformation provided by the material surrounding the indentation and preferential deformation in the most compliant direction for incremental deformation. By contrast, the much larger anisotropy in residual strain compared to that in residual stress is independent of the fabrication process and is instead explained by considering Hookean elasticity. For Poisson's ratio of 1/3, the relationship simplifies to the residual strain anisotropy equaling the square of the residual stress anisotropy, which matches the observed results (2 ≈ 1.4^2). Furthermore, a lesson from this study is that to accurately predict residual stresses and strains, one must be wary of seemingly reasonable simplifying assumptions such as neglecting mild plastic anisotropy.« less

  2. Amplified effect of mild plastic anisotropy on residual stress and strain anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prime, Michael B.

    Axisymmetric indentation of a geometrically axisymmetric disk produced residual stresses by non-uniform plastic deformation. The 2024 aluminum plate used to make the disk exhibited mild plastic anisotropy with about 10% lower strength in the transverse direction compared to the rolling and through-thickness directions. Residual stresses and strains in the disk were measured with neutron diffraction, slitting, the contour method, x-ray diffraction and hole drilling. Surprisingly, the residual-stress anisotropy measured in the disk was about 40%, the residual-strain anisotropy was an impressive 100%, and the residual stresses were higher in the weaker direction. The high residual stress anisotropy relative to themore » mild plastic anisotropy and the direction of the highest stress are explained by considering the mechanics of indentation: constraint on deformation provided by the material surrounding the indentation and preferential deformation in the most compliant direction for incremental deformation. By contrast, the much larger anisotropy in residual strain compared to that in residual stress is independent of the fabrication process and is instead explained by considering Hookean elasticity. For Poisson's ratio of 1/3, the relationship simplifies to the residual strain anisotropy equaling the square of the residual stress anisotropy, which matches the observed results (2 ≈ 1.4^2). Furthermore, a lesson from this study is that to accurately predict residual stresses and strains, one must be wary of seemingly reasonable simplifying assumptions such as neglecting mild plastic anisotropy.« less

  3. Residual Stress Analysis in Girth-welded Ferritic and Austenitic Steel Pipes Using Neutron and X-Ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hempel, Nico; Bunn, Jeffrey R; Nitschke-Pagel, Thomas

    This paper is dedicated to the thorough experimental analysis of the residual stresses in the vicinity of tubular welds and the mechanisms involved in their formation. Pipes made of a ferritic-pearlitic structural steel and an austenitic stainless steel are investigated in this study. The pipes feature a similar geometry and are MAG welded with two passes and comparable parameters. Residual strain mappings are carried out using X-ray and neutron diffraction. The combined use of both techniques permits both near-surface and through-wall analyses of the residual stresses. The findings allow for a consistent interpretation of the mechanisms accounting for the formationmore » of the residual stress fields due to the welding process. Since the results are similar for both materials, it can be concluded that residual stresses induced by phase transformations, which can occur in the structural steel, play a minor role in this regard.« less

  4. The interaction of fatigue cracks with a residual stress field using thermoelastic stress analysis and synchrotron X-ray diffraction experiments

    PubMed Central

    Amjad, Khurram; Asquith, David; Sebastian, Christopher M.; Wang, Wei-Chung

    2017-01-01

    This article presents an experimental study on the fatigue behaviour of cracks emanating from cold-expanded holes utilizing thermoelastic stress analysis (TSA) and synchrotron X-ray diffraction (SXRD) techniques with the aim of resolving the long-standing ambiguity in the literature regarding potential relaxation, or modification, of beneficial compressive residual stresses as a result of fatigue crack propagation. The crack growth rates are found to be substantially lower as the crack tip moved through the residual stress zone induced by cold expansion. The TSA results demonstrated that the crack tip plastic zones were reduced in size by the presence of the residual compressive stresses induced by cold expansion. The crack tip plastic zones were found to be insignificant in size in comparison to the residual stress zone resulting from cold expansion, which implied that they were unlikely to have had a notable impact on the surrounding residual stresses induced by cold expansion. The residual stress distributions measured along the direction of crack growth, using SXRD, showed no signs of any significant stress relaxation or redistribution, which validates the conclusions drawn from the TSA data. Fractographic analysis qualitatively confirmed the influence on crack initiation of the residual stresses induced by the cold expansion. It was found that the application of single compressive overload caused a relaxation, or reduction in the residual stresses, which has wider implications for improving the fatigue life. PMID:29291095

  5. Experimental investigation of residual stress distribution during turning of weak stiffness revolving parts

    NASA Astrophysics Data System (ADS)

    Jiao, Sicheng; Zhang, Chengyan; Liu, Guancheng; Lu, Jiping; Tang, Shuiyuan

    2017-08-01

    A series of turning experiments have been carried out to study the effect of different cutting speed, feed rate and pre-tightening torque on residual stress distribution during turning of weak stiffness revolving parts. Surface residual stress and the peak residual compressive stress are selected from the typical residual stress distribution profile. The residual stress by turning was measured by X-ray diffraction method. In order to get the distribution of residual stress along depth direction, the specimens need to be etched layer by layer. From this investigation, it can be concluded that it is practicable to control the distribution of residual stress by changing the pre-tightening torque and cutting parameters during turning of weak stiffness revolving parts.

  6. Neutron residual stress measurements on rail sections for different production conditions

    DOT National Transportation Integrated Search

    2004-11-13

    Rail sectioning with subsequent neutron diffraction experiments has been used to assess residual stresses in the rails. In this study we present the results of neutron stress : measurements performed at the NIST Center for Neutron Research (NCNR) on ...

  7. Intergranular stress study of TC11 titanium alloy after laser shock peening by synchrotron-based high-energy X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Su, R.; Li, L.; Wang, Y. D.; Nie, Z. H.; Ren, Y.; Zhou, X.; Wang, J.

    2018-05-01

    The distribution of residual lattice strain as a function of depth were carefully investigated by synchrotron-based high energy X-ray diffraction (HEXRD) in TC11 titanium alloy after laser shock peening (LSP). The results presented big compressive residual lattice strains at surface and subsurface, then tensile residual lattice strains in deeper region, and finally close to zero lattice strains in further deep interior with no plastic deformation thereafter. These evolutions in residual lattice strains were attributed to the balance of direct load effect from laser shock wave and the derivative restriction force effect from surrounding material. Significant intergranular stress was evidenced in the processed sample. The intergranular stress exhibited the largest value at surface, and rapidly decreased with depth increase. The magnitude of intergranular stress was proportional to the severity of the plastic deformation caused by LSP. Two shocks generated larger intergranular stress than one shock.

  8. Neutron diffraction measurements and modeling of residual strains in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Saigal, A.; Leisk, G. G.; Hubbard, C. R.; Misture, S. T.; Wang, X. L.

    1996-01-01

    Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.

  9. In-situ neutron diffraction characterization of temperature dependence deformation in α-uranium

    NASA Astrophysics Data System (ADS)

    Calhoun, C. A.; Garlea, E.; Sisneros, T. A.; Agnew, S. R.

    2018-04-01

    In-situ strain neutron diffraction measurements were conducted at temperature on specimens coming from a clock-rolled α-uranium plate, and Elasto-Plastic Self-Consistent (EPSC) modeling was employed to interpret the findings. The modeling revealed that the active slip systems exhibit a thermally activated response, while deformation twinning remains athermal over the temperature ranges explored (25-150 °C). The modeling also allowed assessment of the effects of thermal residual stresses on the mechanical response during compression. These results are consistent with those from a prior study of room-temperature deformation, indicating that the thermal residual stresses strongly influence the internal strain evolution of grain families, as monitored with neutron diffraction, even though accounting for these residual stresses has little effect on the macroscopic flow curve, except in the elasto-plastic transition.

  10. Residual stress determination in oxide layers at different length scales combining Raman spectroscopy and X-ray diffraction: Application to chromia-forming metallic alloys

    DOE PAGES

    Guerain, Mathieu; Grosseau-Poussard, Jean-Luc; Geandier, Guillaume; ...

    2017-11-21

    In oxidizing environments, the protection of metals and alloys against further oxidation at high temperature is provided by the oxide film itself. This protection is efficient only if the formed film adheres well to the metal (substrate), i.e., without microcracks and spalls induced by thermomechanical stresses. In this study, the residual stresses at both macroscopic and microscopic scales in the oxide film adhering to the substrate and over the damaged areas have been rigorously determined on the same samples for both techniques. Ni-30Cr and Fe-47Cr alloys have been oxidized together at 900 and 1000 °C, respectively, to create films withmore » a thickness of a few microns. A multi-scale approach was adopted: macroscopic stress was determined by conventional X-ray diffraction and Raman spectroscopy, while microscopic residual stress mappings were performed over different types of bucklings using Raman micro-spectroscopy and synchrotron micro-diffraction. A very good agreement is found at macro- and microscales between the residual stress values obtained with both techniques, giving confidence on the reliability of the measurements. In addition, relevant structural information at the interface between the metallic substrate and the oxide layer was collected by micro-diffraction, a non-destructive technique that allows mapping through the oxide layer, and both the grain size and the crystallographic orientation of the supporting polycrystalline metal located either under a buckling or not were measured.« less

  11. Residual stress determination in oxide layers at different length scales combining Raman spectroscopy and X-ray diffraction: Application to chromia-forming metallic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerain, Mathieu; Grosseau-Poussard, Jean-Luc; Geandier, Guillaume

    In oxidizing environments, the protection of metals and alloys against further oxidation at high temperature is provided by the oxide film itself. This protection is efficient only if the formed film adheres well to the metal (substrate), i.e., without microcracks and spalls induced by thermomechanical stresses. In this study, the residual stresses at both macroscopic and microscopic scales in the oxide film adhering to the substrate and over the damaged areas have been rigorously determined on the same samples for both techniques. Ni-30Cr and Fe-47Cr alloys have been oxidized together at 900 and 1000 °C, respectively, to create films withmore » a thickness of a few microns. A multi-scale approach was adopted: macroscopic stress was determined by conventional X-ray diffraction and Raman spectroscopy, while microscopic residual stress mappings were performed over different types of bucklings using Raman micro-spectroscopy and synchrotron micro-diffraction. A very good agreement is found at macro- and microscales between the residual stress values obtained with both techniques, giving confidence on the reliability of the measurements. In addition, relevant structural information at the interface between the metallic substrate and the oxide layer was collected by micro-diffraction, a non-destructive technique that allows mapping through the oxide layer, and both the grain size and the crystallographic orientation of the supporting polycrystalline metal located either under a buckling or not were measured.« less

  12. Residual stress determination in oxide layers at different length scales combining Raman spectroscopy and X-ray diffraction: Application to chromia-forming metallic alloys

    NASA Astrophysics Data System (ADS)

    Guerain, Mathieu; Grosseau-Poussard, Jean-Luc; Geandier, Guillaume; Panicaud, Benoit; Tamura, Nobumichi; Kunz, Martin; Dejoie, Catherine; Micha, Jean-Sebastien; Thiaudière, Dominique; Goudeau, Philippe

    2017-11-01

    In oxidizing environments, the protection of metals and alloys against further oxidation at high temperature is provided by the oxide film itself. This protection is efficient only if the formed film adheres well to the metal (substrate), i.e., without microcracks and spalls induced by thermomechanical stresses. In this study, the residual stresses at both macroscopic and microscopic scales in the oxide film adhering to the substrate and over the damaged areas have been rigorously determined on the same samples for both techniques. Ni-30Cr and Fe-47Cr alloys have been oxidized together at 900 and 1000 °C, respectively, to create films with a thickness of a few microns. A multi-scale approach was adopted: macroscopic stress was determined by conventional X-ray diffraction and Raman spectroscopy, while microscopic residual stress mappings were performed over different types of bucklings using Raman micro-spectroscopy and synchrotron micro-diffraction. A very good agreement is found at macro- and microscales between the residual stress values obtained with both techniques, giving confidence on the reliability of the measurements. In addition, relevant structural information at the interface between the metallic substrate and the oxide layer was collected by micro-diffraction, a non-destructive technique that allows mapping through the oxide layer, and both the grain size and the crystallographic orientation of the supporting polycrystalline metal located either under a buckling or not were measured.

  13. Study of grain-level deformation and residual stresses in Ti-7Al under combined bending and tension using high energy diffraction microscopy (HEDM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, K.; Venkataraman, A.; Garbaciak, T.

    In-situ high energy diffraction microscopy (HEDM) experiments are carried out to analyze the state of combined bending and tension in a Ti-7Al alloy under room temperature creep. Grain-level elastic strain tensors are evaluated from HEDM data. Atomistic calculations are used to predict elastic constants of Ti-7Al, to be used in determination of stress from strain. The stress gradient and residual stresses are successfully determined, which allows the demarcation between macro-/micro-level residual stresses. A cluster of three neighboring grains are identified that highlight the variation of mean and effective stress between grains. Crystallographic orientations and slip characteristics are analyzed for themore » selected grains. It is inferred that the interfaces between loaded grains with markedly different stress triaxiality and slip tendency are potential spots for material damage.« less

  14. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, Robert M.; Cohen, Isadore

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  15. A synchrotron X-ray diffraction deconvolution method for the measurement of residual stress in thermal barrier coatings as a function of depth.

    PubMed

    Li, C; Jacques, S D M; Chen, Y; Daisenberger, D; Xiao, P; Markocsan, N; Nylen, P; Cernik, R J

    2016-12-01

    The average residual stress distribution as a function of depth in an air plasma-sprayed yttria stabilized zirconia top coat used in thermal barrier coating (TBC) systems was measured using synchrotron radiation X-ray diffraction in reflection geometry on station I15 at Diamond Light Source, UK, employing a series of incidence angles. The stress values were calculated from data deconvoluted from diffraction patterns collected at increasing depths. The stress was found to be compressive through the thickness of the TBC and a fluctuation in the trend of the stress profile was indicated in some samples. Typically this fluctuation was observed to increase from the surface to the middle of the coating, decrease a little and then increase again towards the interface. The stress at the interface region was observed to be around 300 MPa, which agrees well with the reported values. The trend of the observed residual stress was found to be related to the crack distribution in the samples, in particular a large crack propagating from the middle of the coating. The method shows promise for the development of a nondestructive test for as-manufactured samples.

  16. Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Mach, J. C.; Budrow, C. J.; Pagan, D. C.; Ruff, J. P. C.; Park, J.-S.; Okasinski, J.; Beaudoin, A. J.; Miller, M. P.

    2017-05-01

    Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present work, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to develop significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. The experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.

  17. Residual Stresses in 21-6-9 Stainless Steel Warm Forgings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everhart, Wesley A.; Lee, Jordan D.; Broecker, Daniel J.

    Forging residual stresses are detrimental to the production and performance of derived machined parts due to machining distortions, corrosion drivers and fatigue crack drivers. Residual strains in a 21-6-9 stainless steel warm High Energy Rate Forging (HERF) were measured via neutron diffraction. The finite element analysis (FEA) method was used to predict the residual stresses that occur during forging and water quenching. The experimentally measured residual strains were used to calibrate simulations of the three-dimensional residual stress state of the forging. ABAQUS simulation tools predicted residual strains that tend to match with experimental results when varying yield strength is considered.

  18. The influence of alloy composition on residual stresses in heat treated aluminium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, J.S., E-mail: jeremy.robinson@ul.ie; Redington, W.

    The as quenched properties of eight different heat treatable aluminium alloys are related to residual stress magnitudes with the objective being to establish if there is a relationship between the residual stress and the as quenched alloy hardness and strength. Near surface residual stresses were assessed with X-ray diffraction using both the established sin{sup 2}ψ method and the more recent cos α technique. Through thickness residual stresses were also characterised using neutron diffraction. The alloys were chosen to encompass a wide range of strengths. The low to medium strength alloys were 6060 and 6082, medium to high strength 2618A, 2014A,more » 7075, 7010 and two variants of 7449, while the very high strength alloy was the powder metallurgy alloy N707. To assess the as quenched strength, dynamic hardness and tensile properties were determined from samples tested immediately after quenching to minimise the influence of precipitation hardening by natural aging. In addition, hot hardness measurements were made in situ on samples cooled to simulate quench paths. Within the experimental constraints of the investigation, the distribution of residual stress through the thickness was found to follow the same pattern for all the alloys investigated, varying from tensile in the interior to surface compression. The influence of alloy strength was manifested as a change in the observed residual stress magnitudes, and surface residual stresses were found to vary linearly with as quenched hardness and strength. - Highlights: • As quenched aluminium alloys contain high magnitude residual stresses. • Surface is compressive balance by a tensile core. • As quenched surface residual stress is linear function of alloy strength. • In situ hot hardness demonstrates rapid change in intrinsic hardness during rapid cooling.« less

  19. Minimization of spurious strains by using a Si bent-perfect-crystal monochromator: neutron surface strain scanning of a shot-peened sample

    NASA Astrophysics Data System (ADS)

    Rebelo Kornmeier, Joana; Gibmeier, Jens; Hofmann, Michael

    2011-06-01

    Neutron strain measurements are critical at the surface. When scanning close to a sample surface, aberration peak shifts arise due to geometrical and divergence effects. These aberration peak shifts can be of the same order as the peak shifts related to residual strains. In this study it will be demonstrated that by optimizing the horizontal bending radius of a Si (4 0 0) monochromator, the aberration peak shifts from surface effects can be strongly reduced. A stress-free sample of fine-grained construction steel, S690QL, was used to find the optimal instrumental conditions to minimize aberration peak shifts. The optimized Si (4 0 0) monochromator and instrument settings were then applied to measure the residual stress depth gradient of a shot-peened SAE 4140 steel sample to validate the effectiveness of the approach. The residual stress depth profile is in good agreement with results obtained by x-ray diffraction measurements from an international round robin test (BRITE-EURAM-project ENSPED). The results open very promising possibilities to bridge the gap between x-ray diffraction and conventional neutron diffraction for non-destructive residual stress analysis close to surfaces.

  20. Nanohardness and Residual Stress in TiN Coatings.

    PubMed

    Hernández, Luis Carlos; Ponce, Luis; Fundora, Abel; López, Enrique; Pérez, Eduardo

    2011-05-17

    TiN films were prepared by the Cathodic arc evaporation deposition method under different negative substrate bias. AFM image analyses show that the growth mode of biased coatings changes from 3D island to lateral when the negative bias potential is increased. Nanohardness of the thin films was measured by nanoindentation, and residual stress was determined using Grazing incidence X ray diffraction. The maximum value of residual stress is reached at -100 V substrate bias coinciding with the biggest values of adhesion and nanohardness. Nanoindentation measurement proves that the force-depth curve shifts due to residual stress. The experimental results demonstrate that nanohardness is seriously affected by the residual stress.

  1. Influence of Annealing on the Depth Microstructure of the Shot Peened Duplex Stainless Steel at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Feng, Qiang; She, Jia; Xiang, Yong; Wu, Xianyun; Wang, Chengxi; Jiang, Chuanhai

    The depth profiles of residual stresses and lattice parameters in the surface layers of shot peened duplex stainless steel at elevated temperature were investigated utilizing X-ray diffraction analysis. At each deformation depth, residual stress distributions in both ferrite and austenite were studied by X-ray diffraction stress analysis which is performed on the basis of the sin2ψ method and the lattice parameters were explored by Rietveld method. The results reveal that difference changes of depth residual compressive stress profiles between ferrite and austenite under the same annealing condition are resulted from the diverse coefficient of thermal expansion, dislocation density, etc. for different phases in duplex stainless steel. The relaxations of depth residual stresses in austenite are more obvious than those in ferrite. The lattice parameters decrease in the surface layer with the extending of annealing time, however, they increase along the depth after annealing for 16min. The change of the depth lattice parameters can be ascribed to both thermal expansion and the relaxation of residual stress. The different changes of microstructure at elevated temperature between ferrite and austenite are discussed.

  2. Lattice strain measurements on sandstones under load using neutron diffraction

    NASA Astrophysics Data System (ADS)

    Frischbutter, A.; Neov, D.; Scheffzük, Ch.; Vrána, M.; Walther, K.

    2000-11-01

    Neutron diffraction methods (both time-of-flight- and angle-dispersive diffraction) are applied to intracrystalline strain measurements on geological samples undergoing uniaxial increasing compressional load. The experiments were carried out on Cretaceous sandstones from the Elbezone (East Germany), consisting of >95% quartz which are bedded but without crystallographic preferred orientation of quartz. From the stress-strain relation the Young's modulus for our quartz sample was determined to be (72.2±2.9) GPa using results of the neutron time-of-flight method. The influence of different kinds of bedding in sandstones (laminated and convolute bedding) could be determined. We observed differences of factor 2 (convolute bedding) and 3 (laminated bedding) for the elastic stiffness, determined with angle dispersive neutron diffraction (crystallographic strain) and with strain gauges (mechanical strain). The data indicate which geological conditions may influence the stress-strain behaviour of geological materials. The influence of bedding on the stress-strain behaviour of a laminated bedded sandstone was indicated by direct residual stress measurements using neutron time-of-flight diffraction. The measurements were carried out six days after unloading the sample. Residual strain was measured for three positions from the centre to the periphery and within two radial directions of the cylinder. We observed that residual strain changes from extension to compression in a different manner for two perpendicular directions of the bedding plane.

  3. Residual stress determination in an overlay dissimilar welded pipe by neutron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Wan Chuck; Em, Vyacheslav; Hubbard, Camden R

    2011-01-01

    Residual stresses were determined through the thickness of a dissimilar weld overlay pipe using neutron diffraction. The specimen has a complex joining structure consisting of a ferritic steel (SA508), austenitic steel (F316L), Ni-based consumable (Alloy 182), and overlay of Ni-base superalloy (Alloy 52M). It simulates pressurized nozzle components, which have been a critical issue under the severe crack condition of nuclear power reactors. Two neutron diffractometers with different spatial resolutions have been utilized on the identical specimen for comparison. The macroscopic 'stress-free' lattice spacing (d{sub o}) was also obtained from both using a 2-mm width comb-like coupon. The results showmore » significant changes in residual stresses from tension (300-400 MPa) to compression (-600 MPa) through the thickness of the dissimilar weld overlay pipe specimen.« less

  4. Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, R.M.; Cohen, I.

    1988-04-26

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.

  5. Evaluation of the residual stresses in 95wt%Al2O3-5wt% SiC wear protection coating using X-Ray diffraction technique

    NASA Astrophysics Data System (ADS)

    Mahmoud, Adel K.; Hammoudi, Zaid S.; Student Samah Rasheed, M. Sc.

    2018-02-01

    This paper aims to measuring the residual stresses practically in wear protection coatings using the sin2ψ method according to X-ray diffraction technique. The wear protection coatings used in this study was composite coating 95wt% Al2O3-5wt% SiC, while bond coat was AlNi alloy produced by using flame spraying technique on the mild steel substrate. The diffraction angle, 2θ, is measured experimentally and then the lattice spacing is calculated from the diffraction angle, and the known X-ray wavelength using Bragg’s Law. Once the dspacing values are known, they can be plotted versus sin2ψ, (ψ is the tilt angle). In this paper, stress measurement of the samples that exhibit a linear behavior as in the case of a homogenous isotropic sample in a biaxial stress state is included. The plot of dspacing versus sin2ψ is a straight line which slope is proportional to stress. On the other hand, the second set of samples showed oscillatory dspacing versus sin2ψ behaviour. The oscillatory behaviour indicates the presence of inhomogeneous stress distribution. In this case the X-ray elastic constants must be used instead of Young’s modulus (E) and Poisson ratio (ν)values. These constants can be obtained from the literature for a given material and reflection combination. The value of the residual stresses for the present coating calculated was compressive stresses (-325.6758MPa).

  6. Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction

    DOE PAGES

    Mach, J. C.; Budrow, C. J.; Pagan, D. C.; ...

    2017-03-15

    Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present paper, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to developmore » significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. Finally, the experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.« less

  7. Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mach, J. C.; Budrow, C. J.; Pagan, D. C.

    Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present paper, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to developmore » significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. Finally, the experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.« less

  8. Analytical solutions for determining residual stresses in two-dimensional domains using the contour method

    PubMed Central

    Kartal, Mehmet E.

    2013-01-01

    The contour method is one of the most prevalent destructive techniques for residual stress measurement. Up to now, the method has involved the use of the finite-element (FE) method to determine the residual stresses from the experimental measurements. This paper presents analytical solutions, obtained for a semi-infinite strip and a finite rectangle, which can be used to calculate the residual stresses directly from the measured data; thereby, eliminating the need for an FE approach. The technique is then used to determine the residual stresses in a variable-polarity plasma-arc welded plate and the results show good agreement with independent neutron diffraction measurements. PMID:24204187

  9. Measurement of residual stress fields in FHPP welding: a comparison between DSPI combined with hole-drilling and neutron diffraction

    NASA Astrophysics Data System (ADS)

    Viotti, Matias R.; Albertazzi, Armando; Staron, Peter; Pisa, Marcelo

    2013-04-01

    This paper shows a portable device to measure mainly residual stress fields outside the optical bench. This system combines the traditional hole drilling technique with Digital Speckle Pattern Interferometry. The novel feature of this device is the high degree of compaction since only one base supports simultaneously the measurement module and the hole-drilling device. The portable device allows the measurement of non-uniform residual stresses in accordance with the ASTM standard. In oil and gas offshore industries, alternative welding procedures among them, the friction hydro pillar processing (FHPP) is highlighted and nowadays is an important maintenance tool since it has the capability to produce structure repairs without risk of explosions. In this process a hole is drilled and filled with a consumable rod of the same material. The rod, which could be cylindrical or conical, is rotated and pressed against the hole, leading to frictional heating. In order to assess features about the residual stress distribution generated by the weld into the rod as well as into the base material around the rod, welded samples were evaluated by neutron diffraction and by the hole drilling technique having a comparison between them. For the hole drilling technique some layers were removed by using electrical discharge machining (EDM) after diffraction measurements in order to assess the bulk stress distribution. Results have shown a good agreement between techniques.

  10. Diffraction grating strain gauge method: error analysis and its application for the residual stress measurement in thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Yin, Yuanjie; Fan, Bozhao; He, Wei; Dai, Xianglu; Guo, Baoqiao; Xie, Huimin

    2018-03-01

    Diffraction grating strain gauge (DGSG) is an optical strain measurement method. Based on this method, a six-spot diffraction grating strain gauge (S-DGSG) system has been developed with the advantages of high and adjustable sensitivity, compact structure, and non-contact measurement. In this study, this system is applied for the residual stress measurement in thermal barrier coatings (TBCs) combining the hole-drilling method. During the experiment, the specimen’s location is supposed to be reset accurately before and after the hole-drilling, however, it is found that the rigid body displacements from the resetting process could seriously influence the measurement accuracy. In order to understand and eliminate the effects from the rigid body displacements, such as the three-dimensional (3D) rotations and the out-of-plane displacement of the grating, the measurement error of this system is systematically analyzed, and an optimized method is proposed. Moreover, a numerical experiment and a verified tensile test are conducted, and the results verify the applicability of this optimized method successfully. Finally, combining this optimized method, a residual stress measurement experiment is conducted, and the results show that this method can be applied to measure the residual stress in TBCs.

  11. Path length dependent neutron diffraction peak shifts observed during residual strain measurements in U–8 wt% Mo castings

    DOE PAGES

    Steiner, M. A.; Bunn, J. R.; Einhorn, J. R.; ...

    2017-05-16

    This study reports an angular diffraction peak shift that scales linearly with the neutron beam path length traveled through a diffracting sample. This shift was observed in the context of mapping the residual stress state of a large U–8 wt% Mo casting, as well as during complementary measurements on a smaller casting of the same material. If uncorrected, this peak shift implies a non-physical level of residual stress. A hypothesis for the origin of this shift is presented, based upon non-ideal focusing of the neutron monochromator in combination with changes to the wavelength distribution reaching the detector due to factorsmore » such as attenuation. The magnitude of the shift is observed to vary linearly with the width of the diffraction peak reaching the detector. Consideration of this shift will be important for strain measurements requiring long path lengths through samples with significant attenuation. This effect can probably be reduced by selecting smaller voxel slit widths.« less

  12. Evolution of microstructure and residual stress during annealing of austenitic and ferritic steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wawszczak, R.; Baczmański, A., E-mail: Andrzej.Baczmanski@fis.agh.edu.pl; Marciszko, M.

    2016-02-15

    In this work the recovery and recrystallization processes occurring in ferritic and austenitic steels were studied. To determine the evolution of residual stresses during material annealing the nonlinear sin{sup 2}ψ diffraction method was used and an important relaxation of the macrostresses as well as the microstresses was found in the cold rolled samples subjected to heat treatment. Such relaxation occurs at the beginning of recovery, when any changes of microstructure cannot be detected using other experimental techniques. Stress evolution in the annealed steel samples was correlated with the progress of recovery process, which significantly depends on the value of stackingmore » fault energy. - Highlights: • X-ray diffraction was used to determine the first order and second order stresses. • Diffraction data were analyzed using scale transition elastoplastic models model. • Stress relaxation in annealed ferritic and austenitic steels was correlated with evolution of microstructure. • Influence of stacking fault energy on thermally induced processes was discussed.« less

  13. Triaxial Measurement Method for Analysis of Residual Stress after High Feed Milling by X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Čuma, Matúš; Török, Jozef; Telišková, Monika

    2016-12-01

    Surface integrity is a broad term which includes various quality factors affecting the functional properties of parts. Residual stress is one of these factors. Machining generates residual stresses in the surface and subsurface layers of the structural elements. X-ray diffractometry is a non-destructive method applicable for the measurement of residual stresses in surface and subsurface layers of components. The article is focused on the non-destructive progressive method of triaxial measurement of residual stress after machining the surface of sample by high feed milling technology. Significance of triaxial measuring is the capability of measuring in different angles so it is possible to acquire stress tensor containing normal and shear stress components acting in the spot of measuring, using a Cartesian coordinate system.

  14. Effect of Applied Stress and Temperature on Residual Stresses Induced by Peening Surface Treatments in Alloy 600

    NASA Astrophysics Data System (ADS)

    Telang, A.; Gnäupel-Herold, T.; Gill, A.; Vasudevan, V. K.

    2018-04-01

    In this study, the effects of applied tensile stress and temperature on laser shock peening (LSP) and cavitation shotless peening (CSP)-induced compressive residual stresses were investigated using neutron and x-ray diffraction. Residual stresses on the surface, measured in situ, were lower than the applied stress in LSP- and CSP-treated Alloy 600 samples (2 mm thick). The residual stress averaged over the volume was similar to the applied stress. Compressive residual stresses on the surface and balancing tensile stresses in the interior relax differently due to hardening induced by LSP. Ex situ residual stress measurements, using XRD, show that residual stresses relaxed as the applied stress exceeded the yield strength of the LSP- and CSP-treated Alloy 600. Compressive residual stresses induced by CSP and LSP decreased by 15-25% in magnitude, respectively, on exposure to 250-450 °C for more than 500 h with 10-11% of relaxation occurring in the first few hours. Further, 80% of the compressive residual stresses induced by LSP and CSP treatments in Alloy 600 were retained even after long-term aging at 350 °C for 2400 h.

  15. Research Results Of Stress-Strain State Of Cutting Tool When Aviation Materials Turning

    NASA Astrophysics Data System (ADS)

    Serebrennikova, A. G.; Nikolaeva, E. P.; Savilov, A. V.; Timofeev, S. A.; Pyatykh, A. S.

    2018-01-01

    Titanium alloys and stainless steels are hard-to-machine of all the machining types. Cutting edge state of turning tool after machining titanium and high-strength aluminium alloys and corrosion-resistant high-alloy steel has been studied. Cutting forces and chip contact arears with the rake surface of cutter has been measured. The relationship of cutting forces and residual stresses are shown. Cutting forces and residual stresses vs value of cutting tool rake angle relation were obtained. Measurements of residual stresses were performed by x-ray diffraction.

  16. Investigating Resulting Residual Stresses during Mechanical Forming Process

    NASA Astrophysics Data System (ADS)

    Akinlabi, Stephen A.; Fatoba, Olawale S.; Mashinini, Peter M.; Akinlabi, Esther T.

    2018-03-01

    Most manufacturing processes such as machining, welding, heat treatment, laser forming, laser cladding and, laser metal deposition, etc. are subjected to a form of heat or energy to change the geometrical shape thus changing the inherent engineering and structural properties of the material. These changes often cause the development of locked up stresses referred to as residual stresses as a result of these activities. This study reports on the residual stresses developed due to the mechanical forming process to maintain a suitable structural integrity for the formed components. The result of the analysis through the X-ray diffraction confirmed that residual stresses were induced in the manufactured parts and further revealed that residual stresses were compressive in nature as found in the parent material but with values less than the parent material.

  17. X-ray diffraction analysis of residual stresses in textured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Dobročka, E.; Novák, P.; Búc, D.; Harmatha, L.; Murín, J.

    2017-02-01

    Residual stresses are commonly generated in thin films during the deposition process and can influence the film properties. Among a number of techniques developed for stress analysis, X-ray diffraction methods, especially the grazing incidence set-up, are of special importance due to their capability to analyze the stresses in very thin layers as well as to investigate the depth variation of the stresses. In this contribution a method combining multiple {hkl} and multiple χ modes of X-ray diffraction stress analysis in grazing incidence set-up is used for the measurement of residual stress in strongly textured ZnO thin films. The method improves the precision of the stress evaluation in textured samples. Because the measurements are performed at very low incidence angles, the effect of refraction of X-rays on the measured stress is analyzed in details for the general case of non-coplanar geometry. It is shown that this effect cannot be neglected if the angle of incidence approaches the critical angle. The X-ray stress factors are calculated for hexagonal fiber-textured ZnO for the Reuss model of grain-interaction and the effect of texture on the stress factors is analyzed. The texture in the layer is modelled by Gaussian distribution function. Numerical results indicate that in the process of stress evaluation the Reuss model can be replaced by much simpler crystallite group method if the standard deviation of Gaussian describing the texture is less than 6°. The results can be adapted for fiber-textured films of various hexagonal materials.

  18. Evaluation of Residual Stress Measurements Before and After Post-Weld Heat Treatment in the Weld Repairs

    NASA Astrophysics Data System (ADS)

    Pardowska, Anna M.; Price, John W. H.; Finlayson, Trevor R.; Ibrahim, R.

    2010-11-01

    Welding repairs are increasingly a structural integrity concern for aging pressure vessel and piping components. It has been demonstrated that the residual stress distribution near repair welds can be drastically different from that of the original weld. Residual stresses have a significant effect on the lifetime performance of a weld, and a reduction of these stresses is normally desirable. The aim of this paper is to investigate residual stresses in various weld repair arrangements using the non-destructive neutron diffraction technique. This research is focused on characterization of the residual stress distribution: (i) in the original weld; (ii) in a shallow toe weld repair; and (iii) after conventional post-weld heat treatment. The focus of the measurements is on the values of the subsurface strain/stress variations across the weld.

  19. Residual Stress Induced Mechanical Property Enhancement in Steel Encapsulated Light Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Fudger, Sean James

    Macro hybridized systems consisting of steel encapsulated light metal matrix composites (MMCs) were produced with the goal of creating a low cost/light weight composite system with enhanced mechanical properties. MMCs are frequently incorporated into advanced material systems due to their tailorable material properties. However, they often have insufficient ductility for many structural applications. The macro hybridized systems take advantage of the high strength, modulus, and damage tolerance of steels and high specific stiffness and low density of MMCs while mitigating the high density of steels and the poor ductility of MMCs. Furthermore, a coefficient of thermal expansion (CTE) mismatch induced residual compressive stress method is utilized as a means of improving the ductility of the MMCs and overall efficiency of the macro hybridized systems. Systems consisting of an A36, 304 stainless steel, or NitronicRTM 50 stainless steel shell filled with an Al-SiC, Al-Al2O3, or Mg-B4C MMC are evaluated in this work. Upon cooling from processing temperatures, residual strains are generated due to a CTE mismatch between each of the phases. The resulting systems offer higher specific properties and a more structurally efficient system can be attained. Mechanical testing was performed and improvements in yield stress, ultimate tensile stress, and ductility were observed. However, the combination of these dissimilar materials often results in the formation of intermetallic compounds. In certain loading situations, these typically brittle intermetallic layers can result in degraded performance. X-ray Diffraction (XRD), X-ray Energy Dispersive Spectroscopy (EDS), and Electron Backscatter Diffraction (EBSD) are utilized to characterize the intermetallic layer formation at the interface between the steel and MMC. As the residual stress condition in each phase has a large impact on the mechanical property improvement, accurate quantification of these strains/stresses is paramount. X-ray Diffraction Residual Stress Analysis (XRD-RSA) or Neutron diffraction was performed on numerous systems in multiple steel shell thickness variations. The analysis shows variation in the measured strain and stress results due to outer steel thickness, difference in CTE between materials, and relative position within the composite. Improvements in mechanical properties, namely ductility and yield stress, are a direct result of these measured strains.

  20. High performance computation of residual stress and distortion in laser welded 301L stainless sheets

    DOE PAGES

    Huang, Hui; Tsutsumi, Seiichiro; Wang, Jiandong; ...

    2017-07-11

    Transient thermo-mechanical simulation of stainless plate laser welding process was performed by a highly efficient and accurate approach-hybrid iterative substructure and adaptive mesh method. Especially, residual stress prediction was enhanced by considering various heat effects in the numerical model. The influence of laser welding heat input on residual stress and welding distortion of stainless thin sheets were investigated by experiment and simulation. X-ray diffraction (XRD) and contour method were used to measure the surficial and internal residual stress respectively. Effect of strain hardening, annealing and melting on residual stress prediction was clarified through a parametric study. It was shown thatmore » these heat effects must be taken into account for accurate prediction of residual stresses in laser welded stainless sheets. Reasonable agreement among residual stresses by numerical method, XRD and contour method was obtained. Buckling type welding distortion was also well reproduced by the developed thermo-mechanical FEM.« less

  1. High performance computation of residual stress and distortion in laser welded 301L stainless sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hui; Tsutsumi, Seiichiro; Wang, Jiandong

    Transient thermo-mechanical simulation of stainless plate laser welding process was performed by a highly efficient and accurate approach-hybrid iterative substructure and adaptive mesh method. Especially, residual stress prediction was enhanced by considering various heat effects in the numerical model. The influence of laser welding heat input on residual stress and welding distortion of stainless thin sheets were investigated by experiment and simulation. X-ray diffraction (XRD) and contour method were used to measure the surficial and internal residual stress respectively. Effect of strain hardening, annealing and melting on residual stress prediction was clarified through a parametric study. It was shown thatmore » these heat effects must be taken into account for accurate prediction of residual stresses in laser welded stainless sheets. Reasonable agreement among residual stresses by numerical method, XRD and contour method was obtained. Buckling type welding distortion was also well reproduced by the developed thermo-mechanical FEM.« less

  2. Research and Development Program to Develop a Nondestructive Evaluation Instrument (X-Ray Diffraction) for Measuring Residual Stresses in a Wide Range of Naval Aviation Material. Phase 2

    DTIC Science & Technology

    1987-04-03

    Using Cr KO Radiation 3-20 Smaary of Residual Stress for Navy Pensacola Nickel-Plated 3-64 Camshaft 75 £51 3-21 Surface Residual Stresses in Nickel-Plated...NAN - Pensacola. The data obtained from the H-3 camshafts produced perplexing results due to sLn 2 * splitting and non-linear d-spacing versus sin2...com- pressive stress values on one of the nickel-plated camshafts . An additional objective of the Phase II nickel-plating study was to under- stand the

  3. Finite Element Analysis of Surface Residual Stress in Functionally Gradient Cemented Carbide Tool

    NASA Astrophysics Data System (ADS)

    Su, Chuangnan; Liu, Deshun; Tang, Siwen; Li, Pengnan; Qiu, Xinyi

    2018-03-01

    A component distribution model is proposed for three-component functionally gradient cemented carbide (FGCC) based on electron probe microanalysis results obtained for gradient layer thickness, microstructure, and elemental distribution. The residual surface stress of FGCC-T5 tools occurring during the fabrication process is analyzed using an ANSYS-implemented finite element method (FEM) and X-ray diffraction. A comparison of the experimental and calculated values verifies the feasibility of using FEM to analyze the residual surface stress in FGCC-T5 tools. The effects of the distribution index, geometrical shape, substrate thickness, gradient layer thickness, and position of the cobalt-rich layer on residual surface stress are studied in detail.

  4. Research on residual stress inside Fe-Mn-Si shape memory alloy coating by laser cladding processing

    NASA Astrophysics Data System (ADS)

    Ju, Heng; Lin, Cheng-xin; Zhang, Jia-qi; Liu, Zhi-jie

    2016-09-01

    The stainless Fe-Mn-Si shape memory alloy (SMA) coating was prepared on the surface of AISI 304 stainless steel. The principal residual stress measured by the mechanical hole-drilling method indicates that the Fe-Mn-Si SMA cladding specimen possesses a lower residual stress compared with the 304 stainless steel cladding specimen. The mean stress values of the former and the latter on 10-mm-thick substrate are 4.751 MPa and 7.399 MPa, respectively. What's more, their deformation values on 2-mm-thick substrate are about 0° and 15°, respectively. Meanwhile, the variation trend and the value of the residual stress simulated by the ANSYS finite element software consist with experimental results. The X-ray diffraction (XRD) pattern shows ɛ-martensite exists in Fe-Mn-Si SMA coating, which verifies the mechanism of low residual stress. That's the γ→ɛ martensite phase transformation, which relaxes the residual stress of the specimen and reduces its deformation in the laser cladding processing.

  5. Through-Thickness Residual Stress Profiles in Austenitic Stainless Steel Welds: A Combined Experimental and Prediction Study

    NASA Astrophysics Data System (ADS)

    Mathew, J.; Moat, R. J.; Paddea, S.; Francis, J. A.; Fitzpatrick, M. E.; Bouchard, P. J.

    2017-12-01

    Economic and safe management of nuclear plant components relies on accurate prediction of welding-induced residual stresses. In this study, the distribution of residual stress through the thickness of austenitic stainless steel welds has been measured using neutron diffraction and the contour method. The measured data are used to validate residual stress profiles predicted by an artificial neural network approach (ANN) as a function of welding heat input and geometry. Maximum tensile stresses with magnitude close to the yield strength of the material were observed near the weld cap in both axial and hoop direction of the welds. Significant scatter of more than 200 MPa was found within the residual stress measurements at the weld center line and are associated with the geometry and welding conditions of individual weld passes. The ANN prediction is developed in an attempt to effectively quantify this phenomenon of `innate scatter' and to learn the non-linear patterns in the weld residual stress profiles. Furthermore, the efficacy of the ANN method for defining through-thickness residual stress profiles in welds for application in structural integrity assessments is evaluated.

  6. In-situ TOF neutron diffraction studies of cyclic softening in superelasticity of a NiFeGaCo shape memory alloy

    DOE PAGES

    Yang, Hui; Yu, Dunji; Chen, Yan; ...

    2016-10-24

    Real-time in-situ neutron diffraction was conducted during uniaxial cycling compression of a Ni 49.3Fe 18Ga 27Co 5.7 shape memory alloy to explore the mechanism on its superelasticity at room temperature, which was manifested by the almost recoverable large strains and the apparent cyclic softening. Based on the Rietveld refinements, the real-time evolution of volume fraction of martensite was in-situ monitored, indicating the incremental amount of residual martensite with increasing load cycles. Real-time changes in intensities and lattice strains of { hkl} reflections for individual phase were obtained through fitting individual peaks, which reveal the quantitative information on phase transformation kineticsmore » as a function of grain orientation and stress/strain partitioning. Moreover, a large compressive residual stress was evidenced in the parent phase, which should be balanced by the residual martensite after the second unloading cycle. As a result, the large compressive residual stress found in the parent austenite phase may account for the cyclic effect on critical stress required for triggering the martensitic transformation in the subsequent loading.« less

  7. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Influence of Ytterbia Content on Residual Stress and Microstructure of Y2O3-ZrO2 Thin Films Prepared by EB-PVD*

    NASA Astrophysics Data System (ADS)

    Xiao, Qi-Ling; Shao, Sriu-Ying; He, Hong-Bo; Shao, Jian-Da; Fan, Zheng-Xiu

    2008-09-01

    Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 molar contents (0, 3, 7, and 12mol%) are deposited on BK7 substrates by electron-beam evaporation technique. The effects of different Y2O3 contents on residual stresses and structures of YSZ thin films are studied. Residual stresses are investigated by means of two different techniques: the curvature measurement and x-ray diffraction method. It is found that the evolution of residual stresses of YSZ thin films by the two different methods is consistent. Residual stresses of films transform from compressive stress into tensile stress and the tensile stress incre ases monotonically with the increase of Y2O3 content. At the same time, the structures of these films change from the mixture of amorphous and monoclinic phases into high temperature cubic phase. The variations of residual stress correspond to the evolution of structures induced by adding of Y2O3 content.

  8. Residual Stress Measurements After Proof and Flight: ETP-0403

    NASA Technical Reports Server (NTRS)

    Webster, Ronald L..

    1997-01-01

    The intent of this testing was to evaluate the residual stresses that occur in and around the attachment details of a case stiffener segment that has been subjected to flight/recovery followed by proof loading. Not measured in this test were stresses relieved at joint disassembly due to out-of-round and interference effects, and those released by cutting the specimens out of the case segment. The test article was lightweight case stiffener segment 1U50715, S/N L023 which was flown in the forward stiffener position on flight SRM 14A and in the aft position on flight SRM24A. Both of these flights were flown with the 3 stiffener ring configuration. Stiffener L023 had a stiffener ring installed only on the aft stub in its first flight, and it had both rings installed on its second flight. No significant post flight damage was found on either flight. Finally, the segment was used on the DM-8 static test motor in the forward position. No stiffener rings were installed. It had only one proof pressurization prior to assignment to its first use, and it was cleaned and proof tested after each flight. Thus, the segment had seen 3 proof tests, two flight pressurizations, and two low intensity water impacts prior to manufacturing for use on DM-8. On DM-8 it received one static firing pressurization in the horizontal configuration. Residual stresses at the surface and in depth were evaluated by both the x-ray diffraction and neutron beam diffraction methods. The x-ray diffraction evaluations were conducted by Technology for Energy Corporation (TEC) at their facilities in Knoxville, TN. The neutron beam evaluations were done by Atomic Energy of Canada Limited (AECL) at the Chalk River Nuclear Laboratories in Ontario. The results showed general agreement with relatively high compressive residual stresses on the surface and moderate to low subsurface tensile residual stresses.

  9. From cells to laminate: probing and modeling residual stress evolution in thin silicon photovoltaic modules using synchrotron X-ray micro-diffraction experiments and finite element simulations

    DOE PAGES

    Tippabhotla, Sasi Kumar; Radchenko, Ihor; Song, W. J. R.; ...

    2017-04-12

    Fracture of silicon crystalline solar cells has recently been observed in increasing percentages especially in solar photovoltaic (PV) modules involving thinner silicon solar cells (<200 μm). Many failures due to fracture have been reported from the field because of environmental loading (snow, wind, etc.) as well as mishandling of the solar PV modules (during installation, maintenance, etc.). However, a significantly higher number of failures have also been reported during module encapsulation (lamination) indicating high residual stress in the modules and thus more prone to cell cracking. Here in this paper we report through the use of synchrotron X-ray submicron diffractionmore » coupled with physics-based finite element modeling, the complete residual stress evolution in mono-crystalline silicon solar cells during PV module integration process. For the first time, we unravel the reason for the high stress and cracking of silicon cells near soldered inter-connects. Our experiments revealed a significant increase of residual stress in the silicon cell near the solder joint after lamination. Moreover, our finite element simulations show that this increase of stress during lamination is a result of highly localized bending of the cell near the soldered inter-connects. Further, the synchrotron X-ray submicron diffraction has proven to be a very effective way to quantitatively probe mechanical stress in encapsulated silicon solar cells. Thus, this technique has ultimately enabled these findings leading to the enlightening of the role of soldering and encapsulation processes on the cell residual stress. This model can be further used to suggest methodologies that could lead to lower stress in encapsulated silicon solar cells, which are the subjects of our continued investigations.« less

  10. From cells to laminate: probing and modeling residual stress evolution in thin silicon photovoltaic modules using synchrotron X-ray micro-diffraction experiments and finite element simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tippabhotla, Sasi Kumar; Radchenko, Ihor; Song, W. J. R.

    Fracture of silicon crystalline solar cells has recently been observed in increasing percentages especially in solar photovoltaic (PV) modules involving thinner silicon solar cells (<200 μm). Many failures due to fracture have been reported from the field because of environmental loading (snow, wind, etc.) as well as mishandling of the solar PV modules (during installation, maintenance, etc.). However, a significantly higher number of failures have also been reported during module encapsulation (lamination) indicating high residual stress in the modules and thus more prone to cell cracking. Here in this paper we report through the use of synchrotron X-ray submicron diffractionmore » coupled with physics-based finite element modeling, the complete residual stress evolution in mono-crystalline silicon solar cells during PV module integration process. For the first time, we unravel the reason for the high stress and cracking of silicon cells near soldered inter-connects. Our experiments revealed a significant increase of residual stress in the silicon cell near the solder joint after lamination. Moreover, our finite element simulations show that this increase of stress during lamination is a result of highly localized bending of the cell near the soldered inter-connects. Further, the synchrotron X-ray submicron diffraction has proven to be a very effective way to quantitatively probe mechanical stress in encapsulated silicon solar cells. Thus, this technique has ultimately enabled these findings leading to the enlightening of the role of soldering and encapsulation processes on the cell residual stress. This model can be further used to suggest methodologies that could lead to lower stress in encapsulated silicon solar cells, which are the subjects of our continued investigations.« less

  11. Residual Stresses in Ta, Mo, Al and Pd Thin Films Deposited by E-Beam Evaporation Process on Si and Si/SiO2 Substrates

    NASA Astrophysics Data System (ADS)

    Guisbiers, G.; Strehle, S.; Van Overschelde, O.; Wautelet, M.

    2006-02-01

    Residual stresses are commonly generated during the deposition process of thin films and can influence the reliability of the deposited systems e.g. due to fatigue, aging effects or debonding. Therefore, an evaluation of such stresses in thin films is of crucial importance for metallization of microelectronic devices and MEMS. Residual stresses can be determined experimentally by substrate curvature or X-ray diffraction measurements. The modeling of residual stresses generally deals with the calculation of the thermal ones alone. In the present work, a model is proposed, where intrinsic stresses are calculated explicitly based on the Tsui-Clyne model. The aim of this model, called self-consistent model, is to predict residual stresses in thin films independent on measurements. The simulated values are compared with experimental results for the following systems: Ta/Si, Mo/Si, Al/SiO2/Si and Pd/SiO2/Si.

  12. Residual stress analysis of energy-dispersive diffraction data using a two-detector setup: Part I - Theoretical concept

    NASA Astrophysics Data System (ADS)

    Apel, Daniel; Meixner, Matthias; Liehr, Alexander; Klaus, Manuela; Degener, Sebastian; Wagener, Guido; Franz, Christian; Zinn, Wolfgang; Genzel, Christoph; Scholtes, Berthold

    2018-01-01

    A new goniometer setup for energy-dispersive X-ray diffraction is introduced which is based on simultaneous data acquisition with two detectors D1 and D2, both of them freely movable in a horizontal as well as in a vertical plane. From the multitude of measurement configurations that can be realised with this setup, we figured out three efficient concepts which aim at the fast analysis of residual stress depth profiles by combining the diffraction data gathered with the two detectors. The characteristic feature of the first two configurations consists in the vertical (horizontal) positioning of the first (second) detector, which results in a diffraction geometry where the two scattering vectors span a plane that coincides with the X-circle used for sample tilt. Because each detector does see the sample under another viewing angle, both the positive and the negative ψ-branch are covered by just one χ-tilt between 0°and 90°(configuration 1) and 0°and 60°(configuration 2), thus allowing for the simultaneous analysis of the in- and out-of-plane residual stress depth gradients σii(τ) and σi3(τ) (i = 1 , 2), respectively, from data sets dD1hkl(χ) and dD2hkl(χ). The third configuration introduced in this paper is based on a ϕ-rotation of the sample under a constant tilt angle χ and enables a fast and reliable tracing of shear stress fields σi3(τ) (i = 1, 2).

  13. Neutron diffraction measurement of residual stresses, dislocation density and texture in Zr-bonded U-10Mo “mini” fuel foils and plates

    DOE PAGES

    Brown, Donald William; Okuniewski, Maria A.; Sisneros, Thomas A.; ...

    2016-12-01

    Here, Al clad U-10Mo fuel plates are being considered for conversion of several research reactors from high-enriched to low-enriched U fuel. Neutron diffraction measurements of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the cladding procedure significantly reducesmore » the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stress state of the final plate is dominated by the thermal expansion mismatch of the constituent materials.« less

  14. Neutron diffraction measurement of residual stresses, dislocation density and texture in Zr-bonded U-10Mo “mini” fuel foils and plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Donald William; Okuniewski, Maria A.; Sisneros, Thomas A.

    Here, Al clad U-10Mo fuel plates are being considered for conversion of several research reactors from high-enriched to low-enriched U fuel. Neutron diffraction measurements of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the cladding procedure significantly reducesmore » the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stress state of the final plate is dominated by the thermal expansion mismatch of the constituent materials.« less

  15. The Influence of the Support Structure on Residual Stress and Distortion in SLM Inconel 718 Parts

    NASA Astrophysics Data System (ADS)

    Mishurova, Tatiana; Cabeza, Sandra; Thiede, Tobias; Nadammal, Naresh; Kromm, Arne; Klaus, Manuela; Genzel, Christoph; Haberland, Christoph; Bruno, Giovanni

    2018-07-01

    The effect of support structure and of removal from the base plate on the residual stress state in selective laser melted IN718 parts was studied by means of synchrotron X-ray diffraction. The residual stresses in subsurface region of two elongated prisms in as-built condition and after removal from the base plate were determined. One sample was directly built on a base plate and another one on a support structure. Also, the distortion on the top surface due to stress release was measured by contact profilometry. High tensile residual stress values were found, with pronounced stress gradient along the hatching direction. In the sample on support, stress redistribution took place after removal from the base plate, as opposed to simple stress relaxation for the sample without support. The sample on support structure showed larger distortion compared to sample without support. We conclude that the use of a support decreases stress values but stress-relieving heat treatments are still needed.

  16. The Influence of the Support Structure on Residual Stress and Distortion in SLM Inconel 718 Parts

    NASA Astrophysics Data System (ADS)

    Mishurova, Tatiana; Cabeza, Sandra; Thiede, Tobias; Nadammal, Naresh; Kromm, Arne; Klaus, Manuela; Genzel, Christoph; Haberland, Christoph; Bruno, Giovanni

    2018-05-01

    The effect of support structure and of removal from the base plate on the residual stress state in selective laser melted IN718 parts was studied by means of synchrotron X-ray diffraction. The residual stresses in subsurface region of two elongated prisms in as-built condition and after removal from the base plate were determined. One sample was directly built on a base plate and another one on a support structure. Also, the distortion on the top surface due to stress release was measured by contact profilometry. High tensile residual stress values were found, with pronounced stress gradient along the hatching direction. In the sample on support, stress redistribution took place after removal from the base plate, as opposed to simple stress relaxation for the sample without support. The sample on support structure showed larger distortion compared to sample without support. We conclude that the use of a support decreases stress values but stress-relieving heat treatments are still needed.

  17. Residual stress measurement in a metal microdevice by micro Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Song, Chang; Du, Liqun; Qi, Leijie; Li, Yu; Li, Xiaojun; Li, Yuanqi

    2017-10-01

    Large residual stress induced during the electroforming process cannot be ignored to fabricate reliable metal microdevices. Accurate measurement is the basis for studying the residual stress. Influenced by the topological feature size of micron scale in the metal microdevice, residual stress in it can hardly be measured by common methods. In this manuscript, a methodology is proposed to measure the residual stress in the metal microdevice using micro Raman spectroscopy (MRS). To estimate the residual stress in metal materials, micron sized β-SiC particles were mixed in the electroforming solution for codeposition. First, the calculated expression relating the Raman shifts to the induced biaxial stress for β-SiC was derived based on the theory of phonon deformation potentials and Hooke’s law. Corresponding micro electroforming experiments were performed and the residual stress in Ni-SiC composite layer was both measured by x-ray diffraction (XRD) and MRS methods. Then, the validity of the MRS measurements was verified by comparing with the residual stress measured by XRD method. The reliability of the MRS method was further validated by the statistical student’s t-test. The MRS measurements were found to have no systematic error in comparison with the XRD measurements, which confirm that the residual stresses measured by the MRS method are reliable. Besides that, the MRS method, by which the residual stress in a micro inertial switch was measured, has been confirmed to be a convincing experiment tool for estimating the residual stress in metal microdevice with micron order topological feature size.

  18. Characterization of Residual Stress as a Function of Friction Stir Welding Parameters in Oxide Dispersion Strengthened (ODS) Steel MA956

    DOE PAGES

    Brewer, Luke N.; Bennett, Martin S.; Baker, B. W.; ...

    2015-09-08

    This article characterizes the residual stresses generated by friction stir welding of oxide dispersion strengthened steel MA956 over a series of welding conditions. A plate of MA956 steel was friction stir welded at three conditions: 500 rpm/25 millimeters per minute (mmpm), 400 rpm/50 mmpm and 400 rpm/100 mmpm. The residual stresses across these welds were measured using both x-ray and neutron diffraction techniques. Longitudinal residual stresses up to eighty percent of the yield strength were observed for the 400 rpm/100 mmpm condition. Increasing the traverse rate while holding the rotational speed fixed increased the residual stress levels in the stirmore » zone and at the stir zone-thermomechanically affected zone interface. The stress profiles displayed the characteristic M shape, and the asymmetry between advancing and retreating stress peaks was limited, occurring mainly on the root side of the weld. The large magnitude of the stresses was maintained throughout the thickness of the plates.« less

  19. ETP-0492, Measured Residual Stresses in CYL S/N 53 Fretted Area

    NASA Technical Reports Server (NTRS)

    Webster, Ronald L.

    1998-01-01

    This test report presents the results of a residual stress survey of the inner clevis leg of lightweight cylinder SIN 053 as described by ETP-0492. The intent of this testing was to evaluate the residual stresses that occur in and around the inner clevis leg at the capture feature contact zone during a normal flight cycle. Lightweight case cylinder segment IU50717, S/N L053 from Flight STS-27 exhibited fretting around the contact zone of the inner clevis leg and the capture feature of the field joint. Post flight inspection revealed several large fitting pits on the inside of the inner clevis leg. This cylinder was assigned for both residual stress and metallurgical evaluation. This report is concerned only with the residual so= evaluations. The effects of glass bead cleaning and fi=ing were evaluated using the x-ray diffraction method.

  20. Lateral gradients of phases, residual stress and hardness in a laser heated Ti0.52Al0.48N coating on hard metal

    PubMed Central

    Bartosik, M.; Daniel, R.; Zhang, Z.; Deluca, M.; Ecker, W.; Stefenelli, M.; Klaus, M.; Genzel, C.; Mitterer, C.; Keckes, J.

    2012-01-01

    The influence of a local thermal treatment on the properties of Ti–Al–N coatings is not understood. In the present work, a Ti0.52Al0.48N coating on a WC–Co substrate was heated with a diode laser up to 900 °C for 30 s and radially symmetric lateral gradients of phases, residual stress and hardness were characterized ex-situ using position-resolved synchrotron X-ray diffraction, Raman spectroscopy, transmission electron microscopy and nanoindentation. The results reveal (i) a residual stress relaxation at the edge of the irradiated area and (ii) a compressive stress increase of few GPa in the irradiated area center due to the Ti–Al–N decomposition, in particular due to the formation of small wurtzite (w) AlN domains. The coating hardness increased from 35 to 47 GPa towards the center of the heated spot. In the underlying heated substrate, a residual stress change from about − 200 to 500 MPa down to a depth of 6 μm is observed. Complementary, in-situ high-temperature X-ray diffraction analysis of stresses in a homogeneously heated Ti0.52Al0.48N coating on a WC–Co substrate was performed in the range of 25–1003 °C. The in-situ experiment revealed the origin of the observed thermally-activated residual stress oscillation across the laser heated spot. Finally, it is demonstrated that the coupling of laser heating to produce lateral thermal gradients and position-resolved experimental techniques opens the possibility to perform fast screening of structure–property relationships in complex materials. PMID:23471140

  1. Residual stress evaluation of components produced via direct metal laser sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemerling, Brandon; Lippold, John C.; Fancher, Christopher M.

    Direct metal laser sintering is an additive manufacturing process which is capable of fabricating three-dimensional components using a laser energy source and metal powder particles. Despite the numerous benefits offered by this technology, the process maturity is low with respect to traditional subtractive manufacturing methods. Relationships between key processing parameters and final part properties are generally lacking and require further development. In this study, residual stresses were evaluated as a function of key process variables. The variables evaluated included laser scan strategy and build plate preheat temperature. Residual stresses were measured experimentally via neutron diffraction and computationally via finite elementmore » analysis. Good agreement was shown between the experimental and computational results. Results showed variations in the residual stress profile as a function of laser scan strategy. Compressive stresses were dominant along the build height (z) direction, and tensile stresses were dominant in the x and y directions. Build plate preheating was shown to be an effective method for alleviating residual stress due to the reduction in thermal gradient.« less

  2. Residual stress evaluation of components produced via direct metal laser sintering

    DOE PAGES

    Kemerling, Brandon; Lippold, John C.; Fancher, Christopher M.; ...

    2018-03-22

    Direct metal laser sintering is an additive manufacturing process which is capable of fabricating three-dimensional components using a laser energy source and metal powder particles. Despite the numerous benefits offered by this technology, the process maturity is low with respect to traditional subtractive manufacturing methods. Relationships between key processing parameters and final part properties are generally lacking and require further development. In this study, residual stresses were evaluated as a function of key process variables. The variables evaluated included laser scan strategy and build plate preheat temperature. Residual stresses were measured experimentally via neutron diffraction and computationally via finite elementmore » analysis. Good agreement was shown between the experimental and computational results. Results showed variations in the residual stress profile as a function of laser scan strategy. Compressive stresses were dominant along the build height (z) direction, and tensile stresses were dominant in the x and y directions. Build plate preheating was shown to be an effective method for alleviating residual stress due to the reduction in thermal gradient.« less

  3. Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing

    DOE PAGES

    An, Ke; Yuan, Lang; Dial, Laura; ...

    2017-09-11

    Severe residual stresses in metal parts made by laser powder bed fusion additive manufacturing processes (LPBFAM) can cause both distortion and cracking during the fabrication processes. Limited data is currently available for both iterating through process conditions and design, and in particular, for validating numerical models to accelerate process certification. In this work, residual stresses of a curved thin-walled structure, made of Ni-based superalloy Inconel 625™ and fabricated by LPBFAM, were resolved by neutron diffraction without measuring the stress-free lattices along both the build and the transverse directions. The stresses of the entire part during fabrication and after cooling downmore » were predicted by a simplified layer-by-layer finite element based numerical model. The simulated and measured stresses were found in good quantitative agreement. The validated simplified simulation methodology will allow to assess residual stresses in more complex structures and to significantly reduce manufacturing cycle time.« less

  4. Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Ke; Yuan, Lang; Dial, Laura

    Severe residual stresses in metal parts made by laser powder bed fusion additive manufacturing processes (LPBFAM) can cause both distortion and cracking during the fabrication processes. Limited data is currently available for both iterating through process conditions and design, and in particular, for validating numerical models to accelerate process certification. In this work, residual stresses of a curved thin-walled structure, made of Ni-based superalloy Inconel 625™ and fabricated by LPBFAM, were resolved by neutron diffraction without measuring the stress-free lattices along both the build and the transverse directions. The stresses of the entire part during fabrication and after cooling downmore » were predicted by a simplified layer-by-layer finite element based numerical model. The simulated and measured stresses were found in good quantitative agreement. The validated simplified simulation methodology will allow to assess residual stresses in more complex structures and to significantly reduce manufacturing cycle time.« less

  5. Growth and Comparison of Residual Stress of AlN Films on Silicon (100), (110) and (111) Substrates

    NASA Astrophysics Data System (ADS)

    Pandey, Akhilesh; Dutta, Shankar; Prakash, Ravi; Raman, R.; Kapoor, Ashok Kumar; Kaur, Davinder

    2018-02-01

    This paper reports on the comparison of residual stresses in AlN thin films sputter-deposited in identical conditions on Si (100) (110) and (111) substrates. The deposited films are of polycrystalline wurtzite structure with preferred orientation along the (002) direction. AlN film on the Si (111) substrate showed a vertical columnar structure, whereas films on Si (100) and (110) showed tilted columnar structures. Residual stress in the AlN films is estimated by x-ray diffraction (XRD), infra-red absorption method and wafer curvature technique. Films residual stress are found compressive and values are in the range of - 650 (± 50) MPa, - 730 (± 50) MPa and - 300 (± 50) MPa for the AlN films grown on Si (100), (110) and (111) substrates, respectively, with different techniques. The difference in residual stresses can be attributed to the microstructure of the films and mismatch between in plane atomic arrangements of the film and substrates.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhili; Bunn, Jeffrey R; Tzelepis, Demetrios A

    Hydrogen induced cracking (HIC) has been a persistent issue in welding of high-strength steels. Mitigating residual stresses is one of the most efficient ways to control HIC. The current study develops a proactive in-process weld residual stress mitigation technique, which manipulates the thermal expansion and contraction sequence in the weldments during welding process. When the steel weld is cooled after welding, martensitic transformation will occur at a temperature below 400 C. Volume expansion in the weld due to the martensitic transformation will reduce tensile stresses in the weld and heat affected zone and in some cases produce compressive residual stressesmore » in the weld. Based on this concept, a customized filler wire which undergoes a martensitic phase transformation during cooling was developed. The new filler wire shows significant improvement in terms of reducing the tendency of HIC in high strength steels. Bulk residual stress mapping using neutron diffraction revealed reduced tensile and compressive residual stresses in the welds made by the new filler wire.« less

  7. Contribution a l'etude du comportement en fatigue des aciers inoxydables 13%Cr-4%Ni: Contraintes residuelles de soudage et transformation sous contrainte de l'austenite de reversion

    NASA Astrophysics Data System (ADS)

    Thibault, Denis

    The objectives of the present study are to characterize some of the main parameters affecting fatigue behaviour of 13%Cr-4%Ni martensitic stainless steels used for hydraulic turbines manufacturing. Two aspects are studied: the residual stresses left after autogenous welding of these steels and the stress-assisted transformation of the reformed austenite contained in this alloy. The residual stresses induced by welding were characterized by four different methods: the hole-drilling method, X-ray diffraction, neutron diffraction and the contour method. The state of stress was characterized in two different joints geometries, both using 41ONiMo weld filler metal. The characterization was made before and after post-weld heat treatment. A stress distribution completely different of the stress distribution commonly found in structural steels was measured. Triaxial compression was found in the last bead with a maximum value of approximately 400 MPa. Tensile stress was measured around the heat-affected zone and just below the last weld layer. The low temperature martensitic transformation occuring during weld cooling (˜300°C) explains this unusual stress distribution. The results also showed that the post-weld heat treatment commonly used in the industry is efficient in lowering residual stresses. A maximum stress of about 150 MPa was found after heat treament. The austenite formed during this post-weld heat treatment is mechanically unstable. The results presented in this thesis show that after fatigue crack propagation testing, all the reformed austenite found near the fracture surface has transformed to martensite under cyclic stress loading. These measurements made by X-ray diffraction are confirmed by low-cycle fatigue tests showing that the reformed austenite found in this alloy transforms gradually to martensite during strain cycling. The transformation is completed after 100 cycles. The fatigue crack growth behaviour of the tested alloys does not seem to be influenced by this phenomenon occuring at all values of stress intensity factor. The practical implications of this work on fabrication and repair of hydraulic turbines made of 13%Cr-4%Ni are also discussed in this thesis. Keywords: martensitic stainless steel, fatigue, residual stress, welding

  8. Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering

    DOE PAGES

    Kolbus, Lindsay M.; Payzant, E. Andrew; Cornwell, Paris A.; ...

    2015-01-10

    Residual stress profiles were mapped using neutron diffraction in two simple prism builds of Inconel 718: one fabricated with electron beam melting and the other with direct laser sintering. Spatially indexed stress-free cubes were obtained by EDM sectioning equivalent prisms of similar shape. The (311) interplanar spacing examined for the EDM sectioned sample was compared to the interplanar spacings calculated to fulfill force and moment balance. We have shown that Applying force and moment balance is a necessary supplement to the measurements for the stress-free cubes with respect to accurate stress calculations in additively manufactured components. Furthermore, our work hasmore » shown that residual stresses in electron beam melting parts are much smaller than that of direct laser metal sintering parts.« less

  9. Evolution of residual stress, free volume, and hardness in the laser shock peened Ti-based metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liang; Wang, Lu; Nie, Zhihua

    Laser shock peening (LSP) with different cycles was performed on the Ti-based bulk metallic glasses (BMGs). The sub-surface residual stress of the LSPed specimens was measured by high-energy X-ray diffraction (HEXRD) and the near-surface residual stress was measured by scanning electron microscope/focused ion beam (SEM/FIB) instrument. The sub-surface residual stress in the LSP impact direction (about-170MPa) is much lower than that perpendicular to the impact direction (about -350 MPa), exhibiting anisotropy. The depth of the compressive stress zone increases from 400 mu m to 500 mu m with increasing LSP cycles. The highest near-surface residual stress is about -750 MPa.more » LSP caused the free volume to increase and the maximum increase appeared after the first LSP process. Compared with the hardness (567 +/- 7 HV) of the as-cast BMG, the hardness (590 +/- 9 HV) on the shocked surface shows a hardening effect due to the hardening mechanism of compressive residual stress; and the hardness (420 +/- 9 HV) on the longitudinal section shows a softening effect due to the softening mechanism of free volume.« less

  10. Analyses of Failure Mechanisms and Residual Stresses in Graphite/Polyimide Composites Subjected to Shear Dominated Biaxial Loads

    NASA Technical Reports Server (NTRS)

    Kumosa, M.; Predecki, P. K.; Armentrout, D.; Benedikt, B.; Rupnowski, P.; Gentz, M.; Kumosa, L.; Sutter, J. K.

    2002-01-01

    This research contributes to the understanding of macro- and micro-failure mechanisms in woven fabric polyimide matrix composites based on medium and high modulus graphite fibers tested under biaxial, shear dominated stress conditions over a temperature range of -50 C to 315 C. The goal of this research is also to provide a testing methodology for determining residual stress distributions in unidirectional, cross/ply and fabric graphite/polyimide composites using the concept of embedded metallic inclusions and X-ray diffraction (XRD) measurements.

  11. Understanding of the development of in-plane residual stress in sol-gel-derived metal oxide thin films

    NASA Astrophysics Data System (ADS)

    Ohno, Kentaro; Uchiyama, Hiroaki; Kozuka, Hiromitsu

    2012-01-01

    The in-plane residual stress in thin films greatly affects their properties and functionality as well as the substrate bending, and hence is an important factor to be controlled. In order to obtain general knowledge on the development of residual stress in sol-gel-derived oxide thin films, the in-plane residual stress was measured for yttria stabilized zirconia gel films on Si(100) wafers as a function of firing temperature by measuring the substrate curvature. The films showed a rather complex variation in residual stress, and the mechanism of the residual stress evolution was discussed, referencing the intrinsic stress and the x-ray diffraction data. At low annealing temperatures of 100-200 °C, the residual tensile stress decreased and became compressive partially due to the structural relaxation occurring during cooling. When the firing temperature was increased over 200 °C, the residual stress turned tensile, and increased with increasing annealing temperature, which was attributed to the increase in intrinsic stress due to film densification as well as to the reduced structural relaxation due to the progress of densification. The residual tensile stress slightly decreased at firing temperatures of 500-600 °C, which was attributed to the reduction in intrinsic stress due to thermally activated atomic diffusion as well as to emergence of thermal stress. At firing temperature over 600 °C, the residual tensile stress increased again, which was attributed to the increase in thermal stress generated during cooling due to the increased Young's modulus of the film. Although appearing to be complicated, the whole variation of residual stress with firing temperature could be understood in terms of film densification, structural relaxation, atomic diffusion, progress of crystallization and thermal strain. The illustration presented in the work may provide a clear insight on how the residual stress could be developed in a variety of functional sol-gel-derived, crystalline oxide thin films.

  12. Internal Stress Distribution Measurement of TIG Welded SUS304 Samples Using Neutron Diffraction Technique

    NASA Astrophysics Data System (ADS)

    Muslih, M. Refai; Sumirat, I.; Sairun; Purwanta

    2008-03-01

    The distribution of residual stress of SUS304 samples that were undergone TIG welding process with four different electric currents has been measured. The welding has been done in the middle part of the samples that was previously grooved by milling machine. Before they were welded the samples were annealed at 650 degree Celsius for one hour. The annealing process was done to eliminate residual stress generated by grooving process so that the residual stress within the samples was merely produced from welding process. The calculation of distribution of residual stress was carried out by measuring the strains within crystal planes of Fe(220) SUS304. Strain, Young modulus, and Poisson ratio of Fe(220) SUS304 were measured using DN1-M neutron diffractometer. Young modulus and Poisson ratio of Fe(220) SUS304 sample were measured in-situ. The result of calculations showed that distribution of residual stress of SUS304 in the vicinity of welded area is influenced both by treatments given at the samples-making process and by the electric current used during welding process.

  13. Texture analysis at neutron diffractometer STRESS-SPEC

    NASA Astrophysics Data System (ADS)

    Brokmeier, H.-G.; Gan, W. M.; Randau, C.; Völler, M.; Rebelo-Kornmeier, J.; Hofmann, M.

    2011-06-01

    In response to the development of new materials and the application of materials and components in advanced technologies, non-destructive measurement methods of textures and residual stresses have gained worldwide significance in recent years. The materials science neutron diffractometer STRESS-SPEC at FRM II (Garching, Germany) is designed to be applied equally to texture and residual stress analyses by virtue of its very flexible configuration. Due to the high penetration capabilities of neutrons and the high neutron flux of STRESS-SPEC it allows a combined analysis of global texture, local texture, strain pole figure and FWHM pole figure in a wide variety of materials including metals, alloys, composites, ceramics and geological materials. Especially, the analysis of texture gradients in bulk materials using neutron diffraction has advantages over laboratory X-rays and EBSD for many scientific cases. Moreover, neutron diffraction is favourable for coarse-grained materials, where bulk information averaged over texture inhomogeneities is needed, and also stands out due to easy sample preparation. In future, the newly developed robot system for STRESS-SPEC will allow much more flexibility than an Eulerian cradle as on standard instruments. Five recent measurements are shown to demonstrate the wide range of possible texture applications at STRESS-SPEC diffractometer.

  14. Neutron-diffraction measurement of residual stresses in Al-Cu cold-cut welding

    NASA Astrophysics Data System (ADS)

    Fiori, F.; Marcantoni, M.

    Usually, when it is necessary to join different materials with a large difference in their melting points, welding should be avoided. To overcome this problem we designed and built a device to obtain cold-cut welding, which is able to strongly decrease oxidation problems of the surfaces to be welded. Thanks to this device it is possible to achieve good joining between different pairs of materials (Al-Ti, Cu-Al, Cu-Al alloys) without reaching the material melting point. The mechanical and microstructural characterisation of the joining and the validation of its quality were obtained using several experimental methods. In particular, in this work neutron-diffraction experiments for the evaluation of residual stresses in Cu-Al junctions are described, carried out at the G5.2 diffractometer of LLB, Saclay. Neutron-diffraction results are presented and related to other experimental tests such as microstructural characterisation (through optical and scanning electron microscopy) and mechanical characterisation (tensile-strength tests) of the welded interface.

  15. Residual stresses in welded plates

    NASA Technical Reports Server (NTRS)

    Bernstein, Edward L.

    1994-01-01

    The purpose of this project was to develop a simple model which could be used to study residual stress. The mechanism that results in residual stresses in the welding process starts with the deposition of molten weld metal which heats the immediately adjacent material. After solidification of weld material, normal thermal shrinkage is resisted by the adjacent, cooler material. When the thermal strain exceeds the elastic strain corresponding to the yield point stress, the stress level is limited by this value, which decreases with increasing temperature. Cooling then causes elastic unloading which is restrained by the adjoining material. Permanent plastic strain occurs, and tension is caused in the region immediately adjacent to the weld material. Compression arises in the metal farther from the weld in order to maintain overall static equilibrium. Subsequent repair welds may add to the level of residual stresses. The level of residual stress is related to the onset of fracture during welding. Thus, it is of great importance to be able to predict the level of residual stresses remaining after a weld procedure, and to determine the factors, such as weld speed, temperature, direction, and number of passes, which may affect the magnitude of remaining residual stress. It was hoped to use traditional analytical modeling techniques so that it would be easier to comprehend the effect of these variables on the resulting stress. This approach was chosen in place of finite element methods so as to facilitate the understanding of the physical processes. The accuracy of the results was checked with some existing experimental studies giving residual stress levels found from x-ray diffraction measurements.

  16. Residual stress analysis of welded joints by the variational eigenstrain approach

    NASA Astrophysics Data System (ADS)

    Korsunsky, Alexander M.; Regino, Gabriel; Nowell, David

    2005-04-01

    We present the formulation for finding the distribution of eigenstrains, i.e. the sources of residual stress, from a set of measurements of residual elastic strain (e.g. by diffraction), or residual stress, or stress redistribution, or distortion. The variational formulation employed seeks to achieve the best agreement between the model prediction and some measured parameters in the sense of a minimum of a functional given by a sum over the entire set of measurements. The advantage of this approach lies in its flexibility: different sets of measurements and information about different components of the stress-strain state can be incorporated. We demonstrate the power of the technique by analysing experimental data for welds in thin sheet of a nickel superalloy aerospace material. Very good agreement can be achieved between the prediction and the measurement results without the necessity of using iterative solution. In practice complete characterisation of residual stress states is often very difficult, due to limitations of facility access, measurement time or specimen dimensions. Implications of the new technique for experimental analysis are all the more significant, since it allows the reconstruction of the entire stress state from incomplete sets of data.

  17. Creep-induced residual stress strengthening in a Nicalon-fiber-reinforced BMAS-glass-ceramic-matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widjaja, S.; Jakus, K.; Ritter, J.E.

    The feasibility of inducing a compressive residual stress in the matrix of a Nicalon-fiber-reinforced BMAS-glass-ceramic-matrix composite through a creep-load transfer treatment was studied. Specimens were crept at 1100 C under constant tensile load to cause load transfer from the matrix to the fibers, then cooled under load. Upon removal of the load at room temperature, the matrix was put into compression by the elastic recovery of the fibers. This compressive residual stress in the matrix increased the room-temperature proportional limit stress of the composite. The increase in the proportional limit stress was found to be dependent upon the applied creepmore » stress, with an increase in creep stress resulting in an increase in the proportional limit stress. Acoustic emission results showed that the onset of significant matrix cracking correlated closely to the proportional limit stress. Changes in the state of residual stress in the matrix were supported by X-ray diffraction results. Fracture surfaces of all specimens exhibited fiber pullout behavior, indicating that the creep-load transfer process did not embrittle the fiber/matrix interface.« less

  18. Stress analysis of ZrO2/SiO2 multilayers deposited on different substrates with different thickness periods

    NASA Astrophysics Data System (ADS)

    Shao, Shuying; Shao, Jianda; He, Hongbo; Fan, Zhengxiu

    2005-08-01

    The effects of repeating thickness periods on stress are studied in ZrO2/SiO2 multilayers deposited by electron-beam evaporation on BK7 glass and fused-silica substrates. The results show that the residual stress is compressive and decreases with an increase of the periods of repeating thickness in the ZrO2/SiO2 multilayers. At the same time, the residual stress in multilayers deposited on BK7 glass is less than that of samples deposited on fused silica. The variation of the microstructure examined by x-ray diffraction shows that microscopic deformation does not correspond to macroscopic stress, which may be due to variation of the interface stress.

  19. Residual stresses in continuous graphite fiber Al metal matrix composites

    NASA Technical Reports Server (NTRS)

    Park, Hun Sub; Zong, Gui Sheng; Marcus, Harris L.

    1988-01-01

    The residual stresses in graphite fiber reinforced aluminum (Gr/Al) composites with various thermal histories are measured using X-ray diffraction (XRD) methods. The XRD stress analysis is based on the determination of lattice strains by precise measurements of the interplanar spacings in different directions of the sample. The sample is a plate consisting of two-ply P 100 Gr/Al 6061 precursor wires and Al 6061 overlayers. Prior to XRD measurement, the 6061 overlayers are electrochemically removed. In order to calibrate the relationship between stress magnitude and lattice spacing shift, samples of Al 6061 are loaded at varying stress levels in a three-point bend fixture, while the stresses are simultaneously determined by XRD and surface-attached strain gages. The stresses determined by XRD closely match those determined by the strain gages. Using these calibrations, the longitudinal residual stresses of P 100 Gr/Al 6061 composites are measured for various heat treatments, and the results are presented.

  20. X-ray Diffraction as a Means to Assess Fatigue Performance of Shot-Peened Materials

    DTIC Science & Technology

    2012-06-01

    titanium 6 - 4 fatigue data exhibited similar trends to the 9310 steel material. Low shot- peening intensities (4A and 8A) improved fatigue performance... 6 Figure 4 ...7 Figure 4 . Residual stress and diffraction peak width data from the beta-STOA titanium 6Al-4V disks. attributed to the hardness of the

  1. SCC of 2304 Duplex Stainless Steel—Microstructure, Residual Stress and Surface Grinding Effects

    PubMed Central

    Zhou, Nian; Peng, Ru Lin; Schönning, Mikael; Pettersson, Rachel

    2017-01-01

    The influence of surface grinding and microstructure on chloride induced stress corrosion cracking (SCC) behavior of 2304 duplex stainless steel has been investigated. Grinding operations were performed both parallel and perpendicular to the rolling direction of the material. SCC tests were conducted in boiling magnesium chloride according to ASTM G36; specimens were exposed both without external loading and with varied levels of four-point bend loading. Residual stresses were measured on selected specimens before and after exposure using the X-ray diffraction technique. In addition, in-situ surface stress measurements subjected to four-point bend loading were performed to evaluate the deviation between the actual applied loading and the calculated values according to ASTM G39. Micro-cracks, initiated by grinding induced surface tensile residual stresses, were observed for all the ground specimens but not on the as-delivered surfaces. Loading transverse to the rolling direction of the material increased the susceptibility to chloride induced SCC. Grinding induced tensile residual stresses and micro-notches in the as-ground surface topography were also detrimental. PMID:28772582

  2. SCC of 2304 Duplex Stainless Steel-Microstructure, Residual Stress and Surface Grinding Effects.

    PubMed

    Zhou, Nian; Peng, Ru Lin; Schönning, Mikael; Pettersson, Rachel

    2017-02-23

    The influence of surface grinding and microstructure on chloride induced stress corrosion cracking (SCC) behavior of 2304 duplex stainless steel has been investigated. Grinding operations were performed both parallel and perpendicular to the rolling direction of the material. SCC tests were conducted in boiling magnesium chloride according to ASTM G36; specimens were exposed both without external loading and with varied levels of four-point bend loading. Residual stresses were measured on selected specimens before and after exposure using the X-ray diffraction technique. In addition, in-situ surface stress measurements subjected to four-point bend loading were performed to evaluate the deviation between the actual applied loading and the calculated values according to ASTM G39. Micro-cracks, initiated by grinding induced surface tensile residual stresses, were observed for all the ground specimens but not on the as-delivered surfaces. Loading transverse to the rolling direction of the material increased the susceptibility to chloride induced SCC. Grinding induced tensile residual stresses and micro-notches in the as-ground surface topography were also detrimental.

  3. Residual stress measurements via neutron diffraction of additive manufactured stainless steel 17-4 PH.

    PubMed

    Masoomi, Mohammad; Shamsaei, Nima; Winholtz, Robert A; Milner, Justin L; Gnäupel-Herold, Thomas; Elwany, Alaa; Mahmoudi, Mohamad; Thompson, Scott M

    2017-08-01

    Neutron diffraction was employed to measure internal residual stresses at various locations along stainless steel (SS) 17-4 PH specimens additively manufactured via laser-powder bed fusion (L-PBF). Of these specimens, two were rods (diameter=8 mm, length=80 mm) built vertically upward and one a parallelepiped (8×80×9 mm 3 ) built with its longest edge parallel to ground. One rod and the parallelepiped were left in their as-built condition, while the other rod was heat treated. Data presented provide insight into the microstructural characteristics of typical L-PBF SS 17-4 PH specimens and their dependence on build orientation and post-processing procedures such as heat treatment. Data have been deposited in the Data in Brief Dataverse repository (doi:10.7910/DVN/T41S3V).

  4. Evaluation between residual stresses obtained by neutron diffraction and simulation for dual phase steel welded by laser process

    NASA Astrophysics Data System (ADS)

    Kouadri-Henni, Afia; Malard, Benoit

    2018-05-01

    This study aimed at characterizing the residual stresses (RS) distribution of a Dual Phase Steel (DP600) undergoing a Laser Beam Welding (LBW) with two different laser parameters. The RS in the ferritic phase have been experimentally determined by the use of the neutrons diffraction technique. The results confirmed a gradient of RS among different zones both on the top and below surfaces but also through the thickness of the fusion zone. Low compressive stresses were observed in the Base Metal (BM) close to the Heat Affected Zone (HAZ) whereas high tensile stresses were observed in the Fusion Zone (FZ). Numerical results showed a difference in the RS distribution depending on the model used. In the end, it appears that the high temperature gradient, specific to the laser beam, is the main factor governing the RS. Our results suggest as well that the approach regarding the RS should consider not only the temperature but also process parameters. When comparing simulation results with experimental data, the values converge well in some zones, in particular the FZ and the others less.

  5. Contraintes residuelles et leurs impacts sur l'amorcage de fissures en fatigue de flexion dans des engrenages aeronautiques durcis superficiellement par induction

    NASA Astrophysics Data System (ADS)

    Savaria, Vincent

    The optimization of gearing for aeronautical engines depends on the development of surface hardening processes to significantly improve in-service durability. Induction heating followed by quenching is a treatment increasingly used in this field to improve the fatigue resistance of critical components such as gears. In this context, this thesis studies the impact of the induction process parameters on residual stresses and the effects of those stresses on the bending fatigue of induction hardened gears. Two existing residual stress measurement techniques, X-ray diffraction and the contour method, were adapted for induction hardened components. The residual stress measurement by X-ray diffraction technique has been significantly improved in this thesis by the consideration of the variation of the X-ray elastic constant at different locations in the hardened layer and the development of a finite element based layer removal correction method that enabled more accurate in-depth residual stress measurements in all sort of geometries. The contour method is clearly a powerful tool for residual stress mapping at the core of parts but proved to be inaccurate for near-surface measurements in the case of thin hardened layers. These methods were used to show the effects of several parameters (initial hardness, preheating, final heating, tempering) with discs and aeronautical spur gears. The results indicate that two induction treatments can sometimes produce two different residual stress distributions (amplitude, severity of gradient in the transition zone, etc.) for a similar hardened depth. The bending fatigue of those gears was studied experimentally with a single tooth bending test rig and numerically with the proposition of a fatigue model for the calculation of the bending endurance limit. The calibration of the model was based on fatigue tests results on traction and torsion specimens. Bending fatigue testing results on gears confirmed the overall accuracy of the proposed model predictions. The Crossland criterion without the gradient effect gave better predictions when compared with the experimental results for that particular case. This 3D multiaxial fatigue prediction model represents a significant improvement over previous approaches by the simultaneous consideration of the so-called gradient effect, residual stresses, surface roughness and the variation of properties caused by the surface hardening. The induction treatments used in this study improved the bending fatigue resistance of spur gears by 45 to 71 % depending on the case.

  6. Characterization of Mechanical Properties and Residual Stress in API 5L X80 Steel Welded Joints

    NASA Astrophysics Data System (ADS)

    de Sousa Lins, Amilton; de Souza, Luís Felipe Guimarães; Fonseca, Maria Cindra

    2018-01-01

    The use of high-strength and low-alloy steels, high design factors and increasingly stringent safety requirements have increased the operating pressure levels and, consequently, the need for further studies to avoid and prevent premature pipe failure. To evaluate the possibility of improving productivity in manual arc welding of this type of steel, this work characterizes the mechanical properties and residual stresses in API 5L X80 steel welded joints using the SMAW and FCAW processes. The residual stresses were analyzed using x-ray diffraction with the sin2 ψ method at the top and root of the welded joints in the longitudinal and transverse directions of the weld bead. The mechanical properties of the welded joints by both processes were characterized in terms of tensile strength, impact toughness and Vickers microhardness in the welded and shot peening conditions. A predominantly compressive residual stress was found, and shot peening increased the tensile strength and impact toughness in both welded joints.

  7. X-ray analysis of residual stress gradients in TiN coatings by a Laplace space approach and cross-sectional nanodiffraction: a critical comparison.

    PubMed

    Stefenelli, Mario; Todt, Juraj; Riedl, Angelika; Ecker, Werner; Müller, Thomas; Daniel, Rostislav; Burghammer, Manfred; Keckes, Jozef

    2013-10-01

    Novel scanning synchrotron cross-sectional nanobeam and conventional laboratory as well as synchrotron Laplace X-ray diffraction methods are used to characterize residual stresses in exemplary 11.5 µm-thick TiN coatings. Both real and Laplace space approaches reveal a homogeneous tensile stress state and a very pronounced compressive stress gradient in as-deposited and blasted coatings, respectively. The unique capabilities of the cross-sectional approach operating with a beam size of 100 nm in diameter allow the analysis of stress variation with sub-micrometre resolution at arbitrary depths and the correlation of the stress evolution with the local coating microstructure. Finally, advantages and disadvantages of both approaches are extensively discussed.

  8. The Nature of Residual Stress and Its Measurement.

    DTIC Science & Technology

    1981-07-16

    that stress can relax due to microplasticity in the near- surface region (see the chapter by James). As the surface is ini- tially in compression, the...material by boring or electro- polishing and to determine the stress from measurements of strain on the surface opposite to the one where material is...Naval Research, particularly Dr. B. A. MacDcnald. APPENDIX We consider the determination by diffraction of the three-di- mensional stress tensor for a

  9. Effect of annealing temperature on the stress and structural properties of Ge core fibre

    NASA Astrophysics Data System (ADS)

    Zhao, Ziwen; Cheng, Xueli; Xue, Fei; He, Ting; Wang, Tingyun

    2017-09-01

    Effect of annealing temperature on the stress and structural properties of a Ge core fibre via the molten core drawing (MCD) method is investigated using Raman spectroscopy, Scanning electronic microscopy (SEM), and X-ray diffraction. The experimental results showed that the Raman peak position of the Ge fibre shifted from 297.6 cm-1 to 300.5 cm-1, and the FWHM value decreased from 4.53 cm-1 to 4.31 cm-1, when the annealing is carried out at 700 °C, 800 °C, and 900 °C, respectively. For the Ge core annealed at 900 °C, an apparent crystal grain can be seen in the SEM image, and the diffraction peaks of the (3 3 1) plane are generated in the X-ray diffraction spectra. These results show that optimising the annealing temperature allows the release of the residual stress in the Ge core. When the Ge core fibre is annealed at 900 °C, it exhibits the lowest residual stress and the highest crystal quality, and the quality improvement relative to that of the sample annealed at 800 °C is significant. Hence, annealing at around 900 °C can greatly improve the quality of a Ge core fibre. Further performance improvement of the Ge core fibre by annealing techniques can be anticipated.

  10. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    DOE PAGES

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; ...

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulatingmore » internal strain fields in BMGs for the purpose of ductility enhancement.« less

  11. Residual stress relief due to fatigue in tetragonal lead zirconate titanate ceramics

    NASA Astrophysics Data System (ADS)

    Hall, D. A.; Mori, T.; Comyn, T. P.; Ringgaard, E.; Wright, J. P.

    2013-07-01

    High energy synchrotron XRD was employed to determine the lattice strain ɛ{111} and diffraction peak intensity ratio R{200} in tetragonal PZT ceramics, both in the virgin poled state and after a bipolar fatigue experiment. It was shown that the occurrence of microstructural damage during fatigue was accompanied by a reduction in the gradient of the ɛ{111}-cos2 ψ plot, indicating a reduction in the level of residual stress due to poling. In contrast, the fraction of oriented 90° ferroelectric domains, quantified in terms of R{200}, was not affected significantly by fatigue. The change in residual stress due to fatigue is interpreted in terms of a change in the average elastic stiffness of the polycrystalline matrix due to the presence of inter-granular microcracks.

  12. THE EFFECT OF LASER SHOCK PEENING ON THE LIFE AND FAILURE MODE OF A COLD PILGER DIE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavender, Curt A.; Hong, Sung-tae; Smith, Mark T.

    2008-08-11

    The laser shock peening process was used to increase fatigue life of pilger dies made of A2 tool steel by imparting compressive residual stresses to fatigue prone areas of the dies. The result of X-Ray diffraction analysis indicated that deep, high- magnitude compressive residual stresses were generated by the laser shock peening process, and the peened dies exhibited a significant increase of in-service life. Fractography of the failed dies indicates that the fracture mechanism was altered by the peening process.

  13. Residual stresses and their effects on deformation

    NASA Astrophysics Data System (ADS)

    Davis, L. C.; Allison, J. E.

    1993-11-01

    Residual stresses induced by thermal expansion mismatch in metal-matrix composites are studied by three-dimensional (3-D) elastic-plastic finite element analyses. Typically, the stress-free state is 150 to 300 K above room temperature. The coefficient of thermal expansion of the matrix is 3 to 5 times larger than that of the ceramic inclusion, resulting in compressive stresses of order 200 MPa in the inclusions. Both compressive and tensile stresses can be found in the matrix. Since the stress may exceed the matrix yield strength near the particles, plastic flow occurs. The authors find a significant influence of this flow on the elastic and plastic properties of the composite. The calculated residual strains in TiC particles due to thermal expansion mismatch and external loads compare well with recent neutron diffraction experiments (Bourke et al.) The present work is the first reported three-dimensional analysis of spherical inclusions in different arrays (simple cubic (sc) and face-centered cubic (fcc)) that permit a study of particle interactions.

  14. Quench-Induced Stresses in AA2618 Forgings for Impellers: A Multiphysics and Multiscale Problem

    NASA Astrophysics Data System (ADS)

    Chobaut, Nicolas; Saelzle, Peter; Michel, Gilles; Carron, Denis; Drezet, Jean-Marie

    2015-05-01

    In the fabrication of heat-treatable aluminum parts such as AA2618 compressor impellers for turbochargers, solutionizing and quenching are key steps to obtain the required mechanical characteristics. Fast quenching is necessary to avoid coarse precipitation as it reduces the mechanical properties obtained after heat treatment. However, fast quenching induces residual stresses that can cause unacceptable distortions during machining. Furthermore, the remaining residual stresses after final machining can lead to unfavorable stresses in service. Predicting and controlling internal stresses during the whole processing from heat treatment to final machining is therefore of particular interest to prevent negative impacts of residual stresses. This problem is multiphysics because processes such as heat transfer during quenching, precipitation phenomena, thermally induced deformations, and stress generation are interacting and need to be taken into account. The problem is also multiscale as precipitates of nanosize form during quenching at locations where the cooling rate is too low. This precipitation affects the local yield strength of the material and thus impacts the level of macroscale residual stresses. A thermomechanical model accounting for precipitation in a simple but realistic way is presented. Instead of modelling precipitation that occurs during quenching, the model parameters are identified using a limited number of tensile tests achieved after representative interrupted cooling paths in a Gleeble machine. The simulation results are compared with as-quenched residual stresses in a forging measured by neutron diffraction.

  15. BOOK REVIEW: Analysis of Residual Stress by Diffraction Using Neutron and Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, ed M. E.; Lodini, A.

    2003-09-01

    The presence of residual stresses within engineering components is often a key feature in determining their usable lifetimes and failure characteristics. Residual surface compression can, for example, restrict the propagation of surface cracks through the bulk. As a consequence, it is essential to characterize the magnitude and spatial distribution of residual stresses and, at least for non-destructive testing, this is most widely achieved using diffraction of neutron and high energy synchrotron radiations. This book aims to provide a detailed description of the methodology used to determine residual stresses. The major emphasis is placed on the neutron method, this being the more widely established approach at present. It contains 20 chapters contributed by 23 authors, divided into five major parts. The overall layout is very logical, with the first part giving a general introduction to the use of neutrons and x-rays for materials research and summarizing the methods used for their production. Part 2 considers the more specific aspects of extracting the residual stress distribution within a bulk sample and includes some valuable comments on a number of potential experimental problems, such as the determination of the stress-free lattice parameter and the effects of broadening of the Bragg peaks. The experimental facilities currently available or under development are described in part 3, with the remaining two parts devoted to general and specific applications of the residual stress measurement technique. As expected with such a large number of different authors, there is some variation in style and quality. However, the text is generally easy to follow and, more importantly, it is largely free of the problems of inconsistent notation and dupication of material that can afflict multi-authored texts. My only negative comment concerns the latter portion of the book devoted to specific applications of the technique, which is illustrative rather than comprehensive. In particular, there is no clear justification for the particular choice of topics included. Chapters devoted to the more important areas of residual stresses in aerospace components and within the chemical industry would probably have more general interest than, for example, the one devoted nuclear fusion reactors. The publication of this book is rather timely, with a current expansion in the experimental facilities available for the measurement of residual stresses, including dedicated diffractometers for the study of engineering components. To the best of my knowledge, there is no comparable text currently available. In my opinion, this book provides both an accessible introduction to the topic for new students in this particular area and a useful reference text on the current status of the field to more established researchers. Stephen Hull

  16. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unnikrishnan, Rahul, E-mail: rahulunnikrishnannair@gmail.com; Idury, K.S.N. Satish, E-mail: satishidury@gmail.com; Ismail, T.P., E-mail: tpisma@gmail.com

    Austenitic stainless steels are widely used in high performance pressure vessels, nuclear, chemical, process and medical industry due to their very good corrosion resistance and superior mechanical properties. However, austenitic stainless steels are prone to sensitization when subjected to higher temperatures (673 K to 1173 K) during the manufacturing process (e.g. welding) and/or certain applications (e.g. pressure vessels). During sensitization, chromium in the matrix precipitates out as carbides and intermetallic compounds (sigma, chi and Laves phases) decreasing the corrosion resistance and mechanical properties. In the present investigation, 304L austenitic stainless steel was subjected to different heat inputs by shielded metalmore » arc welding process using a standard 308L electrode. The microstructural developments were characterized by using optical microscopy and electron backscattered diffraction, while the residual stresses were measured by X-ray diffraction using the sin{sup 2}ψ method. It was observed that even at the highest heat input, shielded metal arc welding process does not result in significant precipitation of carbides or intermetallic phases. The ferrite content and grain size increased with increase in heat input. The grain size variation in the fusion zone/heat affected zone was not effectively captured by optical microscopy. This study shows that electron backscattered diffraction is necessary to bring out changes in the grain size quantitatively in the fusion zone/heat affected zone as it can consider twin boundaries as a part of grain in the calculation of grain size. The residual stresses were compressive in nature for the lowest heat input, while they were tensile at the highest heat input near the weld bead. The significant feature of the welded region and the base metal was the presence of a very strong texture. The texture in the heat affected zone was almost random. - Highlights: • Effect of heat input on microstructure, residual stresses and corrosion is studied. • HAZ and width of dendrite in the welded region increase with heat input. • Residual stresses are tensile near the welded region after the highest heat input. • Welded region has the highest pit density after highest heat input. • Dendrites and δ-ferrite were highly oriented in the welded region.« less

  17. Improving Fatigue Performance of AHSS Welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhili; Yu, Xinghua; Erdman, III, Donald L.

    Reported herein is technical progress on a U.S. Department of Energy CRADA project with industry cost-share aimed at developing the technical basis and demonstrate the viability of innovative in-situ weld residual stresses mitigation technology that can substantially improve the weld fatigue performance and durability of auto-body structures. The developed technology would be costeffective and practical in high-volume vehicle production environment. Enhancing weld fatigue performance would address a critical technology gap that impedes the widespread use of advanced high-strength steels (AHSS) and other lightweight materials for auto body structure light-weighting. This means that the automotive industry can take full advantage ofmore » the AHSS in strength, durability and crashworthiness without the concern of the relatively weak weld fatigue performance. The project comprises both technological innovations in weld residual stress mitigation and due-diligence residual stress measurement and fatigue performance evaluation. Two approaches were investigated. The first one was the use of low temperature phase transformation (LTPT) weld filler wire, and the second focused on novel thermo-mechanical stress management technique. Both technical approaches have resulted in considerable improvement in fatigue lives of welded joints made of high-strength steels. Synchrotron diffraction measurement confirmed the reduction of high tensile weld residual stresses by the two weld residual stress mitigation techniques.« less

  18. Finite Element Simulation and Experimental Verification of Internal Stress of Quenched AISI 4140 Cylinders

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Qin, Shengwei; Hao, Qingguo; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua

    2017-03-01

    The study of internal stress in quenched AISI 4140 medium carbon steel is of importance in engineering. In this work, the finite element simulation (FES) was employed to predict the distribution of internal stress in quenched AISI 4140 cylinders with two sizes of diameter based on exponent-modified (Ex-Modified) normalized function. The results indicate that the FES based on Ex-Modified normalized function proposed is better consistent with X-ray diffraction measurements of the stress distribution than FES based on normalized function proposed by Abrassart, Desalos and Leblond, respectively, which is attributed that Ex-Modified normalized function better describes transformation plasticity. Effect of temperature distribution on the phase formation, the origin of residual stress distribution and effect of transformation plasticity function on the residual stress distribution were further discussed.

  19. The Influence of Pulsed Electroplating Frequency and Duty Cycle on Copper Film Microstructure and Stress State

    PubMed Central

    Marro, James B.; Darroudi, Taghi; Okoro, Chukwudi A.; Obeng, Yaw S.; Richardson, Kathleen C.

    2017-01-01

    In this work we studied the impact of pulse electroplating parameters on the cross-sectional and surface microstructures of blanket copper films using electron backscattering diffraction and x-ray diffraction. The films evaluated were highly (111) textured in the direction perpendicular to the film surface. The degree of preferential orientation was found to decrease with longer pulse on-times, due to strain energy driven growth of other grain orientations. Residual biaxial stresses were also measured in the films and higher pulse frequencies during deposition led to smaller biaxial stresses in the films. Film stress was also found to correlate with the amount of twinning in the copper film cross-sections. This has been attributed to the twins’ thermal stability and mechanical properties. PMID:28239200

  20. Effects of Heat Treatment on SiC-SiC Ceramic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Knauf, Michael W.

    Residual stresses resulting from the manufacturing process found within a silicon carbide/silicon carbide (SiC/SiC) ceramic matrix composite were thoroughly investigated through the use of high-energy X-ray diffraction and Raman microspectroscopy. The material system studied was a Rolls-Royce composite produced with Hi-Nicalon fibers woven into a five harness satin weave, coated with boron nitride and silicon carbide interphases, and subsequently infiltrated with silicon carbide particles and a silicon matrix. Constituent stress states were measured before, during, and after heat treatments ranging from 900 °C to 1300 °C for varying times between one and sixty minutes. Stress determination methods developed through these analyses can be utilized in the development of ceramic matrix composites and other materials employing boron-doped silicon. X-ray diffraction experiments were performed at the Argonne National Laboratory Advanced Photon Source to investigate the evolution of constituent stresses through heat treatment, and determine how stress states are affected at high temperature through in situ measurements during heat treatments up to 1250 °C for 30 minutes. Silicon carbide particles in the as-received condition exhibited a nearly isotropic stress state with average tensile stresses of approximately 300 MPa. The silicon matrix exhibited a complimentary average compressive stress of approximately 300 MPa. Strong X-ray diffraction evidence is presented demonstrating solid state boron diffusion and increased boron solubility found in silicon throughout heat treatment. While the constituent stress states did evolve through the heat treatment cycles, including approaching nearly stress-free conditions at temperatures close to the manufacturing temperature, no permanent relaxation of stress was observed. Raman spectroscopy was utilized to investigate stresses found within silicon carbide particles embedded within the matrix and the silicon matrix as an alternate method of measurement. The stresses determined through Raman spectroscopy were comparable to those determined through X-ray diffraction. Neither silicon carbide particles nor silicon were significantly affected through heat treatment, corroborating the X-ray diffraction results. Silicon present near fibers exhibited less compressive stress than the majority of silicon found throughout the matrix. Measurements were taken in situ and ex situ to determine the temporal evolution of the stress state at various temperatures. Heat treatments up to 1300 °C for one hour failed to produce significant changes in the residual stress state of the composite constituents. A strong trend was identified in the Raman silicon signal manifesting a continuously decreasing wavenumber with increasing heat treatment temperature between 1100 °C and 1300 °C in timeframes of less than one minute. This was found to be due to a continuously increasing electronic activation of boron within the silicon matrix, stemming from an increase of boron atoms occupying substitutional silicon lattice sites while covalently bonded to surrounding silicon. A methodology to determine the residual stress state of silicon exhibiting varying degrees of boron dopant is proposed by accounting for the changes in the Raman profile parameters. This method also allows for observing activated boron segregation in various matrix areas; wavenumber gradients in these areas exist which have been misconstrued in literature as large variations in stress, while in fact the variability is likely relatively benign.

  1. The Effects of Boron Doping on Residual Stress of Hfcvd Diamond Film for Mems Applications

    NASA Astrophysics Data System (ADS)

    Zhao, Tianqi; Wang, Xinchang; Sun, Fanghong

    In this study, the residual stress of boron-doped diamond (BDD) films is investigated as a function of boron doping level using X-ray diffraction (XRD) analysis. Boron doping level is controlled from 1000ppm to 9000ppm by dissolving trimethyl borate into acetone. BDD films are deposited on silicon wafers using a bias-enhanced hot filament chemical vapor deposition (BE-HFCVD) system. Residual stress calculated by sin2 ψ method varies linearly from -2.4GPa to -1.1GPa with increasing boron doping level. On the BDD film of -1.75GPa, free standing BDD cantilevers are fabricated by photolithography and ICP-RIE processes, then tested by laser Doppler vibrometer (LDV). A cantilever with resonant frequency of 183KHz and Q factor of 261 in the air is fabricated.

  2. Residual stress analysis on tensile MMC specimens after loading/unloading tests in several conditions

    NASA Astrophysics Data System (ADS)

    Giuliani, Alessandra; Albertini, Gianni; Manescu, Adrian

    2004-07-01

    Residual stresses have been investigated in samples made of AA6061+22% Al2O3 in order to correlate microstructural characteristics with mechanical performances. In particular, the possible occurrence of a brittle fracture induced by an excessive load transfer from the matrix to the reinforcement was investigated. To this end, macrostresses and microstresses were analysed. A neutron diffraction test on 12 specimens submitted to several loading/unloading conditions at different temperatures was performed. These measurements aimed to establish the optimal temperature for the initial extruded billet in pre-heating stage, before forging the final wheel hub.

  3. Residual-stress-induced grain growth of twinned grains and its effect on formability of magnesium alloy sheet at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Se-Jong; Kim, Daeyong, E-mail: daeyong@kims.re.kr; Lee, Keunho

    2015-11-15

    A magnesium alloy sheet was subjected to in-plane compression along with a vertical load to avoid buckling during compression. Pre-compressed specimens machined from the sheet were annealed at different temperatures and the changes in microstructure and texture were observed using electron back scattered diffraction (EBSD). Twinned grains preferentially grew during annealing at 300 °C, so that a strong texture with the < 0001 > direction parallel to the transverse direction developed. EBSD analysis confirmed that the friction caused by the vertical load induced inhomogeneous distribution of residual stress, which acted as an additional driving force for preferential grain growth ofmore » twinned grain during annealing. The annealed specimen showed excellent formability. - Highlights: • A magnesium alloy sheet subjected to in-plane compression under a vertical load • The vertical load induced inhomogeneous distribution of the residual stress. • The residual stress acted as an additional driving force for grain growth. • The annealed specimen with strong non-basal texture showed excellent formability.« less

  4. Residual stresses in a stainless steel - titanium alloy joint made with the explosive technique

    NASA Astrophysics Data System (ADS)

    Taran, Yu V.; Balagurov, A. M.; Sabirov, B. M.; Evans, A.; Davydov, V.; Venter, A. M.

    2012-02-01

    Joining of pipes from stainless steel (SS) and titanium (Ti) alloy still experience serious technical problems. Recently, reliable and hermetic joining of SS and Ti pipes has been achieved with the explosive bonding technique in the Russian Federal Nuclear Center. Such adapters are earmarked for use at the future International Linear Collider. The manufactured SS-Ti adapters have excellent mechanical behavior at room and liquid nitrogen temperatures, during high-pressure tests and thermal cycling. We here report the first neutron diffraction investigation of the residual stresses in a SS-Ti adapter on the POLDI instrument at the SINQ spallation source. The strain scanning across the adapter walls into the SS-SS and SS-Ti pipes sections encompassed measurement of the axial, radial and hoop strain components, which were transformed into residual stresses. The full stress information was successfully determined for the three steel pipes involved in the joint. The residual stresses do not exceed 300 MPa in magnitude. All stress components have tensile values close to the adapter internal surface, whilst they are compressive close to the outer surface. The strong incoherent and weak coherent neutron scattering cross-sections of Ti did not allow for the reliable determination of stresses inside the titanic pipe.

  5. Surface mechanical property and residual stress of peened nickel-aluminum bronze determined by in-situ X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Wang, Chengxi; Jiang, Chuanhai; Zhao, Yuantao; Chen, Ming; Ji, Vincent

    2017-10-01

    As one of the most important surface strengthening method, shot peening is widely used to improve the fatigue and stress corrosion crack resistance of components by introducing the refined microstructure and compressive residual stress in the surface layer. However, the mechanical properties of this thin layer are different from the base metal and are difficult to be characterized by conventional techniques. In this work, a micro uniaxial tensile tester equipped with in-situ X-ray stress analyzer was employed to make it achievable on a nickel-aluminum bronze with shot peening treatment. According to the equivalent stress-strain relationship based on Von Mises stress criterion, the Young's modulus and yield strength of the peened layer were calculated. The results showed that the Young's modulus was the same as the bulk material, and the yield strength corresponding to the permanent plastic strain of 0.2% was increased by 21% after SP. But the fractographic analysis showed that the fracture feature of the surface layer was likely to transform from the dimple to the cleavage, indicating the improved strength might be attained at the expense of ductility. The monotonic and cyclic loading were also performed via the same combined set-up. In addition, the specific relaxation behavior of compressive residual stress was quantified by linear logarithm relationship between residual stress and cycle numbers. It was found that the compressive residual stress mainly relaxed in the first few cycles, and then reached steady state with further cycles. The relaxation rate and the stable value were chiefly depended on the stress amplitude and number of cycles. The retained residual stress kept in compressive under all given applied stress levels, suggesting that the shot peening could introduce a more stable surface layer of compressive residual stress other than the elevated strength of nickel-aluminum bronze alloy.

  6. Effect of residual stresses induced by prestressing on rolling element fatigue life

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1972-01-01

    A mechanical prestress cycle suitable to induce compressive stress beneath the surface of the inner race of radially loaded 207-size bearings was determined. Compressive residual stress in excess 0.69 x 10 to the 9th power N/sq m (100,000 psi), as measured by X-ray diffraction, were induced at the depth of maximum shearing stress. The prestress cycle consisted of running the bearings for 25 hours at 2750 rpm at a radial load which produced a maximum Hertz stress of 3.3 x 10 to the 9th power N/sq m (480,000 psi) at the contact of the inner race and the heaviest loaded ball. Bearings subjected to this prestress cycle and subsequently fatigue tested gave a 10 percent fatigue life greater than twice that of a group of baseline bearings.

  7. Correlation Between the Microstructural Defects and Residual Stress in a Single Crystal Nickel-Based Superalloy During Different Creep Stages

    NASA Astrophysics Data System (ADS)

    Mo, Fangjie; Wu, Erdong; Zhang, Changsheng; Wang, Hong; Zhong, Zhengye; Zhang, Jian; Chen, Bo; Hofmann, Michael; Gan, Weimin; Sun, Guangai

    2018-03-01

    The present work attempts to reveal the correlation between the microstructural defects and residual stress in the single crystal nickel-based superalloy, both of which play the significant role on properties and performance. Neutron diffraction was employed to investigate the microstructural defects and residual stresses in a single crystal (SC) nickel-based superalloy, which was subjected to creeping under 220 MPa and 1000 °C for different times. The measured superlattice and fundamental lattice reflections confirm that the mismatch and tetragonal distortions with c/a > 1 exist in the SC superalloy. At the initially unstrained state, there exists the angular distortion between γ and γ' phases with small triaxial compressive stresses, ensuring the structural stability of the superalloy. After creeping, the tetragonal distortion for the γ phase is larger than that for the γ' phase. With increasing the creeping time, the mismatch between γ and γ' phases increases to the maximum, then decreases gradually and finally remains unchanged. The macroscopic residual stress shows a similar behavior with the mismatch, indicating the correlation between them. Based on the model of shear and dislocations, the evolution of microstructural defects and residual stress are reasonably explained. The effect of shear is dominant at the primary creep stage, which greatly enlarges the mismatch and the residual stress. The dislocations weaken the effect of shear for the further creep stage, resulting in the decrease of the mismatch and relaxation of the residual stress. Those findings add some helpful understanding into the microstructure-performance relationship in the SC nickel-based superalloy, which might provide the insight to materials design and applications.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, S.; Schaffer, J. E.; Yu, C.

    In situ synchrotron X-ray diffraction testing was carried out on a martensitic and an austenitic NiTi wire to study the evolution of internal stresses and the stress-induced martensite (SIM) phase transformation during room temperature tensile deformation. From the point of lattice strain evolution, it is concluded that (1) for the martensitic NiTi wire, detwinning of the [011](B19') type II twins and the {010}(B19') compound twins is responsible for internal strains formed at the early stage of deformation. (2) The measured diffraction moduli of individual martensite families show large elastic anisotropy and strong influences of texture. (3) For the austenitic NiTimore » wire, internal residual stresses were produced due to transformation-induced plasticity, which is more likely to occur in austenite families that have higher elastic moduli than their associated martensite families. (4) Plastic deformation was observed in the SIM at higher stresses, which largely decreased the lower plateau stresses.« less

  9. Measured Biaxial Residual Stress Maps in a Stainless Steel Weld

    DOE PAGES

    Olson, Mitchell D.; Hill, Michael R.; Patel, Vipul I.; ...

    2015-09-16

    Here, this paper describes a sequence of residual stress measurements made to determine a two-dimensional map of biaxial residual stress in a stainless steel weld. A long stainless steel (316L) plate with an eight-pass groove weld (308L filler) was used. The biaxial stress measurements follow a recently developed approach, comprising a combination of contour method and slitting measurements, with a computation to determine the effects of out-of-plane stress on a thin slice. The measured longitudinal stress is highly tensile in the weld- and heat-affected zone, with a maximum around 450 MPa, and compressive stress toward the transverse edges around ₋250more » MPa. The total transverse stress has a banded profile in the weld with highly tensile stress at the bottom of the plate (y = 0) of 400 MPa, rapidly changing to compressive stress (at y = 5 mm) of ₋200 MPa, then tensile stress at the weld root (y = 17 mm) and in the weld around 200 MPa, followed by compressive stress at the top of the weld at around ₋150 MPa. Finally, the results of the biaxial map compare well with the results of neutron diffraction measurements and output from a computational weld simulation.« less

  10. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    DOE PAGES

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; ...

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects ofmore » both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.« less

  11. The influence of deformation-induced residual stresses on the post-forming tensile stress/strain behavior of dual-phase steels

    NASA Astrophysics Data System (ADS)

    Hance, Brandon Michael

    It was hypothesized that, in dual-phase (DP) steels, strain partitioning between ferrite (alpha) and martensite (alpha') during deformation results in a distribution of post-deformation residual stresses that, in turn, affects the subsequent strength, work hardening behavior and formability when the strain path is changed. The post-forming deformation-induced residual stress state was expected to depend upon the microstructure, the amount of strain and the prestrain path. The primary objective of this research program was to understand the influence of deformation-induced residual stresses on the post-forming tensile stress/strain behavior of DP steels. Three commercially produced sheet steels were considered in this analysis: (1) a DP steel with approximately 15 vol. % martensite, (2) a conventional high-strength, low-alloy (HSLA) steel, and (3) a conventional, ultra-low-carbon interstitial-free (IF) steel. Samples of each steel were subjected to various prestrain levels in various plane-stress forming modes, including uniaxial tension, plane strain and balanced biaxial stretching. Neutron diffraction experiments confirmed the presence of large post-forming deformation-induced residual stresses in the ferrite phase of the DP steel. The deformation-alphainduced residual stress state varied systematically with the prestrain mode, where the principal residual stress components are proportional to the principal strain components of the prestrain mode, but opposite in sign. For the first time, and by direct experimental correlation, it was shown that deformation-induced residual stresses greatly affect the post-forming tensile stress/strain behavior of DP steels. As previously reported in the literature, the formability (residual tensile ductility) of the IF steel and the HSLA steel was adversely affected by strain path changes. The DP steel presents a formability advantage over the conventional IF and HSLA steels, and is expected to be particularly well suited for complex forming operations that involve abrupt strain path changes. Deformation-induced residual stresses were measured in the IF steel and the HSLA steel; however, the magnitudes of which are such that post-forming tensile stress/strain behavior was not significantly affected. Considering the vast differences in mechanical properties, microstructure, and composition, the IF steel and the HSLA steel showed remarkably similar post-forming tensile stress/strain behavior for all prestrain modes considered.

  12. Improving Beamline X-ray Optics by Analyzing the Damage to Crystallographic Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zientek, John; Maj, Jozef; Navrotski, Gary

    2015-01-02

    The mission of the X-ray Characterization Laboratory in the X-ray Science Division (XSD) at the Advanced Photon Source (APS) is to support both the users and the Optics Fabrication Facility that produces high performance optics for synchrotron X-ray beamlines. The Topography Test Unit (TTU) in the X-ray Lab has been successfully used to characterize diffracting crystals and test monochromators by quantifying residual surface stresses. This topographic method has also been adapted for testing standard X-ray mirrors, characterizing concave crystal optics and in principle, can be used to visualize residual stresses on any optic made from single crystalline material. The TTUmore » has been instrumental in quantitatively determining crystal mounting stresses which are mechanically induced by positioning, holding, and cooling fixtures. It is this quantitative aspect that makes topography so useful since the requirements and responses for crystal optics and X-ray mirrors are quite different. In the case of monochromator crystals, even small residual or induced stresses, on the order of tens of kPa, can cause detrimental distortions to the perfect crystal rocking curves. Mirrors, on the other hand, are much less sensitive to induced stresses where stresses that are an order of magnitude greater can be tolerated. This is due to the fact that the surface rather than the lattice-spacing determines a mirror’s performance. For the highly sensitive crystal optics, it is essential to measure the in-situ rocking curves using topographs as mounting fixtures are adjusted. In this way, high heat-load monochromator crystals can be successfully mounted with minimum stress. Topographical analysis has been shown to be a highly effective method to visualize and quantify the distribution of stresses, to help identify methods that mitigate stresses, and most notably to improve diffractive crystal optic rocking curves.« less

  13. Investigation of the Effect of Residual Stress Gradient on the Wear Behavior of PVD Thin Films

    NASA Astrophysics Data System (ADS)

    Tlili, B.; Nouveau, C.; Guillemot, G.; Besnard, A.; Barkaoui, A.

    2018-02-01

    The control of residual stresses has been seldom investigated in multilayer coatings dedicated to improvement of wear behavior. Here, we report the preparation and characterization of superposed structures composed of Cr, CrN and CrAlN layers. Nano-multilayers CrN/CrAlN and Cr/CrN/CrAlN were deposited by Physical Vapor Deposition (PVD) onto Si (100) and AISI4140 steel substrates. The Cr, CrN and CrAlN monolayers were developed with an innovative approach in PVD coatings technologies corresponding to deposition with different residual stresses levels. Composition and wear tracks morphologies of the coatings were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction and 3D-surface analyzer. The mechanical properties (hardness, residual stresses and wear) were investigated by nanoindentation, interferometry and micro-tribometry (fretting-wear tests). Observations suggest that multilayer coatings are composed mostly of nanocrystalline. The residual stresses level in the films has practically affected all the physicochemical and mechanical properties as well as the wear behavior. Consequently, it is demonstrated that the coating containing moderate stresses has a better wear behavior compared to the coating developed with higher residual stresses. The friction contact between coated samples and alumina balls shows also a large variety of wear mechanisms. In particular, the abrasive wear of the coatings was a combination of plastic deformation, fine microcracking and microspallation. The application of these multilayers will be wood machining of green wood.

  14. Determination of residual stress in a microtextured α titanium component using high-energy synchrotron X-rays

    DOE PAGES

    Park, Jun -Sang; Ray, Atish K.; Dawson, Paul R.; ...

    2016-05-02

    A shrink-fit sample is manufactured with a Ti-8Al-1Mo-1V alloy to introduce a multiaxial residual stress field in the disk of the sample. A set of strain and orientation pole figures are measured at various locations across the disk using synchrotron high-energy X-ray diffraction. Two approaches—the traditional sin 2Ψ method and the bi-scale optimization method—are taken to determine the stresses in the disk based on the measured strain and orientation pole figures, to explore the range of solutions that are possible for the stress field within the disk. While the stress components computed using the sin 2Ψ method and the bi-scalemore » optimization method have similar trends, their magnitudes are significantly different. Lastly, it is suspected that the local texture variation in the material is the cause of this discrepancy.« less

  15. Quartz phenocrysts preserve volcanic stresses at Long Valley and Yellowstone calderas

    NASA Astrophysics Data System (ADS)

    Befus, K. S.; Leonhardi, T. C.; Manga, M.; Tamura, N.; Stan, C. V.

    2016-12-01

    Magmatic processes and eruptions are the consequence of stresses active in volcanic environments. Few techniques are presently available to quantify those stresses because they operate in subsurface and/or hazardous environments, and thus new techniques are needed to advance our understanding of key processes. Here, we provide a dataset of volcanic stresses that were imparted to quartz crystals that traveled through, and were hosted within, pyroclastic and effusive eruptions from Long Valley and Yellowstone calderas. We measured crystal lattice deformation with submicron spatial resolution using the synchrotron X-ray microdiffraction beamline (12.3.2) at the Advanced Light Source, Lawrence Berkeley National Laboratory. Quartz from all units produces diffraction patterns with residual strains locked in the crystal lattice. We used Hooke's Law and the stiffness constants of quartz to calculate the stresses that caused the preserved residual strains. At Long Valley caldera, quartz preserves stresses of 187±80 MPa within pumice clasts in the F1 fall unit of the Bishop Tuff, and preserves stresses of 120±45 MPa from the Bishop Tuff welded ignimbrite. At Yellowstone caldera quartz preserves stresses of 115±30 and 140±60 MPa within pumices from the basal fall units of the Mesa Falls Tuff and the Tuff of Bluff Point, respectively. Quartz from near-vent and flow-front samples from Summit Lake lava flow preserves stresses up to 130 MPa, and show no variation with distance travelled. We believe that subsurface processes cause the measured residual stresses, but it remains unclear if they are relicts of fragmentation or from the magma chamber. The residual stresses from both Long Valley and Yellowstone samples roughly correlate to lithostatic pressures estimated for the respective pre-eruption magma storage depths. It is possible that residual stress in quartz provides a new geobarometer for crystallization pressure. Moving forward, we will continue to perform analyses and experiments on natural and synthetic crystals to better determine the source of residual stresses.

  16. Effect of laser shot peening on precipitation hardened aluminum alloy 6061-T6 using low energy laser

    NASA Astrophysics Data System (ADS)

    Sathyajith, S.; Kalainathan, S.

    2012-03-01

    Mechanical properties of engineering material can be improved by introducing compressive residual stress on the material surface and refinement of their microstructure. Variety of mechanical process such as shot peening, water jet peening, ultrasonic peening, laser shot peening were developed in the last decades on this contrast. Among these, lasers shot peening emerged as a novel industrial treatment to improve the crack resistance of turbine blades and the stress corrosion cracking (SCC) of austenic stainless steel in power plants. In this study we successfully performed laser shot peening on precipitation hardened aluminum alloy 6061-T6 with low energy (300 mJ, 1064 nm) Nd:YAG laser using different pulse densities of 22 pulses/mm 2 and 32 pulses/mm 2. Residual stress evaluation based on X-ray diffraction sin 2 ψ method indicates a maximum of 190% percentage increase on surface compressive stress. Depth profile of micro-hardness shows the impact of laser generated shock wave up to 1.2 mm from the surface. Apart from that, the crystalline size and micro-strain on the laser shot peened surfaces have been investigated and compared with the unpeened surface using X-ray diffraction in conjunction with line broadening analysis through the Williamson-Hall plot.

  17. Microstructure and Residual Stress Distributions Under the Influence of Welding Speed in Friction Stir Welded 2024 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Moghadam, Danial Ghahremani; Farhangdoost, Khalil; Nejad, Reza Masoudi

    2016-06-01

    Friction stir welding was conducted on 8-mm-thick plates made of AA2024-T351 aluminum alloy at tool traverse speeds between 8 and 31.5 mm/minutes and tool rotational speed between 400 and 800 rpm. Metallographic analyses and mechanical tests including hardness, tensile, residual stress, and fracture toughness tests were carried out to evaluate the microstructural and mechanical properties of the joints as a function of the process parameters. The finite element simulation of the FSW process was also performed using a thermal model. The hardness test results show that the increase in rotational speed or decrease in traverse speed of the tool would cause a decrease in weld zone hardness. The best tensile properties are obtained at rotational/traverse speed ratio between 20 and 32. Also, the longitudinal residual stress profiles were evaluated by employing X-ray diffraction method. The numerical and experimental results showed that the increase in a traverse or rotational speed would increase the residual stress of the weld zone. From the fracture toughness results, it was found that the welding process decreases the joints fracture toughness 18 to 49 pct with respect to the base metal.

  18. Effect of Measured Welding Residual Stresses on Crack Growth

    NASA Technical Reports Server (NTRS)

    Hampton, Roy W.; Nelson, Drew; Doty, Laura W. (Technical Monitor)

    1998-01-01

    Welding residual stresses in thin plate A516-70 steel and 2219-T87 aluminum butt weldments were measured by the strain-gage hole drilling and X-ray diffraction methods. The residual stress data were used to construct 3D strain fields which were modeled as thermally induced strains. These 3D strain fields were then analyzed with the WARP31) FEM fracture analysis code in order to predict their effect on fatigue and on fracture. For analyses of fatigue crack advance and subsequent verification testing, fatigue crack growth increments were simulated by successive saw-cuts and incremental loading to generate, as a function of crack length, effects on crack growth of the interaction between residual stresses and load induced stresses. The specimen experimental response was characterized and compared to the WARM linear elastic and elastic-plastic fracture mechanics analysis predictions. To perform the fracture analysis, the plate material's crack tearing resistance was determined by tests of thin plate M(T) specimens. Fracture analyses of these specimen were performed using WARP31D to determine the critical Crack Tip Opening Angle [CTOA] of each material. These critical CTOA values were used to predict crack tearing and fracture in the weldments. To verify the fracture predictions, weldment M(T) specimen were tested in monotonic loading to fracture while characterizing the fracture process.

  19. An Assessment of the Residual Stresses in Low Pressure Plasma Sprayed Coatings on an Advanced Copper Alloy

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Ghosn, L. J.; Agarwal, A.; Lachtrupp, T. P.

    2002-01-01

    Modeling studies were conducted on low pressure plasma sprayed (LPPS) NiAl top coat applied to an advanced Cu-8(at.%)Cr-4%Nb alloy (GRCop-84) substrate using Ni as a bond coat. A thermal analysis suggested that the NiAl and Ni top and bond coats, respectively, would provide adequate thermal protection to the GRCop-84 substrate in a rocket engine operating under high heat flux conditions. Residual stress measurements were conducted at different depths from the free surface on coated and uncoated GRCop-84 specimens by x-ray diffraction. These data are compared with theoretically estimated values assessed by a finite element analysis simulating the development of these stresses as the coated substrate cools down from the plasma spraying temperature to room temperature.

  20. Unraveling cyclic deformation mechanisms of a rolled magnesium alloy using in situ neutron diffraction

    DOE PAGES

    Wu, Wei; An, Ke; Liaw, Peter K.

    2014-12-23

    In the current study, the deformation mechanisms of a rolled magnesium alloy were investigated under cyclic loading using real-time in situ neutron diffraction under a continuous-loading condition. The relationship between the macroscopic cyclic deformation behavior and the microscopic response at the grain level was established. The neutron diffraction results indicate that more and more grains are involved in the twinning and detwinning deformation process with the increase of fatigue cycles. The residual twins appear in the early fatigue life, which is responsible for the cyclic hardening behavior. The asymmetric shape of the hysteresis loop is attributed to the early exhaustionmore » of the detwinning process during compression, which leads to the activation of dislocation slips and rapid strain-hardening. The critical resolved shear stress for the activation of tensile twinning closely depends on the residual strain developed during cyclic loading. In the cycle before the sample fractured, the dislocation slips became active in tension, although the sample was not fully twinned. The increased dislocation density leads to the rise of the stress concentration at weak spots, which is believed to be the main reason for the fatigue failure. Furthermore, the deformation history greatly influences the deformation mechanisms of hexagonal-close-packed-structured magnesium alloy during cyclic loading.« less

  1. Mechanical Characterization of Thermomechanical Matrix Residual Stresses Incurred During MMC Processing

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.

    1998-01-01

    In recent years, much effort has been spent examining the residual stress-strain states of advanced composites. Such examinations are motivated by a number of significant concerns that affect composite development, processing, and analysis. The room-temperature residual stress states incurred in many advanced composite systems are often quite large and can introduce damage even prior to the first external mechanical loading of the material. These stresses, which are induced during the cooldown following high-temperature consolidation, result from the coefficient of thermal expansion mismatch between the fiber and matrix. Experimental techniques commonly used to evaluate composite internal residual stress states are non-mechanical in nature and generally include forms of x-ray and neutron diffraction. Such approaches are usually complex, involving a number of assumptions and limitations associated with a wide range of issues, including the depth of penetration, the volume of material being assessed, and erroneous effects associated with oriented grains. Furthermore, and more important to the present research, these techniques can assess only "single time" stress in the composite. That is, little, if any, information is obtained that addresses the time-dependent point at which internal stresses begin to accumulate, the manner in which the accumulation occurs, and the presiding relationships between thermoelastic, thermoplastic, and thermoviscous behaviors. To address these critical issues, researchers at the NASA Lewis Research Center developed and implemented an innovative mechanical test technique to examine in real time, the time-dependent thermomechanical stress behavior of a matrix alloy as it went through a consolidation cycle.

  2. An Assessment of Subsurface Residual Stress Analysis in SLM Ti-6Al-4V

    PubMed Central

    Mishurova, Tatiana; Cabeza, Sandra; Artzt, Katia; Haubrich, Jan; Klaus, Manuela; Genzel, Christoph; Requena, Guillermo; Bruno, Giovanni

    2017-01-01

    Ti-6Al-4V bridges were additively fabricated by selective laser melting (SLM) under different scanning speed conditions, to compare the effect of process energy density on the residual stress state. Subsurface lattice strain characterization was conducted by means of synchrotron diffraction in energy dispersive mode. High tensile strain gradients were found at the frontal surface for samples in an as-built condition. The geometry of the samples promotes increasing strains towards the pillar of the bridges. We observed that the higher the laser energy density during fabrication, the lower the lattice strains. A relief of lattice strains takes place after heat treatment. PMID:28772706

  3. Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopaedic applications.

    PubMed

    Gledhill, H C; Turner, I G; Doyle, C

    1999-02-01

    Hydroxyapatite coatings on titanium substrates were produced using two thermal spray techniques vacuum plasma spraying and detonation gun spraying. X-ray diffraction was used to compare crystallinity and residual stresses in the coatings. Porosity was measured using optical microscopy in conjunction with an image analysis system. Scanning electron microscopy and surface roughness measurements were used to characterise the surface morphologies of the coatings. The vacuum plasma sprayed coatings were found to have a lower residual stress, a higher crystallinity and a higher level of porosity than the detonation gun coatings. It is concluded that consideration needs to be given to the significance of such variations within the clinical context.

  4. A residual stress study in similar and dissimilar welds

    DOE PAGES

    Eisazadeh, Hamid; Goldak, John A.; Aidun, Daryush K.; ...

    2016-04-01

    Residual strain distributions in similar and dissimilar welds were measured using neutron diffraction (ND) method. Then, using three strain components, three-dimensional stress states were calculated. The results were used to determine the effect of the martensitic phase transformation and material properties on residual stress (RS) distribution. It was observed that smaller longitudinal RS was induced in the low carbon steel side of dissimilar weld when compared to its similar weld. Also, it was found that the transverse RS near and within the weld zone (WZ) in dissimilar weld exhibited a distinctive trend, with tensile mode reaching the yield strength ofmore » the base metal (BM). In order to characterize the WZ in dissimilar weld, we deployed optical microscopy, hardness, and energy dispersive X-ray spectroscopy (EDAX). This study not only provides further insight into the RS state in similar and dissimilar welds; it also delivers important consequences of phase transformation in the latter case.« less

  5. Residual stress and bending strength of ZnO films deposited on polyimide sheet by RF sputtering system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusaka, Kazuya, E-mail: kusaka@tokushima-u.ac.jp; Maruoka, Yutaka, E-mail: ymaruoka1116@gmail.com; Matsue, Tatsuya, E-mail: tmatsue@mat.niihama-nct.ac.jp

    2016-05-15

    Zinc oxide (ZnO) films were deposited on a soft polyimide sheet substrate by radio frequency sputtering with a ZnO powder target, and the films' crystal orientations and residual stress were investigated using x-ray diffraction as a function of substrate temperature. C-axis oriented ZnO films were achieved using this ZnO powder target method. The ZnO films exhibited high compressive residual stresses between −0.7 and −1.4 GPa. Finally, the authors examined the strength of the obtained film by applying tensile bending loads. No cracks were observed on the surfaces of the ZnO films after a bending test using cylinders with diameters >25 mm. Aftermore » a bending test using a cylinder with a diameter of 19 mm, large cracks were formed on the films. Therefore, the authors concluded that the tensile bending strength of the obtained films was greater than ∼420 MPa.« less

  6. Internal residual stress studies and enhanced dielectric properties in La0.7Sr0.3CoO3 buffered (Ba,Sr)TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Lu, Shengbo; Xu, Zhengkui

    2009-09-01

    Ba0.6Sr0.4TiO3 (BST) thin films were deposited on La0.7Sr0.3CoO3 (LSCO) buffered and unbuffered Pt (111)/Ti/SiO2/Si substrates by pulsed laser deposition. The former exhibits a (100) preferred orientation and the latter a random orientation, respectively. Grazing incident x-ray diffraction study revealed that the tensile residual stress observed in the latter is markedly reduced in the former. As a result, the dielectric property of the LSCO buffered BST thin film is greatly improved, which shows a larger dielectric constant and tunability, smaller loss tangent, and lower leakage current than those of the unbuffered BST thin film. The relaxation of the larger tensile residual stress is attributed to the larger grain size in the buffered BST thin film and to a closer match of thermal expansion coefficient between the BST and the LSCO buffer layer.

  7. Measuring stress variation with depth using Barkhausen signals

    NASA Astrophysics Data System (ADS)

    Kypris, O.; Nlebedim, I. C.; Jiles, D. C.

    2016-06-01

    Magnetic Barkhausen noise analysis (BNA) is an established technique for the characterization of stress in ferromagnetic materials. An important application is the evaluation of residual stress in aerospace components, where shot-peening is used to strengthen the part by inducing compressive residual stresses on its surface. However, the evaluation of the resulting stress-depth gradients cannot be achieved by conventional BNA methods, where signals are interpreted in the time domain. The immediate alternative of using x-ray diffraction stress analysis is less than ideal, as the use of electropolishing to remove surface layers renders the part useless after inspection. Thus, a need for advancing the current BNA techniques prevails. In this work, it is shown how a parametric model for the frequency spectrum of Barkhausen emissions can be used to detect variations of stress along depth in ferromagnetic materials. Proof of concept is demonstrated by inducing linear stress-depth gradients using four-point bending, and fitting the model to the frequency spectra of measured Barkhausen signals, using a simulated annealing algorithm to extract the model parameters. Validation of our model suggests that in bulk samples the Barkhausen frequency spectrum can be expressed by a multi-exponential function with a dependence on stress and depth. One practical application of this spectroscopy method is the non-destructive evaluation of residual stress-depth profiles in aerospace components, thus helping to prevent catastrophic failures.

  8. The Measurement of Residual Stresses by X-Ray Diffraction Techniques

    DTIC Science & Technology

    1978-09-26

    Sutton, (1967)for an Al alloy , and in Volorinta, (1965)for a low carbon steel. In materials that undergo phase changes even more complex stre~s states may...extensive study of surface integrity in machining steels and Ti alloys , including the effects of induced phase transformations . It is interesting to rote...that phase transformations did 7 not occur in milling operations, and hence similar stress patterns were found in both alloys . Grinding has been examined

  9. Characterization of Flame Cut Heavy Steel: Modeling of Temperature History and Residual Stress Formation

    NASA Astrophysics Data System (ADS)

    Jokiaho, T.; Laitinen, A.; Santa-aho, S.; Isakov, M.; Peura, P.; Saarinen, T.; Lehtovaara, A.; Vippola, M.

    2017-12-01

    Heavy steel plates are used in demanding applications that require both high strength and hardness. An important step in the production of such components is cutting the plates with a cost-effective thermal cutting method such as flame cutting. Flame cutting is performed with a controlled flame and oxygen jet, which burns the steel and forms a cutting edge. However, the thermal cutting of heavy steel plates causes several problems. A heat-affected zone (HAZ) is generated at the cut edge due to the steep temperature gradient. Consequently, volume changes, hardness variations, and microstructural changes occur in the HAZ. In addition, residual stresses are formed at the cut edge during the process. In the worst case, unsuitable flame cutting practices generate cracks at the cut edge. The flame cutting of thick steel plate was modeled using the commercial finite element software ABAQUS. The results of modeling were verified by X-ray diffraction-based residual stress measurements and microstructural analysis. The model provides several outcomes, such as obtaining more information related to the formation of residual stresses and the temperature history during the flame cutting process. In addition, an extensive series of flame cut samples was designed with the assistance of the model.

  10. Effects of Laser Shock Processing on Morphologies and Mechanical Properties of ANSI 304 Stainless Steel Weldments Subjected to Cavitation Erosion

    PubMed Central

    Zhang, Lei; Lu, Jin-Zhong; Zhang, Yong-Kang; Ma, Hai-Le; Luo, Kai-Yu; Dai, Feng-Ze

    2017-01-01

    Effects of laser shock processing (LSP) on the cavitation erosion resistance of laser weldments were investigated by optical microscope (OM), scanning electron microscope (SEM) observations, roughness tester, micro hardness tester, and X-ray diffraction (XRD) technology. The morphological microstructures were characterized. Cumulative mass loss, incubation period, erosion rate, and damaged surface areas were monitored during cavitation erosion. Surface roughness, micro-hardness, and residual stress were measured in different zones. Results showed that LSP could improve the damage of morphological microstructures and mechanical properties after cavitation erosion. The compressive residual stresses were generated during the process of LSP, which was an effective guarantee for the improvement of the above mentioned properties. PMID:28772652

  11. Analysis of surface integrity of grinded gears using Barkhausen noise analysis and x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Vrkoslavová, Lucie; Louda, Petr; Malec, Jiři

    2014-02-01

    The contribution is focused to present results of study grinded gears made of 18CrNiMo7-6 steel used in the wind power plant for support (service) purposes. These gears were case-hardened due to standard hard case and soft core formation. This heat treatment increases wear resistance and fatigue strength of machine parts. During serial production some troubles with surface integrity have occurred. When solving complex problems lots of samples were prepared. For grinding of gears were used different parameters of cutting speed, number of material removal and lots from different subsuppliers. Material characterization was carried out using Barkhausen noise analysis (BNA) device; X-ray diffraction (XRD) measurement of surface residual stresses was done as well. Depth profile of measured characteristics, e.g. magnetoelastic parameter and residual stress was obtained by step by step layers' removing using electrolytic etching. BNA software Viewscan was used to measure magnetizing frequency sweep (MFS) and magnetizing voltage sweep (MVS). Scanning of Magnetoelastic parameter (MP) endwise individual teeth were also carried out with Viewscan. These measurements were done to find problematic surface areas after grinding such as thermal damaged locations. Plots of the hardness and thickness of case-hardened layer on cross sections were measurered as well. Evaluation of structure of subsurface case-hardened layer and core was made on etched metallographic patterns. The aim of performed measurements was to find correlation between conditions of grinding, residual stresses and structural and magnetoelastic parameters. Based on correlation of measured values and technological parameters optimizing the production of gears will be done.

  12. CRADA Final Report for CRADA Number NFE-08-01671 Materials for Advanced Turbocharger Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maziasz, P. J.; Wilson, M.

    2014-11-28

    Results were obtained on residual stresses in the weld of the steel shaft to the Ni-based superalloy turbine wheel for turbochargers. Neutron diffraction studies at the HFIR Residual Stress Facility showed asymmetric tensile stresses after electron-beam welding of the wheel and shaft. A post-weld heat-treatment was found to relieve and reduce the residual stresses. Results were also obtained on cast CF8C-Plus steel as an upgrade alternative to cast irons (SiMo, Ni-resist) for higher temperature capability and performance for the turbocharger housing. CF8C-Plus steel has demonstrated creep-rupture resistance at 600-950oC, and is more creep-resistant than HK30Nb, but lacks oxidation-resistance at 800oCmore » and above in 10% water vapor. New modified CF8C-Plus Cu/W steels with Cr and Ni additions show better oxidation resistance at 800oC in 10% water vapor, and have capability to higher temperatures. For automotive gasoline engine turbocharger applications, higher temperatures are required, so at the end of this project, testing began at 1000oC and above.« less

  13. Effect of controlling recrystallization from the melt on the residual stress and structural properties of the Silica-clad Ge core fiber

    NASA Astrophysics Data System (ADS)

    Zhao, Ziwen; Cheng, Xueli; He, Ting; Xue, Fei; Zhang, Wei; Chen, Na; Wen, Jianxiang; Zeng, Xianglong; Wang, Tingyun

    2017-09-01

    Effect of controlling recrystallization from the melt (1000 °C) on the residual stress and structural properties of a Ge core fiber via molten core drawing (MCD) method is investigated. Ge core fibers is investigated using Raman spectroscopy, scanning electron microscope (SEM), and X-ray diffraction (XRD). Compared with the as-drawn Ge fiber, the Raman peak of the recrystallized Ge fiber shift from 300 cm-1 to 300.6 cm-1 and full width at half maximum (FWHM) decreased from 5.36 cm-1 to 4.48 cm-1. The Ge crystal grains which sizes are of 200-600 nm were formed during the process of recrystallization; the XRD peak of (1 1 1) plane is observed after recrystallization. These results show that controlling recrystallization allows the release of the thermal stress, and improvement of the crystal quality of Ge core.

  14. Extended glaze firing on ceramics for hard machining: Crack healing, residual stresses, optical and microstructural aspects.

    PubMed

    Aurélio, Iana L; Dorneles, Lucio S; May, Liliana G

    2017-02-01

    To evaluate the effect of extended and conventional (manufacturer-recommended) glaze firings on crack healing, residual stresses, optical characteristics and crystalline structure of four ceramics for hard machining. Rectangular specimens were obtained by sectioning densely sintered feldspathic (FEL), leucite- (LEU), lithium disilicate- (DIS), and zirconia-reinforced lithium silicate-based (ZLS) prefabricated ceramic blocks and divided into groups according to the applied glaze firing (n=5): conventional glaze/manufacturer-recommended (G), extended glaze (EG) and control/no heat treatment (C). Defects generated by indentation were analyzed by scanning electron microscopy before and after firing (n=1) to evaluate crack healing. Residual stresses were determined by the indentation technique. Color differences (ΔE) after firing were measured by CIEDE2000 formula, and translucency variations were quantified by contrast ratio. Stability of crystalline microstructure was analyzed by X-ray diffraction. Regardless of the material, EG had greater ability than G to heal defects, and produced compressive residual stresses, while G generated tensile stresses. Color differences produced by EG were: imperceptible for FEL and LEU ceramics; perceptible, but still clinically acceptable for DIS; clinically unacceptable for ZLS. G produced no perceptible color change. The DIS and ZLS ceramics became ≈1% more opaque after G, ≈4% and ≈15%, respectively, after EG. The crystalline phase of all the ceramics remained stable after G and EG. Extended glaze firing could be an alternative to finish feldspathic, leucite-, and lithium disilicate-based ceramic restorations, since it provides greater crack healing than the conventional glaze firing. It develops tolerable residual stresses, and produces clinically acceptable color alterations, without altering the microstructure of these materials. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Investigation on the Residual Stress State of Drawn Tubes by Numerical Simulation and Neutron Diffraction Analysis

    PubMed Central

    Palkowski, Heinz; Brück, Sebastian; Pirling, Thilo; Carradò, Adele

    2013-01-01

    Cold drawing is widely applied in the industrial production of seamless tubes, employed for various mechanical applications. During pre-processing, deviations in tools and their adjustment lead to inhomogeneities in the geometry of the tubes and cause a gradient in residuals. In this paper a three dimensional finite element (3D-FE)-model is presented which was developed to calculate the change in wall thickness, eccentricity, ovality and residual macro-stress state of the tubes, produced by cold drawing. The model simulates the drawing process of tubes, drawn with and without a plug. For finite element modelling, the commercial software package Abaqus was used. To validate the model, neutron strain imaging measurements were performed on the strain imaging instrument SALSA at the Institute Laue Langevin (ILL, Grenoble, France) on a series of SF-copper tubes, drawn under controlled laboratory conditions, varying the drawing angle and the plug geometry. It can be stated that there is sufficient agreement between the finite element method (FEM)-calculation and the neutron stress determination. PMID:28788380

  16. C-axis orientated AlN films deposited using deep oscillation magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Jianliang; Chistyakov, Roman

    2017-02-01

    Highly <0001> c-axis orientated aluminum nitride (AlN) films were deposited on silicon (100) substrates by reactive deep oscillation magnetron sputtering (DOMS). No epitaxial favored bond layer and substrate heating were applied for assisting texture growth. The effects of the peak target current density (varied from 0.39 to 0.8 Acm-2) and film thickness (varied from 0.25 to 3.3 μm) on the c-axis orientation, microstructure, residual stress and mechanical properties of the AlN films were investigated by means of X-ray diffraction rocking curve methodology, transmission electron microscopy, optical profilometry, and nanoindentation. All AlN films exhibited a <0001> preferred orientation and compressive residual stresses. At similar film thicknesses, an increase in the peak target current density to 0.53 Acm-2 improved the <0001> orientation. Further increasing the peak target current density to above 0.53 Acm-2 showed limited contribution to the texture development. The study also showed that an increase in the thickness of the AlN films deposited by DOMS improved the c-axis alignment accompanied with a reduction in the residual stress.

  17. Evolution of Microstructure and Residual Stress under Various Vibration Modes in 304 Stainless Steel Welds

    PubMed Central

    Wang, Peng-Shuen; Wang, Jia-Siang

    2014-01-01

    Simultaneous vibration welding of 304 stainless steel was carried out with an eccentric circulating vibrator and a magnetic telescopic vibrator at subresonant (362 Hz and 59.3 Hz) and resonant (376 Hz and 60.9 Hz) frequencies. The experimental results indicate that the temperature gradient can be increased, accelerating nucleation and causing grain refinement during this process. During simultaneous vibration welding primary δ-ferrite can be refined and the morphologies of retained δ-ferrite become discontinuous so that δ-ferrite contents decrease. The smallest content of δ-ferrite (5.5%) occurred using the eccentric circulating vibrator. The diffraction intensities decreased and the FWHM widened with both vibration and no vibration. A residual stress can obviously be increased, producing an excellent effect on stress relief at a resonant frequency. The stress relief effect with an eccentric circulating vibrator was better than that obtained using a magnetic telescopic vibrator. PMID:24605068

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiser, J.R.; Taljat, B.; Wang, X.L.

    Cracking of co-extruded (generally identified as composite) floor tubes in kraft black liquor recovery boilers was first observed in Scandinavia, but this problem has now been found in many North American boilers. In most cases, cracking in the outer 304L stainless steel has not progressed into the carbon steel, but the potential for such crack propagation is a cause of concern. A multidimensional study has been initiated to characterize the cracking seen in composite floor tubes, to measure the residual stresses resulting from composite tube fabrication, and to predict the stresses in tubes under operating conditions. The characterization studies includemore » review of available reports and documents on composite tube cracking, metallographic examination of a substantial number of cracked tubes, and evaluation of the dislocation structure in cracked tubes. Neutron and X-ray diffraction are being used to determine the residual stresses in composite tubes from two major manufacturers, and finite element analysis is being used to predict the stresses in the tubes during normal operation and under conditions where thermal fluctuations occur.« less

  19. Adhesive and Cohesive Strength in FeB/Fe2B Systems

    NASA Astrophysics Data System (ADS)

    Meneses-Amador, A.; Blancas-Pérez, D.; Corpus-Mejía, R.; Rodríguez-Castro, G. A.; Martínez-Trinidad, J.; Jiménez-Tinoco, L. F.

    2018-05-01

    In this work, FeB/Fe2B systems were evaluated by the scratch test. The powder-pack boriding process was performed on the surface of AISI M2 steel. The mechanical parameters, such as yield stress and Young's modulus of the boride layer, were obtained by the instrumented indentation technique. Residual stresses produced on the boride layer were estimated by using the x-ray diffraction (XRD) technique. The scratch test was performed in order to evaluate the cohesive/adhesive strength of the FeB/Fe2B coating. In addition, a numerical evaluation of the scratch test on boride layers was performed by the finite element method. Maximum principal stresses were related to the failure mechanisms observed by the experimental scratch test. Shear stresses at the interfaces of the FeB/Fe2B/substrate system were also evaluated. Finally, the results obtained provide essential information about the effect of the layer thickness, the residual stresses, and the resilience modulus on the cohesive/adhesive strength in FeB/Fe2B systems.

  20. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr

    NASA Astrophysics Data System (ADS)

    Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong; Lee, Changhee; Woo, WanChuck; Park, Sunhong

    2015-08-01

    Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures combined with the crack initiation sites such as the fractured WC particles, pores and solidification cracks. WC particles directly caused clad cracks by particle fracture under the tensile stress. The pores and solidification cracks also affected as initiation sites and provided an easy crack path ways for large brittle fractures.

  1. Electrode-stress-induced nanoscale disorder in Si quantum electronic devices

    DOE PAGES

    Park, J.; Ahn, Y.; Tilka, J. A.; ...

    2016-06-20

    Disorder in the potential-energy landscape presents a major obstacle to the more rapid development of semiconductor quantum device technologies. We report a large-magnitude source of disorder, beyond commonly considered unintentional background doping or fixed charge in oxide layers: nanoscale strain fields induced by residual stresses in nanopatterned metal gates. Quantitative analysis of synchrotron coherent hard x-ray nanobeam diffraction patterns reveals gate-induced curvature and strains up to 0.03% in a buried Si quantum well within a Si/SiGe heterostructure. Furthermore, electrode stress presents both challenges to the design of devices and opportunities associated with the lateral manipulation of electronic energy levels.

  2. Structure and mechanical behavior of heavily drawn pearlite and martensite in a high carbon steel

    NASA Astrophysics Data System (ADS)

    Shiota, Y.; Tomota, Y.; Moriai, A.; Kamiyama, T.

    2005-10-01

    Neutron diffraction measurements have revealed that cementite peaks disappear in a pearlite steel with drawing and that the residual intergranular stresses are generated. The diffraction profiles in a heavily drawn specimen suggest the tetoragonality with a small c/a in the ferrite matrix. Although cementite was hardly observed in the heavily drawn specimen, its c/a value determined by neutron diffraction and mechanical behavior are quite different from those of as-quenched martensite. The changes in hardness and c/a with annealing or tempering were also different between heavily drawn pearlite and marteniste. Hence, most of carbon atoms do not exist inside the ferrite lattice in the drawn pearlite and multi-scaled heterogeneous plastic deformation in pearlite seems to affect the asymmetry in the diffraction profile. Fracture behavior and hardness change with tempering is different in the two microstructures.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Linlin; Yu, Jian, E-mail: jyu@tongji.edu.cn

    Robust insulating rhombohedral Bi{sub 1−x}La{sub x}Fe{sub 1−y}Ti{sub y}O{sub 3} multiferroic ceramics with 0.02 ≤ x ≤ 0.12 and 0.01 ≤ y ≤ 0.08 are prepared by a refined solid-state reaction electroceramic processing. Residual internal tensile stresses existed in the ceramics according to unit cell volume enlargement observed by X-ray diffraction and frequency redshifts of Raman modes related to Bi motion and oxygen octahedral rotation detected by Raman scattering measurements. Residual internal tensile stresses in the ceramics are believed to originate from structural phase transitions through an intermediate paraelectric rhombohedral phase with a negative thermal expansion coefficient in the transformation from paraelectric cubic to ferroelectric rhombohedral phases. All ofmore » the rhombohedral Bi{sub 1−x}La{sub x}Fe{sub 1−y}Ti{sub y}O{sub 3} ceramics exhibited a pinched polarization versus electric field hysteresis loop indicative of ferroelectric subswitching. We argue that the residual internal tensile stresses are responsible for such ferroelectric polarization subswitching behavior in the Bi{sub 1−x}La{sub x}Fe{sub 1−y}Ti{sub y}O{sub 3} ceramics.« less

  4. Acoustoelastic effect of textured (Ba,Sr)TiO{sub 3} thin films under an initial mechanical stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamel, Marwa; Mseddi, Souhir; Njeh, Anouar

    Acoustoelastic (AE) analysis of initial stresses plays an important role as a nondestructive tool in current engineering. Two textured BST (Ba{sub 0.65}Sr{sub 0.35}TiO{sub 3}) thin films, with different substrate to target distance, were grown on Pt(111)/TiO{sub 2}/SiO{sub 2}/Si(001) substrate by rf-magnetron sputtering deposition techniques. A conventional “sin{sup 2} ψ” method to determine residual stress and strain in BST films by X-ray diffraction is applied. A laser acoustic waves (LA-waves) technique is used to generate surface acoustic waves (SAW) propagating in both samples. Young's modulus E and Poisson ratio ν of BST films in different propagation directions are derived from the measuredmore » dispersion curves. Estimation of effective second-order elastic constants of BST thin films in stressed states is served in SAW study. This paper presents an original investigation of AE effect in prestressed Ba{sub 0.65}Sr{sub 0.35}TiO{sub 3} films, where the effective elastic constants and the effect of texture on second and third order elastic tensor are considered and used. The propagation behavior of Rayleigh and Love waves in BST thin films under residual stress is explored and discussed. The guiding velocities affected by residual stresses, reveal some shifts which do not exceed four percent mainly in the low frequency range.« less

  5. Texture formation in FePt thin films via thermal stress management

    NASA Astrophysics Data System (ADS)

    Rasmussen, P.; Rui, X.; Shield, J. E.

    2005-05-01

    The transformation variant of the fcc to fct transformation in FePt thin films was tailored by controlling the stresses in the thin films, thereby allowing selection of in- or out-of-plane c-axis orientation. FePt thin films were deposited at ambient temperature on several substrates with differing coefficients of thermal expansion relative to the FePt, which generated thermal stresses during the ordering heat treatment. X-ray diffraction analysis revealed preferential out-of-plane c-axis orientation for FePt films deposited on substrates with a similar coefficients of thermal expansion, and random orientation for FePt films deposited on substrates with a very low coefficient of thermal expansion, which is consistent with theoretical analysis when considering residual stresses.

  6. Experimental residual stress evaluation of hydraulic expansion transitions in Alloy 690 steam generator tubing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGregor, R.; Doherty, P.; Hornbach, D.

    1995-12-31

    Nuclear Steam Generator (SG) service reliability and longevity have been seriously affected worldwide by corrosion at the tube-to-tubesheet joint expansion. Current SG designs for new facilities and replacement projects enhance corrosion resistance through the use of advanced tubing materials and improved joint design and fabrication techniques. Here, transition zones of hydraulic expansions have undergone detailed experimental evaluation to define residual stress and cold-work distribution on and below the secondary-side surface. Using X-ray diffraction techniques, with supporting finite element analysis, variations are compared in tubing metallurgical condition, tube/pitch geometry, expansion pressure, and tube-to-hole clearance. Initial measurements to characterize the unexpanded tubemore » reveal compressive stresses associated with a thin work-hardened layer on the outer surface of the tube. The gradient of cold-work was measured as 3% to 0% within .001 inch of the surface. The levels and character of residual stresses following hydraulic expansion are primarily dependent on this work-hardened surface layer and initial stress state that is unique to each tube fabrication process. Tensile stresses following expansion are less than 25% of the local yield stress and are found on the transition in a narrow circumferential band at the immediate tube surface (< .0002 inch/0.005 mm depth). The measurements otherwise indicate a predominance of compressive stresses on and below the secondary-side surface of the transition zone. Excellent resistance to SWSCC initiation is offered by the low levels of tensile stress and cold-work. Propagation of any possible cracking would be deterred by the compressive stress field that surrounds this small volume of tensile material.« less

  7. Intrinsic stress in ZrN thin films: Evaluation of grain boundary contribution from in situ wafer curvature and ex situ x-ray diffraction techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koutsokeras, L. E.; Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110; Abadias, G.

    2012-05-01

    Low-mobility materials, like transition metal nitrides, usually undergo large residual stress when sputter-deposited as thin films. While the origin of stress development has been an active area of research for high-mobility materials, atomistic processes are less understood for low-mobility systems. In the present work, the contribution of grain boundary to intrinsic stress in reactively magnetron-sputtered ZrN films is evaluated by combining in situ wafer curvature measurements, providing information on the overall biaxial stress, and ex situ x-ray diffraction, giving information on elastic strain (and related stress) inside crystallites. The thermal stress contribution was also determined from the in situ stressmore » evolution during cooling down, after deposition was stopped. The stress data are correlated with variations in film microstructure and growth energetics, in the 0.13-0.42 Pa working pressure range investigated, and discussed based on existing stress models. At low pressure (high energetic bombardment conditions), a large compressive stress is observed due to atomic peening, which induces defects inside crystallites but also promotes incorporation of excess atoms in the grain boundary. Above 0.3-0.4 Pa, the adatom surface mobility is reduced, leading to the build-up of tensile stress resulting from attractive forces between under-dense neighbouring column boundary and possible void formation, while crystallites can still remain under compressive stress.« less

  8. Numerical investigations of internal stresses on carbon steel based on ultrasonic LCR waves

    NASA Astrophysics Data System (ADS)

    Ramasamy, R.; Ibrahim, Z.; Chai, H. K.

    2017-10-01

    Internal stresses or residual stresses in the structural elements are very crucial in carrying out in-service evaluations and fitness-for-purpose assessments. The generation of these internal stresses can occur as result of the fabrication of the steel members, installation sequence or other ad-hoc events such as accidents or impact. The accurate prediction of the internal stresses will contribute towards estimating the integrity state of the structural elements, with respect to their material allowable stresses. This paper investigates the explicit FE based numerical modelling of the ultrasonic based non-destructive technique, utilising the measurable longitudinal critical refracted wave (LCR) and relating these to the internal stresses within the structural elements by the evaluation of the material dependent acoustoelastic factors. The subsurface travel path of the LCR wave inside the structural elements makes it a sub-surface stress measurement technique and the linearised relationship with corresponding internal stresses can be systematically applied repeatedly. The numerical results are compared against laboratory tests data to correlate the findings and to establish modelling feasibility for future proof-of-concepts. It can be concluded from this numerical investigation, that the subsurface ultrasonic LCR wave has great potential to be implemented for in-situ structural residual stress measurements, as compared to other available surface measurements such as strain gauges or x-ray diffraction.

  9. [INVITED] Laser treatment of Inconel 718 alloy and surface characteristics

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.; Al-Aqeeli, N.; Karatas, C.

    2016-04-01

    Laser surface texturing of Inconel 718 alloy is carried out under the high pressure nitrogen assisting gas. The combination of evaporation and melting at the irradiated surface is achieved by controlling the laser scanning speed and the laser output power. Morphological and metallurgical changes in the treated surface are analyzed using the analytical tools including optical, electron scanning, and atomic force microscopes, energy dispersive spectroscopy, and X-ray diffraction. Microhardnes and friction coefficient of the laser treated surface are measured. Residual stress formed in the surface region is determined from the X-ray diffraction data. Surface hydrophobicity of the laser treated layer is assessed incorporating the sessile drop method. It is found that laser treated surface is free from large size asperities including cracks and the voids. Surface microhardness increases significantly after the laser treatment process, which is attributed to the dense layer formation at the surface under the high cooling rates, dissolution of Laves phase in the surface region, and formation of nitride species at the surface. Residual stress formed is compressive in the laser treated surface and friction coefficient reduces at the surface after the laser treatment process. The combination of evaporation and melting at the irradiated surface results in surface texture composes of micro/nano-poles and pillars, which enhance the surface hydrophobicity.

  10. Fatigue characteristics of SAE52100 steel via ultrasonic nanocrystal surface modification technology.

    PubMed

    Pyun, Young Sik; Suh, Chang Min; Yamaguchi, Tokutaro; Im, Jong Soon; Kim, Jun Hyong; Amanov, Auezhan; Park, Jeong Hyeon

    2012-07-01

    Ultrasonic nanocrystal surface modification (UNSM) technology is a novel surface modification technology that can improve the mechanical and tribological properties of interacting surfaces in relative motion. UNSM treatment was utilized to improve the wear resistance fatigue strength of slim bearing rings made of SAE52100 bearing steel without damaging the raceway surfaces. In this study, wear and fatigue results that were subjected to different impact loads of the UNSM treatment were investigated and compared with those of the untreated specimen. The microhardness of the UNSM-treated specimens increased by about 20%, higher than that of the untreated specimens. The X-ray diffraction analysis showed that a compressive residual stress of more than 1,000 MPa was induced after the UNSM treatment. Also, electron backscatter diffraction analysis was used to study the surface structure and nanograin refinement. The results showed that the rolling contact fatigue life and the rotary bending fatigue strength of the UNSM-treated specimens increased by about 80% and 31%, respectively, compared to those of the untreated specimen. These results might be attributed to the increased microhardness, the induced compressive residual stress, and the nanocrystal structure modification after the UNSM treatment. In addition, the fracture surface analysis showed that the fish eye crack initiation phenomenon was observed after the UNSM treatment.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.; Ahn, Y.; Tilka, J. A.

    Disorder in the potential-energy landscape presents a major obstacle to the more rapid development of semiconductor quantum device technologies. We report a large-magnitude source of disorder, beyond commonly considered unintentional background doping or fixed charge in oxide layers: nanoscale strain fields induced by residual stresses in nanopatterned metal gates. Quantitative analysis of synchrotron coherent hard x-ray nanobeam diffraction patterns reveals gate-induced curvature and strains up to 0.03% in a buried Si quantum well within a Si/SiGe heterostructure. Furthermore, electrode stress presents both challenges to the design of devices and opportunities associated with the lateral manipulation of electronic energy levels.

  12. Sucrose lyophiles: a semi-quantitative study of residual water content by total X-ray diffraction analysis.

    PubMed

    Bates, S; Jonaitis, D; Nail, S

    2013-10-01

    Total X-ray Powder Diffraction Analysis (TXRPD) using transmission geometry was able to observe significant variance in measured powder patterns for sucrose lyophilizates with differing residual water contents. Integrated diffraction intensity corresponding to the observed variances was found to be linearly correlated to residual water content as measured by an independent technique. The observed variance was concentrated in two distinct regions of the lyophilizate powder pattern, corresponding to the characteristic sucrose matrix double halo and the high angle diffuse region normally associated with free-water. Full pattern fitting of the lyophilizate powder patterns suggested that the high angle variance was better described by the characteristic diffraction profile of a concentrated sucrose/water system rather than by the free-water diffraction profile. This suggests that the residual water in the sucrose lyophilizates is intimately mixed at the molecular level with sucrose molecules forming a liquid/solid solution. The bound nature of the residual water and its impact on the sucrose matrix gives an enhanced diffraction response between 3.0 and 3.5 beyond that expected for free-water. The enhanced diffraction response allows semi-quantitative analysis of residual water contents within the studied sucrose lyophilizates to levels below 1% by weight. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Validation of micro-mechanical FFT-based simulations using High Energy Diffraction Microscopy on Ti-7Al

    DOE PAGES

    Tari, Vahid; Lebensohn, Ricardo A.; Pokharel, Reeju; ...

    2018-08-01

    Here, a validation is reported for micromechanical simulation using a reimplementation of an elasto-viscoplastic FFT-based (EVPFFT) formulation, i.e., the Micromechanical Analysis of Stress-strain Inhomogeneities with fast Fourier transform (MASSIF) code, against experimental data obtained from synchrotron x-ray diffraction. The experimental data was collected during in-situ deformation of a titanium alloy specimen by High Energy Diffraction Microscopy (HEDM), which provided the average elastic strain tensor and orientation of each grain in a polycrystalline sample. MASSIF was used to calculate the local micromechanical fields in a Ti-7Al polycrystalline sample at different load levels. The initially attempted simulation showed that, although the effectivemore » response was calibrated to reproduce the experiment, MASSIF was not able to reproduce the micromechanical fields at the scale of individual grains. The differences between calculated and measured averages at the grain scale were related to initial residual strains resulting from the prior processing of the material, which had not been incorporated in the original calculation. Accordingly, a new simulation was instantiated using information on the measured residual strains to define a set of eigenstrains, calculated via an Eshelby approximation. This initialization significantly improved the correlation between calculated and simulated fields for all strain and stress components, for measurements performed within the elastic regime. For the measurements at the highest load, which was past plastic yield, the correlations deteriorated because of plastic deformation at the grain level and the lack of an accurate enough constitutive description in this deformation regime.« less

  14. Validation of micro-mechanical FFT-based simulations using High Energy Diffraction Microscopy on Ti-7Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tari, Vahid; Lebensohn, Ricardo A.; Pokharel, Reeju

    Here, a validation is reported for micromechanical simulation using a reimplementation of an elasto-viscoplastic FFT-based (EVPFFT) formulation, i.e., the Micromechanical Analysis of Stress-strain Inhomogeneities with fast Fourier transform (MASSIF) code, against experimental data obtained from synchrotron x-ray diffraction. The experimental data was collected during in-situ deformation of a titanium alloy specimen by High Energy Diffraction Microscopy (HEDM), which provided the average elastic strain tensor and orientation of each grain in a polycrystalline sample. MASSIF was used to calculate the local micromechanical fields in a Ti-7Al polycrystalline sample at different load levels. The initially attempted simulation showed that, although the effectivemore » response was calibrated to reproduce the experiment, MASSIF was not able to reproduce the micromechanical fields at the scale of individual grains. The differences between calculated and measured averages at the grain scale were related to initial residual strains resulting from the prior processing of the material, which had not been incorporated in the original calculation. Accordingly, a new simulation was instantiated using information on the measured residual strains to define a set of eigenstrains, calculated via an Eshelby approximation. This initialization significantly improved the correlation between calculated and simulated fields for all strain and stress components, for measurements performed within the elastic regime. For the measurements at the highest load, which was past plastic yield, the correlations deteriorated because of plastic deformation at the grain level and the lack of an accurate enough constitutive description in this deformation regime.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisazadeh, Hamid; Goldak, John A.; Aidun, Daryush K.

    Residual strain distributions in similar and dissimilar welds were measured using neutron diffraction (ND) method. Then, using three strain components, three-dimensional stress states were calculated. The results were used to determine the effect of the martensitic phase transformation and material properties on residual stress (RS) distribution. It was observed that smaller longitudinal RS was induced in the low carbon steel side of dissimilar weld when compared to its similar weld. Also, it was found that the transverse RS near and within the weld zone (WZ) in dissimilar weld exhibited a distinctive trend, with tensile mode reaching the yield strength ofmore » the base metal (BM). In order to characterize the WZ in dissimilar weld, we deployed optical microscopy, hardness, and energy dispersive X-ray spectroscopy (EDAX). This study not only provides further insight into the RS state in similar and dissimilar welds; it also delivers important consequences of phase transformation in the latter case.« less

  16. Effect of substrate on texture and mechanical properties of Mg-Cu-Zn thin films

    NASA Astrophysics Data System (ADS)

    Eshaghi, F.; Zolanvari, A.

    2018-04-01

    In this work, thin films of Mg-Cu-Zn with 60 nm thicknesses have been deposited on the Si(100), Al, stainless steel, and Cu substrates using DC magnetron sputtering. FESEM images displayed uniformity of Mg-Cu-Zn particles on the different substrates. AFM micrograph revealed the roughness of thin film changes due to the different kinds of the substrates. XRD measurements showed the existence of strong Mg (002) reflections and weak Mg (101) peaks. Residual stress and adhesion force have been measured as the mechanical properties of the Mg-Cu-Zn thin films. The residual stresses of thin films which have been investigated by X-ray diffraction method revealed that the thin films sputtered on the Si and Cu substrates endure minimum and maximum stresses, respectively, during the deposition process. However, the force spectroscopy analysis indicated that the films grew on the Si and Cu experienced maximum and minimum adhesion force. The texture analysis has been done using XRD instrument to make pole figures of Mg (002) and Mg (101) reflections. ODFs have been calculated to evaluate the distribution of the orientations within the thin films. It was found that the texture and stress have an inverse relation, while the texture and the adhesion force of the Mg-Cu-Zn thin films have direct relation. A thin film that sustains the lowest residual stresses and highest adhesive force had the strongest {001} basal fiber texture.

  17. Effect of vibration on microstructures and mechanical properties of 304 stainless steel GTA welds

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih-Chun; Lai, Chien-Hong; Wu, Weite

    2013-07-01

    This study investigates the microstructures and mechanical properties of 304 stainless steel at various vibration frequencies during simultaneous vibration welding. The experimental results demonstrated that simultaneous vibration welding could accelerate the nucleation and grain refinement of the microstructures. The effect of the grain refinement was more evident at the resonant frequency (375 Hz) and a minimum content of residual δ-ferrite (4.0%). The γ phase grew in the preferential orientation of the (111) direction with and without vibration. The full width at half maximum of the diffraction peak widened after the vibration, which was attributed to the grain refinement. The residual stress could be efficiently removed through simultaneous vibration welding when the amplitude of the vibration was increased. Furthermore, the lowest residual stress (139 MPa) was found when the vibration frequency was 375 Hz. The hardness and Young's modulus exhibited slight increases with low and medium frequencies. The hardness values were increased by 7.6% and Young's modulus was increased by 15% when the vibration frequency was resonant (375 Hz).

  18. Non-Destructive Quantification of Plastic Deformation in Steel: Employing X-Ray Diffraction Peak Broadening Analysis

    DTIC Science & Technology

    2013-09-01

    pattern of an alloy, such as steel , reveals, among other properties (ex., phase composition, crystal structure), information about the strain state...This, together with elastic strain / residual stress analysis, would enable better evaluation of the current state of health of steel structures and...plastic strain in a component/structure may better evaluate the current state of health of steel structures and components as they near predetermined

  19. Revealing small-scale diffracting discontinuities by an optimization inversion algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Caixia; Zhao, Jingtao; Wang, Yanfei

    2017-02-01

    Small-scale diffracting geologic discontinuities play a significant role in studying carbonate reservoirs. The seismic responses of them are coded in diffracted/scattered waves. However, compared with reflections, the energy of these valuable diffractions is generally one or even two orders of magnitude weaker. This means that the information of diffractions is strongly masked by reflections in the seismic images. Detecting the small-scale cavities and tiny faults from the deep carbonate reservoirs, mainly over 6 km, poses an even bigger challenge to seismic diffractions, as the signals of seismic surveyed data are weak and have a low signal-to-noise ratio (SNR). After analyzing the mechanism of the Kirchhoff migration method, the residual of prestack diffractions located in the neighborhood of the first Fresnel aperture is found to remain in the image space. Therefore, a strategy for extracting diffractions in the image space is proposed and a regularized L 2-norm model with a smooth constraint to the local slopes is suggested for predicting reflections. According to the focusing conditions of residual diffractions in the image space, two approaches are provided for extracting diffractions. Diffraction extraction can be directly accomplished by subtracting the predicted reflections from seismic imaging data if the residual diffractions are focused. Otherwise, a diffraction velocity analysis will be performed for refocusing residual diffractions. Two synthetic examples and one field application demonstrate the feasibility and efficiency of the two proposed methods in detecting the small-scale geologic scatterers, tiny faults and cavities.

  20. Rolling contact fatigue strengths of shot-peened and crack-healed ceramics

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Oki, T.

    2018-06-01

    The effects of shot-peening (SP) and crack-healing on the rolling contact fatigue (RCF) strengths of Al2O3/SiC composite ceramics were investigated. Non-shot-peened, shot- peened, and shot-peened + crack-healed specimens were prepared. SP was performed using ZrO2 beads. The shot-peened + crack-healed specimen was crack-healed after SP. X-ray diffraction clearly showed that SP induced a compressive residual stress up to 300 MPa at the specimen surfaces. Furthermore, the shot-peened + crack-healed specimen retained a compressive residual stress of 200 MPa. The apparent surface fracture toughness of the shot- peened specimens increased owing to the positive effects of the compressive residual stress. RCF tests were performed using a thrust load-bearing test device. The RCF lives of the shot- peened specimens did not improve compared to that of the non-shot-peened specimen, because the numerous SP-introduced surface cracks could act as crack initiation sites during the RCF tests. However, the RCF life of the shot-peened + crack-healed specimen did improve compared to those of non-shot-peened and shot-peened specimens, implying that combining SP and crack-healing was an effective strategy for improving the RCF lives of Al2O3/SiC composite ceramics.

  1. Thermomechanical behavior and microstructural evolution of a Ni(Pd)-rich Ni 24.3Ti 49.7Pd 26 high temperature shape memory alloy

    DOE PAGES

    Benafan, O.; Garg, A.; Noebe, R. D.; ...

    2015-04-20

    We investigated the effect of thermomechanical cycling on a slightly Ni(Pd)-rich Ni 24.3Ti 49.7Pd 26 (near stochiometric Ni–Ti basis with Pd replacing Ni) high temperature shape memory alloy. Furthermore, aged tensile specimens (400 °C/24 h/furnace cooled) were subjected to constant-stress thermal cycling in conjunction with microstructural assessment via in situ neutron diffraction and transmission electron microscopy (TEM), before and after testing. It was shown that in spite of the slightly Ni(Pd)-rich composition and heat treatment used to precipitation harden the alloy, the material exhibited dimensional instabilities with residual strain accumulation reaching 1.5% over 10 thermomechanical cycles. This was attributed tomore » insufficient strengthening of the material (insufficient volume fraction of precipitate phase) to prevent plasticity from occurring concomitant with the martensitic transformation. In situ neutron diffraction revealed the presence of retained martensite while cycling under 300 MPa stress, which was also confirmed by transmission electron microscopy of post-cycled samples. Neutron diffraction analysis of the post-thermally-cycled samples under no-load revealed residual lattice strains in the martensite and austenite phases, remnant texture in the martensite phase, and peak broadening of the austenite phase. The texture we developed in the martensite phase was composed mainly of those martensitic tensile variants observed during thermomechanical cycling. Presence of a high density of dislocations, deformation twins, and retained martensite was revealed in the austenite state via in-situ TEM in the post-cycled material, providing an explanation for the observed peak broadening in the neutron diffraction spectra. Despite the dimensional instabilities, this alloy exhibited a biased transformation strain on the order of 3% and a two-way shape memory effect (TWSME) strain of ~2%, at relatively high actuation temperatures.« less

  2. Microstructure and hot corrosion behavior of the Ni-based superalloy GH202 treated by laser shock processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Jiangdong

    The effects of laser shock processing on microstructure, the residual stress, and hot corrosion behavior of the Ni-based superalloy GH202 were investigated. The microstructures of GH202 before and after laser shock processing (LSP) were characterized by electron backscattered diffraction (EBSD) and transmission electron microscope (TEM). A large number of crystal defects (twins, dislocation arrays, and high dense tangles) were generated on the surface of GH202 treated with LSP. The cross-sectional compressive residual stress and micro-hardness of specimens treated by LSP were improved significantly. The corrosion kinetics of GH202 with or without LSP treatment at 800 °C and 900 °C weremore » investigated. Analysis by X-ray diffraction (XRD) revealed that the corrosion products mainly consist of Cr{sub 2}O{sub 3}, TiO{sub 2}, Al{sub 2}O{sub 3}, NiO, CrS, Ni{sub 3}S{sub 2}, and Na{sub 2}CrO{sub 4}. The surface and cross-section morphologies were observed by scanning electron microscope (SEM) combined with energy dispersive spectroscopy (EDS). The results confirmed that the crystal defects induced by LSP promotes the creation of diffusion paths for elements (Cr, Al, and Ti), allowing the formation of tiny homogeneous oxidation films in a very short time. Additionally, the spallation of oxidation film on the treated specimens was alleviated significantly. Overall, the hot corrosion resistance of Ni-based GH202 induced by LSP was improved in Na{sub 2}SO{sub 4} and NaCl molten salt from 800 °C to 900 °C. - Highlights: • Microstructure changes of GH202 before and after LSP were observed by EBSD and TEM. • The hardness and residual compressive stress after LSP were significantly increased. • The increased diffusion paths for elements helped to form oxidation films quickly. • Hot corrosion resistance of GH202 after LSP was significantly improved.« less

  3. Laser texturing of Hastelloy C276 alloy surface for improved hydrophobicity and friction coefficient

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.

    2016-03-01

    Laser treatment of Hastelloy C276 alloy is carried out under the high pressure nitrogen assisting gas environment. Morphological and metallurgical changes in the laser treated layer are examined using the analytical tools including, scanning electron and atomic force microscopes, X-ray diffraction, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. Microhardness is measured and the residual stress formed in the laser treated surface is determined from the X-ray data. The hydrophibicity of the laser treated surface is assessed using the sessile drop method. Friction coefficient of the laser treated layer is obtained incorporating the micro-tribometer. It is found that closely spaced laser canning tracks create a self-annealing effect in the laser treated layer and lowers the thermal stress levels through modifying the cooling rates at the surface. A dense structure, consisting of fine size grains, enhances the microhardness of the surface. The residual stress formed at the surface is compressive and it is in the order of -800 MPa. Laser treatment improves the surface hydrophobicity significantly because of the formation of surface texture composing of micro/nano-pillars.

  4. Processing, structure, and characterizaton of nickel-alumina composites obtained by the partial reduction of zirconia-doped nickel-aluminum oxide and application to the tempering of ceramics

    NASA Astrophysics Data System (ADS)

    Barbieri, Thomas John

    1999-11-01

    Partial reduction of the spinel compound NiAl2O4 results in a two phase composite mixture of Ni + Al2O3. The reduction reaction has a volume decrease associated with it, which theoretically could generate large residual stresses, which have the potential to "temper" a ceramic, i.e. to place the surface of a ceramic component into a state of residual compression. As the first step towards tempering a ceramic, it is necessary to demonstrate that appreciable stresses can be generated by this volume change, since they may be relieved by either cracking or diffusional relaxation processes at the high temperature of the reduction reaction. It was necessary to determine the best processing methods to use for producing the tempered specimens. Results are presented from a systematic study on the effect of the variation of processing parameters on the reduction behavior of NiAl2O4 doped with ZrO2. Specimen characteristics of interest were time required for reduction, microstructural development, volume contraction achieved and porosity generated during reduction, and the ability to survive the reduction process without fracturing. These results were applied to the tempering process. A simple specimen geometry was used for tempering which involved an Al 2O3 cylinder bonded to an outer NiAl2O4 ring. Finite element calculations were performed to predict the residual stresses generated by the volume contraction of the ring and the coefficient of thermal expansion, (CTE) mismatch between the Al2O3 core and the reduced composite ring. Stress measurements performed on the Al2 O3 core of each specimen using the "d vs. Sin 2Psi" method of X-ray diffraction indicate that only the CTE-induced stresses remain in the specimens after completion of the tempering process. Microstructural analysis of the tempered specimens was performed to determine if residual stresses were developed during reduction, and what processes occurred to relieve these stresses. The results indicate that stresses are generated during the reduction process, but they are dissipated through catastrophic fracture, cation rearrangement in the lattice, and creep. Further evidence of the presence of residual stresses during reduction was found in a decrease in coarsening rate in tempered specimens.

  5. Grain Orientation Dependence of the Residual Lattice Strain in a Cold Rolled Interstitial-Free Steel

    DOE PAGES

    Xie, Qingge; Gorti, Sarma B.; Sidor, Jurij; ...

    2018-01-10

    The experimentally measured grain-orientation-dependent residual lattice strains, evolved in an interstitia-free steel after 70% cold rolling reduction, are studied by means of crystal elastic visco-plastic finite element simulations, which provides a very satisfactory prediction of deformation texture. The calculated residual lattice strain pole figure matches well with the experimentally measured counterpart within the highest density regions of major texture components observed. Both experimental evidence and results of modeling clearly indicate that the residual lattice strain is orientation dependent, based on comprehensive information on the evolution of residual lattice strain in various crystallographic orientations during plastic deformation. It appears that inmore » a cold rolled material, there is a general correlation between the stresses developed just prior to unloading and the residual lattice strains in particular directions. Here, it is also shown that the cumulative plastic shear does not reveal a clear correlation with the components of residual lattice strain while presented in the normal correlation plot, however, this relationship can be better understood by means of the orientation distribution function of residual lattice strain, which can be derived from the neutron or X-ray diffraction experiments.« less

  6. Grain Orientation Dependence of the Residual Lattice Strain in a Cold Rolled Interstitial-Free Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Qingge; Gorti, Sarma B.; Sidor, Jurij

    The experimentally measured grain-orientation-dependent residual lattice strains, evolved in an interstitia-free steel after 70% cold rolling reduction, are studied by means of crystal elastic visco-plastic finite element simulations, which provides a very satisfactory prediction of deformation texture. The calculated residual lattice strain pole figure matches well with the experimentally measured counterpart within the highest density regions of major texture components observed. Both experimental evidence and results of modeling clearly indicate that the residual lattice strain is orientation dependent, based on comprehensive information on the evolution of residual lattice strain in various crystallographic orientations during plastic deformation. It appears that inmore » a cold rolled material, there is a general correlation between the stresses developed just prior to unloading and the residual lattice strains in particular directions. Here, it is also shown that the cumulative plastic shear does not reveal a clear correlation with the components of residual lattice strain while presented in the normal correlation plot, however, this relationship can be better understood by means of the orientation distribution function of residual lattice strain, which can be derived from the neutron or X-ray diffraction experiments.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jun -Sang; Ray, Atish K.; Dawson, Paul R.

    A shrink-fit sample is manufactured with a Ti-8Al-1Mo-1V alloy to introduce a multiaxial residual stress field in the disk of the sample. A set of strain and orientation pole figures are measured at various locations across the disk using synchrotron high-energy X-ray diffraction. Two approaches—the traditional sin 2Ψ method and the bi-scale optimization method—are taken to determine the stresses in the disk based on the measured strain and orientation pole figures, to explore the range of solutions that are possible for the stress field within the disk. While the stress components computed using the sin 2Ψ method and the bi-scalemore » optimization method have similar trends, their magnitudes are significantly different. Lastly, it is suspected that the local texture variation in the material is the cause of this discrepancy.« less

  8. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    NASA Astrophysics Data System (ADS)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard; Thorborg, Jesper; Tiedje, Niels; Hattel, Jesper

    2018-02-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper. First, a material equivalent to the ductile cast iron matrix is manufactured and subjected to dilatometric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between the graphite particles and the matrix during manufacturing of the industrial part considered in the XRD study. The model indicates that, besides the viscoplastic deformation of the matrix, the effect of the inelastic deformation of the graphite has to be considered to explain the magnitude of the XRD strain. Moreover, the model shows that the large elastic strain perturbations recorded with XRD close to the graphite-matrix interface are not artifacts due to e.g. sharp gradients in chemical composition, but correspond to residual stress concentrations induced by the conical sectors forming the internal structure of the graphite particles. In contrast to common belief, these results thus suggest that ductile cast iron parts cannot be considered, in general, as stress-free at the microstructural scale.

  9. Dependencies of microstructure and stress on the thickness of GdBa2Cu3O7 − δ thin films fabricated by RF sputtering

    PubMed Central

    2013-01-01

    GdBa2Cu3O7 − δ (GdBCO) films with different thicknesses from 200 to 2,100 nm are deposited on CeO2/yttria-stabilized zirconia (YSZ)/CeO2-buffered Ni-W substrates by radio-frequency magnetron sputtering. Both the X-ray diffraction and scanning electron microscopy analyses reveal that the a-axis grains appear at the upper layers of the films when the thickness reaches to 1,030 nm. The X-ray photoelectron spectroscopy measurement implies that the oxygen content is insufficient in upper layers beyond 1,030 nm for a thicker film. The Williamson-Hall method is used to observe the variation of film stress with increasing thickness of our films. It is found that the highest residual stresses exist in the thinnest film, while the lowest residual stresses exist in the 1,030-nm-thick film. With further increasing film thickness, the film residual stresses increase again. However, the critical current (Ic) of the GdBCO film first shows a nearly linear increase and then shows a more slowly enhancing to a final stagnation as film thickness increases from 200 to 1,030 nm and then to 2,100 nm. It is concluded that the roughness and stress are not the main reasons which cause the slow or no increase in Ic. Also, the thickness dependency of GdBa2Cu3O7 − δ films on the Ic is attributed to three main factors: a-axis grains, gaps between a-axis grains, and oxygen deficiency for the upper layers of a thick film. PMID:23816137

  10. Creep Deformation, Rupture Analysis, Heat Treatment and Residual Stress Measurement of Monolithic and Welded Grade 91 Steel for Power Plant Components

    NASA Astrophysics Data System (ADS)

    Shrestha, Triratna

    Modified 9Cr-1 Mo (Grade 91) steel is currently considered as a candidate material for reactor pressure vessels (RPVs) and reactor internals for the Very High Temperature Reactor (VHTR), and in fossil-fuel fired power plants at higher temperatures and stresses. The tensile creep behavior of Grade 91 steel was studied in the temperature range of 600°C to 750°C and stresses between 35 MPa and 350 MPa. Heat treatment of Grade 91 steel was studied by normalizing and tempering the steel at various temperatures and times. Moreover, Thermo-Ca1c(TM) calculation was used to predict the precipitate stability and their evolution, and construct carbon isopleths of Grade 91 steel. Residual stress distribution across gas tungsten arc welds (GTAW) in Grade 91 steel was measured by the time-of-flight neutron diffraction using the Spectrometer for Materials Research at Temperature and Stress (SMARTS) diffractometer at Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM, USA. Analysis of creep results yielded stress exponents of ˜9-11 in the higher stress regime and ˜1 in the lower stress regime. The creep behavior of Grade 91 steel was described by the modified Bird-Mukherjee-Dorn relation. The rate-controlling creep deformation mechanism in the high stress regime was identified as the edge dislocation climb with a stress exponent of n = 5. On the other hand, the deformation mechanism in the Newtonian viscous creep regime (n = 1) was identified as the Nabarro-Herring creep. Creep rupture data were analyzed in terms of Monkman-Grant relation and Larson-Miller parameter. Creep damage tolerance factor and stress exponent were used to identify the cause of creep damage. The fracture surface morphology of the ruptured specimens was studied by scanning electron microscopy to elucidate the failure mechanisms. Fracture mechanism map for Grade 91 steel was developed based on the available material parameters and experimental observations. The microstructural evolution of heat treated steel was correlated with the differential scanning calorimetric study. The combination of microstructural studies with optical microscopy, scanning and transmission electron microscopy, microhardness profiles, and calorimetric plots helped in the understanding of the evolution of microstructure and precipitates in Grade 91 steel. The residual stresses were determined at the mid-thickness of the plate, 4.35 mm and 2.35 mm below the surface of the as-welded and post-weld heat treated plate. The residual stresses of the as-welded plate were compared with the post-weld heat treated plate. The post-weld heat treatment significantly reduced the residual stress in the base metal, heat affected zone, and the weld zone. Vickers microhardness profiles of the as-welded, and post-weld heat treated specimens were also determined and correlated with the observed residual stress profile and microstructure.

  11. High Rate Deposition of Thick CrN and Cr2N Coatings Using Modulated Pulse Power (MPP) Magnetron Sputtering

    DTIC Science & Technology

    2010-12-01

    in the conventional Bragg-Bentano mode. The residual stress of the coatings was measured by glancing incident angle XRD (GIXRD) in the same X - ray ...micro-analysis (EPMA), x - ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), nanoindentation, scratch test, and ball-on...the coatings was determined by XRD using a SIEMENS X - ray diffractometer (Model KRISTALLOFLEX-810) operated with K-alpha Cu radiation (30 kV and 20 mA

  12. X-ray probe of GaN thin films grown on InGaN compliant substrates

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqing; Li, Yang; Liu, Jianming; Wei, Hongyuan; Liu, Xianglin; Yang, Shaoyan; Wang, Zhanguo; Wang, Huanhua

    2013-04-01

    GaN thin films grown on InGaN compliant substrates were characterized by several X-ray technologies: X-ray reciprocal space mapping (RSM), grazing incidence X-ray diffraction (GIXRD), and X-ray photoemission spectrum (XPS). Narrow Lorentz broadening and stress free state were observed for GaN grown on InGaN compliant substrate, while mosaic structure and large tensile stress were observed at the presence of residual indium atoms. RSM disclosed the mosaicity, and the GIXRD was conducted to investigate the depth dependences of crystal quality and strain states. XPS depth profile of indium contents indicated that residual indium atoms deteriorated the crystal quality of GaN not only by producing lattice mismatch at the interface of InGaN and GaN but also by diffusing into GaN overlayers. Accordingly, two solutions were proposed to improve the efficiency of self-patterned lateral epitaxial overgrowth method. This research goes a further step in resolving the urgent substrate problem in GaN fabrication.

  13. Mechanical characterization of thin TiO2 films by means of microelectromechanical systems-based cantilevers

    NASA Astrophysics Data System (ADS)

    Adami, A.; Decarli, M.; Bartali, R.; Micheli, V.; Laidani, N.; Lorenzelli, L.

    2010-01-01

    The measurement of mechanical parameters by means of microcantilever structures offers a reliable and accurate alternative to traditional methods, especially when dealing with thin films, which are extensively used in microfabrication technology and nanotechnology. In this work, microelectromechanical systems (MEMS)-based piezoresistive cantilevers were realized and used for the determination of Young's modulus and residual stress of thin titanium dioxide (TiO2) deposited by sputtering from a TiO2 target using a rf plasma discharge. Films were deposited at different thicknesses, ranging from a few to a hundred nanometers. Dedicated silicon microcantilevers were designed through an optimization of geometrical parameters with the development of analytical as well as numerical models. Young's modulus and residual stress of sputtered TiO2 films were assessed by using both mechanical characterization based on scanning profilometers and piezoresistive sensing elements integrated in the silicon cantilevers. Results of MEMS-based characterization were combined with the tribological and morphological properties measured by microscratch test and x-ray diffraction analysis.

  14. Improvement in Fatigue Performance of Aluminium Alloy Welded Joints by Laser Shock Peening in a Dynamic Strain Aging Temperature Regime.

    PubMed

    Su, Chun; Zhou, Jianzhong; Meng, Xiankai; Huang, Shu

    2016-09-26

    As a new treatment process after welding, the process parameters of laser shock peening (LSP) in dynamic strain aging (DSA) temperature regimes can be precisely controlled, and the process is a non-contact one. The effects of LSP at elevated temperatures on the distribution of the surface residual stress of AA6061-T6 welded joints were investigated by using X-ray diffraction technology with the sin² ϕ method and Abaqus software. The fatigue life of the welded joints was estimated by performing tensile fatigue tests. The microstructural evolution in surface and fatigue fractures of the welded joints was presented by means of surface integrity and fracture surface testing. In the DSA temperature regime of AA6061-T6 welded joints, the residual compressive stress was distributed more stably than that of LSP at room temperature. The thermal corrosion resistance and fatigue properties of the welded joints were also improved. The experimental results and numerical analysis were in mutual agreement.

  15. Improvement in Fatigue Performance of Aluminium Alloy Welded Joints by Laser Shock Peening in a Dynamic Strain Aging Temperature Regime

    PubMed Central

    Su, Chun; Zhou, Jianzhong; Meng, Xiankai; Huang, Shu

    2016-01-01

    As a new treatment process after welding, the process parameters of laser shock peening (LSP) in dynamic strain aging (DSA) temperature regimes can be precisely controlled, and the process is a non-contact one. The effects of LSP at elevated temperatures on the distribution of the surface residual stress of AA6061-T6 welded joints were investigated by using X-ray diffraction technology with the sin2ϕ method and Abaqus software. The fatigue life of the welded joints was estimated by performing tensile fatigue tests. The microstructural evolution in surface and fatigue fractures of the welded joints was presented by means of surface integrity and fracture surface testing. In the DSA temperature regime of AA6061-T6 welded joints, the residual compressive stress was distributed more stably than that of LSP at room temperature. The thermal corrosion resistance and fatigue properties of the welded joints were also improved. The experimental results and numerical analysis were in mutual agreement. PMID:28773920

  16. Assessment of Shape Memory Alloys - From Atoms To Actuators - Via In Situ Neutron Diffraction

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane

    2014-01-01

    As shape memory alloys (SMAs) become an established actuator technology, it is important to identify the fundamental mechanisms responsible for their performance by understanding microstructure performance relationships from processing to final form. Yet, microstructural examination of SMAs at stress and temperature is often a challenge since structural changes occur with stress and temperature and microstructures cannot be preserved through quenching or after stress removal, as would be the case for conventional materials. One solution to this dilemma is in situ neutron diffraction, which has been applied to the investigation of SMAs and has offered a unique approach to reveal the fundamental micromechanics and microstructural aspects of bulk SMAs in a non-destructive setting. Through this technique, it is possible to directly correlate the micromechanical responses (e.g., internal residual stresses, lattice strains), microstructural evolutions (e.g., texture, defects) and phase transformation properties (e.g., phase fractions, kinetics) to the macroscopic actuator behavior. In this work, in situ neutron diffraction was systematically employed to evaluate the deformation and transformation behavior of SMAs under typical actuator conditions. Austenite and martensite phases, yield behavior, variant selection and transformation temperatures were characterized for a polycrystalline NiTi (49.9 at. Ni). As the alloy transforms under thermomechanical loading, the measured textures and lattice plane-level variations were directly related to the cyclic actuation-strain characteristics and the dimensional instability (strain ratcheting) commonly observed in this alloy. The effect of training on the shape memory characteristics of the alloy and the development of two-way shape memory effect (TWSME) were also assessed. The final conversion from a material to a useful actuator, typically termed shape setting, was also investigated in situ during constrained heatingcooling and subsequent shape recovery experiments. Neutron diffraction techniques are also being applied to the investigation of novel high temperature SMAs with the objective of designing alloys with better stability, higher transition temperatures and ultimately superior durability.

  17. Chip formation and surface integrity in high-speed machining of hardened steel

    NASA Astrophysics Data System (ADS)

    Kishawy, Hossam Eldeen A.

    Increasing demands for high production rates as well as cost reduction have emphasized the potential for the industrial application of hard turning technology during the past few years. Machining instead of grinding hardened steel components reduces the machining sequence, the machining time, and the specific cutting energy. Hard turning Is characterized by the generation of high temperatures, the formation of saw toothed chips, and the high ratio of thrust to tangential cutting force components. Although a large volume of literature exists on hard turning, the change in machined surface physical properties represents a major challenge. Thus, a better understanding of the cutting mechanism in hard turning is still required. In particular, the chip formation process and the surface integrity of the machined surface are important issues which require further research. In this thesis, a mechanistic model for saw toothed chip formation is presented. This model is based on the concept of crack initiation on the free surface of the workpiece. The model presented explains the mechanism of chip formation. In addition, experimental investigation is conducted in order to study the chip morphology. The effect of process parameters, including edge preparation and tool wear on the chip morphology, is studied using Scanning Electron Microscopy (SEM). The dynamics of chip formation are also investigated. The surface integrity of the machined parts is also investigated. This investigation focusses on residual stresses as well as surface and sub-surface deformation. A three dimensional thermo-elasto-plastic finite element model is developed to predict the machining residual stresses. The effect of flank wear is introduced during the analysis. Although residual stresses have complicated origins and are introduced by many factors, in this model only the thermal and mechanical factors are considered. The finite element analysis demonstrates the significant effect of the heat generated during cutting on the residual stresses. The machined specimens are also examined using x-ray diffraction technique to clarify the effect of different speeds, feeds and depths of cut as well as different edge preparations on the residual stress distribution beneath the machined surface. A reasonable agreement between the predicted and measured residual stress is obtained. The results obtained demonstrate the possibility of eliminating the existence of high tensile residual stresses in the workpiece surface by selecting the proper cutting conditions. The machined surfaces are examined using SEM to study the effect of different process parameters and edge preparations on the quality of the machined surface. The phenomenon of material side flow is investigated to clarify the mechanism of this phenomenon. The effect of process parameters and edge preparations on sub-surface deformation is also investigated.

  18. Neutron Bragg-edge-imaging for strain mapping under in situ tensile loading

    NASA Astrophysics Data System (ADS)

    Woracek, R.; Penumadu, D.; Kardjilov, N.; Hilger, A.; Strobl, M.; Wimpory, R. C.; Manke, I.; Banhart, J.

    2011-05-01

    Wavelength selective neutron radiography at a cold neutron reactor source was used to measure strain and determine (residual) stresses in a steel sample under plane stress conditions. We present a new technique that uses an energy-resolved neutron imaging system based on a double crystal monochromator and is equipped with a specially developed (in situ) biaxial load frame to perform Bragg edge based transmission imaging. The neutron imaging technique provides a viewing area of 7 cm by 7 cm with a spatial resolution on the order of ˜ 100 μm. The stress-induced shifts of the Bragg edge corresponding to the (110) lattice plane were resolved spatially for a ferritic steel alloy A36 (ASTM international) sample. Furthermore it is demonstrated that results agree with comparative data obtained using neutron diffraction and resistance based strain-gauge rosettes.

  19. Phase evolution and thermal properties of yttria-stabilized hafnia nano-coatings deposited on alumina

    NASA Astrophysics Data System (ADS)

    Rubio, Ernesto Javier

    High-temperature coatings are critical to the future power-generation systems and industries. Thermal barrier coatings (TBCs), which are usually the ceramic materials applied as thin coatings, protect engine components and allow further increase in engine temperatures for higher efficiency. Thus, the durability and reliability of the coating systems have to be more robust compared to current natural gas based engines. While a near and mid-term target is to develop TBC architecture with a 1300 °C surface temperature tolerance, a deeper understanding of the structure evolution and thermal behavior of the TBC-bond coat interface, specifically the thermally grown oxide (TGO), is of primary importance. In the present work, attention is directed towards yttria-stabilized hafnia (YSH) coatings on alumina (α-Al2O 3) to simulate the TBC-TGO interface and understand the phase evolution, microstructure and thermal oxidation of the coatings. YSH coatings were grown on α-Al2O3 substrates by sputter deposition by varying coating thickness in a wide range ˜30-1000 nm. The effect of coating thickness on the structure, morphology and the residual stress has been investigated using X-ray diffraction (XRD) and high resolution scanning electron microscopy (SEM). Thermal oxidation behavior of the coatings has been evaluated using the isothermal oxidation measurements under static conditions. X-ray diffraction analyses revealed the existence of monoclinic hafnia phase for relatively thin coatings indicating that the interfacial phenomena are dominant in phase stabilization. The evolution towards pure stabilized cubic phase of hafnia with the increasing coating thickness is observed. The SEM results indicate the changes in morphology of the coatings; the average grain size increases from 15 to 500 nm with increasing thickness. Residual stress was calculated employing XRD using the variable ψ-angle. Relation between residual stress and structural change is also studied. The results obtained on the thermal oxidation behavior indicate that the YSH coatings exhibit initial mass gain in the first 6 hours and sustained structure for extended hours of thermal treatment.

  20. Nondeestructive Measurement of Residual and Enforced Stresses by Means of X-Ray Diffraction. 2 - Some Applications to Aircraft Problems

    DTIC Science & Technology

    1945-11-01

    appliod, and then hacked off "by 15 por.cent "before EJaking tho X—ray exposures. To find what tho stroös distribution... J5 2.868 H s 3 a) 8.860 • ••4 4» 3 S.8S8 87 1.23 1.84 1.86 1.88 Ratio D 1.30 1.38 1.34 1.36 VD’« fro« f11a Figur« 37a.- Ohart for

  1. Synchrotron X-ray measurement of residual strain within the nose of a worn manganese steel railway crossing

    NASA Astrophysics Data System (ADS)

    Dhar, S.; Zhang, Y.; Xu, R.; Danielsen, HK; Jensen, D. Juul

    2017-07-01

    Switches and crossings are an integral part of any railway network. Plastic deformation associated with wear and rolling contact fatigue due to repeated passage of trains cause severe damage leading to the formation of surface and sub-surface cracks which ultimately may result in rail failure. Knowledge of the internal stress distribution adds to the understanding of crack propagation and may thus help to prevent catastrophic rail failures. In this work, the residual strains inside the bulk of a damaged nose of a manganese railway crossing that was in service for five years has been investigated by using differential aperture synchrotron X-ray diffraction. The main purpose of this paper is to describe how this method allows non-destructive measurement of residual strains in selected local volumes in the bulk of the rail. Measurements were conducted on the transverse surface at a position about 6.5 mm from the rail running surface of a crossing nose. The results revealed the presence of significant compressive residual strains along the running direction of the rail.

  2. Experimental Investigation of Principal Residual Stress and Fatigue Performance for Turned Nickel-Based Superalloy Inconel 718.

    PubMed

    Hua, Yang; Liu, Zhanqiang

    2018-05-24

    Residual stresses of turned Inconel 718 surface along its axial and circumferential directions affect the fatigue performance of machined components. However, it has not been clear that the axial and circumferential directions are the principle residual stress direction. The direction of the maximum principal residual stress is crucial for the machined component service life. The present work aims to focuses on determining the direction and magnitude of principal residual stress and investigating its influence on fatigue performance of turned Inconel 718. The turning experimental results show that the principal residual stress magnitude is much higher than surface residual stress. In addition, both the principal residual stress and surface residual stress increase significantly as the feed rate increases. The fatigue test results show that the direction of the maximum principal residual stress increased by 7.4%, while the fatigue life decreased by 39.4%. The maximum principal residual stress magnitude diminished by 17.9%, whereas the fatigue life increased by 83.6%. The maximum principal residual stress has a preponderant influence on fatigue performance as compared to the surface residual stress. The maximum principal residual stress can be considered as a prime indicator for evaluation of the residual stress influence on fatigue performance of turned Inconel 718.

  3. A new barometer from stress fields around inclusions

    NASA Astrophysics Data System (ADS)

    Avadanii, Diana; Hansen, Lars; Wallis, David; Waters, David

    2017-04-01

    A key step in understanding geological and geodynamic processes is modelling the pressure-temperature paths of metamorphic rocks. Traditional thermobarometry relies on mineral assemblage equilibria and thermodynamic modelling to infer the pressures and temperatures of chemical equilibration. This approach requires the presence of specific mineral assemblages and compositions, which narrows its applicability. In this study we aim to develop a geobarometer based on mechanical interactions between inclusions and their host grains. Exhumation of minerals with inclusions causes heterogeneous residual stress fields due to the different, and often anisotropic, elastic properties of the inclusion and host. Recent studies measure residual mean stresses within inclusions using Raman spectroscopy and use those stresses as a barometer. In contrast, we map each component of the stress tensor around inclusions using high angular-resolution electron backscatter diffraction (HR-EBSD). This technique provides both higher spatial resolution and increased sensitivity to elastic strains relative to Raman spectroscopy. We focus on quartz inclusions in garnet, a common feature in metamorphic rocks. This assemblage also provides an opportunity to test our results with compositional thermobarometry. We analyse samples metamorphosed at pressures ranging from ˜ 300 MPa to ˜ 1600 MPa, as recorded by independent geobarometers. HR-EBSD reveals symmetric and lobate signals around inclusions, with elastic strains and residual stresses of the order 10-3 and ±102 -103 MPa, respectively. We solve Eshelby's problem for the 'inhomogeneous inclusion' case to simulate the elastic strain/stress field around an anisotropic ellipsoidal inclusion surrounded by an isotropic, homogeneous, infinite matrix. This model calculates the stress disturbances caused by differential expansion of an inclusion and host subjected to decompression. We additionally account for differential expansion related to cooling by imposing an eigenstrain in the inclusion, according to the thermal expansivity of quartz. Thermal contraction in the host garnet is accounted for by modifying the macroscopic pressure. The simulations reproduce the general pattern of the elastic fields that we observe from HR-EBSD and account for different geometries of the inclusion. The simulations provide the basis for quantitatively relating the stress fields measured by HR-EBSD to the entrapment pressures of inclusions.

  4. Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties.

    PubMed

    Lieblich, M; Barriuso, S; Multigner, M; González-Doncel, G; González-Carrasco, J L

    2016-02-01

    Roughening of Ti6Al4V by blasting with alumina or zirconia particles improves the mechanical fixation of implants by increasing the surface area available for bone/implant apposition. Additional thermal oxidation treatments of the blasted alloy have already shown to be a complementary low-cost solution to enhancing the in vitro biocompatibility and corrosion resistance of the alloy. In this work, the effects of oxidation treatment on a grit blasted Ti6Al4V biomedical alloy have been analysed in order to understand the net effect of the combined treatments on the alloy fatigue properties. Synchrotron radiation diffraction experiments have been performed to measure residual stresses before and after the treatments and microstructural and hardness changes have been determined. Although blasting of Ti6Al4V with small spherical zirconia particles increases the alloy fatigue resistance with respect to unblasted specimens, fatigue strength after oxidation decreases below the unblasted value, irrespective of the type of particle used for blasting. Moreover, at 700°C the as-blasted compressive residual stresses (700MPa) are not only fully relaxed but even moderate tensile residual stresses, of about 120MPa, are found beneath the blasted surfaces. Contrary to expectations, a moderate increase in hardness occurs towards the blasted surface after oxidation treatments. This can be attributed to the fact that grit blasting modifies the crystallographic texture of the Ti6Al4V shifting it to a random texture, which affects the hardness values as shown by additional experiments on cold rolled samples. The results indicate that the oxidation treatment performed to improve biocompatibility and corrosion resistance of grit blasted Ti6Al4V should be carried out with caution since the alloy fatigue strength can be critically diminished below the value required for high load-bearing components. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Development of Intergranular Residual Stress and Its Implication to Mechanical Behaviors at Elevated Temperatures in AL6XN Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Hong, Yanyan; Li, Shilei; Li, Hongjia; Li, Jian; Sun, Guangai; Wang, Yan-Dong

    2018-05-01

    Neutron diffraction was used to investigate the residual lattice strains in AL6XN austenitic stainless steel subjected to tensile loading at different temperatures, revealing the development of large intergranular stresses after plastic deformation. Elastic-plastic self-consistent modeling was employed to simulate the micromechanical behavior at room temperature. The overall variations of the modeled lattice strains as a function of the sample direction with respect to the loading axis agree in general with the experimental values, indicating that dislocation slip is the main plastic deformation mode. At 300 °C, the serrated flow in the stress-strain curve and the great amount of slip bands indicate the appearance of dynamic strain aging. Except for promoting the local strain concentration, the long-range stress field caused by the planar slip bands near the grain boundaries is also attributed to the decrease in the experimental intergranular strains. An increase in the lattice strains localized at some specific specimen orientations for reflections at 600 °C may be explained by the segregation of solute atoms (Cr and Mo) at dislocation slip bands. The evolution of full-width at half-maximum demonstrates that the dynamic recovery indeed plays an important role in alleviating the local strain concentrations during tensile loading at 600 °C.

  6. A Novel Microcharacterization Technique in the Measurement of Strain and Orientation Gradient in Advanced Materials

    NASA Technical Reports Server (NTRS)

    Garmestai, H.; Harris, K.; Lourenco, L.

    1997-01-01

    Representation of morphology and evolution of the microstructure during processing and their relation to properties requires proper experimental techniques. Residual strains, lattice distortion, and texture (micro-texture) at the interface and the matrix of a layered structure or a functionally gradient material and their variation are among parameters important in materials characterization but hard to measure with present experimental techniques. Current techniques available to measure changes in interred material parameters (residual stress, micro-texture, microplasticity) produce results which are either qualitative or unreliable. This problem becomes even more complicated in the case of a temperature variation. These parameters affect many of the mechanical properties of advanced materials including stress-strain relation, ductility, creep, and fatigue. A review of some novel experimental techniques using recent advances in electron microscopy is presented here to measure internal stress, (micro)texture, interracial strength and (sub)grain formation and realignment. Two of these techniques are combined in the chamber of an Environmental Scanning Electron Microscope to measure strain and orientation gradients in advanced materials. These techniques which include Backscattered Kikuchi Diffractometry (BKD) and Microscopic Strain Field Analysis are used to characterize metallic and intermetallic matrix composites and superplastic materials. These techniques are compared with the more conventional x-ray diffraction and indentation techniques.

  7. Enhanced dielectric properties of Pb0.92La0.08 Zr0.52Ti0.48O3 films with compressive stress

    NASA Astrophysics Data System (ADS)

    Ma, Beihai; Liu, Shanshan; Tong, Sheng; Narayanan, Manoj; (Balu) Balachandran, U.

    2012-12-01

    We deposited ferroelectric (Pb0.92La0.08)(Zr0.52Ti0.48)O3 (PLZT 8/52/48) films on nickel foils and platinized silicon (PtSi) substrates by chemical solution deposition. Prior to the deposition of PLZT, a conductive oxide buffer layer of LaNiO3 (LNO) was deposited on the nickel foil. Residual stresses of the films were determined by x-ray diffraction. Compressive stress of ≈-370 MPa and tensile stress of ≈250 MPa were measured in ≈2-μm-thick PLZT grown on LNO-buffered Ni foil and PtSi substrate, respectively. We also measured the following electrical properties for the PLZT films grown on LNO-buffered Ni and PtSi substrates, respectively: remanent polarization, ≈23.5 μC/cm2 and ≈10.1 μC/cm2; coercive electric field, ≈23.8 kV/cm and ≈27.9 kV/cm; dielectric constant at room temperature, ≈1300 and ≈1350; and dielectric loss at room temperature, ≈0.06 and ≈0.05. Weibull analysis determined the mean breakdown strength to be 2.6 MV/cm and 1.5 MV/cm for PLZT films grown on LNO-buffered Ni and PtSi substrates, respectively. The difference in dielectric properties and breakdown strength can be attributed to the residual stress in the PLZT films. Our results suggest that compressive stress enhances the dielectric breakdown strength of the PLZT films.

  8. Neutron diffraction and ferromagnetic resonance studies on plasma-sprayed MnZn ferrite films

    NASA Astrophysics Data System (ADS)

    Yan, Q. Y.; Gambino, R. J.; Sampath, S.; Huang, Q.

    2005-02-01

    The magnetic properties of MnZn ferrites are affected by the plasma spray process. It is found that improvements can be made by annealing the ferrite films at 500°C-800°C. The annealing induced magnetic property changes are studied by neutron diffraction and ferromagnetic resonance techniques. The increase of the saturation magnetization is attributed to the cation ordering within the spinel lattice, which increases the magnetic moment per ferrite formula. The refinements on the neutron diffraction data suggest that the redistribution of the cation during annealing neither starts from a fully disordered state nor ends to a fully ordered state. The decrease of the coercivity is analyzed with the domain wall pinning model. The measurements on the magnetostriction and residual stress indicate that coercive mechanisms arising from the magnetoelastic energy term are not dominant in these ferrite films. The decrease of the coercivity for annealed ferrite films is mainly attributed to the decrease of the effective anisotropic field, which may result from the homogenization of the film composition and the reduction of the microstructural discontinuity (e.g., cracks, voids, and splat boundaries).

  9. Investigation of fatigue crack initiation from a non-metallic inclusion via high energy x-ray diffraction microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naragani, Diwakar; Sangid, Michael D.; Shade, Paul A.

    Crack initiation at inclusions is a dominant, unavoidable and life-limiting failure mechanism of important structural materials. Fatigue progresses in a complex manner to find the ‘weakest link’ in the microstructure, leading to crack nucleation. In this study, fully 3-D characterization methods using high-energy synchrotron x-rays are combined with in-situ mechanical testing to study the crack initiation mechanism in a Ni-based superalloy specimen. The specimen was produced via powder metallurgy and seeded with a non-metallic inclusion. Two x-ray techniques were employed: absorption contrast computed micro-tomography (μ-CT) to determine the morphology of the inclusion and its location in the gauge section ofmore » the specimen; and far-field high-energy diffraction microscopy (FF-HEDM) to resolve the centroids, average orientations, and lattice strains of the individual grains comprising the microstructure surrounding the inclusion. Sequential μ-CT and FF-HEDM scans were carried out at both peak and zero applied stress following schedules of cyclic deformation. The µ-CT data showed the onset and location of crack initiation, and the FF-HEDM data provided temporal and spatial evolution of the intergranular strains. Strain partitioning and the associated stress heterogeneities that develop are shown to stabilize within a few loading cycles. Elasto-viscoplastic fast Fourier transform simulations were utilized to supplement interpretation of the experimental stress distributions and compared with the experimental stress distributions. In conclusion, appropriate conditions for crack nucleation in the form of stress gradients were demonstrated and created by virtue of the inclusion, specifically the residual stress state and local bonding state at the inclusion-matrix interface.« less

  10. Investigation of fatigue crack initiation from a non-metallic inclusion via high energy x-ray diffraction microscopy

    DOE PAGES

    Naragani, Diwakar; Sangid, Michael D.; Shade, Paul A.; ...

    2017-07-14

    Crack initiation at inclusions is a dominant, unavoidable and life-limiting failure mechanism of important structural materials. Fatigue progresses in a complex manner to find the ‘weakest link’ in the microstructure, leading to crack nucleation. In this study, fully 3-D characterization methods using high-energy synchrotron x-rays are combined with in-situ mechanical testing to study the crack initiation mechanism in a Ni-based superalloy specimen. The specimen was produced via powder metallurgy and seeded with a non-metallic inclusion. Two x-ray techniques were employed: absorption contrast computed micro-tomography (μ-CT) to determine the morphology of the inclusion and its location in the gauge section ofmore » the specimen; and far-field high-energy diffraction microscopy (FF-HEDM) to resolve the centroids, average orientations, and lattice strains of the individual grains comprising the microstructure surrounding the inclusion. Sequential μ-CT and FF-HEDM scans were carried out at both peak and zero applied stress following schedules of cyclic deformation. The µ-CT data showed the onset and location of crack initiation, and the FF-HEDM data provided temporal and spatial evolution of the intergranular strains. Strain partitioning and the associated stress heterogeneities that develop are shown to stabilize within a few loading cycles. Elasto-viscoplastic fast Fourier transform simulations were utilized to supplement interpretation of the experimental stress distributions and compared with the experimental stress distributions. In conclusion, appropriate conditions for crack nucleation in the form of stress gradients were demonstrated and created by virtue of the inclusion, specifically the residual stress state and local bonding state at the inclusion-matrix interface.« less

  11. A study of stress-induced phase transformation and micromechanical behavior of CuZr-based alloy by in-situ neutron diffraction

    DOE PAGES

    Wang, Dongmei; Mu, Juan; Chen, Yan; ...

    2017-03-01

    The stress-induced phase transformation and micromechanical behavior of CuZr-based alloy were investigated by in-situ neutron diffraction. The pseudoelastic behavior with a pronounced strain-hardening effect is observed. The retained martensite nuclei and the residual stress obtained from the 1st cycle reduce the stress threshold for the martensitic transformation. A critical stress level is required for the reverse martensitic transformation from martensite to B2 phase. An increase of intensity for the B2 (110) plane in the 1st cycle is caused by the twinning along the {112}<111> twinning system. The convoluted stress partitioning influenced by the elastic and transformation anisotropy along with themore » newly formed martensite determines the microstress partitioning of the studied CuZr-based alloy. The reversible martensitic transformation is responsible for the pseudoelasticity. The macro mechanical behavior of the pure B2 phase can be divided into 3 stages, which are mediated by the evolvement of the martensitic transformation. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).« less

  12. A study of stress-induced phase transformation and micromechanical behavior of CuZr-based alloy by in-situ neutron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dongmei; Mu, Juan; Chen, Yan

    The stress-induced phase transformation and micromechanical behavior of CuZr-based alloy were investigated by in-situ neutron diffraction. The pseudoelastic behavior with a pronounced strain-hardening effect is observed. The retained martensite nuclei and the residual stress obtained from the 1st cycle reduce the stress threshold for the martensitic transformation. A critical stress level is required for the reverse martensitic transformation from martensite to B2 phase. An increase of intensity for the B2 (110) plane in the 1st cycle is caused by the twinning along the {112}<111> twinning system. The convoluted stress partitioning influenced by the elastic and transformation anisotropy along with themore » newly formed martensite determines the microstress partitioning of the studied CuZr-based alloy. The reversible martensitic transformation is responsible for the pseudoelasticity. The macro mechanical behavior of the pure B2 phase can be divided into 3 stages, which are mediated by the evolvement of the martensitic transformation. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).« less

  13. Laser shock peening without coating induced residual stress distribution, wettability characteristics and enhanced pitting corrosion resistance of austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Prabhakaran, S.; Kulkarni, Aniket; Vasanth, G.; Kalainathan, S.; Shukla, Pratik; Vasudevan, Vijay K.

    2018-01-01

    Low energy laser shock peening without coating (LSPwC) was conducted on AISI 304 austenitic stainless steel specimens with varying pulse densities or overlapping. Highest magnitude of compressive residual stress (CRS) was achieved for an optimized pulse density of 2500 pulses/cm2 (75% overlapping). The 2-D and 3-D topographical analysis were indicative of the fact that controlled roughening of the surface was achieved after the LSPwC process. After the LSPwC process, the hydrophilic unpeened surface was converted into the hydrophobic surface, thus decreasing the wettability characteristics of the surface. The X-ray diffraction (XRD) results reveal that there is a beginning of the martensite transformation and the rise in the intensity value of the peaks after LSPwC indicates the presence of compressive residual stresses induced in the specimen. The optical microscope and high-resolution transmission electron microscope results provided evidence of grain refinement and deformation induced refinement features such as multidirectional mechanical twinning, dislocations lines, micro shear cells and stacking faults in the near and sub-surface areas. The average hardness value of the LSPwC specimens was found to be increased by 28% more than the untreated specimen. The potentiodynamic polarization revealed that there was a considerable amount of increase in the pitting corrosion resistance after the LSPwC process, thus, supporting to extend the fatigue life of the specimen. The electrochemical impedance spectroscopic (EIS) analysis depicts that the LSPwC process supports the formation of the strong passivation layer in 3.5% NaCl solution.

  14. Effect of the Leveling Conditions on Residual Stress Evolution of Hot Rolled High Strength Steels for Cold Forming

    NASA Astrophysics Data System (ADS)

    Park, Keecheol; Oh, Kyungsuk

    2017-09-01

    In order to investigate the effect of leveling conditions on residual stress evolution during the leveling process of hot rolled high strength steels, the in-plane residual stresses of sheet processed under controlled conditions at skin-pass mill and levelers were measured by cutting method. The residual stress was localized near the edge of sheet. As the thickness of sheet was increased, the residual stress occurred region was expanded. The magnitude of residual stress within the sheet was reduced as increasing the deformation occurred during the leveling process. But the residual stress itself was not removed completely. The magnitude of camber occurred at cut plate was able to be predicted by the residual stress distribution. A numerical algorithm was developed for analysing the effect of leveling conditions on residual stress. It was able to implement the effect of plastic deformation in leveling, tension, work roll bending, and initial state of sheet (residual stress and curl distribution). The validity of simulated results was verified from comparison with the experimentally measured residual stress and curl in a sheet.

  15. Evaluation of Surface Residual Stresses in Friction Stir Welds Due to Laser and Shot Peening

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Rivero, Iris V.; Lyons, Jed

    2007-01-01

    The effects of laser, and shot peening on the residual stresses in Friction Stir Welds (FSW) has been investigated. The surface residual stresses were measured at five different locations across the weld in order to produce an adequate residual stress profile. The residual stresses before and after sectioning the coupon from the welded plate were also measured, and the effect of coupon size on the residual stress relaxation was determined and characterized. Measurements indicate that residual stresses were not uniform along the welded plate, and large variation in stress magnitude could be exhibited at various locations along the FSW plate. Sectioning resulted in significant residual stress relaxation in the longitudinal direction attributed to the large change in dimensions in this direction. Overall, Laser and shot peening resulted in a significant reduction in tensile residual stresses at the surface of the specimens.

  16. High stresses stored in fault zones: example of the Nojima fault (Japan)

    NASA Astrophysics Data System (ADS)

    Boullier, Anne-Marie; Robach, Odile; Ildefonse, Benoît; Barou, Fabrice; Mainprice, David; Ohtani, Tomoyuki; Fujimoto, Koichiro

    2018-04-01

    During the last decade pulverized rocks have been described on outcrops along large active faults and attributed to damage related to a propagating seismic rupture front. Questions remain concerning the maximal lateral distance from the fault plane and maximal depth for dynamic damage to be imprinted in rocks. In order to document these questions, a representative core sample of granodiorite located 51.3 m from the Nojima fault (Japan) that was drilled after the Hyogo-ken Nanbu (Kobe) earthquake is studied by using electron backscattered diffraction (EBSD) and high-resolution X-ray Laue microdiffraction. Although located outside of the Nojima damage fault zone and macroscopically undeformed, the sample shows pervasive microfractures and local fragmentation. These features are attributed to the first stage of seismic activity along the Nojima fault characterized by laumontite as the main sealing mineral. EBSD mapping was used in order to characterize the crystallographic orientation and deformation microstructures in the sample, and X-ray microdiffraction was used to measure elastic strain and residual stresses on each point of the mapped quartz grain. Both methods give consistent results on the crystallographic orientation and show small and short wavelength misorientations associated with laumontite-sealed microfractures and alignments of tiny fluid inclusions. Deformation microstructures in quartz are symptomatic of the semi-brittle faulting regime, in which low-temperature brittle plastic deformation and stress-driven dissolution-deposition processes occur conjointly. This deformation occurred at a 3.7-11.1 km depth interval as indicated by the laumontite stability domain. Residual stresses are calculated from deviatoric elastic strain tensor measured using X-ray Laue microdiffraction using the Hooke's law. The modal value of the von Mises stress distribution is at 100 MPa and the mean at 141 MPa. Such stress values are comparable to the peak strength of a deformed granodiorite from the damage zone of the Nojima fault. This indicates that, although apparently and macroscopically undeformed, the sample is actually damaged. The homogeneously distributed microfracturing of quartz is the microscopically visible imprint of this damage and suggests that high stresses were stored in the whole sample and not only concentrated on some crystal defects. It is proposed that the high residual stresses are the sum of the stress fields associated with individual dislocations and dislocation microstructures. These stresses are interpreted to be originated from the dynamic damage related to the propagation of rupture fronts or seismic waves at a depth where confining pressure prevented pulverization. Actually, M6 to M7 earthquakes occurred during the Paleocene on the Nojima fault and are good candidates for inducing this dynamic damage. The high residual stresses and the deformation microstructures would have contributed to the widening of the damaged fault zone with additional large earthquakes occurring on the Nojima fault.

  17. The microstructure-processing-property relationships in an aluminum matrix composite system reinforced by aluminum-copper-iron alloy particles

    NASA Astrophysics Data System (ADS)

    Tang, Fei

    Solid state vacuum sintering was studied in tap densified Al powder and in hot quasi-isostatically forged samples composed of commercial inert gas atomized or high purity Al powder, generated by a gas atomization reaction synthesis (GARS) technique. The GARS process results in spherical Al powder with a far thinner surface oxide. The overall results indicated the enhanced ability of GARS-processed Al and Al alloy powders for solid state sintering, which may lead to simplification of current Al powder consolidation processing methods. Elemental Al-based composites reinforced with spherical Al-Cu-Fe alloy powders were produced by quasi-isostatic forging and vacuum hot pressing (VHP) consolidation methods. It was proved that spherical Al-Cu-Fe alloy powders can serve as an effective reinforcement particulate for elemental Al-based composites, because of their high hardness and a preferred type of matrix/reinforcement interfacial bonding, with reduced strain concentration around the particles. Ultimate tensile strength and yield strength of the composites were increased over the corresponding Al matrix values, far beyond typical observations. This remarkable strengthening was achieved without precipitation hardening and without severe strain hardening during consolidation because of the matrix choice (elemental Al) and the "low shear" consolidation methods utilized. This reinforcement effectiveness is further evidenced by elastic modulus measurements of the composites that are very close to the upper bound predictions of the rule of mixtures. The load partitioning measurements by neutron diffraction showed that composite samples made from GARS powders present significantly higher load transfer efficiency than the composites made from commercially atomized powders. Further analysis of the load sharing measurements and the calculated values of the mismatch of coefficient of thermal expansion (CTE) and the geometrically necessary dislocation (GND) effects suggest that these strengthening mechanisms can be combined to predict accurately the strength of the composites. By neutron diffraction measurements, it also was found that the composites consolidated from Al and Al63Cu25Fe12 quasicrystal alloy reinforcement powders have compressive residual stress in the Al matrix, contrary to the tensile residual stress in typical Al/SiC composites. The composites made by the quasi-isostatic forging process exhibited higher tensile strengths and much higher compressive residual stresses than the composites made by the VHP process.

  18. Using X-ray Diffraction to Assess Residual Stresses in Laser Peened and Welded Aluminum

    DTIC Science & Technology

    2011-12-01

    4 4 5 5 6 6 ’ 33 ’ 1 1 1 1 1 1 11 33 2 2 2 2 2 2 12 ’ 33 133 3 3 3 3 3 ’ 224 4 4 4 4 433 235 5 5 5 5 5’ 33 336 6 6 6 6 6 ’ 33 a b c...29.5  14    29.5  45  24.5  9    24.5  40  22  6.5    22  37.5  19.5  4     19.5  35  14.5  ‐1    14.5  30  9.5  ‐ 6     9.5  25  ‐14.5  ‐30...centerline for all four data sets. Data set one measured the bi-axial residual

  19. Thermal deformations and stresses in composite materials

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.

    1980-01-01

    Residual stresses are induced during curing in angle-ply laminates as a result of anisotropic thermal deformations of the variously oriented plies. Residual strains are measured experimentally using embedded strain gage techniques, and residual stresses are computed using orthotropic stress-strain relations. The results show that, for graphite and Kevlar laminates, residual stresses at room temperature are high enough to cause damage in the plies in the transverse to the fiber direction. It is also shown that residual stresses do not relax appreciably. The ply stacking sequence is found to have no effect on the magnitude of average residual stresses. Residual stresses and susceptibility to cracking during curing depend to a marked extent on ply layup.

  20. The bowing potential of granitic rocks: rock fabrics, thermal properties and residual strain

    NASA Astrophysics Data System (ADS)

    Siegesmund, S.; Mosch, S.; Scheffzük, Ch.; Nikolayev, D. I.

    2008-10-01

    The bowing of natural stone panels is especially known for marble slabs. The bowing of granite is mainly known from tombstones in subtropical humid climate. Field inspections in combination with laboratory investigations with respect to the thermal expansion and the bowing potential was performed on two different granitoids (Cezlak granodiorite and Flossenbürg granite) which differ in the composition and rock fabrics. In addition, to describe and explain the effect of bowing of granitoid facade panels, neutron time-of-flight diffraction was applied to determine residual macro- and microstrain. The measurements were combined with investigations of the crystallographic preferred orientation of quartz and biotite. Both samples show a significant bowing as a function of panel thickness and destination temperature. In comparison to marbles the effect of bowing is more pronounced in granitoids at temperatures of 120°C. The bowing as well as the thermal expansion of the Cezlak sample is also anisotropic with respect to the rock fabrics. A quantitative estimate was performed based on the observed textures. The effect of the locked-in stresses may also have a control on the bowing together with the thermal stresses related to the different volume expansion of the rock-forming minerals.

  1. Hardness depth profile of lattice strained cemented carbide modified by high-energy boron ion implantation

    NASA Astrophysics Data System (ADS)

    Yoshida, Y.; Matsumura, A.; Higeta, K.; Inoue, T.; Shimizu, S.; Motonami, Y.; Sato, M.; Sadahiro, T.; Fujii, K.

    1991-07-01

    The hardness depth profiles of cemented carbides which were implanted with high-energy B + ions have been estimated using a dynamic microhardness tester. The B + implantations into (16% Co)-cemented WC alloys were carried out under conditions where the implantation energies were 1-3 MeV and the fluences 1 × 10 17-1 × 10 18ions/cm 2. The profiles show that the implanted layer becomes harder as fluences are chosen at higher values and there is a peak at a certain depth which depends on the implantation energy. In X-ray diffraction (XRD) studies of the implanted surface the broadened refraction peaks of only WC and Co are detected and the increments of lattice strain and of residual stress in the near-surface region are observed. It is supposed that the hardening effect should be induced by an increase in residual stress produced by lattice strain. The hardness depth profile in successive implantation of ions with different energies agrees with the compounded profile of each one of the implantations. It is concluded that the hardness depth profile can be controlled under adequate conditions of implantation.

  2. Relating Residual Stress and Substructural Evolution During Tensile Deformation of an Aluminum-Manganese Alloy

    NASA Astrophysics Data System (ADS)

    Lodh, Arijit; Tak, Tawqeer Nasir; Prakash, Aditya; Guruprasad, P. J.; Hutchinson, Christopher; Samajdar, Indradev

    2017-11-01

    Interrupted tensile tests were coupled with ex situ measurements of residual stress and microtexture. The residual stress quantification involved measurements of six independent Laue spots and conversion of the interplanar spacings to the residual stress tensor. A clear orientation-dependent residual stress evolution emerged from the experiments and the numerical simulations. For the orientations undergoing negligible changes in ρ GND (density of geometrically necessary dislocation), the residual stress developments appeared to be governed by the elastic stiffness of the grain clusters. For the others, the evolution of the residual stress and ρ GND exhibited a clear orientation-dependent scaling.

  3. Diffraction on heavy samples at STRESS-SPEC using a robot system

    NASA Astrophysics Data System (ADS)

    Al-Hamdany, N.; Gan, W. M.; Randau, C.; Brokmeier, H.-G.; Hofmann, M.

    2015-04-01

    The material science diffractometer STRESS-SPEC has high flux and a high flexible monochromator arrangement to optimize the needed wavelength. Many specific sample handling stages and sample environments are available. One of them is a Staubli RX 160 robot with nominal load capacity of 20 kg and more freedom for texture mapping than the Huber 512 Eulerian type cradle. Demonstration experiments of non-destructive pole figures and strain measurements of Cu-tube segments weighing 12 kg weight and 250 mm in length and 140 mm diameter have been carried out. The residual strains measured by the robot and by the XYZ- stage fit quite well, that means the robot is reliable for strain measurements. The texture of the Cu-tube has dominant recrystallization texture components represented by the cube and the rotated cube.

  4. Characterization of Residual Stress Effects on Fatigue Crack Growth of a Friction Stir Welded Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Smith, Stephen W.; Seshadri, Banavara R.; James, Mark A.; Brazill, Richard L.; Schultz, Robert W.; Donald, J. Keith; Blair, Amy

    2015-01-01

    An on-line compliance-based method to account for residual stress effects in stress-intensity factor and fatigue crack growth property determinations has been evaluated. Residual stress intensity factor results determined from specimens containing friction stir weld induced residual stresses are presented, and the on-line method results were found to be in excellent agreement with residual stress-intensity factor data obtained using the cut compliance method. Variable stress-intensity factor tests were designed to demonstrate that a simple superposition model, summing the applied stress-intensity factor with the residual stress-intensity factor, can be used to determine the total crack-tip stress-intensity factor. Finite element, VCCT (virtual crack closure technique), and J-integral analysis methods have been used to characterize weld-induced residual stress using thermal expansion/contraction in the form of an equivalent delta T (change in local temperature during welding) to simulate the welding process. This equivalent delta T was established and applied to analyze different specimen configurations to predict residual stress distributions and associated residual stress-intensity factor values. The predictions were found to agree well with experimental results obtained using the crack- and cut-compliance methods.

  5. An analytical method on the surface residual stress for the cutting tool orientation

    NASA Astrophysics Data System (ADS)

    Li, Yueen; Zhao, Jun; Wang, Wei

    2010-03-01

    The residual stress is measured by choosing 8 kinds orientations on cutting the H13 dies steel on the HSM in the experiment of this paper. The measured data shows on that the residual stress exists periodicity for the different rake angle (β) and side rake angle (θ) parameters, further study find that the cutting tool orientations have closed relationship with the residual stresses, and for the original of the machined residual stress on the surface from the cutting force and the axial force, it can be gained the simply model of tool-workpiece force, using the model it can be deduced the residual stress model, which is feasible to calculate the size of residual stress. And for almost all the measured residual stresses are compressed stress, the compressed stress size and the direction could be confirmed by the input data for the H13 on HSM. As the result, the residual stress model is the key for optimization of rake angle (β) and side rake angle (θ) in theory, using the theory the more cutting mechanism can be expressed.

  6. On the residual stress modeling of shot-peened AISI 4340 steel: finite element and response surface methods

    NASA Astrophysics Data System (ADS)

    Asgari, Ali; Dehestani, Pouya; Poruraminaie, Iman

    2018-02-01

    Shot peening is a well-known process in applying the residual stress on the surface of industrial parts. The induced residual stress improves fatigue life. In this study, the effects of shot peening parameters such as shot diameter, shot speed, friction coefficient, and the number of impacts on the applied residual stress will be evaluated. To assess these parameters effect, firstly the shot peening process has been simulated by finite element method. Then, effects of the process parameters on the residual stress have been evaluated by response surface method as a statistical approach. Finally, a strong model is presented to predict the maximum residual stress induced by shot peening process in AISI 4340 steel. Also, the optimum parameters for the maximum residual stress are achieved. The results indicate that effect of shot diameter on the induced residual stress is increased by increasing the shot speed. Also, enhancing the friction coefficient magnitude always cannot lead to increase in the residual stress.

  7. Measurement of non-uniform residual stresses by combined Moiré interferometry and hole-drilling method: Theory, experimental method and applications

    NASA Astrophysics Data System (ADS)

    Ya, Min; Dai, Fulong; Xie, Huimin; Lü, Jian

    2003-12-01

    Hole-drilling method is one of the most convenient methods for engineering residual stress measurement. Combined with moiré interferometry to obtain the relaxed whole-field displacement data, hole-drilling technique can be used to solve non-uniform residual stress problems, both in-depth and in-plane. In this paper, the theory of moiré interferometry and incremental hole-drilling (MIIHD) for non-uniform residual stress measurement is introduced. Three dimensional finite element model is constructed by ABAQUS to obtain the coefficients for the residual stress calculation. An experimental system including real-time measurement, automatic data processing and residual stresses calculation is established. Two applications for non-uniform in-depth residual stress of surface nanocrystalline material and non-uniform in-plane residual stress of friction stir welding are presented. Experimental results show that MIIHD is effective for both non-uniform in-depth and in-plane residual stress measurements.

  8. Effects of laser remelting on microstructures and immersion corrosion performance of arc sprayed Al coating in 3.5% NaCl solution

    NASA Astrophysics Data System (ADS)

    Sun, Ze; Zhang, Donghui; Yan, Baoxu; Kong, Dejun

    2018-02-01

    An arc sprayed aluminum (Al) coating on S355 steel was processed using a laser remelting (LR). The microstructures, chemical element composition, and phases of the obtained Al coating were analyzed using a field mission scanning electronic microscope (FESEM), energy dispersive spectrometer (EDS), and X-ray diffractometer (XRD), respectively, and the residual stresses were measured using an X-ray diffraction stress tester. The immersion corrosion tests and potentiodynamic polarization of Al coating in 3.5% NaCl solution were performed to investigate the effects of LR on its immersion corrosion behaviors, and the corrosion mechanism of Al coating was also discussed. The results show that the arc sprayed Al coating is composed of Al phase, while that by LR is composed of Al-Fe and AlO4FeO6 phases, and the porosities and cracks in the arc sprayed Al coating are eliminated by LR, The residual stress of arc sprayed Al coating is -5.6 ± 18 MPa, while that after LR is 137.9 ± 12 MPa, which deduces the immersion corrosion resistance of Al coating. The corrosion mechanism of arc sprayed Al coating is pitting corrosion and crevice corrosion, while that by LR is uniform corrosion and pitting corrosion. The corrosion potential of arc sprayed Al coating by LR shifts positively, which improves its immersion corrosion resistance.

  9. Influence of substrate temperature on properties of MgF 2 coatings

    NASA Astrophysics Data System (ADS)

    Yu, Hua; Qi, Hongji; Cui, Yun; Shen, Yanming; Shao, JianDa; Fan, ZhengXiu

    2007-05-01

    Thermal boat evaporation was employed to prepare MgF 2 single-layer coatings upon both JGS1 and UBK7 substrates at different substrate temperatures. Microstructure, transmittance and residual stress of these coatings were measured by X-ray diffraction, spectrophotometer, and optical interferometer, respectively. Measurement of laser induced damage threshold (LIDT) of the samples was performed at 355 nm, 8 ns pulses. The results showed that high substrate temperature was beneficial to crystallization of the film. Above 244 °C, the refractive index increased gradually with the substrate temperature rising. Whereas, it was exceptional at 210 °C that the refractive index was higher than those deposited at 244 and 277 °C. The tensile residual stresses were exhibited in all MgF 2 films, but not well correlated with the substrate temperature. In addition, the stresses were comparatively smaller upon JGS1 substrates. A tendency could be seen that the LIDTs reached the highest values at about 244 °C, and the films upon JGS1 had higher LIDTs than those upon UBK7 substrates at the same temperature. Meanwhile, the damage morphologies showed that the laser damage of the coating resulted from an absorbing center at the film-substrate interface. The features of the damages were displayed by an absorbing center dominated model. Furthermore, the reason of the difference in LIDT values was discussed in detail.

  10. Residual stress alleviation of aircraft metal structures reinforced with filamentary composites

    NASA Technical Reports Server (NTRS)

    Kelly, J. B.; June, R. R.

    1973-01-01

    Methods to eliminate or reduce residual stresses in aircraft metal structures reinforced by filamentary composites are discussed. Residual stress level reductions were achieved by modifying the manufacturing procedures used during adhesive bonding. The residual stress alleviation techniques involved various forms of mechanical constraint which were applied to the components during bonding. Nine methods were evaluated, covering a wide range in complexity. All methods investigated during the program affected the residual stress level. In general, residual stresses were reduced by 70 percent or more from the stress level produced by conventional adhesive bonding procedures.

  11. Microstructures and Properties of Laser Cladding Al-TiC-CeO2 Composite Coatings

    PubMed Central

    Kong, Dejun; Song, Renguo

    2018-01-01

    Al-TiC-CeO2 composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV0.2. In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance. PMID:29373555

  12. Microstructures and Properties of Laser Cladding Al-TiC-CeO₂ Composite Coatings.

    PubMed

    He, Xing; Kong, Dejun; Song, Renguo

    2018-01-26

    Al-TiC-CeO₂ composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV 0.2 . In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance.

  13. Improving fatigue performance of rail thermite welds

    NASA Astrophysics Data System (ADS)

    Jezzini-Aouad, M.; Flahaut, P.; Hariri, S.; Winiar, L.

    2010-06-01

    Rail transport development offers economic and ecological interests. Nevertheless, it requires heavy investments in rolling material and infrastructure. To be competitive, this transportation means must rely on safe and reliable infrastructure, which requires optimization of all implemented techniques and structure. Rail thermite (or aluminothermic) welding is widely used within the railway industry for in-track welding during re-rail and defect replacement. The process provides numerous advantages against other welding technology commonly used. Obviously, future demands on train traffic are heavier axle loads, higher train speeds and increased traffic density. Thus, a new enhanced weld should be developed to prevent accidents due to fracture of welds and to lower maintenance costs. In order to improve such assembly process, a detailed metallurgical study coupled to a thermomechanical modelling of the phenomena involved in the thermite welding process is carried out. Obtained data enables us to develop a new improved thermite weld (type A). This joint is made by modifying the routinely specified procedure (type B) used in a railway rail by a standard gap alumino-thermic weld. Joints of type A and B are tested and compared. Based on experimental temperature measurements, a finite element analysis is used to calculate the thermal residual stresses induced. In the vicinity of the weld, the residual stress patterns depend on the thermal conditions during welding as it also shown by litterature [1, 2]. In parallel, X-Ray diffraction has been used to map the residual stress field that is generated in welded rail of types A and B. Their effect on fatigue crack growth in rail welds is studied. An experimental study based on fatigue tests of rails welded by conventional and improved processes adjudicates on the new advances and results will be shown.

  14. Finite element modeling of the residual stress evolution in forged and direct-aged alloy 718 turbine disks during manufacturing and its experimental validation

    NASA Astrophysics Data System (ADS)

    Drexler, Andreas; Ecker, Werner; Hessert, Roland; Oberwinkler, Bernd; Gänser, Hans-Peter; Keckes, Jozef; Hofmann, Michael; Fischersworring-Bunk, Andreas

    2017-10-01

    In this work the evolution of the residual stress field in a forged and heat treated turbine disk of Alloy 718 and its subsequent relaxation during machining was simulated and measured. After forging at around 1000 °C the disks were natural air cooled to room temperature and direct aged in a furnace at 720 °C for 8 hours and at 620 °C for 8 hours. The machining of the Alloy 718 turbine disk was performed in two steps: The machining of the Alloy 718 turbine disk was performed in two steps: First, from the forging contour to a contour used for ultra-sonic testing. Second, from the latter to the final contour. The thermal boundary conditions in the finite element model for air cooling and furnace heating were estimated based on analytical equations from literature. A constitutive model developed for the unified description of rate dependent and rate independent mechanical material behavior of Alloy 718 under in-service conditions up to temperatures of 1000 °C was extended and parametrized to meet the manufacturing conditions with temperatures up to 1000 °C. The results of the finite element model were validated with measurements on real-scale turbine disks. The thermal boundary conditions were validated in-field with measured cooling curves. For that purpose holes were drilled at different positions into the turbine disk and thermocouples were mounted in these holes to record the time-temperature curves during natural cooling and heating. The simulated residual stresses were validated by using the hole drilling method and the neutron diffraction technique. The accuracy of the finite element model for the final manufacturing step investigated was ±50 MPa.

  15. Residual stress investigation of via-last through-silicon via by polarized Raman spectroscopy measurement and finite element simulation

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Watanabe, Naoya; Shimamoto, Haruo; Aoyagi, Masahiro; Kikuchi, Katsuya

    2018-07-01

    The residual stresses induced around through-silicon vias (TSVs) by a fabrication process is one of the major concerns of reliability. We proposed a methodology to investigate the residual stress in a via-last TSV. Firstly, radial and axial thermal stresses were measured by polarized Raman spectroscopy. The agreement between the simulated stress level and measured results validated the detail simulation model. Furthermore, the validated simulation model was adopted to the study of residual stress by element death/birth methods. The residual stress at room temperature concentrates at passivation layers owing to the high fabrication process temperatures of 420 °C for SiN film and 350 °C for SiO2 films. For a Si substrate, a high-level stress was observed near potential device locations, which requires attention to address reliability concerns in stress-sensitive devices. This methodology of residual stress analysis can be adopted to investigate the residual stress in other devices.

  16. Migration velocity analysis using residual diffraction moveout: a real-data example

    NASA Astrophysics Data System (ADS)

    Gonzalez, Jaime A. C.; de Figueiredo, José J. S.; Coimbra, Tiago A.; Schleicher, Jörg; Novais, Amélia

    2016-08-01

    Unfocused seismic diffraction events carry direct information about errors in the migration-velocity model. The residual-diffraction-moveout (RDM) migration-velocity-analysis (MVA) method is a recent technique that extracts this information by means of adjusting ellipses or hyperbolas to uncollapsed migrated diffractions. In this paper, we apply this method, which has been tested so far only on synthetic data, to a real data set from the Viking Graben. After application of a plane-wave-destruction (PWD) filter to attenuate the reflected energy, the diffractions in the real data become interpretable and can be used for the RDM method. Our analysis demonstrates that the reflections need not be completely removed for this purpose. Beyond the need to identify and select diffraction events in post-stack migrated sections in the depth domain, the method has a very low computational cost and processing time. To reach an acceptable velocity model of comparable quality as one obtained with common-midpoint (CMP) processing, only two iterations were necessary.

  17. Numerical simulation on residual stress in Y-slit type cracking test of Q690E

    NASA Astrophysics Data System (ADS)

    Huang, Wenjian; Lin, Guozhen; Chen, Zhanglan; Chen, Wu

    2018-03-01

    Numerical simulation on residual stress in Y-slit type cracking test of Q690E is carried out by using ANSYS. First, the dynamic distribution of welding temperature field is calculated; second, the results of the temperature field are converted into corresponding stress by the method of indirect coupling. The testing results show that the longitudinal residual stress of the weld is greater than the transverse residual stress and the peak of transverse residual stress is on the weld groove.

  18. Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, P.; Rahman, S.; Wilkowski, G.

    1997-04-01

    This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from amore » full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses.« less

  19. Lifetime impact on residual stress of EUV pellicle

    NASA Astrophysics Data System (ADS)

    Kim, Min-Woo; Lee, Sung-Gyu; Park, Eun-Sang; Oh, Hye-Keun

    2017-10-01

    Since EUV pellicle is very thin, It can be affected easily on its manufacturing process or the exposure process. The Pellicle has several types of stress, above all the pellicle has a residual stress from its manufacturing process. To determine the effect of residual stress on the pellicle, we calculated residual stress of several types of multi-layer pellicle by using formula. We could confirm that the residual stress has non-negligible values through the calculation results, and we obtained the thermal stress of each pellicle by using finite element method (FEM). we optimized the pellicle through comparison of total stress by plus the calculated residual stress and the thermal stress. As a result, since the p-Si core pellicle with B4C capping satisfies both high transparent and low total stress, we chose p-Si core pellicle with B4C capping as a suitable pellicle.

  20. Axial residual stresses in boron fibers

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1978-01-01

    The axial residual stress distribution as a function of radius was determined from the fiber surface to the core including the average residual stress in the core. Such measurements on boron on tungsten (B/W) fibers show that the residual stresses for 102, 142, 203, and 366 micron diameter fibers were similar, being compressive at the surface and changing monotonically to a region of tensile within the boron. At approximately 25 percent of the original radius, the stress reaches a maximum tensile stress of about 860 mn/sq.m and then decreases to a compressive stress near the tungsten boride core. Data were presented for 203 micron diameter B/W fibers that show annealing above 900 C reduces the residual stresses. A comparison between 102 micron diameter B/W and boron on carbon (b/C) shows that the residual stresses were similar in the outer regions of the fibers, but that large differences near and in the core were observed. The effects of these residual stresses on the fracture of boron fibers were discussed.

  1. Residual stresses and phase transformations in Ytterbium silicate environmental barrier coatings

    NASA Astrophysics Data System (ADS)

    Stolzenburg, Fabian

    Due to their high melting temperature, low density, and good thermomechanical stability, silicon-based ceramics (SiC, Si3N4) are some of the most promising materials systems for high temperature structural applications in gas turbine engines. However, their silica surface layer reacts with water vapor contained in combustion environments. The resulting hydroxide layer volatilizes, leading to component recession. Environmental barrier coatings (EBCs) have been developed to shield the substrate from degradation. Next generation coatings for silicon-based ceramics based on ytterbium silicates have shown a promising combination of very low and good thermomechanical properties. The focus of this thesis is threefold: In the first part, phase transformations in plasma sprayed ytterbium silicates were investigated. Plasma sprayed materials are known to contain large amounts of amorphous material. Phase changes during the conversion from amorphous to crystalline materials were investigated as they have been known to lead to failure in many coatings. The second part of this work focused on measuring residual stresses in multilayer EBCs using synchrotron X-ray diffraction (XRD). Strains were resolved spatially, with probe sizes as small as 20 um. Stresses were calculated using mechanical properties of ytterbium silicates, determined with in-situ loading and heating experiments. In-situ and ex-situ heating experiments allowed for the study of changes in stress states that occur in these EBC materials during heating and cooling cycles. Lastly, the interaction of ytterbium silicates with low-melting environmental calcium-magnesium-aluminosilicate (CMAS) glasses was studied. Synchrotron XRD was used to study the influence of CMAS on the stress state in the coating, X-ray computed tomography was used to provide 3D images of coatings, and EDS and TEM analysis were used to study the interactions at the CMAS/ytterbium silicate interface in detail.

  2. Development of stress corrosion cracking resistant welds of 321 stainless steel by simple surface engineering

    NASA Astrophysics Data System (ADS)

    Mankari, Kamal; Acharyya, Swati Ghosh

    2017-12-01

    We hereby report a simple surface engineering technique to make AISI grade 321 stainless steel (SS) welds resistant to stress corrosion cracking (SCC) in chloride environment. Heat exchanger tubes of AISI 321 SS, welded either by (a) laser beam welding (LBW) or by (b) metal inert gas welding (MIG) were used for the study. The welds had high magnitude of tensile residual stresses and had undergone SCC in chloride environment while in service. The welds were characterized using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). Subsequently, the welded surfaces were subjected to buffing operation followed by determination of residual stress distribution and surface roughness by XRD and surface profilometer measurements respectively. The susceptibility of the welds to SCC was tested in buffed and un-buffed condition as per ASTM G-36 in boiling MgCl2 for 5 h and 10 h, followed by microstructural characterization by using optical microscope and FESEM. The results showed that the buffed surfaces (both welds and base material) were resistant to SCC even after 10 h of exposure to boiling MgCl2 whereas the un-buffed surfaces underwent severe SCC for the same exposure time. Buffing imparted high magnitude of compressive stresses on the surface of stainless steel together with reduction in its surface roughness and reduction in plastic strain on the surface which made the welded surface, resistant to chloride assisted SCC. Buffing being a very simple, portable and economic technique can be easily adapted by the designers as the last step of component fabrication to make 321 stainless steel welds resistant to chloride assisted SCC.

  3. Ion energy/momentum effects during ion assisted growth of niobium nitride films

    NASA Astrophysics Data System (ADS)

    Klingenberg, Melissa L.

    The research described herein was performed to better understand and discern ion energy vs. ion momentum effects during ion beam assisted (IBAD) film growth and their effects on residual stress, crystalline structure, morphology, and composition, which influence film tribological properties. NbxN y was chosen for this research because it is a refractory material that can possess a large number of crystalline structures, and it has been found to have good tribological properties. To separate the effects of momentum transfer per arriving atom (p/a), which considers bombarding species mass, energy, and ion-to-atom transport ratio, from those of energy deposition per arriving atom (E/a), a mass independent parameter, different inert ion beams (krypton, argon, and neon) were used to create a matrix of coatings formed using similar energy deposition, but different momentum transfer and vice versa. Deposition was conducted in a research-scale IBAD system using electron beam evaporation, a radio frequency ion source, and a neutral nitrogen gas backfill. Films were characterized using x-ray diffraction, atomic force microscopy, Rutherford backscattering spectrometry, and residual stress analysis. Direct and quantifiable effects of bombardment were observed; however, energy deposition and momentum transfer effects could not be completely separated, confirming that thin film processes are complex. Complexities arose from ion-specific interactions (ion size, recoil energy, per cent reflected neutrals, Penning ionization, etc.) and chemistry effects that are not considered by the simple models. Overall, it can be stated that bombardment promoted nitride formation, nanocrystallinity, and compressive stress formation; influenced morphology (which influenced post-deposition oxygen uptake) and stress evolution; increased lattice parameter; modified crystalline phase and texture; and led to inert gas incorporation. High stress levels correlated strongly with material disorder and closed-structured morphologies.

  4. Residual Stress Measurement and Calibration for A7N01 Aluminum Alloy Welded Joints by Using Longitudinal Critically Refracted ( LCR) Wave Transmission Method

    NASA Astrophysics Data System (ADS)

    Zhu, Qimeng; Chen, Jia; Gou, Guoqing; Chen, Hui; Li, Peng; Gao, W.

    2016-10-01

    Residual stress measurement and control are highly important for the safety of structures of high-speed trains, which is critical for the structure design. The longitudinal critically refracted wave technology is the most widely used method in measuring residual stress with ultrasonic method, but its accuracy is strongly related to the test parameters, namely the flight time at the free-stress condition ( t 0), stress coefficient ( K), and initial stress (σ0) of the measured materials. The difference of microstructure in the weld zone, heat affected zone, and base metal (BM) results in the divergence of experimental parameters. However, the majority of researchers use the BM parameters to determine the residual stress in other zones and ignore the initial stress (σ0) in calibration samples. Therefore, the measured residual stress in different zones is often high in errors and may result in the miscalculation of the safe design of important structures. A serious problem in the ultrasonic estimation of residual stresses requires separation between the microstructure and the acoustoelastic effects. In this paper, the effects of initial stress and microstructure on stress coefficient K and flight time t 0 at free-stress conditions have been studied. The residual stress with or without different corrections was investigated. The results indicated that the residual stresses obtained with correction are more accurate for structure design.

  5. GaN epitaxial layers grown on multilayer graphene by MOCVD

    NASA Astrophysics Data System (ADS)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe

    2018-04-01

    In this study, GaN epitaxial layers were successfully deposited on a multilayer graphene (MLG) by using metal-organic chemical vapor deposition (MOCVD). Highly crystalline orientations of the GaN films were confirmed through electron backscatter diffraction (EBSD). An epitaxial relationship between GaN films and MLG is unambiguously established by transmission electron microscope (TEM) analysis. The Raman spectra was used to analyze the internal stress of GaN films, and the spectrum shows residual tensile stress in the GaN films. Moreover, the results of the TEM analysis and Raman spectra indicate that the high quality of the MLG substrate is maintained even after the growth of the GaN film. This high-quality MLG makes it possible to easily remove epitaxial layers from the supporting substrate by micro-mechanical exfoliation technology. This work can aid in the development of transferable devices using GaN films.

  6. The crack-contact and the free-end problem for a strip under residual stress

    NASA Technical Reports Server (NTRS)

    Bakioglu, M.; Erdogan, F.

    1977-01-01

    The plane problem for an infinite strip with two edge cracks under a given state of residual stress is considered. The residual stress is compressive near and at the surfaces and tensile in the interior of the strip. If the crack is deep enough to penetrate into the tensile zone, then the problem is one of crack-contact where the depth of the contact area is an unknown which depends on the crack depth and the residual stress profile. The problem has applications to the static fatigue of glass plates and is solved for three typical residual-stress profiles. In the limiting case of the crack's crossing the entire plate thickness, the problem becomes a stressfree end problem for a semiinfinite strip under a given residual-stress state away from the end. This is a typical stress diffusion problem in which decay behavior of the residual stress near and the nature of the normal displacement at the end of the semiinfinite strip are of special interest. For two typical residual-stress states the solution is obtained, and some numerical results are given.

  7. Assessment of the Local Residual Stresses of 7050-T7452 Aluminum Alloy in Microzones by the Instrumented Indentation with the Berkovich Indenter

    NASA Astrophysics Data System (ADS)

    He, M.; Huang, C. H.; Wang, X. X.; Yang, F.; Zhang, N.; Li, F. G.

    2017-10-01

    The local residual stresses in microzones are investigated by the instrumented indentation method with the Berkovich indenter. The parameters required for determination of residual stresses are obtained from indentation load-penetration depth curves constructed during instrumented indentation tests on flat square 7050-T7452 aluminum alloy specimens with a central hole containing the compressive residual stresses generated by the cold extrusion process. The force balance system with account of the tensile and compressive residual stresses is used to explain the phenomenon of different contact areas produced by the same indentation load. The effect of strain-hardening exponent on the residual stress is tuned-off by application of the representative stress σ_{0.033} in the average contact pressure assessment using the Π theorem, while the yield stress value is obtained from the constitutive function. Finally, the residual stresses are calculated according to the proposed equations of the force balance system, and their feasibility is corroborated by the XRD measurements.

  8. Lamination residual stresses in hybrid composites, part 1

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1976-01-01

    An experimental investigation was conducted to study lamination residual stresses for various material and loading parameters. The effects of hybridization on residual stresses and residual properties after thermal cycling under load were determined in angle-ply graphite/Kevlar/epoxy and graphite/S-glass/epoxy laminates. Residual strains in the graphite plies are not appreciably affected by the type and number of hybridizing plies. Computed residual stresses at room temperature in the S-glass plies reach values up to seventy-five percent of the transverse strength of the material. Computed residual stresses in the graphite plies exceed the static strength by approximately ten percent. In the case of Kevlar plies, computed residual stresses far exceed the static strength indicating possible early failure of these plies. Static testing of the hybrids above indicates that failure is governed by the ultimate strain of the graphite plies. In thermally cycled hybrids, in general, residual moduli were somewhat lower and residual strengths were higher than initial values.

  9. The Crack-contact and the Free End Problem for a Strip Under Residual Stress

    NASA Technical Reports Server (NTRS)

    Bakioglu, M.; Erdogan, F.

    1976-01-01

    The plane problem for an infinite strip with two edge cracks under a given state of residual stress is considered. The residual stress is compressive near and at the surfaces and tensile in the interior of the strip. If the crack is deep enough to penetrate into the tensile zone, then the problem is one of crack-contact problem in which the depth of the contact area is an unknown which depends on the crack depth and the residual stress profile. The problem has applications to the static fatigue of glass plates and is solved for three typical residual stress profiles. In the limiting case of the crack crossing the entire plate thickness, the problem becomes a stress-free end problem for a semi-infinite strip under a given residual stress state away from the end. This is a typical stress diffusion problem in which decay behavior of the residual stress near and the nature of the normal displacement at the end of the semi-infinite strip are of special interest. For two typical residual stress states the solution is obtained, and some numerical results are given.

  10. Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials

    DOE PAGES

    MacDonald, M. J.; Vorberger, J.; Gamboa, E. J.; ...

    2016-06-07

    Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate lattice strains for all initial crystallite orientations, enablingmore » elastic anisotropy and sample texture effects to be modeled directly. Furthermore, the effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.« less

  11. Evolution of residual stresses in micro-arc oxidation ceramic coatings on 6061 Al alloy

    NASA Astrophysics Data System (ADS)

    Shen, Dejiu; Cai, Jingrui; Guo, Changhong; Liu, Peiyu

    2013-11-01

    Most researches on micro-arc oxidation mainly focus on the application rather than discovering the evolution of residual stresses. However, residual stresses in the surface coatings of structural components have adverse effects on their properties, such as fatigue life, dimensional stability and corrosion resistance, etc. The micro-arc oxidation ceramic coatings are produced on the surfaces of 6061 aluminum alloy by a homemade asymmetric AC type of micro-arc oxidation equipment of 20 kW. A constant current density of 4.4±0.1 A/dm2 and a self-regulated composite electrolyte are used. The micro-arc oxidation treatment period ranges from 10 min to 40 min, and the thickness of the ceramic coatings is more than 20 μm. Residual stresses attributed to γ-Al2O3 constituent in the coatings at different micro-arc oxidation periods are analyzed by an X-ray diffractometer using the sin2 ψ method. The analysis results show that the residual stress in the ceramic coatings is compressive in nature, and it increases first and then decreases with micro-arc oxidation time increase. The maximum stress value is 1 667±20 MPa for period of 20 min. Through analyzing the coating thickness, surface morphology and phase composition, it is found that the residual stress in the ceramic coatings is linked closely with the coating growth, the phase composition and the micro cracks formed. It is also found that both the heat treatment and the ultrasonic action release remarkably the residual compressive stress. The heat treatment makes the residual compressive stress value decrease 1 378 MPa. The ultrasonic action even alters the nature of the residual stress, making the residual compressive stress change into a residual tensile stress.

  12. Residual Stress Analysis Based on Acoustic and Optical Methods.

    PubMed

    Yoshida, Sanichiro; Sasaki, Tomohiro; Usui, Masaru; Sakamoto, Shuichi; Gurney, David; Park, Ik-Keun

    2016-02-16

    Co-application of acoustoelasticity and optical interferometry to residual stress analysis is discussed. The underlying idea is to combine the advantages of both methods. Acoustoelasticity is capable of evaluating a residual stress absolutely but it is a single point measurement. Optical interferometry is able to measure deformation yielding two-dimensional, full-field data, but it is not suitable for absolute evaluation of residual stresses. By theoretically relating the deformation data to residual stresses, and calibrating it with absolute residual stress evaluated at a reference point, it is possible to measure residual stresses quantitatively, nondestructively and two-dimensionally. The feasibility of the idea has been tested with a butt-jointed dissimilar plate specimen. A steel plate 18.5 mm wide, 50 mm long and 3.37 mm thick is braze-jointed to a cemented carbide plate of the same dimension along the 18.5 mm-side. Acoustoelasticity evaluates the elastic modulus at reference points via acoustic velocity measurement. A tensile load is applied to the specimen at a constant pulling rate in a stress range substantially lower than the yield stress. Optical interferometry measures the resulting acceleration field. Based on the theory of harmonic oscillation, the acceleration field is correlated to compressive and tensile residual stresses qualitatively. The acoustic and optical results show reasonable agreement in the compressive and tensile residual stresses, indicating the feasibility of the idea.

  13. Laser quench hardening of steel: Effects of superimposed elastic pre-stress on the hardness and residual stress distribution

    NASA Astrophysics Data System (ADS)

    Meserve, Justin

    Cold drawn AISI 4140 beams were LASER surface hardened with a 2 kW CO2 LASER. Specimens were treated in the free state and while restrained in a bending fixture inducing surface tensile stresses of 94 and 230 MPa. Knoop hardness indentation was used to evaluate the through thickness hardness distribution, and a layer removal methodology was used to evaluate the residual stress distribution. Results showed the maximum surface hardness attained was not affected by pre-stress during hardening, and ranged from 513 to 676 kg/mm2. The depth of effective hardening varied at different magnitudes of pre-stress, but did not vary proportionately to the pre-stress. The surface residual stress, coinciding with the maximum compressive residual stress, increased as pre-stress was increased, from 1040 MPa for the nominally treated specimens to 1270 MPa for specimens pre-stressed to 230 MPa. The maximum tensile residual stress observed in the specimens decreased from 1060 MPa in the nominally treated specimens to 760 MPa for specimens pre-stressed to 230 MPa. Similarly, thickness of the compressive residual stress region increased and the depth at which maximum tensile residual stress occurred increased as the pre-stress during treatment was increased Overall, application of tensile elastic pre-stress during LASER hardening is beneficial to the development of compressive residual stress in AISI 4140, with minimal impact to the hardness attained from the treatment. The newly developed approach for LASER hardening may support efforts to increase both the wear and fatigue resistance of parts made from hardenable steels.

  14. Characterization of liquefied wood residues from different liquefaction conditions

    Treesearch

    Hui Pan; Todd f. Shupe; Chung-Yun Hse

    2007-01-01

    The amount of wood residue is used as a measurement of the extent of wood liquefaction. Characterization of the residue from wood liquefaction provides a new approach to understand some fundamental aspects of the liquefaction reaction. Residues were characterized by wet chemical analyses, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and...

  15. Descriptions of crack growth behaviors in glass-ZrO2 bilayers under thermal residual stresses.

    PubMed

    Belli, Renan; Wendler, Michael; Zorzin, José I; Petschelt, Anselm; Tanaka, Carina B; Meira, Josete; Lohbauer, Ulrich

    2016-09-01

    This study was intended to separate residual stresses arising from the mismatch in coefficients of thermal expansion between glass and zirconia (ZrO2) from those stresses arising solely from the cooling process. Slow crack growth experimentes were undertaken to demonstrate how cracks grow in different residual stress fields. Aluminosilicate glass discs were sintered onto ZrO2 to form glass-ZrO2 bilayers. Glass discs were allowed to bond to the ZrO2 substrate during sintering or prevented from bonding by means of coating the ZrO2 with a thin boron nitrade coating. Residual stress gradients on "bonded" and "unbonded" bilayers were assessed using birefringence measurements. Unbonded glass discs were further tested under biaxial flexure in dynamic fatigue conditions in order to evaluate the effect of residual stress on the slow crack growth behavior. When fast-ccoling was induced, residual tensile stresses on the glass increased significantly on the side toward the ZrO2 substrate. By allowing the bond between glass and ZrO2, those tensile stresses observed in unbonded specimens are overwhelmed by the contraction mismatch stresses between the ZrO2 substrate and the glassy overlayer. Specimens containing residual tensile stresses on the bending surface showed a time-dependent strength increase in relation to stress-free annealed samples in the dynamic biaxial bending test, with this effect being dependent on the magnitude of the residual tensile stress. The phenomenon observed is explained here on the basis of the water toughening effect, in which water diffuses into the glass promoting local swelling. An additional residual tensile stress at the crack tip adds an applied-stress-independent (Kres) term to the total tip stress intensity factor (Ktip), increasing the stress-enhanced diffusion and the shielding of the crack tip through swelling of the crack faces. Residual stresses in the glass influence the crack growth behavior of veneered-ZrO2 bilayered dental prostheses. The role of water in crack growth might be of higher complexity when residual stresses are present in the glass layer. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Enhancement of the fatigue performance of Ti-6Al-4V implant products

    NASA Astrophysics Data System (ADS)

    Wimalasiri, Dematapaksha H. R. J.

    Implants surgery, in particular hip implants, is fast becoming a routine, popular approach for curing diseases such as, osteoarthritis and rheumatic arthritis. However one potential problem with the insertion of a metal implant is that of the risk of fatigue failure. Numerous factors affect the propensity of a metal to fatigue, none more so than the physical and stress state of the surface. This research is focused on an assessment of the role of manufacturing processes on the fatigue performance of hip implants made from a Ti-6Al-4V alloy. The role of surface defects, surface residual stresses and material microstructural properties which influence fatigue performance were examined. Characterization of the implant material and of the processes involved in actual hip implant manufacturing were conducted. Rotating bend fatigue testing using hour glass shaped specimens was conducted to evaluate the fatigue performance at selected manufacturing stages. The surface roughness/defects and residual stresses were measured prior to conducting fatigue tests. A variation of fatigue limit, attributed to variations of surface roughness and surface residual stress was observed. The influence of parameters such as, stress ratio and mean stress effect, variation of fracture mechanics parameters (e.g. DeltaK[th]) and the limiting threshold conditions for different stages of cracks were investigated in the context of Kitagawa-Takahashi (K-T) type diagrams. Experimental data was used to develop models which were used to calculate, (i). fatigue life at respective stress amplitude and, (ii). the fatigue limit of components with known surface roughness/defect size and residual stress. To evaluate material crack growth properties a surface replication method was used. The output from both models showed good correlation with experimental data. Comprehensive fractography was conducted using optical, secondary electron, and infinite focus microscopy to support the results obtained from fatigue testing. Analysis was performed on in-vivo hip implant failure data covering the last 12 years. Fatigue failures occur in two locations on the implant stem, namely the cone area and the neck area. These two locations were investigated separately to identify the factors, such as; the category of implant most vulnerable to failure, service life, design features, fixation with the host bone, crack initiation features and propagation details. An attempt was made to compare in-vivo fatigue features with experimental fatigue results. X-ray diffraction (XRD) was used to investigate the surface residual stresses resulting from different manufacturing processes. The results were confirmed and software and hardware settings were calibrated in accordance with the results obtained from XRD analysis conducted at National Physical Laboratories (NPL), UK. Surface roughness measurements were also conducted using stylus type surface profilometer. The knowledge gained from this research can be used to understand the causes and modes of in-vivo fatigue failure of hip implants made of Ti-6Al-4V. Understanding the fatigue/mechanical properties of the implant material enables recommendations and optimization of good practice in manufacturing to eliminate in-vivo fatigue failures.

  17. Effectiveness of stress release geometries on reducing residual stress in electroforming metal microstructure

    NASA Astrophysics Data System (ADS)

    Song, Chang; Du, Liqun; Zhao, Wenjun; Zhu, Heqing; Zhao, Wen; Wang, Weitai

    2018-04-01

    Micro electroforming, as a mature micromachining technology, is widely used to fabricate metal microdevices in micro electro mechanical systems (MEMS). However, large residual stress in the local positions of the micro electroforming layer often leads to non-uniform residual stress distributions, dimension accuracy defects and reliability issues during fabrication of the metal microdevice. To solve this problem, a novel design method of presetting stress release geometries in the topological structure of the metal microstructure is proposed in this paper. First, the effect of stress release geometries (circular shape, annular groove shape and rivet shape) on the residual stress in the metal microstructure was investigated by finite element modeling (FEM) analysis. Two evaluation parameters, stress concentration factor K T and stress non-uniformity factor δ were calculated. The simulation results show that presetting stress release geometries can effectively reduce and homogenize the residual stress in the metal microstructures were measured metal microstructure. By combined use with stress release geometries of annular groove shape and rivet shape, the stress concentration factor K T and the stress non-uniformity factor δ both decreased at a maximum of 49% and 53%, respectively. Meanwhile, the average residual stress σ avg decreased at a maximum of 20% from  -292.4 MPa to  -232.6 MPa. Then, micro electroforming experiments were carried out corresponding to the simulation models. The residual stresses in the metal microstructures were measured by micro Raman spectroscopy (MRS) method. The results of the experiment proved that the stress non-uniformity factor δ and the average residual stress σ avg also decreased at a maximum with the combination use of annular groove shape and rivet shape stress release geometries, which is in agreement with the results of FEM analysis. The stress non-uniformity factor δ has a maximum decrease of 49% and the average residual stress σ avg has a maximum decrease of 37% from  -257.0 MPa to  -162.0 MPa.

  18. Effect of residual stress on modal patterns of MEMS vibratory gyroscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Shankar, E-mail: shankardutta77@gmail.com; Panchal, Abha; Kumar, Manoj

    Deep boron diffusion often induces residual stress in bulk micromachined MEMS structures, which may affect the MEMS devices operation. In this study, we studied the modal patterns of MEMS vibratory gyroscope under the residual stress (100 – 1000 MPa). Modal patterns and modal frequencies of the gyro are found to be dependent on the residual stress values. Without any residual stress, the modal frequencies drive and sense modeswere found to be 20.06 kHz and 20.36 kHz respectively. In presence of 450 MPa residual stress, the modal frequencies of the drive and sense modes were changed to 42.75 kHz and 43.07 kHz respectively.

  19. Shear wave in a pre-stressed poroelastic medium diffracted by a rigid strip

    NASA Astrophysics Data System (ADS)

    Singh, Abhishek Kumar; Yadav, Ram Prasad; Kumar, Santan; Chattopadhyay, Amares

    2017-10-01

    The investigated work analytically addresses the diffraction of horizontally polarised shear wave by a rigid strip in a pre-stressed transversely isotropic poroelastic infinite medium. The far field solution for the diffracted displacement of shear wave has been established in closed form. The diffraction patterns for displacement in the said medium have been computed numerically and its dependence on wave number has been depicted graphically. Further, the study also delineates the pronounced influence of various affecting parameters viz. anisotropy parameter, porosity parameter, speed of the shear wave, and incident angle on the diffracted displacement of the propagating wave. The effects of horizontal as well as vertical compressive and tensile pre-stresses on diffracted displacement of propagating wave have been examined meticulously in a comparative manner. It can be remarkably quoted that porosity prevailing in the medium disfavors the diffracted displacement of the propagating wave. In addition, some special cases have been deduced from the determined expression of the diffracted displacement of shear wave at a large distance from the strip.

  20. First interactions between hydrogen and stress-induced reverse transformation of Ni-Ti superelastic alloy

    NASA Astrophysics Data System (ADS)

    Yokoyama, Ken'ichi; Hashimoto, Tatsuki; Sakai, Jun'ichi

    2017-11-01

    The first dynamic interactions between hydrogen and the stress-induced reverse transformation have been investigated by performing an unloading test on a Ni-Ti superelastic alloy subjected to hydrogen charging under a constant applied strain in the elastic deformation region of the martensite phase. Upon unloading the specimen, charged with a small amount of hydrogen, no change in the behaviour of the stress-induced reverse transformation is observed in the stress-strain curve, although the behaviour of the stress-induced martensite transformation changes. With increasing amount of hydrogen charging, the critical stress for the reverse transformation markedly decreases. Eventually, for a larger amount of hydrogen charging, the reverse transformation does not occur, i.e. there is no recovery of the superelastic strain. The residual martensite phase on the side surface of the unloaded specimen is confirmed by X-ray diffraction. Upon training before the unloading test, the properties of the reverse transformation slightly recover after ageing in air at room temperature. The present study indicates that to change the behaviour of the reverse transformation a larger amount of hydrogen than that for the martensite transformation is necessary. In addition, it is likely that a substantial amount of hydrogen in solid solution more strongly suppresses the reverse transformation than hydrogen trapped at defects, thereby stabilising the martensite phase.

  1. In-situ Observation of Cross-Sectional Microstructural Changes and Stress Distributions in Fracturing TiN Thin Film during Nanoindentation.

    PubMed

    Zeilinger, Angelika; Todt, Juraj; Krywka, Christina; Müller, Martin; Ecker, Werner; Sartory, Bernhard; Meindlhumer, Michael; Stefenelli, Mario; Daniel, Rostislav; Mitterer, Christian; Keckes, Jozef

    2016-03-07

    Load-displacement curves measured during indentation experiments on thin films depend on non-homogeneous intrinsic film microstructure and residual stress gradients as well as on their changes during indenter penetration into the material. To date, microstructural changes and local stress concentrations resulting in plastic deformation and fracture were quantified exclusively using numerical models which suffer from poor knowledge of size dependent material properties and the unknown intrinsic gradients. Here, we report the first in-situ characterization of microstructural changes and multi-axial stress distributions in a wedge-indented 9 μm thick nanocrystalline TiN film volume performed using synchrotron cross-sectional X-ray nanodiffraction. During the indentation, needle-like TiN crystallites are tilted up to 15 degrees away from the indenter axis in the imprint area and strongly anisotropic diffraction peak broadening indicates strain variation within the X-ray nanoprobe caused by gradients of giant compressive stresses. The morphology of the multiaxial stress distributions with local concentrations up to -16.5 GPa correlate well with the observed fracture modes. The crack growth is influenced decisively by the film microstructure, especially by the micro- and nano-scopic interfaces. This novel experimental approach offers the capability to interpret indentation response and indenter imprint morphology of small graded nanostructured features.

  2. Analysis of residual stress state in sheet metal parts processed by single point incremental forming

    NASA Astrophysics Data System (ADS)

    Maaß, F.; Gies, S.; Dobecki, M.; Brömmelhoff, K.; Tekkaya, A. E.; Reimers, W.

    2018-05-01

    The mechanical properties of formed metal components are highly affected by the prevailing residual stress state. A selective induction of residual compressive stresses in the component, can improve the product properties such as the fatigue strength. By means of single point incremental forming (SPIF), the residual stress state can be influenced by adjusting the process parameters during the manufacturing process. To achieve a fundamental understanding of the residual stress formation caused by the SPIF process, a valid numerical process model is essential. Within the scope of this paper the significance of kinematic hardening effects on the determined residual stress state is presented based on numerical simulations. The effect of the unclamping step after the manufacturing process is also analyzed. An average deviation of the residual stress amplitudes in the clamped and unclamped condition of 18 % reveals, that the unclamping step needs to be considered to reach a high numerical prediction quality.

  3. Effects of Cutting Edge Microgeometry on Residual Stress in Orthogonal Cutting of Inconel 718 by FEM.

    PubMed

    Shen, Qi; Liu, Zhanqiang; Hua, Yang; Zhao, Jinfu; Lv, Woyun; Mohsan, Aziz Ul Hassan

    2018-06-14

    Service performance of components such as fatigue life are dramatically influenced by the machined surface and subsurface residual stresses. This paper aims at achieving a better understanding of the influence of cutting edge microgeometry on machined surface residual stresses during orthogonal dry cutting of Inconel 718. Numerical and experimental investigations have been conducted in this research. The cutting edge microgeometry factors of average cutting edge radius S¯, form-factor K , and chamfer were investigated. An increasing trend for the magnitudes of both tensile and compressive residual stresses was observed by using larger S¯ or introducing a chamfer on the cutting edges. The ploughing depth has been predicted based on the stagnation zone. The increase of ploughing depth means that more material was ironed on the workpiece subsurface, which resulted in an increase in the compressive residual stress. The thermal loads were leading factors that affected the surface tensile residual stress. For the unsymmetrical honed cutting edge with K = 2, the friction between tool and workpiece and tensile residual stress tended to be high, while for the unsymmetrical honed cutting edge with K = 0.5, the high ploughing depth led to a higher compressive residual stress. This paper provides guidance for regulating machine-induced residual stress by edge preparation.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. Y.; Choo, Hahn; Liaw, Peter K

    The combined effects of overload-induced enlarged compressive residual stresses and crack tip blunting with secondary cracks are suggested to be responsible for the observed changes in the crack opening load and resultant post-overload transient crack growth behavior [Lee SY, Liaw PK, Choo H, Rogge RB, Acta Mater 2010;59:485-94]. In this article, in situ neutron diffraction experiments were performed to quantify the influence of the combined effects by investigating the internal-stress evolution at various locations away from the crack tip. In the overload-retardation period, stress concentration occurs in the crack blunting region (an overload point) until a maximum crack arrest loadmore » is reached. The stress concentration is then transferred from the blunting region to the propagating crack tip (following the overload), requiring a higher applied load, as the closed crack is gradually opened. The transfer phenomena of the stress concentration associated with a crack opening process account for the nonlinearity of strain response in the vicinity of the crack tip. The delaying action of stress concentration at the crack tip is understood in conjunction with the concept of a critical stress (i.e. the stress required to open the closed crack behind the crack tip). A linear relationship between {Delta}{var_epsilon}{sub eff} and {Delta}K{sub eff} provides experimental support for the hypothesis that {Delta}K{sub eff} can be considered as the fatigue crack tip driving force.« less

  5. Verification and Validation of Residual Stresses in Bi-Material Composite Rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Stacy Michelle; Hanson, Alexander Anthony; Briggs, Timothy

    Process-induced residual stresses commonly occur in composite structures composed of dissimilar materials. These residual stresses form due to differences in the composite materials’ coefficients of thermal expansion and the shrinkage upon cure exhibited by polymer matrix materials. Depending upon the specific geometric details of the composite structure and the materials’ curing parameters, it is possible that these residual stresses could result in interlaminar delamination or fracture within the composite. Therefore, the consideration of potential residual stresses is important when designing composite parts and their manufacturing processes. However, the experimental determination of residual stresses in prototype parts can be time andmore » cost prohibitive. As an alternative to physical measurement, it is possible for computational tools to be used to quantify potential residual stresses in composite prototype parts. Therefore, the objectives of the presented work are to demonstrate a simplistic method for simulating residual stresses in composite parts, as well as the potential value of sensitivity and uncertainty quantification techniques during analyses for which material property parameters are unknown. Specifically, a simplified residual stress modeling approach, which accounts for coefficient of thermal expansion mismatch and polymer shrinkage, is implemented within the Sandia National Laboratories’ developed SIERRA/SolidMechanics code. Concurrent with the model development, two simple, bi-material structures composed of a carbon fiber/epoxy composite and aluminum, a flat plate and a cylinder, are fabricated and the residual stresses are quantified through the measurement of deformation. Then, in the process of validating the developed modeling approach with the experimental residual stress data, manufacturing process simulations of the two simple structures are developed and undergo a formal verification and validation process, including a mesh convergence study, sensitivity analysis, and uncertainty quantification. The simulations’ final results show adequate agreement with the experimental measurements, indicating the validity of a simple modeling approach, as well as a necessity for the inclusion of material parameter uncertainty in the final residual stress predictions.« less

  6. Variability of residual stresses and superposition effect in multipass grinding of high-carbon high-chromium steel

    NASA Astrophysics Data System (ADS)

    Karabelchtchikova, Olga; Rivero, Iris V.

    2005-02-01

    The distribution of residual stresses (RS) and surface integrity generated in heat treatment and subsequent multipass grinding was investigated in this experimental study to examine the source of variability and the nature of the interactions of the experimental factors. A nested experimental design was implemented to (a) compare the sources of the RS variability, (b) to examine RS distribution and tensile peak location due to experimental factors, and (c) to analyze the superposition relationship in the RS distribution due to multipass grinding technique. To characterize the material responses, several techniques were used, including microstructural analysis, hardness-toughness and roughness examinations, and retained austenite and RS measurements using x-ray diffraction. The causality of the RS was explained through the strong correlation of the surface integrity characteristics and RS patterns. The main sources of variation were the depth of the RS distribution and the multipass grinding technique. The grinding effect on the RS was statistically significant; however, it was mostly predetermined by the preexisting RS induced in heat treatment. Regardless of the preceding treatments, the effect of the multipass grinding technique exhibited similar RS patterns, which suggests the existence of the superposition relationship and orthogonal memory between the passes of the grinding operation.

  7. Wear Enhancement of Wheel-Rail Interaction by Ultrasonic Nanocrystalline Surface Modification Technique.

    PubMed

    Chang, Seky; Pyun, Young-Sik; Amanov, Auezhan

    2017-02-16

    In this study, an ultrasonic nanocrystalline surface modification (UNSM) technique was applied to normal and heat-treated rails made of 60 kgK steel to enhance the wear resistance of the wheel-rail interaction. The hardness and compressive residual stress values of the untreated and UNSM-treated rails were measured by the Brinell hardness tester and X-ray diffraction technique, respectively. It was found, according to the measurement results, that the hardness was increased by about 20% and 8%, whereas the compressive residual stress was induced by about 52% and 62% for the UNSM-treated normal and heat-treated rails, respectively. The UNSM-treated normal rail showed a slightly higher hardness than the heat-treated rail. The wear resistance of rails with respect to rotating speed and rolling time was assessed using a rolling contact wear (RCW) tester under dry conditions. The RCW test results revealed that the wear of the UNSM-treated rails was enhanced in comparison with those of the untreated rails. Also, the wear amount of the rails was increased with increasing the rotation speed. The UNSM-treated normal rail exhibited the highest wear resistance with respect to the rotation speed. The wear mechanisms of the rails are also discussed based on microscopic images of the worn out surfaces.

  8. Wear Enhancement of Wheel-Rail Interaction by Ultrasonic Nanocrystalline Surface Modification Technique

    PubMed Central

    Chang, Seky; Pyun, Young-Sik; Amanov, Auezhan

    2017-01-01

    In this study, an ultrasonic nanocrystalline surface modification (UNSM) technique was applied to normal and heat-treated rails made of 60 kgK steel to enhance the wear resistance of the wheel-rail interaction. The hardness and compressive residual stress values of the untreated and UNSM-treated rails were measured by the Brinell hardness tester and X-ray diffraction technique, respectively. It was found, according to the measurement results, that the hardness was increased by about 20% and 8%, whereas the compressive residual stress was induced by about 52% and 62% for the UNSM-treated normal and heat-treated rails, respectively. The UNSM-treated normal rail showed a slightly higher hardness than the heat-treated rail. The wear resistance of rails with respect to rotating speed and rolling time was assessed using a rolling contact wear (RCW) tester under dry conditions. The RCW test results revealed that the wear of the UNSM-treated rails was enhanced in comparison with those of the untreated rails. Also, the wear amount of the rails was increased with increasing the rotation speed. The UNSM-treated normal rail exhibited the highest wear resistance with respect to the rotation speed. The wear mechanisms of the rails are also discussed based on microscopic images of the worn out surfaces. PMID:28772549

  9. Elastic Heterogeneity in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Dmowski, W.; Iwashita, T.; Chuang, C.-P.; Almer, J.; Egami, T.

    2010-11-01

    When a stress is applied on a metallic glass it deforms following Hook’s law. Therefore it may appear obvious that a metallic glass deforms elastically. Using x-ray diffraction and anisotropic pair-density function analysis we show that only about (3)/(4) in volume fraction of metallic glasses deforms elastically, whereas the rest of the volume is anelastic and in the experimental time scale deform without resistance. We suggest that this anelastic portion represents residual liquidity in the glassy state. Many theories, such as the free-volume theory, assume the density of defects in the glassy state to be of the order of 1%, but this result shows that it is as much as a quarter.

  10. A coupled creep plasticity model for residual stress relaxation of a shot-peened nickel-based superalloy

    NASA Astrophysics Data System (ADS)

    Buchanan, Dennis J.; John, Reji; Brockman, Robert A.; Rosenberger, Andrew H.

    2010-01-01

    Shot peening is a commonly used surface treatment process that imparts compressive residual stresses into the surface of metal components. Compressive residual stresses retard initiation and growth of fatigue cracks. During component loading history, shot-peened residual stresses may change due to thermal exposure, creep, and cyclic loading. In these instances, taking full credit for compressive residual stresses would result in a nonconservative life prediction. This article describes a methodical approach for characterizing and modeling residual stress relaxation under elevated temperature loading, near and above the monotonic yield strength of INI 00. The model incorporates the dominant creep deformation mechanism, coupling between the creep and plasticity models, and effects of prior plastic strain to simulate surface treatment deformation.

  11. Research on Formation Mechanism of Dynamic Response and Residual Stress of Sheet Metal Induced by Laser Shock Wave

    NASA Astrophysics Data System (ADS)

    Feng, Aixin; Cao, Yupeng; Wang, Heng; Zhang, Zhengang

    2018-01-01

    In order to reveal the quantitative control of the residual stress on the surface of metal materials, the relevant theoretical and experimental studies were carried out to investigate the dynamic response of metal thin plates and the formation mechanism of residual stress induced by laser shock wave. In this paper, the latest research trends on the surface residual stress of laser shock processing technology were elaborated. The main progress of laser shock wave propagation mechanism and dynamic response, laser shock, and surface residual stress were discussed. It is pointed out that the multi-scale characterization of laser and material, surface residual stress and microstructure change is a new hotspot in laser shock strengthening technology.

  12. Synchrotron Radial X-ray Diffraction Studies of Deformation of Polycrystalline MgO

    NASA Astrophysics Data System (ADS)

    Girard, J.; Tsujino, N.; Mohiuddin, A.; Karato, S. I.

    2016-12-01

    X-ray diffraction analyses have been used for decades to study mechanical properties of polycrystalline samples during in-situ high-pressure deformation. When polycrystalline materials are deformed, stresses develop in grains and lead to lattice distortion. Using X-ray diffraction we can estimate the lattice strain for each (hkl) diffraction plans and calculate the applied stress for each (hkl), using [Singh, 1993] relation. However, this method doesn't take into account plastic anisotropy. As a results of plastic anisotropy present in the material, stress estimated from this method can be largely differ depending on (hkl) diffraction planes [Karato, 2009]. Studying the stress estimate for each (hkl) plane, might help us distinguish dominant deformation mechanisms activated during deformation such as diffusion (we will observe small stress variation as a function of (hkl) diffraction planes) or dislocation creep (we will observe a stress variation as a function of (hkl) diffraction planes that could also give us clues on potential slip system activity). In this study we observed stress evolution in MgO polycrystalline samples deformed under mantle pressure and temperature for (200) and (220) diffraction planes. Using a range MgO grain sizes we were able to control the active deformation mechanism (for e.g. diffusion creep or dislocation creep). For coarse-grained specimens, we observed strong (hkl) dependence of radial strain indicating the operation of dislocation creep. The observed (hkl) dependence changes with pressure suggesting a change in the slip system: at pressures higher than 27 GPa, (200) shows larger stress estimate than (220). In contrast, at lower pressures, (220) shows larger stress estimate than (200). This might indicate a slip system transition in MgO occurring under lower mantle conditions. From {110} plane to {100} plane. This is in good agreement with theoretical predictions and numerical calculation [Amodeo et al., 2012] and has an important implication for the interpretation of seismic anisotropy in the D" layer [Karato, 1998]. Amodeo, J., Carrey P., and P. Cordier (2012), Philosophical Magazine, 92(12). Karato, S-I. (1998), Earth and planets Space, 50, 1019-1028 Karato, S.-I. (2009), Physical Review. B, 79(21). Singh, A. K., (1993), Journal of Applied Physic, 73, 4278.

  13. Residual stresses of thin, short rectangular plates

    NASA Technical Reports Server (NTRS)

    Andonian, A. T.; Danyluk, S.

    1985-01-01

    The analysis of the residual stresses in thin, short rectangular plates is presented. The analysis is used in conjunction with a shadow moire interferometry technique by which residual stresses are obtained over a large spatial area from a strain measurement. The technique and analysis are applied to a residual stress measurement of polycrystalline silicon sheet grown by the edge-defined film growth technique.

  14. Influence of weld-induced residual stresses on the hysteretic behavior of a girth-welded circular stainless steel tube

    NASA Astrophysics Data System (ADS)

    Lee, Chin-Hyung; Nguyen Van Do, Vuong; Chang, Kyong-Ho; Jeon, Jun-Tai; Um, Tae-Hwan

    2018-04-01

    The present study attempts to characterize the relevance of welding residual stresses to the hysteretic behaviour of a girth-welded circular stainless steel tube under cyclic mechanical loadings. Finite element (FE) thermal simulation of the girth butt welding process is first performed to identify the weld-induced residual stresses by using the one-way coupled three-dimensional (3-D) thermo-mechanical FE analysis method. 3-D elastic-plastic FE analysis equipped with the cyclic plasticity constitutive model capable of describing the cyclic response is next carried out to scrutinize the effects that the residual stresses have on the hysteretic performance of the girth-welded steel tube exposed to cyclic axial loading, which takes the residual stresses and plastic strains calculated from the preceding thermo-mechanical analysis as the initial condition. The analytical results demonstrate that the residual stresses bring about premature yielding and deterioration of the load carrying capacity in the elastic and the transition load ranges, whilst the residual stress effect is wiped out quickly in the plastic load domain since the residual stresses are nearly wholly relaxed after application of the cyclic plastic loading.

  15. Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M. J., E-mail: macdonm@umich.edu; SLAC National Accelerator Laboratory, Menlo Park, California 94025; Vorberger, J.

    2016-06-07

    Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit [Higginbotham, J. Appl. Phys. 115, 174906 (2014)]. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate latticemore » strains for all initial crystallite orientations, enabling elastic anisotropy and sample texture effects to be modeled directly. The effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.« less

  16. Finite element analysis of residual stress in cold expanded plate with different thickness and expansion ratio

    NASA Astrophysics Data System (ADS)

    Arifin Shariffudin, Kamarul; Karuppanan, Saravanan; Patil, Santosh S.

    2017-10-01

    Cold expansion of fastener/rivet holes is a common way to generate beneficial compressive residual stress around the fastener hole. In this study, cold expansion process was simulated by finite-element method in order to determine the residual stress field around two cold expanded holes by varying the plate thickness and expansion ratio of the hole. The model was developed in ANSYS and assigned to aluminium alloy 7475-T61 material model. The results showed that the residual stress become more compressive as the plate thickness is increased up to t/d = 2.6 and decreased for further level of thickness. In addition, the residual stress at the edge of the hole become more compressive as the expansion ratio is increased up to 4.5% and decreased for further level of expansion. This study also found that the residual stresses near the entrance and the exit face of the plate are less compressive than the residual stresses on the mid-thickness of the plate.

  17. Analyse de l'état mécanique et microstructural de films minces supraconducteurs YBa_2 Cu_3O_7 par diffraction des rayons X

    NASA Astrophysics Data System (ADS)

    Auzary, S.; Badawi, K. F.; Bimbault, L.; Rabier, J.; Gaboriaud, R. J.; Goudeau, Ph.

    1997-01-01

    Mechanical and microstructural analysis in a 100nm thin film is presented in this study. Using X-ray diffraction with a tensorial approach, we have determined stresses, strains, stress-free lattice parameters, microdistorsions and diffracting coherent domains size. Stress-free lattice parameters are higher than the bulk values. A high value of stresses is explained as a combination of coherent stresses, thermal stresses and intrinsic ones. Diffraction peaks line profiles analysis suggests grain boundaries presence as well as high lattice elastic microdistorsions. Cette étude présente une analyse de l'état mécanique et microstructurale dans un film mince de 100nm d'épaisseur d'YBCO déposé sur un substrat de MgO. En utilisant la diffraction des rayons X couplée à une approche tensorielle, nous avons déterminé les déformations, les contraintes, les paramètres libres de contraintes, les microdistorsions élastiques ainsi que la taille des domaines cohérents de diffraction. Les paramètres libres de contrainte sont supérieurs à ceux du massif. Une valeur élevée des contraintes est expliquée à partir des contraintes de cohérence, des contraintes thermiques et intrinsèques. L'analyse des profils des pics de diffraction suggère la présence de sous-joints et de distorsions élastiques élevées au niveau des mailles cristallographiques.

  18. The relationships between residual stress relaxation and texture development in AZ31 Mg alloys via the vibratory stress relief technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jia-Siang, E-mail: andy304312003@yahoo.com.tw; Hsieh, Chih-Chun, E-mail: jeromehsieh@gmail.com; Lai, Hsuan-Han, E-mail: g099066020@mail.nchu.edu.tw

    2015-01-15

    A systematic study of residual stress relaxation and the texture evolution of cold-rolled AZ31 Mg alloys using the vibratory stress relief technique with a simple cantilever beam vibration system was performed using a high-resolution X-ray diffractometer and a portable X-ray residual stress analyzer. The effects of vibrational stress excitation on the surface residual stress distribution and on the texture of pole figures (0002) occurring during the vibratory stress relief were examined. Compared with the effects corresponding to the same alloy under non-vibration condition, it can be observed that the uniform surface residual stress distribution and relaxation of the compressive residualmore » stress in the stress concentration zone were observed rather than all of the residual stresses being eliminated. Furthermore, with an increase in the vibrational aging time, the compressive residual stress, texture density, and (0002) preferred orientation increased first and then decreased. It should be underlined that the vibratory stress relief process for the vibrational aging time of more than 10 min is able to weaken the strong basal textures of AZ31 Mg alloys, which is valuable for enhancement of their formability and is responsible for an almost perfect 3D-Debye–Scherrer ring. - Highlights: • 3D-Debye ring about VSR technique is not discussed in the existing literature. • A newly developed VSR method is suitable for small or thin workpieces. • The cosα method accurately and effectively determines the residual stresses. • The VSR technique is valuable for enhancement of their formability. • The texture and preferred orientation change with the vibrational aging time.« less

  19. Thermal Residual Stress in Environmental Barrier Coated Silicon Nitride - Modeled

    NASA Technical Reports Server (NTRS)

    Ali, Abdul-Aziz; Bhatt, Ramakrishna T.

    2009-01-01

    When exposed to combustion environments containing moisture both un-reinforced and fiber reinforced silicon based ceramic materials tend to undergo surface recession. To avoid surface recession environmental barrier coating systems are required. However, due to differences in the elastic and thermal properties of the substrate and the environmental barrier coating, thermal residual stresses can be generated in the coated substrate. Depending on their magnitude and nature thermal residual stresses can have significant influence on the strength and fracture behavior of coated substrates. To determine the maximum residual stresses developed during deposition of the coatings, a finite element model (FEM) was developed. Using this model, the thermal residual stresses were predicted in silicon nitride substrates coated with three environmental coating systems namely barium strontium aluminum silicate (BSAS), rare earth mono silicate (REMS) and earth mono di-silicate (REDS). A parametric study was also conducted to determine the influence of coating layer thickness and material parameters on thermal residual stress. Results indicate that z-direction stresses in all three systems are small and negligible, but maximum in-plane stresses can be significant depending on the composition of the constituent layer and the distance from the substrate. The BSAS and REDS systems show much lower thermal residual stresses than REMS system. Parametric analysis indicates that in each system, the thermal residual stresses can be decreased with decreasing the modulus and thickness of the coating.

  20. Effects of service conditions on the as-manufactured residual stress distribution in commuter car wheels

    DOT National Transportation Integrated Search

    2001-09-01

    The effects of simulated service conditions on the as-manufactured residual stress : distribution in commuter car wheels are investigated. The residual stresses, those : stresses which remain after all applied loads are removed, can encourage the for...

  1. Morphology of residually stressed tubular tissues: Beyond the elastic multiplicative decomposition

    NASA Astrophysics Data System (ADS)

    Ciarletta, P.; Destrade, M.; Gower, A. L.; Taffetani, M.

    2016-05-01

    Many interesting shapes appearing in the biological world are formed by the onset of mechanical instability. In this work we consider how the build-up of residual stress can cause a solid to buckle. In all past studies a fictitious (virtual) stress-free state was required to calculate the residual stress. In contrast, we use a model which is simple and allows the prescription of any residual stress field. We specialize the analysis to an elastic tube subject to a two-dimensional residual stress, and find that incremental wrinkles can appear on its inner or its outer face, depending on the location of the highest value of the residual hoop stress. We further validate the predictions of the incremental theory with finite element simulations, which allow us to go beyond this threshold and predict the shape, number and amplitude of the resulting creases.

  2. Finite element residual stress analysis of induction heating bended ferritic steel piping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residualmore » stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.« less

  3. Electron microscopy of carbonaceous matter in Allende acid residues

    NASA Technical Reports Server (NTRS)

    Lumpkin, G. R.

    1982-01-01

    On the basis of characteristic diffuse ring diffraction patterns, much of the carbonaceous matter in a large suite of Allende acid residues has been identified as a variety of turbostratic carbon. Crystallites of this phase contain randomly stacked sp(2) hybridized carbon layers and diffraction patterns resemble those from carbon black and glassy carbon. Carbynes are probably absent, and are certainly restricted to less than 0.5% of these acid residues. The work of Ott et al. (1981) provides a basis for the possibility that turbostratic carbon is a carrier of noble gases, but an additional component - amorphous carbon - may be necessary to explain the high release temperatures of noble gases as well as the glassy character of many of the carbonaceous particles. Carbynes are considered to be questionable as important carriers of noble gases in the Allende acid residues.

  4. Depth-Profiling Electronic and Structural Properties of Cu(In,Ga)(S,Se)2 Thin-Film Solar Cell.

    PubMed

    Chiang, Ching-Yu; Hsiao, Sheng-Wei; Wu, Pin-Jiun; Yang, Chu-Shou; Chen, Chia-Hao; Chou, Wu-Ching

    2016-09-14

    Utilizing a scanning photoelectron microscope (SPEM) and grazing-incidence X-ray powder diffraction (GIXRD), we studied the electronic band structure and the crystalline properties of the pentanary Cu(In,Ga)(S,Se)2 (CIGSSe) thin-film solar cell as a function of sample depth on measuring the thickness-gradient sample. A novel approach is proposed for studying the depth-dependent information on thin films, which can provide a gradient thickness and a wide cross-section of the sample by polishing process. The results exhibit that the CIGSSe absorber layer possesses four distinct stoichiometries. The growth mechanism of this distinctive compositional distribution formed by a two-stage process is described according to the thermodynamic reaction and the manufacturing process. On the basis of the depth-profiling results, the gradient profiles of the conduction and valence bands were constructed to elucidate the performance of the electrical properties (in this case, Voc = 620 mV, Jsc = 34.6 mA/cm(2), and η = 14.04%); the valence-band maxima (VBM) measured with a SPEM in the spectroscopic mode coincide with this band-structure model, except for a lowering of the VBM observed in the surface region of the absorber layer due to the ordered defect compound (ODC). In addition, the depth-dependent texturing X-ray diffraction pattern presents the crystalline quality and the residual stress for each depth of a thin-film device. We find that the randomly oriented grains in the bottom region of the absorber layer and the different residual stress between the underlying Mo and the absorber interface, which can deteriorate the electrical performance due to peeling-off effect. An anion interstitial defect can be observed on comparing the anion concentration of the elemental distribution with crystalline composition; a few excess sulfur atoms insert in interstitial sites at the front side of the absorber layer, whereas the interstitial selenium atoms insert at the back side.

  5. Elastic plastic self-consistent (EPSC) modeling of plastic deformation in fayalite olivine

    DOE PAGES

    Burnley, Pamela C

    2015-07-01

    Elastic plastic self-consistent (EPSC) simulations are used to model synchrotron X-ray diffraction observations from deformation experiments on fayalite olivine using the deformation DIA apparatus. Consistent with results from other in situ diffraction studies of monomineralic polycrystals, the results show substantial variations in stress levels among grain populations. Rather than averaging the lattice reflection stresses or choosing a single reflection to determine the macroscopic stress supported by the specimen, an EPSC simulation is used to forward model diffraction data and determine a macroscopic stress that is consistent with lattice strains of all measured diffraction lines. The EPSC simulation presented here includesmore » kink band formation among the plastic deformation mechanisms in the simulation. The inclusion of kink band formation is critical to the success of the models. This study demonstrates the importance of kink band formation as an accommodation mechanism during plastic deformation of olivine as well as the utility of using EPSC models to interpret diffraction from in situ deformation experiments.« less

  6. Experiment and numerical simulation for laser ultrasonic measurement of residual stress.

    PubMed

    Zhan, Yu; Liu, Changsheng; Kong, Xiangwei; Lin, Zhongya

    2017-01-01

    Laser ultrasonic is a most promising method for non-destructive evaluation of residual stress. The residual stress of thin steel plate is measured by laser ultrasonic technique. The pre-stress loading device is designed which can easily realize the condition of the specimen being laser ultrasonic tested at the same time in the known stress state. By the method of pre-stress loading, the acoustoelastic constants are obtained and the effect of different test directions on the results of surface wave velocity measurement is discussed. On the basis of known acoustoelastic constants, the longitudinal and transverse welding residual stresses are measured by the laser ultrasonic technique. The finite element method is used to simulate the process of surface wave detection of welding residual stress. The pulsed laser is equivalent to the surface load and the relationship between the physical parameters of the laser and the load is established by the correction coefficient. The welding residual stress of the specimen is realized by the ABAQUS function module of predefined field. The results of finite element analysis are in good agreement with the experimental method. The simple and effective numerical and experimental methods for laser ultrasonic measurement of residual stress are demonstrated. Copyright © 2016. Published by Elsevier B.V.

  7. Non-Destructive Measurement of Residual Strain in Connecting Rods Using Neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, Tomohiro; Bunn, Jeffrey R.; Fancher, Christopher M.

    Increasing the strength of materials is effective in reducing weight and boosting structural part performance, but there are cases in where the residual strain generated during the process of manufacturing of high-strength materials results in a decline of durability. It is therefore important to understand how the residual strain in a manufactured component changes due to processing conditions. In the case of a connecting rod, because the strain load on the connecting rod rib sections is high, it is necessary to clearly understand the distribution of strain in the ribs. However, because residual strain is generally measured by using X-raymore » diffractometers or strain gauges, measurements are limited to the surface layer of the parts. Neutron beams, however, have a higher penetration depth than X-rays, allowing for strain measurement in the bulk material. The research discussed within this paper consists of non-destructive residual strain measurements in the interior of connecting rods using the 2nd Generation Neutron Residual Stress Mapping Facility (NRSF2) at Oak Ridge National Laboratory, measuring the Fe (211) diffraction peak position of the ferrite phase. The interior strain distribution of connecting rod, which prepared under different manufacturing processes, was revealed. By the visualization of interior strains, clear understandings of differences in various processing conditions were obtained. In addition, it is known that the peak width, which is also obtained during measurement, is suggestive of the size of crystallites in the structure; however the peak width can additionally be caused by microstresses and material dislocations.« less

  8. Experimental-Numerical Comparison of the Cantilever MEMS Frequency Shift in presence of a Residual Stress Gradient.

    PubMed

    Ballestra, Alberto; Somà, Aurelio; Pavanello, Renato

    2008-02-06

    The dynamic characterization of a set of gold micro beams by electrostatic excitation in presence of residual stress gradient has been studied experimentally. A method to determine the micro-cantilever residual stress gradient by measuring the deflection and curvature and then identifying the residual stress model by means of frequency shift behaviour is presented. A comparison with different numerical FEM models and experimental results has been carried out, introducing in the model the residual stress of the structures, responsible for an initial upward curvature. Dynamic spectrum data are measured via optical interferometry and experimental frequency shift curves are obtained by increasing the dc voltage applied to the specimens. A good correspondence is pointed out between measures and numerical models so that the residual stress effect can be evaluated for different configurations.

  9. Experimental-Numerical Comparison of the Cantilever MEMS Frequency Shift in presence of a Residual Stress Gradient

    PubMed Central

    Ballestra, Alberto; Somà, Aurelio; Pavanello, Renato

    2008-01-01

    The dynamic characterization of a set of gold micro beams by electrostatic excitation in presence of residual stress gradient has been studied experimentally. A method to determine the micro-cantilever residual stress gradient by measuring the deflection and curvature and then identifying the residual stress model by means of frequency shift behaviour is presented. A comparison with different numerical FEM models and experimental results has been carried out, introducing in the model the residual stress of the structures, responsible for an initial upward curvature. Dynamic spectrum data are measured via optical interferometry and experimental frequency shift curves are obtained by increasing the dc voltage applied to the specimens. A good correspondence is pointed out between measures and numerical models so that the residual stress effect can be evaluated for different configurations. PMID:27879733

  10. Non-Euclidean stress-free configuration of arteries accounting for curl of axial strips sectioned from vessels.

    PubMed

    Takamizawa, Keiichi; Nakayama, Yasuhide

    2013-11-01

    It is well known that arteries are subject to residual stress. In earlier studies, the residual stress in the arterial ring relieved by a radial cut was considered in stress analysis. However, it has been found that axial strips sectioned from arteries also curled into arcs, showing that the axial residual stresses were relieved from the arterial walls. The combined relief of circumferential and axial residual stresses must be considered to accurately analyze stress and strain distributions under physiological loading conditions. In the present study, a mathematical model of a stress-free configuration of artery was proposed using Riemannian geometry. Stress analysis for arterial walls under unloaded and physiologically loaded conditions was performed using exponential strain energy functions for porcine and human common carotid arteries. In the porcine artery, the circumferential stress distribution under physiological loading became uniform compared with that without axial residual strain, whereas a gradient of axial stress distribution increased through the wall thickness. This behavior showed almost the same pattern that was observed in a recent study in which approximate analysis accounting for circumferential and axial residual strains was performed, whereas the circumferential and axial stresses increased from the inner surface to the outer surface under a physiological condition in the human common carotid artery of a two-layer model based on data of other recent studies. In both analyses, Riemannian geometry was appropriate to define the stress-free configurations of the arterial walls with both circumferential and axial residual strains.

  11. Features of residual stresses in duplex stainless steel butt welds

    NASA Astrophysics Data System (ADS)

    Um, Tae-Hwan; Lee, Chin-Hyung; Chang, Kyong-Ho; Nguyen Van Do, Vuong

    2018-04-01

    Duplex stainless steel finds increasing use as an alternative to austenitic stainless steel, particularly where chloride or sulphide stress corrosion cracking is of primary concern, due to the excellent combination of strength and corrosion resistance. During welding, duplex stainless steel does not create the same magnitude or distribution of weld-induced residual stresses as those in welded austenitic stainless steel due to the different physical and mechanical properties between them. In this work, an experimental study on the residual stresses in butt-welded duplex stainless steel is performed utilizing the layering technique to investigate the characteristics of residual stresses in the weldment. Three-dimensional thermos-mechanical-metallurgical finite element analysis is also performed to confirm the residual stress measurements.

  12. Residual stresses in cross-ply composite tubes

    NASA Technical Reports Server (NTRS)

    Cohen, D.; Hyer, M. W.

    1984-01-01

    The residual thermal stresses in 4-layer cross-ply tubes are studied. The tubes considered has a small radius to wall-thickness ratios and so elasticity solutions were used. The residual thermal stress problem was considered to be axisymmetric and three elasticity solutions were derived and the results compared with the results using classical lamination theory. The comparison illustrates the limitations of classical lamination theory. The three elasticity solutions derived were: plane stress, plane strain, and generalized plane strain, the latter being the most realistic. Residual stresses in both the hoop and axial direction is significant. Stacking arrangement effects the residual stress to some extent, as do the material properties of the individual lamina. The benefits of hybrid construction are briefly discussed.

  13. Effects of Cooling Rate on Precipitate Evolution and Residual Stresses in Al-Si-Mn-Mg Casting Alloy

    NASA Astrophysics Data System (ADS)

    Lee, Eunkyung; Walde, Caitlin; Mishra, Brajendra

    2018-07-01

    The residual stresses with different heat treatment conditions have been measured and correlated with the microstructural behavior of AA365. 30 and 100 K/min cooling of AA365 inhibited the transformation of precipitates under 773 K, respectively. The alloy cooled at 30 and 100 K/min exhibited tensile residual stresses of 6.2 and 5.4 MPa, respectively, while the alloy cooled at 1 and 10 K/min showed compressive stresses of - 12.8 and - 10.3 MPa, respectively. The formation β', β″, and other intermetallic compounds affected the compressive residual stresses, and that the fracture of the brittle intermetallic phases could reduce the extent of residual stresses in the lattice through plastic deformation.

  14. Effects of Cooling Rate on Precipitate Evolution and Residual Stresses in Al-Si-Mn-Mg Casting Alloy

    NASA Astrophysics Data System (ADS)

    Lee, Eunkyung; Walde, Caitlin; Mishra, Brajendra

    2018-03-01

    The residual stresses with different heat treatment conditions have been measured and correlated with the microstructural behavior of AA365. 30 and 100 K/min cooling of AA365 inhibited the transformation of precipitates under 773 K, respectively. The alloy cooled at 30 and 100 K/min exhibited tensile residual stresses of 6.2 and 5.4 MPa, respectively, while the alloy cooled at 1 and 10 K/min showed compressive stresses of - 12.8 and - 10.3 MPa, respectively. The formation β', β″, and other intermetallic compounds affected the compressive residual stresses, and that the fracture of the brittle intermetallic phases could reduce the extent of residual stresses in the lattice through plastic deformation.

  15. Vibration stress relief of DH 36 rectangle welded plates

    NASA Astrophysics Data System (ADS)

    Li, Shuqi; Fang, Hongyuan

    2018-03-01

    Vibration stress relief (VSR) is widely used in reducing residual stress in welded structures. However, the effectiveness of this method is still instable in some circumstance. In this study, a covert negative treatment phenomenon was investigated, i.e. natural frequency of welded structures decreased after VSR but residual stress in one direction increased. When the alteration of natural frequency after VSR is significant, the residual stresses in both the longitudinal and transversal directions shall decrease. Otherwise, residual stresses may increase on one direction. Thus, sufficient power shall be applied to the welded structures to avoid negative results.

  16. Residual stress evaluation by Barkhausen signals with a magnetic field sensor for high efficiency electrical motors

    NASA Astrophysics Data System (ADS)

    Tsuchida, Yuji; Enokizono, Masato

    2018-04-01

    The iron loss of industrial motors increases by residual stress during manufacturing processes. It is very important to make clear the distribution of the residual stress in the motor cores to reduce the iron loss in the motors. Barkhausen signals which occur on electrical steel sheets can be used for the evaluation of the residual stress because they are very sensitive to the material properties. Generally, a B-sensor is used to measure Barkhausen signals, however, we developed a new H-sensor to measure them and applied it into the stress evaluation. It is supposed that the Barkhausen signals by using a H-sensor can be much effective to the residual stress on the electrical steel sheets by referring our results regarding to the stress evaluations. We evaluated the tensile stress of the electrical steel sheets by measuring Barkhausen signals by using our developed H-sensor for high efficiency electrical motors.

  17. Residual stresses in shape memory alloy fiber reinforced aluminium matrix composite

    NASA Astrophysics Data System (ADS)

    Tsz Loong, Tang; Jamian, Saifulnizan; Ismail, Al Emran; Nur, Nik Hisyammudin Muhd; Watanabe, Yoshimi

    2017-01-01

    Process-induced residual stress in shape memory alloy (SMA) fiber reinforced aluminum (Al) matrix composite was simulated by ANSYS APDL. The manufacturing process of the composite named as NiTi/Al is start with loading and unloading process of nickel titanium (NiTi) wire as SMA to generate a residual plastic strain. Then, this plastic deformed NiTi wire would be embedded into Al to become a composite. Lastly, the composite is heated form 289 K to 363 K and then cooled back to 300 K. Residual stress is generated in composite because of shape memory effect of NiTi and mismatch of thermal coefficient between NiTi wire and Al matrix of composite. ANSYS APDL has been used to simulate the distribution of residual stress and strain in this process. A sensitivity test has been done to determine the optimum number of nodes and elements used. Hence, the number of nodes and elements used are 15680 and 13680, respectively. Furthermore, the distribution of residual stress and strain of nickel fiber reinforced aluminium matrix composite (Ni/Al) and titanium fiber reinforced aluminium matrix composite (Ti/Al) under same simulation process also has been simulated by ANSYS APDL as comparison to NiTi/Al. The simulation results show that compressive residual stress is generated on Al matrix of Ni/Al, Ti/Al and NiTi/Al during heating and cooling process. Besides that, they also have similar trend of residual stress distribution but difference in term of value. For Ni/Al and Ti/Al, they are 0.4% difference on their maximum compressive residual stress at 363K. At same circumstance, NiTi/Al has higher residual stress value which is about 425% higher than Ni/Al and Ti/Al composite. This implies that shape memory effect of NiTi fiber reinforced in composite able to generated higher compressive residual stress in Al matrix, hence able to enhance tensile property of the composite.

  18. Measurement of the residual stress in hot rolled strip using strain gauge method

    NASA Astrophysics Data System (ADS)

    Kumar, Lokendra; Majumdar, Shrabani; Sahu, Raj Kumar

    2017-07-01

    Measurement of the surface residual stress in a flat hot rolled steel strip using strain gauge method is considered in this paper. Residual stresses arise in the flat strips when the shear cut and laser cut is applied. Bending, twisting, central buckled and edge waviness is the common defects occur during the cutting and uncoiling process. These defects arise due to the non-uniform elastic-plastic deformation, phase transformation occurring during cooling and coiling-uncoiling process. The residual stress analysis is very important because with early detection it is possible to prevent an object from failure. The goal of this paper is to measure the surface residual stress in flat hot rolled strip using strain gauge method. The residual stress was measured in the head and tail end of hot rolled strip considering as a critical part of the strip.

  19. Effect of Turning and Ball Burnishing on the Microstructure and Residual Stress Distribution in Stainless Steel Cold Spray Deposits

    NASA Astrophysics Data System (ADS)

    Sova, A.; Courbon, C.; Valiorgue, F.; Rech, J.; Bertrand, Ph.

    2017-12-01

    In this paper, an experimental study of influence of machining by turning and ball burnishing on the surface morphology, structure and residual stress distribution of cold spray 17-4 PH stainless steel deposits is provided. It is shown that cold spray deposits could be machined by turning under parameters closed to turning of bulk 17-4 PH stainless steel. Ball burnishing process permits to decrease surface roughness. Cross-sectional observation revealed that the turning and ball burnishing process allowed microstructure changes in the coating near-surface zone. In particular, significant particle deformation and particle boundary fragmentation is observed. Measurements of residual stresses showed that residual stresses in the as-spray deposit are compressive. After machining by turning, tensile residual stresses in the near-surface zone were induced. Further surface finishing of turned coating by ball burnishing allowed the establishment of the compressive residual stresses in the coating.

  20. Numerical Study of Mechanical Response of Pure Titanium during Shot Peening

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Cheng, J. P.; Yang, H. P.; Zhang, C. H.

    2018-05-01

    Mechanical response of pure titanium impacted by a steel ball was simulated using finite element method to investigate stress and strain evolution during shot peening. It is indicated that biaxial residual stress was obtained in the surface layer while in the interior triaxial residual stress existed because the S33 was comparable to S11 and S22. With decreasing the depth from the top surface, the stress was higher during impacting, but the stress relief extent became more significant when the ball rebounded. Therefore the maximum residual stress was formed in the subsurface layer with depth of 130 μm. As for the residual strain, it is shown that the maximum residual strain LE33 was obtained at the depth of 60 μm corresponding to the maximum shear stress during impacting.

  1. Finite-Element Modeling of 3C-SiC Membranes

    NASA Technical Reports Server (NTRS)

    DeAnna, R. G.; Mitchell, J.; Zorman, C. A.; Mehregany, M.

    2000-01-01

    Finite-element modeling (FEM) of 3C-SiC thin-film membranes on Si substrates was used to determine the residual stress and center deflection with applied pressure. The anisotropic, three-dimensional model includes the entire 3C-SiC membrane and Si substrate with appropriate material properties and boundary conditions. Residual stress due to the thermal-expansion-coefficient mismatch between the3C-SiC film and Si substrate was included in the model. Both before-and after-etching, residual stresses were calculated. In-plane membrane stress and normal deflection with applied pressure were also calculated. FEM results predict a tensile residual stress fo 259 MPa in the 3C-SiC membrane before etching. This decreases to 247 MPa after etching the substrate below the membrane. The residual stress experimentally measured on sample made at Case Western Reserve University was 280 MPa on post-etched membranes. This is excellent agreement when an additional 30-40 MPa of residual stress to account for lattice mismatch is added to the FEM results.

  2. Diffractive Optic Fluid Shear Stress Sensor

    NASA Technical Reports Server (NTRS)

    Wilson, D.; Scalf, J.; Forouhar, S.; Muller, R.; Taugwalder, F.; Gharib, M.; Fourguette, D.; Modarress, D.

    2000-01-01

    Light scattering off particles flowing through a two-slit interference pattern can be used to measure the shear stress of the fluid. We have designed and fabricated a miniature diffractive optic sensor based on this principle.

  3. Structural and optical properties of ZnO nanorods on Mg0.2Zn0.8O seed layers grown by hydrothermal method.

    PubMed

    Kim, Min Su; Kim, Do Yeob; Kim, Sung-O; Leem, Jae-Young

    2013-05-01

    ZnO nanorods were grown on the Mg0.2Zn0.8O seed layers with different thickness by hydrothermal method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out to investigate the effects of the Mg0.2Zn0.8O seed layer thickness on the structural and the optical properties of the ZnO nanorods. The residual stress in the Mg0.2Zn0.8O seed layers was depended on the thickness while the texture coefficient of the Mg0.2Zn0.8O seed layers was not affected significantly. The smaller full width at half maximum (FWHM) of the ZnO (002) diffraction and near-band-edge emission (NBE) peak and the larger average grain size were observed from the ZnO nanorods grown on the Mg0.2Zn0.8O seed layers with 5 layers (thickness of 350 nm), which indicate the enhancement the structural and the optical properties of the ZnO nanorods.

  4. Crystallization and preliminary X-ray diffraction analysis of the TetR-family transcriptional repressor YhgD from Bacillus halodurans

    PubMed Central

    Yeo, Hyun Ku; Park, Young Woo; Kang, Jina; Lee, Jae Young

    2013-01-01

    YhgD is a member of the TetR-family transcription factors, which regulate genes encoding proteins involved in multidrug resistance, virulence, osmotic stress and pathogenicity. YhgD from the alkaliphilic bacterium Bacillus halodurans was cloned and overexpressed in Escherichia coli. YhgD (Bh2145) from B. halodurans is composed of 193 amino-acid residues with a molecular mass of 21 853 Da. YhgD was crystallized at 296 K using ethylene glycol as a precipitant by the sitting-drop vapour-diffusion method. The crystal diffracted to 1.9 Å resolution and belonged to the apparent triclinic space group P1, with unit-cell parameters a = 37.22, b = 47.85, c = 54.15 Å, α = 92.75, β = 107.9, γ = 90.27°. The asymmetric unit is likely to contain two molecules of monomeric YhgD, giving a crystal volume per mass (V M) of 2.05 Å3 Da−1 and a solvent content of 40.2%. PMID:23695570

  5. Crystallization and preliminary X-ray diffraction analysis of the TetR-family transcriptional repressor YhgD from Bacillus halodurans.

    PubMed

    Yeo, Hyun Ku; Park, Young Woo; Kang, Jina; Lee, Jae Young

    2013-05-01

    YhgD is a member of the TetR-family transcription factors, which regulate genes encoding proteins involved in multidrug resistance, virulence, osmotic stress and pathogenicity. YhgD from the alkaliphilic bacterium Bacillus halodurans was cloned and overexpressed in Escherichia coli. YhgD (Bh2145) from B. halodurans is composed of 193 amino-acid residues with a molecular mass of 21 853 Da. YhgD was crystallized at 296 K using ethylene glycol as a precipitant by the sitting-drop vapour-diffusion method. The crystal diffracted to 1.9 Å resolution and belonged to the apparent triclinic space group P1, with unit-cell parameters a = 37.22, b = 47.85, c = 54.15 Å, α = 92.75, β = 107.9, γ = 90.27°. The asymmetric unit is likely to contain two molecules of monomeric YhgD, giving a crystal volume per mass (VM) of 2.05 Å(3) Da(-1) and a solvent content of 40.2%.

  6. Evolution of mechanical properties of M50 bearing steel due to rolling contact fatigue

    NASA Astrophysics Data System (ADS)

    Allison, Bryan D.

    Current bearing life models significantly under predict the life of bearings made of modern ultra-clean steels. New life models that include the constitutive response of the material are needed. However, the constitutive response of bearing steel is known to change during bearing operation. In the current study, the evolution of the mechanical properties of M50 bearing steel due to rolling contact fatigue (RCF) was investigated. A combination of M50 balls and rods were subjected to RCF testing under various conditions (e.g. number of RCF cycles, applied Hertzian stress, and interacting material). Additionally, some of the balls tested went through a proprietary mechanical process to induce compressive residual stresses over the first several hundred microns into the depth of the ball prior to RCF testing. After RCF testing, the specimens were subjected to a number of tests. First, the residual stresses within the subsurface RCF affected region were measured via x-ray diffraction. The residual stresses within the mechanically processed (MP) balls were found to not significantly change due to RCF, while a linear relationship was found between the maximum residual stress with the RCF affected zone and the Hertzian stress for the unprocessed balls. Then, the specimens were sectioned, polished, and chemically etched to study the evolution of the microstructure due to RCF. A similar relationship was found between the size of the dark etching region (DER) and the Hertzian stress. Formation of a light etching region (LER) is demonstrated to not correlate with a decrease in material strength and hardness, but it does serve as a predictor for failure due to spall. Micro-indentation was performed within subsurface to estimate the local yield stress. Micro-indentation is not able to provide information about the stress-strain response, only the yield strength. Hence, a novel method to extract and test miniature compression specimens from within the RCF affected regions of balls after RCF was developed. Using this method, it is possible to determine the full stress-strain response of material after material that has undergone RCF. The micro-hardness of the material within the RCF affected region was found to increase by nearly 10% and yield strength increased 13% when high contact stress levels were employed in fatigue experiments. It was demonstrated that the number of cycles does contribute to hardness increase, but the applied Hertzian stress is the dominant factor. Mechanical processing was found to significantly retard the rate of mechanical property evolution, implying that it would also significantly improve the life. Similarly, it was observed that the rate of hardening is slower when silicon nitride is used to interact with the M50 specimen than another M50 component. This supports the idea that hybrid bearings last longer than more traditional all-steel bearings. Finally, an empirical model of the evolution of the constitutive response of the bearing material within the RCF affected region was developed based on the results of these analyses. This model can be used to predict the constitutive response of the material within the RCF affected region of an M50 steel ball, given the initial hardness, number of RCF cycles, and applied Hertzian stress. Further, it is now possible to solve the local yield strength as a function of depth within the RCF affected region given these same parameters.

  7. Case Studies of Fatigue Life Improvement Using Low Plasticity Burnishing in Gas Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Prevey, Paul S.; Shepard, Michael; Ravindranath, Ravi A.; Gabb, Timothy

    2003-01-01

    Surface enhancement technologies such as shot peening, laser shock peening (LSP), and low plasticity burnishing (LPB) can provide substantial fatigue life improvement. However, to be effective, the compressive residual stresses that increase fatigue strength must be retained in service. For successful integration into turbine design, the process must be affordable and compatible with the manufacturing environment. LPB provides thermally stable compression of comparable magnitude and even greater depth than other methods, and can be performed in conventional machine shop environments on CNC machine tools. LPB provides a means to extend the fatigue lives of both new and legacy aircraft engines and ground-based turbines. Improving fatigue performance by introducing deep stable layers of compressive residual stress avoids the generally cost prohibitive alternative of modifying either material or design. The X-ray diffraction based background studies of thermal and mechanical stability of surface enhancement techniques are briefly reviewed, demonstrating the importance of minimizing cold work. The LPB process, tooling, and control systems are described. An overview of current research programs conducted for engine OEMs and the military to apply LPB to a variety of engine and aging aircraft components are presented. Fatigue performance and residual stress data developed to date for several case studies are presented including: * The effect of LPB on the fatigue performance of the nickel based super alloy IN718, showing fatigue benefit of thermal stability at engine temperatures. * An order of magnitude improvement in damage tolerance of LPB processed Ti-6-4 fan blade leading edges. * Elimination of the fretting fatigue debit for Ti-6-4 with prior LPB. * Corrosion fatigue mitigation with LPB in Carpenter 450 steel. *Damage tolerance improvement in 17-4PH steel. Where appropriate, the performance of LPB is compared to conventional shot peening after exposure to engine operating temperatures.

  8. In-situ Observation of Cross-Sectional Microstructural Changes and Stress Distributions in Fracturing TiN Thin Film during Nanoindentation

    PubMed Central

    Zeilinger, Angelika; Todt, Juraj; Krywka, Christina; Müller, Martin; Ecker, Werner; Sartory, Bernhard; Meindlhumer, Michael; Stefenelli, Mario; Daniel, Rostislav; Mitterer, Christian; Keckes, Jozef

    2016-01-01

    Load-displacement curves measured during indentation experiments on thin films depend on non-homogeneous intrinsic film microstructure and residual stress gradients as well as on their changes during indenter penetration into the material. To date, microstructural changes and local stress concentrations resulting in plastic deformation and fracture were quantified exclusively using numerical models which suffer from poor knowledge of size dependent material properties and the unknown intrinsic gradients. Here, we report the first in-situ characterization of microstructural changes and multi-axial stress distributions in a wedge-indented 9 μm thick nanocrystalline TiN film volume performed using synchrotron cross-sectional X-ray nanodiffraction. During the indentation, needle-like TiN crystallites are tilted up to 15 degrees away from the indenter axis in the imprint area and strongly anisotropic diffraction peak broadening indicates strain variation within the X-ray nanoprobe caused by gradients of giant compressive stresses. The morphology of the multiaxial stress distributions with local concentrations up to −16.5 GPa correlate well with the observed fracture modes. The crack growth is influenced decisively by the film microstructure, especially by the micro- and nano-scopic interfaces. This novel experimental approach offers the capability to interpret indentation response and indenter imprint morphology of small graded nanostructured features. PMID:26947558

  9. Residual stress in glass: indentation crack and fractography approaches.

    PubMed

    Anunmana, Chuchai; Anusavice, Kenneth J; Mecholsky, John J

    2009-11-01

    To test the hypothesis that the indentation crack technique can determine surface residual stresses that are not statistically significantly different from those determined from the analytical procedure using surface cracks, the four-point flexure test, and fracture surface analysis. Soda-lime-silica glass bar specimens (4 mm x 2.3 mm x 28 mm) were prepared and annealed at 650 degrees C for 30 min before testing. The fracture toughness values of the glass bars were determined from 12 specimens based on induced surface cracks, four-point flexure, and fractographic analysis. To determine the residual stress from the indentation technique, 18 specimens were indented under 19.6N load using a Vickers microhardness indenter. Crack lengths were measured within 1 min and 24h after indentation, and the measured crack lengths were compared with the mean crack lengths of annealed specimens. Residual stress was calculated from an equation developed for the indentation technique. All specimens were fractured in a four-point flexure fixture and the residual stress was calculated from the strength and measured crack sizes on the fracture surfaces. The results show that there was no significant difference between the residual stresses calculated from the two techniques. However, the differences in mean residual stresses calculated within 1 min compared with those calculated after 24h were statistically significant (p=0.003). This study compared the indentation technique with the fractographic analysis method for determining the residual stress in the surface of soda-lime-silica glass. The indentation method may be useful for estimating residual stress in glass.

  10. Residual stress in glass: indentation crack and fractography approaches

    PubMed Central

    Anunmana, Chuchai; Anusavice, Kenneth J.; Mecholsky, John J.

    2009-01-01

    Objective To test the hypothesis that the indentation crack technique can determine surface residual stresses that are not statistically significantly different from those determined from the analytical procedure using surface cracks, the four-point flexure test, and fracture surface analysis. Methods Soda-lime-silica glass bar specimens (4 mm × 2.3 mm × 28 mm) were prepared and annealed at 650 °C for 30 min before testing. The fracture toughness values of the glass bars were determined from 12 specimens based on induced surface cracks, four-point flexure, and fractographic analysis. To determine the residual stress from the indentation technique, 18 specimens were indented under 19.6 N load using a Vickers microhardness indenter. Crack lengths were measured within 1 min and 24 h after indentation, and the measured crack lengths were compared with the mean crack lengths of annealed specimens. Residual stress was calculated from an equation developed for the indentation technique. All specimens were fractured in a four-point flexure fixture and the residual stress was calculated from the strength and measured crack sizes on the fracture surfaces. Results The results show that there was no significant difference between the residual stresses calculated from the two techniques. However, the differences in mean residual stresses calculated within 1 min compared with those calculated after 24 h were statistically significant (p=0.003). Significance This study compared the indentation technique with the fractographic analysis method for determining the residual stress in the surface of soda-lime silica glass. The indentation method may be useful for estimating residual stress in glass. PMID:19671475

  11. Experimental Study of Residual Stresses in Rail by Moire Interferometry

    DOT National Transportation Integrated Search

    1993-09-01

    The residual stresses in rails produced by rolling cycles are studied experimentally by moire interferometry. The dissection technique is adopted for this investigation. The basic principle of the dissection technique is that the residual stress is r...

  12. Measurement of edge residual stresses in glass by the phase-shifting method

    NASA Astrophysics Data System (ADS)

    Ajovalasit, A.; Petrucci, G.; Scafidi, M.

    2011-05-01

    Control and measurement of residual stress in glass is of great importance in the industrial field. Since glass is a birefringent material, the residual stress analysis is based mainly on the photoelastic method. This paper considers two methods of automated analysis of membrane residual stress in glass sheets, based on the phase-shifting concept in monochromatic light. In particular these methods are the automated versions of goniometric compensation methods of Tardy and Sénarmont. The proposed methods can effectively replace manual methods of compensation (goniometric compensation of Tardy and Sénarmont, Babinet and Babinet-Soleil compensators) provided by current standards on the analysis of residual stresses in glasses.

  13. Deposition of dual-layer coating on Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Hussain Din, Sajad; Shah, M. A.; Sheikh, N. A.

    2017-03-01

    Dual-layer diamond coatings were deposited on titanium alloy (Ti6Al4V) using a hot filament chemical vapour deposition technique with the anticipation of studying the structural and morphology properties of the alloy. The coated diamond films were characterized using scanning electron microscope, x-ray diffraction (XRD), and Raman spectroscopy. The XRD studies reveal that the deposited films are highly crystalline in nature, whereas morphological studies show that the films have a cauliflower structure. XRD analysis was used to calculate the structural parameters of the Ti6Al4V and CVD-coated Ti6Al4V. Raman spectroscopy was used to determine the nature and magnitude of the residual stress of the coatings.

  14. Non-Contact Acousto-Thermal Signatures of Plastic Deformation in TI-6AL-4V

    NASA Astrophysics Data System (ADS)

    Welter, J. T.; Malott, G.; Schehl, N.; Sathish, S.; Jata, K. V.; Blodgett, M. P.

    2010-02-01

    Plastic deformation introduces changes in a material which include increases in: dislocations, strains, residual stress, and yield stress. However, these changes have a very small impact on the material properties such as elastic modulus, conductivity and ultrasonic wave speed. This is due to the fact that interatomic forces govern these properties, and they are not affected by plastic deformation to any large degree. This is evident from the fact that the changes in electrical resistance and ultrasonic velocity in plastically deformed and virgin samples are very small and can only be determined by highly controlled experiments. Except for X-ray diffraction, there are no direct nondestructive methods for measuring strain and the residual stress. This paper presents an application of the non-contact acousto-thermal signature (NCATS) NDE methodology to detect plastic deformation in flat dog bone Ti-6Al-4V samples. Results of the NCATS measurements on samples subjected to incremental amounts of plastic deformation are presented. The maximum temperature attained by the sample due to acoustic excitation is found to be sensitive to the amount of plastic strain. It is observed that the temperature induced by acoustic excitation increases to a peak followed by a decrease to failure. The maximum temperature peak occurs at plastic strains of 12-14%. It is observed that there is a correlation between the peak in maximum temperature rise and the strain at the experimentally determined ultimate tensile strength. A microstructural based explanation for this will be presented. The results are discussed in reference to utilizing this technique for detection and evaluation of plastic deformation.

  15. Numerical and Experimental Study on the Residual Stresses in the Nitrided Steel

    NASA Astrophysics Data System (ADS)

    Song, X.; Zhang, Zhi-Qian; Narayanaswamy, S.; Huang, Y. Z.; Zarinejad, M.

    2016-09-01

    In the present work, residual stresses distribution in the gas nitrided AISI 4140 sample has been studied using finite element (FE) simulation. The nitrogen concentration profile is obtained from the diffusion-controlled compound layer growth model, and nitrogen concentration controls the material volume change through phase transformation and lattice interstitials which results in residual stresses. Such model is validated through residual stress measurement technique—micro-ring-core method, which is applied to the nitriding process to obtain the residual stresses profiles in both the compound and diffusion layer. The numerical and experimental results are in good agreement with each other; they both indicate significant stress variation in the compound layer, which was not captured in previous research works due to the resolution limit of the traditional methods.

  16. Residual stress at fluid interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, P.E.

    We extend the Navier-Stokes equations to allow for residual stress in Newtonian fluids. A fluid, which undergoes a constrained volume change, will have residual stress. Corresponding to every constrained volume change is an eigenstrain. We present a method to include in the equations of fluid motion the eigenstrain that is a result of the presence in a fluid of a soluble chemical species. This method is used to calculate the residual stress associated with a chemical transformation. 9 refs., 1 fig.

  17. The generation of thermal stress and strain during quenching

    NASA Astrophysics Data System (ADS)

    Soomro, A. B.

    A viscoelastic-plastic mathematical model was used to calculate the thermal stress and strain generated during the quenching of an infinite plate of high hardenability steel (835M30) in water, oil and Polymer. In the present work the mathematical model was modified to include the effect of initial stress on the rate of stress relaxation, which has been found to be significant. The data required to incorporate this effect into the calculations, were obtained experimentally during the-.present investigation. The effect of an applied stress during transformation (transformation plasticity) was also introduced in the mathematical model. The new model produced a marked improvement in the degree of agreement between the calculated and experimental residual stress, although the corresponding level of agreement in the case of residual strain was less good. In particular, strains after water quenching agreed less well with experiment as a consequence of the change in the model, although this drawback was not found after oil and polymer quenching. The new mathematical model was used to investigate the effect of martempering, section size and transformation temperature range on the generation of thermal stress and strain. A salt bath treatment above the Ms temperature followed by air cooling prevented residual stress development, but an oil quench after the salt bath treatment generated a level of residual stress at the end of cooling that was similar to that obtained after a direct oil quench from 850°C. Neither martempering process was successful in reducing residual strain.With.an increase in section size a reduction in the residual stress and an increase in the distortions was obtained after a water quench. However, after oil quenching the overall effect of section size on residual stress and strain was small. The effect of variation in the transformation temperature range was found to be small in the case of residual stress but an increase in Ms temperature produced a significant increase in the level of residual strain.

  18. Counter measures to effectively reduce end flare

    NASA Astrophysics Data System (ADS)

    Moneke, Matthias; Groche, Peter

    2017-10-01

    Roll forming is a manufacturing process, whose profitability is predicated on its high output. When roll formed profiles are cut to length, process related residual stresses are released and increased deformation at the profile ends at the cut-off occurs, also known as end flare. U-profiles typically show a flaring in at the lead end and a flaring out at the tail end. Due to this deformation, deviations from the dimensional accuracy can occur, which cause problems during further processing of the parts. Additional operations are necessary to compensate for the end flare, thereby increasing plant deployment time and production costs. Recent research focused on the cause of the residual stresses and it was shown, that a combination of residual longitudinal stresses and residual shear stresses are responsible for end flare. By exploiting this knowledge, it is possible to determine, depending on the flaring of the profile, in which part of the profile residual longitudinal or residual shear stresses are prevalent and which counter measures can specifically counteract the responsible residual stresses. For this purpose numerical and experimental investigations on a U-, Hat- and C-Profile were conducted. It could be shown that overbending and bending back of the profile is most effective in reducing end flare. Another developed method is lowering and elevating the profile to reduce residual longitudinal stresses.

  19. Factors Influencing Residual Stresses in Yttria Stabilized Zirconia Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    McGrann, Roy T. R.; Rybicki, Edmund F.; Shadley, John R.; Brindley, William J.

    1997-01-01

    To improve gas turbine and diesel engine performance using thermal barrier coatings (TBC's) requires an understanding of the factors that influence the in-service behavior of thermal barrier coatings. One of the many factors related to coating performance is the state of stress in the coating. The total stress state is composed of the stresses due to the in-service loading history and the residual stresses. Residual stresses have been shown to affect TBC life, the bond strength of thermal spray coatings, and the fatigue life of tungsten carbide coatings. Residual stresses are first introduced in TBC's by the spraying process due to elevated temperatures during processing and the difference in coefficients of thermal expansion of the top coat, bond coat, and substrate. Later, the residual stresses can be changed by the in-service temperature history due to a number of time and temperature dependent mechanisms, such as oxidation, creep, and sintering. Silica content has also been shown to affect sintering and the cyclic life of thermal barrier coatings. Thus, it is important to understand how the spraying process, the in-service thermal cycles, and the silica content can create and alter residual stresses in thermal barrier coatings.

  20. Effect of Thickness on the Structure, Composition and Properties of Titanium Nitride Nano-Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Gustavo; Shutthanandan, V.; Thevuthasan, Suntharampillai

    2014-05-05

    Titanium nitride (TiNx) coatings were grown by magnetron sputtering onto Si(1 0 0) substrates by varying time of deposition to produce coatings with variable thickness (dTiN) in the range of 20-120 nm. TiNx coatings were characterized by studying their structure, composition, and mechanical properties. Nuclear reaction analysis (NRA) combined with Rutherford backscattering spectrometry (RBS) analyses indicate that the grown coatings were stoichiometric TiN. Grazing incidence X-ray diffraction (GIXRD) measurements indicate that the texturing of TiN coatings changes as a function of dTiN. The (1 1 1) and (0 0 2) peaks appear initially; (1 1 1) becomes intense while (0more » 0 2) disappears with increasing dTiN. Dense, columnar grain structure was evident for all the coatings in electron microscopy analyses. The residual stress for TiN coatings with dTiN~120 nm was 1.07 GPa in compression while thinner samples exhibit higher values of stress.« less

  1. Effects of wear and service conditions on residual stresses in commuter car wheels

    DOT National Transportation Integrated Search

    2004-09-01

    This paper illustrates application of the shakedown residual stress estimation technique to : assess the effects of service conditions on wheel residual stresses. The examples described provide the : technical details on how the technique is practica...

  2. Studies on the surface modification of TiN coatings using MEVVA ion implantation with selected metallic species

    NASA Astrophysics Data System (ADS)

    Ward, L. P.; Purushotham, K. P.; Manory, R. R.

    2016-02-01

    Improvement in the performance of TiN coatings can be achieved using surface modification techniques such as ion implantation. In the present study, physical vapor deposited (PVD) TiN coatings were implanted with Cr, Zr, Nb, Mo and W using the metal evaporation vacuum arc (MEVVA) technique at a constant nominal dose of 4 × 1016 ions cm-2 for all species. The samples were characterized before and after implantation, using Rutherford backscattering (RBS), glancing incident angle X-ray diffraction (GIXRD), atomic force microscopy (AFM) and optical microscopy. Friction and wear studies were performed under dry sliding conditions using a pin-on-disc CSEM Tribometer at 1 N load and 450 m sliding distance. A reduction in the grain size and surface roughness was observed after implantation with all five species. Little variation was observed in the residual stress values for all implanted TiN coatings, except for W implanted TiN which showed a pronounced increase in compressive residual stress. Mo-implanted samples showed a lower coefficient of friction and higher resistance to breakdown during the initial stages of testing than as-received samples. Significant reduction in wear rate was observed after implanting with Zr and Mo ions compared with unimplanted TiN. The presence of the Ti2N phase was observed with Cr implantation.

  3. Measuring depth profiles of residual stress with Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enloe, W.S.; Sparks, R.G.; Paesler, M.A.

    Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residualmore » stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.« less

  4. Finite element estimation of the residual stresses in roller-straightened rail

    DOT National Transportation Integrated Search

    2004-11-13

    The purpose of this paper is to develop models to accurately predict : the residual stresses due to the roller straightening of railroad rails. : Several aspects of residual stress creation in rail due to roller : straightening are addressed. The eff...

  5. On the Eigenstrain Application of Shot-peened Residual Stresses within a Crystal Plasticity Framework: Application to Ni-base Superalloy Specimens (Postprint)

    DTIC Science & Technology

    2015-07-08

    Compressive surface residual stresses can be applied via multi ple techniques (shot/gravity peening, low plasticity burnishing, laser shock peening...eigenstrains are used include internal stresses due to inclusions/particles or fibers [48], differences in coefficient of thermal expansion of different phases...residual stresses induced by shot peening [44,52 54], laser shock peening [55 61], and welding [62 66]. For shot peening analysis, the amount of residual

  6. Longitudinal residual stresses in boron fibers

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1976-01-01

    A method of measuring the longitudinal residual stress distribution in boron fibers is presented. The residual stresses in commercial CVD boron on tungsten fibers of 102, 142, and 203 microns (4, 5.6, and 8 mil) diameters were determined. Results for the three sizes show a compressive stress at the surface 800 to -1400 MN/sq m 120 to -200 ksi), changing monotonically to a region of tensile stress within the boron. At approximately 25 percent of the original radius, the stress reaches a maximum tensile 600 to 1000 MN/sq m(90 to 150 ksi) and then decreases to compressive near the tungsten boride core. The core itself is under a compressive stress of approximately -1300 MN/sq m (-190 ksi). The effects of surface removal on core residual stress and core-initiated fracture are discussed.

  7. A Theoretical Model for Predicting Residual Stress Generation in Fabrication Process of Double-Ceramic-Layer Thermal Barrier Coating System.

    PubMed

    Song, Yan; Wu, Weijie; Xie, Feng; Liu, Yilun; Wang, Tiejun

    2017-01-01

    Residual stress arisen in fabrication process of Double-Ceramic-Layer Thermal Barrier Coating System (DCL-TBCs) has a significant effect on its quality and reliability. In this work, based on the practical fabrication process of DCL-TBCs and the force and moment equilibrium, a theoretical model was proposed at first to predict residual stress generation in its fabrication process, in which the temperature dependent material properties of DCL-TBCs were incorporated. Then, a Finite Element method (FEM) has been carried out to verify our theoretical model. Afterwards, some important geometric parameters for DCL-TBCs, such as the thickness ratio of stabilized Zirconia (YSZ, ZrO2-8%Y2O3) layer to Lanthanum Zirconate (LZ, La2Zr2O7) layer, which is adjustable in a wide range in the fabrication process, have a remarkable effect on its performance, therefore, the effect of this thickness ratio on residual stress generation in the fabrication process of DCL-TBCs has been systematically studied. In addition, some thermal spray treatment, such as the pre-heating treatment, its effect on residual stress generation has also been studied in this work. It is found that, the final residual stress mainly comes from the cooling down process in the fabrication of DCL-TBCs. Increasing the pre-heating temperature can obviously decrease the magnitude of residual stresses in LZ layer, YSZ layer and substrate. With the increase of the thickness ratio of YSZ layer to LZ layer, magnitudes of residual stresses arisen in LZ layer and YSZ layer will increase while residual stress in substrate will decrease.

  8. A Theoretical Model for Predicting Residual Stress Generation in Fabrication Process of Double-Ceramic-Layer Thermal Barrier Coating System

    PubMed Central

    Song, Yan; Wu, Weijie; Xie, Feng; Liu, Yilun; Wang, Tiejun

    2017-01-01

    Residual stress arisen in fabrication process of Double-Ceramic-Layer Thermal Barrier Coating System (DCL-TBCs) has a significant effect on its quality and reliability. In this work, based on the practical fabrication process of DCL-TBCs and the force and moment equilibrium, a theoretical model was proposed at first to predict residual stress generation in its fabrication process, in which the temperature dependent material properties of DCL-TBCs were incorporated. Then, a Finite Element method (FEM) has been carried out to verify our theoretical model. Afterwards, some important geometric parameters for DCL-TBCs, such as the thickness ratio of stabilized Zirconia (YSZ, ZrO2-8%Y2O3) layer to Lanthanum Zirconate (LZ, La2Zr2O7) layer, which is adjustable in a wide range in the fabrication process, have a remarkable effect on its performance, therefore, the effect of this thickness ratio on residual stress generation in the fabrication process of DCL-TBCs has been systematically studied. In addition, some thermal spray treatment, such as the pre-heating treatment, its effect on residual stress generation has also been studied in this work. It is found that, the final residual stress mainly comes from the cooling down process in the fabrication of DCL-TBCs. Increasing the pre-heating temperature can obviously decrease the magnitude of residual stresses in LZ layer, YSZ layer and substrate. With the increase of the thickness ratio of YSZ layer to LZ layer, magnitudes of residual stresses arisen in LZ layer and YSZ layer will increase while residual stress in substrate will decrease. PMID:28103275

  9. Residual thermal stresses in composites for dimensionally stable spacecraft applications

    NASA Technical Reports Server (NTRS)

    Bowles, David E.; Tompkins, Stephen S.; Funk, Joan G.

    1992-01-01

    An overview of NASA LaRC's research on thermal residual stresses and their effect on the dimensional stability of carbon fiber reinforced polymer-matrix composites is presented. The data show that thermal residual stresses can induce damage in polymer matrix composites and significantly affect the dimensional stability of these composites by causing permanent residual strains and changes in CTE. The magnitude of these stresses is primarily controlled by the laminate configuration and the applied temperature change. The damage caused by thermal residual stresses initiates at the fiber/matrix interface and micromechanics level analyses are needed to accurately predict it. An increased understanding of fiber/matrix interface interactions appears to be the best approach for improving a composite's resistance to thermally induced damage.

  10. Residual stresses in angleplied laminates and their effects on laminate behavior

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1978-01-01

    Evidence of the presence of lamination residual stresses in angleplied laminates were transply cracks and warpage of unsymmetric laminates which occur prior to application of any mechanical load. Lamination residual strains were measured using the embedded strain gage technique. These strains result from the temperature differences between cure and room temperature and vary linearly within this temperature range. Lamination residual stresses were usually present in angleplied fiber composites laminates; they were also present in unidirectional hybrids and superhybrids. For specific applications, the magnitudes of lamination residual stresses were determined and evaluated relative to the anticipated applied stresses. Particular attention was given to cyclic thermal loadings in applications where the thermal cycling takes place over a wide temperature range.

  11. Effects of interface morphology and TGO thickness on residual stress of EB-PVD thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Chen, Jianwei; Zhao, Yang; Ma, Jian

    2015-04-01

    The residual stress of electron beam-physical vapor deposition (EB-PVD) thermal barrier coatings (TBC) is complex and difficult to be obtained. In this paper, the interface morphology of TBCs subjected to cyclic heating and cooling was observed by SEM. Based on the thermal elastic-plastic finite method, corresponding interface model of TBCs was established. The residual stress of EB-PVD TBCs with different interface morphologies and TGO thicknesses was calculated using the FE method without regard to the presence of cracks and defects. The result shows that the distribution of residual stress is significantly affected by the interface morphology, and the growth of TGO also has influence on the residual stress of TC and TGO.

  12. Crack prediction in EB-PVD thermal barrier coatings based on the simulation of residual stresses

    NASA Astrophysics Data System (ADS)

    Chen, J. W.; Zhao, Y.; Liu, S.; Zhang, Z. Z.; Ma, J.

    2016-07-01

    Thermal barrier coatings systems (TBCs) are widely used in the field of aerospace. The durability and insulating ability of TBCs are highly dependent on the residual stresses of top coatings, thus the investigation of the residual stresses is helpful to understand the failure mechanisms of TBCs. The simulation of residual stresses evolution in electron beam physical vapor deposition (EB-PVD) TBCs is described in this work. The interface morphology of TBCs subjected to cyclic heating and cooling is observed using scanning electron microscope (SEM). An interface model of TBCs is established based on thermal elastic-plastic finite method. Residual stress distributions in TBCs are obtained to reflect the influence of interfacial roughness. Both experimental and simulation results show that it is feasible to predict the crack location by stress analysis, which is crucial to failure prediction.

  13. Influence of Welding Strength Matching Coefficient and Cold Stretching on Welding Residual Stress in Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Lu, Yaqing; Hui, Hu; Gong, Jianguo

    2018-05-01

    Austenitic stainless steel is widely used in pressure vessels for the storage and transportation of liquid gases such as liquid nitrogen, liquid oxygen, and liquid hydrogen. Cryogenic pressure vessel manufacturing uses cold stretching technology, which relies heavily on welding joint performance, to construct lightweight and thin-walled vessels. Residual stress from welding is a primary factor in cases of austenitic stainless steel pressure vessel failure. In this paper, on the basis of Visual Environment 10.0 finite element simulation technology, the residual stress resulting from different welding strength matching coefficients (0.8, 1, 1.2, 1.4) for two S30408 plates welded with three-pass butt welds is calculated according to thermal elastoplastic theory. In addition, the stress field was calculated under a loading as high as 410 MPa and after the load was released. Path 1 was set to analyze stress along the welding line, and path 2 was set to analyze stress normal to the welding line. The welding strength matching coefficient strongly affected both the longitudinal residual stress (center of path 1) and the transverse residual stress (both ends of path 1) after the welding was completed. However, the coefficient had little effect on the longitudinal and transverse residual stress of path 2. Under the loading of 410 MPa, the longitudinal and transverse stress decreased and the stress distribution, with different welding strength matching coefficients, was less diverse. After the load was released, longitudinal and transverse stress distribution for both path 1 and path 2 decreased to a low level. Cold stretching could reduce the effect of residual stress to various degrees. Transverse strain along the stretching direction was also taken into consideration. The experimental results validated the reliability of the partial simulation.

  14. Mineralogy of chondritic interplanetary dust particle impact residues from LDEF

    NASA Technical Reports Server (NTRS)

    Barrett, R. A.; Zolensky, M. E.; Bernhard, R.

    1993-01-01

    A detailed structural and compositional analysis of several impactor residues was performed utilizing transmission electron microscopy, energy dispersive spectroscopy, and electron diffraction. Residues from the interior of several craters in gold surfaces were removed with a tungsten needle, mounted in EMBED-812 epoxy, and ultramicrotomed. The presence in these residues of equilibrated ferromagnesian minerals, recrystallization textures, glass, and melted metal and sulfide bodies decorating grain boundaries is indicative of varying degrees of shock metamorphism in all impact residues we have characterized.

  15. An analytical model to predict and minimize the residual stress of laser cladding process

    NASA Astrophysics Data System (ADS)

    Tamanna, N.; Crouch, R.; Kabir, I. R.; Naher, S.

    2018-02-01

    Laser cladding is one of the advanced thermal techniques used to repair or modify the surface properties of high-value components such as tools, military and aerospace parts. Unfortunately, tensile residual stresses generate in the thermally treated area of this process. This work focuses on to investigate the key factors for the formation of tensile residual stress and how to minimize it in the clad when using dissimilar substrate and clad materials. To predict the tensile residual stress, a one-dimensional analytical model has been adopted. Four cladding materials (Al2O3, TiC, TiO2, ZrO2) on the H13 tool steel substrate and a range of preheating temperatures of the substrate, from 300 to 1200 K, have been investigated. Thermal strain and Young's modulus are found to be the key factors of formation of tensile residual stresses. Additionally, it is found that using a preheating temperature of the substrate immediately before laser cladding showed the reduction of residual stress.

  16. A Simplified Model for the Effect of Weld-Induced Residual Stresses on the Axial Ultimate Strength of Stiffened Plates

    NASA Astrophysics Data System (ADS)

    Chen, Bai-Qiao; Guedes Soares, C.

    2018-03-01

    The present work investigates the compressive axial ultimate strength of fillet-welded steel-plated ship structures subjected to uniaxial compression, in which the residual stresses in the welded plates are calculated by a thermo-elasto-plastic finite element analysis that is used to fit an idealized model of residual stress distribution. The numerical results of ultimate strength based on the simplified model of residual stress show good agreement with those of various methods including the International Association of Classification Societies (IACS) Common Structural Rules (CSR), leading to the conclusion that the simplified model can be effectively used to represent the distribution of residual stresses in steel-plated structures in a wide range of engineering applications. It is concluded that the widths of the tension zones in the welded plates have a quasi-linear behavior with respect to the plate slenderness. The effect of residual stress on the axial strength of the stiffened plate is analyzed and discussed.

  17. The effect of residual stress on performance of high temperature coatings

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Techniques for measurement of residual stress in MoSi2 coatings and the determination of stress in coatings prepared by metalliding, pack and slurry processes are discussed. The stress level can be determined by stress induced deflections or by X-ray techniques. The deflection method is most direct. It is based on the fact that a thin substrate, coated on one side only, is usually curved at room temperature. The radius of curvature is easily measured and readily related to residual stress.

  18. Hydrogen Assisted Cracking in Pearlitic Steel Rods: The Role of Residual Stresses Generated by Fatigue Precracking

    PubMed Central

    Toribio, Jesús; Aguado, Leticia; Lorenzo, Miguel; Kharin, Viktor

    2017-01-01

    Stress corrosion cracking (SCC) of metals is an issue of major concern in engineering since this phenomenon causes many catastrophic failures of structural components in aggressive environments. SCC is even more harmful under cathodic conditions promoting the phenomenon known as hydrogen assisted cracking (HAC), hydrogen assisted fracture (HAF) or hydrogen embrittlement (HE). A common way to assess the susceptibility of a given material to HAC, HAF or HE is to subject a cracked rod to a constant extension rate tension (CERT) test until it fractures in this harsh environment. This paper analyzes the influence of a residual stress field generated by fatigue precracking on the sample’s posterior susceptibility to HAC. To achieve this goal, numerical simulations were carried out of hydrogen diffusion assisted by the stress field. Firstly, a mechanical simulation of the fatigue precracking was developed for revealing the residual stress field after diverse cyclic loading scenarios and posterior stress field evolution during CERT loading. Afterwards, a simulation of hydrogen diffusion assisted by stress was carried out considering the residual stresses after fatigue and the superposed rising stresses caused by CERT loading. Results reveal the key role of the residual stress field after fatigue precracking in the HAC phenomena in cracked steel rods as well as the beneficial effect of compressive residual stress. PMID:28772845

  19. Status of the Neutron Imaging and Diffraction Instrument IMAT

    NASA Astrophysics Data System (ADS)

    Kockelmann, Winfried; Burca, Genoveva; Kelleher, Joe F.; Kabra, Saurabh; Zhang, Shu-Yan; Rhodes, Nigel J.; Schooneveld, Erik M.; Sykora, Jeff; Pooley, Daniel E.; Nightingale, Jim B.; Aliotta, Francesco; Ponterio, Rosa C.; Salvato, Gabriele; Tresoldi, Dario; Vasi, Cirino; McPhate, Jason B.; Tremsin, Anton S.

    A cold neutron imaging and diffraction instrument, IMAT, is currently being constructed at the ISIS second target station. IMAT will capitalize on time-of-flight transmission and diffraction techniques available at a pulsed neutron source. Analytical techniques will include neutron radiography, neutron tomography, energy-selective neutron imaging, and spatially resolved diffraction scans for residual strain and texture determination. Commissioning of the instrument will start in 2015, with time-resolving imaging detectors and two diffraction detector prototype modules. IMAT will be operated as a user facility for material science applications and will be open for developments of time-of-flight imaging methods.

  20. Analysis of residual transverse stresses in a thick UD glass/polyester pultruded profile using hole drilling with strain gage and digital image correlation

    NASA Astrophysics Data System (ADS)

    Yuksel, Onur; Baran, Ismet; Ersoy, Nuri; Akkerman, Remko

    2018-05-01

    Process induced stresses inherently exist in fiber reinforced polymer composites particularly in thick parts due to the presence of non-uniform cure, shrinkage and thermal expansion/contraction during manufacturing. In order to increase the reliability and the performance of the composite materials, process models are developed to predict the residual stress formation. The accuracy of the process models is dependent on the geometrical (micro to macro), material and process parameters as well as the numerical implementation. Therefore, in order to have reliable process modelling framework, there is a need for validation and if necessary calibration of the developed models. This study focuses on measurement of the transverse residual stresses in a relatively thick pultruded profile (20×20 mm) made of glass/polyester. Process-induced residual stresses in the middle of the profile are examined with different techniques which have never been applied for transverse residual stresses in thick unidirectional composites. Hole drilling method with strain gage and digital image correlation are employed. Strain values measured from measurements are used in a finite element model (FEM) to simulate the hole drilling process and predict the residual stress level. The measured released strain is found to be approximately 180 μm/m from the strain gage. The tensile residual stress at the core of the profile is estimated approximately as 7-10 MPa. Proposed methods and measured values in this study will enable validation and calibration of the process models based on the residual stresses.

  1. Non-destructive measurement and role of surface residual stress monitoring in residual life assessment of a steam turbine blading material

    NASA Astrophysics Data System (ADS)

    Prabhu-Gaunkar, Gajanana; Rawat, M. S.; Prasad, C. R.

    2014-02-01

    Steam turbine blades in power generation equipment are made from martensitic stainless steels having high strength, good toughness and corrosion resistance. However, these steels are susceptible to pitting which can promote early failures of blades in the turbines, particularly in the low pressure dry/wet areas by stress corrosion and corrosion fatigue. Presence of tensile residual stresses is known to accelerate failures whereas compressive stresses can help in delaying failures. Shot peening has been employed as an effective tool to induce compressive residual stresses which offset a part of local surface tensile stresses in the surface layers of components. Maintaining local stresses at stress raisers, such as pits formed during service, below a threshold level can help in preventing the initiation microcracks and failures. The thickness of the layer in compression will, however, depend of the shot peening parameters and should extend below the bottom of corrosion pits. The magnitude of surface compressive drops progressively during service exposure and over time the effectiveness of shot peening is lost making the material susceptible to micro-crack initiation once again. Measurement and monitoring of surface residual stress therefore becomes important for assessing residual life of components in service. This paper shows the applicability of surface stress monitoring to life assessment of steam turbine blade material based on data generated in laboratory on residual surface stress measurements in relation to fatigue exposure. An empirical model is proposed to calculate the remaining life of shot peened steam turbine blades in service.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekkebus, Allen E

    Oak Ridge National Laboratory hosted two workshops in April 2007 relevant to nuclear engineering education. In the Neutron Stress, Texture, and Phase Transformation for Industry workshop [http://neutrons.ornl.gov/workshops/nst2/], several invited speakers gave examples of neutron stress mapping for nuclear engineering applications. These included John Root of National Research Council of Canada, Mike Fitzpatrick of the UK's Open University, and Yan Gao of GE Global Research on their experiences with industrial and academic uses of neutron diffraction. Xun-Li Wang and Camden Hubbard described the new instruments at ORNL that can be used for such studies. This was preceded by the Neutrons formore » Materials Science and Engineering educational symposium [http://neutrons.ornl.gov/workshops/edsym2007]. It was directed to the broad materials science and engineering community based in universities, industry and laboratories who wish to learn what the neutron sources in the US can provide for enhancing the understanding of materials behavior, processing and joining. Of particular interest was the presentation of Donald Brown of Los Alamos about using 'Neutron diffraction measurements of strain and texture to study mechanical behavior of structural materials.' At both workshops, the ORNL neutron scattering instruments relevant to nuclear engineering studies were described. The Neutron Residual Stress Mapping Facility (NRSF2) is currently in operation at the High Flux Isotope Reactor; the VULCAN Engineering Materials Diffractometer will begin commissioning in 2008 at the Spallation Neutron Source. For characteristics of these instruments, as well as details of other workshops, meetings, capabilities, and research proposal submissions, please visit http://neutrons.ornl.gov. To submit user proposals for time on NRSF2 contact Hubbard at hubbardcr@ornl.gov.« less

  3. Residual stress in thick low-pressure chemical-vapor deposited polycrystalline SiC coatings on Si substrates

    NASA Astrophysics Data System (ADS)

    Choi, D.; Shinavski, R. J.; Steffier, W. S.; Spearing, S. M.

    2005-04-01

    Residual stress in thick coatings of polycrystalline chemical-vapor deposited SiC on Si substrates is a key variable that must be controlled if SiC is to be used in microelectromechanical systems. Studies have been conducted to characterize the residual stress level as a function of deposition temperature, Si wafer and SiC coating thickness, and the ratios of methyltrichlorosilane to hydrogen and hydrogen chloride. Wafer curvature was used to monitor residual stress in combination with a laminated plate analysis. Compressive intrinsic (growth) stresses were measured with magnitudes in the range of 200-300MPa; however, these can be balanced with the tensile stress due to the thermal-expansion mismatch to leave near-zero stress at room temperature. The magnitude of the compressive intrinsic stress is consistent with previously reported values of surface stress in combination with the competition between grain-boundary energy and elastic strain energy.

  4. Influence of residual thermal stresses and geometric parameters on stress and electric fields in multilayer ceramic capacitors under electric bias

    NASA Astrophysics Data System (ADS)

    Jiang, Wu-Gui; Feng, Xi-Qiao; Nan, Ce-Wen

    2008-07-01

    The stress and electric fields in multilayer ceramic capacitors (MLCCs) under an applied electric bias were investigated by using a three-dimensional finite element model of ferroelectric ceramics. A coupled thermal-mechanical analysis was first made to calculate the residual thermal stress induced by the sintering process, and then a coupled electrical-mechanical analysis was performed to predict the total stress distribution in the MLCCs under a representative applied electric bias. The effects of the number of dielectric layers, the single layer thickness as well as the residual thermal stresses on the total stresses were all examined. The numerical results show that the residual thermal stress induced by the sintering process has a significant influence on the contribution of the total stresses and, therefore, should be taken into account in the design and evaluation of MLCC devices.

  5. Real-time patient-specific finite element analysis of internal stresses in the soft tissues of a residual limb: a new tool for prosthetic fitting.

    PubMed

    Portnoy, S; Yarnitzky, G; Yizhar, Z; Kristal, A; Oppenheim, U; Siev-Ner, I; Gefen, A

    2007-01-01

    Fitting of a prosthetic socket is a critical stage in the process of rehabilitation of a trans-tibial amputation (TTA) patient, since a misfit may cause pressure ulcers or a deep tissue injury (DTI: necrosis of the muscle flap under intact skin) in the residual limb. To date, prosthetic fitting typically depends on the subjective skills of the prosthetist, and is not supported by biomedical instrumentation that allows evaluation of the quality of fitting. Specifically, no technology is presently available to provide real-time continuous information on the internal distribution of mechanical stresses in the residual limb during fitting of the prosthesis, or while using it and this severely limits patient evaluations. In this study, a simplified yet clinically oriented patient-specific finite element (FE) model of the residual limb was developed for real-time stress analysis. For this purpose we employed a custom-made FE code that continuously calculates internal stresses in the residual limb, based on boundary conditions acquired in real-time from force sensors, located at the limb-prosthesis interface. Validation of the modeling system was accomplished by means of a synthetic phantom of the residual limb, which allowed simultaneous measurements of interface pressures and internal stresses. Human studies were conducted subsequently in five TTA patients. The dimensions of bones and soft tissues were obtained from X-rays of the residual limb of each patient. An indentation test was performed in order to obtain the effective elastic modulus of the soft tissues of the residual limb. Seven force sensors were placed between the residual limb and the prosthetic liner, and subjects walked on a treadmill during analysis. Generally, stresses under the shinbones were approximately threefold higher than stresses at the soft tissues behind the bones. Usage of a thigh corset decreased the stresses in the residual limb during gait by approximately 80%. Also, the stresses calculated during the trial of a subject who complained about pain and discomfort were the highest, confirming that his socket was not adequately fitted. We conclude that real-time patient-specific FE analysis of internal stresses in deep soft tissues of the residual limb in TTA patients is feasible. This method is promising for improving the fitting of prostheses in the clinical setting and for protecting the residual limb from pressure ulcers and DTI.

  6. Residual stresses and their effects in composite laminates

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.; Hwang, D. G.

    1983-01-01

    Residual stresses in composite laminates are caused by the anisotropy in expansional properties of constituent unidirectional plies. The effect of these residual stresses on dimensional stability is studied through the warping of unsymmetric (0 sub 4/90 sub 4)sub T graphite/epoxy laminates while their effect on ply failure is analyzed for (0/90)sub 2s Kevlar 49/epoxy laminate. The classical laminated plate theory is used to predict the warping of small and large panels. The change of warping does not indicate a noticeable stress relaxation at 75 C while it is very sensitive to moisture content and hence to environment. A prolonged gellation at the initial cure temperature reduces residual stresses while postcure does not. The matrix/interface cracking in dry (0/90)sub 2s Kevlar 49/epoxy laminate is shown to be the result of the residual stress exceeding the transverse strength.

  7. On the Variation of Hardness Due to Uniaxial and Equi-Biaxial Residual Surface Stresses at Elastic-Plastic Indentation

    NASA Astrophysics Data System (ADS)

    Larsson, Per-Lennart

    2018-05-01

    It is established long since that the material hardness is independent of residual stresses at predominantly plastic deformation close to the contact region at indentation. Recently though, it has been shown that when elastic and plastic deformations are of equal magnitude this invariance is lost. For materials such as ceramics and polymers, this will complicate residual stress determination but can also, if properly understood, provide additional important information for performing such a task. Indeed, when the residual stresses are equi-biaxial, the situation is quite well understood, but additional efforts have to be made to understand the mechanical behavior in other loading states. Presently therefore, the variation of hardness, due to residual stresses, is examined at a uniaxial stress state. Correlation with global indentation quantities is analyzed, discussed and compared to corresponding equi-biaxial results. Cone indentation of elastic-perfectly plastic materials is considered.

  8. Effects of welding technology on welding stress based on the finite element method

    NASA Astrophysics Data System (ADS)

    Fu, Jianke; Jin, Jun

    2017-01-01

    Finite element method is used to simulate the welding process under four different conditions of welding flat butt joints. Welding seams are simulated with birth and death elements. The size and distribution of welding residual stress is obtained in the four kinds of welding conditions by Q345 manganese steel plate butt joint of the work piece. The results shown that when using two-layers welding,the longitudinal and transverse residual stress were reduced;When welding from Middle to both sides,the residual stress distribution will change,and the residual stress in the middle of the work piece was reduced.

  9. Nondestructive Testing Residual Stress Using Ultrasonic Critical Refracted Longitudinal Wave

    NASA Astrophysics Data System (ADS)

    Xu, Chunguang; Song, Wentao; Pan, Qinxue; Li, Huanxin; Liu, Shuai

    Residual stress has significant impacts on the performance of the mechanical components, especially on its strength, fatigue life and corrosion resistance and dimensional stability. Based on theory of acoustoelasticity, the testing principle of ultrasonic LCR wave method is analyzed. The testing system of residual stress is build. The method of calibration of stress coefficient is proposed in order to improve the detection precision. At last, through experiments and applications on residual stress testing of oil pipeline weld joint, vehicle's torsion shaft, glass and ceramics, gear tooth root, and so on, the result show that it deserved to be studied deeply on application and popularization of ultrasonic LCR wave method.

  10. Measurement of residual stresses by the moire method

    NASA Astrophysics Data System (ADS)

    Sciammarella, C. A.; Albertazzi, A., Jr.

    Three different applications of the moire method to the determination of residual stresses and strains are presented. The three applications take advantage of the property of ratings to record the changes of the surface they are printed on. One of the applications deals with thermal residual stresses, another with contact residual stress and the third one is a generalization of the blind hole technique. This last application is based on a computer assisted moire technique and on the generalization of the quasi-heterodyne techniques of fringe pattern analysis.

  11. Optimization of the Mechanical Properties and Residual Stresses in 2024 Aluminum Alloy Through Heat Treatment

    NASA Astrophysics Data System (ADS)

    Araghchi, M.; Mansouri, H.; Vafaei, R.; Guo, Y.

    2018-05-01

    Residual stresses induced during quenching of aluminum alloys cause dimensional instability and distortion. In this study, the effects of different concentrations of polyalkylene glycol (PAG) quenchants on residual stresses and mechanical properties of 2024 aluminum alloy were investigated. Surface residual stresses were measured by using hole-drilling strain-gauge method. Also, mechanical properties and microstructure of the heat-treated samples were analyzed using hardness measurements, tensile tests, and transmission electron microscopy. Results showed that quenching into a 15% polymeric solution and aging at 190 °C for 12 h cause 50% reduction in residual stress as compared with quenching in water at 20 °C and naturally aging. Moreover, tensile strength decreased by 104 MPa ( 20%) in compared with the T6 sample.

  12. Numerical simulation of residual stress in laser based additive manufacturing process

    NASA Astrophysics Data System (ADS)

    Kalyan Panda, Bibhu; Sahoo, Seshadev

    2018-03-01

    Minimizing the residual stress build-up in metal-based additive manufacturing plays a pivotal role in selecting a particular material and technique for making an industrial part. In beam-based additive manufacturing, although a great deal of effort has been made to minimize the residual stresses, it is still elusive how to do so by simply optimizing the processing parameters, such as beam size, beam power, and scan speed. Amid different types of additive manufacturing processes, Direct Metal Laser Sintering (DMLS) process uses a high-power laser to melt and sinter layers of metal powder. The rapid solidification and heat transfer on powder bed endows a high cooling rate which leads to the build-up of residual stresses, that will affect the mechanical properties of the build parts. In the present work, the authors develop a numerical thermo-mechanical model for the measurement of residual stress in the AlSi10Mg build samples by using finite element method. Transient temperature distribution in the powder bed was assessed using the coupled thermal to structural model. Subsequently, the residual stresses were estimated with varying laser power. From the simulation result, it found that the melt pool dimensions increase with increasing the laser power and the magnitude of residual stresses in the built part increases.

  13. Relation Between Residual and Hoop Stresses and Rolling Bearing Fatigue Life

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.

    2015-01-01

    Rolling-element bearings operated at high speed or high vibration may require a tight interference fit between the bore of the bearing and shaft to prevent rotation of the bearing bore around the shaft and fretting damage at the interfaces. Previous work showed that the hoop stresses resulting from tight interference fits can reduce bearing lives by as much as 65 percent. Where tight interference fits are required, case-carburized steel such as AISI 9310 or M50 NiL is often used because the compressive residual stresses inhibit subsurface crack formation and the ductile core inhibits inner-ring fracture. The presence of compressive residual stress and its combination with hoop stress also modifies the Hertz stress-life relation. This paper analyzes the beneficial effect of residual stresses on rolling-element bearing fatigue life in the presence of high hoop stresses for three bearing steels. These additional stresses were superimposed on Hertzian principal stresses to calculate the inner-race maximum shearing stress and the resulting fatigue life of the bearing. The load-life exponent p and Hertz stress-life exponent n increase in the presence of compressive residual stress, which yields increased life, particularly at lower stress levels. The Zaretsky life equation is described and is shown to predict longer bearing lives and greater load- and stress-life exponents, which better predicts observed life of bearings made from vacuum-processed steel.

  14. Theoretical modelling of residual and transformational stresses in SMA composites

    NASA Astrophysics Data System (ADS)

    Berman, J. B.; White, S. R.

    1996-12-01

    SMA composites are a class of smart materials in which shape memory alloy (SMA) actuators are embedded in a polymer matrix composite. The difference in thermal expansion between the SMA and the host material leads to residual stresses during processing. Similarly, the SMA transformations from martensite to austenite, or the reverse, also generate stresses. These stresses acting in combination can lead to SMA/epoxy interfacial debonding or microcracking of the composite phase. In this study the residual and transformational stresses are investigated for a nitinol wire embedded in a graphite/epoxy composite. A three-phase micromechanical model is developed. The nitinol wire is assumed to behave as a thermoelastic material. Nitinol austenitic and martensitic transformations are modelled using linear piecewise interpolation of experimental data. The interphase is modelled as a thermoelastic polymer. A transversely isotropic thermoelastic composite is used for the outer phase. Stress-free conditions are assumed immediately before cool down from the cure temperature. The effect of nitinol, coating and composite properties on residual and transformational stresses are evaluated. Fiber architectures favoring the axial direction decrease the magnitude of all residual stresses. A decrease in stresses at the composite/coating interface is also predicted through the use of thick, compliant coatings. Reducing the recovery strain and moving the transformation to higher temperatures were found to be most effective in reducing residual stresses.

  15. A mechanical analysis of conduit arteries accounting for longitudinal residual strains.

    PubMed

    Wang, Ruoya; Gleason, Rudolph L

    2010-04-01

    Identification of an appropriate stress-free reference configuration is critically important in providing a reasonable prediction of the intramural stress distribution when performing biomechanical analyses on arteries. The stress-free state is commonly approximated as a radially cut ring that typically opens into a nearly circular sector, relieving much of the circumferential residual strains that exist in the traction-free configuration. An opening angle is often used to characterize this sector. In this study, we first present experimental results showing significant residual deformations in the longitudinal direction of two commonly studied arteries in the pig: the common carotid artery and the left anterior descending coronary artery. We concluded that a radially cut ring cannot completely describe the stress-free state of the arteries. Instead, we propose the use of a longitudinal opening angle, in conjunction with the traditional circumferential opening angle, to experimentally quantify the stress-free state of an artery. Secondly, we propose a new kinematic model to account for the addition of longitudinal residual strains through employing the longitudinal opening angle and performed a stress analysis. We found that with the inclusion of longitudinal residual strains in the stress analysis, the predicted circumferential stress gradient was decreased by 3-fold and the predicted longitudinal stress gradient was increased by 5.7-fold. Thus, inclusion of longitudinal residual strains has a significant effect on the predicted stress distribution in arteries.

  16. Effects of the Fabrication Process and Thermal Cycling on the Oxidation of Zirconium-Niobium Pressure Tubes

    NASA Astrophysics Data System (ADS)

    Nam, Cheol

    2009-12-01

    Pressure tubes made of Zr-2.5%Nb alloy are used to contain fuels and coolant in CANDU nuclear power reactors The pressure tube oxidizes during reactor operation and hydrogen ingress through the oxide grown on the tube limits its lifetime. Little attention was paid to the intermediate tube manufacturing processes in enhancing the oxidation resistance. In addition, the oxide grown on the tube experiences various thermal cycles depending on the reactor shutdown and startup cycles. To address these two aspects and to better understand the oxidation process of the Zr-2.5Nb tube, research was conducted in two parts: (i) effects of tube fabrication on oxidation behavior, and (ii) thermal cycling behaviors of oxides grown on a pressure tube. In the first part, the optimum manufacturing process was pursued to improve the corrosion resistance of Zr-2.5Nb tubes. Experimental micro-tubes were fabricated with various manufacturing routes in the stages of billet preparation, hot extrusion and cold drawing. These were oxidized in air at 400°C and 500°C, and in an autoclave at 360°C lithiated water. Microstructure and texture of the tubes and oxides were characterized with X-ray diffraction, scanning electron microscope and optical microscope. Special emphasis was given to examinations of the metal/oxide interface structures. A correlation between the manufacturing process and oxidation resistance was investigated in terms of tube microstructure and the metal/oxide interface structure. As a result, it was consistently observed that uniform interface structures were formed on the tubes which had a fine distribution of secondary phases. These microstructures were found to be beneficial in enhancing the oxidation resistance as opposed to the tubes that had coarse and continuous beta-Zr phases. Based on these observations, a schematic model of the oxidation process was proposed with respect to the oxidation resistance under oxidizing temperatures of 360°C, 400°C and 500°C. In the second part, the oxides grown on a standard Zr-2.5Nb pressure tube were analyzed by X-ray diffraction peak broadening and line shift. Crystallite size, t-ZrO2 fraction and residual stress of the zirconium oxides were investigated upon several thermal cycles at DeltaT range of 500°C--750°C. The oxide residual stresses measured by the sin2psi method were always compressive around 2 GPa. Different stress-states were noticed with the oxides grown on different sections of pressure tube. The compressive stress was released when the oxide was thermally cycled at the highest DeltaT of 750°C. Discussion was given to the effects of anisotropic nature of thermal expansion coefficients and crystallographic texture on the stress-state of Zr oxides.

  17. Temperature-dependent phase-specific deformation mechanisms in a directionally solidified NiAl-Cr(Mo) lamellar composite

    DOE PAGES

    Yu, Dunji; An, Ke; Chen, Xu; ...

    2015-10-09

    Phase-specific thermal expansion and mechanical deformation behaviors of a directionally solidified NiAl–Cr(Mo) lamellar in situ composite were investigated by using real-time in situ neutron diffraction during compression at elevated temperatures up to 800 °C. Tensile and compressive thermal residual stresses were found to exist in the NiAl phase and Crss (solid solution) phase, respectively. Then, based on the evolution of lattice spacings and phase stresses, the phase-specific deformation behavior was analyzed qualitatively and quantitatively. Moreover, estimates of phase stresses were derived by Hooke's law on the basis of a simple method for the determination of stress-free lattice spacing in inmore » situ composites. During compressive loading, the NiAl phase yields earlier than the Crss phase. The Crss phase carries much higher stress than the NiAl phase, and displays consistent strain hardening at all temperatures. The NiAl phase exhibits strain hardening at relatively low temperatures and softening at high temperatures. During unloading, the NiAl phase yields in tension whereas the Crss phase unloads elastically. Additionally, post-test microstructural observations show phase-through cracks at room temperature, micro cracks along phase interfaces at 600 °C and intact lamellae kinks at 800 °C, which is due to the increasing deformability of both phases as temperature rises.« less

  18. Characterization of a defective PbWO4 crystal cut along the a-c crystallographic plane: structural assessment and a novel photoelastic stress analysis

    NASA Astrophysics Data System (ADS)

    Montalto, L.; Natali, P. P.; Daví, F.; Mengucci., P.; Paone, N.; Rinaldi, D.

    2017-12-01

    Among scintillators, the PWO is one of the most widely used, for instance in CMS calorimeter at CERN and PANDA project. Crystallographic structure and chemical composition as well as residual stress condition, are indicators of homogeneity and good quality of the crystal. In this paper, structural characterization of a defective PbWO4 (PWO) crystal has been performed by X-ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS) and Photoelasticity in the unusual (a, c) crystallographic plane. XRD and EDS analysis have been used to investigate crystallographic orientation and chemical composition, while stress distribution, which indicates macroscopic inhomogeneities and defects, has been obtained by photoelastic approaches, in Conoscopic and Sphenoscopic configuration. Since the sample is cut along the (a, c) crystallographic plane, a new method is proposed for the interpretation of the fringe pattern. The structural analysis has detected odds from the nominal lattice dimension, which can be attributed to the strong presence of Pb and W. A strong inhomogeneity over the crystal sample has been revealed by the photoelastic inspection. The results give reliability to the proposed procedure which is exploitable in crystals with other structures.

  19. A stress-free model for residual stress assessment using thermoelastic stress analysis

    NASA Astrophysics Data System (ADS)

    Howell, Geoffrey; Dulieu-Barton, Janice M.; Achintha, Mithila; Robinson, Andrew F.

    2015-03-01

    Thermoelastic Stress Analysis (TSA) has been proposed as a method of obtaining residual stresses. The results of a preliminary study demonstrated that when Al-2024 plate containing holes that were plastically deformed by cold expansion process to 2% and 4% strain the thermoelastic response in the material around the hole was different to that obtained from a plate that had not experienced any plastic cold expansion (i.e. a reference specimen). This observation provides an opportunity for obtaining residual stresses based on TSA data. In many applications a reference specimen (i.e. residual stress free specimen) may not be available for comparison, so a synthetic, digital bitmap has been proposed as an alternative. An elastic finite element model is created using commercially available software Abaqus/Standard and the resultant stress field is extracted. The simulated stress field from the model is mapped onto a grid that matches the TSA pixel data from a physical reference specimen. This stress field is then converted to a ΔT/T field that can be compared to the full-field TSA data. When the reference experimental data is subtracted from the, bitmap dataset the resultant ΔT/T field is approximately zero. Further work proposes replacing the experimental reference data with that from specimens that have undergone cold expansion with the aim of revealing the regions affected by residual stress through a departure from zero in the resultant stress field. The paper demonstrates the first steps necessary for deriving the residual stresses from a general specimen using TSA.

  20. Caracterisation des contraintes residuelles engendrees par l'expansion a froid de trous dans des alliages d'aluminium

    NASA Astrophysics Data System (ADS)

    Lapalme, Maxime

    Cold Expansion (CX) is a process which consists in plastically deforming assembly holes in metallic alloys by drawing an oversize mandrel through them. The major interference caused by the mandrel generates residual constraints around the hole. The tangential part of those constraints is beneficial for the hole fatigue life since an highly compressive zone is created which will retard fatigue cracks propagation. However, farther from this compressive zone, balancing tensile stresses are generated. The resultant of the CX process is a considerable increase in the fatigue life of the hole which has been demonstrated by the industry over the last decades. The present study objectives were the characterization of the residual stress field induced by CX and the development of a simulation method for it. The complexity of the generated stresses is increased tenfold by two main elements. First, the progressive drawing of the mandrel through the hole causes a scalable interference which produces variable stress states in the thickness of the perforated plate. Second, for easier application and productivity, the interference between the hole and the mandrel is actually caused by an interference object, the sleeve, that is rolled to a cylindrical form from a thin steel sheet. At its critical interference position, a split is opened in the sleeve which causes a non-uniform mechanical loading applied to the walls of the hole. In order to conceive a physically realistic tridimensional finite element model, laboratory measurements were first performed. The mandrel was digitized to introduce its exact shape in the model. Dimensional measurements have also helped to characterize the sleeve mechanical behavior during the CX and the effect of its split on the final hole state. These measurements and observations allowed defining the behavior of various interfaces of contact and geometries in the FE model. Characterization of the residual stress field and the validation of the simulation model of CX were performed using a variety of experimental data generated as part of this study. First, X-ray diffraction yielded measurements of stress on both sides of the sample. Then, full field planar strains were measured using digital image correlation on both sides of samples. Finally, optical measurements were carried out to determine the out-of-plane displacements at the vicinity of the hole, movement which is caused by the passage of the mandrel and the flow of material as it moves. The experimental data showed that through the thickness of a plate with a hardened hole, the residual stresses and strains are quite different, and therefore that the CX process has important three-dimensional effects. Moreover, the opening in the sleeve causes a state of nonuniform deformation on the circumference of the hole. The results of the simulation using the developed FE model show a very good correlation with the experimental data gathered for stress, strain and displacement. This comparison shows that to properly simulate the CX process, it is important to consider the exact geometry of the parts and tools as well as contacts between all of these interfaces. Following CX, the hole is generally reamed to the dimensions required for the subsequent assembly with a fastener. This machining causes a redistribution of the stress previously generated by CX. No experimental results have been collected on the impact of the reaming in the context of this study. However, a simulation method was used in the FE model to represent this last operation. The analysis shows that the reaming uniforms stress state across the thickness of the hardened sample. A validation of this observation would be necessary since the effect is significant on the final condition of the residual stresses generated by CX.

  1. A new methodology for predictive tool wear

    NASA Astrophysics Data System (ADS)

    Kim, Won-Sik

    An empirical approach to tool wear, which requires a series of machining tests for each combination of insert and work material, has been a standard practice for industries since early part of the twentieth century. With many varieties of inserts and work materials available for machining, the empirical approach is too experiment-intensive that the demand for the development of a model-based approach is increasing. With a model-based approach, the developed wear equation can be extended without additional machining experiments. The main idea is that the temperatures on the primary wear areas are increasing such that the physical properties of the tool material degrade substantially and consequently tool wear increases. Dissolution and abrasion are identified to be the main mechanisms for tool wear. Flank wear is predominantly a phenomenon of abrasion as evident by the presence of a scoring mark on the flank surface. Based on this statement, it is reasonable to expect that the flank-wear rate would increase with the content of hard inclusions. However, experimental flank wear results did not necessary correspond to the content of cementite phase present in the steels. Hence, other phenomena are believed to significantly affect wear behavior under certain conditions. When the cutting temperature in the flank interface is subjected to high enough temperatures, pearlitic structure austenizes. During the formation of a new austenitic phase, the existing carbon is dissolved into the ferrite matrix, which will reduce the abrasive action. To verify the austenitic transformation, turning tests were conducted with plain carbon steels. The machined surface areas are imaged using X-ray diffraction the Scanning Electron Microscope (SEM) and the Transmission Electron Microscope (TEM). On the other hand, crater wear occurs as a result of dissolution wear and abrasive wear. To verify the wear mechanisms of crater wear, various coating inserts as well as uncoated inserts were turned with various cutting conditions and the results were compared with the proposed analytical wear models. The crater surfaces after machining have been carefully studied to shed light on the physics behind the crater wear. In addition, the abrasive wear mechanism plays a major role in the development of crater wear. Laser shock processing (LSP) has been applied to locally relieve the deleterious tensile residual stresses on the crater surface of a coated tool, thus to improve the hardness of the coating. This thesis shows that LSP has indeed improve wear resistance of CVD coated alumina tool inserts, which has residual stress due to high processing temperature. LSP utilizes a very short laser pulse with high energy density, which induces high-pressure stress wave propagation. The residual stresses are relieved by incident shock waves on the coating surface. Residual stress levels of LSP CVD alumina-coated carbide insert were evaluated by the X-ray diffractometer. Based on these results, LSP parameters such as number of laser pulses and laser energy density can be controlled to reduce residual stress. Crater wear shows that the wear resistance increase with LSP treated tool inserts. Because the hardness data are used to predict the wear, the improvement in hardness and wear resistance shows that the mechanism of crater wear also involves abrasive wear.

  2. Effect of dissolution/precipitation on the residual stress redistribution of plasma-sprayed hydroxyapatite coating on titanium substrate in simulated body fluid (SBF).

    PubMed

    Rakngarm Nimkerdphol, Achariya; Otsuka, Yuichi; Mutoh, Yoshiharu

    2014-08-01

    The residual stress distributions in hydroxyapatite (HAp) coating with and without mixed hydroxyapatite/titanium (HAp/Ti) bond coating on commercially pure Titanium substrate (cp-Ti) were evaluated by Raman piezo-spectroscopy analysis. The Raman shifted position 962cm(-1), which is the symmetrical stretching of surrounded oxygen atoms with phosphorous atom ( [Formula: see text] ), was referred to analyses of stress dependency. The piezo-spectroscopic coefficient, which is a Raman shift value per stress (cm(-1)/GPa), was fitted from the result of four-points bending test of rectangular HAp bar and as-sprayed HAp on Zn plate. The calculated values were 3.89cm(-1)/GPa for the former and 7.11cm(-1)/GPa for the latter. By using these calibrations, the compressive residual stress in HAp coating with HAp/Ti bond coating (HA-B) has been found to be distributed in the range of -137MPa to -75MPa. For the heat-treated HAp coating (HA-B-HT) specimen, the compressive residual stresses placed in the range of -40--22MPa. The changes in the values of residual stress of the HAp coating after immersion in SBF were also evaluated. The residual stress in HA-WB specimens tend to change from compressive to tensile after 30 days immersion. The HA-B-HT specimens exhibited similar behavior and reached to zero stress after the immersion. The mechanism of the changes in residual stress would be the effect of stress redistribution around melted calcium phosphate particles to remained HAp splats. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Experimental study of the acoustoelastic Lamb wave in thin plates

    NASA Astrophysics Data System (ADS)

    Pei, Ning; Bond, Leonard J.

    2016-02-01

    Many factors can cause residual stresses in industry, like rolling, welding and coating. Residual stresses can have both benefits and shortcomings on components, so it is important to find the residual stresses out and enhance its benefits part and get rid of its harmful part. There are many methods for residual stresses detection and ultrasonic method turns out to be a good one for it is nondestructive, relative cheap and portable. The critically refracted longitudinal (LCR) wave is widely used for it is regarded most sensitive to stress and less sensitive to texture which can influence detection results. Ultrasonic methods for residual stresses detection are based on time of flight (TOF) measurement, but because the measurement should reach nanosecond to show stress change, there are many other factors that can influence TOF, like temperature, texture of the components and even the thickness of the couplant. So increasing the TOF's sensitivity to stress is very important. In this paper the relationships between velocity and frequency are studied experimentally[6] for different Lamb modes, under various stress loadings. The result shows that the sensitivity of different modes various a lot, the A1 mode is the most sensitivity, compared to S0, S1 and A0 modes; if the force is added to 100 MPa, the change stress of A1 mode can be as large to 80 m/s, which is about 10 times more sensitive than the traditional bulk wave. This makes it as a good choice for residual stress detection.

  4. Complexity in modeling of residual stresses and strains during polymerization of bone cement: effects of conversion, constraint, heat transfer, and viscoelastic property changes.

    PubMed

    Gilbert, Jeremy L

    2006-12-15

    Aseptic loosening of cemented joint prostheses remains a significant concern in orthopedic biomaterials. One possible contributor to cement loosening is the development of porosity, residual stresses, and local fracture of the cement that may arise from the in-situ polymerization of the cement. In-situ polymerization of acrylic bone cement is a complex set of interacting processes that involve polymerization reactions, heat generation and transfer, full or partial mechanical constraint, evolution of conversion- and temperature-dependent viscoelastic material properties, and thermal and conversion-driven changes in the density of the cement. Interactions between heat transfer and polymerization can lead to polymerization fronts moving through the material. Density changes during polymerization can, in the presence of mechanical constraint, lead to the development of locally high residual strain energy and residual stresses. This study models the interactions during bone cement polymerization and determines how residual stresses develop in cement and incorporates temperature and conversion-dependent viscoelastic behavior. The results show that the presence of polymerization fronts in bone cement result in locally high residual strain energies. A novel heredity integral approach is presented to track residual stresses incorporating conversion and temperature dependent material property changes. Finally, the relative contribution of thermal- and conversion-dependent strains to residual stresses is evaluated and it is found that the conversion-based strains are the major contributor to the overall behavior. This framework provides the basis for understanding the complex development of residual stresses and can be used as the basis for developing more complex models of cement behavior.

  5. Investigation on the Effect of Mold Constraints and Cooling Rate on Residual Stress During the Sand-Casting Process of 1086 Steel by Employing a Thermomechanical Model

    NASA Astrophysics Data System (ADS)

    Baghani, Amir; Davami, Parviz; Varahram, Naser; Shabani, Mohsen Ostad

    2014-06-01

    In this study, the effects of mold constraints and cooling rate on residual stress were analyzed during the shaped casting process. For this purpose, an H-shaped sample was designed in which the contraction of its middle portion is highly restricted by the mold during the cooling process. The effects of an increasing cooling rate combined with mold constraints were analyzed by reducing the thickness of the middle portion in the second sample. A three-dimensional coupled temperature-displacement analysis was performed in finite-element code ABAQUS to simulate residual stress distribution, and then numerical results were verified by the hole-drilling strain-gauge method. It was concluded that the mold constraints have a greater effect on the values of residual stress than the cooling rate (thin section) in steel sand casting. Increasing the cooling rate would increase the amount of residual stress, only in the presence of mold constraints. It is also suggested that employing the elastic-plastic stress model for the sand mold will satisfy the experimental results and avoid exaggerated values of residual stress in simulation.

  6. Evolution of Residual Stress and Distortion of Cold-Rolled Bearing Ring from Annealing to Quenched-Tempered Heat Treatment

    NASA Astrophysics Data System (ADS)

    Lu, Bohan; Lu, Xiaohui

    2018-02-01

    This study investigates the correlation between the residual stress and distortion behavior of a cold-rolled ring from the annealing to quenching-tempering (QT) process. Due to the cold-rolled process, the external periphery of the bearing ring experiences a compressive residual stress. To relieve the residual stress, cold-rolled rings are annealed at 700 °C which is higher than the starting temperature of recrystallization. When cold-rolled rings are annealed at 700 °C for 15 min, the compressive residual stress is reduced to zero and the outer diameter of the annealed ring becomes larger than that of a non-annealed sample, which is unrelated to annealing time. Simultaneously, the roundness and taper deviation do not obviously change compared with those of non-annealed sample. The stress relaxation during the annealing process was attributed to the recovery and recrystallization of ferrite. Annealing has a genetic influence on the following QT heat treatment, wherein the lowest residual stress is in the non-annealed cold-rolled ring. From the annealing to QT process, the deviation of the outer diameter, roundness, and taper increased with annealing time, a large extend than that of non-annealed samples.

  7. Residual stress measurement of PMMA by combining drilling-hole with digital speckle correlation method

    NASA Astrophysics Data System (ADS)

    Yao, X. F.; Xiong, T. C.; Xu, H. M.; Wan, J. P.; Long, G. R.

    2008-11-01

    The residual stresses of the PMMA (polymethyl methacrylate) specimens after being drilled, reamed and polished respectively are investigated using the digital speckle correlation experimental method,. According to the displacement fields around the correlated calculated region, the polynomial curve fitting method is used to obtain the continuous displacement fields, and the strain fields can be obtained from the derivative of the displacement fields. Considering the constitutive equation of the material, the expression of the residual stress can be presented. During the data processing, according to the fitting effect of the data, the calculation region of the correlated speckles and the degree of the polynomial fitting curve is decided. These results show that the maximum stress is at the hole-wall of the drilling hole specimen and with the increasing of the diameter of the drilled hole, the residual stress resulting from the hole drilling increases, whereas the process of reaming and polishing hole can reduce the residual stress. The relative large discrete degree of the residual stress is due to the chip removal ability of the drill bit, the cutting feed of the drill and other various reasons.

  8. Evaluating the damage of steel 09G2S under static and cyclic loading with regard for the level of residual stresses in the metal

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. V.; Kamantsev, I. S.; Zadvorkin, S. M.; Drukarenko, N. A.; Goruleva, L. S.; Veselova, V. E.

    2017-12-01

    An approach to the estimation of the residual durability of structural elements in view of their initial stress-strain state is proposed. The adequacy of the developed approach is confirmed by experiments on cyclic loading of specimens without pronounced stress concentrators simulating the work of real structural elements under conditions of overshooting the total stresses causing local plastic deformation of the material, with regard for residual stresses.

  9. Residual strain mapping of Roman styli from Iulia Concordia, Italy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvemini, Filomena, E-mail: floriana.salvemini@fi.isc.cnr.it; Università degli Studi di Firenze, Dipartimento di Scienze della Terra; Grazzi, Francesco

    Iulia Concordia is an important Roman settlement known for the production of iron objects and weapons during the Roman Empire. A huge number of well-preserved styli were found in the past century in the bed of an old channel. In order to shed light about the production processes used by Roman for stylus manufacturing, a neutron diffraction residual strain analysis was performed on the POLDI materials science diffractometer at the Paul Scherrer Institut in Switzerland. Here, we present results from our investigation conducted on 11 samples, allowing to define, in a non-invasive way, the residual strain map related to themore » ancient Roman working techniques. - Highlights: • We examined 11 Roman styli from the settlement of Iulia Concordia, Italy. • We performed a neutron diffraction residual strain analysis on POLDI at PSI (CH). • We identified the production processes used by Roman for stylus manufacturing. • We clarified the way and direction of working applied for different classes of styli.« less

  10. Power-law creep and residual stresses in carbopol microgels

    NASA Astrophysics Data System (ADS)

    Lidon, Pierre; Manneville, Sebastien

    We report on the interplay between creep and residual stresses in carbopol microgels. When a constant shear stress σ is applied below the yield stress σc, the strain is shown to increase as a power law of time, γ (t) =γ0 +(t / τ) α , with and exponent α ~= 0 . 38 that is strongly reminiscent of Andrade creep in hard solids. For applied shear stresses lower than some characteristic value of about σc / 10 , the microgels experience a more complex creep behavior that we link to the existence of residual stresses and to weak aging of the system after preshear. The influence of the preshear protocol, of boundary conditions and of microgel concentration on residual stresses is investigated. We discuss our results in light of previous works on colloidal glasses and other soft glassy systems.

  11. Effects of Laser Re-melting on the Corrosion Properties of HVOF Coatings

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Toor, I. H.; Patel, F.; Baig, M. A.

    2013-05-01

    HVOF coating of Inconel 625 powder on carbon steel is carried out. Laser melting of the resulting coating is realized to improve coating structural integrity. Morphological and microstructural changes are examined in the coating prior and after laser treatment process using scanning electron microscopy, energy dispersive spectroscopy, and x-ray diffraction (XRD). The residual stress developed is measured on the surface vicinity of the laser-treated coating using the XRD technique. The corrosion resistance of the laser-treated and untreated coating surfaces is measured, incorporating the potentiodynamic tests in 0.5 M NaCl aqueous solution. It is found that laser treatment reduces the pores and produces cellular structures with different sizes and orientations in the coating. Laser-controlled melting improves the corrosion resistance of the coating surface.

  12. Enhancement of Ti-containing hydrogenated carbon (Tisbnd C:H) films by high-power plasma-sputtering

    NASA Astrophysics Data System (ADS)

    Gwo, Jyh; Chu, Chun-Lin; Tsai, Ming-Jui; Lee, Shyong

    2012-02-01

    Ti-containing amorphous hydrogenated carbon (Tisbnd C:H) thin films were deposited on stainless steel SS304 substrates by high-power pulsed magnetron sputtering (HPPMS) in an atmosphere of mixed Ar and C2H2 gases using titanium metal as the cathodic material. The multilayer structure of the deposited film had a Tisbnd TiCsbnd DLC gradient to improve adhesion and reduce residual stress. This study investigates the effects of substrate bias and target-to-substrate distance on the mechanical properties of Tisbnd C:H films. Film properties, including composition, morphology, microstructure, mechanical, and tribology, were examined by glow discharge spectroscopy (GDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and a nanoindenter and a pin-on-disk tribometer. Experiments revealed impressive results.

  13. A quantitative non-destructive residual stress assessment tool for pipelines.

    DOT National Transportation Integrated Search

    2014-09-01

    G2MT successfully demonstrated the eStress system, a powerful new nondestructive evaluation : system for analyzing through-thickness residual stresses in mechanical damaged areas of steel : pipelines. The eStress system is designed to help pipe...

  14. Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel

    NASA Astrophysics Data System (ADS)

    Outeiro, José C.; Umbrello, Domenico; Pina, José C.; Rizzuti, Stefania

    2007-05-01

    Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses.

  15. Optimizing amorphous indium zinc oxide film growth for low residual stress and high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Sigdel, A. K.; Gennett, T.; Berry, J. J.; Perkins, J. D.; Ginley, D. S.; Packard, C. E.

    2013-10-01

    With recent advances in flexible electronics, there is a growing need for transparent conductors with optimum conductivity tailored to the application and nearly zero residual stress to ensure mechanical reliability. Within amorphous transparent conducting oxide (TCO) systems, a variety of sputter growth parameters have been shown to separately impact film stress and optoelectronic properties due to the complex nature of the deposition process. We apply a statistical design of experiments (DOE) approach to identify growth parameter-material property relationships in amorphous indium zinc oxide (a-IZO) thin films and observed large, compressive residual stresses in films grown under conditions typically used for the deposition of highly conductive samples. Power, growth pressure, oxygen partial pressure, and RF power ratio (RF/(RF + DC)) were varied according to a full-factorial test matrix and each film was characterized. The resulting regression model and analysis of variance (ANOVA) revealed significant contributions to the residual stress from individual growth parameters as well as interactions of different growth parameters, but no conditions were found within the initial growth space that simultaneously produced low residual stress and high electrical conductivity. Extrapolation of the model results to lower oxygen partial pressures, combined with prior knowledge of conductivity-growth parameter relationships in the IZO system, allowed the selection of two promising growth conditions that were both empirically verified to achieve nearly zero residual stress and electrical conductivities >1480 S/cm. This work shows that a-IZO can be simultaneously optimized for high conductivity and low residual stress.

  16. Residual stress measurement in silicon sheet by shadow moire interferometry

    NASA Technical Reports Server (NTRS)

    Kwon, Y.; Danyluk, S.; Bucciarelli, L.; Kalejs, J. P.

    1987-01-01

    A shadow moire interferometry technique has been developed to measure residual strain in thin silicon sheet. The curvature of a segment of sheet undergoing four-point bending is analyzed to include the applied bending moments, the in-plane residual stresses, and the 'end effect' of the sheet since it is of finite length. The technique is applied to obtain residual stress distributions for silicon sheet grown by the edge-defined film-fed growth technique.

  17. Improved structural integrity through advances in reliable residual stress measurement: the impact of ENGIN-X

    NASA Astrophysics Data System (ADS)

    Edwards, L.; Santisteban, J. R.

    The determination of accurate reliable residual stresses is critical to many fields of structural integrity. Neutron stress measurement is a non-destructive technique that uniquely provides insights into stress fields deep within engineering components and structures. As such, it has become an increasingly important tool within engineering, leading to improved manufacturing processes to reduce stress and distortion as well as to the definition of more precise lifing procedures. This paper describes the likely impact of the next generation of dedicated engineering stress diffractometers currently being constructed and the utility of the technique using examples of residual stresses both beneficial and detrimental to structural integrity.

  18. Raman Study of Uncoated and P-bn/sic-coated Hi-nicalon Reinforced Celsian Matrix Composites. Part 2; Residual Stress in the Fibers

    NASA Technical Reports Server (NTRS)

    Gouadec, Gwenael; Colomban, Philippe; Bansal, Narottam P.

    2000-01-01

    Band shifts on Raman spectra were used to assess, at a microscopic scale, the residual strain existing in Hi-Nicalon fibers reinforcing celsian matrix composites. Uncoated as well as p-BN/SiC- and p-B(Si)N/SiC-coated Hi-Nicalon fibers were used as the reinforcements. We unambiguously conclude that the fibers are in a state of compressive residual stress. Quantitative determination of the residual stress was made possible by taking into account the heating induced by laser probing and by using a reference line, of fixed wavenumber. We found fiber compressive residual stress values between 110 and 960 MPa depending on the fiber/matrix coating in the composite. A stress relaxation-like phenomenon was observed at the surface of p-BN/SiC-coated Hi-Nicalon fibers whereas the uncoated or p-B(Si)N/SiC-coated Hi-Nicalon fibers did not show any stress relaxation in the Celsian matrix composites.

  19. Residual stress analysis for oxide thin film deposition on flexible substrate using finite element method

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Chao; Huang, Chen-Yu; Lin, Ssu-Fan; Chen, Sheng-Hui

    2011-09-01

    Residual or internal stresses directly affect a variety of phenomena including adhesion, generation of crystalline defects, perfection of epitaxial layers and formation of film surface growths such as hillocks and whiskers. Sputtering oxide films with high density promote high compressive stress, and it offers researchers a reference if the value of residual stress could be analyzed directly. Since, the study of residual stress of SiO2 and Nb2O5 thin film deposited by DC magnetron sputtered on hard substrate (BK7) and flexible substrate (PET and PC). A finite element method (FEM) with an equivalent-reference-temperature (ERT) technique had been proposed and used to model and evaluate the intrinsic strains of layered structures. The research has improved the equivalent reference temperature (ERT) technique of the simulation of intrinsic strain for oxygen film. The results have also generalized two models connecting to the lattice volume to predict the residual stress of hard substrate and flexible substrate with error of 3% and 6%, respectively.

  20. Modelling and analysis of the stress distribution in a multi-thin film system Pt/USG/Si

    NASA Astrophysics Data System (ADS)

    Yao, W. Z.; Roqueta, F.; Craveur, J. C.; Belhenini, S.; Gardes, P.; Tougui, A.

    2018-04-01

    Residual stress analysis is commonly achieved through curvature measurement with the help of Stoney’s formula. However, this conventional approach is inadequate for multi-layer thin film systems, which are widely used in today’s microelectronics. Also, for the thin film case, the residual stress is composed of thermal stress and intrinsic stress. Measuring the wafer curvature at room temperature provides a value for the average stresses in the layer, the two components cannot be distinguished by the existing methodologies of curvature measurement. To alleviate these problems, a modified curvature method combining finite element (FE) modelling is proposed to study the stress distribution in a Pt/USG/Si structure. A 2D FE model is firstly built in order to calculate the thermal stress in the multilayer structure, the obtained thermal stresses in respective films are verified by an analytical model. Then, we calculate the warpage of the multilayer structure by considering the intrinsic stress in the respective films. The residual stresses in the films are determined by minimizing the difference between the simulated warpage and that of experimental measurement. The proposed approach can be used to calculate not only the average residual stress but also thermal and intrinsic stress components in the USG and Platinum films. The obtained residual and intrinsic stresses from a numerical model are compared with the values of other studies. There is no limitation for the application of our methodologies regarding the number of the layers in the stack.

  1. Stresses in Circular Plates with Rigid Elements

    NASA Astrophysics Data System (ADS)

    Velikanov, N. L.; Koryagin, S. I.; Sharkov, O. V.

    2018-05-01

    Calculations of residual stress fields are carried out by numerical and static methods, using the flat cross-section hypothesis. The failure of metal when exposed to residual stresses is, in most cases, brittle. The presence in the engineering structures of rigid elements often leads to the crack initiation and structure failure. This is due to the fact that rigid elements under the influence of external stresses are stress concentrators. In addition, if these elements are fixed by welding, the residual welding stresses can lead to an increase in stress concentration and, ultimately, to failure. The development of design schemes for such structures is a very urgent task for complex technical systems. To determine the stresses in a circular plate with a welded circular rigid insert under the influence of an external load, one can use the solution of the plane stress problem for annular plates in polar coordinates. The polar coordinates of the points are the polar radius and the polar angle, and the stress state is determined by normal radial stresses, tangential and shearing stresses. The use of the above mentioned design schemes, formulas, will allow more accurate determination of residual stresses in annular welded structures. This will help to establish the most likely directions of failure and take measures at the stages of designing, manufacturing and repairing engineering structures to prevent these failures. However, it must be taken into account that the external load, the presence of insulation can lead to a change in the residual stress field.

  2. Nanoindentation data analysis of loading curve performed on DLC thin films: Effect of residual stress on the elasto-plastic properties

    NASA Astrophysics Data System (ADS)

    Ouchabane, M.; Dublanche-Tixier, Ch.; Dergham, D.

    2017-11-01

    The present work is a contribution to the understanding of the mechanical behavior of DLC thin films through nanoindentation tests. DLC films of different thicknesses deposited by the PECVD process on a silicon substrate contain high residual compressive stresses when they are very thin and the stresses become relatively low and more relaxed as the film thickens. These different levels of residual stress influence the values of hardness (H) and Young's modulus (E) obtained when probing the film-substrate system by nanoindentation. It is observed that the DLC layers exhibit different mechanical behaviors even when they are deposited under the same conditions. It is proposed that the compressive stress induces structural modifications resulting in modifying the elasto-plastic properties of each thin film-substrate system. Data analysis of the loading curve can provide information on the elasto-plastic properties of DLC thin films, particularly the stiffness (S) and Er2/H, as a function of residual compressive stresses. The structural changes induced by residual stresses were probed by using Raman spectroscopy and correlated to the mechanical properties.

  3. Non destructive neutron diffraction measurements of cavities, inhomogeneities, and residual strain in bronzes of Ghiberti's relief from the Gates of Paradise

    NASA Astrophysics Data System (ADS)

    Festa, G.; Senesi, R.; Alessandroni, M.; Andreani, C.; Vitali, G.; Porcinai, S.; Giusti, A. M.; Materna, T.; Paradowska, A. M.

    2011-03-01

    Quantitative neutron studies of cultural heritage objects provide access to microscopic, mesoscopic, and macroscopic structures in a nondestructive manner. In this paper we present a neutron diffraction investigation of a Ghiberti Renaissance gilded bronze relief devoted to the measurement of cavities and inhomogeneities in the bulk of the sample, along with the bulk phase composition and residual strain distribution. The quantitative measurements allowed the determination of the re-melting parts extension, as well as improving current knowledge about the manufacturing process. The study provides significant and unique information to conservators and restorators about the history of the relief.

  4. Phase transformations and residual stresses in environmental barrier coatings

    NASA Astrophysics Data System (ADS)

    Harder, Bryan J.

    Silicon-based ceramics (SiC, Si3N4) are promising materials for high-temperature structural applications in turbine engines. However, the silica layer that forms on these materials is susceptible to attack from water vapor present in combustion environments. To protect against this degradation, environmental barrier coatings (EBCs) were developed to protect the underlying substrate. In the case of silicon carbide (SiC), multilayer coating systems consist of a Ba1-xSrxAl2Si 2O8 (BSAS) topcoat, a mullite or mullite + SrAl2Si 2O8 (SAS) interlayer, and a silicon bond coat. In this work, biaxial strains were measured on as-sprayed and heat-treated samples to analyze the stress and phase evolution in the coating system as a function of depth and temperature. Models were used to compare the results with an ideal coating system. In the assprayed state, tensile stresses as high as 175 MPa were measured, and cracking was observed. After thermally cycling the samples, stresses were significantly reduced and cracks in the topcoat had closed. The addition of SAS to the interlayer increased the compressive stress in the BSAS topcoat in thermally-cycled samples, which was desirable for EBC applications. The BSAS topcoat transformed from the as-deposited hexacelsian state to the stable celsian above 1200°C. This phase transformation is accompanied by a CTE reduction. The kinetics of the hexacelsian-to-celsian transformation were quantified for freestanding plasma-sprayed BSAS. Activation energies for bulk bars and crushed powder were determined to be ˜340 kJ/mol and ˜500 kJ/mol, respectively. X-ray diffraction and electron backscatter diffraction were used to establish how microstructural constraints reduce the transformation energy. Barrier coating lifetime and stability are also influenced by exposure to reactive, low-melting point calcium-magnesium-aluminosilicate (CMAS) deposits formed from dust and sand. Multilayer doped aluminosilicate coatings and bulk BSAS material were exposed to CMAS glass at 1300°C for up to 48 hours. Stresses were measured as a function of depth in the multilayer coatings, and a compressive stress on the surface increased with exposure time from -50 MPa to a maximum of -160 MPa. Backscatter electron imaging and energy dispersive X-ray techniques demonstrated that infiltration depth of the glass increased with exposure time.

  5. Retention of Compressive Residual Stresses Introduced by Shot Peening in a Powder Metal Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Danetti, Andrew; Draper, Susan L.; Locci, Ivan E.; Telesman, Jack

    2016-01-01

    The fatigue lives of disk superalloys can be increased by shot peening their surfaces, to induce compressive residual stresses near the surface that impede cracking there. As disk application temperatures increase for improved efficiency, the persistence of these beneficial stresses could be impaired, especially with continued fatigue cycling. The objective of this work was to study the retention of residual stresses introduced by shot peening, when subjected to fatigue and high temperatures. Fatigue specimens of powder metallurgy processed nickel-base disk superalloy ME3 were prepared with consistent processing and heat treatment. They were then shot peened using varied conditions. Strain-controlled fatigue cycles were run at room temperature and 704 C, to allow re-assessment of residual stresses.

  6. Influences of Processing and Fatigue Cycling on Residual Stresses in a NiCrY-Coated Powder Metallurgy Disk Superalloy

    NASA Astrophysics Data System (ADS)

    Gabb, T. P.; Rogers, R. B.; Nesbitt, J. A.; Miller, R. A.; Puleo, B. J.; Johnson, D.; Telesman, J.; Draper, S. L.; Locci, I. E.

    2017-11-01

    Oxidation and corrosion can attack superalloy disk surfaces exposed to increasing operating temperatures in some turbine engine environments. Any potential protective coatings must also be resistant to harmful fatigue cracking during service. The objective of this study was to investigate how residual stresses evolve in one such coating. Fatigue specimens of a powder metallurgy-processed disk superalloy were coated with a NiCrY coating, shot peened, and then subjected to fatigue in air at room and high temperatures. The effects of this processing and fatigue cycling on axial residual stresses and other aspects of the coating were assessed. While shot peening did induce beneficial compressive residual stresses in the coating and substrate, these stresses relaxed in the coating with subsequent heating. Several cast alloys having compositions near the coating were subjected to thermal expansion and tensile stress relaxation tests to help explain this response of residual stresses in the coating. For the coated fatigue specimens, this response contributed to earlier cracking of the coating than for the uncoated surface during long intervals of cycling at 760 °C. Yet, substantial compressive residual stresses still remained in the substrate adjacent to the coating, which were sufficient to suppress fatigue cracking there. The coating continued to protect the substrate from hot corrosion pitting, even after fatigue cracks initiated in the coating.

  7. X-ray combined analysis of fiber-textured and epitaxial Ba(Sr,Ti)O{sub 3} thin films deposited by radio frequency sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remiens, D.; Ponchel, F.; Legier, J. F.

    2011-06-01

    A complete study is given in this paper on the structural properties of Ba(Sr,Ti)O{sub 3} (BST) thin films which present various preferred orientations: (111) and (001) fiber and epitaxial textures. The films are deposited in situ at 800 deg. C by sputtering on Si/SiO{sub 2}/TiO{sub x}/Pt substrates and the orientation is controlled by monitoring the concentration of O{sub 2} in the reactive plasma or by prior deposition of a very thin TiO{sub x} buffer layer between BST films and substrates. The epitaxial films are obtained on (001)-alpha-Al{sub 2}O{sub 3} substrates covered with TiO{sub x} buffer layers. In order to analyzemore » finely the preferred orientations, the texture, the microstructural features, and the anisotropy-related quantities such as residual stresses in the films, the conventional Bragg-Brentano {theta} - 2{theta} x-ray diffraction diagrams is shown not to be sufficient. So, we systematically used x-ray combined analysis, a recently developed methodology which gives access to precise determination of the structure (cell parameters and space group) of the films, their orientation distributions (texture strengths and types) and mean crystallite sizes, their residual stresses. This fine structural analysis shows important modifications between the film qualities which induce differences in BST films electrical behavior, permittivity, loss tangent, and tunability.« less

  8. Residual stress effects on the impact resistance and strength of fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1973-01-01

    Equations have been derived to predict degradation effects of microresidual stresses on impact resistance of unidirectional fiber composites. Equations also predict lamination residual stresses in multilayered angle ply composites.

  9. Experimental Study of Residual Stresses in Metal Parts Obtained by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Protasov, C. E.; Safronov, V. A.; Kotoban, D. V.; Gusarov, A. V.

    High local temperature gradients occur at additive manufacturing by selective laser melting of powder. This gives rise to undesirable residual stresses, deformations, and cracks. To understand how to control the formation of the residual stresses, a reliable method is necessary for measuring their distribution in the fabricated part. It is proposed to cut the part into thin plates and to reconstruct the residual stresses from the measured deformation of the plates. This method is tested on beams with square cross-section built from stainless steel. The beams were cut by electrical discharge machining and chemically etched. The obtained stress profile in vertical transversal direction slightly increases from the top to the bottom of the beam. This dependency is confirmed by numerical modeling. The measured stress profile agrees with the known results by other authors.

  10. The molecular and crystal structure of dextrans: a combined electron and X-ray diffraction study. II. A low temperature, hydrated polymorph.

    PubMed

    Guizard, C; Chanzy, H; Sarko, A

    1985-06-05

    The crystal and molecular structure of a dextran hydrate has been determined through combined electron and X-ray diffraction analysis, aided by stereochemical model refinement. A total of 65 hk0 electron diffraction intensities were measured on frozen single crystals held at the temperature of liquid nitrogen, to a resolution limit of 1.6 A. The X-ray intensities were measured from powder patterns recorded from collections of the single crystals. The structure crystallizes in a monoclinic unit cell with parameters a = 25.71 A, b = 10.21 A, c (chain axis) = 7.76 A and beta = 91.3 degrees. The space group is P2(1) with b axis unique. The unit cell contains six chains and eight water molecules, with three chains of the same polarity and four water molecules constituting the asymmetric unit. Along the chain direction the asymmetric unit is a dimer residue; however, the individual glucopyranose residues are very nearly related by a molecular 2-fold screw axis. The conformation of the chain is very similar to that in the anhydrous structure, but the chain packing differs in the two structures in that the rotational positions of the chains about the helix axes (the chain setting angles) are considerably different. The chains still pack in the form of sheets that are separated by water molecules. The difference in the chain setting angles between the anhydrous and hydrate structures corresponds to the angle between like unit cell axes observed in the diffraction diagrams recorded from hybrid crystals containing both polymorphs. Despite some beam damage effects, the structure was determined to a satisfactory degree of agreement, with the residuals R''(electron diffraction) = 0.258 and R(X-ray) = 0.127.

  11. Residual stresses in AM fabricated ball during a heating process

    NASA Astrophysics Data System (ADS)

    Burenin, A. A.; Murashkin, E. V.; Dats, E. P.

    2018-05-01

    The present study is devoted to the problem of residual stresses calculation in AM fabricated ball during heating. Strains of the ball are assumed to be small, which allows to use the apparatus of the theory of thermoelastoplastic akin to Prandtl and Reuss. The problem of the evolution of the field of residual stresses in the ball at a given temperature on its external border is solved. The heat conduction equation and the equilibrium equations may be independently integrated when the hypothesis of the insignificance of the coupled effects of thermal and mechanical processes is adopted. The fields of residual stresses and displacements are computed.

  12. Application of welding simulation to block joints in shipbuilding and assessment of welding-induced residual stresses and distortions

    NASA Astrophysics Data System (ADS)

    Fricke, Wolfgang; Zacke, Sonja

    2014-06-01

    During ship design, welding-induced distortions are roughly estimated as a function of the size of the component as well as the welding process and residual stresses are assumed to be locally in the range of the yield stress. Existing welding simulation methods are very complex and time-consuming and therefore not applicable to large structures like ships. Simplified methods for the estimation of welding effects were and still are subject of several research projects, but mostly concerning smaller structures. The main goal of this paper is the application of a multi-layer welding simulation to the block joint of a ship structure. When welding block joints, high constraints occur due to the ship structure which are assumed to result in accordingly high residual stresses. Constraints measured during construction were realized in a test plant for small-scale welding specimens in order to investigate their and other effects on the residual stresses. Associated welding simulations were successfully performed with fine-mesh finite element models. Further analyses showed that a courser mesh was also able to reproduce the welding-induced reaction forces and hence the residual stresses after some calibration. Based on the coarse modeling it was possible to perform the welding simulation at a block joint in order to investigate the influence of the resulting residual stresses on the behavior of the real structure, showing quite interesting stress distributions. Finally it is discussed whether smaller and idealized models of definite areas of the block joint can be used to achieve the same results offering possibilities to consider residual stresses in the design process.

  13. Viscoelastic finite element analysis of residual stresses in porcelain-veneered zirconia dental crowns.

    PubMed

    Kim, Jeongho; Dhital, Sukirti; Zhivago, Paul; Kaizer, Marina R; Zhang, Yu

    2018-06-01

    The main problem of porcelain-veneered zirconia (PVZ) dental restorations is chipping and delamination of veneering porcelain owing to the development of deleterious residual stresses during the cooling phase of veneer firing. The aim of this study is to elucidate the effects of cooling rate, thermal contraction coefficient and elastic modulus on residual stresses developed in PVZ dental crowns using viscoelastic finite element methods (VFEM). A three-dimensional VFEM model has been developed to predict residual stresses in PVZ structures using ABAQUS finite element software and user subroutines. First, the newly established model was validated with experimentally measured residual stress profiles using Vickers indentation on flat PVZ specimens. An excellent agreement between the model prediction and experimental data was found. Then, the model was used to predict residual stresses in more complex anatomically-correct crown systems. Two PVZ crown systems with different thermal contraction coefficients and porcelain moduli were studied: VM9/Y-TZP and LAVA/Y-TZP. A sequential dual-step finite element analysis was performed: heat transfer analysis and viscoelastic stress analysis. Controlled and bench convection cooling rates were simulated by applying different convective heat transfer coefficients 1.7E-5 W/mm 2 °C (controlled cooling) and 0.6E-4 W/mm 2 °C (bench cooling) on the crown surfaces exposed to the air. Rigorous viscoelastic finite element analysis revealed that controlled cooling results in lower maximum stresses in both veneer and core layers for the two PVZ systems relative to bench cooling. Better compatibility of thermal contraction coefficients between porcelain and zirconia and a lower porcelain modulus reduce residual stresses in both layers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Dynamic response and residual stress fields of Ti6Al4V alloy under shock wave induced by laser shock peening

    NASA Astrophysics Data System (ADS)

    Sun, Rujian; Li, Liuhe; Zhu, Ying; Zhang, Lixin; Guo, Wei; Peng, Peng; Li, Bo; Guo, Chao; Liu, Lei; Che, Zhigang; Li, Weidong; Sun, Jianfei; Qiao, Hongchao

    2017-09-01

    Laser shock peening (LSP), an innovative surface treatment technique, generates compressive residual stress on the surface of metallic components to improve their fatigue performance, wear resistance and corrosion resistance. To illustrate the dynamic response during LSP and residual stress fields after LSP, this study conducted FEM simulations of LSP in a Ti6Al4V alloy. Results showed that when power density was 7 GW cm-2, a plastic deformation occurred at 10 ns during LSP and increased until the shock pressure decayed below the dynamic yield strength of Ti6Al4V after 60 ns. A maximum tensile region appeared beneath the surface at around 240 ns, forming a compressive-tensile-compressive stress sandwich structure with a thickness of 98, 1020 and 606 μm for each layer. After the model became stabilized, the value of the surface residual compressive stress was 564 MPa at the laser spot center. Higher value of residual stress across the surface and thicker compressive residual stress layers were achieved by increasing laser power density, impact times and spot sizes during LSP. A ‘Residual stress hole’ occurred with a high laser power density of 9 GW cm-2 when laser pulse duration was 10 ns, or with a long laser pulse duration of 20 ns when laser power density was 7 GW cm-2 for Ti6Al4V. This phenomenon occurred because of the permanent reverse plastic deformation generated at laser spot center.

  15. Effect of sample initial magnetic field on the metal magnetic memory NDT result

    NASA Astrophysics Data System (ADS)

    Moonesan, Mahdi; Kashefi, Mehrdad

    2018-08-01

    One of the major concerns regarding the use of Metal Magnetic Memory (MMM) technique is the complexity of residual magnetization effect on output signals. The present study investigates the influence of residual magnetic field on stress induced magnetization. To this end, various initial magnetic fields were induced on a low carbon steel sample, and for each level of residual magnetic field, the sample was subjected to a set of 4-point bending tests and, their corresponding MMM signals were collected from the surface of the bended sample using a tailored metal magnetic memory scanning device. Results showed a strong correlation between sample residual magnetic field and its corresponding level of stress induced magnetic field. It was observed that the sample magnetic field increases with applying the bending stress as long as the initial residual magnet field is low (i.e. <117 mG), but starts decreasing with higher levels of initial residual magnetic fields. Besides, effect of bending stress on the MMM output of a notched sample was investigated. The result, again, showed that MMM signals exhibit a drop at stress concentration zone when sample has high level of initial residual magnetic field.

  16. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE PAGES

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; ...

    2011-05-01

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  17. Influence of Transformation Plasticity on the Distribution of Internal Stress in Three Water-Quenched Cylinders

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Qin, Shengwei; Zhang, Jiazhi; Wang, Ying; Rong, Yonghua; Zuo, Xunwei; Chen, Nailu

    2017-10-01

    Based on the hardenability of three medium carbon steels, cylinders with the same 60-mm diameter and 240-mm length were designed for quenching in water to obtain microstructures, including a pearlite matrix (Chinese steel mark: 45), a bainite matrix (42CrMo), and a martensite matrix (40CrNiMo). Through the combination of normalized functions describing transformation plasticity (TP), the thermo-elasto-plastic constitutive equation was deduced. The results indicate that the finite element simulation (FES) of the internal stress distribution in the three kinds of hardenable steel cylinders based on the proposed exponent-modified (Ex-Modified) normalized function is more consistent with the X-ray diffraction (XRD) measurements than those based on the normalized functions proposed by Abrassart, Desalos, and Leblond, which is attributed to the fact that the Ex-Modified normalized function better describes the TP kinetics. In addition, there was no significant difference between the calculated and measured stress distributions, even though TP was taken into account for the 45 carbon steel; that is, TP can be ignored in FES. In contrast, in the 42CrMo and 40CrNiMo alloyed steels, the significant effect of TP on the residual stress distributions was demonstrated, meaning that TP must be included in the FES. The rationality of the preceding conclusions was analyzed. The complex quenching stress is a consequence of interactions between the thermal and phase transformation stresses. The separated calculations indicate that the three steels exhibit similar thermal stress distributions for the same water-quenching condition, but different phase transformation stresses between 45 carbon steel and alloyed steels, leading to different distributions of their axial and tangential stresses.

  18. Residual Stress Developed During the Cure of Thermosetting Polymers: Optimizing Cure Schedule to Minimize Stress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kropka, Jamie Michael; Stavig, Mark E.; Jaramillo, Rex

    When thermosetting polymers are used to bond or encapsulate electrical, mechanical or optical assemblies, residual stress, which often affects the performance and/or reliability of these devices, develops within the structure. The Thin-Disk-on-Cylinder structural response test is demonstrated as a powerful tool to design epoxy encapsulant cure schedules to reduce residual stress, even when all the details of the material evolution during cure are not explicitly known. The test's ability to (1) distinguish between cohesive and adhesive failure modes and (2) demonstrate methodologies to eliminate failure and reduce residual stress, make choices of cure schedules that optimize stress in the encapsulantmore » unambiguous. For the 828/DEA/GMB material in the Thin-Disk-on-Cylinder geometry, the stress associated with cure is significant and outweighs that associated with cool down from the final cure temperature to room temperature (for measured lid strain, Scure I > I I e+h erma * II) * The difference between the final cure temperature and 1 1 -- the temperature at which the material gels, Tf-T ge i, was demonstrated to be a primary factor in determining the residual stress associated with cure. Increasing T f -T ge i leads to a reduction in cure stress that is described as being associated with balancing some of the 828/DEA/GMB cure shrinkage with thermal expansion. The ability to tune residual stress associated with cure by controlling T f -T ge i would be anticipated to translate to other thermosetting encapsulation materials, but the times and temperatures appropriate for a given material may vary widely.« less

  19. Determination of Residual Stress in Composite Materials Using Ultrasonic Waves

    NASA Technical Reports Server (NTRS)

    Rokhlin, S. I.

    1997-01-01

    The performance of high temperature composites can be significantly affected by the presence of residual stresses. These stresses arise during cooling processes from fabrication to room temperature due to mismatch of thermal expansion coefficients between matrix and fiber materials. This effect is especially pronounced in metal matrix and intermetallic composites. It can lead to plastic deformations, matrix cracking and fiber/matrix interface debonding. In this work the feasibility of ultrasonic techniques for residual stress assessment in composites is addressed. A novel technique for absolute stress determination in orthotropic materials from angular dependencies of ultrasonic velocities is described. The technique is applicable for determination of both applied and residual stresses and does not require calibration measurements on a reference sample. The important advantage of this method is that stress is determined simultaneously with stress-dependent elastic constants and is thus decoupled from the material texture. It is demonstrated that when the principal plane stress directions coincide with acoustical axes, the angular velocity data in the plane perpendicular to the stress plane may be used to determine both stress components. When the stress is off the acoustical axes, the shear and the difference of the normal stress components may be determined from the angular dependence of group velocities in the plane of stresses. Synthetic sets of experimental data corresponding to materials with different anisotropy and stress levels are used to check the applicability of the technique. The method is also verified experimentally. A high precision ultrasonic wave transmission technique is developed to measure angular dependence of ultrasonic velocities. Examples of stress determination from experimental velocity data are given. A method is presented for determination of velocities of ultrasonic waves propagating through the composite material with residual stresses. It is based on the generalized self-consistent multiple scattering model. Calculation results for longitudinal and shear ultrasonic wave velocities propagating perpendicular to the fibers direction in SCS-6/Ti composite with and without residual stresses are presented. They show that velocity changes due to presence of stresses are of order 1%.

  20. Deformation fields near a steady fatigue crack with anisotropic plasticity

    DOE PAGES

    Gao, Yanfei

    2015-11-30

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less

  1. Deformation fields near a steady fatigue crack with anisotropic plasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yanfei

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less

  2. Effect of birefringence of lens material on polarization status and optical imaging characteristics

    NASA Astrophysics Data System (ADS)

    Kim, Wan-Chin; Park, No-Cheol

    2018-04-01

    In most cases of molding with glass or optical polymers, it is expected that there will be birefringence caused by the internal mechanical stresses remaining in the molding material. The distribution of the residual stress can be annealed by slow cooling, but this approach is disadvantageous with respect to the shape accuracy and manufacturing time. In this study, we propose an analytical model to calculate the diffracted field near the focal plane by considering two primary parameters, the orientation angle of the fast axis and the path difference. In order to verify the reliability of the analytical model, we compared the measured beam spot of the F-theta lens of the laser scanning unit (LSU) with the analytical result. In addition, we analyzed the calculated result from the perspective of the polarization status in the exit pupil. The proposed analysis method can be applied to enhance the image quality for cases in which birefringence occurs in a lens material by suitably modeling the amplitude and phase of the incident light flux.

  3. Method of characterizing residual stress in ferromagnetic materials using a pulse histogram of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Namkung, Min (Inventor); Yost, William T. (Inventor); Kushnick, Peter W. (Inventor); Grainger, John L. (Inventor)

    1992-01-01

    The invention is a method and apparatus for characterizing residual uniaxial stress in a ferromagnetic test member by distinguishing between residual stresses resulting from positive (tension) forces and negative (compression) forces by using the distinct and known magnetoacoustic (MAC) and a magnetoacoustic emission (MAE) measurement circuit means. A switch permits the selective operation of the respective circuit means.

  4. Measurement of the residual stress distribution in a thick pre-stretched aluminum plate

    NASA Astrophysics Data System (ADS)

    Yuan, S. X.; Li, X. Q.; M, S.; Zhang, Y. C.; Gong, Y. D.

    2008-12-01

    Thick pre-stretched aluminum alloy plates are widely used in aircraft, while machining distortion caused by initial residual stress release in thick plates is a common and serious problem. To reduce the distortion, the residual stress distribution in thick plate must be measured. According to the characteristics of the thick pre-stretched aluminum alloy plate, based the elastic mechanical theory, this article deduces the modified layer-removal strain method adapting two different strain situations, which are caused by tensile and compressive stress. To validate this method, the residual stresses distribution along the thick direction of plate 2D70T351 is measured by this method, it is shown that the new method deduced in this paper is simple and accurate, and is very useful in engineering.

  5. Finite Element Simulation of Shot Peening: Prediction of Residual Stresses and Surface Roughness

    NASA Astrophysics Data System (ADS)

    Gariépy, Alexandre; Perron, Claude; Bocher, Philippe; Lévesque, Martin

    Shot peening is a surface treatment that consists of bombarding a ductile surface with numerous small and hard particles. Each impact creates localized plastic strains that permanently stretch the surface. Since the underlying material constrains this stretching, compressive residual stresses are generated near the surface. This process is commonly used in the automotive and aerospace industries to improve fatigue life. Finite element analyses can be used to predict residual stress profiles and surface roughness created by shot peening. This study investigates further the parameters and capabilities of a random impact model by evaluating the representative volume element and the calculated stress distribution. Using an isotropic-kinematic hardening constitutive law to describe the behaviour of AA2024-T351 aluminium alloy, promising results were achieved in terms of residual stresses.

  6. Comparison of measured temperatures, thermal stresses and creep residues with predictions on a built-up titanium structure

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.

    1987-01-01

    Temperature, thermal stresses, and residual creep stresses were studied by comparing laboratory values measured on a built-up titanium structure with values calculated from finite-element models. Several such models were used to examine the relationship between computational thermal stresses and thermal stresses measured on a built-up structure. Element suitability, element density, and computational temperature discrepancies were studied to determine their impact on measured and calculated thermal stress. The optimum number of elements is established from a balance between element density and suitable safety margins, such that the answer is acceptably safe yet is economical from a computational viewpoint. It is noted that situations exist where relatively small excursions of calculated temperatures from measured values result in far more than proportional increases in thermal stress values. Measured residual stresses due to creep significantly exceeded the values computed by the piecewise linear elastic strain analogy approach. The most important element in the computation is the correct definition of the creep law. Computational methodology advances in predicting residual stresses due to creep require significantly more viscoelastic material characterization.

  7. On residual stresses and homeostasis: an elastic theory of functional adaptation in living matter.

    PubMed

    Ciarletta, P; Destrade, M; Gower, A L

    2016-04-26

    Living matter can functionally adapt to external physical factors by developing internal tensions, easily revealed by cutting experiments. Nonetheless, residual stresses intrinsically have a complex spatial distribution, and destructive techniques cannot be used to identify a natural stress-free configuration. This work proposes a novel elastic theory of pre-stressed materials. Imposing physical compatibility and symmetry arguments, we define a new class of free energies explicitly depending on the internal stresses. This theory is finally applied to the study of arterial remodelling, proving its potential for the non-destructive determination of the residual tensions within biological materials.

  8. Effect of thermal exposure on the residual stress relaxation in a hardened cylindrical sample under creep conditions

    NASA Astrophysics Data System (ADS)

    Radchenko, V. P.; Saushkin, M. N.; Tsvetkov, V. V.

    2016-05-01

    This paper describes the effect of thermal exposure (high-temperature exposure) ( T = 675°C) on the residual creep stress relaxation in a surface hardened solid cylindrical sample made of ZhS6UVI alloy. The analysis is carried out with the use of experimental data for residual stresses after micro-shot peening and exposures to temperatures equal to T = 675°C during 50, 150, and 300 h. The paper presents the technique for solving the boundary-value creep problem for the hardened cylindrical sample with the initial stress-strain state under the condition of thermal exposure. The uniaxial experimental creep curves obtained under constant stresses of 500, 530, 570, and 600 MPa are used to construct the models describing the primary and secondary stages of creep. The calculated and experimental data for the longitudinal (axial) tensor components of residual stresses are compared, and their satisfactory agreement is determined.

  9. Residual Stress Analysis in Welded Component.

    NASA Astrophysics Data System (ADS)

    Rouhi, Shahab; Yoshida, Sanichiro; Miura, Fumiya; Sasaki, Tomohiro

    Due to local heating, thermal stresses occur during welding; and residual stress and distortion result remain welding. Welding distortion has negative effects on the accuracy of assembly, exterior appearance, and various strengths of the welded structures. Up to date, a lot of experiments and numerical analysis have been developed to assess residual stress. However, quantitative estimation of residual stress based on experiment may involve massive uncertainties and complexity of the measurement process. To comprehensively understand this phenomena, it is necessary to do further researches by means of both experiment and numerical simulation. In this research, we conduct Finite Element Analysis (FEA) for a simple butt-welded metal plate specimen. Thermal input and resultant expansion are modeled with a thermal expansion FEA module and the resultant constitutive response of the material is modeled with a continuous mechanic FEA module. The residual stress is modeled based on permanent deformation occurring during the heating phase of the material. Experiments have also been carried out to compare with the FEA results. Numerical and experimental results show qualitative agreement. The present work was supported by the Louisiana Board of Regents (LEQSF(2016-17)-RD-C-13).

  10. Residual Stresses in a NiCrY-Coated Powder Metallurgy Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Rogers, Richard B.; Nesbitt, James A.; Puleo, Bernadette J.; Miller, Robert A.; Telesman, Ignacy; Draper, Susan L.; Locci, Ivan E.

    2017-01-01

    Protective ductile coatings will be necessary to mitigate oxidation and corrosion attack on superalloy disks exposed to increasing operating temperatures in some turbine engine environments. However, such coatings must be resistant to harmful surface cracking during service. The objective of this study was to investigate how residual stresses evolve in such coatings. Cylindrical gage fatigue specimens of powder metallurgy-processed disk superalloy LSHR were coated with a NiCrY coating, shot peened, and then subjected to fatigue in air at room and high temperatures. The effects of shot peening and fatigue cycling on average residual stresses and other aspects of the coating were assessed. Shot peening did induce beneficial compressive residual stresses in the coating and substrate. However, these stresses became more tensile in the coating with subsequent heating and contributed to cracking of the coating in long intervals of cycling at 760 C. Substantial compressive residual stresses remained in the substrate adjacent to the coating, sufficient to suppress fatigue cracking. The coating continued to protect the substrate from hot corrosion pitting, even after fatigue cracks initiated in the coating.

  11. Influence of residual stress on the adhesion and surface morphology of PECVD-coated polypropylene

    NASA Astrophysics Data System (ADS)

    Jaritz, Montgomery; Hopmann, Christian; Behm, Henrik; Kirchheim, Dennis; Wilski, Stefan; Grochla, Dario; Banko, Lars; Ludwig, Alfred; Böke, Marc; Winter, Jörg; Bahre, Hendrik; Dahlmann, Rainer

    2017-11-01

    The properties of plasma-enhanced chemical vapour deposition (PECVD) coatings on polymer materials depend to some extent on the surface and material properties of the substrate. Here, isotactic polypropylene (PP) substrates are coated with silicon oxide (SiO x ) films. Plasmas for the deposition of SiO x are energetic and oxidative due to the high amount of oxygen in the gas mixture. Residual stress measurements using single Si cantilever stress sensors showed that these coatings contain high compressive stress. To investigate the influence of the plasma and the coatings, residual stress, silicon organic (SiOCH) coatings with different thicknesses between the PP and the SiO x coating are used as a means to protect the substrate from the oxidative SiO x coating process. Pull-off tests are performed to analyse differences in the adhesion of these coating systems. It could be shown that the adhesion of the PECVD coatings on PP depends on the coatings’ residual stress. In a PP/SiOCH/SiO x -multilayer system the residual stress can be significantly reduced by increasing the thickness of the SiOCH coating, resulting in enhanced adhesion.

  12. Structural stability of anhydrous proton conducting SrZr0.9Er0.1O3-δ perovskite ceramic vs. protonation/deprotonation cycling: Neutron diffraction and Raman studies

    NASA Astrophysics Data System (ADS)

    Slodczyk, Aneta; Colomban, Philippe; Upasen, Settakorn; Grasset, Frédéric; André, Gilles

    2015-08-01

    Long-term chemical and structural stability of an ion conducting ceramic is one of the main criteria for its selection as an electrolytic membrane in energy plant devices. Consequently, medium density SrZr0.9Er0.1O3-δ (SZE) anhydrous proton conducting ceramic - a potential electrolyte of SOFC/PCFC, was analysed by neutron diffraction between room temperature and 900 °C. After the first heating/cooling cycle, the ceramic pieces were exposed to water vapour pressure in an autoclave (500 °C, 40 bar, 7 days) in order to incorporate protonic species; the protonated compound was then again analysed by neutron diffraction. This procedure was repeated two times. At each step, the sample was also controlled by TGA and Raman spectroscopy. These studies allow the first comprehensive comparison of structural and chemical stability during the protonation/deprotonation cycling. The results reveal good structural stability, although an irreversible small contraction of the unit-cell volume and local structure modifications near Zr/ErO5[] octahedra are detected after the first protonation. After the second protonation easy ceramic crumbling under a stress is observed because of the presence of secondary phases (SrCO3, Sr(OH)2) well detected by Raman scattering and TGA. The role of crystallographic purity, substituting element and residual porosity in the proton conducting perovskite electrolyte stability is discussed.

  13. Finite element calculation of residual stress in dental restorative material

    NASA Astrophysics Data System (ADS)

    Grassia, Luigi; D'Amore, Alberto

    2012-07-01

    A finite element methodology for residual stresses calculation in dental restorative materials is proposed. The material under concern is a multifunctional methacrylate-based composite for dental restorations, activated by visible light. Reaction kinetics, curing shrinkage, and viscoelastic relaxation functions were required as input data on a structural finite element solver. Post cure effects were considered in order to quantify the residual stresses coming out from natural contraction with respect to those debited to the chemical shrinkage. The analysis showed for a given test case that residual stresses frozen in the dental restoration at uniform temperature of 37°C are of the same order of magnitude of the strength of the dental composite material per se.

  14. Residual stresses in injection molded shape memory polymer parts

    NASA Astrophysics Data System (ADS)

    Katmer, Sukran; Esen, Huseyin; Karatas, Cetin

    2016-03-01

    Shape memory polymers (SMPs) are materials which have shape memory effect (SME). SME is a property which has the ability to change shape when induced by a stimulator such as temperature, moisture, pH, electric current, magnetic field, light, etc. A process, known as programming, is applied to SMP parts in order to alter them from their permanent shape to their temporary shape. In this study we investigated effects of injection molding and programming processes on residual stresses in molded thermoplastic polyurethane shape memory polymer, experimentally. The residual stresses were measured by layer removal method. The study shows that injection molding and programming process conditions have significantly influence on residual stresses in molded shape memory polyurethane parts.

  15. Residual thermal stresses in a solid sphere cast from a thermosetting material

    NASA Technical Reports Server (NTRS)

    Levitsky, M.; Shaffer, B. W.

    1975-01-01

    Expressions are developed for the residual thermal stresses in a solid sphere cast from a chemically hardening thermosetting material in a rigid spherical mold. The description of the heat generation rate and temperature variation is derived from a first-order chemical reaction. Solidification is described by the continuous transformation of the material from an inviscid liquidlike state into an elastic solid, with intermediate properties determined by the degree of chemical reaction. Residual stress components are obtained as functions of the parameters of the hardening process and the properties of the hardening material. Variation of the residual stresses with a nondimensionalized reaction rate parameter and the relative compressibility of the hardened material is discussed in detail.

  16. Properties of the Residual Stress of the Temporally Filtered Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Pruett, C. D.; Gatski, T. B.; Grosch, C. E.; Thacker, W. D.

    2002-01-01

    The development of a unifying framework among direct numerical simulations, large-eddy simulations, and statistically averaged formulations of the Navier-Stokes equations, is of current interest. Toward that goal, the properties of the residual (subgrid-scale) stress of the temporally filtered Navier-Stokes equations are carefully examined. Causal time-domain filters, parameterized by a temporal filter width 0 less than Delta less than infinity, are considered. For several reasons, the differential forms of such filters are preferred to their corresponding integral forms; among these, storage requirements for differential forms are typically much less than for integral forms and, for some filters, are independent of Delta. The behavior of the residual stress in the limits of both vanishing and in infinite filter widths is examined. It is shown analytically that, in the limit Delta to 0, the residual stress vanishes, in which case the Navier-Stokes equations are recovered from the temporally filtered equations. Alternately, in the limit Delta to infinity, the residual stress is equivalent to the long-time averaged stress, and the Reynolds-averaged Navier-Stokes equations are recovered from the temporally filtered equations. The predicted behavior at the asymptotic limits of filter width is further validated by numerical simulations of the temporally filtered forced, viscous Burger's equation. Finally, finite filter widths are also considered, and a priori analyses of temporal similarity and temporal approximate deconvolution models of the residual stress are conducted.

  17. Monitoring Pre-Stressed Composites Using Optical Fibre Sensors.

    PubMed

    Krishnamurthy, Sriram; Badcock, Rodney A; Machavaram, Venkata R; Fernando, Gerard F

    2016-05-28

    Residual stresses in fibre reinforced composites can give rise to a number of undesired effects such as loss of dimensional stability and premature fracture. Hence, there is significant merit in developing processing techniques to mitigate the development of residual stresses. However, tracking and quantifying the development of these fabrication-induced stresses in real-time using conventional non-destructive techniques is not straightforward. This article reports on the design and evaluation of a technique for manufacturing pre-stressed composite panels from unidirectional E-glass/epoxy prepregs. Here, the magnitude of the applied pre-stress was monitored using an integrated load-cell. The pre-stressing rig was based on a flat-bed design which enabled autoclave-based processing. A method was developed to end-tab the laminated prepregs prior to pre-stressing. The development of process-induced residual strain was monitored in-situ using embedded optical fibre sensors. Surface-mounted electrical resistance strain gauges were used to measure the strain when the composite was unloaded from the pre-stressing rig at room temperature. Four pre-stress levels were applied prior to processing the laminated preforms in an autoclave. The results showed that the application of a pre-stress of 108 MPa to a unidirectional [0]16 E-glass/913 epoxy preform, reduced the residual strain in the composite from -600 µε (conventional processing without pre-stress) to approximately zero. A good correlation was observed between the data obtained from the surface-mounted electrical resistance strain gauge and the embedded optical fibre sensors. In addition to "neutralising" the residual stresses, superior axial orientation of the reinforcement can be obtained from pre-stressed composites. A subsequent publication will highlight the consequences of pres-stressing on fibre alignment, the tensile, flexural, compressive and fatigue performance of unidirectional E-glass composites.

  18. Monitoring Pre-Stressed Composites Using Optical Fibre Sensors

    PubMed Central

    Krishnamurthy, Sriram; Badcock, Rodney A.; Machavaram, Venkata R.; Fernando, Gerard F.

    2016-01-01

    Residual stresses in fibre reinforced composites can give rise to a number of undesired effects such as loss of dimensional stability and premature fracture. Hence, there is significant merit in developing processing techniques to mitigate the development of residual stresses. However, tracking and quantifying the development of these fabrication-induced stresses in real-time using conventional non-destructive techniques is not straightforward. This article reports on the design and evaluation of a technique for manufacturing pre-stressed composite panels from unidirectional E-glass/epoxy prepregs. Here, the magnitude of the applied pre-stress was monitored using an integrated load-cell. The pre-stressing rig was based on a flat-bed design which enabled autoclave-based processing. A method was developed to end-tab the laminated prepregs prior to pre-stressing. The development of process-induced residual strain was monitored in-situ using embedded optical fibre sensors. Surface-mounted electrical resistance strain gauges were used to measure the strain when the composite was unloaded from the pre-stressing rig at room temperature. Four pre-stress levels were applied prior to processing the laminated preforms in an autoclave. The results showed that the application of a pre-stress of 108 MPa to a unidirectional [0]16 E-glass/913 epoxy preform, reduced the residual strain in the composite from −600 µε (conventional processing without pre-stress) to approximately zero. A good correlation was observed between the data obtained from the surface-mounted electrical resistance strain gauge and the embedded optical fibre sensors. In addition to “neutralising” the residual stresses, superior axial orientation of the reinforcement can be obtained from pre-stressed composites. A subsequent publication will highlight the consequences of pres-stressing on fibre alignment, the tensile, flexural, compressive and fatigue performance of unidirectional E-glass composites. PMID:27240378

  19. Residual Stress Assessment in Thin Angle Ply Tubes

    NASA Astrophysics Data System (ADS)

    Kaddour, A. S.; Al-Hassani, S. T. S.; Hinton, M. J.

    2003-05-01

    This preliminary study aims to investigate the residual stresses developed in hot cured thin-walled angle-ply filament wound tubes made of E-glass/epoxy, Kevlar/epoxy and carbon/epoxy materials. The residual stresses were estimated from change in geometry of these tubes when axially slitted at ambient temperature. Three basic deformation modes; namely opening up, closing-in and twisting, were observed and these depended on the winding angle, material and wall thickness. The residual stresses were also determined from hoop and axial strain gauges mounted on both the inner and outer surfaces at various locations around the tube. The stresses were compared with theoretical prediction based upon a linear thermo-elastic analysis. Both the predicted and measured values were found to increase with increasing hoop stiffness but there was a large discrepancy between the predicted and measured data, reaching a factor of 5 for the thinnest case. When compared with predicted failure stresses, the experimentally determined stresses were some 15% of the computed compressive strength.

  20. Nonlinear parallel momentum transport in strong electrostatic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lu, E-mail: luwang@hust.edu.cn; Wen, Tiliang; Diamond, P. H.

    2015-05-15

    Most existing theoretical studies of momentum transport focus on calculating the Reynolds stress based on quasilinear theory, without considering the nonlinear momentum flux-〈v{sup ~}{sub r}n{sup ~}u{sup ~}{sub ∥}〉. However, a recent experiment on TORPEX found that the nonlinear toroidal momentum flux induced by blobs makes a significant contribution as compared to the Reynolds stress [Labit et al., Phys. Plasmas 18, 032308 (2011)]. In this work, the nonlinear parallel momentum flux in strong electrostatic turbulence is calculated by using a three dimensional Hasegawa-Mima equation, which is relevant for tokamak edge turbulence. It is shown that the nonlinear diffusivity is smaller thanmore » the quasilinear diffusivity from Reynolds stress. However, the leading order nonlinear residual stress can be comparable to the quasilinear residual stress, and so may be important to intrinsic rotation in tokamak edge plasmas. A key difference from the quasilinear residual stress is that parallel fluctuation spectrum asymmetry is not required for nonlinear residual stress.« less

  1. Residual Stress Measurement and the Effect of Heat Treatment in Cladded Control Rod Drive Specimens

    NASA Astrophysics Data System (ADS)

    Bowman, Ashley; Kingston, Ed; Katsuyama, Jinya; Udagawa, Makoto; Onizawa, Kunio

    This paper presents results of residual stress measurements and modelling within the cladding and J-groove weld of Control Rod Drive (CRD) specimens in the as-welded and Post Weld Heat Treated (PWHT) states. Knowledge of the residual stresses present in CRD nozzles is critical when modelling the fracture mechanics of failures of nuclear power plant components to dictate inspections intervals and optimise plant downtime. The specimens comprised of ferritic steel blocks with 309L stainless steel cladding and a single J-groove weld attaching the 304 stainless steel nozzles. Multiple measurements were made through the thickness of the specimens in order to give biaxial residual stress profiles through all the different fusion boundaries. The results show the effect of PWHT in reducing residual stresses both in the weld and ferritic material. The beneficial use of measurements is highlighted to provide confidence in the modelled results and prevent over conservatism in integrity calculations, costing unnecessary time and money.

  2. Effects of Thermomechanical History on the Tensile Behavior of Nitinol Ribbon

    NASA Technical Reports Server (NTRS)

    Lach, Cynthia L.; Turner, Travis L.; Taminger, Karen M.; Shenoy, Ravi N.

    2002-01-01

    Shape memory alloys (SMAs) have enormous potential for a wide variety of applications. A large body of work exists on the characterization of the microstructure and stress-strain behavior of these alloys, Nitinol (NiTi) in particular. However, many attributes of these materials are yet to be fully understood. Previous work at NASA Langley Research Center (LaRC) has included fabrication of hybrid composite specimens with embedded Nitinol actuators and modeling of their thermomechanical behavior. An intensive characterization effort has been undertaken to facilitate fundamental understanding of this alloy and to promote implementation of Nitinol in aerospace applications. Previous work revealed attributes of the Nitinol ribbon that were not easily rationalized with existing data in the literature. In particular, tensile behavior at ambient temperature showed significant dependence on the thermomechanical history prior to testing. The present work is focused on characterizing differences in the microstructure of Nitinol ribbons exposed to four different thermomechanical histories and correlation of the microstructure with tensile properties. Differential scanning calorimetry (DSC) and x-ray diffraction (XRD) analysis were employed to rationalize the microstructures present after exposure to various thermomechanical histories. Three of the Nitinol ribbon conditions were reversible upon heating (in the DSC) through the reverse transformation temperature (A(sub f) to transform the microstructure to austenite. However, the prior thermomechanical conditioning for the Nitinol ribbon that reflected the entire fabrication procedure (4% thermal cycle condition) was found to have an irreversible effect on the microstructure, as it remained unchanged after repeated complete thermal cycles. Tensile tests were conducted to determine the effect of prior thermomechancal conditioning on both the tensile behavior of the Nitinol ribbons and the stress state of the microstructure. The stress-strain behavior of the Nitinol actuators appears to be governed by the interplay between two major variables: namely, microstructural constituents such as the R-phase and the martensite; and the stress state of these constituents (whether twinned with low residual stresses, or detwinned with high residual stresses). The most significant difference in the stress-strain behavior of the four conditions, the critical stress required to achieve an initial stress plateau, was found to depend on both the amount and stress state (twinned or detwinned) of R-phase present in the initial microstructure. Thus, the effect of prior thermomechanical processing is critical to the resulting tensile behavior of the Nitinol actuator. For numerical modeling inputs one must take into account the entire fabrication process on the Nitinol actuator.

  3. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta

    PubMed Central

    Holzapfel, Gerhard A.; Ogden, Ray W.

    2010-01-01

    This paper provides the first analysis of the three-dimensional state of residual stress and stretch in an artery wall consisting of three layers (intima, media and adventitia), modelled as a circular cylindrical tube. The analysis is based on experimental results on human aortas with non-atherosclerotic intimal thickening documented in a recent paper by Holzapfel et al. ( Holzapfel et al. 2007 Ann. Biomed. Eng. 35, 530–545 (doi:10.1007/s10439-006-9252-z)). The intima is included in the analysis because it has significant thickness and load-bearing capacity, unlike in a young, healthy human aorta. The mathematical model takes account of bending and stretching in both the circumferential and axial directions in each layer of the wall. Previous analysis of residual stress was essentially based on a simple application of the opening-angle method, which cannot accommodate the three-dimensional residual stretch and stress states observed in experiments. The geometry and nonlinear kinematics of the intima, media and adventitia are derived and the associated stress components determined explicitly using the nonlinear theory of elasticity. The theoretical results are then combined with the mean numerical values of the geometrical parameters and material constants from the experiments to illustrate the three-dimensional distributions of the stretches and stresses throughout the wall. The results highlight the compressive nature of the circumferential stress in the intima, which may be associated with buckling of the intima and its delamination from the media, and show that the qualitative features of the stretch and stress distributions in the media and adventitia are unaffected by the presence or absence of the intima. The circumferential residual stress in the intima increases significantly as the associated residual deformation in the intima increases while the corresponding stress in the media (which is compressive at its inner boundary and tensile at its outer boundary) is only slightly affected. The theoretical framework developed herein enables the state of residual stress to be calculated directly, serves to improve insight into the mechanical response of an unloaded artery wall and can be extended to accommodate more general geometries, kinematics and states of residual stress as well as more general constitutive models. PMID:19828496

  4. Measurement of Young's modulus and residual stress of thin SiC layers for MEMS high temperature applications

    NASA Astrophysics Data System (ADS)

    Pabst, Oliver; Schiffer, Michael; Obermeier, Ernst; Tekin, Tolga; Lang, Klaus Dieter; Ngo, Ha-Duong

    2011-06-01

    Silicon carbide (SiC) is a promising material for applications in harsh environments. Standard silicon (Si) microelectromechanical systems (MEMS) are limited in operating temperature to temperatures below 130 °C for electronic devices and below 600 °C for mechanical devices. Due to its large bandgap SiC enables MEMS with significantly higher operating temperatures. Furthermore, SiC exhibits high chemical stability and thermal conductivity. Young's modulus and residual stress are important mechanical properties for the design of sophisticated SiC-based MEMS devices. In particular, residual stresses are strongly dependent on the deposition conditions. Literature values for Young's modulus range from 100 to 400 GPa, and residual stresses range from 98 to 486 MPa. In this paper we present our work on investigating Young's modulus and residual stress of SiC films deposited on single crystal bulk silicon using bulge testing. This method is based on measurement of pressure-dependent membrane deflection. Polycrystalline as well as single crystal cubic silicon carbide samples are studied. For the samples tested, average Young's modulus and residual stress measured are 417 GPa and 89 MPa for polycrystalline samples. For single crystal samples, the according values are 388 GPa and 217 MPa. These results compare well with literature values.

  5. The relation between residual stress, interfacial structure and the joint property in the SiO2f/SiO2-Nb joints.

    PubMed

    Ma, Qiang; Li, Zhuo Ran; Yang, Lai Shan; Lin, Jing Huang; Ba, Jin; Wang, Ze Yu; Qi, Jun Lei; Feng, Ji Cai

    2017-06-23

    In order to achieve a high-quality joint between SiO 2f /SiO 2 and metals, it is necessary to address the poor wettability of SiO 2f /SiO 2 and the high residual stress in SiO 2f /SiO 2 -Nb joint. Here, we simultaneously realize good wettability and low residual stress in SiO 2f /SiO 2 -Nb joint by combined method of HF etching treatment and Finite Element Analysis (FEA). After etching treatment, the wettability of E-SiO 2f /SiO 2 was improved, and the residual stress in the joint was decreased. In order to better control the quality of joints, efforts were made to understand the relationship between surface structure of E-SiO 2f /SiO 2 and residual stress in joint using FEA. Based on the direction of FEA results, a relationship between residual stress, surface structure and joint property in the brazed joints were investigated by experiments. As well the FEA and the brazing test results both realized the high-quality joint of E-SiO 2f /SiO 2 -Nb and the shear strength of the joint reached 61.9 MPa.

  6. FIB-based measurement of local residual stresses on microsystems

    NASA Astrophysics Data System (ADS)

    Vogel, Dietmar; Sabate, Neus; Gollhardt, Astrid; Keller, Juergen; Auersperg, Juergen; Michel, Bernd

    2006-03-01

    The paper comprises research results obtained for stress determination on micro and nanotechnology components. It meets the concern of controlling stresses introduced to sensors, MEMS and electronics devices during different micromachining processes. The method bases on deformation measurement options made available inside focused ion beam equipment. Removing locally material by ion beam milling existing stresses / residual stresses lead to deformation fields around the milled feature. Digital image correlation techniques are used to extract deformation values from micrographs captured before and after milling. In the paper, two main milling features have been analyzed - through hole and through slit milling. Analytical solutions for stress release fields of in-plane stresses have been derived and compared to respective experimental findings. Their good agreement allows to settle a method for determination of residual stress values, which is demonstrated for thin membranes manufactured by silicon micro technology. Some emphasis is made on the elimination of main error sources for stress determination, like rigid body object displacements and rotations due to drifts of experimental conditions under FIB imaging. In order to illustrate potential application areas of the method residual stress suppression by ion implantation is evaluated by the method and reported here.

  7. Stress induced modulation of magnetic domain diffraction of single crystalline yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Mito, Shinichiro; Yoshihara, Yuki; Takagi, Hiroyuki; Inoue, Mitsuteru

    2018-05-01

    Stress induced modulation of the diffraction angle and efficiency of the light reflected from a stripe-domain magnetic garnet was demonstrated. The spacing of the magnetic domain was changed using the inverse magnetostriction effect. The sample structure was a piezo actuator/Al reflection layer/magnetic garnet substrate. A diffraction angle between the 0th and 1st ordered light was changed from 9.12 deg. to 10.20 deg. This result indicates that the domain spacing was changed from 3.3 μm to 3.0 μm. The change of the diffraction angle was irreversible for the voltage. However, reversible, linear and continuous change of the diffraction efficiency was observed. These results could be applicable for a voltage-driven optical solid state light deflector with low power consumption and high switching speed.

  8. Thermal Recovery of Plastic Deformation in Dissimilar Metal Weld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Dongxiao; Yu, Xinghua; Zhang, Wei

    Stainless steel has been widely used in challenging environments typical to nuclear power plant structures, due its excellent corrosion resistance. Nickel filler metals containing high chromium concentration, including Alloy 82/182, are used for joining stainless steel to carbon steel components to achieve similar high resistance to stress corrosion cracking. However, the joint usually experience weld metal stress corrosion cracking (SCC), which affects the safety and structural integrity of light water nuclear reactor systems. A primary driving force for SCC is the high tensile residual stress in these welds. Due to large dimension of pressure vessel and limitations in the field,more » non-destructive residual stress measurement is difficult. As a result, finite element modeling has been the de facto method to evaluate the weld residual stresses. Recent studies on this subject from researchers worldwide report different residual stress value in the weldments [5]. The discrepancy is due to the fact that most of investigations ignore or underestimate the thermal recovery in the heat-affect zone or reheated region in the weld. In this paper, the effect of heat treatment on thermal recovery and microhardness is investigated for materials used in dissimilar metal joint. It is found that high equivalent plastic strains are predominately accumulated in the buttering layer, the root pass, and the heat affected zone, which experience multiple welding thermal cycles. The final cap passes, experiencing only one or two welding thermal cycles, exhibit less plastic strain accumulation. Moreover, the experimental residual plastic strains are compared with those predicted using an existing weld thermo-mechanical model with two different strain hardening rules. The importance of considering the dynamic strain hardening recovery due to high temperature exposure in welding is discussed for the accurate simulation of weld residual stresses and plastic strains. In conclsuion, the experimental result reveals that the typical post-buttering heat treatment for residual stress relief may not be adequate to completely eliminate the residual plastic strains in the buttering layer.« less

  9. Composite Ceramic Superconducting Wires for Electric Motor Applications

    DTIC Science & Technology

    1989-04-28

    anneal, reaching a zero stress condition. One must consider the kinetics of stress relaxation to estimate the retained residual stress. Also, upon cooling...temperature residual stress. Starting from zero stress after intercalation, thermomechanical stress builds up from around 300’C or so, depending upon...silicon diode thermometer. The sample filament is electroded in a four-point geometry using either silver epoxy over sputteredd silver pads or fired-on

  10. Thermoelastic Stress Analysis: An NDE Tool for the Residual Stress Assessment of Metallic Alloys

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Baaklini, George Y.

    2000-01-01

    During manufacturing, certain propulsion components that will be used in a cyclic fatigue environment are fabricated to contain compressive residual stresses on their surfaces because these stresses inhibit the nucleation of cracks. Overloads and elevated temperature excursions cause the induced residual stresses to dissipate while the component is still in service, lowering its resistance to crack initiation. Research at the NASA Glenn Research Center at Lewis Field has focused on employing the Thermoelastic Stress Analysis technique (TSA, also recognized as SPATE: Stress Pattern Analysis by Thermal Emission) as a tool for monitoring the residual stress state of propulsion components. TSA is based on the fact that materials experience small temperature changes when they are compressed or expanded. When a structure is cyclically loaded (i.e., cyclically compressed and expanded), the resulting surface-temperature profile correlates to the stress state of the structure s surface. The surface-temperature variations resulting from a cyclic load are measured with an infrared camera. Traditionally, the temperature amplitude of a TSA signal has been theoretically defined to be linearly dependent on the cyclic stress amplitude. As a result, the temperature amplitude resulting from an applied cyclic stress was assumed to be independent of the cyclic mean stress.

  11. Effects of Ultrasonic Nanocrystal Surface Modification on the Residual Stress, Microstructure, and Corrosion Resistance of 304 Stainless Steel Welds

    NASA Astrophysics Data System (ADS)

    Ye, Chang; Telang, Abhishek; Gill, Amrinder; Wen, Xingshuo; Mannava, Seetha R.; Qian, Dong; Vasudevan, Vijay K.

    2018-03-01

    In this study, ultrasonic nanocrystal surface modification (UNSM) of 304 stainless steel welds was carried out. UNSM effectively eliminates the tensile stress generated during welding and imparts beneficial compressive residual stresses. In addition, UNSM can effectively refine the grains and increase hardness in the near-surface region. Corrosion tests in boiling MgCl2 solution demonstrate that UNSM can significantly improve the corrosion resistance due to the compressive residual stresses and changes in the near-surface microstructure.

  12. Finite-Element Analysis of Residual Stresses Generated Under Nitriding Process: a Three-Dimensional Model

    NASA Astrophysics Data System (ADS)

    Sawicki, J.; Siedlaczek, P.; Staszczyk, A.

    2018-03-01

    A numerical three-dimensional model for computing residual stresses generated in cross section of steel 42CrMo4 after nitriding is presented. The diffusion process is analyzed by the finite-element method. The internal stresses are computed using the obtained profile of the distribution of the nitrogen concentration. The special features of the intricate geometry of the treated articles including edges and angles are considered. Comparative analysis of the results of the simulation and of the experimental measurement of residual stresses is performed by the Waisman-Philips method.

  13. 76 FR 68668 - Airworthiness Directives; Fokker Services B.V. Model F.28 Mark 0100 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... compressive stress during braking at higher deceleration levels outside the regular fatigue load spectrum. [T]he high compressive stress locally exceeds the elasticity limit of the material, leaving a residual tensile stress at release of the heavy braking load. Subsequently, this local residual tensile stress...

  14. A quasi-linear analysis of the impurity effect on turbulent momentum transport and residual stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, S. H., E-mail: shko@nfri.re.kr; Jhang, Hogun; Singh, R.

    2015-08-15

    We study the impact of impurities on turbulence driven intrinsic rotation (via residual stress) in the context of the quasi-linear theory. A two-fluid formulation for main and impurity ions is employed to study ion temperature gradient modes in sheared slab geometry modified by the presence of impurities. An effective form of the parallel Reynolds stress is derived in the center of mass frame of a coupled main ion-impurity system. Analyses show that the contents and the radial profile of impurities have a strong influence on the residual stress. In particular, an impurity profile aligned with that of main ions ismore » shown to cause a considerable reduction of the residual stress, which may lead to the reduction of turbulence driven intrinsic rotation.« less

  15. Residual Stresses and Critical Initial Flaw Size Analyses of Welds

    NASA Technical Reports Server (NTRS)

    Brust, Frederick W.; Raju, Ivatury, S.; Dawocke, David S.; Cheston, Derrick

    2009-01-01

    An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). A series of weld analyses are performed to determine the residual stresses in a critical region of the USS. Weld residual stresses both increase constraint and mean stress thereby having an important effect on the fatigue life. The purpose of the weld analyses was to model the weld process using a variety of sequences to determine the 'best' sequence in terms of weld residual stresses and distortions. The many factors examined in this study include weld design (single-V, double-V groove), weld sequence, boundary conditions, and material properties, among others. The results of this weld analysis are included with service loads to perform a fatigue and critical initial flaw size evaluation.

  16. Estimation of residual stresses in railroad commuter car wheels following manufacture

    DOT National Transportation Integrated Search

    2003-06-01

    A computer simulation of the manufacturing process of railroad car wheels is described to determine the residual stresses in the wheel following fabrication. Knowledge of, and the ability to predict, these stresses is useful in assessing the ability ...

  17. Experimental 3-D residual stress measurement in rails with thermal annealing

    DOT National Transportation Integrated Search

    1999-07-01

    This report describes a novel method to determine residual stresses in railroad rails. The method uses thermal annealing to relieve the internal stresses in rail slices while advanced techniques (Miore and Twyman/Green interferometry) are applied to ...

  18. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    DOE PAGES

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.; ...

    2016-07-08

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain,more » texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. Additionally, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.« less

  19. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy.

    PubMed

    Tremsin, Anton S; Gao, Yan; Dial, Laura C; Grazzi, Francesco; Shinohara, Takenao

    2016-01-01

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain, texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. In addition, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.

  20. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.; Grazzi, Francesco; Shinohara, Takenao

    2016-01-01

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with 100 μm resolution) distribution of some microstructure properties, such as residual strain, texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. In addition, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.

  1. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain,more » texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. Additionally, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.« less

  2. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    PubMed Central

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.; Grazzi, Francesco; Shinohara, Takenao

    2016-01-01

    Abstract Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain, texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. In addition, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components. PMID:27877885

  3. Hybrid overlay metrology for high order correction by using CDSEM

    NASA Astrophysics Data System (ADS)

    Leray, Philippe; Halder, Sandip; Lorusso, Gian; Baudemprez, Bart; Inoue, Osamu; Okagawa, Yutaka

    2016-03-01

    Overlay control has become one of the most critical issues for semiconductor manufacturing. Advanced lithographic scanners use high-order corrections or correction per exposure to reduce the residual overlay. It is not enough in traditional feedback of overlay measurement by using ADI wafer because overlay error depends on other process (etching process and film stress, etc.). It needs high accuracy overlay measurement by using AEI wafer. WIS (Wafer Induced Shift) is the main issue for optical overlay, IBO (Image Based Overlay) and DBO (Diffraction Based Overlay). We design dedicated SEM overlay targets for dual damascene process of N10 by i-ArF multi-patterning. The pattern is same as device-pattern locally. Optical overlay tools select segmented pattern to reduce the WIS. However segmentation has limit, especially the via-pattern, for keeping the sensitivity and accuracy. We evaluate difference between the viapattern and relaxed pitch gratings which are similar to optical overlay target at AEI. CDSEM can estimate asymmetry property of target from image of pattern edge. CDSEM can estimate asymmetry property of target from image of pattern edge. We will compare full map of SEM overlay to full map of optical overlay for high order correction ( correctables and residual fingerprints).

  4. Method for residual stress relief and retained austenite destabilization

    DOEpatents

    Ludtka, Gerard M.

    2004-08-10

    A method using of a magnetic field to affect residual stress relief or phase transformations in a metallic material is disclosed. In a first aspect of the method, residual stress relief of a material is achieved at ambient temperatures by placing the material in a magnetic field. In a second aspect of the method, retained austenite stabilization is reversed in a ferrous alloy by applying a magnetic field to the alloy at ambient temperatures.

  5. Assessment of Residual Stresses in 3013 Inner and Outer Containers and Teardrop Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroud, Mary Ann; Prime, Michael Bruce; Veirs, Douglas Kirk

    2015-12-08

    This report is an assessment performed by LANL that examines packaging for plutonium-bearing materials and the resilience of its design. This report discusses residual stresses in the 3013 outer, the SRS/Hanford and RFETS/LLNL inner containers, and teardrop samples used in studies to assess the potential for SCC in 3013 containers. Residual tensile stresses in the heat affected zones of the closure welds are of particular concern.

  6. Microstructure, Hardness, and Residual Stress Distributions in T-Joint Weld of HSLA S500MC Steel

    NASA Astrophysics Data System (ADS)

    Frih, Intissar; Montay, Guillaume; Adragna, Pierre-Antoine

    2017-03-01

    This paper investigates the characterization of the microstructure, hardness, and residual stress distributions of MIG-welded high-strength low-alloy S500MC steel. The T-joint weld for 10-mm-thick plates was joined using a two passes MIG welding technology. The contour method was performed to measure longitudinal welding residual stress. The obtained results highlighted a good correlation between the metallurgical phase constituents and hardness distribution within the weld zones. In fact, the presence of bainite and smaller ferrite grain size in the weld-fusion zone might be the reason for the highest hardness measured in this region. A similar trend of the residual stress and hardness distributions was also obtained.

  7. Calculation of residual principal stresses in CVD boron on carbon filaments

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1980-01-01

    A three-dimensional finite element model of the chemical vapor deposition of boron on a carbon substrate (B/C) is developed. The model includes an expansion of the boron after deposition due to atomic rearrangement and includes creep of the boron and carbon. Curves are presented showing the variation of the principal residual stresses and the filament elongation with the parameters defining deposition strain and creep. The calculated results are compared with experimental axial residual stress and elongation measurements made on B/C filaments. For good agreement between calculated and experimental results, the deposited boron must continue to expand after deposition, and the build up of residual stresses must be limited by significant boron and carbon creep rates.

  8. A flexible method for residual stress measurement of spray coated layers by laser made hole drilling and SLM based beam steering

    NASA Astrophysics Data System (ADS)

    Osten, W.; Pedrini, G.; Weidmann, P.; Gadow, R.

    2015-08-01

    A minimum invasive but high resolution method for residual stress analysis of ceramic coatings made by thermal spraycoating using a pulsed laser for flexible hole drilling is described. The residual stresses are retrieved by applying the measured surface data for a model-based reconstruction procedure. While the 3D deformations and the profile of the machined area are measured with digital holography, the residual stresses are calculated by FE analysis. To improve the sensitivity of the method, a SLM is applied to control the distribution and the shape of the holes. The paper presents the complete measurement and reconstruction procedure and discusses the advantages and challenges of the new technology.

  9. Diamond-anvil cell for radial x-ray diffraction.

    PubMed

    Chesnut, G N; Schiferl, D; Streetman, B D; Anderson, W W

    2006-06-28

    We have designed a new diamond-anvil cell capable of radial x-ray diffraction to pressures of a few hundred GPa. The diffraction geometry allows access to multiple angles of Ψ, which is the angle between each reciprocal lattice vector g(hkl) and the compression axis of the cell. At the 'magic angle', Ψ≈54.7°, the effects of deviatoric stresses on the interplanar spacings, d(hkl), are significantly reduced. Because the systematic errors, which are different for each d(hkl), are significantly reduced, the crystal structures and the derived equations of state can be determined reliably. At other values of Ψ, the effects of deviatoric stresses on the diffraction pattern could eventually be used to determine elastic constants.

  10. Implementation of thermal residual stresses in the analysis of fiber bridged matrix crack growth in titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Bakuckas, John G., Jr.; Johnson, W. Steven

    1994-01-01

    In this research, thermal residual stresses were incorporated in an analysis of fiber-bridged matrix cracks in unidirectional and cross-ply titanium matrix composites (TMC) containing center holes or center notches. Two TMC were investigated, namely, SCS-6/Timelal-21S laminates. Experimentally, matrix crack initiation and growth were monitored during tension-tension fatigue tests conducted at room temperature and at an elevated temperature of 200 C. Analytically, thermal residual stresses were included in a fiber bridging (FB) model. The local R-ratio and stress-intensity factor in the matrix due to thermal and mechanical loadings were calculated and used to evaluate the matrix crack growth behavior in the two materials studied. The frictional shear stress term, tau, assumed in this model was used as a curve-fitting parameter to matrix crack growth data. The scatter band in the values of tau used to fit the matrix crack growth data was significantly reduced when thermal residual stresses were included in the fiber bridging analysis. For a given material system, lay-up and temperature, a single value of tau was sufficient to analyze the crack growth data. It was revealed in this study that thermal residual stresses are an important factor overlooked in the original FB models.

  11. Finite element analysis of chip formation usingale method

    NASA Astrophysics Data System (ADS)

    Jayaprakash, V.

    2017-05-01

    In recent times, many studies made in FEM on plain isotropic metal plate formulation. The stress analysis plays the significant role in the stability of structural safety and system. The stress and distortion estimation is very helpful for designing and manufacturing product well. Usually the residual stress and plastic strain determine the fatigue life of structure, it also plays the significant role in designing and choosing material. When the load magnitude increases the crack starts to form, decreasing the work load and the residual stress reduces the damage of the metal. The manufacturing process is a key parameter in process and forming the part of any system. However, machining operation involves complex thing like hot development, material property and other estimates based on transition of the plastic strain and residual stress. The reduction of residual stress plays the complexity role in the finite element study. This paper deals with the manufacturing process with less residual stress and strain. The results shows that, by applying the ALE method in machining we can reduce the load on the work piece hence the life type of the work piece can be increased. We also investigate the cutting tool wear and there efficiency since it is a essential machine member in fabrication technology. ABAQUS platform used to solve the machining operation

  12. Burst Ductility of Zirconium Clads: The Defining Role of Residual Stress

    NASA Astrophysics Data System (ADS)

    Kumar, Gulshan; Kanjarla, A. K.; Lodh, Arijit; Singh, Jaiveer; Singh, Ramesh; Srivastava, D.; Dey, G. K.; Saibaba, N.; Doherty, R. D.; Samajdar, Indradev

    2016-08-01

    Closed end burst tests, using room temperature water as pressurizing medium, were performed on a number of industrially produced zirconium (Zr) clads. A total of 31 samples were selected based on observed differences in burst ductility. The latter was represented as total circumferential elongation or TCE. The selected samples, with a range of TCE values (5 to 35 pct), did not show any correlation with mechanical properties along axial direction, microstructural parameters, crystallographic textures, and outer tube-surface normal ( σ 11) and shear ( τ 13) components of the residual stress matrix. TCEs, however, had a clear correlation with hydrostatic residual stress ( P h), as estimated from tri-axial stress analysis on the outer tube surface. Estimated P h also scaled with measured normal stress ( σ 33) at the tube cross section. An elastic-plastic finite element model with ductile damage failure criterion was developed to understand the burst mechanism of zirconium clads. Experimentally measured P h gradients were imposed on a solid element continuum finite element (FE) simulation to mimic the residual stresses present prior to pressurization. Trends in experimental TCEs were also brought out with computationally efficient shell element-based FE simulations imposing the outer tube-surface P h values. Suitable components of the residual stress matrix thus determined the burst performance of the Zr clads.

  13. Stress relaxation at a gelatin hydrogel-glass interface in direct shear sliding

    NASA Astrophysics Data System (ADS)

    Gupta, Vinit; Singh, Arun K.

    2018-01-01

    In this paper, we study experimentally the stress relaxation behavior of soft solids such as gelatin hydrogels on a smooth glass surface in direct shear sliding. It is observed experimentally that irrespective of pulling velocity, the sliding block relaxes to the same level of nonzero residual stress. However, residual stress increases with increasing gelatin concentration in the hydrogels. We have also validated a friction model for strong bond formation during steady relaxation in light of the experimental observations. Our theoretical analysis establishes that population of dangling chains at the sliding interface significantly affects the relaxation process. As a result, residual stress increases with increasing gelatin concentration or decreasing mesh size of the three-dimensional structures in the hydrogels. It is also found that the transition time, at which a weak bond converts to strong bond, increases with increasing mesh size of the hydrogels. Moreover, relaxation time constant of a strong bond decreases with increasing mesh size. However, activation length of a strong bond increases with mesh size. Finally, this study signifies the role of residual strength in frictional shear sliding and it is believed that these results should be useful to understand the role of residual stress in stick-slip instability.

  14. Study on influence of three kinds of stress on crack propagation in butt welds of spiral coil waterwall for ultra supercritical boiler

    NASA Astrophysics Data System (ADS)

    Yan, Zhenrong; Si, Jun

    2017-09-01

    The spiral coil waterwall is the main pressure parts and the core functional components of Ultra Supercritical Boiler. In the process of operation, the spiral coil waterwall is under the combined action of welding residual stress, installation defects stress and working fluid stress, Cracks and crack propagation are easy to occur in butt welds with defects. In view of the early cracks in the butt welds of more T23 water cooled walls, in this paper, the influence of various stresses on the crack propagation in the butt welds of spiral coil waterwall was studied by numerical simulation. Firstly, the welding process of T23 water cooled wall tube was simulated, and the welding residual stress field was obtained. Then,on the basis, put the working medium load on the spiral coil waterwall, the supercoated stress distribution of the welding residual stress and the stress of the working medium is obtained. Considering the bending moment formed by stagger joint which is the most common installation defects, the stress field distribution of butt welds in T23 water-cooled wall tubes was obtained by applying bending moment on the basis of the stress field of the welding residual stress and the working medium stress. The results show that, the welding residual stress is small, the effect of T23 heat treatment after welding to improve the weld quality is not obvious; The working medium load plays a great role in the hoop stress of the water cooled wall tube, and promotes the cracks in the butt welds; The axial stress on the water cooled wall tube produced by the installation defect stress is obvious, the stagger joint, and other installation defects are the main reason of crack propagation of spiral coil waterwall. It is recommended that the control the bending moment resulting from the stagger joint not exceed 756.5 NM.

  15. Residual stress control and design of next-generation ultra-hard gear steels

    NASA Astrophysics Data System (ADS)

    Qian, Yana

    In high power density transmission systems, Ni-Co secondary hardening steels have shown great potential for next-generation gear applications due to their excellent strength, toughness and superior fatigue performance. Study of residual stress generation and evolution in Ferrium C61 and C67 gear steels revealed that shot peening and laser peening processes effectively produce desired beneficial residual stress in the steels for enhanced fatigue performance. Surface residual stress levels of -1.4GPa and -1.5GPa were achieved in shot peened C61 and laser peened C67, respectively, without introducing large surface roughness or defects. Higher compressive residual stress is expected in C67 according to a demonstrated correlation between attainable residual stress and material hardness. Due to the lack of appropriate shot media, dual laser peening is proposed for future peening optimization in C67. A novel non-destructive synchrotron radiation technique was implemented and applied for the first time for residual stress distribution analysis in gear steels with large composition and property gradients. Observed substantial residual stress redistribution and material microstructure change during the rolling contact fatigue screening test with extremely high 5.4GPa load indicates the unsuitability of the test as a fatigue life predictor. To exploit benefits of higher case hardness and associated residual stress, a new material and process (CryoForm70) aiming at 70Rc surface hardness was designed utilizing the systems approach based on thermodynamics and secondary hardening mechanisms. The composition design was first validated by the excellent agreement between experimental and theoretical core martensite start temperature in the prototype. A novel cryogenic deformation process was concurrently designed to increase the case martensite volume fraction from 76% to 92% for enhanced strengthening efficiency and surface hardness. High temperature vacuum carburizing was optimized for desired carbon content profiles using carbon diffusion simulation in the multi-component system. After cyclic tempering with intermediate cryogenic treatment, a case hardness of 68.5 +/- 0.3Rc at 0.72 +/- 0.2wt% carbon content was achieved. The design demonstrated the effectiveness of cryogenic deformation in promoting martensite transformation for high carbon and high alloy steels. Good agreement between achieved and predicted case and core hardness supports the effectiveness of the computational design approach.

  16. Optical residual stress measurement in TFT-LCD panels

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chung; Sung, Po-Chi

    2017-06-01

    The residual stress of the glass substrate might be one of causes to produce the non-uniform light distribution defect, i.e. Mura, in thin film transistor-liquid crystal display (TFT-LCD) panels. Glass is a birefringent material with very low birefringence. Furthermore, the thinner and thinner thickness request from the market makes the traditional photoelasticity almost impossible to measure the residual stresses produced in thin glass plates. Recently, a low-level stress measurement method called transmissivity extremities theory of photoelasticity (TEToP) was successfully developed to measure the residual stress in glass plate. Besides, to measure the stress of the glass plate in the TFT-LCD panel whose rear surface may has different kinds of coatings, an advanced reflection photoelasticity was also developed. In this paper, three commercially available glass plates with 0.33mm nominal thickness and three glass circular disks with different coatings were inspected to verify the feasibility of the TEToP and the advanced reflection photoelasticity, respectively.

  17. Modeling the Residual Stresses in Reactive Resins-Based Materials: a Case Study of Photo-Sensitive Composites for Dental Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassia, Luigi; D'Amore, Alberto

    Residual stresses in reactive resins-based composites are associated to the net volumetric contraction (shrinkage) arising during the cross-linking reactions. Depending on the restoration geometry (the ratio of the free surface area to the volume of the cavity) the frozen-in stresses can be as high as the strength of the dental composites. This is the main reason why the effectiveness and then the durability of restorations with composites remains quite lower than those realized with metal alloys based materials. In this paper we first explore the possibility to circumvent the mathematical complexity arising from the determination of residual stresses in reactivemore » systems three-dimensionally constrained. Then, the results of our modeling approach are applied to a series of commercially available composites showing that almost all samples develop residual stresses such that the restoration undergoes failure as soon as it is realized.« less

  18. Distortion and Residual Stress Control in Integrally Stiffened Structure Produced by Direct Metal Deposition

    NASA Technical Reports Server (NTRS)

    Lin, Shih-Yung; Hoffman, Eric K.; Domack, Marcia S.

    2007-01-01

    2-D thermo-mechanical model developed to characterize distortion and residual stresses in integral structure produced by DMD. Demonstrated as a tool to guide experimental development of DMD fabrication process for aero structures. Distortion and residual stresses are local to deposit. Most distortion develops during deposition of the first few layers; Little change in distortion or residual stresses after fifth deposit layer Most of distortion is localized just beneath the build. Thicker build plates and the use of build lands results in greatest decrease in levels of distortion. Pre-straining shown to reduce distortion. Difficult to implement, particularly for complex stiffener arrays. Clamp position has complex effect on distortion and stresses. Overall distortion reduced with decreasing clamp clearance. Larger clamp clearances induce bending. Use of pre-heat and active cooling show minor influence on panel distortion. Generate changes in thermal gradients in the build plate.

  19. Boundary element methods for the analysis of crack growth in the presence of residual stress fields

    NASA Astrophysics Data System (ADS)

    Leitao, V. M. A.; Aliabadi, M. H.; Rooke, D. P.; Cook, R.

    1998-06-01

    Two boundary element methods of simulating crack growth in the presence of residual stress fields are presented, and the results are compared to experimental measurements. The first method utilizes linear elastic fracture mechanics (LEFM) and superimposes the solutions due to the applied load and the residual stress field. In this method, the residual stress fields are obtained from an elastoplastic BEM analysis, and numerical weight functions are used to obtain the stress intensity factors due to the fatigue loading. The second method presented is an elastoplastic fracture mechanics (EPFM) approach for crack growth simulation. A nonlinear J-integral is used in the fatigue life calculations. The methods are shown to agree well with experimental measurements of crack growth in prestressed open hole specimens. Results are also presented for the case where the prestress is applied to specimens that have been precracked.

  20. Main-ion intrinsic toroidal rotation profile driven by residual stress torque from ion temperature gradient turbulence in the DIII-D tokamak

    DOE PAGES

    Grierson, B. A.; Wang, W. X.; Ethier, S.; ...

    2017-01-06

    Intrinsic toroidal rotation of the deuterium main ions in the core of the DIII-D tokamak is observed to transition from flat to hollow, forming an off-axis peak, above a threshold level of direct electron heating. Nonlinear gyrokinetic simulations show that the residual stress associated with electrostatic ion temperature gradient turbulence possesses the correct radial location and stress structure to cause the observed hollow rotation profile. Residual stress momentum flux in the gyrokinetic simulations is balanced by turbulent momentum diffusion, with negligible contributions from turbulent pinch. Finally, the prediction of the velocity profile by integrating the momentum balance equation produces amore » rotation profile that qualitatively and quantitatively agrees with the measured main-ion profile, demonstrating that fluctuation-induced residual stress can drive the observed intrinsic velocity profile.« less

  1. Simulation of Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes

    DTIC Science & Technology

    2015-11-01

    Memorandum Simulation of Weld Mechanical Behavior to Include Welding -Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes... Weld Mechanical Behavior to Include Welding -Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes by Charles R. Fisher...TYPE Technical Report 3. DATES COVERED (From - To) Dec 2013 – July 2015 4. TITLE AND SUBTITLE Simulation of Weld Mechanical Behavior to Include

  2. Simulation of Weld Mechanical Behavior to Include Welding Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes

    DTIC Science & Technology

    2015-11-01

    Memorandum Simulation of Weld Mechanical Behavior to Include Welding -Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes... Weld Mechanical Behavior to Include Welding -Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes by Charles R. Fisher...TYPE Technical Report 3. DATES COVERED (From - To) Dec 2013 – July 2015 4. TITLE AND SUBTITLE Simulation of Weld Mechanical Behavior to Include

  3. Microbridge testing of plasma-enhanced chemical-vapor deposited silicon oxide films on silicon wafers

    NASA Astrophysics Data System (ADS)

    Cao, Zhiqiang; Zhang, Tong-Yi; Zhang, Xin

    2005-05-01

    Plasma-enhanced chemical-vapor deposited (PECVD) silane-based oxides (SiOx) have been widely used in both microelectronics and microelectromechanical systems (MEMS) to form electrical and/or mechanical components. In this paper, a nanoindentation-based microbridge testing method is developed to measure both the residual stresses and Young's modulus of PECVD SiOx films on silicon wafers. Theoretically, we considered both the substrate deformation and residual stress in the thin film and derived a closed formula of deflection versus load. The formula fitted the experimental curves almost perfectly, from which the residual stresses and Young's modulus of the film were determined. Experimentally, freestanding microbridges made of PECVD SiOx films were fabricated using the silicon undercut bulk micromachining technique. Some microbridges were subjected to rapid thermal annealing (RTA) at a temperature of 400 °C, 600 °C, or 800 °C to simulate the thermal process in the device fabrication. The results showed that the as-deposited PECVD SiOx films had a residual stress of -155±17MPa and a Young's modulus of 74.8±3.3GPa. After the RTA, Young's modulus remained relatively unchanged at around 75 GPa, however, significant residual stress hysteresis was found in all the films. A microstructure-based mechanism was then applied to explain the experimental results of the residual stress changes in the PECVD SiOx films after the thermal annealing.

  4. Study of Traverse Speed Effects on Residual Stress State and Cavitation Erosion Behavior of Arc-Sprayed Aluminum Bronze Coatings

    NASA Astrophysics Data System (ADS)

    Hauer, Michél; Henkel, Knuth Michael; Krebs, Sebastian; Kroemmer, Werner

    2017-01-01

    Within a research project regarding cavitation erosion-resistant coatings, arc spraying was used with different traverse speeds to influence heat transfer and the resulting residual stress state. The major reason for this study is the lack of knowledge concerning the influence of residual stress distribution on mechanical properties and coating adhesion, especially with respect to heterogeneous aluminum bronze alloys. The materials used for spray experiments were the highly cavitation erosion-resistant propeller alloys CuAl9Ni5Fe4Mn (Ni-Al-Bronze) and CuMn13Al8Fe3Ni2 (Mn-Al-Bronze). Analyses of cavitation erosion behavior were carried out to evaluate the suitability for use in marine environments. Further microstructural, chemical and mechanical analyses were realized to examine adhesive and cohesive coating properties. Residual stress distribution was measured by modified hole drilling method using electronic speckle pattern interferometry (ESPI). It was found that the highest traverse speed led to higher tensile residual stresses near the surface and less cavitation erosion resistance of the coatings. Moreover, high oxygen affinity of main alloying element aluminum was identified to severely influence the microstructures by the formation of large oxides and hence the coating properties. Overall, Mn-Al-Bronze coatings showed lower residual stresses, a more homogeneous pore and oxide distribution and less material loss by cavitation than Ni-Al-Bronze coatings.

  5. Size Dependence of Residual Thermal Stresses in Micro Multilayer Ceramic Capacitors by Using Finite Element Unit Cell Model Including Strain Gradient Effect

    NASA Astrophysics Data System (ADS)

    Jiang, W. G.; Xiong, C. A.; Wu, X. G.

    2013-11-01

    The residual thermal stresses induced by the high-temperature sintering process in multilayer ceramic capacitors (MLCCs) are investigated by using a finite-element unit cell model, in which the strain gradient effect is considered. The numerical results show that the residual thermal stresses depend on the lateral margin length, the thickness ratio of the dielectrics layer to the electrode layer, and the MLCC size. At a given thickness ratio, as the MLCC size is scaled down, the peak shear stress reduces significantly and the normal stresses along the length and thickness directions change slightly with the decrease in the ceramic layer thickness t d as t d > 1 μm, but as t d < 1 μm, the normal stress components increase sharply with the increase in t d. Thus, the residual thermal stresses induced by the sintering process exhibit strong size effects and, therefore, the strain gradient effect should be taken into account in the design and evaluation of MLCC devices

  6. Fatigue Life Variability in Large Aluminum Forgings with Residual Stress

    DTIC Science & Technology

    2011-07-01

    been conducted. A detailed finite element analysis of the forge/ quench /coldwork/machine process was performed in order to predict the bulk residual...forge/ quench /coldwork/machine process was performed in order to predict the bulk residual stresses in a fictitious aluminum bulkhead. The residual...continues to develop the capability for computational simulation of the forge, quench , cold work and machining processes. In order to handle the

  7. Numerical sensitivity analysis of welding-induced residual stress depending on variations in continuous cooling transformation behavior

    NASA Astrophysics Data System (ADS)

    Heinze, C.; Schwenk, C.; Rethmeier, M.; Caron, J.

    2011-06-01

    The usage of continuous cooling transformation (CCT) diagrams in numerical welding simulations is state of the art. Nevertheless, specifications provide limits in chemical composition of materials which result in different CCT behavior and CCT diagrams, respectively. Therefore, it is necessary to analyze the influence of variations in CCT diagrams on the developing residual stresses. In the present paper, four CCT diagrams and their effect on numerical calculation of residual stresses are investigated for the widely used structural steel S355J2 + N welded by the gas metal arc welding (GMAW) process. Rather than performing an arbitrary adjustment of CCT behavior, four justifiable data sets were used as input to the numerical calculation: data available in the Sysweld database, experimental data acquired through Gleeble dilatometry tests, and TTT/CCT predictions calculated from the JMatPro and Edison Welding Institute (EWI) Virtual Joining Portal software. The performed numerical analyses resulted in noticeable deviations in residual stresses considering the different CCT diagrams. Furthermore, possibilities to improve the prediction of distortions and residual stress based on CCT behavior are discussed.

  8. Evaluation of stress in high pressure radial diffraction: application to hcp Co

    NASA Astrophysics Data System (ADS)

    Merkel, S.; Tome, C.; Wenk, H.

    2007-12-01

    Understanding the coupling between elastic and plastic behaviour in hcp Co plastically deformed is important as it can serve as a starting model for improving our understanding of hcp-Fe, the main constituent of the Earth's inner core. For many years, the radial diffraction technique has been used to study mechanical properties under pressure. In those experiments, a polycrystalline sample is plastically deformed between two diamond anvils and lattice spacings are measured using diffraction, with the incoming x-ray beam perpendicular to the compression direction. From the variations of the d-spacings with the diffraction angle, we deduce information on the hydrostatic and deviatoric stress in the sample, while the variations of diffraction intensities provide information on the lattice preferred orientations within the polycrystal. Theories have been developed to relate the observed lattice strains to elastic moduli and stress within the sample (1). However, those models do not account for the effect of plastic deformation and, as a consequence, stress determinations can be inconsistent between lattice planes. In particular, experiments on cobalt have shown that plasticity effects on lattice strains were particularly large in hcp metals (2). This implies that the elastic moduli previously measured for hcp-iron using this technique are not directly related to single-crystal elastic moduli(3). Addressing this problem requires us to consider plastic relaxation, in addition to elastic effects. This can be done using polycrystal elasto-plastic models, which account for slip activity and the threshold stresses associated with their activation. Here, we present new results on modeling radial diffraction experiments using an elasto-plastic self-consistent (EPSC) model and show how the model can be used to interpret radial diffraction data on hcp-Co. More important, we also show how this can be used to derive information about the active slip systems and their critical stress of activation. (1) A.K. Singh, C. Balasingh, Mao, R.J. Hemley & J. Shu, Analysis of lattice strains measured under non- hydrostatic pressure, J. Appl. Phys., 1998, 83, 7567-7575 (2) S. Merkel, N. Miyajima, D. Antonangeli, G. Fiquet & T. Yagi, Lattice preferred orientation and stress in polycrystalline hcp-Co plastically deformed under high pressure, J. Appl. Phys., 2006, 100, 023510 (3) D. Antonangeli, S. Merkel & D. L. Farber, Elastic anisotropy in hcp metals at high pressure and the sound wave anisotropy of the Earth's inner core, Geophys. Res. Lett., 2006, 33, L24303

  9. Thermal residual stress evaluation based on phase-shift lateral shearing interferometry

    NASA Astrophysics Data System (ADS)

    Dai, Xiangjun; Yun, Hai; Shao, Xinxing; Wang, Yanxia; Zhang, Donghuan; Yang, Fujun; He, Xiaoyuan

    2018-06-01

    An interesting phase-shift lateral shearing interferometry system was proposed to evaluate the thermal residual stress distribution in transparent specimen. The phase-shift interferograms was generated by moving a parallel plane plate. Based on analyzing the fringes deflected by deformation and refractive index change, the stress distribution can be obtained. To verify the validity of the proposed method, a typical experiment was elaborately designed to determine thermal residual stresses of a transparent PMMA plate subjected to the flame of a lighter. The sum of in-plane stress distribution was demonstrated. The experimental data were compared with values measured by digital gradient sensing method. Comparison of the results reveals the effectiveness and feasibility of the proposed method.

  10. Calculation of residual principal stresses in CVD boron on carbon filaments

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1980-01-01

    A three-dimensional finite element model of the chemical vapor deposition (CVD) of boron on a carbon substrate (B/C) is developed. The model includes an expansion of the boron after deposition due to atomic rearrangement and includes creep of the boron and carbon. Curves are presented to show how the principal residual stresses and the filament elongation vary as the parameters defining deposition strain and creep are varied. The calculated results are compared with experimental axial residual stress and elongation measurements made on B/C filaments. This comparison requires that for good agreement between calculated and experimental results, the deposited boron must continue to expand after deposition, and that the build-up of residual stresses is limited by significant boron and carbon creep rates.

  11. Ti-Si-C thin films produced by magnetron sputtering: correlation between physical properties, mechanical properties and tribological behavior.

    PubMed

    Cunha, L; Vaz, F; Moura, C; Munteanu, D; Ionescu, C; Rivière, J P; Le Bourhis, E

    2010-04-01

    Ti-Si-C thin films were deposited onto silicon, stainless steel and high-speed steel substrates by magnetron sputtering, using different chamber configurations. The composition of the produced films was obtained by Electron Probe Micro-Analysis (EPMA) and the structure by X-ray diffraction (XRD). The hardness and residual stresses were obtained by depth-sensing indentation and substrate deflection measurements (using Stoney's equation), respectively. The tribological behavior of the produced films was studied by pin-on-disc. The increase of the concentration of non-metallic elements (carbon and silicon) caused significant changes in their properties. Structural analysis revealed the possibility of the coexistence of different phases in the prepared films, namely Ti metallic phase (alpha-Ti or beta-Ti) in the films with higher Ti content. The coatings with highest carbon contents, exhibited mainly a sub-stoichiometric fcc NaCI TiC-type structure. These structural changes were also confirmed by resistivity measurements, whose values ranged from 10(3) omega/sq for low non-metal concentration, up to 10(6) omega/sq for the highest metalloid concentration. A strong increase of hardness and residual stresses was observed with the increase of the non-metal concentration in the films. The hardness (H) values ranged between 11 and 27 GPa, with a clear dependence on both crystalline structure and composition features. Following the mechanical behavior, the tribological results showed similar trends, with both friction coefficients and wear revealing also a straight correlation with the composition and crystalline structure of the coatings.

  12. Effect of the seed layer on the Y0.5Gd0.5Ba2Cu3O7-σ film fabricated by PLD

    NASA Astrophysics Data System (ADS)

    Yao, Yanjie; Wang, Wei; Liu, Linfei; Lu, Saidan; Wu, Xiang; Zheng, Tong; Liu, Shunfan; Li, Yijie

    2018-06-01

    The surface morphology and internal residual stress have influence on the critical current density (Jc) of REBa2Cu3O7-σ (REBCO) coated conductor. In order to modulate them, a series of Y0.5Gd0.5Ba2Cu3O7-σ (YGBCO) films were prepared by pulsed laser deposition (PLD) through introducing a seed layer in this paper. The thicknesses of seed layer changes from about 2 nm to 30 nm. For comparison, a standard sample without seed layer was fabricated at the same deposition condition. The surface morphology was illustrated by Scanning electron microscopy (SEM). The surface roughness was scanned by Atomic force microscopy (AFM). The microstructure and internal strain were measured by X-ray Diffraction (XRD). DC four-probe method was used to measure the critical current of the samples at 77 K and self-field. As a result, all samples have high Jc of about 4 MA/cm2, while the self-field Jc of the YGBCO films can be promoted by the seed layer. The results of our research work are as follows. First of all, seed layer makes the deposition of the YGBCO layer much easier to control. By this way, we can decrease the surface roughness of the samples. Furthermore, the internal residual stress of the YGBCO films with seed layer decrease. Finally, the best thickness of the seed layer was found by summarizing and analyzing the conditions of seed layer.

  13. Effects of higher order aberrations on beam shape in an optical recording system

    NASA Technical Reports Server (NTRS)

    Wang, Mark S.; Milster, Tom D.

    1992-01-01

    An unexpected irradiance pattern in the detector plane of an optical data storage system was observed. Through wavefront measurement and scalar diffraction modeling, it was discovered that the energy redistribution is due to residual third-order and fifth-order spherical aberration of the objective lens and cover-plate assembly. The amount of residual aberration is small, and the beam focused on the disk would be considered diffraction limited by several criteria. Since the detector is not in the focal plane, even this small amount of aberration has a significant effect on the energy distribution. We show that the energy redistribution can adversely affect focus error signals, which are responsible for maintaining sub-micron spot diameters on the spinning disk.

  14. FE Analysis of Buckling Behavior Caused by Welding in Thin Plates of High Tensile Strength Steel

    NASA Astrophysics Data System (ADS)

    Wang, Jiangchao; Rashed, Sherif; Murakawa, Hidekazu

    2014-12-01

    The target of this study was to investigate buckling behavior during the entire welding process which consists of the heating and the cooling processes. For thin plate structures made of high tensile strength steel, not only residual buckling during or after cooling down but also transient buckling during heating may occur. The thermal elastic plastic FE analysis to investigate welding-induced buckling during the entire welding process is presented. Because of the high yield stress of high tensile strength steel, larger longitudinal compressive thermal stress is produced near the welding line compared with that in the case of carbon steel. Therefore, the plate may buckle due to thermal expansion, before the material nears yielding. During cooling down, the longitudinal compressive thermal stress close to the welding line disappears, and longitudinal tensile residual stress is produced due to contraction. Meanwhile, longitudinal compressive residual stress occurs far from the welding line to balance the tensile stress close to the welding line. This distribution of longitudinal residual stress would change the deformed dish shape of transient buckling into a saddle buckling type when the stress exceeds the critical buckling condition.

  15. In Situ Assessment of Lattice in an Al-Li Alloy

    NASA Technical Reports Server (NTRS)

    Beaudoin, A. J.; Obstalecki, M.; Tayon, W.; Hernquist, M.; Mudrock, R.; Kenesei, P.; Lienert, U.

    2013-01-01

    The lattice strains of individual grains are measured in an Al-Li alloy, AA 2195, using high-energy X-ray diffraction at a synchrotron source. The diffraction of individual grains in this highly textured production alloy was isolated through use of a depth-defining aperture. It is shown that hydrostatic stress, and in turn the stress triaxiality, can vary significantly from grain to grain.

  16. Modeling of Residual Stress and Machining Distortion in Aerospace Components (PREPRINT)

    DTIC Science & Technology

    2010-03-01

    John Gayda, “The Effect of Heat Treatment on Residual Stress and Machining Distortions in Advanced Nickel Base Disk Alloys,” NASA/TM-2001-210717. 2...Wei-Tsu Wu, Guoji Li, Juipeng Tang, Shesh Srivatsa, Ravi Shankar, Ron Wallis, Padu Ramasundaram and John Gayda, “A process modeling system for heat...Materials Processing Technology 98 (2000) 189-195. 6. M.A. Rist, S. Tin, B.A. Roder, J.A. James, and M.R. Daymond , “Residual Stresses in a

  17. Characterization of Residual Stress as a Function of Friction Stir Welding Parameters in ODS Steel MA956

    DTIC Science & Technology

    2013-06-01

    dispersion strengthened - Eurofer steel ,” J. Nucl. Mater., vol. 416 , pp. 2229, Sep 1, 2011. [10] H. J. K. Lemmen and K. J. Sudmeijer, I, “Laser beam...Reynolds and W. Tang, “Structure, properties, and residual stress of 304L stainless steel friction stir welds,” Scr. Mater., vol. 48, pp. 12891294...OF RESIDUAL STRESS AS A FUNCTION OF FRICTION STIR WELDING PARAMETERS IN ODS STEEL MA956 by Martin S. Bennett June 2013 Thesis Advisor

  18. Effects of Cryogenic Treatment on the Residual Stress and Mechanical Properties of an Aerospace Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Chen, P.; Malone, T.; Bond, R.; Torres, P.

    2001-01-01

    Investigators at Marshall Space Flight Center (MSFC) are studying the potential benefits of cryogenic treatment for aerospace Aluminum (Al) alloys. This paper reports the effects of cryogenic treatment on residual stress, tensile strength, hardness, fatigue life, and stress corrosion cracking (SCC) resistance.

  19. Effects of Cryogenic Treatment on the Residual Stress and Mechanical Properties of an Aerospace Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Chen, Po; Malone, Tina; Bod, Robert; Torres, Pablo

    2000-01-01

    Investigators at Marshall Space Flight Center (MSFC) are studying the potential benefits of cryogenic treatment for aerospace Aluminum (Al) alloys. This paper reports the effects of cryogenic treatment on residual stress, tensile strength, hardness, fatigue life, and stress corrosion cracking (SCC) resistance.

  20. Carbon isotope discrimination and water stress in trembling aspen following variable retention harvesting.

    PubMed

    Bladon, Kevin D; Silins, Uldis; Landhäusser, Simon M; Messier, Christian; Lieffers, Victor J

    2007-07-01

    Variable retention harvesting (VRH) has been proposed as a silvicultural practice to maintain biodiversity and ecosystem integrity. No previous study has examined tree carbon isotope discrimination to provide insights into water stress that could lead to dieback and mortality of trees following VRH. We measured and compared the carbon isotope ratios (delta(13)C) in stem wood of trembling aspen (Populus tremuloides Michx.) before and after VRH. Eight trees were sampled from isolated residual, edge and control (interior of unharvested stand) positions from each of seven plots in three regions (Calling Lake and Drayton Valley, Alberta and Lac Duparquet, Québec). After VRH, the general trend in mean delta(13)C was residual > edge > control trees. Although this trend is indicative of water stress in residual trees, it also suggests that edge trees received some sheltering effect, reducing their stress compared with that of residuals. A strong inverse relationship was found between the delta(13)C values and the mean annual precipitation in each region. The trend in mean delta(13)C signature was Calling Lake > Drayton Valley > Lac Duparquet trees. These results suggest that residual or edge trees in drier regions are more likely to suffer water stress following VRH. We also observed a trend of greater delta(13)C in stout trees compared with slender trees, both before and after VRH. The evidence of greater water stress in stout trees likely occurred because of a positive relationship between stem diameter and crown volume per basal area. Our results provide evidence that water stress could be the driving mechanism leading to dieback and mortality of residual trees shortly after VRH. Additionally, the results from edge trees indicate that leaving hardwood residuals in larger patches or more sheltered landscape positions could reduce the water stress to which these trees are subjected, thereby reducing dieback and mortality.

  1. Electromechanical Apparatus Measures Residual Stress

    NASA Technical Reports Server (NTRS)

    Chern, Engmin J.; Flom, Yury

    1993-01-01

    Nondestructive test exploits relationship between stress and eddy-current-probe resistance. Yields data on residual stress or strain in metal tension/compression specimen (stress or strain remaining in specimen when no stress applied from without). Apparatus is assembly of commercial equipment: tension-or-compression testing machine, eddy-current probe, impedance gain-and-phase analyzer measuring impedance of probe coil, and desktop computer, which controls other equipment and processes data received from impedance gain-and-phase analyzer.

  2. Nanostructure characterisation of flow-formed Cr-Mo-V steel using transmission Kikuchi diffraction technique.

    PubMed

    Birosca, S; Ding, R; Ooi, S; Buckingham, R; Coleman, C; Dicks, K

    2015-06-01

    Nowadays flow-forming has become a desired near net shape manufacturing method as it provides excellent mechanical properties with improved surface finish and significant manufacturing cost reduction. However, the material is subjected to excessive plastic deformation during flow-forming process, generating a very fine and complex microstructure. In addition, the intense dislocation density and residual stress that is generated in the component during processing makes the microstructure characterisation using conventional micro-analytical tools challenging. Thus, the microstructure/property relationship study in such a material is rather difficult. In the present study a flow-formed Cr-Mo-V steel nanostructure and crystallographic texture were characterised by means of Transmission Kikuchi Diffraction (TKD). Here, TKD is shown to be a powerful technique in revealing very fine martensite laths within an austenite matrix. Moreover, fine precipitates in the order of 20-70 nm on the martensite lath boundaries were clearly imaged and characterised. This greatly assisted in understanding the preferable site formation of the carbides in such a complex microstructure. The results showed that the actual TKD spatial resolution was in the range of 5-10 nm using 25 kV for flow-formed Cr-Mo-V steel. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Development of a compact optical MEMS scanner with integrated VCSEL light source and diffractive optics

    NASA Astrophysics Data System (ADS)

    Krygowski, Thomas W.; Reyes, David; Rodgers, M. Steven; Smith, James H.; Warren, Mial E.; Sweatt, William C.; Blum-Spahn, Olga; Wendt, Joel R.; Asbill, Randolph E.

    1999-09-01

    In this work the design and initial fabrication results are reported for the components of a compact optical-MEMS laser scanning system. This system integrates a silicon MEMS laser scanner, a Vertical Cavity Surface Emitting Laser (VCSEL) and passive optical components. The MEMS scanner and VCSEL are mounted onto a fused silica substrate which serves as an optical interconnect between the devices. Two Diffractive Optical Elements (DOE's) are etched into the fused silica substrate to focus the VCSEL beam and increase the scan range. The silicon MEMS scanner consists of an actuator that continuously scans the position of a large polysilicon gold- coated shuttle containing a third DOE. Interferometric measurements show that the residual stress in the 50 micrometer X 1000 micrometer shuttle is extremely low, with a maximum deflection of only 0.18 micrometer over an 800 micrometer span for an unmetallized case and a deflection of 0.56 micrometer for the metallized case. A conservative estimate for the scan range is approximately plus or minus 4 degrees, with a spot size of about 0.5 mm, producing 50 resolvable spots. The basic system architecture, optical and MEMS design is reported in this paper, with an emphasis on the design and fabrication of the silicon MEMS scanner portion of the system.

  4. Fiber Diffraction Data Indicate a Hollow Core for the Alzheimer’s Aβ Three-fold Symmetric Fibril

    PubMed Central

    McDonald, Michele; Box, Hayden; Bian, Wen; Kendall, Amy; Tycko, Robert; Stubbs, Gerald

    2012-01-01

    Amyloid β protein (Aβ), the principal component of the extracellular plaques found in the brains of Alzheimer’s disease patients, forms fibrils well suited to structural study by X-ray fiber diffraction. Fiber diffraction patterns from the 40-residue form Aβ(1–40) confirm a number of features of a three-fold symmetric Aβ model from solid state NMR, but suggest that the fibrils have a hollow core, not present in the original ssNMR models. Diffraction patterns calculated from a revised hollow three-fold model with a more regular β-sheet structure are in much better agreement with the observed diffraction data than patterns calculated from the original ssNMR model. Refinement of a hollow-core model against ssNMR data led to a revised ssNMR model, similar to the fiber diffraction model. PMID:22903058

  5. A method to separate and quantify the effects of indentation size, residual stress and plastic damage when mapping properties using instrumented indentation

    NASA Astrophysics Data System (ADS)

    Hou, X. D.; Jennett, N. M.

    2017-11-01

    Instrumented indentation is a convenient and increasingly rapid method of high resolution mapping of surface properties. There is, however, significant untapped potential for the quantification of these properties, which is only possible by solving a number of serious issues that affect the absolute values for mechanical properties obtained from small indentations. The three most pressing currently are the quantification of: the indentation size effect (ISE), residual stress, and pile-up and sink-in—which is itself affected by residual stress and ISE. Hardness based indentation mapping is unable to distinguish these effects. We describe a procedure that uses an elastic modulus as an internal reference and combines the information available from an indentation modulus map, a hardness map, and a determination of the ISE coefficient (using self-similar geometry indentation) to correct for the effects of stress, pile up and the indentation size effect, to leave a quantified map of plastic damage and grain refinement hardening in a surface. This procedure is used to map the residual stress in a cross-section of the machined surface of a previously stress free metal. The effect of surface grinding is compared to milling and is shown to cause different amounts of work hardening, increase in residual stress, and surface grain size reduction. The potential use of this procedure for mapping coatings in cross-section is discussed.

  6. Observed ground-motion variabilities and implication for source properties

    NASA Astrophysics Data System (ADS)

    Cotton, F.; Bora, S. S.; Bindi, D.; Specht, S.; Drouet, S.; Derras, B.; Pina-Valdes, J.

    2016-12-01

    One of the key challenges of seismology is to be able to calibrate and analyse the physical factors that control earthquake and ground-motion variabilities. Within the framework of empirical ground-motion prediction equation (GMPE) developments, ground-motions residuals (differences between recorded ground motions and the values predicted by a GMPE) are computed. The exponential growth of seismological near-field records and modern regression algorithms allow to decompose these residuals into between-event and a within-event residual components. The between-event term quantify all the residual effects of the source (e.g. stress-drops) which are not accounted by magnitude term as the only source parameter of the model. Between-event residuals provide a new and rather robust way to analyse the physical factors that control earthquake source properties and associated variabilities. We first will show the correlation between classical stress-drops and between-event residuals. We will also explain why between-event residuals may be a more robust way (compared to classical stress-drop analysis) to analyse earthquake source-properties. We will finally calibrate between-events variabilities using recent high-quality global accelerometric datasets (NGA-West 2, RESORCE) and datasets from recent earthquakes sequences (Aquila, Iquique, Kunamoto). The obtained between-events variabilities will be used to evaluate the variability of earthquake stress-drops but also the variability of source properties which cannot be explained by a classical Brune stress-drop variations. We will finally use the between-event residual analysis to discuss regional variations of source properties, differences between aftershocks and mainshocks and potential magnitude dependencies of source characteristics.

  7. Quantification of local strain distributions in nanoscale strained SiGe FinFET structures

    NASA Astrophysics Data System (ADS)

    Mochizuki, Shogo; Murray, Conal E.; Madan, Anita; Pinto, Teresa; Wang, Yun-Yu; Li, Juntao; Weng, Weihao; Jagannathan, Hemanth; Imai, Yasuhiko; Kimura, Shigeru; Takeuchi, Shotaro; Sakai, Akira

    2017-10-01

    Strain within nanoscale strained SiGe FinFET structures has been investigated using a combination of X-ray diffraction and transmission electron microscopy-based nanobeam diffraction (NBD) techniques to reveal the evolution of the stress state within the FinFETs. Reciprocal space maps collected using high-resolution X-ray diffraction exhibited distinct features corresponding to the SiGe fin width, pitch, and lattice deformation and were analyzed to quantify the state of stress within the fins. Although the majority of the SiGe fin volume exhibited a uniaxial stress state due to elastic relaxation of the transverse in-plane stress, NBD measurements confirmed a small interaction region near the SOI interface that is mechanically constrained by the underlying substrate. We have quantitatively characterized the evolution of the fin stress state from biaxial to uniaxial as a function of fin aspect ratio and Ge fraction and confirmed that the fins obey elastic deformation based on a model that depends on the relative difference between the equilibrium Si and SiGe lattice constants and relative fraction of in-plane stress transverse to the SiGe fins. Spatially resolved, nanobeam X-ray diffraction measurements conducted near the SiGe fin edge indicate the presence of additional elastic relaxation from a uniaxial stress state to a fully relaxed state at the fin edge. Mapping of the lattice deformation within 500 nm of this fin edge by NBD revealed large gradients, particularly at the top corner of the fin. The values of the volume averaged lattice deformation obtained by nanoXRD and NBD are qualitatively consistent. Furthermore, the modulation of strain at the fin edge obtained by quantitative analysis of the nanoXRD results agrees with the lattice deformation profile obtained by NBD.

  8. VO2 Thermochromic Films on Quartz Glass Substrate Grown by RF-Plasma-Assisted Oxide Molecular Beam Epitaxy

    PubMed Central

    Zhang, Dong; Sun, Hong-Jun; Wang, Min-Huan; Miao, Li-Hua; Liu, Hong-Zhu; Zhang, Yu-Zhi; Bian, Ji-Ming

    2017-01-01

    Vanadium dioxide (VO2) thermochromic thin films with various thicknesses were grown on quartz glass substrates by radio frequency (RF)-plasma assisted oxide molecular beam epitaxy (O-MBE). The crystal structure, morphology and chemical stoichiometry were investigated systemically by X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. An excellent reversible metal-to-insulator transition (MIT) characteristics accompanied by an abrupt change in both electrical resistivity and optical infrared (IR) transmittance was observed from the optimized sample. Remarkably, the transition temperature (TMIT) deduced from the resistivity-temperature curve was reasonably consistent with that obtained from the temperature-dependent IR transmittance. Based on Raman measurement and XPS analyses, the observations were interpreted in terms of residual stresses and chemical stoichiometry. This achievement will be of great benefit for practical application of VO2-based smart windows. PMID:28772673

  9. Effect of heat treatment on corrosion behavior of duplex stainless steel in orthodontic applications

    NASA Astrophysics Data System (ADS)

    Sabea Hammood, Ali; Faraj Noor, Ahmed; Talib Alkhafagy, Mohammed

    2017-12-01

    Heat treatment is necessary for duplex stainless steel (DSS) to remove or dissolve intermetallic phases, to remove segregation and to relieve any residual thermal stress in DSS, which may be formed during production processes. In the present study, the corrosion resistance of a DSS in artificial saliva was studied by potentiodynamic measurements. The microstructure was investigated by scanning electron microscopy (SEM),x-ray diffraction (XRD) and Vickers hardness (HV). The properties were tested in as-received and in thermally treated conditions (800-900 °C, 2-8 min). The research aims to evaluate the capability of DSS for orthodontic applications, in order to substitute the austenitic grades. The results indicate that the corrosion resistance is mainly affected by the ferrite/austenite ratio. The best result was obtained with a treatment at 900 °C for 2 min.

  10. Qualification of Ti6Al4V ELI Alloy Produced by Laser Powder Bed Fusion for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Yadroitsev, I.; Krakhmalev, P.; Yadroitsava, I.; Du Plessis, A.

    2018-03-01

    Rectangular Ti6Al4V extralow interstitials (ELI) samples were manufactured by laser powder bed fusion (LPBF) in vertical and horizontal orientations relative to the build platform and subjected to various heat treatments. Detailed analyses of porosity, microstructure, residual stress, tensile properties, fatigue, and fracture surfaces were performed based on x-ray micro-computed tomography, scanning electron microscopy, and x-ray diffraction methods. The types of fracture and the tensile fracture mechanisms of the LPBF Ti6Al4V ELI alloy were also studied. Detailed analysis of the microstructure and the corresponding mechanical properties were compared against standard specifications for conventional Ti6Al4V alloy for use in surgical implant applications. Conclusions regarding the mechanical properties and heat treatment of LPBF Ti6Al4V ELI for biomedical applications are made.

  11. Failure Behavior Characterization of Mo-Modified Ti Surface by Impact Test and Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Qin, Jianfeng; Zhang, Xiangyu; Lin, Naiming; Huang, Xiaobo; Tang, Bin

    2015-07-01

    Using the impact test and finite element simulation, the failure behavior of the Mo-modified layer on pure Ti was investigated. In the impact test, four loads of 100, 300, 500, and 700 N and 104 impacts were adopted. The three-dimensional residual impact dents were examined using an optical microscope (Olympus-DSX500i), indicating that the impact resistance of the Ti surface was improved. Two failure modes cohesive and wearing were elucidated by electron backscatter diffraction and energy-dispersive spectrometer performed in a field-emission scanning electron microscope. Through finite element forward analysis performed at a typical impact load of 300 N, stress-strain distributions in the Mo-modified Ti were quantitatively determined. In addition, the failure behavior of the Mo-modified layer was determined and an ideal failure model was proposed for high-load impact, based on the experimental and finite element forward analysis results.

  12. Processing of crack-free high density polycrystalline LiTaO3 ceramics

    DOE PAGES

    Chen, Ching-Fong; Brennecka, Geoff L.; King, Graham; ...

    2016-11-04

    Our work achieved high density (99.9%) polycrystalline LiTaO 3. The keys to the high density without cracking were the use of LiF-assisted densification to maintain fine grain size as well as the presence of secondary lithium aluminate phases as grain growth inhibitors. The average grain size of the hot pressed polycrystalline LiTaO 3 is less than 5 μm, limiting residual stresses caused by the anisotropic thermal expansion. Dilatometry results clearly indicate liquid phase sintering via the added LiF sintering aid. Efficient liquid phase sintering allows densification during low temperature hot pressing. Electron microscopy confirmed the high-density microstructure. Furthermore, Rietveld analysismore » of neutron diffraction data revealed the presence of LiAlO 2 and LiAl 5O 8 minority phases and negligible substitutional defect incorporation in LiTaO 3.« less

  13. Blanking Method with Aid of Scrap to Reduce Tensile Residual Stress on Sheared Edge

    NASA Astrophysics Data System (ADS)

    Yasutomi, T.; Yonemura, S.; Yoshida, T.; Mizumura, M.; Hiwatashi, S.

    2017-09-01

    A simple shearing method to reduce tensile residual stress on a sheared edge is highly desired in the automotive industry because this type of stress deteriorates the fatigue property of automotive parts. In this study, the effect of a coining method with a shearing scrap material on a sheared edge was investigated. The scrap part of a sheared plate has a fracture surface shape similar to that of the product part since these parts are generated by separation of a single plate with crack propagation. Therefore, it is possible to impose plastic strain over the entire fracture surface by using the scrap part as a coining tool. Effectiveness of this method was investigated for high-tensile-strength steel. Using this method, the tensile residual stress on the sheared surface was significantly reduced and work hardening was slightly increased. The effects of shearing clearance and coining stroke were also investigated. Tensile residual stress decreased as the coining stroke increased; however, it saturated at a certain stroke. The stroke at which tensile residual stress saturated was relatively small at a large clearance. In particular, the amount of plastic deformation on fracture surface increased when coining stroke became large. These tendencies could be explained by the conditions of contact, which were investigated using finite element analysis.

  14. Strengthening, Crack Arrest And Multiple Cracking In Brittle Materials Using Residual Stresses.

    DOEpatents

    Green, David J.; Sglavo, Vincenzo M.; Tandon, Rajan

    2003-02-11

    Embodiments include a method for forming a glass which displays visible cracking prior to failure when subjected to predetermined stress level that is greater than a predetermined minimum stress level and less than a failure stress level. The method includes determining a critical flaw size in the glass and introducing a residual stress profile to the glass so that a plurality of visible cracks are formed prior to failure when the glass is subjected to a stress that is greater than the minimum stress level and lower than the critical stress. One method for forming the residual stress profile includes performing a first ion exchange so that a first plurality of ions of a first element in the glass are exchanged with a second plurality of ions of a second element that have a larger volume than the first ions. A second ion exchange is also performed so that a plurality of the second ions in the glass are exchanged back to ions of the first element.

  15. Characterizing the residual glass in a MgO/Al2O3/SiO2/ZrO2/Y2O3 glass-ceramic

    PubMed Central

    Seidel, Sabrina; Patzig, Christian; Wisniewski, Wolfgang; Gawronski, Antje; Hu, Yongfeng; Höche, Thomas; Rüssel, Christian

    2016-01-01

    The non-isochemical crystallization of glasses leads to glass-ceramics in which the chemical composition of the amorphous matrix differs from that of the parent glass. It is challenging to solely analyse the properties of these residual glassy phases because they frequently contain finely dispersed crystals. In this study, the composition of the residual glass matrix after the crystallization of a glass with the mol% composition 50.6 SiO2 · 20.7 MgO · 20.7 Al2O3 · 5.6 ZrO2 · 2.4 Y2O3 is analysed by scanning transmission electron microscopy (STEM) including energy dispersive X-ray analysis (EDXS). A batch of the residual glass with the determined composition is subsequently melted and selected properties are analysed. Furthermore, the crystallization behaviour of this residual glass is studied by X-ray diffraction, scanning electron microscopy including electron backscatter diffraction and STEM-EDXS analyses. The residual glass shows sole surface crystallization of indialite and multiple yttrium silicates while bulk nucleation does not occur. This is in contrast to the crystallization behaviour of the parent glass, in which a predominant bulk nucleation of spinel and ZrO2 is observed. The crystallization of the residual glass probably leads to different crystalline phases when it is in contact to air, rather than when it is enclosed within the microstructure of the parent glass-ceramics. PMID:27734918

  16. The effects of shot-peening residual stresses on the fracture and crack growth properties of D6AC steel

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1973-01-01

    The fracture strength and cyclic crack-growth properties of surface-flawed, shot-peened D6AC steel plate were investigated. For short crack lengths (up to 1.5mm) simple linear elastic fracture mechanics - based only on applied loading - did not predict the fracture strengths. Also, Paris' Law for cyclic crack growth did not correlate the crack-growth behavior. To investigate the effect of shot-peening, additional fracture and crack-growth tests were performed on material which was precompressed to remove the residual stresses left by the shot-peening. Both tests and analysis show that the shot-peening residual stresses influence the fracture and crack-growth properties of the material. The analytical method of compensating for residual stresses and the fracture and cyclic crack-growth test results and predictions are presented.

  17. Effects of shot-peening residual stresses on the fracture and crack-growth properties of D6AC steel

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1974-01-01

    The fracture strength and cyclic crack-growth properties of surface-flawed, shot-peened D6AC steel plate were investigated. For short crack lengths (up to 1.5 mm) simple linear elastic fracture mechanics - based only on applied loading - did not predict the fracture strengths. Also, Paris' Law for cyclic crack growth did not correlate the crack-growth behavior. To investigate the effect of shot-peening, additional fracture and crack-growth tests were performed on material which was precompressed to remove the residual stresses left by the shot-peening. Both tests and analysis show that shot-peening residual stresses influence the fracture and crack-growth properties of the material. This report presents the analytical method of compensating for residual stresses and the fracture and cyclic crack-growth test results and predictions.

  18. Three Dimensional Numerical Simulation and Characterization of Crack Growth in the Weld Region of a Friction Stir Welded Structure

    NASA Technical Reports Server (NTRS)

    Seshadri, Banavara R.; Smith, Stephen W.; Newman, John A.

    2013-01-01

    Friction stir welding (FSW) fabrication technology is being adopted in aerospace applications. The use of this technology can reduce production cost, lead-times, reduce structural weight and need for fasteners and lap joints, which are typically the primary locations of crack initiation and multi-site fatigue damage in aerospace structures. FSW is a solid state welding process that is well-suited for joining aluminum alloy components; however, the process introduces residual stresses (both tensile and compressive) in joined components. The propagation of fatigue cracks in a residual stress field and the resulting redistribution of the residual stress field and its effect on crack closure have to be estimated. To insure the safe insertion of complex integral structures, an accurate understanding of the fatigue crack growth behavior and the complex crack path process must be understood. A life prediction methodology for fatigue crack growth through the weld under the influence of residual stresses in aluminum alloy structures fabricated using FSW will be detailed. The effects and significance of the magnitude of residual stress at a crack tip on the estimated crack tip driving force are highlighted. The location of the crack tip relative to the FSW and the effect of microstructure on fatigue crack growth are considered. A damage tolerant life prediction methodology accounting for microstructural variation in the weld zone and residual stress field will lead to the design of lighter and more reliable aerospace structures

  19. Redistribution of Welding Residual Stresses of Crack Tip Opening Displacement Specimen by Local Compression.

    PubMed

    Kim, Young-Gon; Song, Kuk-Hyun; Lee, Dong-Hoon; Joo, Sung-Min

    2018-03-01

    The demand of crack tip opening displacement (CTOD) test which evaluates fracture toughness of a cracked material is very important to ensure the stability of structure under severe service environment. The validity of the CTOD test result is judged using several criterions of the specification standards. One of them is the artificially generated fatigue pre-crack length inside the specimen. For acceptable CTOD test results, fatigue pre-crack must have a reasonable sharp crack front. The propagation of fatigue crack started from the tip of the machined notch, which might have propagated irregularly due to residual stress field. To overcome this problem, test codes suggest local compression method, reversed bending method and stepwise high-R ratio method to reduce the disparity of residual stress distribution inside the specimen. In this paper, the relation between the degree of local compression and distribution of welding residual stress has been analyzed by finite element analyses in order to determine the amount of effective local compression of the test piece. Analysis results show that initial welding residual stress is dramatically varied three-dimensionally while cutting, notch machining and local compressing due to the change of internal restraint force. From the simulation result, the authors find that there is an optimum amount of local compression to modify regularly for generating fatigue pre-crack propagation. In the case of 0.5% compressions of the model width is the most effective for uniforming residual stress distribution.

  20. Effect of Service Stress on Impact Resistance, X-ray Diffraction Patterns, and Microstructure of 25s Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Kies, J A; Quick, G W

    1939-01-01

    Report presents the results of a great number of tests made to determine the effect of service stresses on the impact resistance, the x-ray diffraction patterns, and the microstructure of 25s aluminum alloy. Many of the specimens were taken from actual propeller blades and others were cut from 13/16-inch rod furnished by the Aluminum Company of America.

Top