Sample records for diffraction xrd analyses

  1. Rietveld Refinement on X-Ray Diffraction Patterns of Bioapatite in Human Fetal Bones

    PubMed Central

    Meneghini, Carlo; Dalconi, Maria Chiara; Nuzzo, Stefania; Mobilio, Settimio; Wenk, Rudy H.

    2003-01-01

    Bioapatite, the main constituent of mineralized tissue in mammalian bones, is a calcium-phosphate-based mineral that is similar in structure and composition to hydroxyapatite. In this work, the crystallographic structure of bioapatite in human fetuses was investigated by synchrotron radiation x-ray diffraction (XRD) and microdiffraction (μ-XRD) techniques. Rietveld refinement analyses of XRD and μ-XRD data allow for quantitative probing of the structural modifications of bioapatite as functions of the mineralization process and gestational age. PMID:12609904

  2. Mineralogy by X-ray Diffraction on Mars: The Chemin Instrument on Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Bristow, T. F.; Bish, D. L.; Ming, D. W.; Blake, D. F.; Morris, R. V.; Rampe, E. B.; Chipera, S. J.; Treiman, A. H.; Morrison, S. M.; hide

    2014-01-01

    To obtain detailed mineralogy information, the Mars Science Laboratory rover Curiosity carries CheMin, the first X-ray diffraction (XRD) instrument used on a planet other than Earth. CheMin has provided the first in situ XRD analyses of full phase assemblages on another planet.

  3. Structure, Elastic Constants and XRD Spectra of Extended Solids under High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batyrev, I. G.; Coleman, S. P.; Ciezak-Jenkins, J. A.

    We present results of evolutionary simulations based on density functional calculations of a potentially new type of energetic materials called extended solids: P-N and N-H. High-density structures with covalent bonds generated using variable and fixed concentration methods were analysed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction (XRD) spectra. X-ray diffraction spectra were calculated using a virtual diffraction algorithm that computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculated XRD patterns were used to search for the structure of extended solids present at experimental pressures by optimizing data accordingmore » to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Elastic constants has been calculated for thermodynamically stable structures of P-N system.« less

  4. Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.

    PubMed

    Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming

    2015-06-01

    This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.

  5. Clay pigment structure characterisation as a guide for provenance determination--a comparison between laboratory powder micro-XRD and synchrotron radiation XRD.

    PubMed

    Švarcová, Silvie; Bezdička, Petr; Hradil, David; Hradilová, Janka; Žižak, Ivo

    2011-01-01

    Application of X-ray diffraction (XRD)-based techniques in the analysis of painted artworks is not only beneficial for indisputable identification of crystal constituents in colour layers, but it can also bring insight in material crystal structure, which can be affected by their geological formation, manufacturing procedure or secondary changes. This knowledge might be helpful for art historic evaluation of an artwork as well as for its conservation. By way of example of kaolinite, we show that classification of its crystal structure order based on XRD data is useful for estimation of its provenance. We found kaolinite in the preparation layer of a Gothic wall painting in a Czech church situated near Karlovy Vary, where there are important kaolin deposits. Comparing reference kaolin materials from eight various Czech deposits, we found that these can be differentiated just according to the kaolinite crystallinity. Within this study, we compared laboratory powder X-ray micro-diffraction (micro-XRD) with synchrotron radiation X-ray diffraction analysing the same real sample. We found that both techniques led to the same results.

  6. CdO-NPs; synthesis from 1D new nano Cd coordination polymer, characterization and application as anti-cancer drug for reducing the viability of cancer cells

    NASA Astrophysics Data System (ADS)

    Afzalian Mend, Behnaz; Delavar, Mahmoud; Darroudi, Majid

    2017-04-01

    The hexagonal CdO nano-particles (CdO-NPs) was prepared using new nano Cd coordination polymer, [Cd(NO3)(bipy)(pzca)]n (1) as a precursor, through direct calcination process at 500 °C. The precursor (1) was synthesized by sonochemical method. The new nano compound (1) was characterized by IR spectroscopy, elemental analyses, X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and thermal gravimetric analyses. The structure of nano coordination polymer was determined by comparing the XRD pattern of nano and single-crystal of compound (1). The nano CdO was characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). In addition, the activity and efficiency of nano CdO as an anti-cancer drug was studied on cancer cells with different concentration. The results shows that the viability of cancer cells reduced above 2 μg/mL of CdO-NPs concentration.

  7. In-situ XRD vs ex-situ vacuum annealing of tantalum oxynitride thin films: Assessments on the structural evolution

    NASA Astrophysics Data System (ADS)

    Cunha, L.; Apreutesei, M.; Moura, C.; Alves, E.; Barradas, N. P.; Cristea, D.

    2018-04-01

    The purpose of this work is to discuss the main structural characteristics of a group of tantalum oxynitride (TaNxOy) thin films, with different compositions, prepared by magnetron sputtering, and to interpret and compare the structural changes, by X-ray diffraction (XRD), when the samples are vacuum annealed under two different conditions: i) annealing, followed by ex-situ XRD: one sample of each deposition run was annealed at a different temperature, until a maximum of 800 °C, and the XRD patterns were obtained, at room temperature, after each annealing process; ii) annealing with in-situ XRD: the diffraction patterns are obtained, at certain temperatures, during the annealing process, using always the same sample. In-situ XRD annealing could be an interesting process to perform annealing, and analysing the evolution of the structure with the temperature, when compared to the classical process. A higher structural stability was observed in some of the samples, particularly on those with highest oxygen content, but also on the sample with non-metal (O + N) to metal (Ta) ratio around 0.5.

  8. An X-ray diffraction method for semiquantitative mineralogical analysis of Chilean nitrate ore

    USGS Publications Warehouse

    Jackson, J.C.; Ericksent, G.E.

    1997-01-01

    Computer analysis of X-ray diffraction (XRD) data provides a simple method for determining the semiquantitative mineralogical composition of naturally occurring mixtures of saline minerals. The method herein described was adapted from a computer program for the study of mixtures of naturally occurring clay minerals. The program evaluates the relative intensities of selected diagnostic peaks for the minerals in a given mixture, and then calculates the relative concentrations of these minerals. The method requires precise calibration of XRD data for the minerals to be studied and selection of diffraction peaks that minimize inter-compound interferences. The calculated relative abundances are sufficiently accurate for direct comparison with bulk chemical analyses of naturally occurring saline mineral assemblages.

  9. An x-ray diffraction method for semiquantitative mineralogical analysis of chilean nitrate ore

    USGS Publications Warehouse

    John, C.; George, J.; Ericksen, E.

    1997-01-01

    Computer analysis of X-ray diffraction (XRD) data provides a simple method for determining the semiquantitative mineralogical composition of naturally occurring mixtures of saline minerals. The method herein described was adapted from a computer program for the study of mixtures of naturally occurring clay minerals. The program evaluates the relative intensities of selected diagnostic peaks for the minerals in a given mixture, and then calculates the relative concentrations of these minerals. The method requires precise calibration of XRD data for the minerals to be studied and selection of diffraction peaks that minimize inter-compound interferences. The calculated relative abundances are sufficiently accurate for direct comparison with bulk chemical analyses of naturally occurring saline mineral assemblages.

  10. X-ray diffraction and X-ray K absorption near edge studies of copper (II) complexes with amino acids

    NASA Astrophysics Data System (ADS)

    Sharma, P. K.; Mishra, Ashutosh; Malviya, Varsha; Kame, Rashmi; Malviya, P. K.

    2017-05-01

    Synthesis of copper (II) complexes [CuL1L2X].nH2O, where n=1, 2,3 (X=Cl,Br,NO3) (L1is 2,2’-bipyridine and L2 is L-tyrosine) by the chemical root method. The XRD data for the samples have been recorded. EXAFS spectra have also been recorded at the K-edge of Cu using the dispersive beam line BL-8 at 2.5 Gev Indus-2 Synchrotron radiation source at RRCAT, Indore, India. XRD and EXAFS data have been analysed using the computer software. X-ray diffraction studies of all complexes indicate their crystalline nature. Lattice parameter, bond length, particle size have been determined from XRD data.

  11. Unified Theory for Decoding the Signals from X-Ray Florescence and X-Ray Diffraction of Mixtures.

    PubMed

    Chung, Frank H

    2017-05-01

    For research and development or for solving technical problems, we often need to know the chemical composition of an unknown mixture, which is coded and stored in the signals of its X-ray fluorescence (XRF) and X-ray diffraction (XRD). X-ray fluorescence gives chemical elements, whereas XRD gives chemical compounds. The major problem in XRF and XRD analyses is the complex matrix effect. The conventional technique to deal with the matrix effect is to construct empirical calibration lines with standards for each element or compound sought, which is tedious and time-consuming. A unified theory of quantitative XRF analysis is presented here. The idea is to cancel the matrix effect mathematically. It turns out that the decoding equation for quantitative XRF analysis is identical to that for quantitative XRD analysis although the physics of XRD and XRF are fundamentally different. The XRD work has been published and practiced worldwide. The unified theory derives a new intensity-concentration equation of XRF, which is free from the matrix effect and valid for a wide range of concentrations. The linear decoding equation establishes a constant slope for each element sought, hence eliminating the work on calibration lines. The simple linear decoding equation has been verified by 18 experiments.

  12. Hydrothermal formation of tobermorite studied by in situ X-ray diffraction under autoclave condition.

    PubMed

    Kikuma, Jun; Tsunashima, Masamichi; Ishikawa, Tetsuji; Matsuno, Shin-ya; Ogawa, Akihiro; Matsui, Kunio; Sato, Masugu

    2009-09-01

    Hydrothermal formation of tobermorite from a pre-cured cake has been investigated by transmission X-ray diffraction (XRD) using high-energy X-rays from a synchrotron radiation source in combination with a newly designed autoclave cell. The autoclave cell has a large and thin beryllium window for wide-angle X-ray diffraction; nevertheless, it withstands a steam pressure of more than 1.2 MPa, which enables in situ XRD measurements in a temperature range of 373 to 463 K under a saturated steam pressure. Formation and/or decomposition of several components has been successfully observed during 7.5 h of reaction time. From the intensity changes of the intermediate materials, namely non-crystalline C-S-H and hydroxylellestadite, two pathways for tobermorite formation have been confirmed. Thus, the newly developed autoclave cell can be used for the analyses of reaction mechanisms under specific atmospheres and temperatures.

  13. Evolved Gas Analysis and X-Ray Diffraction of Carbonate Samples from the 2009 Arctic Mars Analog Svalbard Expedition: Implications for Mineralogical Inferences from the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Mahaffy, P. R.; Blake, D. F.; Ming, D. W.; Franz, H. B.; Eigenbrode, J. L.; Steele, A.

    2010-01-01

    The 2009 Arctic Mars Analog Svalbard Expedition (AMASE) investigated several geologic settings using methodologies and techniques being developed or considered for future Mars missions, such as the Mars Science Laboratory (MSL), ExoMars, and Mars Sample Return (MSR). AMASE-related research comprises both analyses conducted during the expedition and further analyses of collected samples using laboratory facilities at a variety of institutions. The Sample Analysis at Mars (SAM) instrument suite, which will be part of the Analytical Laboratory on MSL, consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser spectrometer (TLS). An Evolved Gas Analysis Mass Spectrometer (EGA-MS) was used during AMASE to represent part of the capabilities of SAM. The other instrument included in the MSL Analytical Laboratory is CheMin, which uses X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) to perform quantitative mineralogical characterization of samples. Field-portable versions of CheMin were used during the AMASE 2009. Here, we discuss the preliminary interpretation of EGA and XRD analyses of selected AMASE carbonate samples and implications for mineralogical interpretations from MSL. Though CheMin will be the primary mineralogical tool on MSL, SAM EGA could be used to support XRD identifications or indicate the presence of volatile-bearing minerals which may be near or below XRD detection limits. Data collected with instruments in the field and in comparable laboratory setups (e.g., the SAM breadboard) will be discussed.

  14. X-Ray Diffraction for In-Situ Mineralogical Analysis of Planetesimals.

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D. F.; Dera, P.; Downs, R. T.; Taylor, J.

    2017-12-01

    X-ray diffraction (XRD) is a general purpose technique for definitive, quantitative mineralogical analysis. When combined with XRF data for sample chemistry, XRD analyses yield as complete a characterization as is possible by any spacecraft-capable techniques. The MSL CheMin instrument, the first XRD instrument flown in space, has been used to establish the quantitative mineralogy of the Mars global soil, to discover the first habitable environment on another planet, and to provide the first in-situ evidence of silicic volcanism on Mars. CheMin is now used to characterize the depositional and diagenetic environments associated with the mudstone sediments of lower strata of Mt. Sharp. Conventional powder XRD requires samples comprised of small grains presented in random orientations. In CheMin, sample cells are vibrated to cause loose powder to flow within the cell, driven by granular convection, which relaxes the requirement for fine grained samples. Nevertheless, CheMin still requires mechanisms to collect, crush, sieve and deliver samples before analysis. XTRA (Extraterrestrial Regolith Analyzer) is an evolution of CheMin intended to analyze fines in as-delivered surface regolith, without sample preparation. Fine-grained regolith coats the surfaces of most airless bodies in the solar system, and because this fraction is typically comminuted from the rocky regolith, it can often be used as a proxy for the surface as a whole. HXRD (Hybrid-XRD) is concept under development to analyze rocks or soils without sample preparation. Like in CheMin, the diffracted signal is collected with direct illumination CCD's. If the material is sufficiently fine-grained, a powder XRD pattern of the characteristic X-ray tube emission is obtained, similar to CheMin or XTRA. With coarse grained crystals, the white bremsstrahlung radiation of the tube is diffracted into Laue patterns. Unlike typical Laue applications, HXRD uses the CCD's capability to distinguish energy and analyze the "colors" of each Laue spot, which enable phase identification. The concept was demonstrated with prototypes and dedicated crystallographic software was developed for identification the minerals responsible for the Laue patterns. High TRL subsystems are under development for future deployment opportunities of these new XRD instruments.

  15. Characterization of liquefied wood residues from different liquefaction conditions

    Treesearch

    Hui Pan; Todd f. Shupe; Chung-Yun Hse

    2007-01-01

    The amount of wood residue is used as a measurement of the extent of wood liquefaction. Characterization of the residue from wood liquefaction provides a new approach to understand some fundamental aspects of the liquefaction reaction. Residues were characterized by wet chemical analyses, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and...

  16. Synthesis of plutonium trifluoride by hydro-fluorination and novel thermodynamic data for the PuF3-LiF system

    NASA Astrophysics Data System (ADS)

    Tosolin, A.; Souček, P.; Beneš, O.; Vigier, J.-F.; Luzzi, L.; Konings, R. J. M.

    2018-05-01

    PuF3 was synthetized by hydro-fluorination of PuO2 and subsequent reduction of the product by hydrogenation. The obtained PuF3 was analysed by X-Ray Diffraction (XRD) and found phase-pure. High purity was also confirmed by the melting point analysis using Differential Scanning Calorimetry (DSC). PuF3 was then used for thermodynamic assessment of the PuF3-LiF system. Phase equilibrium points and enthalpy of fusion of the eutectic composition were measured by DSC. XRD analyses of selected samples after DSC measurement confirm that after solidification from the liquid, the system returns to a mixture of LiF and PuF3.

  17. The first X-ray diffraction measurements on Mars.

    PubMed

    Bish, David; Blake, David; Vaniman, David; Sarrazin, Philippe; Bristow, Thomas; Achilles, Cherie; Dera, Przemyslaw; Chipera, Steve; Crisp, Joy; Downs, R T; Farmer, Jack; Gailhanou, Marc; Ming, Doug; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Rampe, Elizabeth; Treiman, Allan; Yen, Albert

    2014-11-01

    The Mars Science Laboratory landed in Gale crater on Mars in August 2012, and the Curiosity rover then began field studies on its drive toward Mount Sharp, a central peak made of ancient sediments. CheMin is one of ten instruments on or inside the rover, all designed to provide detailed information on the rocks, soils and atmosphere in this region. CheMin is a miniaturized X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that uses transmission geometry with an energy-discriminating CCD detector. CheMin uses onboard standards for XRD and XRF calibration, and beryl:quartz mixtures constitute the primary XRD standards. Four samples have been analysed by CheMin, namely a soil sample, two samples drilled from mudstones and a sample drilled from a sandstone. Rietveld and full-pattern analysis of the XRD data reveal a complex mineralogy, with contributions from parent igneous rocks, amorphous components and several minerals relating to aqueous alteration. In particular, the mudstone samples all contain one or more phyllosilicates consistent with alteration in liquid water. In addition to quantitative mineralogy, Rietveld refinements also provide unit-cell parameters for the major phases, which can be used to infer the chemical compositions of individual minerals and, by difference, the composition of the amorphous component.

  18. Comparative investigation of Fourier Transform Infrared (FT-IR) spectroscopy and X-ray Diffraction (XRD) in the determination of cotton fiber crystallinity

    USDA-ARS?s Scientific Manuscript database

    Despite considerable efforts in developing the curve-fitting protocol to evaluate the crystallinity index (CI) from the X-ray diffraction (XRD) measurement, in its present state XRD procedure can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous po...

  19. Comparing results of X-ray diffraction, µ-Raman spectroscopy and neutron diffraction when identifying chemical phases in seized nuclear material, during a comparative nuclear forensics exercise.

    PubMed

    Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea; Ramebäck, Henrik; Marie, Olivier; Ravat, Brice; Delaunay, François; Young, Emma; Blagojevic, Ned; Hester, James R; Thorogood, Gordon; Nelwamondo, Aubrey N; Ntsoane, Tshepo P; Roberts, Sarah K; Holliday, Kiel S

    2018-01-01

    This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2 , U 3 O 8 and an intermediate species U 3 O 7 in the third material.

  20. Growth and properties of benzil doped benzimidazole (BMZ) single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in; Crystal Growth and Crystallography Section, National Physical Laboratory, Krishnan Marg, New Delhi 110 012; Sukumar, M.

    2010-09-15

    In the present work, we have made an attempt to study the effect of benzil doping on the properties of benzimidazole single crystals. For this purpose we have grown pure and benzil doped benzimidazole single crystals by vertical Bridgman technique. The grown crystals were characterized by various characterization techniques. The presence of dopants confirmed by powder X-ray diffraction (XRD). Crystalline perfection of the grown crystals has been analysed by high-resolution X-ray diffraction (HRXRD). The transmittance, electrical property and mechanical strength have been analysed using UV-vis-NIR spectroscopic, dielectric and Vicker's hardness studies. The relative second harmonic generation efficiency of pure andmore » doped benzimidazole crystals measured using Kurtz powder test.« less

  1. Comparing results of X-ray diffraction, µ-Raman spectroscopy and neutron diffraction when identifying chemical phases in seized nuclear material, during a comparative nuclear forensics exercise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea

    This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2, U 3O 8 and an intermediate species U 3Omore » 7 in the third material.« less

  2. Comparing results of X-ray diffraction, µ-Raman spectroscopy and neutron diffraction when identifying chemical phases in seized nuclear material, during a comparative nuclear forensics exercise

    DOE PAGES

    Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea; ...

    2018-01-24

    This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2, U 3O 8 and an intermediate species U 3Omore » 7 in the third material.« less

  3. X-Ray Diffraction Reference Intensity Ratios of Amorphous and Poorly Crystalline Phases: Implications for CheMin on the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Achilles, C. N.; Chipera, S. J.; Ming, D. W.; Rampe, E. B.

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. Piezoelectric vibration of the cell is used to randomize the sample to reduce preferred orientation effects. Instrument details are provided in [1, 2, 3]. Analyses of rock and soil samples by the Mars Exploration Rovers (MER) show nanophase ferric oxide (npOx) is a significant component of the Martian global soil [4] and is thought to be one of the major contributing phases that the Curiosity rover will encounter if a soil sample is analyzed in Gale Crater. Because of the nature of this material, npOx will likely contribute to an X-ray amorphous or short-order component of a XRD pattern measured by the CheMin instrument.

  4. Wood liquefaction and its application to Novolac resin

    Treesearch

    Hui Pan; Chung-Yun Hse; Todd F. Shupe

    2009-01-01

    Wood liquefaction was conducted using phenol as a reagent solvent with a weak acid catalyst in two different reactors: (Alma et al., 1995a.) an atmospheric glass reactor and (Alma et al., 1995b.) a sealed Parr® reactor. Residues were characterized by wet chemical analyses, Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD). The FT-IR...

  5. Synthesis, crystal growth, optical, thermal, and mechanical properties of a nonlinear optical single crystal: ammonium sulfate hydrogen sulphamate (ASHS)

    NASA Astrophysics Data System (ADS)

    Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.

    2018-04-01

    Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.

  6. XRD and mineralogical analysis of gypsum dunes at White Sands National Monument, New Mexico and applications to gypsum detection on Mars

    NASA Astrophysics Data System (ADS)

    Lafuente, B.; Bishop, J. L.; Fenton, L. K.; King, S. J.; Blake, D.; Sarrazin, P.; Downs, R.; Horgan, B. H.

    2013-12-01

    A field portable X-ray Diffraction (XRD) instrument was used at White Sands National Monument to perform in-situ measurements followed by laboratory analyses of the gypsum-rich dunes and to determine its modal mineralogy. The field instrument is a Terra XRD (Olympus NDT) based on the technology of the CheMin (Chemistry and Mineralogy) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity which is providing the mineralogical and chemical composition of scooped soil samples and drilled rock powders collected at Gale Crater [1]. Using Terra at White Sands will contribute to 'ground truth' for gypsum-bearing environments on Mars. Together with data provided by VNIR spectra [2], this study clarifies our understanding of the origin and history of gypsum-rich sand dunes discovered near the northern polar region of Mars [3]. The results obtained from the field analyses performed by XRD and VNIR spectroscopy in four dunes at White Sands revealed the presence of quartz and dolomite. Their relative abundance has been estimated using the Reference Intensity Ratio (RIR) method. For this study, particulate samples of pure natural gypsum, quartz and dolomite were used to prepare calibration mixtures of gypsum-quartz and gypsum-dolomite with the 90-150μm size fractions. All single phases and mixtures were analyzed by XRD and RIR factors were calculated. Using this method, the relative abundance of quartz and dolomite has been estimated from the data collected in the field. Quartz appears to be present in low amounts (2-5 wt.%) while dolomite is present at percentages up to 80 wt.%. Samples from four dunes were collected and prepared for subsequent XRD analysis in the lab to estimate their composition and illustrate the changes in mineralogy with respect to location and grain size. Gypsum-dolomite mixtures: The dolomite XRD pattern is dominated by an intense diffraction peak at 2θ≈36 deg. which overlaps a peak of gypsum, This makes low concentrations of dolomite difficult to quantify in mixtures with high concentration of gypsum. Dolomite has been detected in some locations at dune 3 as high as 80 wt.%. Gypsum-quartz mixtures: The intensity of the main diffraction peak of quartz at 2θ≈31 deg. decreases progressively with the decrease of the amount of quartz in the mixtures. Samples from dune 1 and 2 show quartz abundance at 5.6 and 2.6 wt.% respectively . [1] Blake et al. Space Sci. Rev. (2012). doi:10.1007/s11214-012-9905-1. [2] King et al. (2013) AGU, submitted. [3] Langevin et al. (2005). Science 307, 1584-1586.

  7. XRD measurement of mean thickness, thickness distribution and strain for illite and illite-smectite crystallites by the Bertaut-Warren-Averbach technique

    USGS Publications Warehouse

    Drits, Victor A.; Eberl, Dennis D.; Środoń, Jan

    1998-01-01

    A modified version of the Bertaut-Warren-Averbach (BWA) technique (Bertaut 1949, 1950; Warren and Averbach 1950) has been developed to measure coherent scattering domain (CSD) sizes and strains in minerals by analysis of X-ray diffraction (XRD) data. This method is used to measure CSD thickness distributions for calculated and experimental XRD patterns of illites and illite-smectites (I-S). The method almost exactly recovers CSD thickness distributions for calculated illite XRD patterns. Natural I-S samples contain swelling layers that lead to nonperiodic structures in the c* direction and to XRD peaks that are broadened and made asymmetric by mixed layering. Therefore, these peaks cannot be analyzed by the BWA method. These difficulties are overcome by K-saturation and heating prior to X-ray analysis in order to form 10-Å periodic structures. BWA analysis yields the thickness distribution of mixed-layer crystals (coherently diffracting stacks of fundamental illite particles). For most I-S samples, CSD thickness distributions can be approximated by lognormal functions. Mixed-layer crystal mean thickness and expandability then can be used to calculate fundamental illite particle mean thickness. Analyses of the dehydrated, K-saturated samples indicate that basal XRD reflections are broadened by symmetrical strain that may be related to local variations in smectite interlayers caused by dehydration, and that the standard deviation of the strain increases regularly with expandability. The 001 and 002 reflections are affected only slightly by this strain and therefore are suited for CSD thickness analysis. Mean mixed-layer crystal thicknesses for dehydrated I-S measured by the BWA method are very close to those measured by an integral peak width method.

  8. In search of the elusive IrB 2: Can mechanochemistry help?

    DOE PAGES

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; ...

    2015-10-20

    We produced hexagonal ReB 2-type IrB 2 diboride and orthorhombic IrB monoboride phases, that were previously unknown and saw them produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. Additionally, scanning electron microscopy and transmission electron microscopy were employed, along with XRD, to further characterize the microstructure of the phases produced.

  9. In search of the elusive IrB 2: Can mechanochemistry help?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina

    We produced hexagonal ReB 2-type IrB 2 diboride and orthorhombic IrB monoboride phases, that were previously unknown and saw them produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. Additionally, scanning electron microscopy and transmission electron microscopy were employed, along with XRD, to further characterize the microstructure of the phases produced.

  10. Polymethacrylic acid as a new precursor of CuO nanoparticles

    NASA Astrophysics Data System (ADS)

    Hosny, Nasser Mohammed; Zoromba, Mohamed Shafick

    2012-11-01

    Polymethacrylic acid and its copper complexes have been synthesized and characterized. These complexes have been used as precursors to produce CuO nanoparticles by thermal decomposition in air. The stages of decompositions and the calcination temperature of the precursors have been determined from thermal analyses (TGA). The obtained CuO nanoparticles have been characterized by X-ray diffraction (XRD), scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). XRD showed a monoclinic structure with particle size 8-20 nm for the synthesized copper oxide nanoparticles. These nanoparticles are catalytically active in decomposing hydrogen peroxide and a mechanism of decomposition has been suggested.

  11. Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation

    PubMed Central

    Zhang, Hongjia; Sui, Tan; Daisenberger, Dominik; Fong, Kai Soon

    2018-01-01

    High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning) or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short). As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated using multiple direction strain data, leading to full in-plane strain evaluation. It is therefore concluded that XRD-DIC provides a reliable and robust method for strain evaluation from 2D powder diffraction data. The XRD-DIC approach simplifies the analysis process by skipping 2D to 1D conversion, and opens new possibilities for robust 2D powder diffraction data analysis for full in-plane strain evaluation. PMID:29543728

  12. X-ray diffraction and TGA kinetic analyses for chemical looping combustion applications.

    PubMed

    Tijani, Mansour Mohammedramadan; Aqsha, Aqsha; Mahinpey, Nader

    2018-04-01

    Synthesis and characterization of supported metal-based oxygen carriers were carried out to provide information related to the use of oxygen carriers for chemical looping combustion processes. The Cu, Co, Fe, Ni metals supported with Al 2 O 3 , CeO 2 , TiO 2 , ZrO 2 were prepared using the wetness impregnation technique. Then, the X-ray Diffraction (XRD) characterization of oxidized and reduced samples was obtained and presented. The kinetic analysis using Thermogravimetric analyzer (TGA) of the synthesized samples was conducted. The kinetics of reduction reaction of all samples were estimated and explained.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, Gary A.; Pestovich, John A.; Huber, Heinz J.

    This report presents the results for solid phase characterization (SPC) of solid samples removed from tank 241-C-108 (C-108) on August 12-13,2012, using the off-riser sampler. Samples were received at the 222-S Laboratory on August 13 and were described and photographed. The SPC analyses that were performed include scanning electron microscopy (SEM) using the ASPEX(R)l scanning electron microscope, X-ray diffraction (XRD) using the Rigaku(R) 2 MiniFlex X-ray diffractometer, and polarized light microscopy (PLM) using the Nikon(R) 3 Eclipse Pol optical microscope. The SEM is equipped with an energy dispersive X-ray spectrometer (EDS) to provide chemical information. Gary A. Cooke conducted themore » SEM analysis, John A. Pestovich performed the XRD analysis, and Dr. Heinz J. Huber performed the PLM examination. The results of these analyses are presented here.« less

  14. Fabricating the spherical and flake silver powder used for the optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Ju, Wei; Ma, Wangjing; Zhang, Fangzhi; Chen, Yixiang; Xie, Jinpeng

    2018-01-01

    The spherical and flake silver powder with different particle size for the optoelectronic devices was partly prepared by using chemical reduction and ball milling method, and charactered by scanning electron microscope (SEM), X-ray diffraction (XRD), laser particle size analyzer and thermo-gravimetric(TG) analyzer. The particle size of three series of spherical silver powder fabricated by chemical reduction is about 1.5μm, 1μm and 0.6μm, respectively; after being mechanical milling, the particle size of flake silver powder with high flaky rate is about 10μm, 6μm and 2μm respectively. Thermo gravimetric (TG) and XRD analyses showed that the silver powders have high purity and crystalline, and then the laser particle size and SEM analyses showed that the silver powders has good uniformity.

  15. Note: application of a pixel-array area detector to simultaneous single crystal X-ray diffraction and X-ray absorption spectroscopy measurements.

    PubMed

    Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M

    2014-04-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  16. Facile synthesis of Co3O4 hexagonal plates by flux method

    NASA Astrophysics Data System (ADS)

    Han, Ji-Long; Meng, Qing-Fen; Gao, Sheng-Li

    2018-01-01

    Using a novel flux method, a hexagonal plate of Co3O4 was directly synthesized. In this method, CoCl2·6H2O, NaOH, and the cosolvent H3BO3 were heated to 750 °C for 2 h in a corundum crucible. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and high-resolution transmission electron microscope (HRTEM). Furthermore, XRD studies indicated that the product consisted of a cubic phase of Co3O4, and the phase existed in a completely crystalline form. Then, SEM results indicated that these hexagonal plates tiered up and they had diameters in the range of 2-10 μm. According to the results of SAED and HRTEM analyses, the interlayer spacing was about 0.24 nm, which corresponds to the interlayer distance of (3 1 1) crystal plane of cubic Co3O4.

  17. Crystal Structure Variations of Sn Nanoparticles upon Heating

    NASA Astrophysics Data System (ADS)

    Mittal, Jagjiwan; Lin, Kwang-Lung

    2018-04-01

    Structural changes in Sn nanoparticles during heating below the melting point have been investigated using differential scanning calorimetry (DSC), x-ray diffraction (XRD) analysis, electron diffraction (ED), and high-resolution transmission electron microscopy (HRTEM). DSC revealed that the heat required to melt the nanoparticles (28.43 J/g) was about half compared with Sn metal (52.80 J/g), which was attributed to the large surface energy contribution for the nanoparticles. ED and XRD analyses of the Sn nanoparticles revealed increased intensity for crystal planes having large interplaner distances compared with regular crystal planes with increasing heat treatment temperature (HTT). HRTEM revealed an increase in interlayer spacing at the surface and near joints between nanoparticles with the HTT, leading to an amorphous structure of nanoparticles at the surface at 220°C. These results highlight the changes that occur in the morphology and crystal structure of Sn nanoparticles at the surface and in the interior with increase of the heat treatment temperature.

  18. Mineralogy of mine waste at the Vermont Asbestos Group mine, Belvidere Mountain, Vermont

    USGS Publications Warehouse

    Levitan, D.M.; Hammarstrom, J.M.; Gunter, M.E.; Seal, R.R.; Chou, I.-Ming; Piatak, N.M.

    2009-01-01

    Samples from the surfaces of waste piles at the Vermont Asbestos Group mine in northern Vermont were studied to determine their mineralogy, particularly the presence and morphology of amphiboles. Analyses included powder X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and Raman spectroscopy. Minerals identified by XRD were serpentine-group minerals, magnetite, chlorite, quartz, olivine, pyroxene, and brucite; locally, mica and carbonates were also present. Raman spectroscopy distinguished antigorite and chrysotile, which could not be differentiated using XRD. Long-count, short-range XRD scans of the (110) amphibole peak showed trace amounts of amphibole in most samples. Examination of amphiboles in tailings by optical microscopy, SEM, and EPMA revealed non-fibrous amphiboles compositionally classified as edenite, magnesiohornblende, magnesiokatophorite, and pargasite. No fibrous amphibole was found in the tailings, although fibrous tremolite was identified in a sample of host rock. Knowledge of the mineralogy at the site may lead to better understanding of potential implications for human health and aid in designing a remediation plan.

  19. Method of Generating X-Ray Diffraction Data for Integral Detection of Twin Defects in Super-Hetero-Epitaxial Materials

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2009-01-01

    A method provides X-ray diffraction (XRD) data suitable for integral detection of a twin defect in a strained or lattice-matched epitaxial material made from components having crystal structures having symme try belonging to different space groups. The material is mounted in a n X-ray diffraction (XRD) system. In one embodiment, the XRD system's goniometer angle Omega is set equal to (Theta(sub B)-Beta) where The ta(sub B) is a Bragg angle for a designated crystal plane of the allo y that is disposed at a non-perpendicular orientation with respect to the {111) crystal plane, and Beta is the angle between the designate d crystal plane and a { 111 } crystal plane of one of the epitaxial components. The XRD system's detector angle is set equal to (Theta(su b B)+Beta). The material can be rotated through an angle of azimuthal rotation Phi about the axis aligned with the material. Using the det ector, the intensity of the X-ray diffraction is recorded at least at the angle at which the twin defect occurs.

  20. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity.

    PubMed

    Liu, Yongliang; Thibodeaux, Devron; Gamble, Gary; Bauer, Philip; VanDerveer, Don

    2012-08-01

    Despite considerable efforts in developing curve-fitting protocols to evaluate the crystallinity index (CI) from X-ray diffraction (XRD) measurements, in its present state XRD can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous fraction in a sample. The greatest barrier to establishing quantitative XRD is the lack of appropriate cellulose standards, which are needed to calibrate the XRD measurements. In practice, samples with known CI are very difficult to prepare or determine. In a previous study, we reported the development of a simple algorithm for determining fiber crystallinity information from Fourier transform infrared (FT-IR) spectroscopy. Hence, in this study we not only compared the fiber crystallinity information between FT-IR and XRD measurements, by developing a simple XRD algorithm in place of a time-consuming and subjective curve-fitting process, but we also suggested a direct way of determining cotton cellulose CI by calibrating XRD with the use of CI(IR) as references.

  1. In search of the elusive IrB{sub 2}: Can mechanochemistry help?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Zhilin; Blair, Richard G.; Department of Physics, University of Central Florida, Orlando, FL 32816

    The previously unknown hexagonal ReB{sub 2}-type IrB{sub 2} diboride and orthorhombic IrB monoboride phases were produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. In addition to XRD, scanning electron microscopy and transmission electron microscopy were employed to further characterize the microstructure of the phases produced. - Graphical abstract: ReB{sub 2}-type IrB{submore » 2} and a new IrB have been successfully synthesized for the first time using mechanochemical method. Crystal structures of IrB{sub 2} and IrB were studied by synchrotron X-ray diffraction. Microstructures of the new phases were characterized by SEM and TEM. - Highlights: • ReB{sub 2}-type IrB{sub 2} and a new IrB have been synthesized by mechanochemical method. • Crystal structures of IrB{sub 2} and IrB were studied by synchrotron XRD. • Microstructures of the new phases were characterized by SEM and TEM.« less

  2. Remote X-Ray Diffraction and X-Ray Fluorescence Analysis on Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Blake, David F.; DeVincenzi, D. (Technical Monitor)

    1999-01-01

    The legacy of planetary X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) began in 1960 when W. Parish proposed an XRD instrument for deployment on the moon. The instrument was built and flight qualified, but the Lunar XRD program was cancelled shortly before the first human landing in 1969. XRF chemical data have been collected in situ by surface landers on Mars (Viking 1 & 2, Pathfinder) and Venus (Venera 13 & 14). These highly successful experiments provide critical constraints on our current understanding of surface processes and planetary evolution. However, the mineralogy, which is more critical to planetary surface science than simple chemical analysis, will remain unknown or will at best be imprecisely constrained until X-ray diffraction (XRD) data are collected. Recent progress in X-ray detector technology allows the consideration of simultaneous XRD (mineralogic analysis) and high-precision XRF (elemental analysis) in systems miniaturized to the point where they can be mounted on fixed landers or small robotic rovers. There is a variety of potential targets for XRD/XRF equipped landers within the solar system, the most compelling of which are the poles of the moon, the southern highlands of Mars and Europa.

  3. Controlled nucleation and growth of CdS nanoparticles in a polymer matrix.

    PubMed

    Di Luccio, Tiziana; Laera, Anna Maria; Tapfer, Leander; Kempter, Susanne; Kraus, Robert; Nickel, Bert

    2006-06-29

    In-situ synchrotron X-ray diffraction (XRD) was used to monitor the thermal decomposition (thermolysis) of Cd thiolates precursors embedded in a polymer matrix and the nucleation of CdS nanoparticles. A thiolate precursor/polymer solid foil was heated to 300 degrees C in the X-ray diffraction setup of beamline W1.1 at Hasylab, and the diffraction curves were each recorded at 10 degrees C. At temperatures above 240 degrees C, the precursor decomposition is complete and CdS nanoparticles grow within the polymer matrix forming a nanocomposite with interesting optical properties. The nanoparticle structural properties (size and crystal structure) depend on the annealing temperature. Transmission electron microscopy (TEM) and photoluminescence (PL) analyses were used to characterize the nanoparticles. A possible mechanism driving the structural transformation of the precursor is inferred from the diffraction features arising at the different temperatures.

  4. Non-conventional applications of a noninvasive portable X-ray diffraction/fluorescence instrument

    NASA Astrophysics Data System (ADS)

    Chiari, Giacomo; Sarrazin, Philippe; Heginbotham, Arlen

    2016-11-01

    Noninvasive techniques have become widespread in the cultural heritage analytical domain. The popular handheld X-ray fluorescence (XRF) devices give the elemental composition of all the layers that X-rays can penetrate, but no information on how atoms are bound together or at which depth they are located. A noninvasive portable X-ray powder diffraction/X-ray fluorescence (XRD/XRF) device may offer a solution to these limitations, since it can provide information on the composition of crystalline materials. This paper introduces applications of XRD beyond simple phase recognition. The two fundamental principles for XRD are: (1) the crystallites should be randomly oriented, to ensure proper intensity to all the diffraction peaks, and (2) the material should be positioned exactly in the focal plane of the instrument, respecting its geometry, as any displacement of the sample would results in 2 θ shifts of the diffraction peaks. In conventional XRD, the sample is ground and set on the properly positioned sample holder. Using a noninvasive portable instrument, these two requirements are seldom fulfilled. The position, size and orientation of a given crystallite within a layered structure depend on the object itself. Equation correlating the displacement (distance from the focal plane) versus peak shift (angular difference in 2 θ from the standard value) is derived and used to determine the depth at which a given substance is located. The quantitative composition of two binary Cu/Zn alloys, simultaneously present, was determined measuring the cell volume and using Vegard's law. The analysis of the whole object gives information on the texture and possible preferred orientations of the crystallites, which influences the peak intensity. This allows for the distinction between clad and electroplated daguerreotypes in the case of silver and between ancient and modern gilding for gold. Analyses of cross sections can be carried out successfully. Finally, beeswax, used in Roman-Egyptian paintings as "encaustic" and in form of emulsion (modified wax), can be detected and, based on the shape of the peaks, these two ways of applying the wax can be distinguished from one another.

  5. Asymmetric flavone-based liquid crystals: synthesis and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timmons, Daren J.; Jordan, Abraham J.; Kirchon, Angelo A.

    2017-02-01

    A series of flavones (n-F) substituted at the 4', and 6 positions was prepared, characterised by NMR (1H,13C), HRMS, and studied for liquid crystal properties. The 4'-alkoxy,6-methoxyflavones (4-F–16-F) exhibit varying ranges of nematic and smectic A phases as evidenced by polarised optical microscopy and differential scanning calorimetry (DSC). As the tail length is increased, the smectic phase becomes more prevalent. Smectic phases for (8-F–16-F) were further analysed by powder X-ray diffraction (XRD), and the rate of structural transformations was explored by combined DSC/XRD studies. Flavonol 6-F–OH was also prepared but no mesogenic behaviour was observed. The molecular structures of 6-Fmore » and 6-F–OH were determined by single-crystal XRD and help to explain the differences in material properties. Additionally, fluorescence and electrochemical studies were conducted on solutions of n-F.« less

  6. Effect of substrate temperature in the synthesis of BN nanostructures

    NASA Astrophysics Data System (ADS)

    Sajjad, M.; Zhang, H. X.; Peng, X. Y.; Feng, P. X.

    2011-06-01

    Boron nitride (BN) nanostructures were grown on molybdenum discs at different substrate temperatures using the short-pulse laser plasma deposition technique. Large numbers of randomly oriented nanorods of fiber-like structures were obtained. The variation in the length and diameter of the nanorods as a function of the substrate temperature was systematically studied. The surface morphologies of the samples were studied using scanning electron microscopy. Energy dispersive x-ray spectroscopy confirmed that both the elements boron and nitrogen are dominant in the nanostructure. The x-ray diffraction (XRD) technique was used to analyse BN phases. The XRD peak that appeared at 26° showed the presence of hexagonal BN phase, whereas the peak at 44° was related to cubic BN content in the samples. Raman spectroscopic analysis showed vibrational modes of sp2- and sp3-type bonding in the sample. The Raman spectra agreed well with XRD results.

  7. Nano-crystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions.

    PubMed

    Handley-Sidhu, Stephanie; Renshaw, Joanna C; Yong, Ping; Kerley, Robert; Macaskie, Lynne E

    2011-01-01

    Hydroxyapatites were analysed using electron microscopy, X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis. Examination of a bacterially produced hydroxyapatite (Bio-HA) by scanning electron microscopy showed agglomerated nano-sized particles; XRD analysis confirmed that the Bio-HA was hydroxyapatite, with an organic matter content of 7.6%; XRF analysis gave a Ca/P ratio of 1.55, also indicative of HA. The size of the Bio-HA crystals was calculated as ~25 nm from XRD data using the Scherrer equation, whereas Comm-HA powder size was measured as ≤ 50 μm. The nano-crystalline Bio-HA was ~7 times more efficient in removing Sr(2+) from synthetic groundwater than Comm-HA. Dissolution of HA as indicated by the release of phosphate into the solution phase was higher in the Comm-HA than the Bio-HA, indicating a more stable biomaterial which has a potential for the remediation of contaminated sites.

  8. Correlated Amino Acid and Mineralogical Analyses of Milligram and Submilligram Samples of Carbonaceous Chondrite Lonewolf Nunataks 94101

    NASA Technical Reports Server (NTRS)

    Burton, S.; Berger, E. L.; Locke, D. R.; Lewis, E. K.

    2018-01-01

    Amino acids, the building blocks of proteins, have been found to be indigenous in the eight carbonaceous chondrite groups. The abundances, structural, enantiomeric and isotopic compositions of amino acids differ significantly among meteorites of different groups and petrologic types. These results suggest parent-body conditions (thermal or aqueous alteration), mineralogy, and the preservation of amino acids are linked. Previously, elucidating specific relationships between amino acids and mineralogy was not possible because the samples analyzed for amino acids were much larger than the scale at which petrologic heterogeneity is observed (sub mm-scale differences corresponding to sub-mg samples); for example, Pizzarello and coworkers measured amino acid abundances and performed X-ray diffraction (XRD) on several samples of the Murchison meteorite, but these analyses were performed on bulk samples that were 500 mg or larger. Advances in the sensitivity of amino acid measurements by liquid chromatography with fluorescence detection/time-of-flight mass spectrometry (LC-FD/TOF-MS), and application of techniques such as high resolution X-ray diffraction (HR-XRD) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) for mineralogical characterizations have now enabled coordinated analyses on the scale at which mineral heterogeneity is observed. In this work, we have analyzed samples of the Lonewolf Nunataks (LON) 94101 CM2 carbonaceous chondrite. We are investigating the link(s) between parent body processes, mineralogical context, and amino acid compositions in meteorites on bulk samples (approx. 20mg) and mineral separates (< or = 3mg) from several of spatial locations within our allocated samples. Preliminary results of these analyses are presented here.

  9. X-ray diffraction study of low-temperature phase transformations in nickel-titanium orthodontic wires.

    PubMed

    Iijima, M; Brantley, W A; Guo, W H; Clark, W A T; Yuasa, T; Mizoguchi, I

    2008-11-01

    Employ conventional X-ray diffraction (XRD) to analyze three clinically important nickel-titanium orthodontic wire alloys over a range of temperatures between 25 and -110 degrees C, for comparison with previous results from temperature-modulated differential scanning calorimetry (TMDSC) studies. The archwires selected were 35 degrees C Copper Ni-Ti (Ormco), Neo Sentalloy (GAC International), and Nitinol SE (3M Unitek). Neo Sentalloy, which exhibits superelastic behavior, is marketed as having shape memory in the oral environment, and Nitinol SE and 35 degrees C Copper Ni-Ti also exhibit superelastic behavior. All archwires had dimensions of 0.016in.x0.022in. (0.41 mm x 0.56 mm). Straight segments cut with a water-cooled diamond saw were placed side-by-side to yield a 1 cm x 1cm test sample of each wire product for XRD analysis (Rint-Ultima(+), Rigaku) over a 2theta range from 30 degrees to 130 degrees and at successive temperatures of 25, -110, -60, -20, 0 and 25 degrees C. The phases revealed by XRD at the different analysis temperatures were in good agreement with those found in previous TMDSC studies of transformations in these alloys, in particular verifying the presence of R-phase at 25 degrees C. Precise comparisons are not possible because of the approximate nature of the transformation temperatures determined by TMDSC and the preferred crystallographic orientation present in the wires. New XRD peaks appear to result from low-temperature transformation in martensite, which a recent transmission electron microscopy (TEM) study has shown to arise from twinning. While XRD is a useful technique to study phases in nickel-titanium orthodontic wires and their transformations as a function of temperature, optimum insight is obtained when XRD analyses are combined with complementary TMDSC and TEM study of the wires.

  10. Changes in the chemical composition and spectroscopy of loblolly pine medium density fiberboard furnish as a function of age and refining pressure

    Treesearch

    Stephen S. Kelley; Thomas Elder; Leslie H. Groom

    2005-01-01

    Loblolly pine wood between the ages of 5-35 was refined into medium density fiberboard furnish at steam pressures from 2 to 18 bar, The effect of age and processing conditions on the properties of the fibers was assessed by wet chemical analyses, Near Infared Spectroscopy (NIR) and powder X-ray diffraction (XRD).In general ,the percentages of extractives and glucose...

  11. Remote In-Situ Quantitative Mineralogical Analysis Using XRD/XRF

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Bish, D.; Vaniman, D.; Chipera, S.; Sarrazin, P.; Collins, S. A.; Elliott, S. T.

    2001-01-01

    X-Ray Diffraction (XRD) is the most direct and accurate method for determining mineralogy. The CHEMIN XRD/XRF instrument has shown promising results on a variety of mineral and rock samples. Additional information is contained in the original extended abstract.

  12. The PM2.5 capture of poly (lactic acid)/nano MOFs eletrospinning membrane with hydrophilic surface

    NASA Astrophysics Data System (ADS)

    Wang, Yating; Dai, Xiu; Li, Xu; Wang, Xinlong

    2018-03-01

    In this article, metal organic frameworks (MOFs) material is introduced in the poly (lactic acid) (PLA) by electrospinning to fabricate the nanocomposite membrane. The acrylic acid (AA) is grafted onto the membrane under UV light. The prepared membrane is studied by scanning electron microscopy (SEM), x-ray diffraction (XRD), thermogravimetry (TG), contact angle test and tensile strength test. The SEM image and XRD indicate that nano MOFs particles adhere to the membrane. Contact angle test shows that grafting AA on the composite fiber membrane improves its hydrophilicity effectively. TG analyses show that the particulate matter (PM) capture capacity of PLA membrane with 2 wt% ZIF-8 content is 22%, which rises to 37% after grafting.

  13. Ultrasonic-assisted synthesis of nano lead(II) coordination polymer as precursors for preparation of lead(II) oxide nano-structures: Thermal, optical properties and XRD studies.

    PubMed

    Ghavidelaghdam, Elham; Shahverdizadeh, Gholam Hossein; Motameni Tabatabai, Javad; Mirtamizdoust, Babak

    2018-04-01

    Nano structure of a lead (II) coordination polymer [Pb 2 (C 2 Cl 3 O 2 ) 2 (NO 3 ) 2 (C l2 H 8 N 2 ) 2 ] n (1), has been synthesized by a sonochemical method in different concentrations. The nano particles were characterized by scanning electron microscopy (SEM) X-ray powder diffraction (XRD), FT-IR spectroscopy and elemental analyses. The thermal stability of nano structure is closely investigated via thermal gravimetric (TGA), and compared with crystalline structure. The compounds are then heated to 600 °C to produce PbO nano particles. The resulting PbO is characterized through XRD and SEM analyses. Concentration of initial reagents effects on size and morphology of nano-structured compound 1 have been studied and show that low concentrations of initial reagents decreased particles size and leaded to uniform nano particles morphology. The photoluminescence properties of the prepared compound, as crystalline and as nanoparticles, have been investigated. The result showed a good correlation between the size and emission wavelength. Copyright © 2017. Published by Elsevier B.V.

  14. Crystallographic texture and earing behavior analysis for different second cold reductions of double-reduction tinplate

    NASA Astrophysics Data System (ADS)

    Liao, Lu-hai; Zheng, Xiao-fei; Kang, Yong-lin; Liu, Wei; Yan, Yan; Mo, Zhi-ying

    2018-06-01

    Since the production of tinplate with non-earing properties is difficult, especially when it is produced via the double-reduction process, the optimal degree of second cold reduction is particularly important for achieving desirable drawing properties. The evolution of texture and the earing propensity of double-reduction tinplate with different extents of second reduction were investigated in this study. Optical microscopy and scanning electron microscopy were used to observe the changes in the microstructure at various extents of reduction. Two common testing methods, X-ray diffraction (XRD) and electron backscatter diffraction, were used to investigate the texture of the specimens, which revealed the effects of deformation percentage on the final texture development and the change in the grain boundary. The earing rate was determined via earing tests involving measurement of the height of any ear. The results obtained from both XRD analyses and earing tests revealed the same ideal value for the second cold reduction on the basis of the relationship between crystallographic texture and the degree of earing.

  15. X-ray diffraction, Raman, and photoacoustic studies of ZnTe nanocrystals

    NASA Astrophysics Data System (ADS)

    Ersching, K.; Campos, C. E. M.; de Lima, J. C.; Grandi, T. A.; Souza, S. M.; da Silva, D. L.; Pizani, P. S.

    2009-06-01

    Nanocrystalline ZnTe was prepared by mechanical alloying. X-ray diffraction (XRD), energy dispersive spectroscopy, Raman spectroscopy, and photoacoustic absorption spectroscopy techniques were used to study the structural, chemical, optical, and thermal properties of the as-milled powder. An annealing of the mechanical alloyed sample at 590 °C for 6 h was done to investigate the optical properties in a defect-free sample (close to bulk form). The main crystalline phase formed was the zinc-blende ZnTe, but residual trigonal tellurium and hexagonal ZnO phases were also observed for both as-milled and annealed samples. The structural parameters, phase fractions, average crystallite sizes, and microstrains of all crystalline phases were obtained from Rietveld analyses of the X-ray patterns. Raman results corroborate the XRD results, showing the longitudinal optical phonons of ZnTe (even at third order) and those modes of trigonal Te. Nonradiative surface recombination and thermal bending heat transfer mechanisms were proposed from photoacoustic analysis. An increase in effective thermal diffusivity coefficient was observed after annealing and the carrier diffusion coefficient, the surface recombination velocity, and the recombination time parameters remained the same.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zia-ul-Mustafa, M., E-mail: engr.ziamustafa@gmail.com; Ahmad, Faiz; Megat-Yusoff, Puteri S. M.

    In this study, intumescent fire retardant coatings (IFRC) were developed to investigate the synergistic effects of reinforced mica and wollastonite fillers based IFRC towards heat shielding, char expansion, char composition and char morphology. Ammonium poly-phosphate (APP) was used as acid source, expandable graphite (EG) as carbon source, melamine as blowing agent, boric acid as additive and Hardener H-2310 polyamide amine in bisphenol A epoxy resin BE-188(BPA) was used as curing agent. Bunsen burner fire test was used for thermal performance according to UL-94 for 1 h. Field Emission Scanning Electron Microscopy (FESEM) was used to observe char microstructure. X-Ray Diffraction (XRD)more » and Fourier transform infrared spectroscopy (FTIR) were used to analyse char composition. The results showed that addition of clay filler in IFRC enhanced the fire protection performance of intumescent coating. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results showed the presence of boron phosphate, silicon phosphate oxide, aluminium borate in the char that improved the thermal performance of intumescent fire retardant coating (IFRC). Resultantly, the presence of these developed compounds enhanced the Integrity of structural steel upto 500°C.« less

  17. Powder X-ray diffraction laboratory, Reston, Virginia

    USGS Publications Warehouse

    Piatak, Nadine M.; Dulong, Frank T.; Jackson, John C.; Folger, Helen W.

    2014-01-01

    The powder x-ray diffraction (XRD) laboratory is managed jointly by the Eastern Mineral and Environmental Resources and Eastern Energy Resources Science Centers. Laboratory scientists collaborate on a wide variety of research problems involving other U.S. Geological Survey (USGS) science centers and government agencies, universities, and industry. Capabilities include identification and quantification of crystalline and amorphous phases, and crystallographic and atomic structure analysis for a wide variety of sample media. Customized laboratory procedures and analyses commonly are used to characterize non-routine samples including, but not limited to, organic and inorganic components in petroleum source rocks, ore and mine waste, clay minerals, and glassy phases. Procedures can be adapted to meet a variety of research objectives.

  18. Roosevelt Hot Springs, Utah FORGE X-Ray Diffraction Data

    DOE Data Explorer

    Nash, Greg; Jones, Clay

    2018-02-07

    This dataset contains X-ray diffraction (XRD) data taken from wells and outcrops as part of the DOE GTO supported Utah FORGE project located near Roosevelt Hot Springs. It contains an Excel spreadsheet with the XRD data, a text file with sample site names, types, and locations in UTM, Zone 12, NAD83 coordinates, and a GIS shapefile of the sample locations with attributes.

  19. Transmission X-ray Diffraction (XRD) Patterns Relevant to the MSL Chemin Amorphous Component: Sulfates And Silicates

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Rampe, E. B.; Graff, T. G.; Archer, P. D., Jr.; Le, L.; Ming, D. W.; Sutter, B.

    2015-01-01

    The Mars Science Laboratory (MSL) CheMin instrument on the Curiosity rover is a transmission X-ray diffractometer (Co-Kalpha radiation source and a approx.5deg to approx.52deg 2theta range) where the analyzed powder samples are constrained to have discrete particle diameters <150 microns by a sieve. To date, diffraction patterns have been obtained for one basaltic soil (Rocknest (RN)) and four drill fines of coherent rock (John Klein (JK), Cumberland (CB), Windjana (WJ), and Confidence Hills (CH)). The CheMin instrument has detected and quantified the abundance of both primary igneous (e.g., feldspar, olivine, and pyroxene) and secondary (e.g., Ca-sulfates, hematite, akaganeite, and Fe-saponite) minerals. The diffraction patterns of all CheMin samples are also characterized by a broad diffraction band centered near 30deg 2theta and by increasing diffraction intensity (scattering continuum) from approx.15deg to approx.5deg, the 2theta minimum. Both the broad band and the scattering continuum are attributed to the presence of an XRD amorphous component. Estimates of amorphous component abundance, based on the XRD data itself and on mass-balance calculations using APXS data crystalline component chemistry derived from XRD data, martian meteorites, and/or stoichiometry [e.g., 6-9], range from approx.20 wt.% to approx.50 wt.% of bulk sample. The APXSbased calculations show that the amorphous component is rich in volatile elements (esp. SO3) and is not simply primary basaltic glass, which was used as a surrogate to model the broad band in the RN CheMin pattern. For RN, the entire volatile inventory (except minor anhydrite) is assigned to the amorphous component because no volatile-bearing crystalline phases were reported within detection limits [2]. For JK and CB, Fesaponite, basanite, and akaganeite are volatile-bearing crystalline components. Here we report transmission XRD patterns for sulfate and silicate phases relevant to interpretation of MSL-CheMin XRD amorphous components.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Cheng-Jun, E-mail: cjsun@aps.anl.gov; Brewe, Dale L.; Heald, Steve M.

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorptionmore » near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.« less

  1. Photosynthetic microorganism-mediated synthesis of akaganeite (beta-FeOOH) nanorods.

    PubMed

    Brayner, Roberta; Yéprémian, Claude; Djediat, Chakib; Coradin, Thibaud; Herbst, Fréderic; Livage, Jacques; Fiévet, Fernand; Couté, Alain

    2009-09-01

    Common Anabaena and Calothrix cyanobacteria and Klebsormidium green algae are shown to form intracellularly akaganeite beta-FeOOH nanorods of well-controlled size and unusual morphology at room temperature. X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy X-ray energy dispersive spectrometry (SEM-EDS) analyses are used to investigate particle structure, size, and morphology. A mechanism involving iron-siderophore complex formation is proposed and compared with iron biomineralization in magnetotactic bacteria.

  2. Complex study on photoluminescence properties of YAG:Ce,Gd phosphors

    NASA Astrophysics Data System (ADS)

    Lisitsyn, V. M.; Ju, Yangyang; Stepanov, S. A.; Soschin, N. M.

    2017-05-01

    Luminescence characteristics of gadolinium co-doped yttrium aluminium garnet doped with cerium phosphors were studied. In this work, powder X-ray diffraction (XRD) spectra, elemental composition analyses, excitation and emission spectra, conversion efficiency of emission phosphor, corresponding (CIE) chromaticity colour coordinates and pulsed photoluminescence decay kinetic curves were investigated, all the measurements were performed at room temperature. The properties of the phosphors were studied by comparing the composition of the phosphors and their luminescent properties.

  3. Alternative approaches used to assess structural changes of natural zircon caused by heat treatment

    NASA Astrophysics Data System (ADS)

    Huong, L. T. T.; Thuyet, N. T. M.; Phan, T. L.; Tran, N.; Toan, D. N.; Thang, P. D.; Huy, B. T.

    2018-03-01

    It is known that large changes in the crystal structure of zircon (ZrSiO4) can be assessed through the linewidth of the characteristic Raman mode (Δν3) at 1008 cm-1. However, the use of Δν3 to assess small changes caused by heat treatment at temperatures below its decomposition temperature of 1670 °C is difficult. The present work points out that the combination of X-ray diffraction (XRD) analyses, and photoluminescence (PL) and Raman (RS) measurements with different excitation wavelengths is an effective approach to solve the above problem. In this context, we have selected natural zircon containing some rare-earth (RE) impurities, and then studied the changes in its crystal structure caused by heat treatment at temperatures Tan=400-1600 °C. XRD analyses reveal that small modifications of the unit-cell parameters occur as Tan>600 °C. Taking the intensity ratios of the ν3 mode to RE-related emissions (Iν3/IRE) or the PL intensity ratios between RE-related emissions into consideration, the similar results in good agreement with the XRD analyses are also found. We believe that the small structural changes are related to the migration and redistribution of defects and impurities, and re-crystallization of zircon. This could be further confirmed though the relation between paramagnetic and ferromagnetic signals when Tan changes.

  4. An Investigation of the Interatomic Bonding Characteristics of a Ti - 51at.% Al Alloy by X-Ray Diffraction

    DTIC Science & Technology

    1991-06-01

    GROUP SUBGROUP X-ray Diffraction, XRD, TiAI, titanium , aluminum, bonding characteristics, titanium aluminides , Debye-Waller temperature factor...XRD Powder Particles (575X) .............. 47 viii I. INTRODUCTION Titanium aluminides are recognized for their high specific strength, particularly at...bonding characteristics of binary titanium aluminides . Upon the introduction of a third element to the system, a rearrangement of the valence

  5. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris

    PubMed Central

    Brinza, Loredana; Schofield, Paul F.; Hodson, Mark E.; Weller, Sophie; Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D.; Mosselmans, J. Frederick W.

    2014-01-01

    The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced. PMID:24365942

  6. In situ X-ray diffraction analysis of (CF x) n batteries: signal extraction by multivariate analysis

    DOE PAGES

    Rodriguez, Mark A.; Keenan, Michael R.; Nagasubramanian, Ganesan

    2007-11-10

    In this study, (CF x) n cathode reaction during discharge has been investigated using in situ X-ray diffraction (XRD). Mathematical treatment of the in situ XRD data set was performed using multivariate curve resolution with alternating least squares (MCR–ALS), a technique of multivariate analysis. MCR–ALS analysis successfully separated the relatively weak XRD signal intensity due to the chemical reaction from the other inert cell component signals. The resulting dynamic reaction component revealed the loss of (CF x) n cathode signal together with the simultaneous appearance of LiF by-product intensity. Careful examination of the XRD data set revealed an additional dynamicmore » component which may be associated with the formation of an intermediate compound during the discharge process.« less

  7. Fabrication of Worm-Like Nanorods and Ultrafine Nanospheres of Silver Via Solid-State Photochemical Decomposition

    PubMed Central

    2009-01-01

    Worm-like nanorods and nanospheres of silver have been synthesized by photochemical decomposition of silver oxalate in water by UV irradiation in the presence of CTAB and PVP, respectively. No external seeds have been employed for the synthesis of Ag nanorods. The synthesized Ag colloids have been characterized by UV-visible spectra, powder XRD, HRTEM, and selected area electron diffraction (SAED). Ag nanospheres of average size around 2 nm have been obtained in the presence of PVP. XRD and TEM analyses revealed that top and basal planes of nanorods are bound with {111} facets. Williamson–Hall plot has revealed the presence of defects in the Ag nanospheres and nanorods. Formation of defective Ag nanocrystals is attributed to the heating effect of UV-visible irradiation. PMID:20596513

  8. Synthesis and Thermal and Photo Behaviors of New Polyamide/Organocaly Nanocomposites Containing Para Phenylenediacrylic Moiety

    NASA Astrophysics Data System (ADS)

    Faghihi, Khalil; Soleimani, Masoumeh; Shabanian, Meisam; Abootalebi, Ashraf Sadat

    2011-06-01

    New type of aromatic polyamide/montmorillonite nanocomposites were produced using solution process in N-methyl-2-pyrolidone. Amide chains were synthesized from 4,4'-diaminodiphenyl sulfone and p-phenylenediacrylic acid in N-methyl-2-pyrolidone. The resulting nanocomposite films containing 5-15 mass % of organoclay were characterized for FT-IR, scanning electronmicroscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), optical transparency and water absorption measurements. The distribution of organoclay and nanostructure of the composites were investigated by (XRD) and SEM analyses. Thermogravimetric analysis indicated an increase in thermal stability of nanocomposites as compared to pristine polyamide. The percentage optical transparency and water absorption of these hybrids was found to be much reduced upon the addition of modified layered silicate indicating decreased permeability.

  9. Preparation and optical characteristics of ZnSe nanocrystals doped glass by sol gel in situ crystallization method

    NASA Astrophysics Data System (ADS)

    Hao, Haiyan; Yao, Xi; Wang, Minqiang

    2007-01-01

    Homogeneous ZnSe nanocrystals doped SiO 2 glass was successfully prepared by sol-gel in situ crystallization method. The structure of the doped ZnSe nanocrystals was studied by X-ray diffraction (XRD). ZnSe nanocrystals in silica were about 4-10 nm analysed by transmission electron microscopy (TEM), which was consistent with the results of XRD estimated using Scherrer's formular. The quantum size effect in ZnSe nanocrystals was evidenced from the blue-shifts of the optical absorption edge, and the average size of ZnSe nanocrystals was estimated by the magnitude of blue shift according to the L.E. Brus' effective mass model. The size of ZnSe nanocrystals depending on annealing time and temperature was further discussed using XRF.

  10. Liquid contrabands classification based on energy dispersive X-ray diffraction and hybrid discriminant analysis

    NASA Astrophysics Data System (ADS)

    YangDai, Tianyi; Zhang, Li

    2016-02-01

    Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.

  11. Experimental determination of spin-dependent electron density by joint refinement of X-ray and polarized neutron diffraction data.

    PubMed

    Deutsch, Maxime; Claiser, Nicolas; Pillet, Sébastien; Chumakov, Yurii; Becker, Pierre; Gillet, Jean Michel; Gillon, Béatrice; Lecomte, Claude; Souhassou, Mohamed

    2012-11-01

    New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.

  12. A facile thermal decomposition route to synthesise CoFe2O4 nanostructures

    NASA Astrophysics Data System (ADS)

    Kalpanadevi, K.; Sinduja, C. R.; Manimekalai, R.

    2014-01-01

    The synthesis of CoFe2O4 nanoparticles has been achieved by a simple thermal decomposition method from an inorganic precursor, cobalt ferrous cinnamate hydrazinate (CoFe2(cin)3(N2H4)3) which was obtained by a novel precipitation method from the corresponding metal salts, cinnamic acid and hydrazine hydrate. The precursor was characterized by hydrazine and metal analyses, infrared spectral analysis and thermo gravimetric analysis. Under appropriate annealing, CoFe2(cin)3(N2H4)3 yielded CoFe2O4 nanoparticles, which were characterized for their size and structure using X-Ray diffraction (XRD), high resolution transmission electron microscopic (HRTEM), selected area electron diffraction (SAED) and scanning electron microscopic (SEM) techniques.

  13. Use of an Ultrasonic/Sonic Driller/Corer to Obtain Sample Powder for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Bish, D. L.; Vaniman, D. T.; Sherrit, S.; Bar-Cohen, Y.; Sarrazin, P.; Blake, D. F.

    2003-01-01

    A miniature CHEMIN XRD/XRF (X-Ray Diffraction/X-Ray Fluourescence) instrument is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed in order to enable XRD analysis on an extraterrestrial body is how best to obtain a representative sample powder for analysis. For XRD powder diffraction analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a 2-dimensional detector as used in the CHEMIN instrument will produce good results with poorly prepared powders, the quality of the data will improve if the sample is fine-grained and randomly oriented. An Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL is an effective mechanism of sampling rock to produce cores and powdered cuttings. It requires low axial load (< 5N) and thus offers significant advantages for operation from lightweight platforms and in low gravity environments. The USDC is lightweight (<0.5kg), and can be driven at low power (<5W) using duty cycling. It consists of an actuator with a piezoelectric stack, ultrasonic horn, free-mass, and drill bit. The stack is driven with a 20 kHz AC voltage at resonance. The strain generated by the piezoelectric is amplified by the horn by a factor of up to 10 times the displacement amplitude. The tip impacts the free-mass and drives it into the drill bit in a hammering action. The free-mass rebounds to interact with the horn tip leading to a cyclic rebound at frequencies in the range of 60-1000 Hz. It does not require lubricants, drilling fluid or bit sharpening and it has the potential to operate at high and low temperatures using a suitable choice of piezoelectric material. To assess whether the powder from an ultrasonic drill would be adequate for analyses by an XRD/XRF spectrometer such as CHEMIN, powders obtained from the JPL ultrasonic drill were analyzed and the results were compared to carefully prepared powders obtained using a laboratory bench scale Retsch mill.

  14. Projection of the Liquidus Surface of the Co - Sn - Bi System

    NASA Astrophysics Data System (ADS)

    Abilov, Ch. I.; Allazov, M. R.; Sadygova, S. G.

    2016-11-01

    The crystallization behavior of phases in alloys of the Co - Sn - Bi system is studied by the methods of differential thermal (DTA), x-ray phase (XRP) and x-ray diffraction (XRD) analyses and hardness measurement. The projection of the liquidus surface is plotted. The boundaries of layering, the development of the monovariant processes, and the coordinates of the nonvariant equilibrium compositions are determined. Compositions of (Co3Sn2)1 - x Bi x solid solutions suitable for the production of antifriction materials are suggested.

  15. X-Ray Diffraction and Fluorescence Measurements for In Situ Planetary Instruments

    NASA Astrophysics Data System (ADS)

    Hansford, G.; Hill, K. S.; Talboys, D.; Vernon, D.; Ambrosi, R.; Bridges, J.; Hutchinson, I.; Marinangeli, L.

    2011-12-01

    The ESA/NASA ExoMars mission, due for launch in 2018, has a combined X-ray fluorescence/diffraction instrument, Mars-XRD, as part of the onboard analytical laboratory. The results of some XRF (X-ray fluorescence) and XRD (X-ray diffraction) tests using a laboratory chamber with representative performance are reported. A range of standard geological reference materials and analogues were used in these tests. The XRD instruments are core components of the forthcoming NASA Mars Science Laboratory (MSL) and ESA/NASA ExoMars missions and will provide the first demonstrations of the capabilities of combined XRD/XRF instrumentation in situ on an extraterrestrial planetary surface. The University of Leicester team is part of the Italy-UK collaboration that is responsible for building the ExoMars X-ray diffraction instrument, Mars-XRD [1,2]. Mars-XRD incorporates an Fe-55 radioisotope source and three fixed-position charge-coupled devices (CCDs) to simultaneously acquire an X-ray fluorescence spectrum and a diffraction pattern providing a measurement of both elemental and mineralogical composition. The CCDs cover an angular range of 2θ = 6° to 73° enabling the analysis of a wide range of geologically important minerals including phyllosilicates, feldspars, oxides, carbonates and evaporites. The identification of hydrous minerals may help identify past Martian hydrothermal systems capable of preserving traces of life. Here we present some initial findings from XRF and XRD tests carried out at the University of Leicester using an Fe-55 source and X-ray sensitive CCD. The XRF/XRD test system consists of a single CCD on a motorised arm, an Fe-55 X-ray source, a collimator and a sample table which approximately replicate the reflection geometry of the Mars-XRD instrument. It was used to test geological reference standard materials and Martian analogues. This work was funded by the Science and Technology Facilities Council, UK. References [1] Marinangeli, L., Hutchinson, I., Baliva, A., Stevoli, A., Ambrosi, R., Critani, F., Delhez, R., Scandelli, L., Holland, A., Nelms, N. & the Mars-XRD Team, Proceedings of the 38th Lunar and Planetary Science Conference, 12 - 16 March 2007, League City, Texas, USA. [2] L. Marinangeli, I. B. Hutchinson, A. Stevoli, G. Adami, R. Ambrosi, R. Amils, V. Assis Fernandes, A. Baliva, A. T. Basilevsky, G. Benedix, P. Bland, A. J. Böttger, J. Bridges, G. Caprarelli, G. Cressey, F. Critani, N. d'Alessandro, R. Delhez, C. Domeneghetti, D. Fernandez-Remolar, R. Filippone, A. M. Fioretti, J. M. Garcia Ruiz, M. Gilmore, G. M. Hansford, G. Iezzi, R. Ingley, M. Ivanov, G. Marseguerra, L. Moroz, C. Pelliciari, P. Petrinca, E. Piluso, L. Pompilio, J. Sykes, F. Westall and the MARS-XRD Team, EPSC-DPS Joint Meeting 2011, 3 - 7 October 2011, La Cité Internationale des Congrès Nantes Métropole, Nantes, France.

  16. Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.

    2004-01-01

    A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.

  17. Synergistic effects of mica and wollastonite fillers on thermal performance of intumescent fire retardant coating

    NASA Astrophysics Data System (ADS)

    Zia-ul-Mustafa, M.; Ahmad, Faiz; Megat-Yusoff, Puteri S. M.; Aziz, Hammad

    2015-07-01

    In this study, intumescent fire retardant coatings (IFRC) were developed to investigate the synergistic effects of reinforced mica and wollastonite fillers based IFRC towards heat shielding, char expansion, char composition and char morphology. Ammonium poly-phosphate (APP) was used as acid source, expandable graphite (EG) as carbon source, melamine as blowing agent, boric acid as additive and Hardener H-2310 polyamide amine in bisphenol A epoxy resin BE-188(BPA) was used as curing agent. Bunsen burner fire test was used for thermal performance according to UL-94 for 1 h. Field Emission Scanning Electron Microscopy (FESEM) was used to observe char microstructure. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to analyse char composition. The results showed that addition of clay filler in IFRC enhanced the fire protection performance of intumescent coating. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results showed the presence of boron phosphate, silicon phosphate oxide, aluminium borate in the char that improved the thermal performance of intumescent fire retardant coating (IFRC). Resultantly, the presence of these developed compounds enhanced the Integrity of structural steel upto 500°C.

  18. Swinging Symmetry, Multiple Structural Phase Transitions, and Versatile Physical Properties in RECuGa3 (RE = La-Nd, Sm-Gd).

    PubMed

    Subbarao, Udumula; Rayaprol, Sudhindra; Dally, Rebecca; Graf, Michael J; Peter, Sebastian C

    2016-01-19

    The compounds RECuGa3 (RE = La-Nd, Sm-Gd) were synthesized by various techniques. Preliminary X-ray diffraction (XRD) analyses at room temperature suggested that the compounds crystallize in the tetragonal system with either the centrosymmetric space group I4/mmm (BaAl4 type) or the non-centrosymmetric space group I4mm (BaNiSn3 type). Detailed single-crystal XRD, neutron diffraction, and synchrotron XRD studies of selected compounds confirmed the non-centrosymmetric BaNiSn3 structure type at room temperature with space group I4mm. Temperature-dependent single-crystal XRD, powder XRD, and synchrotron beamline measurements showed a structural transition between centro- and non-centrosymmetry followed by a phase transition to the Rb5Hg19 type (space group I4/m) above 400 K and another transition to the Cu3Au structure type (space group Pm3̅m) above 700 K. Combined single-crystal and synchrotron powder XRD studies of PrCuGa3 at high temperatures revealed structural transitions at higher temperatures, highlighting the closeness of the BaNiSn3 structure to other structure types not known to the RECuGa3 family. The crystal structure of RECuGa3 is composed of eight capped hexagonal prism cages [RE4Cu4Ga12] occupying one rare-earth atom in each ring, which are shared through the edge of Cu and Ga atoms along the ab plane, resulting in a three-dimensional network. Resistivity and magnetization measurements demonstrated that all of these compounds undergo magnetic ordering at temperatures between 1.8 and 80 K, apart from the Pr and La compounds: the former remains paramagnetic down to 0.3 K, while superconductivity was observed in the La compound at T = 1 K. It is not clear whether this is intrinsic or due to filamentary Ga present in the sample. The divalent nature of Eu in EuCuGa3 was confirmed by magnetization measurements and X-ray absorption near edge spectroscopy and is further supported by the crystal structure analysis.

  19. Effect of iron doping on structural and microstructural properties of nanocrystalline ZnSnO3 thin films prepared by spray pyrolysis techniques

    NASA Astrophysics Data System (ADS)

    Pathan, Idris G.; Suryawanshi, Dinesh N.; Bari, Anil R.; Patil, Lalchand A.

    2018-05-01

    This work presents the effect of iron doping having different volume ratios (1 ml, 2.5 ml and 5 ml) on the structural, microstructural and electrical properties of zinc stannate thin films, prepared by spray pyrolysis method. These properties were characterized with X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). In our study, XRD pattern indicates that ZnSnO3 has a perovskite phase with face exposed hexahedron structure. The electron diffraction fringes observed are in consistent with the peak observed in XRD patterns. Moreover the sensor reported in our study is cost-effective, user friendly and easy to fabricate.

  20. Pole Figure Explorer v. 1.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Benthem, Mark H.

    2016-05-04

    This software is employed for 3D visualization of X-ray diffraction (XRD) data with functionality for slicing, reorienting, isolating and plotting of 2D color contour maps and 3D renderings of large datasets. The program makes use of the multidimensionality of textured XRD data where diffracted intensity is not constant over a given set of angular positions (as dictated by the three defined dimensional angles of phi, chi, and two-theta). Datasets are rendered in 3D with intensity as a scaler which is represented as a rainbow color scale. A GUI interface and scrolling tools along with interactive function via the mouse allowmore » for fast manipulation of these large datasets so as to perform detailed analysis of diffraction results with full dimensionality of the diffraction space.« less

  1. Amorphous Analogs of Martian Global Soil: Pair Distribution Function Analyses and Implications for Scattering Models of Chemin X-ray Diffraction Data

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Bish, D. L.; Rampe, E. B.; Morris, R. V.

    2015-01-01

    Soils on Mars have been analyzed by the Mars Exploration Rovers (MER) and most recently by the Mars Science Laboratory (MSL) rover. Chemical analyses from a majority of soil samples suggest that there is a relatively uniform global soil composition across much of the planet. A soil site, Rocknest, was sampled by the MSL science payload including the CheMin X-ray diffractometer and the Alpha Particle X-ray Spectrometer (APXS). Che- Min X-ray diffraction (XRD) data revealed crystalline phases and a broad, elevated background, indicating the presence of amorphous or poorly ordered materials (Fig 1). Based on the chemical composition of the bulk soil measured by APXS and the composition of crystalline phases derived from unit-cell parameters determined with CheMin data, the percentages of crystalline and amorphous phases were calculated at 51% and 49%, respectively. Attempts to model the amorphous contribution to CheMin XRD patterns were made using amorphous standards and full-pattern fitting methods and show that the broad, elevated background region can be fitted by basaltic glass, allophane, and palagonite. However, the modeling shows only that these phases have scattering patterns similar to that for the soil, not that they represent unique solutions. Here, we use pair distribution function (PDF) analysis to determine the short-range order of amorphous analogs in martian soils and better constrain the amorphous material detected by CheMin.

  2. Characterization of CuCl quantum dots grown in NaCl single crystals via optical measurements, X-ray diffraction, and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Miyajima, Kensuke; Akatsu, Tatsuro; Itoh, Ken

    2018-05-01

    We evaluated the crystal size, shape, and alignment of the lattice planes of CuCl quantum dots (QDs) embedded in NaCl single crystals by optical measurements, X-ray diffraction (XRD) patterns, and transmission electron microscopy (TEM). We obtained, for the first time, an XRD pattern and TEM images for CuCl QDs in NaCl crystals. The XRD pattern showed that the lattice planes of the CuCl QDs were parallel to those of the NaCl crystals. In addition, the size of the QDs was estimated from the diffraction width. It was apparent from the TEM images that almost all CuCl QDs were polygonal, although some cubic QDs were present. The mean size and size distribution of the QDs were also obtained. The dot size obtained from optical measurements, XRD, and TEM image were almost consistent. Our new findings can help to reveal the growth mechanism of semiconductor QDs embedded in a crystallite matrix. In addition, this work will play an important role in progressing the study of optical phenomena originating from assembled semiconductor QDs.

  3. First X-Ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest Aeolian Bedform at Gale Crater

    NASA Technical Reports Server (NTRS)

    Bish, D. L.; Blake, D. F.; Vaniman, D. T.; Chipera, S. J.; Sarrazin, P.; Morris, R. V.; Ming, D. W.; Treiman, A. H.; Downs, R. T.; Morrison, S. M.; hide

    2013-01-01

    Numerous orbital and landed observations of the martian surface suggest a reasonably uniform martian soil composition, likely as a result of global aeolian mixing [1, 2]. Chemical data for martian soils are abundant [e.g., 2, 3], and phase information has been provided by lander thermal emission and Moessbauer spectroscopic measurements [3, 4, 5, 6]. However, until now no X-ray diffraction (XRD) data were available for martian soil nor has XRD ever been used on another body apart from Earth. XRD is generally considered the most definitive method for determining the crystalline phases in solid samples, and it is the method of choice for determining mineralogy. CheMin s first XRD analysis on Mars coincided with the 100th anniversary of the discovery of X-ray diffraction by von Laue. Curiosity delivered scooped samples of loose, unconsolidated material ("soil") acquired from an aeolian bedform at the Rocknest locality to instruments in the body of the rover (the laboratory). Imaging shows that the soil has a range of particle sizes, of 1-2 mm and smaller, presumably representing contributions from global, regional, and local sources.

  4. Improving ultraviolet photodetection of ZnO nanorods by Cr doped ZnO encapsulation process

    NASA Astrophysics Data System (ADS)

    Safa, S.; Mokhtari, S.; Khayatian, A.; Azimirad, R.

    2018-04-01

    Encapsulated ZnO nanorods (NRs) with different Cr concentration (0-4.5 at.%) were prepared in two different steps. First, ZnO NRs were grown by hydrothermal method. Then, they were encapsulated by dip coating method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy, and ultraviolet (UV)-visible spectrophotometer analyses. XRD analysis proved that Cr incorporated into the ZnO structure successfully. Based on optical analysis, band gap changes in the range of 2.74-3.84 eV. Finally, UV responses of all samples were deeply investigated. It revealed 0.5 at.% Cr doped sample had the most photocurrent (0.75 mA) and photoresponsivity (0.8 A/W) of all which were about three times greater than photocurrent and photoresponsivity of the undoped sample.

  5. Study of free radicals in gamma irradiated cellulose of cultural heritage materials using Electron Paramagnetic Resonance

    NASA Astrophysics Data System (ADS)

    Kodama, Yasko; Rodrigues, Orlando, Jr.; Garcia, Rafael Henrique Lazzari; Santos, Paulo de Souza; Vasquez, Pablo A. S.

    2016-07-01

    Main subject of this article was to study room temperature stable radicals in Co-60 gamma irradiated contemporary paper using Electron Paramagnetic Resonance spectrometer (EPR). XRD was used to study the effect of ionizing radiation on the morphology of book paper. SEM images presented regions with cellulose fibers and regions with particles agglomeration on the cellulose fibers. Those agglomerations were rich in calcium, observed by EDS. XRD analysis confirmed presence of calcium carbonate diffraction peaks. The main objective of this study was to propose a method using conventional kinetics chemical reactions for the observed radical formed by ionizing radiation. Therefore, further analyses were made to study the half-life and the kinetics of the free radical created. This method can be suitably applied to study radicals on cultural heritage objects.

  6. Progression in structural, magnetic and electrical properties of La-doped group IV elements

    NASA Astrophysics Data System (ADS)

    Deepapriya, S.; Annie Vinosha, P.; Rodney, John D.; Jerome Das, S.

    2018-04-01

    Progression of group IV elements such as zinc ferrite (ZnFe2O4), cobalt ferrite (CoFe2O4) was synthesized by doping lanthanum (La), via adopting a facile co-precipitation method. Doping hefty rare earth ion in spinel structure can amend to the physical properties of the lattice, which can be used in the enhancement of magnetic and electrical properties of the as-synthesized nanomaterial, it is vital to metamorphose and optimize its micro structural and magnetic features. The structural properties of the samples was analysed by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), Transmission electron microscopy (TEM) and UV-visible spectral analysis (UV-vis) reveals the optical property and optical band gap. The magnetic properties were evaluated using a vibrating sample magnetometer (VSM), the presence of functional group was confirmed by FTIR. XRD analyses elucidates that the synthesized samples zinc and cobalt had a spinel structure. From TEM analyses the morphology and diameter of the particle was observed. The substituted rare earth ions in Zinc ferrite inhibit the grain growth of the materials in an efficient manner compared with that of the Cobalt ferrite.

  7. Elucidating the Wavelength Dependence of Phonon Scattering in Nanoparticle-Matrix Composites using Phonon Spectroscopy

    DTIC Science & Technology

    2016-07-11

    composites with x - ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Rutherford backscattering spectroscopy...RBS), particle-induced x - ray emission (PIXE), and energy dispersive x - ray spectroscopy (EDX). This work complements earlier works on CdSe...sample shows only In2Se3 and CdIn2Se4 XRD peaks (Figure 1.4e), it is stoichiometrically   Figure 1.4. X - ray diffraction patterns of (a) γ-In2Se3

  8. FT-IR and Zeta potential measurements on TiO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Jaiveer; Rathore, Ravi; Kaurav, Netram, E-mail: netramkaurav@yahoo.co.uk

    2016-05-23

    In the present investigation, ultrafine TiO particles have been synthesized successfully by thermal decomposition method. The sample was characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. As-synthesized TiO nanoparticles have a cubic structure as characterized by power X-ray diffraction (XRD), which shows that TiO nanoparticles have narrow size distribution with particle size 11.5 nm. FTIR data shows a strong peak at 1300 cm{sup −1}, assignable to the Ti-O stretching vibrations mode.

  9. Definitive Mineralogical Analysis of Mars Analog Rocks Using the CheMin XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Sarrazin, P.; Bish, D. L.; Feldman, S.; Chipera, S. J.; Vaniman, D. T.; Collins, S.

    2004-01-01

    Mineral identification is a critical component of Mars Astrobiological missions. Chemical or elemental data alone are not definitive because a single elemental or chemical composition or even a single bonding type can represent a range of substances or mineral assemblages. Minerals are defined as unique structural and compositional phases that occur naturally. There are about 15,000 minerals that have been described on Earth, all uniquely identifiable via diffraction methods. There are likely many minerals yet undiscovered on Earth, and likewise on Mars. If an unknown phase is identified on Mars, it can be fully characterized by structural (X-ray Diffraction, XRD) and elemental analysis (X-ray Fluorescence, XRF) without recourse to other data because XRD relies on the principles of atomic arrangement for its determinations. XRD is the principal means of identification and characterization of minerals on Earth.

  10. X-ray diffraction study of the mineralogy of microinclusions in fibrous diamond

    NASA Astrophysics Data System (ADS)

    Smith, Evan; Kopylova, Maya; Dubrovinksy, Leonid

    2010-05-01

    Fibrous diamond, occurring both as cuboids and as coatings over non-fibrous diamond nuclei, is translucent due to the presence of millions of sub-micron-sized mineral and fluid inclusions. Diamond is strong and relatively inert, making it an excellent vessel to preserve trapped materials. These microinclusions represent direct samples of natural diamond-forming mantle fluids, and are critical for our understanding of diamond genesis. Traditionally, infrared spectroscopy, Raman spectroscopy, secondary ion mass spectrometry, electron microprobe, and FIB-TEM techniques have proven to be effective for the study of microinclusions in diamond. The abundance and random orientation of included minerals in fibrous diamond make them amenable to a powder-type X-ray diffraction (XRD) technique. This technique provides an accurate way to identify included minerals. It also has the advantage of analyzing thousands of inclusions simultaneously, rather than analyzing one inclusion at a time, as with common FIB-TEM techniques. XRD provides a bulk analysis, giving a superior measure of relative abundances of included minerals, as well as potentially accounting for small quantities of minerals that might otherwise be overlooked. We studied fibrous cuboid diamonds with microinclusions from the Democratic Republic of Congo (DRC) (23 samples), Brazil (4 samples), Jericho (1 sample), and Wawa conglomerates (9 samples). XRD analysis was performed at the Bayerisches Geoinstitut (BGI), University of Bayreuth, Germany. The unique XRD setup consists of a RIGAKU FR-D high-brilliance source, OSMIC Inc. Confocal Max-Flux optics, and a SMART APEX 4K CCD area detector. Preliminary XRD studies of microinclusions 8 fibrous diamonds from the DRC showed a prevalence of silicates with structural and coordinated H2O. Sheet silicates constituted 9 out of 13 detected minerals, with phlogopite-biotite micas being present in 4 out of 8 samples. Other detected minerals were 2 chlorite minerals, 2 clay phyllosilicates, serpentine, zircon, a hydrous carbonate and an unidentified zeolite. Many of these phases are deuteric, replacing high-T, high-P micas and carbonates that precipitate from the fluid in the diamond stability field. The ongoing XRD study will (1) elucidate the mineralogy of fluid inclusions in diamonds from Wawa, (2) compare XRD analyses to distinguish between diamonds with carbonatitic versus saline fluid compositions, and (3) reveal whether carbonates occur as crystalline phases or as dissolved or amorphous material in fibrous diamond.

  11. Nonlinear dependence of X-ray diffraction peak broadening in In x Ga1‑ x Sb epitaxial layers on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Hoang Huynh, Sa; Ha, Minh Thien Huu; Binh Do, Huy; Nguyen, Tuan Anh; Luc, Quang Ho; Chang, Edward Yi

    2018-04-01

    The configuration of the interfacial misfit array at In x Ga1‑ x Sb/GaAs interfaces with different indium compositions and thicknesses grown by metalorganic chemical vapor deposition was systematically analyzed using X-ray diffraction (XRD) reciprocal space maps (RSMs). These analyses confirmed that the epilayer relaxation was mainly contributed to by the high degree of spatial correlation of the 90° misfit array (correlation factors <0.01). The anisotropic peak-broadening aspect ratio was found to have a non-linear composition dependence as well as be thickness-dependent, related to the strain relaxation of the epilayer. However, the peak-broadening behavior in each RSM scan direction had different composition and thickness dependences.

  12. Modeling and measurements of XRD spectra of extended solids under high pressure

    NASA Astrophysics Data System (ADS)

    Batyrev, I. G.; Coleman, S. P.; Stavrou, E.; Zaug, J. M.; Ciezak-Jenkins, J. A.

    2017-06-01

    We present results of evolutionary simulations based on density functional calculations of various extended solids: N-Si and N-H using variable and fixed concentration methods of USPEX. Predicted from the evolutionary simulations structures were analyzed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction spectra. Stability of the predicted system was estimated from convex-hull plots. X-ray diffraction spectra were calculated using a virtual diffraction algorithm which computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculations of thousands of XRD spectra were used to search for a structure of extended solids at certain pressures with best fits to experimental data according to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Comparison of Raman and IR spectra calculated for best fitted structures with available experimental data shows reasonable agreement for certain vibration modes. Part of this work was performed by LLNL, Contract DE-AC52-07NA27344. We thank the Joint DoD / DOE Munitions Technology Development Program, the HE C-II research program at LLNL and Advanced Light Source, supported by BES DOE, Contract No. DE-AC02-05CH112.

  13. Debye–Waller coefficient of heavily deformed nanocrystalline iron1

    PubMed Central

    Abdellatief, M.

    2017-01-01

    Synchrotron radiation X-ray diffraction (XRD) patterns from an extensively ball-milled iron alloy powder were collected at 100, 200 and 300 K. The results were analysed together with those using extended X-ray absorption fine structure, measured on the same sample at liquid nitrogen temperature (77 K) and at room temperature (300 K), to assess the contribution of static disorder to the Debye–Waller coefficient (B iso). Both techniques give an increase of ∼20% with respect to bulk reference iron, a noticeably smaller difference than reported by most of the literature for similar systems. Besides good quality XRD patterns, proper consideration of the temperature diffuse scattering seems to be the key to accurate values of the Debye–Waller coefficient. Molecular dynamics simulations of nanocrystalline iron aggregates, mapped on the evidence provided by XRD in terms of domain size distribution, shed light on the origin of the observed B iso increase. The main contribution to the static disorder is given by the grain boundary, while line and point defects have a much smaller effect. PMID:28381974

  14. Mineralogical Approaches to Sourcing Pipes and Figurines from the Eastern Woodlands, U.S.A.

    USGS Publications Warehouse

    Wisseman, S.U.; Moore, D.M.; Hughes, R.E.; Hynes, M.R.; Emerson, T.E.

    2002-01-01

    Provenance studies of stone artifacts often rely heavily upon chemical techniques such as neutron activation analysis. However, stone specimens with very similar chemical composition can have different mineralogies (distinctive crystalline structures as well as variations within the same mineral) that are not revealed by multielemental techniques. Because mineralogical techniques are often cheap and usually nondestructive, beginning with mineralogy allows the researcher to gain valuable information and then to be selective about how many samples are submitted for expensive and somewhat destructive chemical analysis, thus conserving both valuable samples and funds. Our University of Illinois team of archaeologists and geologists employs Portable Infrared Mineral Analyzer (PIMA) spectroscopy, X-ray diffraction (XRD), and Sequential acid dissolution/XRD/Inductively coupled plasma (SAD-XRD-ICP) analyses. Two case studies of Hopewellian pipes and Mississippian figurines illustrate this mineralogical approach. The results for both studies identify sources relatively close to the sites where the artifacts were recovered: Sterling, Illinois (rather than Ohio) for the (Hopewell) pipes and Missouri (rather than Arkansas or Oklahoma) for the Cahokia figurines. ?? 2002 Wiley Periodicals, Inc.

  15. Debye–Waller coefficient of heavily deformed nanocrystalline iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scardi, P.; Rebuffi, L.; Abdellatief, M.

    2017-02-17

    Synchrotron radiation X-ray diffraction (XRD) patterns from an extensively ball-milled iron alloy powder were collected at 100, 200 and 300 K. The results were analysed together with those using extended X-ray absorption fine structure, measured on the same sample at liquid nitrogen temperature (77 K) and at room temperature (300 K), to assess the contribution of static disorder to the Debye–Waller coefficient (B iso). Both techniques give an increase of ~20% with respect to bulk reference iron, a noticeably smaller difference than reported by most of the literature for similar systems. Besides good quality XRD patterns, proper consideration of themore » temperature diffuse scattering seems to be the key to accurate values of the Debye–Waller coefficient. Molecular dynamics simulations of nanocrystalline iron aggregates, mapped on the evidence provided by XRD in terms of domain size distribution, shed light on the origin of the observedB isoincrease. The main contribution to the static disorder is given by the grain boundary, while line and point defects have a much smaller effect.« less

  16. The crystallization behavior of amorphous Ge2Sb2Te5 films induced by a multi-pulsed nanosecond laser

    NASA Astrophysics Data System (ADS)

    Fan, T.; Liu, F. R.; Li, W. Q.; Guo, J. C.; Wang, Y. H.; Sun, N. X.; Liu, F.

    2017-09-01

    In this paper, accumulated crystallization of amorphous Ge2Sb2Te5 (a-GST) films induced by a multi-pulsed nanosecond (ns) excimer laser was investigated by x-ray diffraction (XRD), atomic force microscopy, field-emission scanning electron microscopy, x-ray photoelectron spectroscopy (XPS) and a spectrophotometer. XRD analyses revealed that detectable crystallization was firstly observed in the preferred orientation (200), followed by the orientations (220) and (111) after two pulses. Optical contrast, determined by crystallinity as well as surface roughness, was found to retain a linear relation within the first three pulses. A layered growth mechanism from the top surface to the interior of a-GST films was used to explain the crystallization behavior induced by the multi-pulse ns laser. XPS analyses for bond rearrangement and electronic structure further suggested that the crystallization process was performed by generating new bonds of Ge-Te and Sb-Te after laser irradiations. This paper presents the potential of multi-level devices and tunable thermal emitters based on controllable crystallization of phase-change materials.

  17. Preparation, Structural and Dielectric Properties of Solution Grown Polyvinyl Alcohol(PVA) Film

    NASA Astrophysics Data System (ADS)

    Nangia, Rakhi; Shukla, Neeraj K.; Sharma, Ambika

    2017-08-01

    Flexible dielectrics with high permittivity have been investigated extensively due to their applications in electronic industry. In this work, structural and electrical characteristics of polymer based film have been analysed. Poly vinyl alcohol (PVA) film was prepared by solution casting method. X-ray diffraction (XRD) characterization technique is used to investigate the structural properties. The semi-crystalline nature has been determined by the analysis of the obtained XRD pattern. Electrical properties of the synthesized film have been analysed from the C-V and I-V curves obtained at various frequencies and temperatures. Low conductivity values confirm the insulating behaviour of the film. However, it is found that conductivity increases with temperature. Also, the dielectric permittivity is found to be higher at lower frequencies and higher temperatures, that proves PVA to be an excellent dielectric material which can be used in interface electronics. Dielectric behaviour of the film has been explained based on dipole orientations to slow and fast varying electric field. However further engineering can be done to modulate the structural, electrical properties of the film.

  18. Analyses of Failure Mechanisms and Residual Stresses in Graphite/Polyimide Composites Subjected to Shear Dominated Biaxial Loads

    NASA Technical Reports Server (NTRS)

    Kumosa, M.; Predecki, P. K.; Armentrout, D.; Benedikt, B.; Rupnowski, P.; Gentz, M.; Kumosa, L.; Sutter, J. K.

    2002-01-01

    This research contributes to the understanding of macro- and micro-failure mechanisms in woven fabric polyimide matrix composites based on medium and high modulus graphite fibers tested under biaxial, shear dominated stress conditions over a temperature range of -50 C to 315 C. The goal of this research is also to provide a testing methodology for determining residual stress distributions in unidirectional, cross/ply and fabric graphite/polyimide composites using the concept of embedded metallic inclusions and X-ray diffraction (XRD) measurements.

  19. NiCo2S4 nanorod embedded rGO sheets as electrodes for supercapacitor

    NASA Astrophysics Data System (ADS)

    Sarkar, Aatreyee; Bera, Supriya; Chakraborty, Amit Kumar

    2018-04-01

    We report the synthesis of a hybrid nanostructure based on NiCo2S4 and reduced graphene oxide (rGO) following a facile hydrothermal method. X-ray diffraction (XRD), and electron microscopy (FESEM and HRTEM) analyses showed rod-like NiCo2S4 nanostructures embedded in rGO sheets. The electrochemical analysis of the synthesized nanohybrid using cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) revealed specific capacitance of 410 F/gm indicating its suitability as a good electrode material for supercapacitor.

  20. Luminescent properties under X-ray excitation of Ba(1-x)PbxWO4 disordered solid solution

    NASA Astrophysics Data System (ADS)

    Bakiz, B.; Hallaoui, A.; Taoufyq, A.; Benlhachemi, A.; Guinneton, F.; Villain, S.; Ezahri, M.; Valmalette, J.-C.; Arab, M.; Gavarri, J.-R.

    2018-02-01

    A series of polycrystalline barium-lead tungstate Ba1-xPbxWO4 with 0 ≤ x ≤ 1 was synthesized using a classical solid-state method with thermal treatment at 1000 °C. These materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Raman (FT-Raman) spectroscopy. X-ray diffraction profile analyses were performed using Rietveld method. These materials crystallized in the scheelite tetragonal structure and behaved as quasi ideal solid solution. Raman spectroscopy confirmed the formation of the solid solution. Structural distortions were evidenced in X-ray diffraction profiles and in vibration Raman spectra. The scanning electron microscopy experiments showed large and rounded irregular grains. Luminescence experiments were performed under X-ray excitation. The luminescence emission profiles have been interpreted in terms of four Gaussian components, with a major contribution of blue emission. The integrated intensity of luminescence reached a maximum value in the composition range x = 0.3-0.6, in relation with distortions of crystal lattice.

  1. Novel Sample-handling Approach for XRD Analysis with Minimal Sample Preparation

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Chipera, S.; Bish, D.; Blake, D.; Feldman, S.; Vaniman, D.; Bryson, C.

    2004-01-01

    Sample preparation and sample handling are among the most critical operations associated with X-ray diffraction (XRD) analysis. These operations require attention in a laboratory environment, but they become a major constraint in the deployment of XRD instruments for robotic planetary exploration. We are developing a novel sample handling system that dramatically relaxes the constraints on sample preparation by allowing characterization of coarse-grained material that would normally be impossible to analyze with conventional powder-XRD techniques.

  2. Quantitative XRD analysis of {110} twin density in biotic aragonites.

    PubMed

    Suzuki, Michio; Kim, Hyejin; Mukai, Hiroki; Nagasawa, Hiromichi; Kogure, Toshihiro

    2012-12-01

    {110} Twin densities in biotic aragonite have been estimated quantitatively from the peak widths of specific reflections in powder X-ray diffraction (XRD) patterns, as well as direct confirmation of the twins using transmission electron microscopy (TEM). Influence of the twin density on the peak widths in the XRD pattern was simulated using DIFFaX program, regarding (110) twin as interstratification of two types of aragonite unit layers with mirrored relationship. The simulation suggested that the twin density can be estimated from the difference of the peak widths between 111 and 021, or between 221 and 211 reflections. Biotic aragonite in the crossed-lamellar microstructure (three species) and nacreous microstructure (four species) of molluscan shells, fish otoliths (two species), and a coral were investigated. The XRD analyses indicated that aragonite crystals in the crossed-lamellar microstructure of the three species contain high density of the twins, which is consistent with the TEM examination. On the other hand, aragonite in the nacre of the four species showed almost no difference of the peak widths between the paired reflections, indicating low twin densities. The results for the fish otoliths were varied between the species. Such variation of the twin density in biotic aragonites may reflect different schemes of crystal growth in biomineralization. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Final Report for X-ray Diffraction Sample Preparation Method Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ely, T. M.; Meznarich, H. K.; Valero, T.

    WRPS-1500790, “X-ray Diffraction Saltcake Sample Preparation Method Development Plan/Procedure,” was originally prepared with the intent of improving the specimen preparation methodology used to generate saltcake specimens suitable for XRD-based solid phase characterization. At the time that this test plan document was originally developed, packed powder in cavity supports with collodion binder was the established XRD specimen preparation method. An alternate specimen preparation method less vulnerable, if not completely invulnerable to preferred orientation effects, was desired as a replacement for the method.

  4. Metastable and equilibrium phase formation in sputter-deposited Ti/Al multilayer thin films

    NASA Astrophysics Data System (ADS)

    Lucadamo, G.; Barmak, K.; Lavoie, C.; Cabral, C., Jr.; Michaelsen, C.

    2002-06-01

    The sequence and kinetics of metastable and equilibrium phase formation in sputter deposited multilayer thin films was investigated by combining in situ synchrotron x-ray diffraction (XRD) with ex situ electron diffraction and differential scanning calorimetry (DSC). The sequence included both cubic and tetragonal modifications of the equilibrium TiAl3 crystal structure. Values for the formation activation energies of the various phases in the sequence were determined using the XRD and DSC data obtained here, as well as activation energy data reported in the literature.

  5. Investigation of Embedded Si/C System Exposed to a Hybrid Reaction of Centrifugal-Assisted Thermite Method

    PubMed Central

    Mahmoodian, Reza; Yahya, Rosiyah; Dabbagh, Ali; Hamdi, Mohd; Hassan, Mohsen A.

    2015-01-01

    A novel method is proposed to study the behavior and phase formation of a Si+C compacted pellet under centrifugal acceleration in a hybrid reaction. Si+C as elemental mixture in the form of a pellet is embedded in a centrifugal tube. The pellet assembly and tube are exposed to the sudden thermal energy of a thermite reaction resulted in a hybrid reaction. The hybrid reaction of thermite and Si+C produced unique phases. X-ray diffraction pattern (XRD) as well as microstructural and elemental analyses are then investigated. XRD pattern showed formation of materials with possible electronic and magnetic properties. The cooling rate and the molten particle viscosity mathematical model of the process are meant to assist in understanding the physical and chemical phenomena took place during and after reaction. The results analysis revealed that up to 85% of materials converted into secondary products as ceramics-matrix composite. PMID:26641651

  6. [Infrared spectroscopy and XRD studies of coral fossils].

    PubMed

    Chen, Quan-li; Zhou, Guan-min; Yin, Zuo-wei

    2012-08-01

    Coral fossil is an old remain of multicellular animal on the earth, and formed by various geological processes. The structural characteristics and compositions of the coral fossils with different color and radial texture on the surface were studied by infrared absorption spectroscopy and X-ray powder diffraction analyses. The results show that the studied coral fossils mainly are composed of SiO2, and the radial microstructure characterized by the calcareous coral cross-section is preserved. It is formed by metasomatism by SiO2. The infrared absorption spectra of the coral fossil with different color and texture are essentially the same, showing typical infrared absorption spectra of the quartz jade. XRD analysis shows that the main components of the coral fossils with different color and texture are consistent and mainly composed of SiO2 with a trace amount of other minerals and without CaCO3.

  7. Investigation of Embedded Si/C System Exposed to a Hybrid Reaction of Centrifugal-Assisted Thermite Method.

    PubMed

    Mahmoodian, Reza; Yahya, Rosiyah; Dabbagh, Ali; Hamdi, Mohd; Hassan, Mohsen A

    2015-01-01

    A novel method is proposed to study the behavior and phase formation of a Si+C compacted pellet under centrifugal acceleration in a hybrid reaction. Si+C as elemental mixture in the form of a pellet is embedded in a centrifugal tube. The pellet assembly and tube are exposed to the sudden thermal energy of a thermite reaction resulted in a hybrid reaction. The hybrid reaction of thermite and Si+C produced unique phases. X-ray diffraction pattern (XRD) as well as microstructural and elemental analyses are then investigated. XRD pattern showed formation of materials with possible electronic and magnetic properties. The cooling rate and the molten particle viscosity mathematical model of the process are meant to assist in understanding the physical and chemical phenomena took place during and after reaction. The results analysis revealed that up to 85% of materials converted into secondary products as ceramics-matrix composite.

  8. In Situ Mineralogical Analysis of Planetary Materials Using X-Ray Diffraction and X-Ray Fluorescence

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Blake, D.; Vaniman, D.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Remote observations of Mars have led scientists to believe that its early climate was similar to that of the early Earth, having had abundant liquid water and a dense atmosphere. One of the most fascinating questions of recent times is whether simple bacterial life developed on Mars (as it did on the Earth) during this early element period. Analyses of SNC meteorites have broadened considerably our knowledge of the chemistry of certain types of Martian rocks, underscoring the tantalizing possibility of early hydrothermal systems and even of ancient bacterial life. Detailed analyses of SNC meteorites in Terrestrial laboratories utilize the most sophisticated organic, isotopic and microscopic techniques in existence. Indeed; it is unlikely that the key biogenic indicators used in McKay et al (ibid) could be identified by a remote instrument on the surface of Mars. As a result, it is probable that any robotic search for evidence of an ancient Martian biosphere will have as its focus the identification of key minerals in likely host rocks rather than the direct detection of organic or isotopic biomarkers. Even on a sample return mission, mineralogical screening will be utilized to choose the most likely candidate rocks. X-ray diffraction (XRD) is the only technique that can provide a direct determination of the crystal structures of the phases present within a sample. When many different crystalline phases are present, quantitative analysis is better constrained if used in conjunction with a determination of elemental composition, obtainable by X-ray fluorescence (XRF) using the same X-ray source as for XRD. For planetary surface analysis, a remote instrument combining XRD and XRF could be used for mineralogical characterization of both soils and rocks. We are designing a remote XRD/XRF instrument with this objective in mind. The instrument concept pays specific attention to constraints in sample preparation, weight, volume, power, etc. Based on the geometry of a pinhole camera (transmission geometry, flat two-dimensional detector perpendicular to the direct beam), the instrument (which we call CHEMIN, for Chemistry and Mineralogy) uses an X-ray sensitive CCD detector which will allow concurrent positional and energy-dispersive analysis of collected photons. Thus XRF (energy) and XRD (geometry) analysis of transmitted X-rays will be performed at the same time. Tests performed with single minerals and simple mixtures give promising results. Refinements of the prototype promise interpretable results on complex samples.

  9. Structural properties and electrochemistry of α-LiFeO2

    NASA Astrophysics Data System (ADS)

    Abdel-Ghany, A. E.; Mauger, A.; Groult, H.; Zaghib, K.; Julien, C. M.

    2012-01-01

    In this work, we study the physico-chemistry and electrochemistry of lithium ferrite synthesized by solid-state reaction. Characterization included X-ray diffraction (XRD), scanning electronic microscopy (SEM), Raman scattering (RS), Fourier transform infrared spectroscopy (FTIR), and SQUID magnetometry. XRD peaks gradually sharpen with increasing firing temperature; all the diffraction peaks can be indexed to the cubic α-LiFeO2 phase (Fm3m space group) with the refined cell parameter a = 4.155 Å. RS and FTIR spectra show the vibrational modes due to covalent Fe-O bonds and the Li-cage mode at low-frequency. The electrochemical properties of Li/LiFeO2 are revisited along with the post-mortem analysis of the positive electrode material using XRD and Raman experiments.

  10. Ostwald ripening and interparticle-diffraction effects for illite crystals

    USGS Publications Warehouse

    Eberl, D.D.; Srodon, J.

    1988-01-01

    The Warren-Averbach method, an X-ray diffraction (XRD) method used to measure mean particle thickness and particle-thickness distribution, is used to restudy sericite from the Silverton caldera. Apparent particle-thickness distributions indicate that the clays may have undergone Ostwald ripening and that this process has modified the K-Ar ages of the samples. The mechanism of Ostwald ripening can account for many of the features found for the hydrothermal alteration of illite. Expandabilities measured by the XRD peak-position method for illite/smectites (I/S) from various locations are smaller than expandabilities measured by transmission electron microscopy (TEM) and by the Warren-Averbach (W-A) method. This disparity is interpreted as being related to the presence of nonswelling basal surfaces that form the ends of stacks of illite particles (short-stack effect), stacks that, according to the theory of interparticle diffraction, diffract as coherent X-ray scattering domains. -from Authors

  11. Ultra-low thermal conductivity of TlIn5Se8 and structure of the new complex chalcogenide Tl0.98In13.12Se16.7Te2.3

    NASA Astrophysics Data System (ADS)

    Lefèvre, Robin; Berthebaud, David; Pérez, Olivier; Pelloquin, Denis; Boudin, Sophie; Gascoin, Franck

    2017-06-01

    TlIn5Se8 has been synthesized by means of solid-state reaction and densified by Spark Plasma Sintering. The compound is a semiconductor with a band gap of 1.62 eV estimated from reflectance measurements. Its thermal conductivity is about 0.45 W m-1. K-1 in the temperature range 300-673 K, an extremely low value attributed to its complex pseudo-1D structure reminiscent of the pseudo-hollandite. While attempting to dope TlIn5Se8 with Te, a new complex chalcogenide was discovered and characterized by the combination of TEM and XRD diffraction. It belongs to the A2In12X19 family, crystallizing in the R 3 ̅:H space group. Single crystal X-ray diffraction study led to a refined composition of Tl0.98In13.12Se16.7Te2.3 with cell parameters: a=13.839(5) Å and c=35.18(3) Å. A static disorder is found on one indium site situated in an octahedral environment. The single crystal XRD study is in agreement with TEM analyses in STEM-HAADF image mode that do not show any extended defects or disorder at atomic scale.

  12. Structural changes in shock compressed silicon observed using time-resolved x-ray diffraction at the Dynamic Compression Sector

    NASA Astrophysics Data System (ADS)

    Turneaure, Stefan; Zdanowicz, E.; Sinclair, N.; Graber, T.; Gupta, Y. M.

    2015-06-01

    Structural changes in shock compressed silicon were observed directly using time-resolved x-ray diffraction (XRD) measurements at the Dynamic Compression Sector at the Advanced Photon Source. The silicon samples were impacted by polycarbonate impactors accelerated to velocities greater than 5 km/s using a two-stage light gas gun resulting in impact stresses of about 25 GPa. The 23.5 keV synchrotron x-ray beam passed through the polycarbonate impactor, the silicon sample, and an x-ray window (polycarbonate or LiF) at an angle of 30 degrees relative to the impact plane. Four XRD frames (~ 100 ps snapshots) were obtained with 153.4 ns between frames near the time of impact. The XRD measurements indicate that in the peak shocked state, the silicon samples completely transformed to a high-pressure phase. XRD results for both shocked polycrystalline silicon and single crystal silicon will be presented and compared. Work supported by DOE/NNSA.

  13. Effect of intrinsic zinc oxide coating on the properties of Al-doped zinc oxide nanorod arrays

    NASA Astrophysics Data System (ADS)

    Saidi, S. A.; Mamat, M. H.; Ismail, A. S.; Malek, M. F.; Yusoff, M. M.; Sin, N. D. Md.; Zoolfakar, A. S.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    The aim of this study was to explore the influence of intrinsic zinc oxide (ZnO) coating fabricated by a simple immersion method. X-ray powder diffraction (XRD) analysis indicated that the Al-doped ZnO nanorod arrays films had a hexagonal wurtzite structure, similar to that of an intrinsic ZnO coating. Structural properties of the samples were characterised using field emission scanning electron microscopy (FESEM; JEOL JSM-7600F) and optical properties using X-ray diffraction (XRD). The XRD results showed that all films were crystallized under hexagonal wurtzite structure and presented a preferential orientation along the c-axis (002) was obtained. The XRD results showed that the intrinsic ZnO coating material had a strong orientation, whereas the ZnO was randomly oriented. Overall these results indicate that intrinsic ZnO coating are pontetial for the creation of functional materials such as barrier protection, optoelectronic devices, humidity sensor and ultraviolet photoconductive sensor.

  14. La-Sr-Ni-Co-O based perovskite-type solid solutions as catalyst precursors in the CO 2 reforming of methane

    NASA Astrophysics Data System (ADS)

    Valderrama, Gustavo; Kiennemann, Alain; Goldwasser, Mireya R.

    La 1- xSr xNi 0.4Co 0.6O 3 and La 0.8Sr 0.2Ni 1- yCo yO 3 solid solutions with perovskite-type structure were synthesized by the sol-gel resin method and used as catalytic precursors in the dry reforming of methane with CO 2 to syngas, between 873 and 1073 K at atmospheric pressure under continuous flow of reactant gases with CH 4/CO 2 = 1 ratio. These quaternary oxides were characterized by X-ray diffraction (XRD), BET specific surface area and temperature-programmed reduction (TPR) techniques. XRD analyses of the more intense diffraction peaks and cell parameter measurements showed formation of La-Sr-Ni-Co-O solid solutions with La 0.9Sr 0.1CoO 3 and/or La 0.9Sr 0.1NiO 3 as the main crystallographic phases present on the solids depending on the degree of substitution. TPR analyses showed that Sr doping decreases the temperature of reduction via formation of intermediary species producing Ni 0, Co 0 with particle sizes in the range of nanometers over the SrO and La 2O 3 phases. These metallic nano particles highly dispersed in the solid matrix are responsible for the high activity shown during the reaction and avoid carbon formation. The presence of Sr in doping quantities also promotes the secondary reactions of carbon formation and water-gas shift in a very small extension during the dry reforming reaction.

  15. A Curved Image-Plate Detector System for High-Resolution Synchrotron X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarin, P.; Haggerty, R; Yoon, W

    2009-01-01

    The developed curved image plate (CIP) is a one-dimensional detector which simultaneously records high-resolution X-ray diffraction (XRD) patterns over a 38.7 2{theta} range. In addition, an on-site reader enables rapid extraction, transfer and storage of X-ray intensity information in {le}30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X-ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate,more » regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X-ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high-temperature XRD.« less

  16. Simple X-ray diffraction algorithm for direct determination of cotton crystallinity

    USDA-ARS?s Scientific Manuscript database

    Traditionally, XRD had been used to study the crystalline structure of cotton celluloses. Despite considerable efforts in developing the curve-fitting protocol to evaluate the crystallinity index (CI), in its present state, XRD measurement can only provide a qualitative or semi-quantitative assessme...

  17. PyXRD v0.6.7: a free and open-source program to quantify disordered phyllosilicates using multi-specimen X-ray diffraction profile fitting

    NASA Astrophysics Data System (ADS)

    Dumon, M.; Van Ranst, E.

    2016-01-01

    This paper presents a free and open-source program called PyXRD (short for Python X-ray diffraction) to improve the quantification of complex, poly-phasic mixed-layer phyllosilicate assemblages. The validity of the program was checked by comparing its output with Sybilla v2.2.2, which shares the same mathematical formalism. The novelty of this program is the ab initio incorporation of the multi-specimen method, making it possible to share phases and (a selection of) their parameters across multiple specimens. PyXRD thus allows for modelling multiple specimens side by side, and this approach speeds up the manual refinement process significantly. To check the hypothesis that this multi-specimen set-up - as it effectively reduces the number of parameters and increases the number of observations - can also improve automatic parameter refinements, we calculated X-ray diffraction patterns for four theoretical mineral assemblages. These patterns were then used as input for one refinement employing the multi-specimen set-up and one employing the single-pattern set-ups. For all of the assemblages, PyXRD was able to reproduce or approximate the input parameters with the multi-specimen approach. Diverging solutions only occurred in single-pattern set-ups, which do not contain enough information to discern all minerals present (e.g. patterns of heated samples). Assuming a correct qualitative interpretation was made and a single pattern exists in which all phases are sufficiently discernible, the obtained results indicate a good quantification can often be obtained with just that pattern. However, these results from theoretical experiments cannot automatically be extrapolated to all real-life experiments. In any case, PyXRD has proven to be useful when X-ray diffraction patterns are modelled for complex mineral assemblages containing mixed-layer phyllosilicates with a multi-specimen approach.

  18. Measurement of fundamental illite particle thicknesses by X-ray diffraction using PVP-10 intercalation

    USGS Publications Warehouse

    Eberl, D.D.; Nüesch, R.; Šucha, Vladimír; Tsipursky, S.

    1998-01-01

    The thicknesses of fundamental illite particles that compose mixed-layer illite-smectite (I-S) crystals can be measured by X-ray diffraction (XRD) peak broadening techniques (Bertaut-Warren-Averbach [BWA] method and integral peak-width method) if the effects of swelling and XRD background noise are eliminated from XRD patterns of the clays. Swelling is eliminated by intercalating Na-saturated I-S with polyvinylpyrrolidone having a molecular weight of 10,000 (PVP-10). Background is minimized by using polished metallic silicon wafers cut perpendicular to (100) as a substrate for XRD specimens, and by using a single-crystal monochromator. XRD measurements of PVP-intercalated diagenetic, hydrothermal and low-grade metamorphic I-S indicate that there are at least 2 types of crystallite thickness distribution shapes for illite fundamental particles, lognormal and asymptotic; that measurements of mean fundamental illite particle thicknesses made by various techniques (Bertant-Warren-Averbach, integral peak width, fixed cation content, and transmission electron microscopy [TEM]) give comparable results; and that strain (small differences in layer thicknesses) generally has a Gaussian distribution in the log-normal-type illites, but is often absent in the asymptotic-type illites.

  19. Application of graphene oxide-poly (vinyl alcohol) polymer nanocomposite for memory devices

    NASA Astrophysics Data System (ADS)

    Kaushal, Jyoti; Kaur, Ravneet; Sharma, Jadab; Tripathi, S. K.

    2018-05-01

    Significant attention has been gained by polymer nanocomposites because of their possible demands in future electronic memory devices. In the present work, device based on Graphene Oxide (GO) and polyvinyl alcohol (PVA) has been made and examined for the memory device application. The prepared Graphene oxide (GO) and GO-PVA nanocomposite (NC) has been characterized by X-ray Diffraction (XRD). GO nanosheets show the diffraction peak at 2θ = 11.60° and the interlayer spacing of 0.761 nm. The XRD of GO-PVA NC shows the diffraction peak at 2θ =18.56°. The fabricated device shows bipolar switching behavior having ON/OFF current ratio ˜102. The Write-Read-Erase-Read (WRER) cycles test shows that the Al/GO-PVA/Ag device has good stability and repeatability.

  20. Thermal behaviour and microanalysis of coal subbituminus

    NASA Astrophysics Data System (ADS)

    Heriyanti; Prendika, W.; Ashyar, R.; Sutrisno

    2018-04-01

    Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) is used to study the thermal behaviour of sub-bituminous coal. The DSC experiment was performed in air atmosphere up to 125 °C at a heating rate of 25 °C min1. The DSC curve showed that the distinct transitional stages in the coal samples studied. Thermal heating temperature intervals, peak and dissociation energy of the coal samples were also determined. The XRD analysis was used to evaluate the diffraction pattern and crystal structure of the compounds in the coal sample at various temperatures (25-350 °C). The XRD analysis of various temperatures obtained compounds from the coal sample, dominated by quartz (SiO2) and corundum (Al2O3). The increase in temperature of the thermal treatment showed a better crystal formation.

  1. Use of tourmaline as a potential petrogenetic indicator in the determination of host magma: CRS, XRD and PED-XRF methods

    NASA Astrophysics Data System (ADS)

    Gullu, Bahattin; Kadioglu, Yusuf Kagan

    2017-08-01

    Tourmaline defines a group of complex borosilicate forms as accessory mineral in igneous and metamorphic rocks and they act an important role in the interpretation of the chemical composition changes of the composition of the host fluid of the magma. The variety of tourmaline can be identified by using optical microscopy, X-Ray Diffraction (XRD) and by determining its chemical composition through Polarized Energy Dispersive X-Ray Fluorescence (PED-XRF) methods. However, microscopic investigations and XRD analyses are not quite adequate for detailed determination of tourmaline sub-groups. In addition, the use of chemical composition of tourmaline as a strict indicator of geochemical processes might be a misleading method. In this study, variable tourmaline crystals were collected from three different pegmatitic occurrences in Behrekdag, Yozgat and Karakaya granitic bodies of Central Anatolia to identify their chemical properties through Confocal Raman Spectroscopy (CRS), PED-XRF and XRD analyses. The confocal Raman spectrometry of collected tourmalines from the Behrekdag, Yozgat and Karakaya granites are in the compositions of schorl, schorl and elbaite respectively. The dominant compositional groups of these tourmalines are in the form of schorl. Raman shift values of tourmalines revealed four bands centered at almost 1050, 750, 400 and 300 cm- 1. The first group of the band arises from SiO stretching, the second from Bsbnd O stretching and the other two belong to bending modes of Osbnd Bsbnd O and Bsbnd Osbnd Al with symmetrical deformation of Sisbnd Osbnd Si. The strongest spectra near 360 cm- 1 should belong to the bonding of Alsbnd O. As a result, the confocal Raman studies are more sensitive for identification of tourmaline subgroup compositions and have a quite important in the explaining source of the magma.

  2. Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation.

    PubMed

    Cianconi, L; Palopoli, P; Campanella, V; Mancini, M

    2016-12-01

    The aim of this study was to determine the chemical composition and the phases' microstructure of Aureoseal Plus (OGNA, Italy) and ProRoot MTA (Dentsply Tulsa Dental, USA) and to compare their characteristics. Study Design: Comparing Aureoseal Plus and ProRoot MTA microstructure by means of several analyses type. The chemical analysis of the two cements was assessed following the UNI EN ISO 196-2 norm. X-Ray fluorescence (XRF) was used to determine the element composition. The crystalline structure was analysed quantitatively using x-ray diffraction (XRD). Powders morphology was evaluated using a scanning electron microscope (SEM) with backscattering detectors, and a field emission scanning electron microscope (FESEM). Elemental analysis was performed by energy dispersive x-ray analysis (EDS). The semi-quantitative XRF analysis showed the presence of heavy metal oxides in both cements. The XRD spectra of the two cements reported the presence of dicalcium silicate, tricalcium silicate, tricalcium aluminate, tetracalcium aluminoferrite, bismuth oxide and gypsum. SEM analysis showed that ProRoot MTA powder is less coarse and more homogeneous than Aureoseal. Both powders are formed by particles of different shapes: round, prismatic and oblong. The EDS analysis showed that some ProRoot MTA particles, differently from Aureoseal, contain Ca, Si, Al and Fe. Oblong particles in ProRoot and Aureoseal are rich of bismuth. The strong interest in developing new Portland cement-based endodontic sealers will create materials with increased handling characteristics and physicochemical properties. A thorough investigation on two cement powders was carried out by using XRF, XRD, SEM and EDS analysis. To date there was a lack of studies on Aureoseal Plus. This cement is similar in composition to ProRoot MTA. Despite that it has distinctive elements that could improve its characteristics, resulting in a good alternative to MTA.

  3. Use of tourmaline as a potential petrogenetic indicator in the determination of host magma: CRS, XRD and PED-XRF methods.

    PubMed

    Gullu, Bahattin; Kadioglu, Yusuf Kagan

    2017-08-05

    Tourmaline defines a group of complex borosilicate forms as accessory mineral in igneous and metamorphic rocks and they act an important role in the interpretation of the chemical composition changes of the composition of the host fluid of the magma. The variety of tourmaline can be identified by using optical microscopy, X-Ray Diffraction (XRD) and by determining its chemical composition through Polarized Energy Dispersive X-Ray Fluorescence (PED-XRF) methods. However, microscopic investigations and XRD analyses are not quite adequate for detailed determination of tourmaline sub-groups. In addition, the use of chemical composition of tourmaline as a strict indicator of geochemical processes might be a misleading method. In this study, variable tourmaline crystals were collected from three different pegmatitic occurrences in Behrekdag, Yozgat and Karakaya granitic bodies of Central Anatolia to identify their chemical properties through Confocal Raman Spectroscopy (CRS), PED-XRF and XRD analyses. The confocal Raman spectrometry of collected tourmalines from the Behrekdag, Yozgat and Karakaya granites are in the compositions of schorl, schorl and elbaite respectively. The dominant compositional groups of these tourmalines are in the form of schorl. Raman shift values of tourmalines revealed four bands centered at almost 1050, 750, 400 and 300cm -1 . The first group of the band arises from SiO stretching, the second from BO stretching and the other two belong to bending modes of OBO and BOAl with symmetrical deformation of SiOSi. The strongest spectra near 360cm -1 should belong to the bonding of AlO. As a result, the confocal Raman studies are more sensitive for identification of tourmaline subgroup compositions and have a quite important in the explaining source of the magma. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. 1-D Compression Behaviour of Acid Sulphate Soils Treated with Alkali-Activated Slag

    PubMed Central

    Islam, Shahidul; Haque, Asadul; Bui, Ha Hong

    2016-01-01

    Improvements of soft soils by mechanically mixing cementitious additives have been widely practised for construction of infrastructure. Mixing of additives improves strength and compressibility properties of soils through the development of soil structure. This study investigates the 1-D compression behaviour of alkali-activated slag treated acid sulphate soils (ASS) cured up to 365 days. The void ratio-logarithm of pressure (e-logσ′) behaviour of treated ASS, including the destructuration behaviour, with additive contents and curing time have been analysed. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses have been undertaken to explain the observed variations of the 1-D compression behaviour. This paper presents the results of these analyses in view of obtaining an insight into the 1-D compression behaviour of treated ASS with the help of mineralogical analysis. PMID:28773415

  5. 1-D Compression Behaviour of Acid Sulphate Soils Treated with Alkali-Activated Slag.

    PubMed

    Islam, Shahidul; Haque, Asadul; Bui, Ha Hong

    2016-04-15

    Improvements of soft soils by mechanically mixing cementitious additives have been widely practised for construction of infrastructure. Mixing of additives improves strength and compressibility properties of soils through the development of soil structure. This study investigates the 1-D compression behaviour of alkali-activated slag treated acid sulphate soils (ASS) cured up to 365 days. The void ratio-logarithm of pressure (e-logσ') behaviour of treated ASS, including the destructuration behaviour, with additive contents and curing time have been analysed. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses have been undertaken to explain the observed variations of the 1-D compression behaviour. This paper presents the results of these analyses in view of obtaining an insight into the 1-D compression behaviour of treated ASS with the help of mineralogical analysis.

  6. Synthesis and structural characterization of polyaniline/cobalt chloride composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asha, E-mail: arana5752@gmail.com; Goyal, Sneh Lata; Kishore, Nawal

    2016-05-23

    Polyaniline (PANI) and PANI /cobalt chloride composites were synthesized by in situ chemical oxidative polymerization of aniline with CoCl{sub 2}.6H{sub 2}O using ammonium peroxidisulphate as an oxidant. These composites were characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The XRD study reveals that both PANI and composites are amorphous. The XRD and SEM results confirm the presence of cobalt chloride in the composites.

  7. Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy.

    PubMed

    Muzyka, Roksana; Drewniak, Sabina; Pustelny, Tadeusz; Chrubasik, Maciej; Gryglewicz, Grażyna

    2018-06-21

    In this paper, the influences of the graphite precursor and the oxidation method on the resulting reduced graphene oxide (especially its composition and morphology) are shown. Three types of graphite were used to prepare samples for analysis, and each of the precursors was oxidized by two different methods (all samples were reduced by the same method of thermal reduction). Each obtained graphite oxide and reduced graphene oxide was analysed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy (RS).

  8. Fe K-Edge X-ray absorption near-edge spectroscopy (XANES) and X-ray diffraction (XRD) analyses of LiFePO4 and its base materials

    NASA Astrophysics Data System (ADS)

    Latif, C.; Negara, V. S. I.; Wongtepa, W.; Thamatkeng, P.; Zainuri, M.; Pratapa, S.

    2018-03-01

    XANES analysis has been performed with the aim of knowing the Fe oxidation state in a synthesized LiFePO4 and its base materials. XANES measurements were performed at SLRI on energy around Fe K-edge. An XRD analysis has also been performed with the aim of knowing the phase composition, lattice parameters and crystallite size of the LiFePO4 as well as the base materials. From the XRD analysis, it was found that the dominating phase in the iron sand sample was Fe3O4 and the only phase found after calcination was LiFePO4. The latter phase exhibited crystallite size of 100 nm and lattice parameters a = 10.169916 Å, b = 5.919674 Å, c = 4.627893 Å. Qualitative analysis of XANES data revealed that the oxidation number of Fe in the sample before calcination was greater than that after calcination and Fe in the natural iron sand, indicated by the E0 values of 7129.2 eV, 7120.6 eV and 7124.4 eV respectively.

  9. Influence of nickel substitution on crystal structure and magnetic properties of strontium ferrite preparation via sol-gel auto-combustion route

    NASA Astrophysics Data System (ADS)

    Roohani, Ebrahim; Arabi, Hadi; Sarhaddi, Reza

    2018-01-01

    In this research, SrFe12-xNixO19 (x = 0 - 1) hexagonal ferrites were prepared by sol-gel auto-combustion method. Effect of Ni substitution on structural, morphological and magnetic properties of nanoparticles was investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM), respectively. The XRD results confirmed that all samples with x ≤ 0.5 have single phase M-type strontium ferrite structure, whereas for the SrFe12-xNixO19 samples with x > 0.5, the spinel NiFe2O4 phase has also appeared. The lattice parameters and crystallite sizes of the powders were concluded from the XRD data and Williamson-Hall method. Magnetic analyses showed that the coercivity of powders decreased from 5672 Oe to 639 Oe while the saturation magnetization increased from 74 emu/g to 81 emu/g with nickel substitution. The results of this study suggest that the strontium hexaferrites doped with Ni are suitable for applications in high density magnetic recording media as well as microwave devices because of their promising magnetic properties.

  10. Application of Mythen detector: In-situ XRD study on the thermal expansion behavior of metal indium

    NASA Astrophysics Data System (ADS)

    Du, Rong; Chen, ZhongJun; Cai, Quan; Fu, JianLong; Gong, Yu; Wu, ZhongHua

    2016-07-01

    A Mythen detector has been equipped at the beamline 4B9A of Beijing Synchrotron Radiation Facility (BSRF), which is expected to enable BSRF to perform time-resolved measurement of X-ray diffraction (XRD) full-profiles. In this paper, the thermal expansion behavior of metal indium has been studied by using the in-situ XRD technique with the Mythen detector. The indium was heated from 303 to 433 K with a heating rate of 2 K/min. The in-situ XRD full-profiles were collected with a rate of one profile per 10 seconds. Rietveld refinement was used to extract the structural parameters. The results demonstrate that these collected quasi-real-time XRD profiles can be well used for structural analysis. The metal indium was found to have a nonlinear thermal expansion behavior from room temperature to the melting point (429.65 K). The a-axis of the tetragonal unit cell expands with a biquadratic dependency on temperature, while the c-axis contracts with a cubic dependency on temperature. By the time-resolved XRD measurements, it was observed that the [200] preferred orientation can maintain to about 403.15 K. While (110) is the last and detectable crystal plane just before melting of the polycrystalline indium foil. This study is not only beneficial to the application of metal indium, but also exhibits the capacity of in-situ time-resolved XRD measurements at the X-ray diffraction station of BSRF.

  11. Synthesis, characterization and bioactivity of a calcium-phosphate glass-ceramics obtained by the sol-gel processing method.

    PubMed

    Jmal, Nouha; Bouaziz, Jamel

    2017-02-01

    In this work, a calcium-phosphate glass-ceramics was successfully obtained by heat treatment of a mixture of 26.52 in wt.% of fluorapatite (Fap) and 73.48 in wt.% of 77S (77 SiO 2 14 CaO9 P 2 O 5 in wt.%) gel. The calcium phosphate-glass-ceramics was prepared by sol-gel process with tetraethyl orthosilicate (TEOS), triethyl phosphate (TEP), calcium nitrate and fluorapatite. The synthesized powders were characterized by some commonly used tools such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), 31 P magic angle spinning nuclear magnetic resonance (MAS-NMR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and thin-film X-ray diffraction (TF-XRD). The obtained results seemed to confirm the nucleation and growth of hydroxyapatite (Hap) nano-phase in the glass. Moreover, an in-vitro evaluation of the glass-ceramic was performed. In addition, to assess its bioactive capacity, it was soaked in simulated body fluid (SBF) at different time intervals. The SEM, EDS and TF-XRD analyses showed the deposition of hydroxyapatite on the surface of the specimens after three days of immersion in SBF solution. The mechanical properties of the obtained material such as rupture strength, Vickers hardness and elastic modulus were measured. In addition, the friction coefficient of calcium phosphate-glass-ceramics was tested. The values of the composite of rupture strength (24MPa), Vickers hardness (214Hv), Young's modulus (52.3GPa), shear modulus (19GPa) and friction coefficient (0.327) were obtained. This glass-ceramics can have useful applications in dental prostheses. Indeed, this material may have promising applications for implants because of its content of fluorine, the effective protector against dental caries. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Room temperature ferromagnetism of nanocrystalline Nd1.90Ni0.10O3-δ

    NASA Astrophysics Data System (ADS)

    Sarkar, B. J.; Mandal, J.; Dalal, M.; Bandyopadhyay, A.; Chakrabarti, P. K.

    2018-05-01

    Nanocrystalline sample of Ni2+ doped neodymium oxide (Nd1.90Ni0.10O3-δ, NNO) is synthesized by co-precipitation method. Analysis of X-ray diffraction (XRD) pattern by Rietveld refinement method confirms the desired phase of NNO and complete substitution of Ni2+ ions in the Nd2O3 lattice. Analyses of transmission electron microscopy (TEM) and Raman spectroscopy of NNO recorded at room temperature (RT) also substantiate this fact. Besides, no traces of impurities are found in the analyses of XRD, TEM and Raman data. Room temperature hysteresis loop of NNO suggests the presence of weak ferromagnetism (FM) in low field region ( 600 mT), but in high field region paramagnetism of the host is more prominent. Magnetization vs. temperature ( M- T) curve in the entire temperature range (300-5 K) is analyzed successfully by a combined equation generated from three-dimensional (3D) spin wave model and Curie-Weiss law, which suggests the presence of mixed paramagnetic phase together with ferromagnetic phase in the doped sample. The onset of magnetic ordering is analyzed by oxygen vacancy mediated F-center exchange (FCE) coupling mechanism.

  13. Field-induced polarization rotation and phase transitions in 0.70 Pb ( M g 1 / 3 N b 2 / 3 ) O 3 – 0.30 PbTi O 3 piezoceramics observed by in situ high-energy x-ray scattering

    DOE PAGES

    Hou, Dong; Usher, Tedi -Marie; Fulanovic, Lovro; ...

    2018-06-12

    Changes to the crystal structure of 0.70Pb(Mg 1/3Nb 2/3)O 3–0.30PbTiO 3 (PMN-0.30PT) piezoceramic under application of electric fields at the long-range and local scale are revealed by in situ high-energy x-ray diffraction (XRD) and pair-distribution function (PDF) analyses, respectively. The crystal structure of unpoled samples is identified as monoclinic Cm at both the long-range and local scale. In situ XRD results suggest that field-induced polarization rotation and phase transitions occur at specific field strengths. A polarization rotation pathway is proposed based on the Bragg-peak behaviors and the Le Bail fitting results of the in situ XRD patterns. The PDF resultsmore » show systematic changes to the structures at the local scale, which is in agreement with the changes inferred from the in situ XRD study. More importantly, our results prove that polarization rotation can be detected and determined in a polycrystalline relaxor ferroelectric. Furthermore, this study supports the idea that multiple contributions, specifically ferroelectric-ferroelectric phase transition and polarization rotation, are responsible for the high piezoelectric properties at the morphotropic phase boundary of PMN-xPT piezoceramics.« less

  14. Field-induced polarization rotation and phase transitions in 0.70 Pb ( M g 1 / 3 N b 2 / 3 ) O 3 – 0.30 PbTi O 3 piezoceramics observed by in situ high-energy x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Dong; Usher, Tedi -Marie; Fulanovic, Lovro

    Changes to the crystal structure of 0.70Pb(Mg 1/3Nb 2/3)O 3–0.30PbTiO 3 (PMN-0.30PT) piezoceramic under application of electric fields at the long-range and local scale are revealed by in situ high-energy x-ray diffraction (XRD) and pair-distribution function (PDF) analyses, respectively. The crystal structure of unpoled samples is identified as monoclinic Cm at both the long-range and local scale. In situ XRD results suggest that field-induced polarization rotation and phase transitions occur at specific field strengths. A polarization rotation pathway is proposed based on the Bragg-peak behaviors and the Le Bail fitting results of the in situ XRD patterns. The PDF resultsmore » show systematic changes to the structures at the local scale, which is in agreement with the changes inferred from the in situ XRD study. More importantly, our results prove that polarization rotation can be detected and determined in a polycrystalline relaxor ferroelectric. Furthermore, this study supports the idea that multiple contributions, specifically ferroelectric-ferroelectric phase transition and polarization rotation, are responsible for the high piezoelectric properties at the morphotropic phase boundary of PMN-xPT piezoceramics.« less

  15. Field-induced polarization rotation and phase transitions in 0.70 Pb (M g1 /3N b2 /3 ) O3-0.30 PbTi O3 piezoceramics observed by in situ high-energy x-ray scattering

    NASA Astrophysics Data System (ADS)

    Hou, Dong; Usher, Tedi-Marie; Fulanovic, Lovro; Vrabelj, Marko; Otonicar, Mojca; Ursic, Hana; Malic, Barbara; Levin, Igor; Jones, Jacob L.

    2018-06-01

    Changes to the crystal structure of 0.70 Pb (M g1 /3N b2 /3 ) O3-0.30 PbTi O3 (PMN-0.30PT) piezoceramic under application of electric fields at the long-range and local scale are revealed by in situ high-energy x-ray diffraction (XRD) and pair-distribution function (PDF) analyses, respectively. The crystal structure of unpoled samples is identified as monoclinic C m at both the long-range and local scale. In situ XRD results suggest that field-induced polarization rotation and phase transitions occur at specific field strengths. A polarization rotation pathway is proposed based on the Bragg-peak behaviors and the Le Bail fitting results of the in situ XRD patterns. The PDF results show systematic changes to the structures at the local scale, which is in agreement with the changes inferred from the in situ XRD study. More importantly, our results prove that polarization rotation can be detected and determined in a polycrystalline relaxor ferroelectric. This study supports the idea that multiple contributions, specifically ferroelectric-ferroelectric phase transition and polarization rotation, are responsible for the high piezoelectric properties at the morphotropic phase boundary of PMN-x PT piezoceramics.

  16. Application of vibrational spectroscopy, thermal analyses and X-ray diffraction in the rapid evaluation of the stability in solid-state of ranitidine, famotidine and cimetidine.

    PubMed

    Jamrógiewicz, Marzena; Ciesielski, Aleksander

    2015-03-25

    This paper reports the study on applicability of Fourier transform infrared (FTIR), near-infrared (NIR) and Raman spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) for the estimation of the chemical stability and photostability of histamine H2-receptor antagonist substances. Ranitidine hydrochloride (RAN), famotidine (FAM) and cimetidine (CIM) were tested and differences in sensitivity were measured via soft independence modeling of class analogies (Simca) model. The low values of variations for FAM and CIM and high variations obtained for RAN using FTIR and NIR techniques indicated that these methods were suitable and applicable to classify the degradation of RAN. Examined methods are recommendable in the first technological stage of drug production, and the preclinical and clinical development of pharmaceuticals or their quality control. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The Effect of Compaction Force on the Transition to Hydrate of Anhydrous Aripiprazole.

    PubMed

    Togo, Taichiro; Taniguchi, Toshiya; Nakata, Yoshitaka

    2018-01-01

    Aripiprazole (APZ) is used to treat schizophrenia and is administered as a tablet containing the anhydrous form of APZ. In this study, the effect of compaction force on the crystal form transition was investigated. The crystalline state was observed by X-ray diffraction (XRD). APZ Anhydrous Form II was compacted into tablets. The XRD intensity of anhydrous APZ became lower with higher compressive force. The degree of crystallinity decreased with the compaction force. The powder and the compacted tablets of anhydrous APZ were stored for one week under 60°C and 75% relative humidity. The powder showed no crystal form transition after storage. For the tablets, however, XRD peaks of APZ hydrate were observed after storage. The tablets compacted with higher force showed the higher XRD diffraction intensity of hydrate form. We concluded that the crystallinity reduction of APZ Anhydrous Form II by compaction caused and accelerated the transition to hydrate under high temperature and humidity conditions. In order to manufacture crystallographically stable tablets containing anhydrous APZ, it is important to prevent this crystallinity reduction during compaction.

  18. Interface morphology of a Cr(001)/Fe(001) superlattice determined by scanning tunneling microscopy and x-ray diffraction: A comparison

    NASA Astrophysics Data System (ADS)

    Schmidt, C. M.; Bürgler, D. E.; Schaller, D. M.; Meisinger, F.; Güntherodt, H.-J.; Temst, K.

    2001-01-01

    A Cr(001)/Fe(001) superlattice with ten bilayers grown by molecular beam epitaxy on a Ag(001) substrate is studied by in situ scanning tunneling microscopy (STM) and ex situ x-ray diffraction (XRD). Layer-resolved roughness parameters determined from STM images taken in various stages of the superlattice fabrication are compared with average values reported in the literature or obtained from the fits of our XRD data. Good agreement is found for the rms roughnesses describing vertical roughness and for the lateral correlation lengths characterizing correlated as well as uncorrelated interface roughness if peculiarities of STM and XRD are taken into account. We discuss in detail (i) the possible differences between the STM topography of a free surface and the morphology of a subsequently formed interface, (ii) contributions due to chemical intermixing at the interfaces, (iii) the comparison of XRD parameters averaged over all interfaces versus layer-resolved STM parameters, and (iv) the question of the coherent field of view for the determination of rms values.

  19. X-Ray Diffraction of different samples of Swarna Makshika Bhasma.

    PubMed

    Gupta, Ramesh Kumar; Lakshmi, Vijay; Jha, Chandra Bhushan

    2015-01-01

    Shodhana and Marana are a series of complex procedures that identify the undesirable effects of heavy metals/minerals and convert them into absorbable and assimilable forms. Study on the analytical levels is essential to evaluate the structural and chemical changes that take place during and after following such procedures as described in major classical texts to understand the mystery behind these processes. X-Ray Diffraction (XRD) helps to identify and characterize minerals/metals and fix up the particular characteristics pattern of prepared Bhasma. To evaluate the chemical changes in Swarna Makshika Bhasma prepared by using different media and methods. In this study, raw Swarna Makshika, purified Swarna Makshika and four types of Swarna Makshika Bhasma prepared by using different media and methods were analyzed by XRD study. XRD study of different samples revealed strongest peaks of iron oxide in Bhasma. Other phases of Cu2O, FeS2, Cu2S, FeSO4, etc., were also identified in many of the samples. XRD study revealed that Swarna Makshika Bhasma prepared by Kupipakwa method is better, convenient, and can save time.

  20. Synthesis of Lead Sulfide Nanoparticles by Chemical Precipitation Method

    NASA Astrophysics Data System (ADS)

    Chongad, L. S.; Sharma, A.; Banerjee, M.; Jain, A.

    2016-10-01

    Lead sulfide (PbS) nanoparticles were prepared by chemical precipitation method (CPM) with the assistance of H2S gas. The microstructure and morphology of the synthesized nanoparticles have been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the PbS nanoparticles reveal formation of cubic phase. To investigate the quality of prepared nanoparticles, the particles size, lattice constant, strain, dislocation density etc. have been determined using XRD. TEM images reveal formation of cubic nanoparticles and the particle size determined from TEM images agree well with those from XRD.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Hui; Zou Kang; Guo Shaohuan

    A nanostructural drug-inorganic clay composite involving a pharmaceutically active compound captopril (Cpl) intercalated Mg-Al-layered double hydroxides (Cpl-LDHs) with Mg/Al molar ratio of 2.06 has been assembled by coprecipitation method. Powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR) and Raman spectra analysis indicate a successful intercalation of Cpl between the layers with a vertical orientation of Cpl disulphide-containing S-S linkage. SEM photo indicates that as-synthesized Cpl-LDHs possess compact and non-porous structure with approximately and linked elliptical shape particles of ca. 50 nm. TG-DTA analyses suggest that the thermal stability of intercalated organic species is largely enhanced due to host-guest interactionmore » involving the hydrogen bond compared to pure form before intercalation. The in vitro release studies show that both the release rate and release percentages markedly decrease with increasing pH from 4.60 to 7.45 due to possible change of release mechanism during the release process. The kinetic simulation for the release data, and XRD and FT-IR analyses for samples recovered from release media indicate that the dissolution mechanism is mainly responsible for the release behaviour of Cpl-LDHs at pH 4.60, while the ion-exchange one is responsible for that at pH 7.45. - Graphical abstract: Based on XRD, FT-IR and Raman spectra analyses, it is suggested that captopril (Cpl) exists as its disulphide metabolites in the interlayer of Mg-Al-LDHs via hydrogen bonding between guest carboxylate function and hydroxyl group of the host layers. A schematic supramolecular structure of Cpl intercalates involving a vertical orientation of Cpl disulphide-containing S-S bond between the layers with carboxylate anions pointing to both hydroxide layers is presented.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourlier, Yoan; Cristini Robbe, Odile; Laboratoire de Physique des Lasers, Atomes et Molécules

    Highlights: • CuIn{sub (1−x)}Ga{sub x}S{sub 2} thin films were prepared by sol–gel process. • Evolution of lattice parameters is characteristic of a solid solution. • Optical band gap was found to be linearly dependent on the gallium rate. - Abstract: In this paper, we report the elaboration of Cu(In,Ga)S{sub 2} chalcopyrite thin films via a sol–gel process. To reach this aim, solutions containing copper, indium and gallium complexes were prepared. These solutions were thereafter spin-coated onto the soda lime glass substrates and calcined, leading to metallic oxides thin films. Expected chalcopyrite films were finally obtained by sulfurization of oxides layersmore » using a sulfur atmosphere at 500 °C. The rate of gallium incorporation was studied both at the solutions synthesis step and at the thin films sulfurization process. Elemental and X-ray diffraction (XRD) analyses have shown the efficiency of monoethanolamine used as a complexing agent for the preparation of CuIn{sub (1−x)}Ga{sub x}S{sub 2} thin layers. Moreover, the replacement of diethanolamine by monoethanolamine has permitted the substitution of indium by isovalent gallium from x = 0 to x = 0.4 and prevented the precipitation of copper derivatives. XRD analyses of sulfurized thin films CuIn{sub (1−x)}Ga{sub x}S{sub 2,} clearly indicated that the increasing rate of gallium induced a shift of XRD peaks, revealing an evolution of the lattice parameter in the chalcopyrite structure. These results were confirmed by Raman analyses. Moreover, the optical band gap was also found to be linearly dependent upon the gallium rate incorporated within the thin films: it varies from 1.47 eV for x = 0 to 1.63 eV for x = 0.4.« less

  3. Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature

    PubMed Central

    Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J.; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; Schafer, Donald W.; Messerschmidt, Marc; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Grosse-Kunstleve, Ralf W.; Zwart, Petrus H.; White, William E.; Glatzel, Pieter; Adams, Paul D.; Bogan, Michael J.; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K.; Yachandra, Vittal K.; Bergmann, Uwe; Yano, Junko

    2013-01-01

    Intense femtosecond X-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) of microcrystals of Photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD/XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies. PMID:23413188

  4. Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature.

    PubMed

    Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; Difiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; Schafer, Donald W; Messerschmidt, Marc; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Grosse-Kunstleve, Ralf W; Zwart, Petrus H; White, William E; Glatzel, Pieter; Adams, Paul D; Bogan, Michael J; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K; Yachandra, Vittal K; Bergmann, Uwe; Yano, Junko

    2013-04-26

    Intense femtosecond x-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous x-ray diffraction (XRD) and x-ray emission spectroscopy (XES) of microcrystals of photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD-XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation-sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies.

  5. Characterization of mineral phases of agricultural soil samples of Colombian coffee using Mössbauer spectroscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Rodríguez, Humberto Bustos; Lozano, Dagoberto Oyola; Martínez, Yebrayl Antonio Rojas; Pinilla, Marlene Rivera; Alcázar, German Antonio Pérez

    2012-03-01

    Soil chemical analysis, X-ray diffraction (XRD) and Mössbauer spectrometry (MS) of 57Fe were used to characterize mineral phases of samples taken from the productive layer (horizon A) of agricultural coffee soil from Tolima (Colombia). Chemical analysis shows the chemical and textural parameters of samples from two different regions of Tolima, i.e., Ibagué and Santa Isabel. By XRD phases like illite (I), andesine (A) and quartz (Q) in both samples were identified. The quantity of these phases is different for the two samples. The MS spectra taken at room temperature were adjusted by using five doublets, three of them associated to Fe + 3 type sites and the other two to Fe + 2 type sites. According to their isomer shift and quadrupole splitting the presence of phases like illite (detected by DRX), nontronite and biotite (not detected by XRD) can be postulated.

  6. Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science.

    PubMed

    Svarcová, Silvie; Kocí, Eva; Bezdicka, Petr; Hradil, David; Hradilová, Janka

    2010-09-01

    The uniqueness and limited amounts of forensic samples and samples from objects of cultural heritage together with the complexity of their composition requires the application of a wide range of micro-analytical methods, which are non-destructive to the samples, because these must be preserved for potential late revision. Laboratory powder X-ray micro-diffraction (micro-XRD) is a very effective non-destructive technique for direct phase analysis of samples smaller than 1 mm containing crystal constituents. It compliments optical and electron microscopy with elemental micro-analysis, especially in cases of complicated mixtures containing phases with similar chemical composition. However, modification of X-ray diffraction to the micro-scale together with its application for very heterogeneous real samples leads to deviations from the standard procedure. Knowledge of both the limits and the phenomena which can arise during the analysis is crucial for the meaningful and proper application of the method. We evaluated basic limits of micro-XRD equipped with a mono-capillary with an exit diameter of 0.1 mm, for example the size of irradiated area, appropriate grain size, and detection limits allowing identification of given phases. We tested the reliability and accuracy of quantitative phase analysis based on micro-XRD data in comparison with conventional XRD (reflection and transmission), carrying out experiments with two-phase model mixtures simulating historic colour layers. Furthermore, we demonstrate the wide use of micro-XRD for investigation of various types of micro-samples (contact traces, powder traps, colour layers) and we show how to enhance data quality by proper choice of experiment geometry and conditions.

  7. On-the-fly segmentation approaches for x-ray diffraction datasets for metallic glasses

    DOE PAGES

    Ren, Fang; Williams, Travis; Hattrick-Simpers, Jason; ...

    2017-08-30

    Investment in brighter sources and larger detectors has resulted in an explosive rise in the data collected at synchrotron facilities. Currently, human experts extract scientific information from these data, but they cannot keep pace with the rate of data collection. Here, we present three on-the-fly approaches—attribute extraction, nearest-neighbor distance, and cluster analysis—to quickly segment x-ray diffraction (XRD) data into groups with similar XRD profiles. An expert can then analyze representative spectra from each group in detail with much reduced time, but without loss of scientific insights. As a result, on-the-fly segmentation would, therefore, result in accelerated scientific productivity.

  8. Sand sources and transport pathways for the San Francisco Bay coastal system, based on X-ray diffraction mineralogy

    USGS Publications Warehouse

    Hein, James R.; Mizell, Kira; Barnard, Patrick L.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    The mineralogical compositions of 119 samples collected from throughout the San Francisco Bay coastal system, including bayfloor and seafloor, area beaches, cliff outcrops, and major drainages, were determined using X-ray diffraction (XRD). Comparison of the mineral concentrations and application of statistical cluster analysis of XRD spectra allowed for the determination of provenances and transport pathways. The use of XRD mineral identifications provides semi-quantitative compositions needed for comparisons of beach and offshore sands with potential cliff and river sources, but the innovative cluster analysis of XRD diffraction spectra provides a unique visualization of how groups of samples within the San Francisco Bay coastal system are related so that sand-sized sediment transport pathways can be inferred. The main vector for sediment transport as defined by the XRD analysis is from San Francisco Bay to the outer coast, where the sand then accumulates on the ebb tidal delta and also moves alongshore. This mineralogical link defines a critical pathway because large volumes of sediment have been removed from the Bay over the last century via channel dredging, aggregate mining, and borrow pit mining, with comparable volumes of erosion from the ebb tidal delta over the same period, in addition to high rates of shoreline retreat along the adjacent, open-coast beaches. Therefore, while previously only a temporal relationship was established, the transport pathway defined by mineralogical and geochemical tracers support the link between anthropogenic activities in the Bay and widespread erosion outside the Bay. The XRD results also establish the regional and local importance of sediment derived from cliff erosion, as well as both proximal and distal fluvial sources. This research is an important contribution to a broader provenance study aimed at identifying the driving forces for widespread geomorphic change in a heavily urbanized coastal-estuarine system.

  9. Novel synthesis strategy for composite hydrogel of collagen/hydroxyapatite-microsphere originating from conversion of CaCO3 templates.

    PubMed

    Wei, Qingrong; Lu, Jian; Wang, Qiaoying; Fan, Hongsong; Zhang, Xingdong

    2015-03-20

    Inspired by coralline-derived hydroxyapatite, we designed a methodological route to synthesize carbonated-hydroxyapatite microspheres from the conversion of CaCO3 spherulite templates within a collagen matrix under mild conditions and thus constructed the composite hydrogel of collagen/hydroxyapatite-microspheres. Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) were employed to confirm the successful generation of the carbonated hydroxyapatite phase originating from CaCO3, and the ratios of calcium to phosphate were tracked over time. Variations in the weight portion of the components in the hybrid gels before and after the phase transformation of the CaCO3 templates were identified via thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) shows these composite hydrogels have a unique multiscale microstructure consisting of a collagen nanofibril network and hydroxyapatite microspheres. The relationship between the hydroxyapatite nanocrystals and the collagen fibrils was revealed by transmission electron microscopy (TEM) in detail, and the selected area electron diffraction (SAED) pattern further confirmed the results of the XRD analyses which show the typical low crystallinity of the generated hydroxyapatite. This smart synthesis strategy achieved the simultaneous construction of microscale hydroxyapatite particles and collagen fibrillar hydrogel, and appears to provide a novel route to explore an advanced functional hydrogel materials with promising potentials for applications in bone tissue engineering and reconstruction medicine.

  10. Characterization of the Microstructure of the Compositionally Complex Alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1 (Postprint)

    DTIC Science & Technology

    2016-05-01

    limited to X-ray diffraction ( XRD ) and scanning electron microscopy (SEM). The alloy was reported to contain two bcc phases with similar lattice...it appears that the interface between the two phases is fairly coherent. Interestingly, the XRD study described in [8] suggested that there were two...line-scan shown in (h). 3 Distribution A. Approved for public reledifference in lattice parameter measurements realized in bulk samples ( XRD ) vs

  11. High Rate Deposition of Thick CrN and Cr2N Coatings Using Modulated Pulse Power (MPP) Magnetron Sputtering

    DTIC Science & Technology

    2010-12-01

    in the conventional Bragg-Bentano mode. The residual stress of the coatings was measured by glancing incident angle XRD (GIXRD) in the same X - ray ...micro-analysis (EPMA), x - ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), nanoindentation, scratch test, and ball-on...the coatings was determined by XRD using a SIEMENS X - ray diffractometer (Model KRISTALLOFLEX-810) operated with K-alpha Cu radiation (30 kV and 20 mA

  12. Preparation of thermally stable nanocrystalline hydroxyapatite by hydrothermal method.

    PubMed

    Prakash Parthiban, S; Elayaraja, K; Girija, E K; Yokogawa, Y; Kesavamoorthy, R; Palanichamy, M; Asokan, K; Narayana Kalkura, S

    2009-12-01

    Thermally stable hydroxyapatite (HAp) was synthesized by hydrothermal method in the presence of malic acid. X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), differential thermal analysis (DTA), thermogravimetric analysis (TGA) was done on the synthesized powders. These analyses confirmed the sample to be free from impurities and other phases of calcium phosphates, and were of rhombus morphology along with nanosized particles. IR and Raman analyses indicated the adsorption of malic acid on HAp. Thermal stability of the synthesized HAp was confirmed by DTA and TGA. The synthesized powders were thermally stable upto 1,400 degrees C and showed no phase change. The proposed method might be useful for producing thermally stable HAp which is a necessity for high temperature coating applications.

  13. Micro-X-ray diffraction assessment of shock stage in enstatite chondrites

    NASA Astrophysics Data System (ADS)

    Izawa, Matthew R. M.; Flemming, Roberta L.; Banerjee, Neil R.; McCausland, Philip J. A.

    2011-05-01

    A new method for assessing the shock stage of enstatite chondrites has been developed, using in situ micro-X-ray diffraction (μXRD) to measure the full width at half maximum (FWHMχ) of peak intensity distributed along the direction of the Debye rings, or chi angle (χ), corresponding to individual lattice reflections in two-dimensional XRD patterns. This μXRD technique differs from previous XRD shock characterization methods: it does not require single crystals or powders. In situ μXRD has been applied to polished thin sections and whole-rock meteorite samples. Three frequently observed orthoenstatite reflections were measured: (020), (610), and (131); these were selected as they did not overlap with diffraction lines from other phases. Enstatite chondrites are commonly fine grained, stained or darkened by weathering, shock-induced oxidation, and metal/sulfide inclusions; furthermore, most E chondrites have little olivine or plagioclase. These characteristics inhibit transmitted-light petrography, nevertheless, shock stages have been assigned MacAlpine Hills (MAC) 02837 (EL3) S3, Pecora Escarpment (PCA) 91020 (EL3) S5, MAC 02747 (EL4) S4, Thiel Mountains (TIL) 91714 (EL5) S2, Allan Hills (ALHA) 81021 (EL6) S2, Elephant Moraine (EET) 87746 (EH3) S3, Meteorite Hills (MET) 00783 (EH4) S4, EET 96135 (EH4-5) S2, Lewis Cliff (LEW) 88180 (EH5) S2, Queen Alexandra Range (QUE) 94204 (EH7) S2, LaPaz Icefield (LAP) 02225 (EH impact melt) S1; for the six with published shock stages, there is agreement with the published classification. FWHMχ plotted against petrographic shock stage demonstrates positive linear correlation. FWHMχ ranges corresponding to shock stages were assigned as follows: S1 < 0.7°, S2 = 0.7-1.2°, S3 = 1.2-2.3°, S4 = 2.3-3.5°, S5 > 3.5°, S6—not measured. Slabs of Abee (EH impact-melt breccia), and Northwest Africa (NWA) 2212 (EL6) were examined using μXRD alone; FWHMχ values place both in the S2 range, consistent with literature values. Micro-XRD analysis may be applicable to other shocked orthopyroxene-bearing rocks.

  14. Synthesis and Characterization of Chitosan-p-t-Butylcalix[4]arene acid

    NASA Astrophysics Data System (ADS)

    Handayani, D. S.; Frimadasi, W.; Kusumaningsih, T.; Pranoto

    2018-03-01

    The synthesis of chitosan-p-t-butylcalix[4]arene acid was done with DIC (N, N’-diisopropylcarbodiimide) as the coupling agent. The structural analysis of the chitosan-p-t-butylcalix[4]arene acid was conducted by spectrophotometer Fourier Transform Infra Red (FTIR) and X-Ray Diffraction (XRD). Meanwhile, the surface area was investigated by Surface Area Analysis, the Scanning Electrone Microscope (SEM) analysed the surface morphology, and also the melting point temperature was determined. FTIR analysis on Chitosan-p-t-butylcalix[4]arene provides an overlapped absorption of -OH and -NH groups at 3438.26 cm-1. Meanwhile, a C = C aromatic bond present at 1480.43 cm-1. XRD analysis shows some broaden peaks due to the amorphous phase of the prepared material. The prepared material is a brownish yellow solid, odorless and porous. The melting point, surface area, and the average pore radius are above 300 °C, 9.42 m2 / g, and 52.5938 Å, respectively.

  15. Tuning effect of polysaccharide Chitosan on structural, morphological, optical and photoluminescence properties of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Magesh, G.; Bhoopathi, G.; Nithya, N.; Arun, A. P.; Ranjith Kumar, E.

    2018-05-01

    Chitosan/ZnO nanocomposites was synthesized by in-situ chemical precipitation method. The effect of polysaccharide Chitosan concentration (0.1 g, 0.5 g, 1 g and 3 g) was investigated by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) with Energy dispersive spectroscopy (EDX), High Resolution Transmission Electron Microscopy (HRTEM), UV-visible (UV), Fourier Transform Infrared (FTIR) and Photoluminescence Spectroscopy (PL). XRD pattern confirms the hexagonal wurtzite structure of the Chitosan/ZnO nanocomposites. The structural morphology and the elemental composition of the samples were analysed by FESEM and EDX respectively. From TEM analysis, it is observed that the particles in spindle shape morphology with average particle size ranges 10-20 nm. UV-Vis analysis reveals that the Chitosan concentration affect the absorption band edge and shift towards lower wavelength. The oxygen vacancy induced photoluminescence of ZnO nanoparticles was observed and its intensity decreases by tuning the Chitosan concentration.

  16. Synthesis, structural and vibrational studies on mixed alkali metal gadolinium double tungstate, K1-xNaxGd(WO4)2

    NASA Astrophysics Data System (ADS)

    Durairajan, A.; Thangaraju, D.; Moorthy Babu, S.

    2013-02-01

    Mixed alkali double tungstates K1-xNaxGd(WO4)2 (KNGW) (0 ⩽ x ⩽ 1) were synthesized by solid state reaction using sodium doped monoclinic KGd(WO4)2 (KGW). Synthesized KNGW powders were characterized using powder X-ray diffraction (XRD), differential thermal analysis (DTA), scanning electron microscopy (SEM) and Raman analysis. DTA analysis confirms that the melting point of the KGW matrix increases from 1063 °C to 1255 °C with increasing sodium content. The Powder XRD analyses reveal that mixed phases were observed up to 40 wt.% of Na in the KGW matrix above that percentage there is domination of scheelite structure in the synthesized powder. Polyhedral type, bi-pyramidal shape and spheroid shape morphology was observed for KGW, NKGW and NGW powders respectively. The Raman analysis was carried out to understand the vibrational characteristic changes with mixing of sodium ions in the KGW matrix.

  17. The photocatalytic investigation of methylene blue dye with Cr doped zinc oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Rajeev; Kumar, Ashavani, E-mail: ashavani@yahoo.com

    2015-08-28

    The present work reports eco-friendly and cost effective sol-gel technique for synthesis of Chromium doped ZnO nanoparticles at room temperature. In this process Zinc nitrate, Chromium nitrate were used as precursor. Structural as well as optical properties of Cr induced ZnO samples were analysed by X-ray diffraction technique (XRD), SEM, PL and UV-Visible spectroscopy (UV-Vis) respectively. XRD analysis shows that the samples have hexagonal (wurtzite) structure with no additional peak which suggests that Cr ions fit into the regular Zn sites of ZnO crystal structure. By using Scherrer’s formula for pure and Cr doped ZnO samples the average grain sizemore » was found to be 32 nm. Further band gap of pure and doped ZnO samples have been calculated by using UV-Vis spectra. The photo-catalytic degradation of methyl blue dye under UV irradiation was examined for synthesized samples. The results show that the concentration plays an important role in photo-catalytic activity.« less

  18. THE EFFECT OF SATELLITE LINES FROM THE X-RAY SOURCE ON X-RAY DIFFRACTION PEAKS

    EPA Science Inventory

    The article discusses the development of a method for relating reactivity to crystallite size and strain parameters obtained by the Warren-Averbach technique. EPA has been using crystallite size and strain data obtained from x-ray diffraction (XRD) peak profile analysis to predic...

  19. Characterisation of silica derived from rice husk (Muar, Johor, Malaysia) decomposition at different temperatures

    NASA Astrophysics Data System (ADS)

    Azmi, M. A.; Ismail, N. A. A.; Rizamarhaiza, M.; W. M. Hasif. A. A., K.; Taib, H.

    2016-07-01

    Rice husk was thermally decomposed to yield powder composed of silica (SiO2). Temperatures of 700°C and 1000°C were chosen as the decomposition temperatures. X-Ray Diffraction (XRD), X-Ray Florescence (XRF), Fourier Transform Infrared (FTIR), and Field Emission Scanning Electron Microscope (FESEM) analyses were conducted on a synthetic silica powder (SS-SiO2) and the rice husk ash as for the comparative characterisation study. XRD analyses clearly indicated that the decomposed rice husk yielded silica of different nature which are Crystalline Rice Husk Silica (C-RHSiO2) and Amorphous Rice Husk Silica (A-RHSiO2). Moreover, it was found that SS-SiO2 was of Quartz phase, C-RHSiO2 was of Trydimite and Cristobalite. Through XRF detection, the highest SiO2 purity was detected in SS-SiO2 followed by C-RHSiO2 and A-RHSiO2 with purity percentages of 99.60%, 82.30% and 86.30% respectively. FTIR results clearly indicated silica (SiO2) bonding 1056, 1064, 1047, 777, 790 and 798 cm-1) increased as the crystallinity silica increased. The Cristobalite phase was detected in C-RH SiO2 at the wavelength of 620 cm-1. Morphological features as observed by FESEM analyses confirmed that, SS-SiO2 and C-RH SiO2 showed prominent coarse granular morphology.

  20. Setup for in situ x-ray diffraction study of swift heavy ion irradiated materials.

    PubMed

    Kulriya, P K; Singh, F; Tripathi, A; Ahuja, R; Kothari, A; Dutt, R N; Mishra, Y K; Kumar, Amit; Avasthi, D K

    2007-11-01

    An in situ x-ray diffraction (XRD) setup is designed and installed in the materials science beam line of the Pelletron accelerator at the Inter-University Accelerator Centre for in situ studies of phase change in swift heavy ion irradiated materials. A high vacuum chamber with suitable windows for incident and diffracted X-rays is integrated with the goniometer and the beamline. Indigenously made liquid nitrogen (LN2) temperature sample cooling unit is installed. The snapshots of growth of particles with fluence of 90 MeV Ni ions were recorded using in situ XRD experiment, illustrating the potential of this in situ facility. A thin film of C60 was used to test the sample cooling unit. It shows that the phase of the C60 film transforms from a cubic lattice (at room temperature) to a fcc lattice at around T=255 K.

  1. Growth of high quality and large-sized Rb 0.3MoO 3 single crystals by molten salt electrolysis method

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Xiong, Rui; Yi, Fan; Yin, Di; Ke, Manzhu; Li, Changzhen; Liu, Zhengyou; Shi, Jing

    2005-05-01

    High quality and large-sized Rb 0.3MoO 3 single crystals were synthesized by molten salt electrolysis method. X-ray diffraction (XRD) patterns and rocking curves, as well as the white beam Laue diffraction of X-ray images show the crystals grown by this method have high quality. The lattice constants evaluated from XRD patterns are a0=1.87 nm, b0=0.75 nm, c0=1.00 nm, β=118.83∘. The in situ selected area electron diffraction (SAED) patterns along the [101¯], [11¯1¯] and [103¯] zone axes at room temperature indicate that the Rb 0.3MoO 3 crystal possess perfect C-centered symmetry. Temperature dependence of the resistivity shows this compound undergoes a metal to semiconductor transition at 183 K.

  2. Setup for in situ x-ray diffraction study of swift heavy ion irradiated materials

    NASA Astrophysics Data System (ADS)

    Kulriya, P. K.; Singh, F.; Tripathi, A.; Ahuja, R.; Kothari, A.; Dutt, R. N.; Mishra, Y. K.; Kumar, Amit; Avasthi, D. K.

    2007-11-01

    An in situ x-ray diffraction (XRD) setup is designed and installed in the materials science beam line of the Pelletron accelerator at the Inter-University Accelerator Centre for in situ studies of phase change in swift heavy ion irradiated materials. A high vacuum chamber with suitable windows for incident and diffracted X-rays is integrated with the goniometer and the beamline. Indigenously made liquid nitrogen (LN2) temperature sample cooling unit is installed. The snapshots of growth of particles with fluence of 90MeV Ni ions were recorded using in situ XRD experiment, illustrating the potential of this in situ facility. A thin film of C60 was used to test the sample cooling unit. It shows that the phase of the C60 film transforms from a cubic lattice (at room temperature) to a fcc lattice at around T =255K.

  3. Control of microbiological corrosion on carbon steel with sodium hypochlorite and biopolymer.

    PubMed

    Oliveira, Sara H; Lima, Maria Alice G A; França, Francisca P; Vieira, Magda R S; Silva, Pulkra; Urtiga Filho, Severino L

    2016-07-01

    In the present work, the interaction of a mixture of a biocide, sodium hypochlorite (NaClO), and a biopolymer, xanthan, with carbon steel coupons exposed to seawater in a turbulent flow regime was studied. The cell concentrations, corrosion rates, biomasses, and exopolysaccharides (EPSs) produced on the coupon surfaces with the various treatments were quantified. The corrosion products were evaluated using X-ray diffraction (XRD), and the surfaces of steels were analysed by scanning electron microscopy (SEM). The results indicated that xanthan and the hypochlorite-xanthan mixture reduced the corrosion rate of steel. Copyright © 2016. Published by Elsevier B.V.

  4. New polyurethane nanocomposites based on soya oil.

    PubMed

    Mohammed, Issam Ahmed; Abd Khadir, Nurul Khizrien; Jaffar Al-Mulla, Emad Abbas

    2014-01-01

    New polyurethane (PU) nanocomposites were prepared from a dispersion of 0 - 5% montmorillonite (MMT) clay with isocyanate and soya oil polyol that was synthesized via transesterification of triglycerides to reduce petroleum dependence. FT-IR spectra indicate the presence of hydrogen bonding between nanoclay and the polymer matrix, whereas the exfoliated structure of clay layers was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Optical microscopy, mechanical and thermal analyses were done to investigate significant improvement of the nanocomposites. The results showed PU-3% nanoclay (NC) showed optimum results in mechanical properties such as tensile and flexural strength but the lowest in impact strength.

  5. SAM-Like Evolved Gas Analyses of Phyllosilicate Minerals and Applications to SAM Analyses of the Sheepbed Mudstone, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Franz, H. B.; Mahaffy, P. R.; Eigenbrode, J. L.; Stern, J. C.; Brunner, B.; Sutter, B.; Archer, P. D.; Ming , D. W.; Morris, R. V.; hide

    2014-01-01

    While in Yellowknife Bay, the Mars Science Laboratory Curiosity rover collected two drilled samples, John Klein (hereafter "JK") and Cumberland ("CB"), from the Sheepbed mudstone, as well as a scooped sample from the Rocknest aeolian bedform ("RN"). These samples were sieved by Curiosity's sample processing system and then several subsamples of these materials were delivered to the Sample Analysis at Mars (SAM) instrument suite and the CheMin X-ray diffraction/X-ray fluorescence instrument. CheMin provided the first in situ X-ray diffraction-based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., Fe-saponite) and comprise 20 wt% of the mudstone samples [1]. SAM's evolved gas analysis (EGA) mass spectrometry analyses of JK and CB subsamples, as well as RN subsamples, detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, OCS, CS2 and other trace gases evolved during pyrolysis. The identity of evolved gases and temperature( s) of evolution can augment mineral detection by CheMin and place constraints on trace volatile-bearing phases present below the CheMin detection limit or those phases difficult to characterize with XRD (e.g., X-ray amorphous phases). Here we will focus on the SAM H2O data, in the context of CheMin analyses, and comparisons to laboratory SAM-like analyses of several phyllosilicate minerals including smectites.

  6. Structure of chitosan thermosensitive gels containing graphene oxide

    NASA Astrophysics Data System (ADS)

    Tylman, Michał; Pieklarz, Katarzyna; Owczarz, Piotr; Maniukiewicz, Waldemar; Modrzejewska, Zofia

    2018-06-01

    The supramolecular hydrogels of chitosan and graphene oxide (GO) have been prepared at temperature of the human body, by controlling the concentration of GO and ratio of chitosan to GO. During the preparation of gels the sodium β-glycerophosphate (Na-β-GP) was used as a neutralizing agent. The structure of obtained gels was determined on the basis of FTIR spectra and XRD diffraction patterns. The results of structural studies have been referenced to gels without graphene oxide. It was found that the gels crystalline structure after the addition of GO does not change. The XRD diffraction patterns are characterized by a number of peaks associated with precipitated NaCl during drying and presence of sodium β-glycerophosphate.

  7. High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software

    NASA Astrophysics Data System (ADS)

    Dera, Przemyslaw; Zhuravlev, Kirill; Prakapenka, Vitali; Rivers, Mark L.; Finkelstein, Gregory J.; Grubor-Urosevic, Ognjen; Tschauner, Oliver; Clark, Simon M.; Downs, Robert T.

    2013-08-01

    GSE_ADA/RSV is a free software package for custom analysis of single-crystal micro X-ray diffraction (SCμXRD) data, developed with particular emphasis on data from samples enclosed in diamond anvil cells and subject to high pressure conditions. The package has been in extensive use at the high pressure beamlines of Advanced Photon Source (APS), Argonne National Laboratory and Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. The software is optimized for processing of wide-rotation images and includes a variety of peak intensity corrections and peak filtering features, which are custom-designed to make processing of high pressure SCμXRD easier and more reliable.

  8. Ion beam modification of the structure and properties of hexagonal boron nitride: An infrared and X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Aradi, E.; Naidoo, S. R.; Billing, D. G.; Wamwangi, D.; Motochi, I.; Derry, T. E.

    2014-07-01

    The vibrational mode for the cubic symmetry of boron nitride (BN) has been produced by boron ion implantation of hexagonal boron nitride (h-BN). The optimum fluence at 150 keV was found to be 5 × 1014 ions/cm2. The presence of the c-BN phase was inferred using glancing incidence XRD (GIXRD) and Fourier Transform Infrared Spectroscopy (FTIR). After implantation, Fourier Transform Infrared Spectroscopy indicated a peak at 1092 cm-1 which corresponds to the vibrational mode for nanocrystalline BN (nc-BN). The glancing angle XRD pattern after implantation exhibited c-BN diffraction peaks relative to the implantation depth of 0.4 μm.

  9. Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size

    Treesearch

    Umesh P. Agarwal; Sally A. Ralph; Carlos Baez; Richard S. Reiner; Steve P. Verrill

    2017-01-01

    Although X-ray diffraction (XRD) has been the most widely used technique to investigate crystallinity index (CrI) and crystallite size (L200) of cellulose materials, there are not many studies that have taken into account the role of sample moisture on these measurements. The present investigation focuses on a variety of celluloses and cellulose...

  10. Exploiting the Synergy of Powder X-ray Diffraction and Solid-State NMR Spectroscopy in Structure Determination of Organic Molecular Solids

    PubMed Central

    2013-01-01

    We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1H and 13C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1H and 13C chemical shifts for directly bonded 13C–1H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure. PMID:24386493

  11. Exploiting the Synergy of Powder X-ray Diffraction and Solid-State NMR Spectroscopy in Structure Determination of Organic Molecular Solids.

    PubMed

    Dudenko, Dmytro V; Williams, P Andrew; Hughes, Colan E; Antzutkin, Oleg N; Velaga, Sitaram P; Brown, Steven P; Harris, Kenneth D M

    2013-06-13

    We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1 H and 13 C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1 H and 13 C chemical shifts for directly bonded 13 C- 1 H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure.

  12. Structural Order-Disorder Transformations Monitored by X-Ray Diffraction and Photoluminescence

    ERIC Educational Resources Information Center

    Lima, R. C.; Paris, E. C.; Leite, E. R.; Espinosa, J. W. M.; Souza, A. G.; Longo, E.

    2007-01-01

    A study was conducted to examine the structural order-disorder transformation promoted by controlled heat treatment using X-ray diffraction technique (XRD) and photoluminescence (PL) techniques as tools to monitor the degree of structural order. The experiment was observed to be versatile and easily achieved with low cost which allowed producing…

  13. Neutron and X-ray powder diffraction study of skutterudite thermoelectrics

    DOE PAGES

    Wang, H.; Kirkham, M. J.; Watkins, T. R.; ...

    2016-02-17

    N- and p-type filled-skutterudite materials prepared for thermoelectric power generation modules were analyzed by neutron diffraction at the POWGEN beam line of the Spallation Neutron Source (SNS) and X-ray diffraction (XRD). The skutterudite powders were processed by melt spinning, followed by ball milling and annealing. The n-type material consists of Ba–Yb–Co–Sb and the p-type material consists of Di–Fe–Ni–Sb or Di–Fe–Co–Sb (Di = didymium, an alloy of Pr and Nd). Powders for prototype module fabrication from General Motors and Marlow Industries were analyzed in this study. XRD and neutron diffraction studies confirm that both the n- and p-type materials have cubicmore » symmetry. Structural Rietveld refinements determined the lattice parameters and atomic parameters of the framework and filler atoms. The cage filling fraction was found to depend linearly on the lattice parameter, which in turn depends on the average framework atom size. Ultimately, this knowledge may allow the filling fraction of these skutterudite materials to be purposefully adjusted, thereby tuning the thermoelectric properties.« less

  14. Glass transition in ferroic glass K x (ND4)1-x D2PO4: a complete x-ray diffraction line shape analysis

    NASA Astrophysics Data System (ADS)

    Ranjan Choudhury, Rajul; Chitra, R.; Jayakrishnan, V. B.

    2016-03-01

    Quenching of dynamic disorder in glassy systems is termed as the glass transition. Ferroic glasses belong to the class of paracrystalline materials having crystallographic order in-between that of a perfect crystal and amorphous material, a classic example of ferroic glass is the solid solution of ferroelectric deuterated potassium dihydrogen phosphate and antiferroelectric deuterated ammonium dihydrogen phosphate. Lowering temperature of this ferroic glass can lead to a glass transition to a quenched disordered state. The subtle atomic rearrangement that takes place at such a glass transition can be revealed by careful examination of the temperature induced changes occurring in the x-ray powder diffraction (XRD) patterns of these materials. Hence we report here results of a complete diffraction line shape analysis of the XRD patterns recorded at different temperatures from deuterated mixed crystals DK x A1-x DP with mixing concentration x ranging as 0 < x < 1. Changes observed in diffraction peak shapes have been explained on the basis of structural rearrangements induced by changing O-D-O hydrogen bond dynamics in these paracrystals.

  15. X-ray diffraction and infrared spectroscopy analyses on the crystallinity of engineered biological hydroxyapatite for medical application

    NASA Astrophysics Data System (ADS)

    Poralan, G. M., Jr.; Gambe, J. E.; Alcantara, E. M.; Vequizo, R. M.

    2015-06-01

    Biological hydroxyapatite (BHAp) derived from thermally-treated fish bones was successfully produced. However, the obtained biological HAp was amorphous and thus making it unfavorable for medical application. Consequently, this research exploits and engineers the crystallinity of BHAp powders by addition of CaCO3 and investigates its degree of crystallinity using XRD and IR spectroscopy. On XRD, the HAp powders with [Ca]/[P] ratios 1.42, 1.46, 1.61 and 1.93 have degree of crystallinity equal to 58.08, 72.13, 85.79, 75.85% and crystal size equal to 0.67, 0.74, 0.75, 0.72 nm, respectively. The degree of crystallinity and crystal size of the obtained calcium deficient biological HAp powders increase as their [Ca]/[P] ratio approaches the stoichiometric ratio by addition of CaCO3 as source of Ca2+ ions. These results show the possibility of engineering the crystallinity and crystal size of biological HAp by addition of CaCO3. Moreover, the splitting factor of PO4 vibration matches the result with % crystallinity on XRD. Also, the area of phosphate-substitution site of PO4 vibration shows linear relationship (R2 = 0.994) with crystal size calculated from XRD. It is worth noting that the crystallinity of the biological HAp with [Ca]/[P] ratios 1.42 and 1.48 fall near the range 60-70% for highly resorbable HAp used in the medical application.

  16. In situ flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions

    NASA Astrophysics Data System (ADS)

    Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F.; van Bokhoven, Jeroen A.

    2017-08-01

    An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.

  17. In situ flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions.

    PubMed

    Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F; van Bokhoven, Jeroen A

    2017-08-01

    An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.

  18. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2

    PubMed Central

    Gleason, A. E.; Bolme, C. A.; Lee, H. J.; Nagler, B.; Galtier, E.; Milathianaki, D.; Hawreliak, J.; Kraus, R. G.; Eggert, J. H.; Fratanduono, D. E.; Collins, G. W.; Sandberg, R.; Yang, W.; Mao, W. L.

    2015-01-01

    Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueation of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. These are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD. PMID:26337754

  19. Thermoluminescence (TL) properties and x-ray diffraction (XRD) analysis of high purity CaSO4:Dy TL material

    NASA Astrophysics Data System (ADS)

    Kamarudin, Nadira; Abdullah, Wan Saffiey Wan; Hamid, Muhammad Azmi Abdul; Dollah, Mohd Taufik

    2014-09-01

    This paper presents the characterization and TL properties of dysprosium (Dy) doped calcium sulfate (CaSO4) TL material produced by co-precipitation technique with 0.5mol% concentration of dopant. The morphology of the produced TL material was studied using scanning electron microscope (SEM) and the micrograph shows that rectangular parallelepiped shaped crystal with the average of 150 μm in length were produced. The crystallinity of the produced powder was studied using x-ray powder diffraction (XRD). The XRD spectra show that the TL material produced is high purity anhydrite CaSO4 with average crystallite size of 74 nm with orthorhombic crystal system. The TL behavior of produced CaSO4:Dy was studied using a TLD reader after exposure to gamma ray by Co60 source with the doses of 1,5 and 10 Gy. The glow curve shows linear response with glow peak around 230°C which is desired development in the field of radiation dosimetry.

  20. X-ray Diffraction and Rietveld Refinement in Deferrified Clays for Forensic Science.

    PubMed

    Prandel, Luis V; Melo, Vander de F; Brinatti, André M; Saab, Sérgio da C; Salvador, Fábio A S

    2018-01-01

    Soil vestiges might provide information about a crime scene. The Rietveld method with X-ray diffraction data (RM-XRD) is a nondestructive technique that makes it possible to characterize minerals present in the soils. Soil clays from the metropolitan region of Curitiba (Brazil) were submitted to DCB treatment and analyzed using XRD with CuK α radiation in the step-scan mode (0.02° 2θ/5 s). The GSAS+EXPGUI software was used for RM refinement. The RM-XRD results, together with the principal component analysis (PCA) (52.6% total variance), showed the kaolinite predominance in most analyzed samples and the highest quartz contents in "site 1." Higher anatase, and gibbsite and muscovite contents influenced discrimination, mainly in "site 3" and "site 1," respectively. These results were enough to discriminate clays of four sites and two horizons using a reduced amount of sample showing that the technique can be applied to the investigation into soil vestiges. © 2017 American Academy of Forensic Sciences.

  1. Role of Ga particulates on the structure and optical properties of Y3(Al,Ga)5O12:Tb thin films prepared by PLD

    NASA Astrophysics Data System (ADS)

    Yousif, A.; Duvenhage, M. M.; Ntwaeaborwa, O. M.; Swart, H. C.

    2018-04-01

    Y3(Al,Ga)5O12:Tb thin films (70 nm) have been prepared by pulsed laser deposition on a Si (100) substrate at the substrate temperature of 300 °C. The effect of annealing time on the structural, morphological and luminescence properties of Y3(Al,Ga)5O12:Tb thin films at 800 °C were studied. The crystal structure of the samples was studied by X- ray diffraction (XRD) and showed shifts in the peak positions to lower diffraction angles for the annealed film compared to the XRD peak positions of the commercial Y3(Al,Ga)5O12:Tb powder. A new excitation band different from the original Y3(Al,Ga)5O12:Tb powder was also observed for the annealed films. The shift in the XRD pattern and the new excitation band for the annealed film suggested that the films were enriched with Ga after annealing.

  2. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO 2

    DOE PAGES

    Gleason, A. E.; Bolme, C. A.; Lee, H. J.; ...

    2015-09-04

    Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueationmore » of stishovite appears to be kinetically limited to 1.4 ± 0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. As a result, these are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD.« less

  3. Computer Simulations to Study Diffraction Effects of Stacking Faults in Beta-SiC: II. Experimental Verification. 2; Experimental Verification

    NASA Technical Reports Server (NTRS)

    Pujar, Vijay V.; Cawley, James D.; Levine, S. (Technical Monitor)

    2000-01-01

    Earlier results from computer simulation studies suggest a correlation between the spatial distribution of stacking errors in the Beta-SiC structure and features observed in X-ray diffraction patterns of the material. Reported here are experimental results obtained from two types of nominally Beta-SiC specimens, which yield distinct XRD data. These samples were analyzed using high resolution transmission electron microscopy (HRTEM) and the stacking error distribution was directly determined. The HRTEM results compare well to those deduced by matching the XRD data with simulated spectra, confirming the hypothesis that the XRD data is indicative not only of the presence and density of stacking errors, but also that it can yield information regarding their distribution. In addition, the stacking error population in both specimens is related to their synthesis conditions and it appears that it is similar to the relation developed by others to explain the formation of the corresponding polytypes.

  4. Step-by-step fabrication of a highly oriented crystalline three-dimensional pillared-layer-type metal-organic framework thin film confirmed by synchrotron X-ray diffraction.

    PubMed

    Otsubo, Kazuya; Haraguchi, Tomoyuki; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2012-06-13

    Fabrication of a crystalline ordered thin film based on the porous metal-organic frameworks (MOFs) is one of the practical applications of the future functional nanomaterials. Here, we report the creation of a highly oriented three-dimensional (3-D) porous pillared-layer-type MOF thin film on a metal substrate using a step-by-step approach based on liquid-phase epitaxy. Synchrotron X-ray diffraction (XRD) study clearly indicates that the thin film is crystalline and its orientation is highly controlled in both horizontal and vertical directions relative to the substrate. This report provides the first confirmation of details of not only the crystallinity but also the orientation of 3-D MOF thin film using synchrotron XRD. Moreover, we also demonstrate its guest adsorption/desorption behavior by using in situ XRD measurements. The results presented here would promise useful insights for fabrication of MOF-based nanodevices in the future.

  5. Stable superhydrophilic coating on superhydrophobic porous media by functionalized nanoparticles

    NASA Astrophysics Data System (ADS)

    Khazaei, Masoud; Taghi Sadeghi, Mohammad; Sadat Hosseini, Marzieh

    2018-01-01

    In this study, the hydrophilicity property of TiO2 nano-coating was improved by zinc acetate-assisted sol-gel method. The stable superhydrophilic coating was fabricated on a superhydrophobic mineral rock surface. The wettability of surface before and after coating was characterized by contact angle measurements. The n-heptane and water droplet contact angle was 0° and 168° respectively, so the untreated rock was superhydrophobic. After nano-treatment, the n-heptane and water contact angle changed to 172° and 0° respectively, so the superhydrophilic coating was formed on the superhydrophobic surface. The thermal, mechanical and salinity stability of the fabricated coatings was investigated. The coatings had high thermal and salinity stability; they also had moderate mechanical stability that was evaluated by abrasion test. The morphology and composition of synthesized nanoparticles were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy and x-ray diffraction (XRD) analyses. Characterization of the coated surfaces was conducted by SEM and XRD analyses. Applications of these nano-coatings include surfaces where cleanliness is paramount such as in hospitals as well as the protection of public monuments and building facades from weathering. Novel industrial application includes wettability alteration of oil wet carbonate rock for enhanced oil recovery.

  6. Effect of ball milling on the physicochemical properties of atorvastatin calcium sesquihydrate: the dissolution kinetic behaviours of milled amorphous solids.

    PubMed

    Kobayashi, Makiko; Hattori, Yusuke; Sasaki, Tetsuo; Otsuka, Makoto

    2017-01-01

    The purposes of this study were to clarify the amorphization by ball milling of atorvastatin calcium sesquihydrate (AT) and to analyse the change in dissolution kinetics. The amorphous AT was prepared from crystal AT by ball milling and analysed in terms of the changes of its physicochemical properties by powder X-ray diffraction analysis (XRD), thermal analysis and infrared spectroscopy (IR). Moreover, to evaluate the usefulness of the amorphous form for pharmaceutical development, intrinsic solubility of the ground product was evaluated using a dissolution kinetic method. The XRD results indicated that crystalline AT was transformed into amorphous solids by more than 30-min milling. The thermal analysis result suggested that chemical potential of the ground AT are changed significantly by milling. The IR spectra of the AT showed the band shift from the amide group at 3406 cm -1 with an intermolecular hydrogen bond to a free amide group at 3365 cm -1 by milling. The dissolution of amorphous AT follows a dissolution kinetic model involving phase transformation. The initial dissolution rate of the ground product increased with the increase in milling time to reflect the increase in the intrinsic solubility based on the amorphous state. © 2016 Royal Pharmaceutical Society.

  7. Electrical Characteristics CuFe2O4 Thick Film Ceramics Made with Different Screen Size Utiizing Fe2O3 Nanopowder Derived from Yarosite for NTC Thermistor

    NASA Astrophysics Data System (ADS)

    Wiendartun, Syarif, Dani Gustaman

    2010-10-01

    Fabrication of CuFe2O4 thick film ceramics utilizing Fe2O3 derived from yarosite using screen printing technique for NTC thermistor has been carried out. Effect of thickness variation due to different size of screen (screen 225; 300 and 375 mesh) has been studied. X-ray diffraction analyses (XRD) was done to know crystal structure and phases formation. SEM analyses was carried out to know microstructure of the films. Electrical properties characterization was done through measurement of electrical resistance at various temperatures (room temperature to 100° C). The XRD data showed that the films crystalize in tetragonal spinel. The SEM images showed that the screen with the smaller of the hole size, made the grain size was bigger. Electrical data showed that the larger the screen different size thickness variation (mesh), the larger the resistance, thermistor constant and sensitivity. From the electrical characteristics data, it was known that the electrical characteristics of the CuFe2O4 thick film ceramics followed the NTC characteristic. The value of B and RRT of the produced CuFe2O4 ceramics namely B = 3241-3484 K and RRT = 25.6-87.0 M Ohm, fitted market requirement.

  8. MultiLaue: A Technique to Extract d-spacings from Laue XRD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi

    We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less

  9. MultiLaue: A Technique to Extract d-spacings from Laue XRD

    DOE PAGES

    Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi; ...

    2016-07-25

    We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less

  10. Investigation of La and Al substitution on the spontaneous polarization and lattice dynamics of the Pb(1-x)LaxTi(1-x)AlxO3 ceramics

    NASA Astrophysics Data System (ADS)

    Yadav, Arun Kumar; Verma, Anita; Kumar, Sunil; Srihari, Velaga; Sinha, A. K.; Reddy, V. Raghavendra; Liu, Shun Wei; Biring, Sajal; Sen, Somaditya

    2018-03-01

    The phase purity and crystal structure of Pb(1-x)LaxTi(1-x)AlxO3 (0 ≤ x ≤ 0.25) samples (synthesized via the sol-gel process) were confirmed using synchrotron x-ray powder diffraction (XRD) (wavelength, λ = 0.44573 Å). Rietveld analyses of powder x-ray diffraction data confirmed the tetragonal structure for compositions with x ≤ 0.18 and cubic structure for the sample with x = 0.25. Temperature-dependent XRD was performed to investigate the structural change from tetragonal to cubic structure phase transition. Raman spectroscopy at room temperature also confirmed this phase transition with compositions. Field emission scanning electron microscopy (FESEM) provided information about the surface morphology while an energy dispersive x-ray spectrometer attached with FESEM confirmed the chemical compositions of samples. Temperature and frequency dependent dielectric studies showed that the tetragonal to cubic phase transition decreased from 680 K to 175 K with an increase in the x from 0.03 to 0.25, respectively. This is correlated with the structural studies. Electric field dependent spontaneous polarization showed a proper ferroelectric loop for 0.06 ≤ x ≤ 0.18 belonging to a tetragonal phase, while for x ≥ 0.25, the spontaneous polarization vanishes. Bipolar strain versus electric field revealed a butterfly loop for 0.06 ≤ x ≤ 0.18 compositions. Energy storage efficiency initially increases nominally with substitution but beyond x = 0.18 enhances considerably.

  11. Effect of Gallium Doping on the Characteristic Properties of Polycrystalline Cadmium Telluride Thin Film

    NASA Astrophysics Data System (ADS)

    Ojo, A. A.; Dharmadasa, I. M.

    2017-08-01

    Ga-doped CdTe polycrystalline thin films were successfully electrodeposited on glass/fluorine doped tin oxide substrates from aqueous electrolytes containing cadmium nitrate (Cd(NO3)2·4H2O) and tellurium oxide (TeO2). The effects of different Ga-doping concentrations on the CdTe:Ga coupled with different post-growth treatments were studied by analysing the structural, optical, morphological and electronic properties of the deposited layers using x-ray diffraction (XRD), ultraviolet-visible spectrophotometry, scanning electron microscopy, photoelectrochemical cell measurement and direct-current conductivity test respectively. XRD results show diminishing (111)C CdTe peak above 20 ppm Ga-doping and the appearance of (301)M GaTe diffraction above 50 ppm Ga-doping indicating the formation of two phases; CdTe and GaTe. Although, reductions in the absorption edge slopes were observed above 20 ppm Ga-doping for the as-deposited CdTe:Ga layer, no obvious influence on the energy gap of CdTe films with Ga-doping were detected. Morphologically, reductions in grain size were observed at 50 ppm Ga-doping and above with high pinhole density within the layer. For the as-deposited CdTe:Ga layers, conduction type change from n- to p- were observed at 50 ppm, while the n-type conductivity were retained after post-growth treatment. Highest conductivity was observed at 20 ppm Ga-doping of CdTe. These results are systematically reported in this paper.

  12. Using Variable Temperature Powder X-Ray Diffraction to Determine the Thermal Expansion Coefficient of Solid MgO

    ERIC Educational Resources Information Center

    Corsepius, Nicholas C.; DeVore, Thomas C.; Reisner, Barbara A.; Warnaar, Deborah L.

    2007-01-01

    A laboratory exercise was developed by using variable temperature powder X-ray diffraction (XRD) to determine [alpha] for MgO (periclase)and was tested in the Applied Physical Chemistry and Materials Characterization Laboratories at James Madison University. The experiment which was originally designed to provide undergraduate students with a…

  13. Laser-induced Multi-energy Processing in Diamond Growth

    DTIC Science & Technology

    2012-05-01

    microscopy (SEM) and energy dispersive X - ray (EDX) measurements, Drs. Yi Liu and Shah Valloppilly from Nebraska Center for Materials and Nanoscience...NCMN) at UNL for help on X - Ray diffraction (XRD) measurements, and Professor Steve W. Martin and Dr. Young Sik Kim from the Department of Material...spectroscopy and X - ray diffraction ................... 62 4.4 Conclusions

  14. Structural and optical properties of nanostructured nickel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, J., E-mail: jaiveer24singh@gmail.com; Pandey, J.; Gupta, R.

    2016-05-06

    Metal nanoparticles are attractive because of their special structure and better optical properties. Nickel nanoparticles (Ni-Np) have been synthesized successfully by thermal decomposition method in the presence of trioctyl phosphine (TOP) and oleylamine (OAm). The samples were characterized by X-ray diffraction (XRD), Zetapotential measurement and Fourier transforms infrared (FTIR) spectroscopy. The size of Ni nanoparticles can be readily tuned from 13.86 nm. As-synthesized Ni nanoparticles have hexagonal closed pack (hcp) cubic structure as characterized by power X-ray diffraction (XRD) prepared at 280°C. The possible formation mechanism has also been phenomenological proposed for as synthesized Ni-Np. The value of Zeta potential wasmore » found 12.25 mV.« less

  15. Deactivation of Zeolite Catalyst H-ZSM-5 during Conversion of Methanol to Gasoline: Operando Time- and Space-Resolved X-ray Diffraction.

    PubMed

    Rojo-Gama, Daniel; Mentel, Lukasz; Kalantzopoulos, Georgios N; Pappas, Dimitrios K; Dovgaliuk, Iurii; Olsbye, Unni; Lillerud, Karl Petter; Beato, Pablo; Lundegaard, Lars F; Wragg, David S; Svelle, Stian

    2018-03-15

    The deactivation of zeolite catalyst H-ZSM-5 by coking during the conversion of methanol to hydrocarbons was monitored by high-energy space- and time-resolved operando X-ray diffraction (XRD) . Space resolution was achieved by continuous scanning along the axial length of a capillary fixed bed reactor with a time resolution of 10 s per scan. Using real structural parameters obtained from XRD, we can track the development of coke at different points in the reactor and link this to a kinetic model to correlate catalyst deactivation with structural changes occurring in the material. The "burning cigar" model of catalyst bed deactivation is directly observed in real time.

  16. High spin state driven magnetism and thermoelectricity in Mn doped topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Maurya, V. K.; Dong, C. L.; Chen, C. L.; Asokan, K.; Patnaik, S.

    2018-06-01

    We report on the synthesis, and structural - magnetic characterizations of Mn doped Bi2Se3 towards achieving a magnetically doped topological insulator. High quality single crystals of MnxBi2-xSe3 (x = 0, 0.03, 0.05, 0.1) are grown and analysed by X-ray diffraction (XRD), Low Energy Electron Diffraction (LEED), Scanning electron microscopy (SEM), and X-ray absorption near-edge structure spectroscopy (XANES). Magnetic properties of these samples under ZFC-FC protocol and isothermal magnetization confirm ferromagnetic correlation above x = 0.03 value. XANES measurements confirm that the dopant Mn is in Mn2+ state. This is further reconfirmed to be in high spin state by fitting magnetic data with Brillouin function for J = 5/2. Both Hall and Seebeck measurements indicate a sign change of charge carriers above x = 0.03 value of Mn doping. We propose Mn doped Bi2Se3 to be a potential candidate for electromagnetic and thermoelectric device applications involving topological surface states.

  17. Effect of radiation induced crosslinking and degradation of ETFE films

    NASA Astrophysics Data System (ADS)

    Zen, H. A.; Ribeiro, G.; Geraldes, A. N.; Souza, C. P.; Parra, D. F.; Lugão, A. B.

    2013-03-01

    In this study the ETFE film with 125 μm of thickness was placed inside a nylon bag and filled with either acetylene, nitrogen or oxygen. Following the procedure, the samples were irradiated at 5, 10 and 20 kGy. The physical and chemical properties of the modified and pristine films were evaluated by rheological and thermal analyses (TG and DSC), X-ray diffraction (XRD) and infrared spectroscopy (IR-ATR). In rheological analysis the storage modulus (G') indicates opposite profiles when the atmospheres (acetylene and oxygen) are evaluated according to the absorbed dose. For the samples submitted to radiation under oxygen atmosphere it is possible to observe the degradation process with the low levels of the storage modulus. The changes in the degree of crystallinity were verified in all modified samples when compared to the pristine polymer and this behavior was confirmed by DSC analysis. A decrease in the intensity of crystalline peak by X-ray diffraction was observed.

  18. Synthesis, antimicrobial, antioxidant and molecular docking studies of thiophene based macrocyclic Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Rathi, Parveen; Singh, D. P.

    2015-11-01

    The macrocyclic complexes of pharmaceutical importance with trivalent transition metals have been synthesized by [1 + 1] condensation of succinyldihydrazide and thiophenedicarboxaldehyde, via template method, resulting in the formation of the complex [MLX] X2; where L is (C10H10N4O2S), a macrocyclic ligand, M = Cr (III) and Fe (III) and X = Cl-, CH3COO- or NO3- . These complexes have been characterized with the help of elemental analyses, molar conductance measurements, magnetic susceptibility measurements, ultraviolet, infrared, far infrared, electron spin resonance, mass spectral studies and powder x-ray diffraction analysis. On the basis of all these studies, mononuclear complexes having 1:2 electrolytic nature with a five coordinated square pyramidal geometry have been proposed. Powder diffraction XRD indicates the presence of triclinic crystal system with p bravais lattice for the representative complex. All the metal complexes have also been explored for their in vitro antimicrobial and antioxidant activities.

  19. Real-time x-ray diffraction measurements of shocked polycrystalline tin and aluminum.

    PubMed

    Morgan, Dane V; Macy, Don; Stevens, Gerald

    2008-11-01

    A new, fast, single-pulse x-ray diffraction (XRD) diagnostic for determining phase transitions in shocked polycrystalline materials has been developed. The diagnostic consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, producing line and bremsstrahlung x-ray emission in a 35 ns pulse. The characteristic K(alpha) lines from the selected anodes of silver and molybdenum are used to produce the diffraction patterns, with thin foil filters employed to remove the characteristic K(beta) line emission. The x-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 3 x 6 mm(2) spot and 1 degrees full width half maximum angular divergence in a Bragg-reflecting geometry. For the experiments described in this report, the angle between the incident beam and the sample surface was 8.5 degrees . A Debye-Scherrer diffraction image was produced on a phosphor located 76 mm from the polycrystalline sample surface. The phosphor image was coupled to a charge-coupled device camera through a coherent fiber-optic bundle. Dynamic single-pulse XRD experiments were conducted with thin foil samples of tin, shock loaded with a 1 mm vitreous carbon back window. Detasheet high explosive with a 2-mm-thick aluminum buffer was used to shock the sample. Analysis of the dynamic shock-loaded tin XRD images revealed a phase transformation of the tin beta phase into an amorphous or liquid state. Identical experiments with shock-loaded aluminum indicated compression of the face-centered-cubic aluminum lattice with no phase transformation.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azmi, M. A.; Ismail, N. A. A.; Rizamarhaiza, M.

    Rice husk was thermally decomposed to yield powder composed of silica (SiO{sub 2}). Temperatures of 700°C and 1000°C were chosen as the decomposition temperatures. X-Ray Diffraction (XRD), X-Ray Florescence (XRF), Fourier Transform Infrared (FTIR), and Field Emission Scanning Electron Microscope (FESEM) analyses were conducted on a synthetic silica powder (SS-SiO{sub 2}) and the rice husk ash as for the comparative characterisation study. XRD analyses clearly indicated that the decomposed rice husk yielded silica of different nature which are Crystalline Rice Husk Silica (C-RHSiO{sub 2}) and Amorphous Rice Husk Silica (A-RHSiO{sub 2}). Moreover, it was found that SS-SiO{sub 2} was ofmore » Quartz phase, C-RHSiO{sub 2} was of Trydimite and Cristobalite. Through XRF detection, the highest SiO{sub 2} purity was detected in SS-SiO{sub 2} followed by C-RHSiO{sub 2} and A-RHSiO{sub 2} with purity percentages of 99.60%, 82.30% and 86.30% respectively. FTIR results clearly indicated silica (SiO{sub 2}) bonding 1056, 1064, 1047, 777, 790 and 798 cm{sup −1}) increased as the crystallinity silica increased. The Cristobalite phase was detected in C-RH SiO{sub 2} at the wavelength of 620 cm{sup −1}. Morphological features as observed by FESEM analyses confirmed that, SS-SiO{sub 2} and C-RH SiO{sub 2} showed prominent coarse granular morphology.« less

  1. Impurities Removal in Seawater to Optimize the Magnesium Extraction

    NASA Astrophysics Data System (ADS)

    Natasha, N. C.; Firdiyono, F.; Sulistiyono, E.

    2017-02-01

    Magnesium extraction from seawater is promising way because magnesium is the second abundant element in seawater and Indonesia has the second longest coastline in the world. To optimize the magnesium extraction, the impurities in seawater need to be eliminated. Evaporation and dissolving process were used in this research to remove the impurities especially calcium in seawater. Seawater which has been evaporated from 100 ml to 50 ml was dissolved with variations solution such as oxalic acid and ammonium bicarbonate. The solution concentration is 100 g/l and it variations are 2 ml, 4 ml, 6 ml, 8 ml, 10 ml, 20 ml, 30 ml, 40 ml and 50 ml. This step will produce precipitate and filtrate then it will be analysed to find out the result of this process. The precipitate was analysed by X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) but the filtrate was analysed by Inductively Coupled Plasma (ICP). XRD analysis shows that calcium oxalate and calcium carbonate were formed and ICP analysis shows that the remaining calcium in seawater using oxalic acid is about 0.01% and sodium 0.14% but when using ammonium bicarbonate the remaining calcium is 2.5% and sodium still more than 90%. The results show that both oxalic acid and ammonium bicarbonate can remove the impurities but when using oxalic acid, not only the impurities but also magnesium was precipitated. The conclusion of this research is the best solution to remove the impurities in seawater without precipitate the magnesium is using ammonium bicarbonate.

  2. Statistical Nature of Atomic Disorder in Irradiated Crystals.

    PubMed

    Boulle, A; Debelle, A

    2016-06-17

    Atomic disorder in irradiated materials is investigated by means of x-ray diffraction, using cubic SiC single crystals as a model material. It is shown that, besides the determination of depth-resolved strain and damage profiles, x-ray diffraction can be efficiently used to determine the probability density function (PDF) of the atomic displacements within the crystal. This task is achieved by analyzing the diffraction-order dependence of the damage profiles. We thereby demonstrate that atomic displacements undergo Lévy flights, with a displacement PDF exhibiting heavy tails [with a tail index in the γ=0.73-0.37 range, i.e., far from the commonly assumed Gaussian case (γ=2)]. It is further demonstrated that these heavy tails are crucial to account for the amorphization kinetics in SiC. From the retrieved displacement PDFs we introduce a dimensionless parameter f_{D}^{XRD} to quantify the disordering. f_{D}^{XRD} is found to be consistent with both independent measurements using ion channeling and with molecular dynamics calculations.

  3. Sonochemical syntheses of a new nano-sized porous lead(II) coordination polymer as precursor for preparation of lead(II) oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ranjbar, Zohreh Rashidi; Morsali, Ali

    2009-11-01

    Nano-scale of a new Pb(II) coordination polymer, {[Pb(bpacb)(OAc)]·DMF} n ( 1); bpacbH = 3,5-bis[(4-pyridylamino)carbonyl]benzoic acid], were synthesized by a sonochemical method. The nano-material was characterized by scanning electron microscopy, X-ray powder diffraction (XRD), 1H, 13C NMR, IR spectroscopy and elemental analyses. Crystal structure of compound 1 was determined by X-ray crystallography. Calcination of the nano-sized compound 1 at 700 °C under air atmospheres yields PbO nanoparticles. Thermal stability of nano-sized and single crystalline samples of compound 1 were studied and compared with each other.

  4. Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by sol-gel process.

    PubMed

    Milella, E; Cosentino, F; Licciulli, A; Massaro, C

    2001-06-01

    In the present work a titania network encapsulating a hydroxyapatite particulate phase is proposed as a bioceramic composite coating. The coating on a titanium substrate was produced starting from a sol containing a mixture of titania colloidal particles and hydroxyapatite submicron particles using the dip-coating technique. The microstructure, the morphology and the surface chemical composition of the coating were characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. Adhesion tests were also performed. These analyses showed that the obtained coating was chemically clean, homogeneous, rough, porous, with a low thickness and well-defined phase composition as well as a good adhesion to the substrate.

  5. Solid-state reaction kinetics of neodymium doped magnesium hydrogen phosphate system

    NASA Astrophysics Data System (ADS)

    Gupta, Rashmi; Slathia, Goldy; Bamzai, K. K.

    2018-05-01

    Neodymium doped magnesium hydrogen phosphate (NdMHP) crystals were grown by using gel encapsulation technique. Structural characterization of the grown crystals has been carried out by single crystal X-ray diffraction (XRD) and it revealed that NdMHP crystals crystallize in orthorhombic crystal system with space group Pbca. Kinetics of the decomposition of the grown crystals has been studied by non-isothermal analysis. The estimation of decomposition temperatures and weight loss has been made from the thermogravimetric/differential thermo analytical (TG/DTA) in conjuncture with DSC studies. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters.

  6. Synthesis and electrochemical property of few-layer molybdenum disulfide nanosheets

    NASA Astrophysics Data System (ADS)

    Fu, Yanjue; Wang, Chunrui; Wang, Linlin; Peng, Xia; Wu, Binhe; Sun, Xingqu; Chen, Xiaoshuang

    2016-12-01

    Large-scale few-layer MoS2 nanosheets have been fabricated via a simple hydrothermal route using molybdenum powder as precursors. The as-prepared MoS2 samples were characterized by X-ray powder diffraction (XRD) analysis, transmission electron microscopy (TEM), and Raman and photoluminescence (PL) spectral analyses at room temperature. The results confirm that the as-prepared MoS2 displays a sheet-like morphology with a thickness of few (bi- to tri-) layers. Electrochemical measurements showed that the as-prepared few-layer MoS2 exhibited the highest reversible capacity of 1127 mAh g-1 and a stable reversible capacity of 1057 mAh g-1 after 30 cycles.

  7. [Identification of Dens Draconis and Os Draconis by XRD method].

    PubMed

    Chen, Guang-Yun; Wu, Qi-Nan; Shen, Bei; Chen, Rong

    2012-04-01

    To establish an XRD method for evaluating the quality of Os Draconis and Dens Draconis and applying in judgement of the counterfeit. Dens Draconis, Os Draconis and the counterfeit of Os Draconis were analyzed by XRD. Their diffraction patterns were clustered analysis and evaluated their similarity degree. Established the analytical method of Dens Draconis and Os Draconis basing the features fingerprint information of the 10 common peaks by XRD pattern. Obtained the XRD pattern of the counterfeit of Os Draconis. The similarity degree of separate sources of Dens Draconis was high,while the similarity degree of separate sources of Os Draconis was significant different from each other. This method can be used for identification and evaluation of Os Draconis and Dens Draconis. It also can be used for identification the counterfeit of Os Draconis effectively.

  8. Development of Thin Films as Potential Structural Cathodes to Enable Multifunctional Energy-Storage Structural Composite Batteries for the U.S. Army’s Future Force

    DTIC Science & Technology

    2011-09-01

    glancing angle X - ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical...Emission SEM FWHM full width at half maximum GAXRD glancing angle X - ray diffraction H3COCH2CH2OH 2-methoxyethanol LiMn2O4 lithium manganese oxide...were characterized by scanning electron microscopy (SEM), X - ray diffraction (XRD), and atomic force microscopy (AFM). In addition,

  9. High Power Optical Coatings by Atomic Layer Deposition and Signatures of Laser-Induced Damage

    DTIC Science & Technology

    2012-08-28

    diffraction angle 0 into crystal lattice spacing d by the Bragg condition, mX = 2d sin 0. Here X is the x - ray wavelength... angle x - ray diffraction (GAXRD) measurements, which were made at a fixed shallow incidence angle of 0.5°. Detector scans were done to measure the...was finished with 200 hafnia cycles m the fmal half period rather than 400. Crystallinity was measured by x - ray diffraction (XRD) with

  10. Identification of a deleterious phase in photocatalyst based on Cd1 - xZnxS/Zn(OH)2 by simulated XRD patterns.

    PubMed

    Cherepanova, Svetlana; Markovskaya, Dina; Kozlova, Ekaterina

    2017-06-01

    The X-ray diffraction (XRD) pattern of a deleterious phase in the photocatalyst based on Cd 1 - x Zn x S/Zn(OH) 2 contains two relatively intense asymmetric peaks with d-spacings of 2.72 and 1.56 Å. Very small diffraction peaks with interplanar distances of (d) ≃ 8.01, 5.40, 4.09, 3.15, 2.49 and 1.35 Å are characteristic of this phase but not always observed. To identify this phase, the XRD patterns for sheet-like hydroxide β-Zn(OH) 2 and sheet-like hydrozincite Zn 5 (CO 3 ) 2 (OH) 6 as well as for turbostratic hydrozincite were simulated. It is shown that the XRD pattern calculated on the basis of the last model gives the best correspondence with experimental data. Distances between layers in the turbostratically disordered hydrozincite fluctuate around d ≃ 8.01 Å. This average layer-to-layer distance is significantly higher than the interlayer distance 6.77 Å in the ordered Zn 5 (CO 3 ) 2 (OH) 6 probably due to a deficiency of CO 3 2- anions, excess OH - and the presence of water molecules in the interlayers. It is shown by variable-temperature XRD and thermogravimetric analysis (TGA) that the nanocrystalline turbostratic nonstoichiometric hydrozincite-like phase is quite thermostable. It decomposes into ZnO in air above 473 K.

  11. In situ 2D diffraction as a tool to characterize ferroelectric and piezoelectric thin films

    NASA Astrophysics Data System (ADS)

    Khamidy, N. I.; Kovacova, V.; Bernasconi, A.; Le Rhun, G.; Vaxelaire, N.

    2017-08-01

    In this paper the application of 2D x-ray diffraction (XRD2) as a technique to characterize in situ during electrical cycling the properties of a ferroelectric and piezoelectric thin film is discussed. XRD2 is one type of XRD on which a 2D detector is used instead of a point detector. This technique enables simultaneous recording of many sample information in a much shorter time compared to conventional XRD. The discussion is focused especially on the data processing technique of the huge data acquired. The methodology to calculate an effective piezoelectric coefficient, analyze the phase and texture, and estimate the domain size and shape is described in this paper. This methodology is then applied to a lead zirconate titanate (PZT) thin film at the morphotropic phase boundary (MPB) composition (i.e. Pb[Zr0.52Ti0.48]O3) with a preferred orientation of (1 0 0). The in situ XRD2 characterization was conducted in the European synchrotron radiation facility (ESRF) in Grenoble, France. Since a high-energy beam with vertical resolution as small as 100 nm was used, a cross-sectional scan of the sample was performed over the entire thickness of the film. From these experimental results, a better understanding on the piezoelectricity phenomena in PZT thin film at MPB composition were achieved, providing original feedback between the elaboration processes and functional properties of the film.

  12. In situ synchrotron X-ray diffraction study on epitaxial-growth dynamics of III–V semiconductors

    NASA Astrophysics Data System (ADS)

    Takahasi, Masamitu

    2018-05-01

    The application of in situ synchrotron X-ray diffraction (XRD) to the molecular-beam epitaxial (MBE) growth of III–V semiconductors is overviewed along with backgrounds of the diffraction theory and instrumentation. X-rays are sensitive not only to the surface of growing films but also to buried interfacial structures because of their large penetration depth. Moreover, a spatial coherence length up to µm order makes X-rays widely applicable to the characterization of low-dimensional structures, such as quantum dots and wires. In situ XRD studies during growth were performed using an X-ray diffractometer, which was combined with an MBE chamber. X-ray reciprocal space mapping at a speed matching a typical growth rate was achieved using intense X-rays available from a synchrotron light source and an area detector. The importance of measuring the three-dimensional distribution of XRD intensity in a reciprocal space map is demonstrated for the MBE growth of two-, one-, and zero-dimensional structures. A large amount of information about the growth process of two-dimensional InGaAs/GaAs(001) epitaxial films has been provided by three-dimensional X-ray reciprocal mappings, including the anisotropic strain relaxation, the compositional inhomogeneity, and the evolution of surface and interfacial roughness. For one-dimensional GaAs nanowires grown in a Au-catalyzed vapor-liquid–solid mode, the relationship between the diameter of the nanowires and the formation of polytypes has been suggested on the basis of in situ XRD measurements. In situ three-dimensional X-ray reciprocal space mapping is also shown to be useful for determining the lateral and vertical sizes of self-assembled InAs/GaAs(001) quantum dots as well as their internal strain distributions during growth.

  13. Symposium N: Materials and Devices for Thermal-to-Electric Energy Conversion

    DTIC Science & Technology

    2010-08-24

    X - ray diffraction, transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Thermal conductivity measurements...SEM), X - ray diffraction (XRD) measurements as well as Raman spectroscopy. The results from these techniques indicate a clear modification...was examined by using scanning electron microscope (SEM; HITACHI S-4500 model) attached with an energy dispersive x - ray spectroscopy. The electrical

  14. Effects of lead shot ingestion on bone mineralization in a population of red-legged partridge (Alectoris rufa).

    PubMed

    Álvarez-Lloret, Pedro; Rodríguez-Navarro, Alejandro B; Romanek, Christopher S; Ferrandis, Pablo; Martínez-Haro, Mónica; Mateo, Rafael

    2014-01-01

    The effect of lead (Pb) toxicity on bone mineralization was investigated in a wild population of red-legged partridge (Alectoris rufa) inhabiting a farmland area contaminated with Pb-shot from recreational hunting activities in Albacete, a southeastern province of Spain. Femora from 40 specimens of red-legged partridge were analyzed for Pb by graphite furnace atomic absorption spectroscopy (GF-AAS), and for bone composition by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The FTIR and DRX data of bone were analyzed in detail to determine possible alterations in bone mineral chemistry and crystallinity due to Pb toxicity. Results showed a marked decrease in the degree of mineralization as Pb concentrations in bone tissue increased while XRD analyses showed that the crystallinity of apatite crystals increased with the Pb load in bone. These load-dependent effects are indicative that Pb contamination altered bone remodeling by reducing new bone mineral formation and demonstrate that bone quality is a sensitive indicator of adverse effects on wild bird populations exposed to Pb pollution. © 2013 Elsevier B.V. All rights reserved.

  15. Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano.

    PubMed

    Karimi, Samaneh; Tahir, Paridah Md; Karimi, Ali; Dufresne, Alain; Abdulkhani, Ali

    2014-01-30

    Cellulosic fibers from kenaf bast were isolated in three distinct stages. Initially raw kenaf bast fibers were subjected to an alkali pulping process. Then pulped fibers undergone a bleaching process and finally both pulped and bleached fibers were separated into their constituent nanoscale cellulosic fibers by mechanical shearing. The influence of each treatment on the chemical composition of fibers was investigated. Moreover morphology, functional groups, crystallinity, and thermal behavior of fiber hierarchy at different stages of purification were studied using scanning and transmission electron microscopies, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Microscopy studies revealed that applied procedures successfully isolated nanoscale cellulosic fibers from both unbleached and bleached pulps. Chemical composition analysis and FTIR spectroscopy showed that lignin and hemicellulose were almost entirely removed by the applied treatments. XRD and TGA analyses demonstrated progressive enhancement of properties in fibers, hierarchically, in going from micro to nano scale. Interestingly no significant evolution was observed between obtained data of characterized ubnleached and bleached nanofibers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Structure and colossal dielectric permittivity of Ca2TiCrO6 ceramics

    NASA Astrophysics Data System (ADS)

    Yan-Qing, Tan; Meng, Yan; Yong-Mei, Hao

    2013-01-01

    A colossal permittivity ceramic material, Ca2TiCrO6, was successfully synthesized by the conventional solid-state reaction, and was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), x-ray photoemission spectroscopy (XPS) and x-ray diffraction (XRD). Rietveld refinement of XRD data indicated that the material crystallized in orthorhombic structure with space group pbnm. SEM displayed Ca2TiCrO6 ceramic grains packed uniformly with the size range 5-20 µm. XPS analyses indicated that elemental chromium and titanium of the material were in mixed valence. The corresponding dielectric property was tested in the frequency range 1 kHz-1 MHz and the temperature range 213-453 K, and the ceramics exhibited a relaxation-like dielectric behaviour. Importantly, the permittivity of Ca2TiCrO6 could reach 80 000 at 298 K (100 Hz) and was maintained at 40 000 up to 398 K at 1 MHz, which could be attributed to the ion disorder and mixed valence of Cr3+/Cr6+ and Ti3+/Ti4+.

  17. Nano-sized, quaternary titanium(IV) metal-organic frameworks with multidentate ligands.

    PubMed

    Baranwal, Balram Prasad; Singh, Alok Kumar

    2010-12-01

    Some mononuclear nano-sized, quaternary titanium(IV) complexes having the general formula [Ti(acac)(OOCR)2(SB)] (where Hacac=acetylacetone, R=C15H31 or C17H35, HSB=Schiff bases) have been synthesized using different multidentate ligands. These were characterized by elemental analyses, molecular weight determinations and spectral (FTIR, 1H NMR and powder XRD) studies. Conductance measurement indicated their non-conducting nature which may behave like insulators. Structural parameters like the values of limiting indices h, k, l, cell constants a, b, c, angles α, β, γ and particle size are calculated from powder XRD data for complex 1 which indicated nano-sized triclinic system in them. Bidentate chelating nature of acetylacetone, carboxylate and Schiff base anions in the complexes was established by their infrared spectra. Molecular weight determinations confirmed mononuclear nature of the complexes. On the basis of physico-chemical studies, coordination number 8 was assigned for titanium(IV) in the complexes. Transmission electron microscopy (TEM) and the selected area electron diffraction (SAED) studies indicated spherical particles with poor crystallinity. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Milestone Report - M3FT-15OR03120215 - Recommend HIP Conditions for AgZ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruffey, Stephanie H.; Jubin, Robert Thomas

    2015-09-18

    The purpose of this study was to continue research to determine if HIPing could directly convert I-Ag 0Z into a suitable waste form. Fiscal year (FY) 2015 work completed studies of Phase IIA, IIB, and IIC samples. Product consistency testing (PCT) of Phase IIA samples resulted in iodine release below detection limit for six of twelve samples. This is promising and indicates that a durable waste form may be produced through HIPing even if transformation of the zeolite to a distinct mineral phase does not occur. From PCT results of Phase IIA samples, it was determined that future pressing shouldmore » be conducted at a temperature of 900°C. Phase IIC testing continued production of samples to examine the effects of multiple source materials, compositional variations, and an expanded temperature range. The density of each sample was determined and x-ray diffraction (XRD) patterns were obtained. In all cases, there was nothing in the XRD analyses to indicate the creation of any AgI-containing silicon phase; the samples were found to be largely amorphous.« less

  19. Synthesis, molecular structure, FT-IR and XRD investigations of 2-(4-chlorophenyl)-2-oxoethyl 2-chlorobenzoate: a comparative DFT study.

    PubMed

    Chidan Kumar, C S; Fun, Hoong Kun; Tursun, Mahir; Ooi, Chin Wei; Chandraju, Siddegowda; Quah, Ching Kheng; Parlak, Cemal

    2014-04-24

    2-(4-Chlorophenyl)-2-oxoethyl 2-chlorobenzoate has been synthesized, its structural and vibrational properties have been reported using FT-IR and single-crystal X-ray diffraction (XRD) studies. The conformational analysis, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of the synthesized compound (C15H10Cl2O3) have been examined by means of Becke-3-Lee-Yang-Parr (B3LYP) density functional theory (DFT) method together with 6-31++G(d,p) basis set. Furthermore, reliable conformational investigation and vibrational assignments have been made by the potential energy surface (PES) and potential energy distribution (PED) analyses, respectively. Calculations are performed with two possible conformations. The title compound crystallizes in orthorhombic space group Pbca with the unit cell dimensions a=12.312(5) Å, b=8.103(3) Å, c=27.565(11) Å, V=2750.0(19) Å(3). B3LYP method provides satisfactory evidence for the prediction of vibrational wavenumbers and structural parameters. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Characterization of Antibiotic-Loaded Alginate-Osa Starch Microbeads Produced by Ionotropic Pregelation

    PubMed Central

    Fontes, Gizele Cardoso; Calado, Verônica Maria Araújo; Rossi, Alexandre Malta; da Rocha-Leão, Maria Helena Miguez

    2013-01-01

    The aim of this study was to characterize the penicillin-loaded microbeads composed of alginate and octenyl succinic anhydride (OSA) starch prepared by ionotropic pregelation with calcium chloride and to evaluate their in vitro drug delivery profile. The beads were characterized by size, scanning electron microscopy (SEM), zeta potential, swelling behavior, and degree of erosion. Also, the possible interaction between penicillin and biopolymers was investigated by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. The SEM micrograph results indicated a homogeneous drug distribution in the matrix. Also, based on thermal analyses (TGA/DSC), interactions were detected between microbead components. Although FTIR spectra of penicillin-loaded microbeads did not reveal the formation of new chemical entities, they confirmed the chemical drug stability. XRD patterns showed that the incorporated crystalline structure of penicillin did not significantly alter the primarily amorphous polymeric network. In addition, the results confirmed a prolonged penicillin delivery system profile. These results imply that alginate and OSA starch beads can be used as a suitable controlled-release carrier for penicillin. PMID:23862146

  1. Multielemental analyses of isomorphous Indian garnet gemstones by XRD and external pixe techniques.

    PubMed

    Venkateswarulu, P; Srinivasa Rao, K; Kasipathi, C; Ramakrishna, Y

    2012-12-01

    Garnet gemstones were collected from parts of Eastern Ghats geological formations of Andhra Pradesh, India and their gemological studies were carried out. Their study of chemistry is not possible as they represent mixtures of isomorphism nature, and none of the individual specimens indicate independent chemistry. Hence, non-destructive instrumental methodology of external PIXE technique was employed to understand their chemistry and identity. A 3 MeV proton beam was employed to excite the samples. In the present study geochemical characteristics of garnet gemstones were studied by proton induced X-ray emission. Almandine variety of garnet is found to be abundant in the present study by means of their chemical contents. The crystal structure and the lattice parameters were estimated using X-Ray Diffraction studies. The trace and minor elements are estimated using PIXE technique and major compositional elements are confirmed by XRD studies. The technique is found very useful in characterizing the garnet gemstones. The present work, thus establishes usefulness and versatility of the PIXE technique with external beam for research in Geo-scientific methodology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Doping effect on the structural properties of Cu1-x(Ni, Zn, Al and Fe)xO samples (0

    NASA Astrophysics Data System (ADS)

    Amaral, J. B.; Araujo, R. M.; Pedra, P. P.; Meneses, C. T.; Duque, J. G. S.; dos S. Rezende, M. V.

    2016-09-01

    In this work, the effect of insertion of transition metal, TM (=Ni, Zn, Al and Fe), ions in Cu1-xTMxO samples (0

  3. Structure, Morphology, and Optical Properties of Amorphous and Nanocrystalline Gallium Oxide Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S. Sampath; Rubio, E. J.; Noor-A-Alam, M.

    Ga2O3 thin films were produced by sputter deposition by varying the substrate temperature (Ts) in a wide range (Ts=25-800 oC). The structural characteristics and optical properties of Ga2O3 films were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Rutherford backscattering spectrometry (RBS) and spectrophotometric measurements. The effect of growth temperature is significant on the chemistry, crystal structure and morphology of Ga2O3 films. XRD and SEM analyses indicate that the Ga2O3 films grown at lower temperatures were amorphous while those grown at Ts≥500 oC were nanocrystalline. RBS measurements indicate the well-maintained stoichiometry of Ga2O3 films atmore » Ts=300-700 oC. The spectral transmission of the films increased with increasing temperature. The band gap of the films varied from 4.96 eV to 5.17 eV for a variation in Ts in the range 25-800 oC. A relationship between microstructure and optical property is discussed.« less

  4. A 4-(o-chlorophenyl)-2-aminothiazole: Microwave assisted synthesis, spectral, thermal, XRD and biological studies

    NASA Astrophysics Data System (ADS)

    Rajmane, S. V.; Ubale, V. P.; Lawand, A. S.; Nalawade, A. M.; Karale, N. N.; More, P. G.

    2013-11-01

    A 4-(o-chlorophenyl)-2-aminothiazole (CPAT) has been synthesized by reacting o-chloroacetophenone, iodine and thiourea under microwave irradiation as a green chemistry approach. The reactions proceed selectively and within a couple of minutes giving high yields of the products. The compound was characterized by elemental, spectral (UV-visible, IR, NMR and GC-MS), XRD and thermal analyses. The TG curve of the compound was analyzed to calculate various kinetic parameters (n, E, Z, ΔS and ΔG) by using Coats-Redfern (C.R.), MacCallum-Tanner (M.T.) and Horowitz-Metzger (H.M.) method. The compound was tested for the evaluation of antibacterial activity against B. subtilis and E. coli and antifungal activity against A. niger and C. albicans. The compound was evaluated for their in vitro nematicidal activity on plant parasitic nematode Meloidogyne javanica and molluscicidal activity on fresh water helminthiasis vector snail Lymnea auricularia. The compound is biologically active in very low concentration. X-ray diffraction study suggests a triclinic crystal system for the compound.

  5. X-ray absorption fine structure and x-ray diffraction studies of crystallographic grains in nanocrystalline FePd:Cu thin films

    NASA Astrophysics Data System (ADS)

    Krupinski, M.; Perzanowski, M.; Polit, A.; Zabila, Y.; Zarzycki, A.; Dobrowolska, A.; Marszalek, M.

    2011-03-01

    FePd alloys have recently attracted considerable attention as candidates for ultrahigh density magnetic storage media. In this paper we investigate FePd thin alloy film with a copper admixture composed of nanometer-sized grains. [Fe(0.9 nm)/Pd(1.1 nm)/Cu(d nm)]×5 multilayers were prepared by thermal deposition at room temperature in UHV conditions on Si(100) substrates covered by 100 nm SiO2. The thickness of the copper layer has been changed from 0 to 0.4 nm. After deposition, the multilayers were rapidly annealed at 600 °C in a nitrogen atmosphere, which resulted in the creation of the FePd:Cu alloy. The structure of alloy films obtained this way was determined by x-ray diffraction (XRD), glancing angle x-ray diffraction, and x-ray absorption fine structure (EXAFS). The measurements clearly showed that the L10 FePd:Cu nanocrystalline phase has been formed during the annealing process for all investigated copper compositions. This paper concentrates on the crystallographic grain features of FePd:Cu alloys and illustrates that the EXAFS technique, supported by XRD measurements, can help to extend the information about grain size and grain shape of poorly crystallized materials. We show that, using an appropriate model of the FePd:Cu grains, the comparison of EXAFS and XRD results gives a reasonable agreement.

  6. Rietveld analysis of X-ray powder diffraction patterns as a potential tool for the identification of impact-deformed carbonate rocks

    NASA Astrophysics Data System (ADS)

    Huson, S. A.; Foit, F. F.; Watkinson, A. J.; Pope, M. C.

    2009-12-01

    Previous X-ray powder diffraction (XRD) studies revealed that shock deformed carbonates and quartz have broader XRD patterns than those of unshocked samples. Entire XRD patterns, single peak profiles and Rietveld refined parameters of carbonate samples from the Sierra Madera impact crater, west Texas, unshocked equivalent samples from 95 miles north of the crater and the Mission Canyon Formation of southwest Montana and western Wyoming were used to evaluate the use of X-ray powder diffraction as a potential tool for distinguishing impact deformed rocks from unshocked and tectonically deformed rocks. At Sierra Madera dolostone and limestone samples were collected from the crater rim (lower shock intensity) and the central uplift (higher shock intensity). Unshocked equivalent dolostone samples were collected from well cores drilled outside of the impact crater. Carbonate rocks of the Mission Canyon Formation were sampled along a transect across the tectonic front of the Sevier and Laramide orogenic belts. Whereas calcite subjected to significant shock intensities at the Sierra Madera impact crater can be differentiated from tectonically deformed calcite from the Mission Canyon Formation using Rietveld refined peak profiles, weakly shocked calcite from the crater rim appears to be indistinguishable from the tectonically deformed calcite. In contrast, Rietveld analysis readily distinguishes shocked Sierra Madera dolomite from unshocked equivalent dolostone samples from outside the crater and tectonically deformed Mission Canyon Formation dolomite.

  7. Characterisation of 1,3-diammonium propylselenate monohydrate by XRD, FT-IR, FT-Raman, DSC and DFT studies

    NASA Astrophysics Data System (ADS)

    Thirunarayanan, S.; Arjunan, V.; Marchewka, M. K.; Mohan, S.; Atalay, Yusuf

    2016-03-01

    The crystals of 1,3-diammonium propylselenate monohydrate (DAPS) were prepared and characterised X-ray diffraction (XRD), FT-IR, FT-Raman spectroscopy, and DFT/B3LYP methods. It comprises protonated propyl ammonium moieties (diammonium propyl cations), selenate anions and water molecule which are held together by a number of hydrogen bonds and form infinite chains. The XRD data confirm the transfer of two protons from selenic acid to 1,3-diaminopropane molecule. The DAPS complex is stabilised by the presence of O-H···O and N-H···O hydrogen bonds and the electrostatic interactions as well. The N···O and O···O bond distances are 2.82-2.91 and 2.77 Å, respectively. The FT-IR and FT-Raman spectra of 1,3-diammonium propyl selenate monohydrate are recorded and the complete vibrational assignments have been discussed. The geometry is optimised by B3LYP method using 6-311G, 6-311+G and 6-311+G* basis sets and the energy, structural parameters, vibrational frequencies, IR and Raman intensities are determined. Differential scanning colorimetry (DSC) data were also presented to analyse the possibility of the phase transition. Complete natural bonding orbital (NBO) analysis is carried out to analyse the intramolecular electronic interactions and their stabilisation energies. The electrostatic potential of the complex lies in the range +1.902e × 10-2 to -1.902e × 10-2. The limits of total electron density of the complex is +8.43e × 10-2 to -8.43e × 10-2.

  8. Characterization of konjac glucomannan-gelatin IPN physical hydrogel scaffold

    NASA Astrophysics Data System (ADS)

    Chen, Xiliang; Chen, Qinghua; Yan, Tingting; Liu, Jinkun

    2017-06-01

    A novel IPN hydrogel scaffold is prepared by freeze-drying method, in which konjac galactomannan (KGM) and gelatin are physically crosslinked respectively. This scaffold is thermostable, and the structure of this scaffold is analysed by scanning electron microscope, Fourier transform infrared spectrum, and X-ray diffraction method. The FT-IR results show that hydrogen bonds are formed between KGM and gelatin molecules, which hinder the formation of their respective crosslinking. This is consistent with the XRD results that the crystallinity gets lower in the IPN gels compared with pure gelatin and KGM gels. The morphologies of freeze-dried hydrogels are observed by SEM and the mechanical properties of the scaffolds are tested to analyse the relationship between the structures and properties. Although this novel IPN hydrogel is physical gel, it shows rubber-like performance as chemical gels. And it is nontoxic, so it can be used as the scaffold for cartilage tissue engineering that embedded in human bodies.

  9. Biotemplated syntheses of macroporous materials for bone tissue engineering scaffolds and experiments in vitro and vivo.

    PubMed

    Li, Xing; Zhao, Yayun; Bing, Yue; Li, Yaping; Gan, Ning; Guo, Zhiyong; Peng, Zhaoxiang; Zhu, Yabin

    2013-06-26

    The macroporous materials were prepared from the transformation of cuttlebone as biotemplates under hydrothermal reactions and characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric/differential thermal analyses (TG-DTA), and scanning electron microscopy (SEM). Cell experimental results showed that the prepared materials as bone tissue engineering scaffolds or fillers had fine biocompatibility suitable for adhesion and proliferation of the hMSCs (human marrow mesenchymal stem cells). Histological analyses were carried out by implanting the scaffolds into a rabbit femur, where the bioresorption, degradation, and biological activity of the scaffolds were observed in the animal body. The prepared scaffolds kept the original three-dimensional frameworks with the ordered porous structures, which made for blood circulation, nutrition supply, and the cells implantation. The biotemplated syntheses could provide a new effective approach to prepare the bone tissue engineering scaffold materials.

  10. VO2 Thermochromic Films on Quartz Glass Substrate Grown by RF-Plasma-Assisted Oxide Molecular Beam Epitaxy

    PubMed Central

    Zhang, Dong; Sun, Hong-Jun; Wang, Min-Huan; Miao, Li-Hua; Liu, Hong-Zhu; Zhang, Yu-Zhi; Bian, Ji-Ming

    2017-01-01

    Vanadium dioxide (VO2) thermochromic thin films with various thicknesses were grown on quartz glass substrates by radio frequency (RF)-plasma assisted oxide molecular beam epitaxy (O-MBE). The crystal structure, morphology and chemical stoichiometry were investigated systemically by X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. An excellent reversible metal-to-insulator transition (MIT) characteristics accompanied by an abrupt change in both electrical resistivity and optical infrared (IR) transmittance was observed from the optimized sample. Remarkably, the transition temperature (TMIT) deduced from the resistivity-temperature curve was reasonably consistent with that obtained from the temperature-dependent IR transmittance. Based on Raman measurement and XPS analyses, the observations were interpreted in terms of residual stresses and chemical stoichiometry. This achievement will be of great benefit for practical application of VO2-based smart windows. PMID:28772673

  11. Structural and optical characterization of bismuth sulphide nanorods

    NASA Astrophysics Data System (ADS)

    Shah, N. M.; Poria, K. C.

    2017-05-01

    In this work Bismuth sulfide (Bi2S3) nanorods with a high order of crystallinity is synthesized via hydrothermal method from aqueous solution of Bismuth Nitrate Pentahydrate and elemental Sulphur using Triethanolamine (TEA) as capping agent. The microstructures of Bi2S3 nanorods were investigated by X-ray diffraction (XRD) analysis. The positions and relative intensities of all the peaks in XRD pattern are in good agreement with those of the orthorhombic crystal structure of Bi2S3. TEM images shows that synthesized Bi2S3 has morphology of nanorods while selected area electron diffraction pattern indicates single crystalline nature. The analysis of diffuse reflectance (DR) spectrum of as synthesized Bi2S3 using Kubelka - Munk theory suggests direct energy band gap of 1.5 eV.

  12. Synthesis and structural properties of Ba(1-x)LaxTiO3 perovskite nanoparticles fabricated by solvothermal synthesis route

    NASA Astrophysics Data System (ADS)

    Puli, Venkata Sreenivas; Adireddy, Shiva; Elupula, Ravinder; Molugu, Sudheer; Shipman, Josh; Chrisey, Douglas B.

    2017-05-01

    We report the successful synthesis and structural characterization of barium lanthanum titanate Ba(1-x)LaxTiO3 (x=0.003,0.006,0.010) nanoparticles. The colloidal nanoparticles were prepared with high yield by a solvothermal method at temperatures as low as 150°C for 24h. The as-prepared nanopowders were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. The XRD studies revealed pseudo-cubic crystalline structure, with no impurity phases at room temperature. However ferroelectric tetragonal modes were clearly observed using Raman spectroscopy measurements. From TEM measurements, uniformly sized BLT nanoparticles were observed. Selected area diffraction TEM images revealed polycrystalline perovskite ring patterns, identified as corresponding to the tetragonal phase.

  13. Bioapatite Recrystallization During Burning and its Effects on Phosphate Stable Oxygen Isotope Composition

    NASA Astrophysics Data System (ADS)

    Munro, L. E.; Longstaffe, F. J.; White, C. D.

    2003-04-01

    Stable oxygen isotopic compositions of phosphate from mammal bones are commonly used in palaeoenvironmental reconstructions. However, preservation of the primary bone oxygen isotopic composition is of concern during post-mortem alteration. Particularly in studies of archaeological interest, bone samples are often obtained from contexts where they have been heated, either in middens, or near hearths. Hence, in addition to alteration resulting from natural diagenetic processes, burning may also have contributed to modification of the primary oxygen isotopic signal. Various techniques can be employed to evaluate the degree of preservation of bone during burning. Anthropologists commonly use colour comparisons (Munsell Colour Chart) to assess the temperature of burning. Recrystallization of the carbonated hydroxyapatite, i.e., bioapatite, in bone is more rigorously assessed using X-ray diffraction and infra-red spectroscopy. In this study, freshly deceased (6<8 months) white-tailed deer leg bones (Odocoileus virginianus) were collected from Pinery Provincial Park, Ontario, Canada. Each long bone was sectioned, incrementally burned, colour-typed, ground to a standardized grain-size (45<63mm), and analysed using differential thermal analysis (DTA), thermogravimetric analysis (TGA), rotating anode X-ray diffraction (XRD), and Fourier transform infra-red spectroscopy (FTIR). Heating temperatures ranged from 25 to 900^oC, increasing in intervals of 25^oC. Two major stages of weight loss were recorded in the DTA/TGA data, 25-260^oC representing dehydration, and 270-600^oC reflecting incineration of organic matter. The end-product (900^oC) resembled pure hydroxyapatite. XRD patterns of the bioapatite remained virtually unchanged from 25-250^oC, after which peak intensity, sharpness and the XRD crystallinity index (XRD CI) increased from 0.80 at 250^oC to 1.26 at 900^oC. FTIR patterns showed analogous behaviour, demonstrating minimal fluctuations in the FTIR crystallinity index (FTIR CI) from 2.86 at 25^oC to 2.56 at 250^oC, and then an overall increasing trend from 2.54 at 275^oC to a maximum of 4.72 at 825^oC as v4PO4 peak splitting intensified. Initial results show that the δ18O (VSMOW) values of bioapatite phosphate decreased from 15.0 ppm at 300^oC to 10.6 ppm at 750^oC. These data suggest that primary phosphate oxygen isotopic compositions can be significantly altered during burning, even when only modest changes in crystallinity are indicated by XRD or FTIR.

  14. Thermoluminescence (TL) properties and x-ray diffraction (XRD) analysis of high purity CaSO{sub 4}:Dy TL material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamarudin, Nadira; Abdullah, Wan Saffiey Wan; Dollah, Mohd Taufik

    2014-09-03

    This paper presents the characterization and TL properties of dysprosium (Dy) doped calcium sulfate (CaSO{sub 4}) TL material produced by co-precipitation technique with 0.5mol% concentration of dopant. The morphology of the produced TL material was studied using scanning electron microscope (SEM) and the micrograph shows that rectangular parallelepiped shaped crystal with the average of 150 μm in length were produced. The crystallinity of the produced powder was studied using x-ray powder diffraction (XRD). The XRD spectra show that the TL material produced is high purity anhydrite CaSO{sub 4} with average crystallite size of 74 nm with orthorhombic crystal system. Themore » TL behavior of produced CaSO{sub 4}:Dy was studied using a TLD reader after exposure to gamma ray by Co{sup 60} source with the doses of 1,5 and 10 Gy. The glow curve shows linear response with glow peak around 230°C which is desired development in the field of radiation dosimetry.« less

  15. Mössbauer, TEM/SAED and XRD investigation on waste dumps of the Valea lui Stan gold mines

    NASA Astrophysics Data System (ADS)

    Constantinescu, Serban Grigore; Udubasa, Sorin S.; Udubasa, Gheorghe; Kuncser, Victor; Popescu-Pogrion, Nicoleta; Mercioniu, Ionel; Feder, Marcel

    2012-03-01

    The complementary investigation techniques, Mössbauer spectroscopy, transmission electron microscopy with selected area electron diffraction (TEM/SAED), X-ray diffraction (XRD) have been used to investigate the fate of the Valea lui Stan, Romania, gold-ore nanoscale-minerals during the long time of residence in the waste dumps. The preliminary investigations showed such waste dumps to contain significant amount of metals which cannot be identified by conventional methods. An intense research activity started up in order to evaluate the possibilities to recycle Valea lui Stan waste dumps and to recover metals by chemical or phytoextraction procedures. The waste dumps naturally show different mineral constituents with clay minerals as major phases, observed by XRD-technique. Although the waste dumps materials have whitish-yellowish colours, MÖSSBAUER technique evidences the presence of the finely dispersed iron bearing minerals. The authors are focusing to inspect and analyze Fe-compounds in the samples collected from Valea lui Stan's waste dumps in order to identify the magnetic phases by Mössbauer technique.

  16. Characterization of Sb-doped Bi(2)UO(6) solid solutions by X-ray diffraction and X-ray absorption spectroscopy.

    PubMed

    Misra, N L; Yadav, A K; Dhara, Sangita; Mishra, S K; Phatak, Rohan; Poswal, A K; Jha, S N; Sinha, A K; Bhattacharyya, D

    2013-01-01

    The preparation and characterization of Sb-doped Bi(2)UO(6) solid solutions, in a limited composition range, is reported for the first time. The solid solutions were prepared by solid-state reactions of Bi(2)O(3), Sb(2)O(3) and U(3)O(8) in the required stoichiometry. The reaction products were characterized by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements at the Bi and U L(3) edges. The XRD patterns indicate the precipitation of additional phases in the samples when Sb doping exceeds 4 at%. The chemical shifts of the Bi absorption edges in the samples, determined from the XANES spectra, show a systematic variation only up to 4 at% of Sb doping and support the results of XRD measurements. These observations are further supported by the local structure parameters obtained by analysis of the EXAFS spectra. The local structure of U is found to remain unchanged upon Sb doping indicating that Sb(+3) ions replace Bi(+3) during the doping of Bi(2)UO(6) by Sb.

  17. Facile and fast synthesis of SnS2 nanoparticles by pulsed laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Johny, J.; Sepulveda-Guzman, S.; Krishnan, B.; Avellaneda, D.; Shaji, S.

    2018-03-01

    Nanoparticles (NPs) of tin disulfide (SnS2) were synthesized using pulsed laser ablation in liquid (PLAL) technique. Effects of different liquid media and ablation wavelengths on the morphology and optical properties of the nanoparticles were studied. Nd: YAG laser wavelengths of 532 nm and 1064 nm (frequency 10 Hz and pulse width 10 ns) were used to irradiate SnS2 target immersed in liquid for the synthesis of SnS2 nanoparticles. Here PLAL was a fast synthesis technique, the ablation was only for 30 s. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis absorption spectroscopy and photoluminescence spectroscopy were used to characterize the SnS2 NPs. TEM images showed that the liquid medium and laser wavelength influence the morphology of the NPs. SAED patterns and high resolution TEM (HRTEM) images confirmed the crystallinity of the particles. XRD and XPS analyses confirmed that SnS2 NPs were having exact crystalline structure and chemical states as that of the target. Raman analysis also supported the results obtained by XRD and XPS. Optical band gaps of the nanocolloids evaluated from their UV-vis absorption spectra were 2.4-3.05 eV. SnS2 NPs were having luminescence spectra in the blue-green region irrespective of the liquid media and ablation wavelength.

  18. Zinc-Containing Hydroxyapatite Enhances Cold-Light-Activated Tooth Bleaching Treatment In Vitro

    PubMed Central

    Shi, Xinchang

    2017-01-01

    Cold-light bleaching treatment has grown to be a popular tooth whitening procedure in recent years, but its side effect of dental enamel demineralization is a widespread problem. The aim of this study was to synthesize zinc-substituted hydroxyapatite as an effective biomaterial to inhibit demineralization or increase remineralization. We synthesized zinc-substituted hydroxyapatite containing different zinc concentrations and analysed the product using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and energy dispersive spectrometer (EDS). The biological assessment of Zn-HA was conducted by CCK-8 assay and bacterial inhibition tests. pH cycling was performed to estimate the effect of Zn-HA on the enamel surface after cold-light bleaching treatment. The XRD, FTIR, and EDS results illustrated that zinc ions and hydroxyapatite combined in two forms: (1) Zn2+ absorbed on the surface of HA crystal and (2) Zn2+ incorporated into the lattice of HA. The results indicated that 2% Zn-HA, 4% Zn-HA, and 8% Zn-HA effectively inhibited the growth of bacteria yet showed poor biocompatibility, whereas 1% Zn-HA positively affected osteoblast proliferation. The XRD and scanning electron microscopy (SEM) results showed that the use of Zn-HA in pH cycling is obviously beneficial for enamel remineralization. Zinc-substituted hydroxyapatite could be a promising biomaterial for use in cold-light bleaching to prevent enamel demineralization. PMID:29159178

  19. Synchrotron WAXS and XANES studies of silica (SiO2) powders synthesized from Indonesian natural sands

    NASA Astrophysics Data System (ADS)

    Muchlis, Khairanissa; Aini Fauziyah, Nur; Soontaranon, Siriwat; Limpirat, Wanwisa; Pratapa, Suminar

    2017-01-01

    In this study, we have investigated polymorphic silica (SiO2) powders using, Wide Angle X-ray Scattering (WAXS) and X-Ray Absorption Near Edge Spectroscopy (XANES), laboratory X-Ray Diffraction (XRD) instruments. The WAXS and XANES spectra were collected using synchrotron radiation at Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima, Thailand. The silica powders were obtained by processing silica sand from Tanah Laut, South Kalimantan, Indonesia. Purification process of silica sand was done by magnetic separation and immersion with HCl. The purification step was needed to reduce impurity or undesirable non Si elements. Three polymorphs of silica were produced, i.e. amorphous phase (A), quartz (B), and cristobalite (C). WAXS profile for each phase was presented in terms of intensity vs. 2θ prior to analyses. Both XRD (λCuKα=1.54056 Å) and WAXS (λ=1.09 Å) patttern show that (1) A sample contains no crystallites, (2) B sample is monophasic, contains only quartz, and (3) C sample contains cristobalite and trydimite. XRD quantitative analysis using Rietica gave 98,8 wt% cristobalite, while the associated WAXS data provided 98.7 wt% cristobalite. Si K-edge XANES spectra were measured at energy range 1840 to 1920 eV. Qualitatively, the pre-edge and edge features for all phases are similar, but their main peaks in the post-edge region are different.

  20. The effect of Fe-Rh alloying on CO hydrogenation to C 2+ oxygenates

    DOE PAGES

    Palomino, Robert; Magee, Joseph W.; Llorca, Jordi; ...

    2015-05-20

    A combination of reactivity and structural studies using X-ray diffraction (XRD), pair distribution function (PDF), and transmission electron microscopy (TEM) was used to identify the active phases of Fe-modified Rh/TiO 2 catalysts for the synthesis of ethanol and other C 2+ oxygenates from CO hydrogenation. XRD and TEM confirm the existence of Fe–Rh alloys for catalyst with 1–7 wt% Fe and ~2 wt% Rh. Rietveld refinements show that FeRh alloy content increases with Fe loading up to ~4 wt%, beyond which segregation to metallic Fe becomes favored over alloy formation. Catalysts that contain Fe metal after reduction exhibit some carburizationmore » as evidenced by the formation of small amounts of Fe 3C during CO hydrogenation. Analysis of the total Fe content of the catalysts also suggests the presence of FeO x also increased under reaction conditions. Reactivity studies show that enhancement of ethanol selectivity with Fe loading is accompanied by a significant drop in CO conversion. Comparison of the XRD phase analyses with selectivity suggests that higher ethanol selectivity is correlated with the presence of Fe–Rh alloy phases. As a result, the interface between Fe and Rh serves to enhance the selectivity of ethanol, but suppresses the activity of the catalyst which is attributed to the blocking or modifying of Rh active sites.« less

  1. Detecting Nanophase Weathering Products with CheMin: Reference Intensity Ratios of Allophane, Aluminosilicate Gel, and Ferrihydrite

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Bish, D. L.; Chipera, S. J.; Morris, R. V.; Achilles, C. N.; Ming, D W.; Blake, D. F.; Anderson, R. C.; Bristow, T. F.; Crisp, A.; hide

    2013-01-01

    X-ray diffraction (XRD) data collected of the Rocknest samples by the CheMin instrument on Mars Science Laboratory suggest the presence of poorly crystalline or amorphous materials [1], such as nanophase weathering products or volcanic and impact glasses. The identification of the type(s) of X-ray amorphous material at Rocknest is important because it can elucidate past aqueous weathering processes. The presence of volcanic and impact glasses would indicate that little chemical weathering has occurred because glass is highly susceptible to aqueous alteration. The presence of nanophase weathering products, such as allophane, nanophase iron-oxides, and/or palagonite, would indicate incipient chemical weathering. Furthermore, the types of weathering products present could help constrain pH conditions and identify which primary phases altered to form the weathering products. Quantitative analysis of phases from CheMin data is achieved through Reference Intensity Ratios (RIRs) and Rietveld refinement. The RIR of a mineral (or mineraloid) that relates the scattering power of that mineral (typically the most intense diffraction line) to the scattering power of a separate mineral standard such as corundum [2]. RIRs can be calculated from XRD patterns measured in the laboratory by mixing a mineral with a standard in known abundances and comparing diffraction line intensities of the mineral to the standard. X-ray amorphous phases (e.g., nanophase weathering products) have broad scattering signatures rather than sharp diffraction lines. Thus, RIRs of X-ray amorphous materials are calculated by comparing the area under one of these broad scattering signals with the area under a diffraction line in the standard. Here, we measured XRD patterns of nanophase weathering products (allophane, aluminosilicate gel, and ferrihydrite) mixed with a mineral standard (beryl) in the CheMinIV laboratory instrument and calculated their RIRs to help constrain the abundances of these phases in the Rocknest samples.

  2. Plutonium-uranium mixed oxide characterization by coupling micro-X-ray diffraction and absorption investigations

    NASA Astrophysics Data System (ADS)

    Degueldre, C.; Martin, M.; Kuri, G.; Grolimund, D.; Borca, C.

    2011-09-01

    Plutonium-uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The potential differences of metal redox state and microstructural developments of the matrix before and after irradiation are commonly analysed by electron probe microanalysis. In this work the structure and next-neighbor atomic environments of Pu and U oxide features within unirradiated homogeneous MOX and irradiated (60 MW d kg -1) MOX samples was analysed by micro-X-ray fluorescence (μ-XRF), micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption fine structure (μ-XAFS) spectroscopy. The grain properties, chemical bonding, valences and stoichiometry of Pu and U are determined from the experimental data gained for the unirradiated as well as for irradiated fuel material examined in the center of the fuel as well as in its peripheral zone (rim). The formation of sub-grains is observed as well as their development from the center to the rim (polygonization). In the irradiated sample Pu remains tetravalent (>95%) and no (<5%) Pu(V) or Pu(VI) can be detected while the fuel could undergo slight oxidation in the rim zone. Any slight potential plutonium oxidation is buffered by the uranium dioxide matrix while locally fuel cladding interaction could also affect the redox of the fuel.

  3. Symposium LL: Nanowires--Synthesis Properties Assembly and Application

    DTIC Science & Technology

    2010-09-10

    dedicated hard x - ray microscopy beamline is operated in partnership with the Advanced Photon Source to provide fluorescence, diffraction, and...characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X - ray diffraction (XRD) measurements, proving it to be...Investigation of Preferred Growth Direction of GaN Nanorods by Synchrotron X - ray Reciprocal Space Mapping. Yuri Sohn1, Sanghwa Lee1, Chinkyo Kim1 and Dong

  4. User Guide to RockJock - A Program for Determining Quantitative Mineralogy from X-Ray Diffraction Data

    USGS Publications Warehouse

    Eberl, D.D.

    2003-01-01

    RockJock is a computer program that determines quantitative mineralogy in powdered samples by comparing the integrated X-ray diffraction (XRD) intensities of individual minerals in complex mixtures to the intensities of an internal standard. Analysis without an internal standard (standardless analysis) also is an option. This manual discusses how to prepare and X-ray samples and mineral standards for these types of analyses and describes the operation of the program. Carefully weighed samples containing an internal standard (zincite) are ground in a McCrone mill. Randomly oriented preparations then are X-rayed, and the X-ray data are entered into the RockJock program. Minerals likely to be present in the sample are chosen from a list of standards, and the calculation is begun. The program then automatically fits the sum of stored XRD patterns of pure standard minerals (the calculated pattern) to the measured pattern by varying the fraction of each mineral standard pattern, using the Solver function in Microsoft Excel to minimize a degree of fit parameter between the calculated and measured pattern. The calculation analyzes the pattern (usually 20 to 65 degrees two-theta) to find integrated intensities for the minerals. Integrated intensities for each mineral then are determined from the proportion of each mineral standard pattern required to give the best fit. These integrated intensities then are compared to the integrated intensity of the internal standard, and the weight percentages of the minerals are calculated. The results are presented as a list of minerals with their corresponding weight percent. To some extent, the quality of the analysis can be checked because each mineral is analyzed independently, and, therefore, the sum of the analysis should approach 100 percent. Also, the method has been shown to give good results with artificial mixtures. The program is easy to use, but does require an understanding of mineralogy, of X-ray diffraction practice, and an elementary knowledge of the Excel program.

  5. Multiple techniques for mineral identification of terrestrial evaporites relevant to Mars exploration

    NASA Astrophysics Data System (ADS)

    Stivaletta, N.; Dellisanti, F.; D'Elia, M.; Fonti, S.; Mancarella, F.

    2013-05-01

    Sulfates, commonly found in evaporite deposits, were observed on Mars surface during orbital remote sensing and surface exploration. In terrestrial environments, evaporite precipitation creates excellent microniches for microbial colonization, especially in desert areas. Deposits comprised of gypsum, calcite, quartz and silicate deposits (phyllosilicates, feldspars) from Sahara Desert in southern Tunisia contain endolithic colonies just below the rock surface. Previous optical observations verified the presence of microbial communities and, as described in this paper, spectral visible analyses have led to identification of chlorophylls belonging to photosynthetic bacteria. Spectral analyses in the infrared region have clearly detected the presence of gypsum and phyllosilicates (mainly illite and/or smectite), as well as traces of calcite, but not quartz. X-ray diffraction (XRD) analysis has identified the dominant presence of gypsum as well as that of other secondary minerals such as quartz, feldspars and Mg-Al-rich phyllosilicates, such as chlorite, illite and smectite. The occurrence of a small quantity of calcite in all the samples was also highlighted by the loss of CO2 by thermal analysis (TG-DTA). A normative calculation using XRD, thermal data and X-ray fluorescence (XRF) analysis has permitted to obtain the mineralogical concentration of the minerals occurring in the samples. The combination of multiple techniques provides information about the mineralogy of rocks and hence indication of environments suitable for supporting microbial life on Mars surface.

  6. Magneto-optical properties of BaCryFe12-yO19 (0.0 ≤ y ≤ 1.0) hexaferrites

    NASA Astrophysics Data System (ADS)

    Asiri, S.; Güner, S.; Korkmaz, A. D.; Amir, Md.; Batoo, K. M.; Almessiere, M. A.; Gungunes, H.; Sözeri, H.; Baykal, A.

    2018-04-01

    In this study, nanocrystalline BaCryFe12-yO19 (0.0 ≤ y ≤ 1.0) hexaferrite powders were prepared by sol-gel auto combustion method and the effect of Cr3+ ion substitution on morphology, structure, optic and magnetic properties of Barium hexaferrite were investigated. X-ray powder diffraction (XRD) analyses confirmed the purity of all samples. The XRD data shows that the average crystallite size lies between 60.95 nm and 50.10 nm and same was confirmed by Transmission electron microscopy. Transmission electron and scanning electron microscopy analyses presented the hexagonal morphology of all products. The characteristic hysteresis (σ-H) curves proved the ferromagnetic feature of as grown nanoparticle samples. Specific saturation magnetization (σs) drops from 46.59 to 34.89 emu/g with increasing Cr content while the coercive field values lie between 770 and 1652 Oe. The large magnitude of the magnetocrystalline (intrinsic) anisotropy field, (Ha) between 11.0 and 12.6 kOe proves that all products are magnetically hard. The energy band gap values decrease from 2.0 eV to 1.84 eV with increasing Cr content. From 57Fe Mössbauer spectroscopy, the variation in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values were determined and discussed.

  7. Biocompatibility assessment of SiO2-TiO2 composite powder on MG63 osteoblast cell lines for orthopaedic applications.

    PubMed

    Chellappa, Maniickam; Thejaswini, Bezawada; Vijayalakshmi, Uthirapathy

    2017-02-01

    The objective of this study is to evaluate the biocompatibility of composite powder consisting of silica and titania (SiO 2 -TiO 2 ) for biomedical applications. The advancement of nanoscience and nanotechnology encourages researchers to actively participate in reinvention of existing materials with improved physical, chemical and biological properties. Hence, a composite/hybrid material has given birth of new materials with intriguing properties. In the present investigation, SiO 2 -TiO 2 composite powder was synthesised by sol-gel method and the prepared nanocomposite was characterised for its phase purity, functional groups, surface topography by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy. Furthermore, to understand the adverse effects of composite, biocompatibility test was analysed by cell culture method using MG63 osteoblast cell lines as a basic screening method. From the results, it was observed that typical Si-O-Ti peaks in FT-IR confirms the formation of composite and the crystallinity of the composite powder was analysed by XRD analysis. Further in vitro biocompatibility and acridine orange results have indicated better biocompatibility at different concentrations on osteoblast cell lines. On the basis of these observations, we envision that the prepared silica-titania nanocomposite is an intriguing biomaterial for better biomedical applications.

  8. Biogenic hydroxysulfate green rust, a potential electron acceptor for SRB activity

    NASA Astrophysics Data System (ADS)

    Zegeye, Asfaw; Huguet, Lucie; Abdelmoula, Mustapha; Carteret, Cédric; Mullet, Martine; Jorand, Frédéric

    2007-11-01

    Microbiological reduction of a biogenic sulfated green rust (GR2(SO42-)), was examined using a sulfate reducing bacterium ( Desulfovibrio alaskensis). Experiments investigated whether GR2(SO42-) could serve as a sulfate source for D. alaskensis anaerobic respiration by analyzing mineral transformation. Batch experiments were conducted using lactate as the electron donor and biogenic GR2(SO42-) as the electron acceptor, at circumneutral pH in unbuffered medium. GR2(SO42-) transformation was monitored with time by X-ray diffraction (XRD), Transmission Mössbauer Spectroscopy (TMS), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The reduction of sulfate anions and the formation of iron sulfur mineral were clearly identified by XPS analyses. TMS showed the formation of additional mineral as green rust (GR) and vivianite. XRD analyses discriminated the type of the newly formed GR as GR1. The formed GR1 was GR1(CO32-) as indicated by DRIFTS analysis. Thus, the results presented in this study indicate that D. alaskensis cells were able to use GR2(SO42-) as an electron acceptor. GR1(CO32-), vivianite and an iron sulfur compound were formed as a result of GR2(SO42-) reduction by D. alaskensis. Hence, in environments where geochemical conditions promote biogenic GR2(SO42-) formation, this mineral could stimulate the anaerobic respiration of sulfate reducing bacteria.

  9. Effect of solvent on the synthesis of SnO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Virender; Singh, Karamjit; Singh, Kulwinder

    Tin oxide (SnO{sub 2}) nanoparticles have been synthesized by co-precipitation method. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD) and Ultraviolet-Visible spectroscopy (UV-VIS). XRD analysis confirmed the formation of single phase of SnO{sub 2} nanoparticles. It has been found that solvents played important role in controlling the crystallite size of SnO{sub 2} nanoparticles. The XRD analysis showed well crystallized tetragonal SnO{sub 2} nanoparticles. The crystallite size of SnO{sub 2} nanoparticles varies with the solvent. Tauc plot showed that optical band gap was also tailored by controlling the solvent during synthesis.

  10. High temperature XRD of Cu2.1Zn0.9SnSe4

    NASA Astrophysics Data System (ADS)

    Chetty, Raju; Mallik, Ramesh Chandra

    2014-04-01

    Quaternary compound with chemical composition Cu2.1Zn0.9SnSe4 is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.

  11. A Practical Guide for the Preparation of Specimens for X-ray Fluorescence and X-ray Diffraction Analysis (by V. E. Buhrke, R. Jenkins, and D. K. Smith)

    NASA Astrophysics Data System (ADS)

    Rudman, Reuben

    1999-06-01

    Wiley-VCH: New York, 1998. xxiv + 333 pp. ISBN 0-471-19458-1. $79.95. I would have subtitled this book "All You Ever Wanted To Know about ...Sample Preparation". Although its principal thrust is geared towards the analytical chemist in an X-ray diffraction (XRD) or X-ray fluorescence (XRF) service laboratory, this text will be of use primarily as a reference source in all milieus dealing with undergraduate research projects and advanced laboratory courses in physical and analytical chemistry. It contains dozens of suggestions for preparing randomly oriented small samples of nearly anything. For example, rocks and minerals, soft organics and hard ceramics, radioactive and liquid materials, metals and oils are all treated. As the availability of XRD and XRF equipment has increased, so has the use of these techniques in the teaching schedule. Many undergraduate laboratory and research projects utilizing these methods have been described in the literature and are found in laboratory textbooks. Very often, especially with the increasingly common use of automated computer-controlled instrumentation, sample preparation has become the key experimental technique required for successful data collection. However, it is not always easy to prepare the statistically random distribution of small particles (crystallites) that is required by these methods. A multitude of techniques have been developed over the past 70 years, but many of them have been handed down by word of mouth or are scattered throughout the literature. This book represents an attempt to systematically describe the theory and practice of sample preparation. This excellent guide to the intricacies of sample preparation begins with a description of statistical sampling methods and the principles of grinding techniques. After a discussion of XRF specimen preparation, which includes pressing pellets, fusion methods, crucible selection and handling very small samples, detailed descriptions for handling rocks, minerals, cements, metals, oils, and vegetation [sic] are given. The preparation of XRD samples is described for various diffraction equipment geometries (utilizing both counter and film detectors), including specific information regarding the use of flat specimens and slurries, the use of internal standards, and the effects of crystallite size on the diffraction pattern. Methods for handling ceramics, clays, zeolites, air-sensitive samples, thin films, and plastics are described, along with the special handling requirements for materials to be studied by high-pressure, high-temperature, or low-temperature techniques. One whole chapter is devoted to the equipment used in specimen preparation, including grinders, pulverizers, presses, specimen holders, repair of platinumware, and sources of all types of special equipment. Did you ever want to know where to get a Plattner steel mortar or a micronizing mill or soft-glass capillary tubes with 0.01-mm wall thickness? It's all here in this monograph. The book ends with a good glossary of terms, a general bibliography in addition to the extensive list of references following each of its 9 chapters, and an index. It will be of help in many areas of spectroscopy and analytical chemistry, as well as in XRD and XRF analyses.

  12. Organic Photonics: Toward a New Generation of Thin Film Photovoltaics and Lasers

    DTIC Science & Technology

    2011-03-07

    plane. 39 Both electron and x - ray diffraction confirm the existence of crystalline domains of CuPc and C60. Crystalline domain sizes range from 5...nanocrystalline domains indicated by white curves that locate the domain boundaries. Scale bar=5 nm. b, X - ray diffraction pattern of an OVPD grown A... ray diffraction (XRD) and atomic force microscopy (AFM), as shown in Fig. 8. A cross-sectional TEM image of [CuPc(6.1nm)/C60(6.1nm)]10 is shown in

  13. Mineralogy of Eolian Sands at Gale Crater

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Vaniman, D. T.; Blake, D. F.; Bristow, T. F.; Rampe, E. B.; Ming, D. W.; Chipera, S. J.; Morris, R. V.; Morrison, S. M.; Downs, R. T.; hide

    2016-01-01

    The Mars Science Laboratory rover Curiosity has been exploring outcrop and regolith in Gale crater since August 6, 2012. During this exploration, the mission has collected 10 samples for mineralogical analysis by X-ray diffraction (XRD), using the CheMin instrument. The CheMin (Chemistry and Mineralogy) instrument on the Mars Science Laboratory rover Curiosity uses a CCD detector and a Co-anode tube source to acquire both mineralogy (from the pat-tern of Co diffraction) and chemical information (from energies of fluoresced X-rays). A detailed description of CheMin is provided in [1]. As part of the rover checkout after landing, the first sample selected for analysis was an eolian sand deposit (the Rocknest "sand shadow"). This sample was selected in part to characterize unconsolidated eolian regolith, but primarily to prove performance of the scoop collection system on the rover. The focus of the mission after Rocknest was on the consolidated sediments of Gale crater, so all of the nine subsequent samples were collected by drilling into bedrock com-posed of lithified sedimentary materials, including mudstone and sandstone. No scoop samples have been collected since Rocknest, but at the time this abstract was written the mission stands poised to use the scoop again, to collect active dune sands from the Bagnold dune field. Several abstracts at this conference outline the Bagnold dune campaign and summarize preliminary results from analyses on approach to the Namib dune sampling site. In this abstract we review the mineralogy of Rocknest, contrast that with the mineralogy of local sediments, and anticipate what will be learned by XRD analysis of Bagnold dune sands.

  14. Physical chemical effects of zinc on in vitro enamel demineralization.

    PubMed

    Mohammed, N R; Mneimne, M; Hill, R G; Al-Jawad, M; Lynch, R J M; Anderson, P

    2014-09-01

    Zinc salts are formulated into oral health products as antibacterial agents, yet their interaction with enamel is not clearly understood. The aim was to investigate the effect of zinc concentration [Zn(2+)] on the in vitro demineralization of enamel during exposure to caries-simulating conditions. Furthermore, the possible mechanism of zinc's action for reducing demineralization was determined. Enamel blocks and synthetic hydroxyapatite (HAp) were demineralized in a range of zinc-containing acidic solutions (0-3565ppm [Zn(2+)]) at pH 4.0 and 37°C. Inductively coupled-plasma optical emission spectroscopy (ICP-OES) was used to measure ion release into solution. Enamel blocks were analysed by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and HAp by X-ray diffraction (XRD) and neutron diffraction (ND). ICP-OES analysis of the acidic solutions showed a decrease in [Ca(2+)] and [PO4(3-)] release with increasing [Zn(2+)]. FTIR revealed a α-hopeite (α-Zn3(PO4)2.4H2O)-like phase on the enamel surfaces at >107ppm [Zn(2+)]. XRD and ND analysis confirmed a zinc-phosphate phase present alongside the HAp. This study confirms that zinc reduces enamel demineralization. Under the conditions studied, zinc acts predominantly on enamel surfaces at PO4(3-) sites in the HAp lattice to possibly form an α-hopeite-like phase. These results have a significant implication on the understanding of the fundamental chemistry of zinc in toothpastes and demonstrate its therapeutic potential in preventing tooth mineral loss. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Exchangeable Ions Are Responsible for the In Vitro Antibacterial Properties of Natural Clay Mixtures

    PubMed Central

    Otto, Caitlin C.; Haydel, Shelley E.

    2013-01-01

    We have identified a natural clay mixture that exhibits in vitro antibacterial activity against a broad spectrum of bacterial pathogens. We collected four samples from the same source and demonstrated through antibacterial susceptibility testing that these clay mixtures have markedly different antibacterial activity against Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). Here, we used X-ray diffraction (XRD) and inductively coupled plasma – optical emission spectroscopy (ICP-OES) and – mass spectrometry (ICP-MS) to characterize the mineralogical and chemical features of the four clay mixture samples. XRD analyses of the clay mixtures revealed minor mineralogical differences between the four samples. However, ICP analyses demonstrated that the concentrations of many elements, Fe, Co, Cu, Ni, and Zn, in particular, vary greatly across the four clay mixture leachates. Supplementation of a non-antibacterial leachate containing lower concentrations of Fe, Co, Ni, Cu, and Zn to final ion concentrations and a pH equivalent to that of the antibacterial leachate generated antibacterial activity against E. coli and MRSA, confirming the role of these ions in the antibacterial clay mixture leachates. Speciation modeling revealed increased concentrations of soluble Cu2+ and Fe2+ in the antibacterial leachates, compared to the non-antibacterial leachates, suggesting these ionic species specifically are modulating the antibacterial activity of the leachates. Finally, linear regression analyses comparing the log10 reduction in bacterial viability to the concentration of individual ion species revealed positive correlations with Zn2+ and Cu2+ and antibacterial activity, a negative correlation with Fe3+, and no correlation with pH. Together, these analyses further indicate that the ion concentration of specific species (Fe2+, Cu2+, and Zn2+) are responsible for antibacterial activity and that killing activity is not solely attributed to pH. PMID:23691149

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shivananda, C. S.; Rao, B. Lakshmeesha; Madhukumar, R.

    In this work silk fibroin/pullulan blend films have been prepared by solution casting method. The blend films were examined for structural, and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results indicate that with the introduction of pullulan, the interaction between SF and pullulan in the blend films induced the conformation transition of SF films and amorphous phase increases with increasing pullulan ratio. The thermal properties of the blend films were improved significantly in the blend films.

  17. Electric-field responsive contrast agent based on liquid crystals and magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mair, Lamar O.; Martinez-Miranda, Luz J.; Kurihara, Lynn K.; Nacev, Aleksandar; Hilaman, Ryan; Chowdhury, Sagar; Jafari, Sahar; Ijanaten, Said; da Silva, Claudian; Baker-McKee, James; Stepanov, Pavel Y.; Weinberg, Irving N.

    2018-05-01

    The properties of liquid crystal-magnetic nanoparticle composites have potential for sensing in the body. We study the response of a liquid crystal-magnetic nanoparticle (LC-MNP) composite to applied potentials of hundreds of volts per meter. Measuring samples using X-ray diffraction (XRD) and imaging composites using magnetic resonance imaging (MRI), we demonstrate that electric potentials applied across centimeter scale LC-MNP composite samples can be detected using XRD and MRI techniques.

  18. Compression Freezing Kinetics of Water to Ice VII

    DOE PAGES

    Gleason, A. E.; Bolme, C. A.; Galtier, E.; ...

    2017-07-11

    Time-resolved x-ray diffraction (XRD) of compressed liquid water shows transformation to ice VII in 6 nsec, revealing crystallization rather than amorphous solidification during compression freezing. Application of classical nucleation theory indicates heterogeneous nucleation and one-dimensional (e.g., needlelike) growth. In conclusion, these first XRD data demonstrate rapid growth kinetics of ice VII with implications for fundamental physics of diffusion-mediated crystallization and thermodynamic modeling of collision or impact events on ice-rich planetary bodies.

  19. Coupling Graphene Sheets with Magnetic Nanoparticles for Energy Storage and Microelectronics

    DTIC Science & Technology

    2015-08-13

    sheets obtained from three different synthetic methods: (i) electrochemical exfoliation of highly oriented pyrolytic graphite ( HOPG ) [8], (ii...Figure 8d, the characteristic lattice fringes of ɤ-Fe2O3 nanoparticles in graphene sheet is shown. Typical X-ray diffraction ( XRD ) patterns of the HOPG ...pattern in honey comb crystal lattice, (c) TEM (d) HRTEM image of graphene- PyDop1-MNP hybrid, (e) XRD pattern of the HOPG , exfoliated graphene, PyDop1

  20. Compression Freezing Kinetics of Water to Ice VII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleason, A. E.; Bolme, C. A.; Galtier, E.

    Time-resolved x-ray diffraction (XRD) of compressed liquid water shows transformation to ice VII in 6 nsec, revealing crystallization rather than amorphous solidification during compression freezing. Application of classical nucleation theory indicates heterogeneous nucleation and one-dimensional (e.g., needlelike) growth. In conclusion, these first XRD data demonstrate rapid growth kinetics of ice VII with implications for fundamental physics of diffusion-mediated crystallization and thermodynamic modeling of collision or impact events on ice-rich planetary bodies.

  1. Understanding Two Different Structures in the Dark Stable State of the Oxygen‐Evolving Complex of Photosystem II: Applicability of the Jahn–Teller Deformation Formula

    PubMed Central

    Shoji, Mitsuo; Isobe, Hiroshi; Tanaka, Ayako; Fukushima, Yoshimasa; Kawakami, Keisuke; Umena, Yasufumi; Kamiya, Nobuo; Nakajima, Takahito

    2017-01-01

    Abstract Tanaka et al. (J. Am. Chem. Soc., 2017, 139, 1718) recently reported the three‐dimensional (3D) structure of the oxygen evolving complex (OEC) of photosystem II (PSII) by X‐ray diffraction (XRD) using extremely low X‐ray doses of 0.03 and 0.12 MGy. They observed two different 3D structures of the CaMn4O5 cluster with different hydrogen‐bonding interactions in the S1 state of OEC keeping the surrounding polypeptide frameworks of PSII the same. Our Jahn–Teller (JT) deformation formula based on large‐scale quantum mechanics/molecular mechanics (QM/MM) was applied for these low‐dose XRD structures, elucidating important roles of JT effects of the MnIII ion for subtle geometric distortions of the CaMn4O5 cluster in OEC of PSII. The JT deformation formula revealed the similarity between the low‐dose XRD and damage‐free serial femtosecond X‐ray diffraction (SFX) structures of the CaMn4O5 cluster in the dark stable state. The extremely low‐dose XRD structures were not damaged by X‐ray irradiation. Implications of the present results are discussed in relation to recent SFX results and a blue print for the design of artificial photocatalysts for water oxidation. PMID:29577075

  2. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite.

    PubMed

    Reyes-Gasga, José; Martínez-Piñeiro, Esmeralda L; Rodríguez-Álvarez, Galois; Tiznado-Orozco, Gaby E; García-García, Ramiro; Brès, Etienne F

    2013-12-01

    The crystallinity index (CI) is a measure of the percentage of crystalline material in a given sample and it is also correlated to the degree of order within the crystals. In the literature two ways are reported to measure the CI: X-ray diffraction and infrared spectroscopy. Although the CI determined by these techniques has been adopted in the field of archeology as a structural order measure in the bone with the idea that it can help e.g. in the sequencing of the bones in chronological and/or stratigraphic order, some debate remains about the reliability of the CI values. To investigate similarities and differences between the two techniques, the CI of sound human tooth enamel and synthetic hydroxyapatite (HAP) was measured in this work by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), at room temperature and after heat treatment. Although the (CI)XRD index is related to the crystal structure of the samples and the (CI)FTIR index is related to the vibration modes of the molecular bonds, both indices showed similar qualitative behavior for heat-treated samples. At room temperature, the (CI)XRD value indicated that enamel is more crystalline than synthetic HAP, while (CI)FTIR indicated the opposite. Scanning (SEM) and transmission (TEM) images were also used to corroborate the measured CI values. © 2013.

  3. Evolution of the substructure of a novel 12% Cr steel under creep conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Surya Deo, E-mail: surya.yadav@tugraz.at; Kalácska, Szilvia, E-mail: kalacska@metal.elte.hu; Dománková, Mária, E-mail: maria.domankova@stuba.sk

    2016-05-15

    In this work we study the microstruture evolution of a newly developed 12% Cr martensitic/ferritic steel in as-received condition and after creep at 650 °C under 130 MPa and 80 MPa. The microstructure is described as consisting of mobile dislocations, dipole dislocations, boundary dislocations, precipitates, lath boundaries, block boundaries, packet boundaries and prior austenitic grain boundaries. The material is characterized employing light optical microscopy (LOM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). TEM is used to characterize the dislocations (mobile + dipole) inside the subgrains and XRD measurements are used tomore » the characterize mobile dislocations. Based on the subgrain boundary misorientations obtained from EBSD measurements, the boundary dislocation density is estimated. The total dislocation density is estimated for the as-received and crept conditions adding the mobile, boundary and dipole dislocation densities. Additionally, the subgrain size is estimated from the EBSD measurements. In this publication we propose the use of three characterization techniques TEM, XRD and EBSD as necessary to characterize all type of dislocations and quantify the total dislocation densty in martensitic/ferritic steels. - Highlights: • Creep properties of a novel 12% Cr steel alloyed with Ta • Experimental characterization of different types of dislocations: mobile, dipole and boundary • Characterization and interpretation of the substructure evolution using unique combination of TEM, XRD and EBSD.« less

  4. Effect of Ultrasonic Surface Treatment on the Transparency and Orientation of Fresnoite Surface Crystallization

    NASA Astrophysics Data System (ADS)

    Endo, A.; Sakida, S.; Benino, Y.; Nanba, T.

    2011-10-01

    Surface crystallized glass ceramics with fresnoite (Ba2TiSi2O8) phase were prepared by conventional heat treatment of 30BaO-20TiO2-50SiO2 glass together with ultrasonic surface treatment (UST) technique. The precursor glass was fully crystallized in a bulk form without any cracks, and the optical transparency and crystallographic orientation of the crystalline layers were evaluated by UV-Vis spectroscopy and XRD diffraction analyses, respectively. These properties were both enhanced significantly by applying UST using fresnoite/water suspension before the crystallization process, which is advantage for nonlinear optical applications of bulk glass ceramics. The effects of UST on the crystallization behavior were investigated by applying UST with various conditions.

  5. Surface modification of boron nitride nanosheets by polyelectrolytes via atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Wu, Yuanpeng; Guo, Meiling; Liu, Guanfei; Xue, Shishan; Xia, Yuanmeng; Liu, Dan; Lei, Weiwei

    2018-04-01

    In this study, the surface modification of boron nitride nanosheets (BNNSs) with poly 2-acrylamido-2-methyl- propanesulfonate (PAMPS) brushes is achieved through electron transfer atom transfer radical polymerization (ARGET ATRP). BNNSs surface was first modified with α-bromoisobutyryl bromide (BIBB) via hydroxyl groups, then PAMPS brushes were grown on the surface through ARGET ATRP. Polyelectrolyte brushes modified BNNSs were further characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyses (TGA), x-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The concentraction of water-dispersion of BNNSs have been enhanced significantly by PAMPS and the high water-dispersible functional BNNSs/PAMPS composites are expected to have potential applications in biomedical and thermal management in electronics.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madden, Jeremy T.; Toth, Scott J.; Dettmar, Christopher M.

    Nonlinear optical (NLO) instrumentation has been integrated with synchrotron X-ray diffraction (XRD) for combined single-platform analysis, initially targeting applications for automated crystal centering. Second-harmonic-generation microscopy and two-photon-excited ultraviolet fluorescence microscopy were evaluated for crystal detection and assessed by X-ray raster scanning. Two optical designs were constructed and characterized; one positioned downstream of the sample and one integrated into the upstream optical path of the diffractometer. Both instruments enabled protein crystal identification with integration times between 80 and 150 µs per pixel, representing a ~10 3–10 4-fold reduction in the per-pixel exposure time relative to X-ray raster scanning. Quantitative centering andmore » analysis of phenylalanine hydroxylase fromChromobacterium violaceumcPAH,Trichinella spiralisdeubiquitinating enzyme TsUCH37, human κ-opioid receptor complex kOR-T4L produced in lipidic cubic phase (LCP), intimin prepared in LCP, and α-cellulose samples were performed by collecting multiple NLO images. The crystalline samples were characterized by single-crystal diffraction patterns, while α-cellulose was characterized by fiber diffraction. Good agreement was observed between the sample positions identified by NLO and XRD raster measurements for all samples studied.« less

  7. Grain rotation and lattice deformation during photoinduced chemical reactions revealed by in situ X-ray nanodiffraction.

    PubMed

    Huang, Zhifeng; Bartels, Matthias; Xu, Rui; Osterhoff, Markus; Kalbfleisch, Sebastian; Sprung, Michael; Suzuki, Akihiro; Takahashi, Yukio; Blanton, Thomas N; Salditt, Tim; Miao, Jianwei

    2015-07-01

    In situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to investigate many physical science phenomena, ranging from phase transitions, chemical reactions and crystal growth to grain boundary dynamics. A major limitation of in situ XRD and TEM is a compromise that has to be made between spatial and temporal resolution. Here, we report the development of in situ X-ray nanodiffraction to measure high-resolution diffraction patterns from single grains with up to 5 ms temporal resolution. We observed, for the first time, grain rotation and lattice deformation in chemical reactions induced by X-ray photons: Br(-) + hv → Br + e(-) and e(-) + Ag(+) → Ag(0). The grain rotation and lattice deformation associated with the chemical reactions were quantified to be as fast as 3.25 rad s(-1) and as large as 0.5 Å, respectively. The ability to measure high-resolution diffraction patterns from individual grains with a temporal resolution of several milliseconds is expected to find broad applications in materials science, physics, chemistry and nanoscience.

  8. Supercritical carbon dioxide treatment as a method for polymorph preparation of deoxycholic acid.

    PubMed

    Tozuka, Yuichi; Kawada, Dai; Oguchi, Toshio; Yamamoto, Keiji

    2003-09-16

    A new polymorph of deoxycholic acid (DCA) was formed by using a supercritical carbon dioxide treatment. Deoxycholic acid crystals were stored in a pressure vessel purged with carbon dioxide at 12MPa, 60 degrees C for definite intervals. After storage for 1h in supercritical carbon dioxide (SC-CO2), new X-ray diffraction (XRD) peaks, not found in the bulk DCA crystal, were observed at 2theta = 7.4 degrees, 9.7 degrees and 14.0 degrees. The intensities of the new diffraction peaks increased with an increase in storage time, whereas the intensities of the diffraction peaks due to bulk DCA crystal decreased. On the DSC curves, the crystals obtained showed an exothermic peak at around 155 degrees C followed by the melting peak of bulk DCA crystal at 175 degrees C. By the temperature-controlled powder XRD measurement, the crystals obtained were found to be a metastable form of DCA. The polymorphs of DCA have not been reported; therefore, the SC-CO2 treatment would be a peculiar method to obtain a DCA polymorph.

  9. Electrochemical reactions in fluoride-ion batteries: mechanistic insights from pair distribution function analysis

    DOE PAGES

    Grenier, Antonin; Porras-Gutierrez, Ana-Gabriela; Groult, Henri; ...

    2017-07-05

    Detailed analysis of electrochemical reactions occurring in rechargeable Fluoride-Ion Batteries (FIBs) is provided by means of synchrotron X-ray diffraction (XRD) and Pair Distribution Function (PDF) analysis.

  10. Stable tetragonal phase and magnetic properties of Fe-doped HfO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Sales, T. S. N.; Cavalcante, F. H. M.; Bosch-Santos, B.; Pereira, L. F. D.; Cabrera-Pasca, G. A.; Freitas, R. S.; Saxena, R. N.; Carbonari, A. W.

    2017-05-01

    In this paper, the effect in structural and magnetic properties of iron doping with concentration of 20% in hafnium dioxide (HfO2) nanoparticles is investigated. HfO2 is a wide band gap oxide with great potential to be used as high-permittivity gate dielectrics, which can be improved by doping. Nanoparticle samples were prepared by sol-gel chemical method and had their structure, morphology, and magnetic properties, respectively, investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with electron back scattering diffraction (EBSD), and magnetization measurements. TEM and SEM results show size distribution of particles in the range from 30 nm to 40 nm with small dispersion. Magnetization measurements show the blocking temperature at around 90 K with a strong paramagnetic contribution. XRD results show a major tetragonal phase (94%).

  11. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    NASA Astrophysics Data System (ADS)

    Stan, Manuela; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut; Vodnar, Dan Cristian; Katona, Gabriel

    2015-12-01

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn2+ ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.

  12. Phase Compositions of Self Reinforcement Al2O3/CaAl12O19 Composite using X-ray Diffraction Data and Rietveld Technique

    NASA Astrophysics Data System (ADS)

    Asmi, D.; Low, I. M.; O'Connor, B.

    2008-03-01

    The analysis of x-ray diffraction (XRD) patterns by the Rietveld technique was tested to the quantitatively phase compositions of self reinforcement Al2O3/CaAl12O19 composite. Room-temperature XRD patterns revealed that α-Al2O3 was the only phase presence in the CA0 sample, whereas the α-Al2O3 and CaAl12O19 phases were found for CA5, CA15, CA30, and CA50 samples. The peak intensity of CA6 in the self reinforcement Al2O3/CaAl12O19 composites increased in proportion with increase in CaAl12O19 content in contrast to α-Al2O3. The diffraction patterns for CA100 sample shows minor traces of α-Al2O3 even in relatively low peak intensity. It is suggesting that the in-situ reaction sintering of raw materials were not react completely to form 100 wt% CaAl12O19 at temperature 1650 °C. Quantitative phase compositions of self reinforcement Al2O3/CaAl12O19 composites by Rietveld analysis with XRD data has been well demonstrated. The results showed that the GOF values are relatively low and the fluctuation in the difference plots shows a reasonable fit between the observed and the calculated plot.

  13. Kinetics and structural changes of Li-rich layered oxide 0.5Li2MnO3·0.5LiNi(0.292)Co(0.375)Mn(0.333)O2 material investigated by a novel technique combining in situ XRD and a multipotential step.

    PubMed

    Shen, Chong-Heng; Huang, Ling; Lin, Zhou; Shen, Shou-Yu; Wang, Qin; Su, Hang; Fu, Fang; Zheng, Xiao-Mei

    2014-08-13

    Li-rich layered oxide 0.5Li2MnO3·0.5LiNi0.292Co0.375Mn0.333O2 was prepared by an aqueous solution-evaporation route. X-ray powder diffraction (XRD) showed that the as-synthesized material was a solid solution consisting of layered α-NaFeO2-type LiMO2 (M = Ni, Co, Mn) and monoclinic Li2MnO3. The superlattice spots in the selected area electron diffraction pattern indicated the ordering of lithium ions with transition metal (TM) ions in TM layers in this Li-rich layered oxide. Electrochemical performance testing showed that the as-synthesized material could deliver an initial discharge capacity of 267.7 mAh/g, with a capacity retention of 88.5% after 33 cycles. A new combination technique, multipotential step in situ XRD (MPS in situ XRD) measurement, was applied for the first time to investigate the Li-rich layered oxide. Using this approach, the relationships between kinetics and structural variations can be obtained simutaneously. In situ XRD results showed that the c parameter decreased from 3.70 to 4.30 V and increased from 4.30 to 4.70 V, whereas the a parameter underwent a decrease above 4.30 V during the first charge process. Below 3.90 V during the first discharge process, a slight decrease in the c parameter was found along with an increase in the a parameter. During the first charge process, the value of the coefficient of diffusion for lithium ions (DLi+) decreased to its mininum at 4.55 V, which might be associated with Ni(2+) migration, as indicated by both Ni occupancy in 3b sites (Ni3b%) in the Li(+) layers and complicated chemical reactions. Remarkably, a lattice distortion might occur within the local domain in the host stucture during the first discharge process, indicated by a slight splitting of the (003) diffraction peak at 3.20 V.

  14. Skeletal carbonate mineralogy of Scottish bryozoans

    PubMed Central

    Spencer Jones, Mary; Najorka, Jens; Smith, Abigail M.

    2018-01-01

    This paper describes the skeletal carbonate mineralogy of 156 bryozoan species collected from Scotland (sourced both from museum collections and from waters around Scotland) and collated from literature. This collection represents 79% of the species which inhabit Scottish waters and is a greater number and proportion of extant species than any previous regional study. The study is also of significance globally where the data augment the growing database of mineralogical analyses and offers first analyses for 26 genera and four families. Specimens were collated through a combination of field sampling and existing collections and were analysed by X-ray diffraction (XRD) and micro-XRD to determine wt% MgCO3 in calcite and wt% aragonite. Species distribution data and phylogenetic organisation were applied to understand distributional, taxonomic and phylo-mineralogical patterns. Analysis of the skeletal composition of Scottish bryozoans shows that the group is statistically different from neighbouring Arctic fauna but features a range of mineralogy comparable to other temperate regions. As has been previously reported, cyclostomes feature low Mg in calcite and very little aragonite, whereas cheilostomes show much more variability, including bimineralic species. Scotland is a highly variable region, open to biological and environmental influx from all directions, and bryozoans exhibit this in the wide range of within-species mineralogical variability they present. This plasticity in skeletal composition may be driven by a combination of environmentally-induced phenotypic variation, or physiological factors. A flexible response to environment, as manifested in a wide range of skeletal mineralogy within a species, may be one characteristic of successful invasive bryozoans. PMID:29897916

  15. Skeletal carbonate mineralogy of Scottish bryozoans.

    PubMed

    Loxton, Jennifer; Spencer Jones, Mary; Najorka, Jens; Smith, Abigail M; Porter, Joanne S

    2018-01-01

    This paper describes the skeletal carbonate mineralogy of 156 bryozoan species collected from Scotland (sourced both from museum collections and from waters around Scotland) and collated from literature. This collection represents 79% of the species which inhabit Scottish waters and is a greater number and proportion of extant species than any previous regional study. The study is also of significance globally where the data augment the growing database of mineralogical analyses and offers first analyses for 26 genera and four families. Specimens were collated through a combination of field sampling and existing collections and were analysed by X-ray diffraction (XRD) and micro-XRD to determine wt% MgCO3 in calcite and wt% aragonite. Species distribution data and phylogenetic organisation were applied to understand distributional, taxonomic and phylo-mineralogical patterns. Analysis of the skeletal composition of Scottish bryozoans shows that the group is statistically different from neighbouring Arctic fauna but features a range of mineralogy comparable to other temperate regions. As has been previously reported, cyclostomes feature low Mg in calcite and very little aragonite, whereas cheilostomes show much more variability, including bimineralic species. Scotland is a highly variable region, open to biological and environmental influx from all directions, and bryozoans exhibit this in the wide range of within-species mineralogical variability they present. This plasticity in skeletal composition may be driven by a combination of environmentally-induced phenotypic variation, or physiological factors. A flexible response to environment, as manifested in a wide range of skeletal mineralogy within a species, may be one characteristic of successful invasive bryozoans.

  16. Physicochemical characterization of point defects in fluorine doped tin oxide films

    NASA Astrophysics Data System (ADS)

    Akkad, Fikry El; Joseph, Sudeep

    2012-07-01

    The physical and chemical properties of spray deposited FTO films are studied using FESEM, x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), electrical and optical measurements. The results of XRD measurements showed that the films are polycrystalline (grain size 20-50 nm) with Rutile structure and mixed preferred orientation along the (200) and (110) planes. An angular shift of the XRD peaks after F-doping is observed and interpreted as being due to the formation of substitutional fluorine defects (FO) in presence of high concentration of oxygen vacancies (VO) that are electrically neutral. The electrical neutrality of oxygen vacancies is supported by the observation that the electron concentration n is two orders of magnitude lower than the VO concentration calculated from chemical analyses using XPS measurements. It is shown that an agreement between XPS, XRD, and Hall effect results is possible provided that the degree of deviation from stoichiometry is calculated with the assumption that the major part of the bulk carbon content is involved in O-C bonds. High temperature thermal annealing is found to cause an increase in the FO concentration and a decrease in both n and VO concentrations with the increase of the annealing temperature. These results could be interpreted in terms of a high temperature chemical exchange reaction between the SnO2 matrix and a precipitated fluoride phase. In this reaction, fluorine is released to the matrix and Sn is trapped by the fluoride phase, thus creating substitutional fluorine FO and tin vacancy VSn defects. The enthalpy of this reaction is determined to be approximately 2.4 eV while the energy of formation of a VSn through the migration of SnSn host atom to the fluoride phase is approximately 0.45 eV.

  17. High-Temperature, Perhaps Silicic, Volcanism on Mars Evidenced by Tridymite Detection in High-SiO2 Sedimentary Rock at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Vaniman, D. T.; Blake, D. F.; Gellert, R.; Chipera, S. J.; Rampe, E. B.; Ming, D. W.; Morrison, S. M.; Downs, R. T.; Treiman, A. H.; hide

    2016-01-01

    The Mars Science Laboratory (MSL) rover, Curiosity, has been exploring sedimentary rocks within Gale crater since landing in August, 2012. On the lower slopes of Aeolis Mons (a.k.a. Mount Sharp), drill powder was collected from a high-silica (74 wt% SiO2) outcrop named Buckskin (BK). It was a surprise to find that the Buckskin sample contained significant amounts of the relatively rare silica polymorph tridymite. We describe the setting of the Buckskin sample, the detection of tridymite by the MSL Chemistry and Mineralogy (CheMin) X-ray diffraction instrument, and detection implications. Geologic setting: The Buckskin outcrop is part of the Murray formation exposed in the Marias Pass area. The formation was previously studied by CheMin in the Pahrump Hills member [1] where three samples of drill fines were analyzed (Confidence Hills (CH), Mojave2 (MJ) and Telegraph Peak (TP) [2]). Assuming approximately horizontal bedding, the Buckskin outcrop is approx.15 m stratigraphically above the bottom of the Pahrump Hills member. Mudstone, generally characterized by fine lamination, is the dominant depositional facies [1]. Buckskin Mineralogical and Chemical Composition: The CheMin instrument and XRD pattern analysis procedures have been previously discussed [3-6]. The diffraction pattern used for quantitative XRD analysis (Fig. 1) is the sum of the first 4 of 45 diffraction images. The remaining images are all characterized by both on-ring and off-ring diffraction spots that we attributed to poor grain motion and particle clumping. Coincident with particle clumping was a significant decrease in the intensity of the tridymite diffraction peaks (Fig. 2a). The derived mineralogical composition of the crystalline component (derived from the first 4 diffraction images) is given in Table 1. The tridymite is well-crystalline and its pattern is refined as monoclinic tridymite (Fig 1). Mineral chemical compositions were derived from XRD unit cell parameters or obtained from stoichiometry. The XRD-calculated amorphous component was 50 +/- 15 wt%. We constrained the value to 60 wt% because it is the minimum value necessary to give a positive Al2O3 concentration for the amorphous component using APXS data for the post-sieve dump pile (Table 2). The amorphous component has high SiO2 (approx.77 wt%) and high anion (SO3+P2O5+Cl 10 wt%) concentrations. Calculation shows that a cation-anion balance is achieved if the cations in the amorphous component except SiO2 and TiO2, which do not readily form salts, are assumed to be present as amorphous mixed-cation sulfates, phosphates, and chlorides (or perchlorates/ chlorates).

  18. Elucidation of reaction mechanism involved in the formation of LaNiO3 from XRD and TG analysis

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Dipti V.; Athawale, Anjali A.

    2013-06-01

    The present work is focused on the synthesis and elucidation of reaction mechanism involved in the formation of LaNiO3 with the help of X-ray diffraction (XRD) and thermogravimetric (TG) analysis. LaNiO3 was synthesized by hydrothermal method by heating at 160°C under autogenous pressure for 6h. Pure phase product was obtained after calcining the hydrothermally activated product for 6h at 700°C. The various phases of the product obtained after hydrothermal treatment and calcination followed by the formation of pure phase nanocrystalline lanthanum nickel oxide could be determined from XRD analysis of the samples. The reaction mechanism and phase formation temperature has been interpreted by thermogravimetric analysis of the hydrothermally synthesized product and XRD analysis.

  19. Hydrothermal synthesis, crystal structures, and enantioselective adsorption property of bis(L-histidinato)nickel(II) monohydrate

    NASA Astrophysics Data System (ADS)

    Ramos, Christian Paul L.; Conato, Marlon T.

    2018-05-01

    Despite the numerous researches in metal-organic frameworks (MOFs), there are only few reports on biologically important amino acids, histidine in particular, on its use as bridging ligand in the construction of open-framework architectures. In this work, hydrothermal synthesis was used to prepare a compound based on Ni2+ and histidine. The coordination assembly of imidazole side chain of histidine with divalent nickel ions in aqueous condition yielded purple prismatic solids. Single crystal X-ray diffraction (XRD) analysis of the product revealed structure for Ni(C6H8N3O2)2 • H2O that has a monoclinic (C2) structure with lattice parameters, a = 29.41, b = 8.27, c = 6.31 Å, β = 90.01 ˚. Circular dichroism - optical rotatory dispersion (CD-ORD), Powder X-ray diffraction (PXRD) and Fourier transform - infrared spectroscopy (FT-IR) analyses are conducted to further characterize the crystals. Enantioselective adsorption analysis using racemic mixture of 2-butanol confirmed bis(L-histidinato)nickel(II) monohydrate MOF crystal's enantioselective property preferentially favoring the adsorption of (S)-2-butanol isomer.

  20. Solar physical vapor deposition preparation and microstructural characterization of TiO2 based nanophases for dye-sensitized solar cell applications.

    PubMed

    Negrea, Denis; Ducu, Catalin; Moga, Sorin; Malinovschi, Viorel; Monty, Claude J A; Vasile, Bogdan; Dorobantu, Dorel; Enachescu, Marian

    2012-11-01

    Titanium dioxide exists in three crystalline phases: anatase, rutile and brookite. Although rutile is thermodynamically more stable, anatase is considered as the most favorable phase for photocatalysis and solar energy conversion. Recent studies have shown a significant improvement of light harvesting and overall solar conversion efficiency of anatase nanoparticles in dye-sensitized solar cells (DSSCs) when using a mixture of anatase and rutile phases (10-15% rutile). TiO2 nanopowders have been prepared by a solar physical vapor deposition process (SPVD). This method has been developed in Odeillo-Font Romeu France using "heliotron" solar reactors working under concentrated sunlight in 2 kW solar furnaces. By controlling reactor's atmosphere type (air/argon) and gas pressure, several types of anatase/rutile nanophases have been obtained with slightly different microstructural properties and morphological characteristics. X-ray diffraction analyses (XRD) were performed on precursor and on the SPVD obtained nanopowders. Information concerning their phase composition and coherence diffraction domain (crystallites size and strain) was obtained. Nanopowders morphology has been studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  1. Synthesis of TiO2 Nanoparticle and its phase Transition

    NASA Astrophysics Data System (ADS)

    Mangrola, M. H.; Joshi, V. G.; Parmar, B. H.

    2011-12-01

    Here we report the synthesis of titanium dioxide (TiO2) nanoparticles and study of its phase transition from anataze to rutile. Titanium dioxide (TiO2) nanoparticles have been prepared by hydrolysis of Titanium isopropoxide an aqueous solution with constant value of pH 2 and peptizing the resultant suspension gel(white-Blue) and calcinate gel at different temperature. Structures of synthetic samples of TiO2 have been examined by X-ray diffraction (XRD) and scanning electron microscope (SEM). The anatase-rutile transition has been a popular topic due to its interest to scientific and engineering fields. . Here we have seen that the 100 °C calcinate powder consist of anatase fine crystalline phase with a particle size 14 to 15 nm. The prepared TiO2 nanoparticles have uniform size and morphology, and the phase transformation kinetics of obtained material was studied by interpretation of the X-ray diffraction patterns peaks. The phase transform occurred from anatase to rutile at calcinate temperature up to 600 °C. A very fine network texture made from uniform nanoparticles was revealed by scanning electron microscopy (SEM) analyses.

  2. High temperature XRD of Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chetty, Raju, E-mail: rcmallik@physics.iisc.ernet.in; Mallik, Ramesh Chandra, E-mail: rcmallik@physics.iisc.ernet.in

    2014-04-24

    Quaternary compound with chemical composition Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4} is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.

  3. Structural analysis of emerging ferrite: Doped nickel zinc ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajinder; Kumar, Hitanshu; Singh, Ragini Raj

    2015-08-28

    Ni{sub 0.6-x}Zn{sub 0.4}Co{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.033, 0.264) nanoparticles were synthesized by sol-gel method and annealed at 900°C. Structural properties of all prepared samples were examined with X-ray diffraction (XRD). The partial formation of hematite (α-Fe{sub 2}O{sub 3}) secondary phase with spinel phase cubic structure of undoped and cobalt doped nickel zinc ferrite was found by XRD peaks. The variation in crystallite size and other structural parameters with cobalt doping has been calculated for most prominent peak (113) of XRD and has been explained on the basis of cations ionic radii difference.

  4. Cooperative use of VCD and XRD for the determination of tetrahydrobenzoisoquinolines absolute configuration: a reliable proof of memory of chirality and retention of configuration in enediyne rearrangements.

    PubMed

    Mondal, Shovan; Naubron, Jean-Valère; Campolo, Damien; Giorgi, Michel; Bertrand, Michéle P; Nechab, Malek

    2013-12-01

    The absolute configurations (AC) of azaheterocylic compounds resulting from the cascade rearrangement of enediynes involving only light atoms were unambiguously assigned by the joint use of vibrational circular dichroism (VCD) and copper radiation single crystal X-ray diffraction (XRD). These AC determinations proved that the rearrangements of enediynes proceeded with memory of chirality and retention of configuration. © 2013 Wiley Periodicals, Inc.

  5. Laser sintered thin layer graphene and cubic boron nitride reinforced nickel matrix nanocomposites

    NASA Astrophysics Data System (ADS)

    Hu, Zengrong; Tong, Guoquan

    2015-10-01

    Laser sintered thin layer graphene (Gr)-cubic boron nitride (CBN)-Ni nanocomposites were fabricated on AISI 4140 plate substrate. The composites fabricating process, composites microstructure and mechanical properties were studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were employed to study the micro structures and composition of the composites. XRD and Raman tests proved that graphene and CBN were dispersed in the nanocomposites. Nanoindentation test results indicate the significant improvements were achieved in the composites mechanical properties.

  6. Classification of crystal structure using a convolutional neural network

    PubMed Central

    Park, Woon Bae; Chung, Jiyong; Sohn, Keemin; Pyo, Myoungho

    2017-01-01

    A deep machine-learning technique based on a convolutional neural network (CNN) is introduced. It has been used for the classification of powder X-ray diffraction (XRD) patterns in terms of crystal system, extinction group and space group. About 150 000 powder XRD patterns were collected and used as input for the CNN with no handcrafted engineering involved, and thereby an appropriate CNN architecture was obtained that allowed determination of the crystal system, extinction group and space group. In sharp contrast with the traditional use of powder XRD pattern analysis, the CNN never treats powder XRD patterns as a deconvoluted and discrete peak position or as intensity data, but instead the XRD patterns are regarded as nothing but a pattern similar to a picture. The CNN interprets features that humans cannot recognize in a powder XRD pattern. As a result, accuracy levels of 81.14, 83.83 and 94.99% were achieved for the space-group, extinction-group and crystal-system classifications, respectively. The well trained CNN was then used for symmetry identification of unknown novel inorganic compounds. PMID:28875035

  7. Classification of crystal structure using a convolutional neural network.

    PubMed

    Park, Woon Bae; Chung, Jiyong; Jung, Jaeyoung; Sohn, Keemin; Singh, Satendra Pal; Pyo, Myoungho; Shin, Namsoo; Sohn, Kee-Sun

    2017-07-01

    A deep machine-learning technique based on a convolutional neural network (CNN) is introduced. It has been used for the classification of powder X-ray diffraction (XRD) patterns in terms of crystal system, extinction group and space group. About 150 000 powder XRD patterns were collected and used as input for the CNN with no handcrafted engineering involved, and thereby an appropriate CNN architecture was obtained that allowed determination of the crystal system, extinction group and space group. In sharp contrast with the traditional use of powder XRD pattern analysis, the CNN never treats powder XRD patterns as a deconvoluted and discrete peak position or as intensity data, but instead the XRD patterns are regarded as nothing but a pattern similar to a picture. The CNN interprets features that humans cannot recognize in a powder XRD pattern. As a result, accuracy levels of 81.14, 83.83 and 94.99% were achieved for the space-group, extinction-group and crystal-system classifications, respectively. The well trained CNN was then used for symmetry identification of unknown novel inorganic compounds.

  8. Tensile stress effect on epitaxial BiFeO 3 thin film grown on KTaO 3

    DOE PAGES

    Bae, In-Tae; Ichinose, Tomohiro; Han, Myung-Geun; ...

    2018-01-17

    Comprehensive crystal structural study is performed for BiFeO 3 (BFO) film grown on KTaO 3 (KTO) substrate using transmission electron microscopy (TEM) and x-ray diffraction (XRD). Nano beam electron diffraction (NBED) combined with structure factor calculation and high resolution TEM images clearly reveal that the crystal structure within BFO thin film is rhombohedral BFO, i.e., bulk BFO phase. Epitaxial relationship found by NBED indicates the BFO film grows in a manner that minimizes lattice mismatch with KTO. It further suggests BFO film is under slight biaxial tensile stress (~0.35%) along in-plane direction. XRD reveals BFO lattice is under compressive stressmore » (~1.6%), along out-of-plane direction as a result of the biaxial tensile stress applied along in-plane direction. This leads to Poisson’s ratio of ~0.68. In addition, we demonstrate (1) why hexagonal notation rather than pseudocubic one is required for accurate BFO phase evaluation and (2) a new XRD method that shows how rhombohedral BFO can readily be identified among other phases by measuring a rhombohedral specific Bragg’s peak.« less

  9. XRD and FTIR structural investigation of gadolinium-zinc-borate glass ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borodi, G.; Pascuta, P.; Dan, V.

    2013-11-13

    X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy measurements have been employed to investigate the (Gd{sub 2}O{sub 3}){sub x}⋅(B{sub 2}O{sub 3}){sub (60−x)}⋅(ZnO){sub 40} glass ceramics system, with 0 ≤ x ≤ 15 mol%. After heat treatment applied at 860 °C for 2 h, some structural changes were observed and new crystalline phases appeared in the structure of the samples. In these glass ceramics four crystalline phases were identified using powder diffraction files (PDF 2), namely ZnB{sub 4}O{sub 7}, Zn{sub 4}O(B{sub 6}O{sub 12}), Zn{sub 3}(BO{sub 3}){sub 2} and GdBO{sub 3}. From the XRD data, the average unit-cell parameter and themore » quantitative ratio of the crystallographic phases in the studied samples were evaluated. FTIR data revealed that the BO{sub 3}, BO{sub 4} and ZnO{sub 4} are the main structural units of these glass ceramics network. The compositional dependence of the different structural units which appear in the studied samples was followed.« less

  10. Tensile stress effect on epitaxial BiFeO 3 thin film grown on KTaO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, In-Tae; Ichinose, Tomohiro; Han, Myung-Geun

    Comprehensive crystal structural study is performed for BiFeO 3 (BFO) film grown on KTaO 3 (KTO) substrate using transmission electron microscopy (TEM) and x-ray diffraction (XRD). Nano beam electron diffraction (NBED) combined with structure factor calculation and high resolution TEM images clearly reveal that the crystal structure within BFO thin film is rhombohedral BFO, i.e., bulk BFO phase. Epitaxial relationship found by NBED indicates the BFO film grows in a manner that minimizes lattice mismatch with KTO. It further suggests BFO film is under slight biaxial tensile stress (~0.35%) along in-plane direction. XRD reveals BFO lattice is under compressive stressmore » (~1.6%), along out-of-plane direction as a result of the biaxial tensile stress applied along in-plane direction. This leads to Poisson’s ratio of ~0.68. In addition, we demonstrate (1) why hexagonal notation rather than pseudocubic one is required for accurate BFO phase evaluation and (2) a new XRD method that shows how rhombohedral BFO can readily be identified among other phases by measuring a rhombohedral specific Bragg’s peak.« less

  11. Preparation and physical properties of polycrystalline (Bi1-xPbx)2Sr2Ca2Cu3Oy high T c superconductors

    NASA Astrophysics Data System (ADS)

    Awan, M. S.; Maqsood, M.; Mirza, S. A.; Yousaf, M.; Maqsood, A.

    1995-02-01

    (Bi1-xPbx:)2Sr2Ca2Cu3Oy ( x = 0.3) high critical transition temperature ( T c) superconductors are synthesized by the solid-state reaction method in polycrystalline form. X-ray diffraction (XRD) studies, direct current (dc) electrical resistivity measurements, scanning electron microscopic (SEM) studies, critical current density measurements, and zero-field alternating current (ac) susceptibility measurements are performed to investigate the physical changes, structural changes, and magnetic behavior of the superconducting samples. X-ray diffraction studies show that a high T c phase exists with orthorhombic symmetry in the specimen. According to the XRD data, the lattice parameters of the high T c phase were determined as a = 0.537(1) nm, b = 0.539(1) nm, and c = 3.70(1) nm. The compound exhibits a superconducting transition at 106 ±1 K for zero resistance. The ac susceptibility measurements in zero field confirm the dc electrical resistivity results; hence both support the XRD results. The particle size and structural changes as a function of the cold-pressing and aging effect are also reported.

  12. Residual stresses in continuous graphite fiber Al metal matrix composites

    NASA Technical Reports Server (NTRS)

    Park, Hun Sub; Zong, Gui Sheng; Marcus, Harris L.

    1988-01-01

    The residual stresses in graphite fiber reinforced aluminum (Gr/Al) composites with various thermal histories are measured using X-ray diffraction (XRD) methods. The XRD stress analysis is based on the determination of lattice strains by precise measurements of the interplanar spacings in different directions of the sample. The sample is a plate consisting of two-ply P 100 Gr/Al 6061 precursor wires and Al 6061 overlayers. Prior to XRD measurement, the 6061 overlayers are electrochemically removed. In order to calibrate the relationship between stress magnitude and lattice spacing shift, samples of Al 6061 are loaded at varying stress levels in a three-point bend fixture, while the stresses are simultaneously determined by XRD and surface-attached strain gages. The stresses determined by XRD closely match those determined by the strain gages. Using these calibrations, the longitudinal residual stresses of P 100 Gr/Al 6061 composites are measured for various heat treatments, and the results are presented.

  13. A study on the structural and mechanical properties of nanocrystalline CuS thin films grown by chemical bath deposition technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Nillohit; Sinha, Arijit; Khan, Gobinda Gopal

    2011-01-15

    We report a chemical route for the deposition of nanocrystalline thin films of CuS, using aqueous solutions of Cu(CH{sub 3}COO){sub 2}, SC(NH{sub 2}){sub 2} and N(CH{sub 2}CH{sub 2}OH){sub 3} [triethanolamine, i.e. TEA] in proper concentrations and ratios. The films were structurally characterized using X-ray diffraction technique (XRD), field emission scanning electron microscopy (FESEM) and optical analysis [both photo luminescence (PL) and ultraviolet-visible (UV-vis)]. Optical studies showed a large blue shift in the band gap energy of the films due to quantum confinement effect exerted by the nanocrystals. From both XRD and FESEM analyses, formation of CuS nanocrystals with sizes withinmore » 10-15 nm was evident. A study on the mechanical properties was carried out using nanoindentation and nanoscratch techniques, which showed good mechanical stability and high adherence of the films with the bottom substrate. Such study on the mechanical properties of the CuS thin films is being reported here for the first time. Current-voltage (I-V) measurements were also carried out for the films, which showed p-type conductivity.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, Virender Singh; Tanwar, Amit; Singh, Davender, E-mail: Davender-kadian@rediffmail.com

    The pure and Ag-doped TiO{sub 2} nanoparticles were prepared by using Titanium isoproxide (TTIP), silver nitrate sodium hydroxide and sodium hydroxide. The calcined nanoparticles at 400°C were characterized by means of X-ray diffraction (XRD). XRD analyses reveal that the nanoparticles of various doping concentration were having anatase phase. The particle size was calculated by Scherrer formula and was found 11.08 nm for pure TiO{sub 2} and 8.86 nm for 6 mol % Ag doped TiO{sub 2}. The morphology and nature of nanoparticles was analyzed by using scanning electron microscope (SEM), the optical absorption spectra of pure TiO{sub 2} and Ag-doped TiO{sub 2} nanoparticlesmore » showed that absorption edge increases towards longer wavelength from 390 nm (pure) to 450 nm (doped), also band gap energy calculated from Tauc’s plot decrease from 3.20eV to 2.92eV with increase in doing. The measurement of photocatalytic properties of pure TiO{sub 2} and Ag-doped TiO{sub 2} nanoparticles showed that Ag-doped TiO{sub 2} degrades MB dye more efficiently than pure TiO{sub 2}.« less

  15. Characterization of bismuth selenide (Bi2Se3) thin films obtained by evaporating the hydrothermally synthesised nano-particles

    NASA Astrophysics Data System (ADS)

    Indirajith, R.; Rajalakshmi, M.; Gopalakrishnan, R.; Ramamurthi, K.

    2016-03-01

    Bismuth selenide (Bi2Se3) was synthesized by hydrothermal method at 200 °C and confirmed by powder X-ray diffraction (XRD) studies. The synthesized material was utilized to deposit bismuth selenide thin films at various substrate temperatures (Room Temperature-RT, 150 °C, 250 °C, 350 °C and 450 °C) by electron beam evaporation technique. XRD study confirmed the polycrystalline nature of the deposited Bi2Se3films. Optical transmittance spectra showed that the deposited (at RT) films acquire relatively high average transmittance of 60%in near infrared region (1500-2500 nm). An indirect allowed optical band gap calculated from the absorption edge for the deposited films is ranging from 0.62 to 0.8 eV. Scanning electron and atomic force microscopy analyses reveal the formation of nano-scale sized particles on the surface and that the nature of surface microstructures is influenced by the substrate temperature. Hall measurements showed improved electrical properties, for the films deposited at 350 °C which possess 2.8 times the mobility and 0.9 times the resistivity of the films deposited at RT.

  16. Size-dependent photocatalytic activity of La0.8Sr0.2MnO3 nanoparticles prepared by hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Rahmani Afje, F.; Ehsani, M. H.

    2018-04-01

    Synthesize of La0.8Sr0.2MnO3 (LSMO) manganite were carried out in different particle sizes by hydrothermal method. Structural and optical properties of the prepared specimens were studied by x-ray diffraction (XRD), Fourier transform infra-red (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), and UV–vis spectroscopy. The XRD study, coupled with the Rietveld refinement, exhibited rhombohedral structure with R-3C space group. Using the FT-IR and FESEM analyses, the perovskite structure of the samples with Nano-rod-like morphologies were inferred. Furthermore, the average sizes of 48.11, 70.99 and 111.45 nm were obtained for the ones sintered at 800, 900, and 1000 °C temperatures, respectively. The optical research showed that band gap energy is about 2.13 eV, being suitable in visible-light photocatalytic activity for water purification from dyes and toxic organic materials. The photo-degradation efficiency for decolorizing methyl orange solution (10 ppm) for various samples (100 ppm) were systematically probed and a strong relation is concluded between particle size and photocatalytic activity.

  17. Fabrication of multicolor fluorescent polyvinyl alcohol through surface modification with conjugated polymers by oxidative polymerization

    NASA Astrophysics Data System (ADS)

    Hai, Thien An Phung; Sugimoto, Ryuichi

    2018-06-01

    A simple method for the preparation of multicolor polyvinyl alcohol (PVA) by chemical oxidative polymerization is introduced. The PVA surface was successfully modified with conjugated polymers composed of 3-hexylthiophene (3HT) and fluorene (F). The incorporation of the 3HT/F copolymer onto the PVA surface was confirmed by Fourier-transform infrared (FT-IR), ultraviolet-visible (UV-vis), and fluorescence spectroscopies, X-ray diffraction (XRD), as well as thermogravimetric analysis (TGA), contact angle, and field-emission scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray (EDX) analysis. Different 3HT/F ratios on the PVA surface result in optical properties that include multicolor-emission and absorption behavior. The color of the resultant (3HT/F)-g-PVA shifted from red to blue, and the quantum yield increased with increasing F content. The surface hydrophobicity of the modified PVA increased significantly through grafting with the conjugated polymers, with the water contact angle increasing by 30° compared to pristine PVA. The PVA XRD peaks were less intense following surface modification. Thermogravimetric analyses reveal that the thermal stability of the PVA decreases as a result of grafting with the 3HT/F copolymers.

  18. Effects of solution concentration and capping agents on the properties of potassium titanyl phosphate noparticles synthesized using a co-precipitation method

    NASA Astrophysics Data System (ADS)

    Gharibshahian, E.; Jafar Tafershi, M.; Fazli, M.

    2018-05-01

    In this study, KTiOPO4 (KTP) nanoparticles were synthesized using a co-precipitation method. The effects of the solution concentration (M) and capping agents, such as PVA, oxalic acid, glycine, triethanolamine, and L-alanine, on the structural, microstructural, and optical properties of the products were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. Decreasing the solution concentration decreased the crystallite size from 53.07 nm (for M = 2) to 39.42 nm (for M = 0.5). After applying different capping agents to the sample at the optimum concentration (M = 0.5), the crystallite size decreased again and grains as small as 10.61 nm were obtained. XRD and FTIR analyses indicated the formation of KTP nanoparticles with an orthorhombic structure in all of the samples. The optical band gap increased as the crystallite size decreased. Different morphological patterns such as spherical, needle shaped, polyhedron, and tablet forms were observed in the nanoparticles, which were correlated with the effects of the capping agents employed.

  19. Template-Free Hydrothermal Synthesis, Mechanism, and Photocatalytic Properties of Core-Shell CeO2 Nanospheres

    NASA Astrophysics Data System (ADS)

    Li, Huijie; Meng, Fanming; Gong, Jinfeng; Fan, Zhenghua; Qin, Rui

    2018-03-01

    CeO2 nanospheres with the core-shell nanostructure have been successfully synthesized by a template-free hydrothermal method. The structures, morphologies and optical properties of core-shell CeO2 nanospheres were analyzed by X-ray diffraction (XRD), TG, Fourier transform infrared spectroscopy, XRD, EDS, SAED, scanning electron microscopy and transmission electron microscopy, UV-Vis diffuse reflectance spectra, Raman analyses. The degradation efficiencies of core-shell CeO2 nanospheres for methyl orange were as high as 93.49, 95.67 and 98.28% within 160 min, and the rates of photo degradation of methyl orange by core-shell CeO2 nanospheres under UV-light were 0.01693, 0.01782 and 0.02375 min-1. Methyl orange was degraded in photocatalytic oxidation processes, which mainly gave the credit to a large number of reactive species including h+, surface superoxide species ·O2 -, and ·OH radicals. The core-shell structure, small crystallite size and the conversion between Ce3+ and Ce4+ of CeO2 nanospheres were of importance for its catalytic activity. These results demonstrated the possibility of improving the efficient catalysts of the earth abundant CeO2 catalysts.

  20. Characterization of typical heavy metals in pyrolysis MSWI fly ash.

    PubMed

    Xu, Tengtun; Wang, Li'ao; Zeng, Yunmin; Zhao, Xue; Wang, Lei; Zhan, Xinyuan; Li, Tong; Yang, Lu

    2018-06-07

    Thermal treatment methods are used extensively in the process of municipal solid waste incineration fly ash. However, the characterization of heavy metals during this process should be understood more clearly in order to control secondary pollution. In this paper, the content, speciation and leaching toxicity of mercury (Hg), plumbum (Pb), cadmium (Cd) and zinc (Zn) in fly ash treated under different temperatures and time were firstly analysed as pre-tests. Later, pilot-scale pyrolysis equipment was used to explore the concentration and speciation changes in the heavy metals of fly ash. Finally, the phase constitution and microstructure changes in fly ash were compared before and after pyrolysis using X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The results showed that (a) The appropriate processing temperature was between 400°C and 450°C, and the processing time should be 1 h. (b) The stability of heavy metals in fly ash increased after pyrolysis. (c) XRD and SEM results indicated that phase constitution changed a little, but the microstructure varied to a porous structure similar to that of a coral reef after pyrolysis. These results suggest that pyrolysis could be an effective method in controlling heavy metal pollution in fly ash.

  1. Effects of (Ce, Cu) Co-doping on the Structural and Optical Properties of ZnO Aerogels Synthesized in Supercritical Ethanol

    NASA Astrophysics Data System (ADS)

    Djouadi, D.; Slimi, O.; Hammiche, L.; Chelouche, A.; Touam, T.

    2018-03-01

    Undoped, Ce-doped, Cu-doped and (Ce,Cu ) co-doped ZnO aerogels were synthesized by sol-gel process in supercritical conditions of ethanol. [Cu]/[Zn] and [Ce]/[Zn] atomic ratios were fixed at 0.02 (2%). The aerogels were investigated without any additional treatments by using X-ray diffraction (XRD), UV–visible spectrophotometry, scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), Fourier transforms infrared spectroscopy (FTIR) and photoluminescence spectroscopy (PL). XRD results revealed that all the samples are well crystallized in hexagonal wurtzite structure. EDS measurements showed that highly pure aerogels are prepared. SEM analysis indicated that the morphology of the samples is dependent on Cu and Ce dopants. From UV-visible spectroscopy analyses, it was shown that the absorption and the band gap of the aerogels are strongly affected by Ce and Cu dopants. FTIR spectra demonstrated that co-doping induces a shift of Zn-O bond vibration band toward low wavenumbers. The room temperature photoluminescence spectra put into evidence that the visible emission intensity is influenced by Ce and Cu doping. In particular, the co-doping leads to the appearance of a blue emission band at 443 nm.

  2. Italian Renaissance and Hispano-Moresque lustre-decorated majolicas: imitation cases of Hispano-Moresque style in central Italy

    NASA Astrophysics Data System (ADS)

    Padeletti, G.; Fermo, P.

    An investigation was carried out on Renaissance lustre-decorated majolica shards, found during excavations made in Umbria (central Italy) and defined by experts, on the ground of the surface decoration, as imitations of the Hispano-Moresque style. A comparison between this particular kind of samples, produced in central Italy, and some Hispano-Moresque lustre shards has been performed. The ceramic bodies as well as the lustred surfaces have been analysed by means of several techniques: inductively coupled plasma optical emission spectrometry, X-ray diffraction (XRD), atomic absorption spectrometry with electrothermal atomisation and scanning electron microscopy. By means of XRD analysis the presence of cosalite (Pb2Bi2S5) has been disclosed in the Italian lustre decorations but was not observed in the Hispano-Moresque ones. A hypothesis has been made, considering bismuth as a discriminating element, between lustres produced in central Italy and the Hispano-Moresque ones. We thought that the Italian artisans were able to manage the use of bismuth. Therefore a recipe, quite similar to the one employed by the Spanish artisans, was used by the Italian ceramists if their aim was to imitate the Hispano-Moresque style.

  3. Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Cakić, Milorad; Glišić, Slobodan; Nikolić, Goran; Nikolić, Goran M.; Cakić, Katarina; Cvetinov, Miroslav

    2016-04-01

    Dextran sulphate stabilized silver nanoparticles (AgNPs - DS) were synthesized from aqueous solution of silver nitrate (AgNO3) and dextran sulphate sodium salt (DS). The characterization of AgNPs - DS was performed by ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and antimicrobial activity. The formation of AgNPs - DS was monitored by colour changes of the reaction mixture from yellowish to brown and by measuring the surface plasmon resonance absorption peak in UV-VIS spectra at 420 nm. The SEM analysis was used for size and shape determination of AgNPs - DS. The presence of elemental silver and its crystalline structure in AgNPs - DS were confirmed by EDX and XRD analyses. The possible functional groups of DS responsible for the reduction and stabilization of AgNPs were determinated by FTIR spectroscopy. The AgNPs - DS showed strong antibacterial activity against Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 11778, Bacillus luteus in haus strain, Bacillus subtilis ATTC 6633, Listeria monocytogenes ATCC 15313, Escherichia coli ATTC 25922, Pseudomonas aeruginosa ATTC 27853, Klebsiella pneumoniae ATTC 700603, Proteus vulgaris ATTC 8427, and antifungal activity against Candida albicans ATTC 2091.

  4. Role of Mn2+ concentration in the linear and nonlinear optical properties of Ni1-xMnxSe nanoparticles

    NASA Astrophysics Data System (ADS)

    Anugop, B.; Prasanth, S.; Rithesh Raj, D.; Vineeshkumar, T. V.; Pranitha, S.; Mahadevan Pillai, V. P.; Sudarsanakumar, C.

    2016-12-01

    Ni1-xMnxSe nanoparticles (x = 0.1, 0.3, 0.5, 0.7, 0.9) were successfully synthesized by chemical co-precipitation method and their structural and optical properties were studied using X-ray diffraction, transmission electron microscopy, UV-Visible absorption and photo luminescence spectroscopy. XRD pattern reveals the hexagonal structure of the particles and the peak positions were shifted to higher 2θ values with increase in Mn2+ concentration. The average particle size determined from XRD varies from 6 to 11 nm. The UV-Visible absorption spectrum shows absorption edge around the blue region and is red-shifted with increasing Mn2+ concentration consequently the optical bandgap energy is decreasing. The PL emission spectrum shows a broad emission around 380 nm, and the intensity of the emission decreases with increase in Mn2+ concentration. The nonlinear optical properties of the samples were analysed using Z-scan technique and the samples show optical limiting behaviour and the 2 PA coefficient increases with increasing Mn2+ concentration. Overall, manganese concentration influences the linear and nonlinear optical properties of Ni1-xMnxSe nanoparticles.

  5. Investigation of Structure and Property of Indian Cocos nucifera L. Fibre

    NASA Astrophysics Data System (ADS)

    Basu, Gautam; Mishra, Leena; Samanta, Ashis Kumar

    2017-12-01

    Structure and physico-mechanical properties of Cocos nucifera L. fibre from a specific agro-climatic region of India, was thoroughly studied. Fine structure of the fibre was examined by Fourier Transform Infra-Red (FTIR) spectroscopy, Thermo-Gravimetric Analysis (TGA), X-Ray Diffraction (XRD), component analysis, Scanning Electron Microscope (SEM) and optical microscope. SEM shows prominent longitudinal cracks and micro-pores on the surface. XRD shows a low degree of crystallinity (45%), bigger crystallite size, and even the presence of appreciable amount of non-cellulose matter. FTIR reveals presence of large quantities of hydroxyl, phenolic and aldehyde groups. Component and thermal analyses indicates presence of cellulose and lignin as major components. Physical parameters reveal that, fibres are highly variable in length (range 44-305 mm), and diameter (range 100-795 µm). Mechanical properties of the fibre viz. breaking tenacity, breaking extensibility, specific work of rupture, and coefficient of friction were measured. Microbial decomposition test under soil reveals excellent durability of coconut fibre which makes it appropriate for the application in geotextiles. Mass specific electrical resistance of 4 Ω-kg/m2 indicates its enhanced insulation as compared to the jute.

  6. Textural, Structural and Biological Evaluation of Hydroxyapatite Doped with Zinc at Low Concentrations

    PubMed Central

    Predoi, Daniela; Iconaru, Simona Liliana; Deniaud, Aurélien; Chevallet, Mireille; Michaud-Soret, Isabelle; Buton, Nicolas; Prodan, Alina Mihaela

    2017-01-01

    The present work was focused on the synthesis and characterization of hydroxyapatite doped with low concentrations of zinc (Zn:HAp) (0.01 < xZn < 0.05). The incorporation of low concentrations of Zn2+ ions in the hydroxyapatite (HAp) structure was achieved by co-precipitation method. The physico-chemical properties of the samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), zeta-potential, and DLS and N2-BET measurements. The results obtained by XRD and FTIR studies demonstrated that doping hydroxyapatite with low concentrations of zinc leads to the formation of a hexagonal structure with lattice parameters characteristic to hydroxyapatite. The XRD studies have also shown that the crystallite size and lattice parameters of the unit cell depend on the substitutions of Ca2+ with Zn2+ in the apatitic structure. Moreover, the FTIR analysis revealed that the water content increases with the increase of zinc concentration. Furthermore, the Energy Dispersive X-ray Analysis (EDAX) and XPS analyses showed that the elements Ca, P, O, and Zn were found in all the Zn:HAp samples suggesting that the synthesized materials were zinc doped hydroxyapatite, Ca10−xZnx(PO4)6(OH), with 0.01 ≤ xZn ≤ 0.05. Antimicrobial assays on Staphylococcus aureus and Escherichia coli bacterial strains and HepG2 cell viability assay were carried out. PMID:28772589

  7. A quantitative X-ray diffraction inventory of the tephra and volcanic glass inputs into the Holocene marine sediment archives off Iceland: A contribution to V.A.S.T.

    USGS Publications Warehouse

    Andrews, John T.; Kristjansdottir, Greta B.; Eberl, Dennis D.; Jennings, Anne E.

    2013-01-01

    This paper re-evaluates how well quantitative x-ray diffraction (qXRD) can be used as an exploratory method of the weight percentage (wt%) of volcaniclastic sediment, and to identify tephra events in marine cores. In the widely used RockJock v6 software programme, qXRD tephra and glass standards include the rhyodacite White River tephra (Alaska), a rhyolitic tephra (Hekla-4) and the basaltic Saksunarvatn tephra. Experiments of adding known wt% of tephra to felsic bedrock samples indicated that additions ≥10 wt% are accurately detected, but reliable estimates of lesser amounts are masked by amorphous material produced by milling. Volcaniclastic inputs range between 20 and 50 wt%. Primary tephra events are identified as peaks in residual qXRD glass wt% from fourth-order polynomial fits. In cores where tephras have been identified by shard counts in the > 150 µm fraction, there is a positive correlation (validation) with peaks in the wt% glass estimated by qXRD. Geochemistry of tephra shards confirms the presence of several Hekla-sourced tephras in cores B997-317PC1 and -319PC2 on the northern Iceland shelf. In core B997-338 (north-west Iceland), there are two rhyolitic tephras separated by ca. 100 cm with uncorrected radiocarbon dates on articulated shells of around 13 000 yr B.P. These tephras may be correlatives of the Borrobol and Penifiler tephras found in Scotland. The number of Holocene tephra events per 1000 yr was estimated from qXRD on 16 cores and showed a bimodal distribution with an increased number of events in both the late and early Holocene.

  8. Revisiting the hydration structure of aqueous Na +

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galib, M.; Baer, M. D.; Skinner, L. B.

    In this paper, a combination of theory, X-ray diffraction (XRD) and extended x-ray absorption fine structure (EXAFS) are used to probe the hydration structure of aqueous Na +. The high spatial resolution of the XRD measurements corresponds to Qmax = 24 Å –1 while the first-reported Na K-edge EXAFS measurements have a spatial resolution corresponding to 2k = Qmax = 16 Å –1. Both provide an accurate measure of the shape and position of the first peak in the Na–O pair distribution function, g NaO(r). The measured Na–O distances of 2.384 ± 0.003 Å (XRD) and 2.37 ± 0.024 Åmore » (EXAFS) are in excellent agreement. These measurements show a much shorter Na–O distance than generally reported in the experimental literature (Na–O avg ~ 2.44 Å) although the current measurements are in agreement with recent neutron diffraction measurements. The measured Na–O coordination number from XRD is 5.5 ± 0.3. The measured structure is compared with both classical and first-principles density functional theory (DFT) simulations. Both of the DFT-based methods, revPBE and BLYP, predict a Na–O distance that is too long by about 0.05 Å with respect to the experimental data (EXAFS and XRD). The inclusion of dispersion interactions (–D3 and –D2) significantly worsens the agreement with experiment by further increasing the Na–O distance by 0.07 Å. In contrast, the use of a classical Na–O Lennard-Jones potential with SPC/E water accurately predicts the Na–O distance as 2.39 Å although the Na–O peak is over-structured with respect to experiment.« less

  9. Revisiting the hydration structure of aqueous Na +

    DOE PAGES

    Galib, M.; Baer, M. D.; Skinner, L. B.; ...

    2017-02-27

    In this paper, a combination of theory, X-ray diffraction (XRD) and extended x-ray absorption fine structure (EXAFS) are used to probe the hydration structure of aqueous Na +. The high spatial resolution of the XRD measurements corresponds to Qmax = 24 Å –1 while the first-reported Na K-edge EXAFS measurements have a spatial resolution corresponding to 2k = Qmax = 16 Å –1. Both provide an accurate measure of the shape and position of the first peak in the Na–O pair distribution function, g NaO(r). The measured Na–O distances of 2.384 ± 0.003 Å (XRD) and 2.37 ± 0.024 Åmore » (EXAFS) are in excellent agreement. These measurements show a much shorter Na–O distance than generally reported in the experimental literature (Na–O avg ~ 2.44 Å) although the current measurements are in agreement with recent neutron diffraction measurements. The measured Na–O coordination number from XRD is 5.5 ± 0.3. The measured structure is compared with both classical and first-principles density functional theory (DFT) simulations. Both of the DFT-based methods, revPBE and BLYP, predict a Na–O distance that is too long by about 0.05 Å with respect to the experimental data (EXAFS and XRD). The inclusion of dispersion interactions (–D3 and –D2) significantly worsens the agreement with experiment by further increasing the Na–O distance by 0.07 Å. In contrast, the use of a classical Na–O Lennard-Jones potential with SPC/E water accurately predicts the Na–O distance as 2.39 Å although the Na–O peak is over-structured with respect to experiment.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Baozhuo; Young, Marcus L.

    Many technological applications of austenitic shape memory alloys (SMAs) involve cyclical mechanical loading and unloading in order to take advantage of pseudoelasticity. In this paper, we investigated the effect of mechanical bending of pseudoelastic NiTi SMA wires using high-energy synchrotron radiation X-ray diffraction (SR-XRD). Differential scanning calorimetry was performed to identify the phase transformation temperatures. Scanning electron microscopy images show that micro-cracks in compressive regions of the wire propagate with increasing bend angle, while tensile regions tend not to exhibit crack propagation. SR-XRD patterns were analyzed to study the phase transformation and investigate micromechanical properties. By observing the various diffraction peaks such as the austenite (200) and the martensite (more » $${\\bar 1}12$$), ($${\\bar 1}03$$), ($${\\bar 1}11$$), and (101) planes, intensities and residual strain values exhibit strong anisotropy, depending upon whether the sample is in compression or tension during bending.« less

  11. Study of Initial Stages of Ball-Milling of Cu Powder Using X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Gayathri, N.; Mukherjee, Paramita

    2018-04-01

    The initial stage of size refinement of Cu powder is studied using detailed X-ray diffraction (XRD) analysis to understand the mechanism of formation of nanomaterials during the ball-milling process. The study was restricted to samples obtained for milling time up to 240 min to understand the deformation mechanism at the early stages of ball milling. Various model based approaches for the analysis of the XRD were used to study the evolution of the microstructural parameters such as domain size and microstrain along the different crystallographic planes. It was seen that the domain size saturates at a low value along the (311) plane whereas the size along the (220) and (200) plane is still higher. The r.m.s microstrain showed a non-monotonic change along the different crystallographic directions up to the milling time of 240 min.

  12. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan, Manuela, E-mail: manuela.stan@itim-cj.ro; Popa, Adriana; Toloman, Dana

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn{sup 2+} ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes andmore » oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.« less

  13. Body-centered orthorhombic C 16 : A novel topological node-line semimetal

    DOE PAGES

    Wang, Jian -Tao; Weng, Hongming; Nie, Simin; ...

    2016-05-11

    We identify by ab initio calculations a novel topological semimetal carbon phase in all-sp 2 bonding networks with a 16-atom body-centered orthorhombic unit cell, termed bco-C 16. Total-energy calculations show that bco-C 16 is comparable to solid fcc-C 60 in energetic stability, and phonon and molecular dynamics simulations confirm its dynamical stability. This all-sp 2 carbon allotrope can be regarded as a three-dimensional modification of graphite, and its simulated x-ray diffraction (XRD) pattern matches well a previously unexplained diffraction peak in measured XRD spectra of detonation and chimney soot, indicating its presence in the specimen. Electronic band structure calculations revealmore » that bco-C 16 is a topological node-line semimetal with a single nodal ring. Lastly, these findings establish a novel carbon phase with intriguing structural and electronic properties of fundamental significance and practical interest.« less

  14. Characterization of cubic ceria?zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Sánchez Escribano, Vicente; Fernández López, Enrique; Panizza, Marta; Resini, Carlo; Gallardo Amores, José Manuel; Busca, Guido

    2003-10-01

    The X-ray diffraction (XRD) patterns and the Infrared, Raman and UV-visible spectra of CeO 2ZrO 2 powders prepared by co-precipitation are presented. Raman spectra provide evidence for the largely predominant cubic structure of the powders with CeO 2 molar composition higher than 25%. Also skeletal IR spectra allow to distinguish cubic from tetragonal phases which are instead not easily distinguished on the basis of the XRD patterns. All mixed oxides including pure ceria are strong UV absorbers although also absorb in the violet visible region. By carefully selecting their composition and treatment temperature, the onset of the radiation that they cut off can be chosen in the 425-475 nm interval. Although they are likely metastable, the cubic phases are still pure even after heating at 1173 K for 4 h.

  15. A photodiode based on PbS nanocrystallites for FYTRONIX solar panel automatic tracking controller

    NASA Astrophysics Data System (ADS)

    Wageh, S.; Farooq, W. A.; Tataroğlu, A.; Dere, A.; Al-Sehemi, Abdullah G.; Al-Ghamdi, Ahmed A.; Yakuphanoglu, F.

    2017-12-01

    The structural, optical and photoelectrical properties of the fabricated Al/PbS/p-Si/Al photodiode based on PbS nanocrystallites were investigated. The PbS nanocrystallites were characterized by X-ray diffraction (XRD), UV-VIS-NIR, Infrared and Raman spectroscopy. The XRD diffraction peaks show that the prepared PbS nanostructure is in high crystalline state. Various electrical parameters of the prepared photodiode were analyzed from the electrical characteristics based on I-V and C-V-G. The photodiode has a high rectification ratio of 5.85×104 at dark and ±4 V. Moreover, The photocurrent results indicate a strong photovoltaic behavior. The frequency dependence of capacitance and conductance characteristics was attributed to depletion region behavior of the photodiode. The diode was used to control solar panel power automatic tracking controller in dual axis. The fabricated photodiode works as a photosensor to control Solar tracking systems.

  16. Thin single-crystalline Bi2(Te1-xSex)3 ternary nanosheets synthesized by a solvothermal technique

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Jian, Jikang; Zhang, Zhihua; Wu, Rong; Li, Jin; Sun, Yanfei

    2016-01-01

    Bi2(Te1-xSex)3 ternary nanosheets have been successfully synthesized through a facile solvothermal technique using diethylenetriamine as solvent, where x can vary from 0 to 1. X-ray diffraction (XRD) and Scanning electron microscopy (SEM) indicate that the as-synthesized Bi2(Te1-xSex)3 samples are nanosheets with rhombohedral structure, and the thickness of the nanosheets can be as thin as several nanometers. High resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) reveal that the nanosheets are single crystalline with a rhombohedral structure. Energy disperse spectroscopy (EDS) and XRD analysis by Vegard's law confirm that the ternary Bi2(Te1-xSex)3 nanosheets have been obtained here. The growth of the nanosheets is discussed based on an amine-based molecular template mechanism that has been employed to synthesize some other metal chalcogenides.

  17. Sodium storage mechanisms of bismuth in sodium ion batteries: An operando X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Gao, Hui; Ma, Wensheng; Yang, Wanfeng; Wang, Jiawei; Niu, Jiazheng; Luo, Fakui; Peng, Zhangquan; Zhang, Zhonghua

    2018-03-01

    Understanding the sodium (Na) chemistry is crucial for development of high-performance sodium ion batteries (SIBs). Nanostructured bismuth (Bi) has shown great potentials as an anode in SIBs, however, the Na storage mechanisms of Bi are still unclear. Herein, the operando X-ray diffraction (XRD) technique was utilized to probe the Na storage mechanisms of three Bi anodes (sputtered Bi film, nanoporous Bi and commercial Bi). Despite different morphologies and sizes, all the Bi anodes follow the same two-step reversible alloying/dealloying mechanisms (Bi ↔ NaBi ↔ Na3Bi) during the discharge/charge processes, associated with two voltage plateaus. As for the intercalation/deintercalation mechanism proposed for nanostructured Bi anodes in SIBs, we rationalize the reason why only the Bi phase is detected in the discharged/charged samples under ex-situ XRD conditions through addressing the stability issue of the Na-Bi system (NaBi and Na3Bi).

  18. Disruption of crystalline structure of Sn3.5Ag induced by electric current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Han-Chie; Lin, Kwang-Lung, E-mail: matkllin@mail.ncku.edu.tw; Wu, Albert T.

    2016-03-21

    This study presented the disruption of the Sn and Ag{sub 3}Sn lattice structures of Sn3.5Ag solder induced by electric current at 5–7 × 10{sup 3} A/cm{sup 2} with a high resolution transmission electron microscope investigation and electron diffraction analysis. The electric current stressing induced a high degree of strain on the alloy, as estimated from the X-ray diffraction (XRD) peak shift of the current stressed specimen. The XRD peak intensity of the Sn matrix and the Ag{sub 3}Sn intermetallic compound diminished to nearly undetectable after 2 h of current stressing. The electric current stressing gave rise to a high dislocation density ofmore » up to 10{sup 17}/m{sup 2}. The grain morphology of the Sn matrix became invisible after prolonged current stressing as a result of the coalescence of dislocations.« less

  19. The effect of doped zinc on the structural properties of nano-crystalline (Se0.8Te0.2)100-xZnx

    NASA Astrophysics Data System (ADS)

    Kumar, Arun; Singh, Harkawal; Gill, P. S.; Goyal, Navdeep

    2016-05-01

    The effect of metallic zinc (Zn) on the structural properties of (Se0.8Te0.2)1-XZnX (x=0, 2, 6, 8, 10) samples analyzed by X-ray Diffraction (XRD). The presence of sharp peaks in XRD patterns confirmed the crystalline nature of the samples and is indexed in orthorhombic crystal structure. XRD studies predicts that the average particle size of all the samples are about 46.29 nm, which is less than 100 nm and hence have strong tendency of agglomeration. Williamson-Hall plot method was used to evaluate the lattice strain. The dislocation density and no. of unit cells of the samples were calculated which show the inverse relation with each other. Morphology index derived from FWHM of XRD data explains the direct relationship with the particle size.

  20. Andreyivanovite: A Second New Phosphide from the Kaidun Meteorite

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael

    2008-01-01

    Andreyivanovite (ideally FeCrP) is another new phosphide species from the Kaidun meteorite, which fell in South Yemen in 1980. Kaidun is a unique breccia containing an unprecedented variety of fragments of different chondritic as well as achondritic lithologies. Andreyivanovite was found as individual grains and linear arrays of grains with a maximum dimension of 8 m within two masses of Fe-rich serpentine. In one sample it is associated with Fe-Ni-Cr sulfides and florenskyite (FeTiP). Andreyivanovite is creamy white in reflected light, and its luster is metallic. The average of nine electron microprobe analyses yielded the formula Fe(Cr0.587 Fe0.150 V0.109 Ti0.081 Ni0.060 Co0.002)P. Examination of single grains of andreyivanovite using Laue patterns collected by in-situ synchrotron X-ray diffraction (XRD), and by electron backscattered diffraction revealed that it is isostructural with florenskyite; we were unable to find single crystals of sufficient quality to perform a complete structure analysis. Andreyivanovite crystallizes in the space group Pnma, and has the anti-PbCl2 structure. Previously-determined cell constants of synthetic material [a = 5.833(1), b = 3.569(1), c = 6.658(1) A] were consistent with our XRD work. We used the XPOW program to calculate a powder XRD pattern; the 5 most intense reflections are d = 2.247 (I = 100), 2.074 (81), 2.258 (46), 1.785 (43), and 1.885 A (34). Andreyivanovite is the second new phosphide to be described from the Kaidun meteorite. Andreyivanovite could have formed as a result of cooling and crystallization of a melted precursor consisting mainly of Fe-Ni metal enriched in P, Ti, and Cr. Serpentine associated with andreyivanovite would then have formed during aqueous alteration on the parent asteroid. It is also possible that the andreyivanovite could have formed during aqueous alteration, however, artificial FeTiP has been synthesized only during melting experiments, at low oxygen fugacity, and there is no evidence that a hydrothermal genesis is reasonable.

  1. Ft-Ir Spectroscopic Analysis of Potsherds Excavated from the First Settlement Layer of Kuriki Mound, Turkey

    NASA Astrophysics Data System (ADS)

    Bayazit, Murat; Isik, Iskender; Cereci, Sedat; Issi, Ali; Genc, Elif

    The region covering Southeastern Anatolia takes place in upper Mesopotamia, so it has numerous cultural heritages due to its witness to various social movements of different civilizations in ancient times. Kuruki Mound is located on the junction point of Tigris River and Batman Creek, near Oymatas village which is almost 15 km to Batman, Turkey. The mound is dated back to Late Chalcolithic. Archaeological excavations are carried out on two hills named as “Kuriki Mound-1” and “Kuriki Mound-2” in which 4-layer and 2-layer settlements have been revealed, respectively. This region will be left under the water by the reservoir lake of Ilısu Dam when its construction is completed. Thus, characterization of ancient materials such as potsherds, metals and skeleton ruins should be rapidly done. In this study, 12 potsherds excavated from Layer-1 (the first settlement layer after the surface) in Kuriki Mound-2 were investigated by FT-IR spectrometry. Energy dispersive X-ray fluorescence (EDXRF) and X-ray diffraction (XRD) analyses were used as complementary techniques in order to expose chemical and mineralogical/phase contents, respectively. Obtained results showed that the potteries have been produced with calcareous clays and they include moderate amounts of MgO, K2O, Na2O and Fe2O3 in this context. Additionally, high temperature phases have also been detected with XRD analyses in some samples.

  2. Electrical Characteristics CuFe{sub 2}O{sub 4} Thick Film Ceramics Made with Different Screen Size Utilizing Fe{sub 2}O{sub 3} Nanopowder Derived from Yarosite for NTC Thermistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiendartun,; Syarif, Dani Gustaman

    2010-10-24

    Fabrication of CuFe{sub 2}O{sub 4} thick film ceramics utilizing Fe{sub 2}O{sub 3} derived from yarosite using screen printing technique for NTC thermistor has been carried out. Effect of thickness variation due to different size of screen (screen 225; 300 and 375 mesh) has been studied. X-ray diffraction analyses (XRD) was done to know crystal structure and phases formation. SEM analyses was carried out to know microstructure of the films. Electrical properties characterization was done through measurement of electrical resistance at various temperatures (room temperature to 100 deg. C). The XRD data showed that the films crystalize in tetragonal spinel. Themore » SEM images showed that the screen with the smaller of the hole size, made the grain size was bigger. Electrical data showed that the larger the screen different size thickness variation (mesh), the larger the resistance, thermistor constant and sensitivity. From the electrical characteristics data, it was known that the electrical characteristics of the CuFe{sub 2}O{sub 4} thick film ceramics followed the NTC characteristic. The value of B and R{sub RT} of the produced CuFe{sub 2}O{sub 4} ceramics namely B = 3241-3484 K and R{sub RT} = 25.6-87.0 M Ohm, fitted market requirement.« less

  3. Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates.

    PubMed

    Ali, Khursheed; Dwivedi, Sourabh; Azam, Ameer; Saquib, Quaiser; Al-Said, Mansour S; Alkhedhairy, Abdulaziz A; Musarrat, Javed

    2016-06-15

    ZnO nanoparticles (ZnONPs) were synthesised through a simple and efficient biogenic synthesis approach, exploiting the reducing and capping potential of Aloe barbadensis Miller (A. vera) leaf extract (ALE). ALE-capped ZnO nanoparticles (ALE-ZnONPs) were characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) analyses. XRD analysis provided the average size of ZnONPs as 15 nm. FTIR spectral analysis suggested the role of phenolic compounds, terpenoids and proteins present in ALE, in nucleation and stability of ZnONPs. Flow cytometry and atomic absorption spectrophotometry (AAS) data analyses revealed the surface binding and internalization of ZnONPs in Gram +ve (Staphylococcus aureus) and Gram -ve (Escherichia coli) cells, respectively. Significant antibacterial activity of ALE-ZnONPs was observed against extended spectrum beta lactamases (ESBL) positive E. coli, Pseudomonas aeruginosa, and methicillin resistant S. aureus (MRSA) clinical isolates exhibiting the MIC and MBC values of 2200, 2400 μg/ml and 2300, 2700 μg/ml, respectively. Substantial inhibitory effects of ALE-ZnONPs on bacterial growth kinetics, exopolysaccharides and biofilm formation, unequivocally suggested the antibiotic and anti-biofilm potential. Overall, the results elucidated a rapid, environmentally benign, cost-effective, and convenient method for ALE-ZnONPs synthesis, for possible applications as nanoantibiotics or drug carriers. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Influence of incubation temperature on biofilm formation and corrosion of carbon steel by Serratia marcescens

    NASA Astrophysics Data System (ADS)

    Harimawan, Ardiyan; Devianto, Hary; Kurniawan, Ignatius Chandra; Utomo, Josephine Christine

    2017-01-01

    Microbial induced corrosion (MIC) or biocorrosion is one type of corrosion, directly or indirectly influenced by microbial activities, by forming biofilm and adhering on the metal surface. When forming biofilm, the microorganisms can produce extracellular products which influence the cathodic and anodic reactions on metal surfaces. This will result in electrochemical changes in the interface between the biofilm and the metal surface, leading to corrosion and deterioration of the metal. MIC might be caused by various types of microorganism which leads to different corrosion mechanism and reaction kinetics. Furthermore, this process will also be influenced by various environmental conditions, such as pH and temperature. This research is aimed to determine the effect of incubation temperature on corrosion of carbon steel caused by Serratia marcescens in a mixture solution of synthetic seawater with Luria Bertani medium with a ratio of 4:1. The incubation was performed for 19 days with incubation temperature of 30, 37, and 50°C. The analyses of biofilm were conducted by total plate count (TPC), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Biofilm was found to be evenly growth on the surface and increasing with increasing incubation temperature. It consists of functional group of alcohol, alkane, amine, nitro, sulfate, carboxylic acid, and polysulfide. The analyses of the corrosion were conducted by gravimetric and X-ray diffraction (XRD). Higher incubation temperature was found to increase the corrosion rate. However, the corrosion products were not detected by XRD analysis.

  5. Mechanism of tyramine adsorption on Ca-montmorillonite.

    PubMed

    Chang, Po-Hsiang; Jiang, Wei-Teh; Li, Zhaohui

    2018-06-10

    Tyramine (TY) adsorption on a Ca-montmorillonite (SAz-2) was investigated with batch experiments and complementary analyses utilizing ultra-high performance liquid chromatography, ion chromatography, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetry (TG). The adsorption reached equilibrium in 8 h, complying with the pseudo-second-order rate equation, and came to an adsorption capacity of 682 mmol kg -1 at pH 6-8.1, utilizing the Langmuir isotherm model. The adsorption of TY and desorption of exchangeable cations exhibited a linear relationship with a slope of 0.9, implying that the adsorption was largely influenced by a cation exchange mechanism. The effective adsorption was further verified by the characteristic TY bands in the FTIR spectra and the signals of mass loss due to TY decomposition in the TG measurements of the clay after adsorption experiments. Intercalation of hydrated TY into the clay interlayer was confirmed by XRD and TG analyses of the heated samples loaded with TY. The adsorption reached only 0.57 cation exchange capacity of the clay which was probably limited by the low charge density of TY as compared to the negative charge density of the clay surface and by the steric effects arising from the hydration of TY that increased its molecular size. Adsorption of TY on montmorillonite can make TY more resistant to thermal decomposition and possibly better preserved in aquatic and soil environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Arsenate adsorption mechanisms at the allophane - Water interface

    USGS Publications Warehouse

    Arai, Y.; Sparks, D.L.; Davis, J.A.

    2005-01-01

    We investigated arsenate (As(V)) reactivity and surface speciation on amorphous aluminosilicate mineral (synthetic allophane) surfaces using batch adsorption experiments, powder X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). The adsorption isotherm experiments indicated that As(V) uptake increased with increasing [As(V)]0 from 50 to 1000 ??M (i.e., Langmuir type adsorption isotherm) and that the total As adsorption slightly decreased with increasing NaCl concentrations from 0.01 to 0.1 M. Arsenate adsorption was initially (0-10 h) rapid followed by a slow continuum uptake, and the adsorption processes reached the steady state after 720 h. X-ray absorption spectroscopic analyses suggest that As(V) predominantly forms bidentate binuclear surface species on aluminum octahedral structures, and these species are stable up to 11 months. Solubility calculations and powder XRD analyses indicate no evidence of crystalline AI-As(V) precipitates in the experimental systems. Overall, macroscopic and spectroscopic evidence suggest that the As(V) adsorption mechanisms at the allophane-water interface are attributable to ligand exchange reactions between As(V) and surface-coordinated water molecules and hydroxyl and silicate ions. The research findings imply that dissolved tetrahedral oxyanions (e.g., H2PO42- and H2AsO42-) are readily retained on amorphous aluminosilicate minerals in aquifer and soils at near neutral pH. The innersphere adsorption mechanisms might be important in controlling dissolved arsenate and phosphate in amorphous aluminosilicate-rich low-temperature geochemical environments. ?? 2005 American Chemical Society.

  7. Dental discoloration caused by bismuth oxide in MTA in the presence of sodium hypochlorite.

    PubMed

    Marciano, Marina Angélica; Duarte, Marco Antonio Hungaro; Camilleri, Josette

    2015-12-01

    The aim of this research was to analyse the dental discolouration caused by mineral trioxide aggregate (MTA) induced by bismuth oxide and also assess the colour stability of other dental cements. Bismuth oxide, calcium tungstate and zirconium oxide were placed in contact with sodium hypochlorite for 24 h after which they were dried and photographed. Phase analyses were performed by X-ray diffraction (XRD) of radiopacifiers before and after immersion in sodium hypochlorite. Furthermore, teeth previously immersed in water or sodium hypochlorite were filled with MTA Angelus, Portland cement (PC), PC with 20 % zirconium oxide, PC with 20 % calcium tungstate and Biodentine. Teeth were immersed for 28 days in Hank's balanced salt solution after which they were sectioned and characterized using scanning electron microscopy (SEM) with energy-dispersive mapping and stereomicroscopy. Bismuth oxide in contact with sodium hypochlorite exhibited a change in colour from light yellow to dark brown. XRD analysis demonstrated peaks for radiopacifier and sodium chloride in samples immersed in sodium hypochlorite. The SEM images of the dentine to material interface showed alteration in material microstructure for MTA Angelus and Biodentine with depletion in calcium content in the material. The energy-dispersive maps showed migration of radiopacifier and silicon in dentine. MTA Angelus in contact with a tooth previously immersed in sodium hypochlorite resulted in colour alteration at the cement/dentine interface. MTA Angelus should not be used after irrigation with sodium hypochlorite as this will result in tooth discoloration.

  8. Application of Chlorophyll as Sensitizer for ZnS Photoanode in a Dye-Sensitized Solar Cell (DSSC)

    NASA Astrophysics Data System (ADS)

    Panda, B. B.; Mahapatra, P. K.; Ghosh, M. K.

    2018-03-01

    Zinc sulphide thin films have been synthesized by the electrodeposition method onto stainless steel substrate followed by dipping in acetone solution of chlorophyll in different time intervals to form photosensitised thin films. The photoelectrochemical parameters of the films have been studied using the photoelectrochemical cell having the cell configuration as follows {{photoelectrode/NaOH}}({1{{M}}} ) + {{S}}({1{{M}}} ) + {{N}}{{{a}}_2}{{S}}({1{{M}}} ){{/C}} ({{{graphite}}} ) . The photoelectrochemical characterization of the semiconductor film and dye-sensitised films has been carried out by measuring current-voltage (I-V) in the dark, power output and photoresponse. The study proves that the conductivity of both ZnS film and dye-sensitised ZnS films are n-type. The power output curves illustrate that open circuit voltage (V oc) and short circuit current (I sc) increase from 0.210 V to 0.312 V and from 0.297 mA to 0.533 mA, respectively. The fill factor initially decreases from 0.299 to 0.213 and then increases to 0.297 irregularly whereas efficiency increases from 0.047% to 0.123%. The UV-Vis absorbance spectrum of chlorophyll in acetone shows the presence of chlorophyll. The structural morphology of the ZnS thin films has also been analysed by using x-ray diffraction technique (XRD) and a scanning electron microscope (SEM). The XRD pattern shows the formation of nanocrystalline ZnS thin films of size 65 nm and the SEM images confirm the formation of fibrous film of ZnS. The energy diffraction analysis of x-ray confirms the formation of ZnS thin films.

  9. Mineralogy, Provenance, and Diagenesis of a Potassic Basaltic Sandstone on Mars: CheMin X-Ray Diffraction of the Windjana Sample (Kimberley Area, Gale Crater)

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.; Bish, David L.; Vaniman, David T.; Chipera, Steve J.; Blake, David F.; Ming, Doug W.; Morris, Richard V.; Bristow, Thomas F.; Morrison, Shaunna M.; Baker, Michael B.; hide

    2016-01-01

    The Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X-ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains the following: sanidine (21% weight, approximately Or(sub 95)); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (approximately 25%); and percent levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the Alpha Proton X-ray Spectrometer (APXS) chemical analysis, the amorphous material is Fe rich with nearly no other cations-like ferrihydrite. The Windjana sample shows little alteration and was likely cemented by its magnetite and ferrihydrite. From ChemCam Laser-Induced Breakdown Spectrometer (LIBS) chemical analyses, Windjana is representative of the Dillinger and Mount Remarkable members of the Kimberley formation. LIBS data suggest that the Kimberley sediments include at least three chemical components. The most K-rich targets have 5.6% K2O, approximately 1.8 times that of Windjana, implying a sediment component with greater than 40% sanidine, e.g., a trachyte. A second component is rich in mafic minerals, with little feldspar (like a shergottite). A third component is richer in plagioclase and in Na2O, and is likely to be basaltic. The K-rich sediment component is consistent with APXS and ChemCam observations of K-rich rocks elsewhere in Gale Crater. The source of this sediment component was likely volcanic. The presence of sediment from many igneous sources, in concert with Curiosity's identifications of other igneous materials (e.g.,mugearite), implies that the northern rim of Gale Crater exposes a diverse igneous complex, at least as diverse as that found in similar-age terranes on Earth.

  10. Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treiman, Allan H.; Bish, David L.; Vaniman, David T.

    The Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X-ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains the following: sanidine (21% weight, ~Or 95); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (~25%); and percent levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the Alpha Proton X-ray Spectrometer (APXS) chemical analysis, the amorphous material is Fe rich with nearly no other cations—like ferrihydrite. The Windjana sample shows little alteration and was likely cemented bymore » its magnetite and ferrihydrite. From ChemCam Laser-Induced Breakdown Spectrometer (LIBS) chemical analyses, Windjana is representative of the Dillinger and Mount Remarkable members of the Kimberley formation. LIBS data suggest that the Kimberley sediments include at least three chemical components. The most K-rich targets have 5.6% K 2O, ~1.8 times that of Windjana, implying a sediment component with >40% sanidine, e.g., a trachyte. A second component is rich in mafic minerals, with little feldspar (like a shergottite). A third component is richer in plagioclase and in Na 2O, and is likely to be basaltic. The K-rich sediment component is consistent with APXS and ChemCam observations of K-rich rocks elsewhere in Gale Crater. The source of this sediment component was likely volcanic. Finally, the presence of sediment from many igneous sources, in concert with Curiosity's identifications of other igneous materials (e.g., mugearite), implies that the northern rim of Gale Crater exposes a diverse igneous complex, at least as diverse as that found in similar-age terranes on Earth.« less

  11. Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X‐ray diffraction of the Windjana sample (Kimberley area, Gale Crater)

    PubMed Central

    Bish, David L.; Vaniman, David T.; Chipera, Steve J.; Blake, David F.; Ming, Doug W.; Morris, Richard V.; Bristow, Thomas F.; Morrison, Shaunna M.; Baker, Michael B.; Rampe, Elizabeth B.; Downs, Robert T.; Filiberto, Justin; Glazner, Allen F.; Gellert, Ralf; Thompson, Lucy M.; Schmidt, Mariek E.; Le Deit, Laetitia; Wiens, Roger C.; McAdam, Amy C.; Achilles, Cherie N.; Edgett, Kenneth S.; Farmer, Jack D.; Fendrich, Kim V.; Grotzinger, John P.; Gupta, Sanjeev; Morookian, John Michael; Newcombe, Megan E.; Rice, Melissa S.; Spray, John G.; Stolper, Edward M.; Sumner, Dawn Y.; Vasavada, Ashwin R.; Yen, Albert S.

    2016-01-01

    Abstract The Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X‐ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains the following: sanidine (21% weight, ~Or95); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (~25%); and percent levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the Alpha Proton X‐ray Spectrometer (APXS) chemical analysis, the amorphous material is Fe rich with nearly no other cations—like ferrihydrite. The Windjana sample shows little alteration and was likely cemented by its magnetite and ferrihydrite. From ChemCam Laser‐Induced Breakdown Spectrometer (LIBS) chemical analyses, Windjana is representative of the Dillinger and Mount Remarkable members of the Kimberley formation. LIBS data suggest that the Kimberley sediments include at least three chemical components. The most K‐rich targets have 5.6% K2O, ~1.8 times that of Windjana, implying a sediment component with >40% sanidine, e.g., a trachyte. A second component is rich in mafic minerals, with little feldspar (like a shergottite). A third component is richer in plagioclase and in Na2O, and is likely to be basaltic. The K‐rich sediment component is consistent with APXS and ChemCam observations of K‐rich rocks elsewhere in Gale Crater. The source of this sediment component was likely volcanic. The presence of sediment from many igneous sources, in concert with Curiosity's identifications of other igneous materials (e.g., mugearite), implies that the northern rim of Gale Crater exposes a diverse igneous complex, at least as diverse as that found in similar‐age terranes on Earth. PMID:27134806

  12. Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater)

    DOE PAGES

    Treiman, Allan H.; Bish, David L.; Vaniman, David T.; ...

    2015-12-27

    The Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X-ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains the following: sanidine (21% weight, ~Or 95); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (~25%); and percent levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the Alpha Proton X-ray Spectrometer (APXS) chemical analysis, the amorphous material is Fe rich with nearly no other cations—like ferrihydrite. The Windjana sample shows little alteration and was likely cemented bymore » its magnetite and ferrihydrite. From ChemCam Laser-Induced Breakdown Spectrometer (LIBS) chemical analyses, Windjana is representative of the Dillinger and Mount Remarkable members of the Kimberley formation. LIBS data suggest that the Kimberley sediments include at least three chemical components. The most K-rich targets have 5.6% K 2O, ~1.8 times that of Windjana, implying a sediment component with >40% sanidine, e.g., a trachyte. A second component is rich in mafic minerals, with little feldspar (like a shergottite). A third component is richer in plagioclase and in Na 2O, and is likely to be basaltic. The K-rich sediment component is consistent with APXS and ChemCam observations of K-rich rocks elsewhere in Gale Crater. The source of this sediment component was likely volcanic. Finally, the presence of sediment from many igneous sources, in concert with Curiosity's identifications of other igneous materials (e.g., mugearite), implies that the northern rim of Gale Crater exposes a diverse igneous complex, at least as diverse as that found in similar-age terranes on Earth.« less

  13. Low temperature nucleation of Griffiths Phase in Co doped LaMnO3 nanostructures

    NASA Astrophysics Data System (ADS)

    Adeela, N.; Khan, U.; Naz, S.; Iqbal, M.; Irfan, M.; Cheng, Y.

    2017-11-01

    We have reported magnetic properties of La1-xCoxMnO3 nanostructures synthesized by hydrothermal route. The crystal structure has been characterized by X-ray diffraction (XRD) technique, which shows rhombohedral perovskite structure at room temperature. Scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) have been used to analyse morphology and chemical composition of prepared nanoparticles. Magnetic hysteresis loops of all the samples exhibit ferromagnetic behaviour at 10 K. Inverse susceptibility graphs as a function of temperature represent deviation from Curie Weiss law. The indication for short range ferromagnetic clusters well above Curie temperature is observed due to the Griffiths Phase (GP). It is proposed that the presence of GP arises from induced size effects of La and Co ions.

  14. Flake like V{sub 2}O{sub 5} nanoparticles for ethanol sensing at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitra, M.; Uthayarani, K.; Rajasekaran, N.

    2016-05-23

    The versatile redox property of vanadium oxide explores it in various applications like catalysis, electrochromism, electrochemistry, energy storage, sensors, microelectronics, batteries etc., In this present work, vanadium oxide was prepared via hydrothermal route followed by calcination. The structural and lattice parameters were analysed from the powder X-ray diffraction (XRD) pattern. The morphology and the composition of the sample were obtained from Field emission Scanning electron microscopic (FeSEM) and Energy Dispersive X-ray (EDAX) Spectrometric analysis respectively. The sensitivity, response – recovery time of the sample towards ethanol (0 ppm – 300 ppm) sensing at room temperature was measured and the present investigation onmore » vanadium oxide nanoparticles over the flakes shows better sensitivity (30%) at room temperature.« less

  15. Synthesis, structural characterization and antibacterial activity of cotton fabric modified with a hydrogel containing barium hexaferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Staneva, Desislava; Koutzarova, Tatyana; Vertruyen, Benedicte; Vasileva-Tonkova, Evgenia; Grabchev, Ivo

    2017-01-01

    Barium hexaferrite nanoparticles were synthesized by co-precipitation of Ba2+ and Fe3+ cations with NaOH under of high-power ultrasound. The nanoparticles were dispersed in an aqueous solution of the hydrogel precursors. This solution was used to impregnate the cotton fabric dyed with a photoinitiator. The composite material BaFe12O19 nanoparticles-hydrogel-cotton fabric was prepared by surface initiate photopolymerization under visible light. The modification of the cotton fabric and uniform distribution of the nanoparticles in the structure of the hydrogel were analyzed by scanning electron microscopy (SEM), IR spectroscopy, X-ray diffraction analysis (XRD), fluorescence and colourimetric analyses. The antibacterial efficacy of the material was evaluated against Gram-negative Escherichia coli and Pseudomonas aeruginosa.

  16. Fabrication and characterization of nickel oxide nanoparticles/silicon NiO NPS/Si

    NASA Astrophysics Data System (ADS)

    Shuihab, Aliyah; Khalf, Surour

    2018-05-01

    In this study, (NiO) thin film which prepared by chemical method and deposited by drop casting technique on glass. The structural, optical and chemical analyses have been investigated. X-ray diffraction (XRD) measurements relieve that the (NiO) thin film was polycrystalline, cubic structure and there is no trace of the other material. UV-Vis measurements reveal that the energy gap of (NiO) thin film was found 1.8 eV. The Fourier Transform Infrared Spectroscopy (FTIR) spectrum of (NiO) thin film shows NiO nanoparticles had its IR peak of Ni-O stretching vibration and shifted to blue direction. Due to their quantum size effect and spherical nanostructures, the FTIR absorption of NiO nanoparticles is blue-shifted compared to that of the bulk form.

  17. In-SITU Raman Spectroscopy of Single Microparticle Li-Intercalation Electrodes

    NASA Technical Reports Server (NTRS)

    Dokko, Kaoru; Shi, Qing-Fang; Stefan, Ionel C.; Scherson, Daniel A.

    2003-01-01

    Modifications in the vibrational properties of a single microparticle of LiMn2O4 induced by extraction and subsequent injection of Li(+) into the lattice have been monitored in situ via simultaneous acquisition of Raman scattering spectra and cyclic voltammetry data in 1M LiC1O4 solutions in ethylene carbonate (EC):diethyl carbonate (DEC) mixtures (1:1 by volume). Statistical analyses of the spectra in the range 15 < SOD < 45%, where SOD represents the state of discharge (in percent) of the nominally fully charged material, i.e. lambda-MnO2, were found to be consistent with the coexistence of two distinct phases of lithiated metal oxide in agreement with information derived from in situ X-ray diffraction (XRD) measurements involving more conventional battery-type electrodes.

  18. DISTRIBUTION SYSTEM SOLIDS - A RESEARCH APPROACH

    EPA Science Inventory

    The U.S. EPA's AWBERC research facility is equipped with capabilities to analyze a variety of solids in support many Laboratory-wide research studies. Techniques available on site include X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microsco...

  19. Characterization of crystallographic properties of thin films using X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Zoo, Yeongseok

    2007-12-01

    Silver (Ag) has been recognized as one of promising candidates in Ultra-Large Scale Integrated (ULSI) applications in that it has the lowest bulk electrical resistivity of all pure metals and higher electromigration resistance than other interconnect materials. However, low thermal stability on Silicon Dioxide (Si02) at high temperatures (e.g., agglomeration) is considered a drawback for the Ag metallization scheme. Moreover, if a thin film is attached on a substrate, its properties may differ significantly from that of the bulk, since the properties of thin films can be significantly affected by the substrate. In this study, the Coefficient of Thermal Expansion (CTE) and texture evolution of Ag thin films on different substrates were characterized using various analytical techniques. The experimental results showed that the CTE of the Ag thin film was significantly affected by underlying substrate and the surface roughness of substrate. To investigate the alloying effect for Ag meatallization, small amounts of Copper (Cu) were added and characterized using theta-2theta X-ray Diffraction (XRD) scan and pole figure analysis. These XRD techniques are useful for investigating the primary texture of a metal film, (111) in this study, which (111) is the notation of a specific plane in the orthogonal coordinate system. They revealed that the (111) textures of Ag and Ag(Cu) thin films were enhanced with increasing temperature. Comparison of texture profiles between Ag and Ag(Cu) thin films showed that Cu additions enhanced (111) texture in Ag thin films. Accordingly, the texture enhancement in Ag thin films by Cu addition was discussed. Strained Silicon-On-Insulator (SSOI) is being considered as a potential substrate for Complementary Metal-Oxide-Semiconductor (CMOS) technology since the induced strain results in a significant improvement in device performance. High resolution X-ray diffraction (XRD) techniques were used to characterize the perpendicular and parallel strains in SSOI layers. XRD diffraction profiles generated from the crystalline SSOI layer provided a direct measurement of the layer's strain components. In addition, it has demonstrated that the rotational misalignment between the layer and the substrate can be incorporated within the biaxial strain equations for epitaxial layers. Based on these results, the strain behavior of the SSOI layer and the relation between strained Si and SiO2 layers are discussed for annealed samples.

  20. In-field X-ray and neutron diffraction studies of re-entrant charge-ordering and field induced metastability in La0.175Pr0.45Ca0.375MnO3-δ

    NASA Astrophysics Data System (ADS)

    Sharma, Shivani; Shahee, Aga; Yadav, Poonam; da Silva, Ivan; Lalla, N. P.

    2017-11-01

    Low-temperature high-magnetic field (2 K, 8 T) (LTHM) powder X-ray diffraction (XRD) and time of flight powder neutron diffraction (NPD), low-temperature transmission electron microscopic (TEM), and resistivity and magnetization measurements have been carried out to investigate the re-entrant charge ordering (CO), field induced structural phase transitions, and metastability in phase-separated La0.175Pr0.45Ca0.375MnO3-δ (LPCMO). Low-temperature TEM and XRD studies reveal that on cooling under zero-field, paramagnetic Pnma phase transforms to P21/m CO antiferromagnetic (AFM) insulating phase below ˜233 K. Unlike reported literature, no structural signature of CO AFM P21/m to ferromagnetic (FM) Pnma phase-transition during cooling down to 2 K under zero-field was observed. However, the CO phase was found to undergo a re-entrant transition at ˜40 K. Neutron diffraction studies revealed a pseudo CE type spin arrangement of the observed CO phase. The low-temperature resistance, while cooled under zero-field, shows insulator to metal like transition below ˜105 K with minima at ˜25 K. On application of field, the CO P21/m phase was found to undergo field-induced transition to FM Pnma phase, which shows irreversibility on field removal below ˜40 K. Zero-field warming XRD and NPD studies reveal that field-induced FM Pnma phase is a metastable phase, which arise due to the arrest of kinetics of the first-order phase transition of FM Pnma to CO-AFM P21/m phase, below 40 K. Thus, a strong magneto-structural coupling is observed for this system. A field-temperature (H-T) phase-diagram has been constructed based on the LTHM-XRD, which matches very nicely with the reported H-T phase-diagram constructed based on magnetic measurements. Due to the occurrence of gradual growth of the re-entrant CO phase and the absence of a clear structural signature of phase-separation of CO-AFM P21/m and FM Pnma phases, the H-T minima in the phase-diagram of the present LPCMO sample has been attributed to the strengthening of AFM interaction during re-entrant CO transition and not to glass like "dynamic to frozen" transition.

  1. AAPG-SEPM Gulf of Mexico type-well project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slatt, R.M.; Christopher, R.C.; Katz, B.J.

    1992-12-01

    In 1991, The American Association of Petroleum Geologists (AAPG) published a regional stratigraphic cross section and accompanying seismic line that extends from the south flank of the Ouachita tectonic belt in southern Arkansas (lat. 34.15'N) to south of the 28th parallel in the High Island area, South Addition Block of offshore Gulf of Mexico. The cross section shows chronostratigraphic correlations, lithostratigraphy, and generalized structural relations common to the central Gulf Coast and mid-continent region. The section has been published in three large sheets, each representing approximately 425 statue mi of geographic coverage. As an outgrowth of this project, AAPG, jointlymore » with the Society of Sedimentary Geology (SEPM), organized and sponsored a project through their respective Research Committees on biostratigraphic, lithostratigraphic, and organic geochemical analyses of cuttings from key wells tied to the cross section. Separate splits of samples were sent to volunteers for the following analyses: (1) binocular microscope lithology analysis, (2) detailed biostratigraphy, (3) organic geochemistry, and (4) clay mineralogy by x-ray diffraction (XRD).« less

  2. Bis (3-methoxy-4-hydroxybenzaldehyde-2,4,6-trinitrophenol) organic cocrystal: Synthesis and physico-chemical properties

    NASA Astrophysics Data System (ADS)

    Sudharsana, N.; Krishnakumar, V.; Nagalakshmi, R.

    2016-10-01

    A 3-methoxy-4-hydroxybenzaldehyde-2,4,6-trinitrophenol (mhba-tnp) cocrystal was grown by the slow evaporation solution growth technique using ethanol as a solvent. As-grown crystals were characterized by single crystal X-ray diffraction (XRD) study and crystallized with a centrosymmetric space group. Optical properties of the grown crystal have been studied by Ultraviolet-Visible (UV-Vis) absorption spectra in the range from 200 to 800nm and the band gap energy of the crystal was obtained as 2.8eV. Fourier transform infrared (FTIR) and micro Raman spectral analyses have been carried out to confirm the functional groups present in the title compound. Differential scanning calorimetry (DSC) and polarized light thermomicroscopy (PLTM) analyses were carried out to find the melting point. In addition, the optimized geometric parameters and the molecular orbitals were calculated using density functional theory (DFT) with the help of the Gaussian 03W software.

  3. Two novel metal-organic coordination polymers based on diphosphonate and oxalate: Synthesis, structures and properties

    NASA Astrophysics Data System (ADS)

    Niu, Qing-Jun; Zheng, Yue-Qing; Zhou, Lin-Xia; Zhu, Hong-Lin

    2015-07-01

    Two 2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonato and oxalic acid bridged coordination polymers (H2en)[Co3(H2zdn)2(ox)(H2O)2] (1) and Cd2(H2zdn)(ox)0.5(H2O) (2) (2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonic acid=H5zdn; oxalic acid=H2ox) were synthesized under hydrothermal conditions and characterized by the infrared (IR), thermogravimetric analyses (TGA), elemental analyses (EA) and X-ray diffraction (XRD). Compound 1 is bridged by phosphonate anions to 1D chain, and further linked by oxalate anions to 2D layer. Compound 2 is bridged by O-P-O units of H5zdn to the layer, and then pillared by oxalate anions to generate 3D frameworks. Compound 1 shows anti-ferromagnetic behaviors analyzed with the temperature-dependent zero-field ac magnetic susceptibilities, while compound 2 exhibits an influence on the luminescent property.

  4. Thermoluminescence and X-ray diffraction studies on sliced ancient porcelain samples

    NASA Astrophysics Data System (ADS)

    Leung, P. L.; Yang, B.

    1999-09-01

    The thermal activation characteristics (TACs) of the sensitivity of the '110°C' peak in 14 sliced ancient Chinese porcelain samples are studied. Comparing with the TACs of natural quartz and synthetic mullite, the relation between the TACs and the composition of the sample is discussed with reference to the X-ray diffraction (XRD) spectra. It is suggested that in some cases, contribution of the porcelain components other than quartz to the TACs is not negligible.

  5. Test and Delivery of the Chemin Mineralogical Instrument for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Vaniman, D.; Anderson, R.; Bish, D.; Chipera, S.; Chemtob, S.; Crisp, J.; DesMarais, D. J.; Downs, R.; Feldman, S.; hide

    2010-01-01

    The CheMin mineralogical instrument on MSL will return quantitative powder X-ray diffraction data (XRD) and qualitative X-ray fluorescence data (XRF; 14

  6. Deposition of dual-layer coating on Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Hussain Din, Sajad; Shah, M. A.; Sheikh, N. A.

    2017-03-01

    Dual-layer diamond coatings were deposited on titanium alloy (Ti6Al4V) using a hot filament chemical vapour deposition technique with the anticipation of studying the structural and morphology properties of the alloy. The coated diamond films were characterized using scanning electron microscope, x-ray diffraction (XRD), and Raman spectroscopy. The XRD studies reveal that the deposited films are highly crystalline in nature, whereas morphological studies show that the films have a cauliflower structure. XRD analysis was used to calculate the structural parameters of the Ti6Al4V and CVD-coated Ti6Al4V. Raman spectroscopy was used to determine the nature and magnitude of the residual stress of the coatings.

  7. Synthesis and characterization of nanostructured titanium carbide for fuel cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Paviter; Singh, Harwinder; Singh, Bikramjeet

    2016-04-13

    Titanium carbide (TiC) nanoparticles have been successfully synthesized by carbo-thermic reaction of titanium and acetone at 800 °C. This method is relatively low temperature synthesis route. It can be used for large scale production of TiC. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA) techniques. XRD analysis confirmed the formation of single phase TiC. XRD analysis confirmed that the particles are spherical in shape with an average particle size of 13 nm. DTA analysis shows that the phase is stable upto 900 °C and the material can be used formore » high temperature applications.« less

  8. Role of low-temperature AlGaN interlayers in thick GaN on silicon by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Fritze, S.; Drechsel, P.; Stauss, P.; Rode, P.; Markurt, T.; Schulz, T.; Albrecht, M.; Bläsing, J.; Dadgar, A.; Krost, A.

    2012-06-01

    Thin AlGaN interlayers have been grown into a thick GaN stack on Si substrates to compensate tensile thermal stress and significantly improve the structural perfection of the GaN. In particular, thicker interlayers reduce the density in a-type dislocations as concluded from x-ray diffraction (XRD) measurements. Beyond an interlayer thickness of 28 nm plastic substrate deformation occurs. For a thick GaN stack, the first two interlayers serve as strain engineering layers to obtain a crack-free GaN structure, while a third strongly reduces the XRD ω-(0002)-FWHM. The vertical strain and quality profile determined by several XRD methods demonstrates the individual impact of each interlayer.

  9. Structural investigations in helium charged titanium films using grazing incidence XRD and EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Wan, Chubin; Zhou, Xiaosong; Wang, Yuting; Li, Shina; Ju, Xin; Peng, Shuming

    2014-01-01

    The crystal structure and local atomic arrangements surrounding Ti atoms were determined for He-charged hexagonal close-packed (hcp) Ti films and measured at glancing angles by synchrotron radiation X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively. The charged specimens were prepared by direct current magnetron sputtering with a He/Ar mixture. He atoms with a relatively medium concentration (He/Ti atomic ratio as high as 17 at.%) were incorporated evenly in the deposited films. XRD results showed the changes in the peak intensities in Ti films with different He contents. EXAFS Fourier Transform analysis indicated that the average Ti-Ti distance decreased significantly, and proved the existence of phase transition.

  10. Study of structural and magnetic properties of cobalt ferrite nanoparticles sintered at different temperature

    NASA Astrophysics Data System (ADS)

    Kumari, Mukesh; Bhatnagar, Mukesh Chander

    2018-05-01

    Cobalt ferrite (CFO) has been synthesized in the form of nanoparticles (NPs) through sol-gel auto-combustion method. The prepared NPs of CFO were sintered for four hours at various temperatures from 300°C to 900°C. The physical properties of the sintered samples have been optimized using X-ray diffraction (XRD), Raman spectroscopy and physical properties measurement system (PPMS). The XRD and Raman studies have confirmed the cubic spinel phase formation of CFO NPs. XRD results showed that as we increase the sintering temperature the crystallite size of particles increases. Whereas the magnetic studies revealed that the saturation magnetization (MS) increases while the coercivity (HC) of nanoparticles decreases with increase of sintering temperature.

  11. Single phase Pb0.7Bi0.3Fe0.65Nb0.35O3 multiferroic: Neutron diffraction, impedance and modulus studies

    NASA Astrophysics Data System (ADS)

    Dadami, Sunanda T.; Matteppanvar, Shidaling; Shivaraja, I.; Rayaprol, Sudhindra; Deshpande, S. K.; Angadi, Basavaraj

    2018-04-01

    The Pb0.7Bi0.3Fe0.65Nb0.35O3 (PBFNO) multiferroic solid solution was synthesized by using single step solid state reaction method. Single phase formation was confirmed through room temperature (RT) X Ray Diffraction (XRD) and Neutron Diffraction (ND). Rietveld refinement was used to perform the structural analysis using FullProf Suite program. RT XRD and ND patterns well fitted with monoclinic structure (Cm space group) and cell parameters from the ND data are found to be a = 5.6474(4) Å, b = 5.6415(3) Å, c = 3.9992(3) Å and β = 89.95(2)°. ND data at RT exhibits G-type antiferromagnetic structure. The electrical properties (impedance and modulus) of PBFNO were studied as a function of frequency (100 Hz - 5 MHz) and temperature (133 K - 293 K) by Impedance spectroscopy technique. Impedance and modulus spectroscopy studies confirm the contribution to the conductivity is from grains only and the relaxation is of non-Debye type. The PBFNO sample exhibits negative temperature coefficient of resistance (NTCR) behaviour. PBFNO is found be a potential candidate for RT applications.

  12. Effect of different conventional melt quenching technique on purity of lithium niobate (LiNbO3) nano crystal phase formed in lithium borate glass

    NASA Astrophysics Data System (ADS)

    Kashif, Ismail; Soliman, Ashia A.; Sakr, Elham M.; Ratep, Asmaa

    2012-01-01

    The glass system (45Li2O + 45B2O3 + 10Nb2O5) was fabricated by the conventional melt quenching technique poured in water, at air, between two hot plates and droplets at the cooled surface. The glass and glass ceramics were studied by differential thermal analysis (DTA) and X-ray diffraction (XRD). The as quenched samples poured in water and between two hot plates were amorphous. The samples poured at air and on cooled surface were crystalline as established via X-ray powder diffraction (XRD) studies. Differential thermal analysis was measured. The glass transition temperature (Tg) and the crystallization temperatures were calculated. Lithium niobate (LiNbO3) was the main phase in glass ceramic poured at air, droplets at the cooled surface and the heat treated glass sample at 500, 540 and 580 °C in addition to traces from LiNb3O8. Crystallite size of the main phases determined from the X-ray diffraction peaks is in the range of <100 nm. The fraction of crystalline (LiNbO3) phase decreases with increase in the heat treatment temperature.

  13. Developing high-transmittance heterojunction diodes based on NiO/TZO bilayer thin films

    PubMed Central

    2013-01-01

    In this study, radio frequency magnetron sputtering was used to deposit nickel oxide thin films (NiO, deposition power of 100 W) and titanium-doped zinc oxide thin films (TZO, varying deposition powers) on glass substrates to form p(NiO)-n(TZO) heterojunction diodes with high transmittance. The structural, optical, and electrical properties of the TZO and NiO thin films and NiO/TZO heterojunction devices were investigated with scanning electron microscopy, X-ray diffraction (XRD) patterns, UV-visible spectroscopy, Hall effect analysis, and current-voltage (I-V) analysis. XRD analysis showed that only the (111) diffraction peak of NiO and the (002) and (004) diffraction peaks of TZO were observable in the NiO/TZO heterojunction devices, indicating that the TZO thin films showed a good c-axis orientation perpendicular to the glass substrates. When the sputtering deposition power for the TZO thin films was 100, 125, and 150 W, the I-V characteristics confirmed that a p-n junction characteristic was successfully formed in the NiO/TZO heterojunction devices. We show that the NiO/TZO heterojunction diode was dominated by the space-charge limited current theory. PMID:23634999

  14. Integrated nonlinear optical imaging microscope for on-axis crystal detection and centering at a synchrotron beamline

    PubMed Central

    Madden, Jeremy T.; Toth, Scott J.; Dettmar, Christopher M.; Newman, Justin A.; Oglesbee, Robert A.; Hedderich, Hartmut G.; Everly, R. Michael; Becker, Michael; Ronau, Judith A.; Buchanan, Susan K.; Cherezov, Vadim; Morrow, Marie E.; Xu, Shenglan; Ferguson, Dale; Makarov, Oleg; Das, Chittaranjan; Fischetti, Robert; Simpson, Garth J.

    2013-01-01

    Nonlinear optical (NLO) instrumentation has been integrated with synchrotron X-ray diffraction (XRD) for combined single-platform analysis, initially targeting applications for automated crystal centering. Second-harmonic-generation microscopy and two-photon-excited ultraviolet fluorescence microscopy were evaluated for crystal detection and assessed by X-ray raster scanning. Two optical designs were constructed and characterized; one positioned downstream of the sample and one integrated into the upstream optical path of the diffractometer. Both instruments enabled protein crystal identification with integration times between 80 and 150 µs per pixel, representing a ∼103–104-fold reduction in the per-pixel exposure time relative to X-ray raster scanning. Quantitative centering and analysis of phenylalanine hydroxylase from Chromobacterium violaceum cPAH, Trichinella spiralis deubiquitinating enzyme TsUCH37, human κ-opioid receptor complex kOR-T4L produced in lipidic cubic phase (LCP), intimin prepared in LCP, and α-cellulose samples were performed by collecting multiple NLO images. The crystalline samples were characterized by single-crystal diffraction patterns, while α-cellulose was characterized by fiber diffraction. Good agreement was observed between the sample positions identified by NLO and XRD raster measurements for all samples studied. PMID:23765294

  15. Structural and thermal properties of silk fibroin - Silver nanoparticles composite films

    NASA Astrophysics Data System (ADS)

    Shivananda, C. S.; Rao B, B. Lakshmeesha; Shetty, G. Rajesh; Sangappa, Y.

    2018-05-01

    In this work, silk fibroin-silver nanoparticles (SF-AgNPs) composite films have been prepared by simple solution casting method. The composite films were examined for structural and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results showed that with the introduction of AgNPs in the silk fibroin matrix the amorphous nature of the silk fibroin decreases with increasing nanoparticles concentration. The silk fibroin films possess good thermal stability with the presence of AgNPs.

  16. Structural, thermal, optical, and photoacoustic study of nanocrystalline Bi{sub 2}Te{sub 3} produced by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, S. M.; Triches, D. M.; Poffo, C. M.

    2011-01-01

    Nanocrystalline Bi{sub 2}Te{sub 3} was produced by mechanical alloying and its properties were investigated by differential scanning calorimetry (DSC) x-ray diffraction (XRD), Raman spectroscopy (RS), and photoacoustic spectroscopy (PAS). Combining the XRD and RS results, the volume fraction of the interfacial component in as-milled and annealed samples was estimated. The PAS results suggest that the contribution of the interfacial component to the thermal diffusivity of nanostructured Bi{sub 2}Te{sub 3} is very significant.

  17. Spectral studies of 2-pyrazoline derivatives: structural elucidation through single crystal XRD and DFT calculations.

    PubMed

    Chinnaraja, D; Rajalakshmi, R; Srinivasan, T; Velmurugan, D; Jayabharathi, J

    2014-04-24

    A series of biologically active N-thiocarbamoyl pyrazoline derivatives have been synthesized using anhydrous potassium carbonate as the catalyst. All the synthesized compounds were characterized by FT-IR, (1)H NMR, (13)C NMR spectral studies, LCMS, CHN Analysis and X-ray diffraction analysis (compound 7). In order to supplement the XRD parameters, molecular modelling was carried out by Gaussian 03W. From the optimized structure, the energy, dipolemoment and HOMO-LUMO energies of all the systems were calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Coupling Graphene Sheets with Iron Oxide Nanoparticles for Energy Storage and Microelectronics

    DTIC Science & Technology

    2015-08-13

    of highly oriented pyrolytic graphite ( HOPG ) flake. Two electrode system containing platinum as counter electrode and HOPG as working electrode is... XRD ) patterns of the HOPG , exfoliated graphene, PyDop1-ɤ-Fe2O3 and PyDop1-ɤ-Fe2O3-graphene are given in Figure 1e. HOPG show a very sharp diffraction...atoms arranged in hexagonal pattern in honey comb crystal lattice, (c) TEM (d) HRTEM image of graphene- PyDop1-MNP hybrid, (e) XRD pattern of the HOPG

  19. Structural and optical properties of electrospun MoO3 nanowires

    NASA Astrophysics Data System (ADS)

    Das, Arnab Kumar; Modak, Rajkumar; Srinivasan, Ananthakrishnan

    2018-05-01

    Nanofibers of polyvinyl alcohol (PVA) containing ammonium molybdate were prepared by a combination of sol-gel and electrospinning techniques. Heat treatment of the as-spun composite nanofibers at 500 °C yielded MoO3 nanowires with a diameter of ˜180 nm. The product was characterized by X-ray diffraction (XRD), scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. XRD and Raman spectra of the heat nanowires clearly show the formation of orthorhombic single phase MoO3 structure without any impurity phases.

  20. Synthesis and Properties of Ortho-Nitro-Fe Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, A.; Mishra, Niyati; Sharma, R.

    2011-07-15

    Ortho-Nitro-Fe complex (Transition metal complex) has synthesized by chemical route method and properties of made complex has characterized by X-Ray diffraction (XRD), Moessbauer spectroscopy, Fourier transformation infra-red spectroscopy (FTIR) and X-Ray photoelectron spectroscopy (XPS). XRD analysis shows that sample is crystalline in nature and having particle size in the range of few nano meters. Moessbauer spectroscopy at room temperature shows the oxidation state of Iron (central metal ion) after complaxasion. FTIR spectra of the complex confirms the coordination of metal ion with ligand.

  1. Synthesis and Raman scattering of GaN nanorings, nanoribbons and nanowires

    NASA Astrophysics Data System (ADS)

    Li, Z. J.; Chen, X. L.; Li, H. J.; Tu, Q. Y.; Yang, Z.; Xu, Y. P.; Hu, B. Q.

    Low-dimensional GaN materials, including nanorings, nanoribbons and smooth nanowires have been synthesized by reacting gallium and ammonia using Ag particles as a catalyst on the substrate of MgO single crystals. They were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). EDX, XRD indicated that the low-dimensional nanomaterials were wurtzite GaN. New features are found in Raman scatterings for these low-dimensional GaN materials, which are different from the previous observations of GaN materials.

  2. Physicochemical characterization of Capstone depleted uranium aerosols III: morphologic and chemical oxide analyses.

    PubMed

    Krupka, Kenneth M; Parkhurst, Mary Ann; Gold, Kenneth; Arey, Bruce W; Jenson, Evan D; Guilmette, Raymond A

    2009-03-01

    The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using x-ray diffraction (XRD), and particle morphologies were examined using scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). The oxidation state of a DU aerosol is important as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles were spherical, occasionally with dendritic or lobed surface structures. Others appear to have fractures that perhaps resulted from abrasion and comminution, or shear bands that developed from plastic deformation of the DU material. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small bits of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of Health Physics to interpret the results of lung solubility studies and in selecting input parameters for dose assessments.

  3. Physicochemical Characterization of Capstone Depleted Uranium Aerosols III: Morphologic and Chemical Oxide Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupka, Kenneth M.; Parkhurst, MaryAnn; Gold, Kenneth

    2009-03-01

    The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using X-ray diffraction (XRD) and particle morphologies using scanning electron microscopy/energy dispersive spectrometry (SEM/EDS). The oxidation state of a DU aerosol is importantmore » as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles appear to have been fractured (perhaps as a result of abrasion and comminution); others were spherical, occasionally with dendritic or lobed surface structures. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small chunks of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of The Journal of Health Physics to interpret the results of lung solubility studies and in selecting input parameters for dose assessments.« less

  4. The Effect of MnO2 Content and Sintering Atmosphere on The Electrical Properties of Iron Titanium Oxide NTC Thermistors using Yarosite

    NASA Astrophysics Data System (ADS)

    Wiendartun; Gustaman Syarif, Dani

    2017-02-01

    The effect of MnO2 content and sintering atmosphere on the characteristics of Fe2TiO5 ceramics for Negative Thermal Coefficient (NTC) thermistors by using Fe2O3 derived from yarosite has been studied. The ceramics were produced by pressing a homogeneous mixture of Fe2O3, TiO2 and MnO2 (0-2.0 w/o) powders in appropriate proportions to produce Fe2TiO5 based ceramics and sintering the pressed powder at 1100-1200°C for 3 hours in air, O2 and N2 gas. Electrical characterization was done by measuring electrical resistivity of the sintered ceramics at various temperatures from 30°C to 200°C. Microstructure and structural analyses were also carried out by using an scanning electron microscope (SEM) and x-ray diffraction (XRD). The XRD data showed that the pellets crystallize in orthorhombic. The presence of second phase could not be identified from the XRD analyses. The SEM images showed that the grain size of pellet ceramics increase with increasing of MnO2 addition, and the grains size of the ceramic sintered in oxygen gas is smaller than sintered in nitrogen gas. Electrical data showed that the value of room temperature resistance (RRT) tend to decrease with respect to the increasing of MnO2 addition and the pellet ceramics sintered in oxygen gas had the largest thermistor constant (B), activation energy (Ea), sensitivity (α) and room temperature resistance (RRT), compared to the sintered in nitrogen gas. From the electrical characteristics data, it was known that the electrical characteristics of the Fe2TiO5 pellet ceramics followed the NTC characteristic. The fabricated Fe2TiO5 ceramics have thermistor constants (B = 2207-7145K). This can be applied as temperature sensor, and will fulfill the market requirement.

  5. Real time measurements of surface growth evolution in magnetron sputtered single crystal Mo/V superlattices using in situ reflection high energy electron diffraction analysis

    NASA Astrophysics Data System (ADS)

    Svedberg, E. B.; Birch, J.; Edvardsson, C. N. L.; Sundgren, J.-E.

    1999-07-01

    The use of video recording of reflection high energy electron diffraction (RHEED) patterns for assessing the dynamic evolution of the surface morphology and crystallinity during growth was evaluated. As an example, Mo/V(001) superlattices with varying layer thickness (with periods Λ of 2.5 to 8.9 nm and a constant Mo:V ratio of 1:1) were examined. During the deposition, changes from two- to three-dimensional growth were observed in situ. From prior transmission electron microscopy (TEM) and X-ray diffraction (XRD) studies, it is known that this transition is associated with a critical thickness and concurrent roughening of the V layer. Video recording and subsequent image and data processing allowed the surface morphology to be continuously followed during growth. Post-growth analyses of the recorded data provided the evolution of surface lattice parameters and short range [1-2 monolayer (ML)] surface roughnesses with a time resolution of 200-400 ms (0.02-0.04 nm thickness resolution). During growth of Mo, a smoothening effect could be observed while the growth of V evidently increased the surface roughness from 1 to 2 ML. Furthermore, the onset of coherency strain relaxation of the topmost growing layers was observed to occur at 2.0-2.5 nm layer thicknesses for both materials, which is in qualitative agreement with theoretical predictions.

  6. High-pressure phase transition in silicon carbide under shock loading using ultrafast x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Tracy, S. J.; Smith, R. F.; Wicks, J. K.; Fratanduono, D. E.; Gleason, A. E.; Bolme, C.; Speziale, S.; Appel, K.; Prakapenka, V. B.; Fernandez Panella, A.; Lee, H. J.; MacKinnon, A.; Eggert, J.; Duffy, T. S.

    2017-12-01

    The behavior of silicon carbide (SiC) under shock loading was investigated through a series of time-resolved pump-probe x-ray diffraction (XRD) measurements. SiC is found at impact sites and has been put forward as a possible constituent in the proposed class of extra-solar planets known as carbon planets. Previous studies have used wave profile measurements to identify a phase transition under shock loading near 1 Mbar, but crystal structure information was not obtained. We have carried out an in situ XRD study of shock-compressed SiC using the Matter in Extreme Conditions instrument of the Linac Coherent Light Source. The femtosecond time resolution of the x-ray free electron laser allows for the determination of time-dependent atomic arrangements during shock loading and release. Two high-powered lasers were used to generate ablation-driven compression waves in the samples. Time scans were performed using the same drive conditions and nominally identical targets. For each shot in a scan, XRD data was collected at a different probe time after the shock had entered the SiC. Probe times extended up to 40 ns after release. Scans were carried out for peak pressures of 120 and 185 GPa. Our results demonstrate that SiC transforms directly from the ambient tetrahedrally-coordinated phase to the octahedral B1 structure on the nanosecond timescale of laser-drive experiments and reverts to the tetrahedrally coordinated ambient phase within nanoseconds of release. The data collected at 120 GPa exhibit diffraction peaks from both compressed ambient phase and transformed B1 phase, while the data at 185 GPa show a complete transformation to the B1 phase. Densities determined from XRD peaks are in agreement with an extrapolation of previous continuum data as well as theoretical predictions. Additionally, a high degree of texture was retained in both the high-pressure phase as well as on back transformation. Two-dimensional fits to the XRD data reveal details of the orientational relationships between the low- and high-pressure phases that can be interpreted to provide information about transformation pathways between tetrahedral and octahedral coordination structures. We acknowledge support for this work from SLAC National Accelerator Laboratory, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory.

  7. Characterizing the Phyllosilicates and Amorphous Phases Found by MSL Using Laboratory XRD and EGA Measurements of Natural and Synthetic Materials

    NASA Technical Reports Server (NTRS)

    Rampe, Elizabeth B.; Morris, Richard V.; Chipera, Steve; Bish, David L.; Bristow, Thomas; Archer, Paul Douglas; Blake, David; Achilles, Cherie; Ming, Douglas W.; Vaniman, David; hide

    2013-01-01

    The Curiosity Rover landed on the Peace Vallis alluvial fan in Gale crater on August 5, 2012. A primary mission science objective is to search for past habitable environments, and, in particular, to assess the role of past water. Identifying the minerals and mineraloids that result from aqueous alteration at Gale crater is essential for understanding past aqueous processes at the MSL landing site and hence for interpreting the site's potential habitability. X-ray diffraction (XRD) data from the CheMin instrument and evolved gas analyses (EGA) from the SAM instrument have helped the MSL science team identify phases that resulted from aqueous processes: phyllosilicates and amorphous phases were measure in two drill samples (John Klein and Cumberland) obtained from the Sheepbed Member, Yellowknife Bay Fm., which is believed to represent a fluvial-lacustrine environment. A third set of analyses was obtained from scoop samples from the Rocknest sand shadow. Chemical data from the APXS instrument have helped constrain the chemical compositions of these secondary phases and suggest that the phyllosilicate component is Mg-enriched and the amorphous component is Fe-enriched, relatively Si-poor, and S- and H-bearing. To refine the phyllosilicate and amorphous components in the samples measured by MSL, we measured XRD and EGA data for a variety of relevant natural terrestrial phyllosilicates and synthetic mineraloids in laboratory testbeds of the CheMin and SAM instruments. Specifically, Mg-saturated smectites and vermiculites were measured with XRD at low relative humidity to understand the behavior of the 001 reflections under Mars-like conditions. Our laboratory XRD measurements suggest that interlayer cation composition affects the hydration state of swelling clays at low RH and, thus, the 001 peak positions. XRD patterns of synthetic amorphous materials, including allophane, ferrihydrite, and hisingerite were used in full-pattern fitting (FULLPAT) models to help determine the types and abundances of amorphous phases in the martian rocks and sand shadow. These models suggest that the rocks and sand shadow are composed of approx 30% amorphous phases. Sulfate-adsorbed allophane and ferrihydrite were measured by EGA to further understand the speciation of the sulfur present in the amorphous component. These data indicate that sulfate adsorbed onto the surfaces of amorphous phases could explain a portion of the SO2 evolution in the Rocknest SAM data. The additional constraints placed on the mineralogy and chemistry of the aqueous alteration phases through our laboratory measurements can help us better understand the nature of the fluids that affected the different samples and devise a history of aqueous alteration for the Sheepbed Member of the Yellowknife Bay Fm. at Gale crater.

  8. Microwave assisted scalable synthesis of titanium ferrite nanomaterials

    NASA Astrophysics Data System (ADS)

    Shukla, Abhishek; Bhardwaj, Abhishek K.; Singh, S. C.; Uttam, K. N.; Gautam, Nisha; Himanshu, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, R.

    2018-04-01

    Titanium ferrite magnetic nanomaterials are synthesized by one-step, one pot, and scalable method assisted by microwave radiation. Effects of titanium content and microwave exposure time on size, shape, morphology, yield, bonding nature, crystalline structure, and magnetic properties of titanium ferrite nanomaterials are studied. As-synthesized nanomaterials are characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer measurements. XRD measurements depict the presence of two phases of titanium ferrite into the same sample, where crystallite size increases from ˜33 nm to 37 nm with the increase in titanium concentration. UV-Vis measurement showed broad spectrum in the spectral range of 250-600 nm which reveals that its characteristic peaks lie between ultraviolet and visible region; ATR-FTIR and Raman measurements predict iron-titanium oxide structures that are consistent with XRD results. The micrographs of TEM and selected area electron diffraction patterns show formation of hexagonal shaped particles with a high degree of crystallinity and presence of multi-phase. Energy dispersive spectroscopy measurements confirm that Ti:Fe compositional mass ratio can be controlled by tuning synthesis conditions. Increase of Ti defects into titanium ferrite lattice, either by increasing titanium precursor or by increasing exposure time, enhances its magnetic properties.

  9. Two-dimensional X-ray diffraction and transmission electron microscopy study on the effect of magnetron sputtering atmosphere on GaN/SiC interface and gallium nitride thin film crystal structure

    NASA Astrophysics Data System (ADS)

    Shen, Huaxiang; Zhu, Guo-Zhen; Botton, Gianluigi A.; Kitai, Adrian

    2015-03-01

    The growth mechanisms of high quality GaN thin films on 6H-SiC by sputtering were investigated by X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). The XRD θ-2θ scans show that high quality ( 0002 ) oriented GaN was deposited on 6H-SiC by reactive magnetron sputtering. Pole figures obtained by 2D-XRD clarify that GaN thin films are dominated by ( 0002 ) oriented wurtzite GaN and { 111 } oriented zinc-blende GaN. A thin amorphous silicon oxide layer on SiC surfaces observed by STEM plays a critical role in terms of the orientation information transfer from the substrate to the GaN epilayer. The addition of H2 into Ar and/or N2 during sputtering can reduce the thickness of the amorphous layer. Moreover, adding 5% H2 into Ar can facilitate a phase transformation from amorphous to crystalline in the silicon oxide layer and eliminate the unwanted { 3 3 ¯ 02 } orientation in the GaN thin film. Fiber texture GaN thin films can be grown by adding 10% H2 into N2 due to the complex reaction between H2 and N2.

  10. X-ray diffraction investigation of amorphous calcium phosphate and hydroxyapatite under ultra-high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Lam, Elisa; Gu, Qinfen; Swedlund, Peter J.; Marchesseau, Sylvie; Hemar, Yacine

    2015-11-01

    The changes in the crystal structures of synthetically prepared amorphous calcium phosphate (ACP) and hydroxyapatite (HAP) in water (1:1 mass ratio) were studied by synchrotron X-ray diffraction (XRD) under ultra-high hydrostatic pressures as high as 2.34 GPa for ACP and 4 GPa for HAP. At ambient pressure, the XRD patterns of the ACP and HAP samples in capillary tubes and their environmental scanning electron micrographs indicated amorphous and crystalline characteristics for ACP and HAP, respectively. At pressures greater than 0.25 GPa, an additional broad peak was observed in the XRD pattern of the ACP phase, indicating a partial phase transition from an amorphous phase to a new high-pressure amorphous phase. The peak areas and positions of the ACP phase, as obtained through fitting of the experimental data, indicated that the ACP exhibited increased pseudo-crystalline behavior at pressures greater than 0.96 GPa. Conversely, no structural changes were observed for the HAP phase up to the highest applied pressure of 4 GPa. For HAP, a unit-cell reduction during compression was evidenced by a reduction in both refined lattice parameters a and c. Both ACP and HAP reverted to their original structures when the pressure was fully released to ambient pressure.

  11. Effect of aging temperature on formation of sol-gel derived fluor-hydroxyapatite nanoparticles.

    PubMed

    Joughehdoust, S; Behnamghader, A; Jahandideh, R; Manafi, S

    2010-04-01

    Synthetic hydroxyapatite (HA) has been recognized as one of the most important bone substitute materials in orthopaedics and dentistry over past few decades because of its chemical and biological similarity to the mineral phase of human bone. One solution for reduction the solubility of HA in biological environments is replacing F- by OH in HA structure and forming fluor-hydroxyapatite (FHA) solid solution. In this paper, FHA nanoparticles were successfully synthesized by a sol-gel method. Also, the influence of aging temperature on formation of FHA powder was studied. Equimolar solutions of calcium nitrate tetrahydrate, triethyl phosphite and ammonium fluoride in ethanol were used as Ca, P and F precursors. After aging at different temperatures, the synthesized powders were heat treated at 550 degrees C. The powders were investigated with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), selected area electron diffraction pattern (SAED), energy dispersive analysis of X-ray (EDAX) and zetasizer measurement. The results of XRD proved the presence of fluorapatite (FA) and HA in all samples. In addition, the formation of FHA was confirmed by FT-IR results. XRD studies also showed that the crystallites were in nanometric scale. At the same time, this result was in good agreement with the result of zetasizer analysis.

  12. The Influence of Growth Temperature on Sb Incorporation in InAsSb, and the Temperature-dependent Impact of Bi Surfactants

    DTIC Science & Technology

    2014-01-01

    resolution X - ray diffraction (XRD) were collected for all samples, and reciprocal space maps (RSMs) were collected from selected samples. The complete data...exposure. The lines represent the model fit. 19 13 Figure 1. Triple axis x - ray diffraction from the bi-layered InAsSb structures grown on GaSb at...Applied Physics, Structural properties of bismuth‐bearing semiconductor alloys, 63 (1988) 107. 18 12 Figure Captions Figure 1. Triple axis x - ray

  13. Effects of Peripheral Architecture on the Properties of Aryl Polyhedral Oligomeric Silsesquioxanes

    DTIC Science & Technology

    2012-07-26

    POSS) molecules are described. These POSS materials were synthesized in our laboratory and characterized by single-crystal and powder X - ray diffraction ...powder X - ray diffraction (XRD), where applicable. 1H, 13C, and 29Si NMR spectra were obtained on Bruker 300 and 400 MHz spectrometers using 5 mm o.d...degree of cage ordering during precipitation. Referring back to Figure 14, strong X - ray scattering peaks in the spectra for 1 in the d- spacing range

  14. Structural and spectroscopic study of mechanically synthesized SnO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Vij, Ankush; Kumar, Ravi

    2016-05-01

    We report the single step synthesis of SnO2 nanostructures using high energy mechanical attrition method. X-ray diffraction (XRD) pattern reveals the single phase rutile structure with appreciable broadening of diffraction peaks, which is a signature of nanostructure formation. The average crystallite size of SnO2 nanostructures has been calculated to be ~15 nm. The micro-Raman study reveals the shifting of A1g Raman mode towards lower wave number, which is correlated with the nanostructure formation.

  15. Analysis of x-ray diffraction pattern and complex plane impedance plot of polypyrrole/titanium dioxide nanocomposite: A simulation study

    NASA Astrophysics Data System (ADS)

    Ravikiran, Y. T.; Vijaya Kumari, S. C.

    2013-06-01

    To innovate the properties of Polypyrrole/Titanium dioxide (PPy/TiO2) nanocomposite further, it has been synthesized by chemical polymerization technique. The nanostructure and monoclinic phase of the prepared composite have been confirmed by simulating the X-ray diffraction pattern (XRD). Also, complex plane impedance plot of the composite has been simulated to find equivalent resistance capacitance circuit (RC circuit) and numerical values of R and C have been predicted.

  16. [Study on bamboo treated with gamma rays by X-ray diffraction].

    PubMed

    Sun, Feng-Bo; Fei, Ben-Hua; Jiang, Ze-Hui; Yu, Zi-Xuan; Tian, Gen-Lin; Yang, Quan-Wen

    2011-06-01

    The microfibril angle and crystallinity of bamboo treated with gamma rays were tested by X-ray diffraction (XRD). The result indicated that crystallinity in bamboo increased when irradiation dose was less than 100 kGy, while the irradiation dose was raised to about 100 kGy, crystallinity in bamboo reduced. But during the whole irradiation process, the influence on microfibril angle was not obvious, so it was not the dominant factors on variation in physical-mechanical properties of bamboo during the process of irradiation.

  17. Semi-insulating GaN Substrates for High-frequency Device Fabrication

    DTIC Science & Technology

    2008-06-18

    of the undoped and iron-doped samples were probed by X-ray diffraction (XRD) measurements using a Philips X’pert MRD triple axis diffracted beam system...diode laser. The light emitted by the samples was dispersed by a Princeton/Acton Trivista 557 triple spectrometer fit with an LN2 cool OMA V InGaAs... point out that the relative intensity of all these bands decreases with increasing of the iron doping. This observation is consistent with the change in

  18. Applications of High Throughput (Combinatorial) Methodologies to Electronic, Magnetic, Optical, and Energy-Related Materials

    DTIC Science & Technology

    2013-06-17

    of the films without having to fabricate capacitors. In addition, the use of X - ray diffraction (XRD) analysis enabled Chikyow et al.40 to identify an...effects of Al doping and annealing on the thermal stabil- ity of the Y2O3/Si gate stack were studied by X - ray photoemission spectroscopy (XPS) and X - ray ...the major diffraction features in the phase distribution. For a given structural phase, the X - ray peak intensity allows one to track the compositional

  19. Synthesis of Silver and Gold Nanoparticles Using Antioxidants from Blackberry, Blueberry, Pomegranate, and Turmeric Extracts

    EPA Science Inventory

    Greener synthesis of Ag and Au nanoparticles is described using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. The synthesized particles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HR...

  20. Phosphate Remediation and Recovery using Iron Oxide-based Adsorbents

    EPA Science Inventory

    E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese and nanoparticles. Characterization was done by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-...

  1. Effects of Plastizers on the Structure and Properties of Starch-Clay Nanocomposites

    USDA-ARS?s Scientific Manuscript database

    Biodegradable nanocomposites were successfully fabricated from corn starch and montmorillonite (MMT) nanoclays by melt extrusion processing. The structure and morphology of the nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and film propertie...

  2. X-Ray Diffraction (XRD) Characterization Methods for Sigma=3 Twin Defects in Cubic Semiconductor (100) Wafers

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Kim, Hyun Jung (Inventor); Skuza, Jonathan R. (Inventor); Lee, Kunik (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor)

    2017-01-01

    An X-ray defraction (XRD) characterization method for sigma=3 twin defects in cubic semiconductor (100) wafers includes a concentration measurement method and a wafer mapping method for any cubic tetrahedral semiconductor wafers including GaAs (100) wafers and Si (100) wafers. The methods use the cubic semiconductor's (004) pole figure in order to detect sigma=3/{111} twin defects. The XRD methods are applicable to any (100) wafers of tetrahedral cubic semiconductors in the diamond structure (Si, Ge, C) and cubic zinc-blend structure (InP, InGaAs, CdTe, ZnSe, and so on) with various growth methods such as Liquid Encapsulated Czochralski (LEC) growth, Molecular Beam Epitaxy (MBE), Organometallic Vapor Phase Epitaxy (OMVPE), Czochralski growth and Metal Organic Chemical Vapor Deposition (MOCVD) growth.

  3. Structural analysis of the industrial grade calcite

    NASA Astrophysics Data System (ADS)

    Shah, Rajiv P.; Raval, Kamlesh G.

    2017-05-01

    The chemical, optical and structural characterization of the industrial grade Calcite by EDAX, FT-IR and XRD. EDAX is a widely used technique to analyze the chemical components in a material, FT-IR stands for Fourier Transform Infra-Red, the preferred method of infrared spectroscopy. The resultant spectrum represents the molecular absorption and transmission, creating a molecular fingerprint of the sample, The atomic planes of a crystal cause an incident beam of X-rays to interfere with one another as they leave the crystal. The phenomenon is called X ray diffraction.(XRD). Data analysis of EDAX, FT-IR and XRD has been carried out with help of various instruments and software and find out the results of the these industrial grade materials which are mostly used in ceramics industries

  4. A Preliminary Study on Black Colored Potsherds from Taiwan

    NASA Astrophysics Data System (ADS)

    Liou, Y. S.; Yi-Chang, L.

    2016-12-01

    Black colored potsherds from the archaeological sites of late Neolithic (3500-2000 BP) and Iron Age (1400-800 BP) exhibit the minor phase in the number of antiques, however, they represent a specific symbol on the religious rites and social stratum in the archaeological and cultural contents of Taiwan. A lot of efforts focused on morphological and decorative styles of the black pottery have been made in previous archaeological works. In this study, multiple analytical techniques including micro-Raman spectroscopy, X-ray diffraction analysis (XRD), and micro X-ray florescence spectroscopy (μXRF) were applied to 11 potsherds found at eleven archaeological sites across Taiwan to understand the raw materials, production techniques, and the possible interactions and exchange system among ancient societies. Ten mineral phases including α-quartz, amorphous carbon, anatase, plagioclase, etc., were identified from Raman spectra. The presence of amorphous carbon indicates that pottery was fired under reducing conditions. Pyroxene minerals were present in some potsherds, suggesting that raw materials were not sourced locally, and perhaps further indicating trading or people migration activities in ancient periods. XRD measurements and μXRF analyses were used as complementary techniques to obtain mineral and chemical compositions. XRD measurements show that quartz, albite, biotite, and gypsum were present in potsherds. Chemically, SiO2, Al2O3, Na2O, K2O, Fe2O3, and CaO are the main constituents. The correlation plots of these main compositions show that pottery raw material can subdivide into three group which were related to different areas and ages. However, it need more detailed investigation to decipher this issue.

  5. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation.

    PubMed

    Rodriguez-Navarro, Carlos; Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-06-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed.

  6. Structural characterization, electrical conductivity and open circuit voltage studies of the nanocrystalline La10Si6O27 electrolyte material for SOFCs

    NASA Astrophysics Data System (ADS)

    Jena, Paramananda; Jayasubramaniyan, S.; Patro, P. K.; Lenka, R. K.; Sinha, Amit; Muralidharan, P.; Srinadhu, E. S.; Satyanarayana, N.

    2018-02-01

    Nanocrystalline La10Si6O27 apatite-type sample was synthesized by the co-precipitation method. Thermal behavior, phase, structure, morphology and elemental composition of La, O and Si of the synthesized La10Si6O27 sample were investigated through TG/DTA, XRD, FTIR, Raman spectroscopy and SEM-EDX measurements respectively. Formation of phase purity of the nanocrystalline La10Si6O27 sample was confirmed by analysing the measured X-ray powder diffraction (XRD) pattern using Rietveld refinement and the calculated average crystallite size of the La10Si6O27 sample was found to be 33 nm. The electrical conductivity of the sintered La10Si6O27 pellet was investigated as a function of temperature ranging from 200 to 800 °C under air and it was found to be 1.92 × 10-3 S cm-1 at 800 °C. The chemical stability of La10Si6O27 powder under oxidizing and reducing atmospheres was confirmed from the analysis of the measured XRD pattern and Raman spectral results. Open circuit potential of a button cell, made up of the La10Si6O27 sample, was tested up to 800 °C with both oxygen and hydrogen at opposite sides of the cell and was found to 1 V. Hence, the results demonstrate that La10Si6O27 could be a promising solid electrolyte material for the solid oxide fuel cell (SOFC) applications.

  7. A Mössbauer spectral study of degradation in La 0.58Sr 0.4Fe 0.5Co 0.5O 3–x after long-term operation in solid oxide electrolysis cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmoud, Abdelfattah; Daroukh, Mahmoud Al; Lipinska-Chwalek, Marta

    Here, degradation processes of oxygen electrodes in solid oxide electrolysis cells (SOECs) were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Mössbauer spectroscopy. La 0.58Sr 0.4Fe 0.5Co 0.5O 3–x (LSCF) anodes (oxygen electrode) were analyzed after different long-term operations durations of 1774, 6100 and 9000 h. The results were compared with a cell in the initial state. Besides the LSCF anode, the SOECs were composed of a Ce 0.8Gd 0.2O 1.9 barrier layer between the anode and electrolyte, yttria-stabilized zirconia (YSZ) as electrolyte and Ni-YSZ as cathode (hydrogen electrode). Mössbauer spectra of the iron-containingmore » anode were acquired in order to determine the alteration of the iron oxidation state and its local environment during operation. Mössbauer spectroscopy yields indirect information about the degradation mechanism, especially in combination with SEM, TEM, and XRD. XRD and TEM revealed the appearance of Co 3O 4 during the SOEC operation and SEM analyses confirmed the formation of SrZrO 3 at the electrode/electrolyte interface. The spectral analysis confirmed the reduction of iron from Fe(IV) to Fe(III) in LSCF after long-term operation. The fraction of Fe(IV) in the electrode decreased with time and 18, 15, 13 and 11% were obtained for 0, 1774, 6100, and 9000 h of operation, respectively.« less

  8. A Mössbauer spectral study of degradation in La 0.58Sr 0.4Fe 0.5Co 0.5O 3–x after long-term operation in solid oxide electrolysis cells

    DOE PAGES

    Mahmoud, Abdelfattah; Daroukh, Mahmoud Al; Lipinska-Chwalek, Marta; ...

    2017-10-21

    Here, degradation processes of oxygen electrodes in solid oxide electrolysis cells (SOECs) were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Mössbauer spectroscopy. La 0.58Sr 0.4Fe 0.5Co 0.5O 3–x (LSCF) anodes (oxygen electrode) were analyzed after different long-term operations durations of 1774, 6100 and 9000 h. The results were compared with a cell in the initial state. Besides the LSCF anode, the SOECs were composed of a Ce 0.8Gd 0.2O 1.9 barrier layer between the anode and electrolyte, yttria-stabilized zirconia (YSZ) as electrolyte and Ni-YSZ as cathode (hydrogen electrode). Mössbauer spectra of the iron-containingmore » anode were acquired in order to determine the alteration of the iron oxidation state and its local environment during operation. Mössbauer spectroscopy yields indirect information about the degradation mechanism, especially in combination with SEM, TEM, and XRD. XRD and TEM revealed the appearance of Co 3O 4 during the SOEC operation and SEM analyses confirmed the formation of SrZrO 3 at the electrode/electrolyte interface. The spectral analysis confirmed the reduction of iron from Fe(IV) to Fe(III) in LSCF after long-term operation. The fraction of Fe(IV) in the electrode decreased with time and 18, 15, 13 and 11% were obtained for 0, 1774, 6100, and 9000 h of operation, respectively.« less

  9. Influence of Substrate Mineralogy on Bacterial Mineralization of Calcium Carbonate: Implications for Stone Conservation

    PubMed Central

    Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-01-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed. PMID:22447589

  10. Microwave-assisted hydrothermal synthesis of biocompatible silver sulfide nanoworms

    NASA Astrophysics Data System (ADS)

    Xing, Ruimin; Liu, Shanhu; Tian, Shufang

    2011-10-01

    In this study, silver sulfide nanoworms were prepared via a rapid microwave-assisted hydrothermal method by reacting silver nitrate and thioacetamide in the aqueous solution of the Bovine Serum Albumin (BSA) protein. The morphology, composition, and crystallinity of the nanoworms were characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. The results show that the nanoworms were assembled by multiple adjacent Ag2S nanoparticles and stabilized by a layer of BSA attached to their surface. The nanoworms have the sizes of about 50 nm in diameter and hundreds of nanometers in length. The analyses of high-resolution TEM and their correlative Fast Fourier Transform (FFT) indicate that the adjacent Ag2S nanoparticles grow by misoriented attachment at the connective interfaces to form the nanoworm structure. In vitro assays on the human cervical cancer cell line HeLa show that the nanoworms exhibit good biocompatibility due to the presence of BSA coating. This combination of features makes the nanoworms attractive and promising building blocks for advanced materials and devices.

  11. Microstructural development of a gas-atomized and hot-pressed super-α2 alloy

    NASA Astrophysics Data System (ADS)

    Xu, R.; Cui, Y. Y.; Xu, D. M.; Li, D.; Li, Q. C.; Hu, Z. Q.

    1996-08-01

    A variety of heat treatments have been employed to explore the microstructure in Ti-25Al-10Nb-3V-lMo alloy prepared by gas atomization and hot pressing. These treatments include quenching by oil cooling and water cooling and aging at temperatures between 530 °C and 950 °C. Quenching transformations from the β-phase field include the formation of O phase in oil quenching and β (disordered) + O phase in water quenching. The metastable β phase decomposes into O + “Ω”, O, or α2 + βo/B2 phase when the as-quenched alloy is aged at various temperatures. By comparing the selection area diffraction patterns, it has been found that the ordered w phase in the alloy studied in this article is distinct in structure to the “Ω type” ( P3m1) and B82 phase which are formed in the parent matrix of the ordered β(B2,D03) phases. It has also been shown by X-ray diffraction (XRD) analyses that the lattice parameters of the as-aged O phase do not remain constant in the alloy at various temperatures.

  12. Structural, Morphological, Differential Scanning Calorimetric and Thermogravimetric Studies of Ball Milled Fe Doped Nanoscale La0.67Sr0.33MnO3 Manganite

    NASA Astrophysics Data System (ADS)

    Astik, Nidhi; Jha, Prafulla K.; Pratap, Arun

    2018-03-01

    The ball milling route has been used to produce the La0.67Sr0.33Mn0.85Fe0.15O3 (LSMFO) nanocrystalline sample from oxide precursors. The sample was characterized using x-ray diffraction (XRD), a scanning electron microscope (SEM), energy dispersive x-ray spectroscopy (EDAX), differential scanning calorimetry (DSC) and thermogravimetric (TGA) measurements. The x-ray diffraction confirms the phase purity of sample and shows that the sample crystallizes in the rhombohedral perovskite structure with a R-3c space group. The scanning electron micrograph shows the presence of well-faceted crystallites of LSMFO. The EDAX spectrum demonstrates the molar ratio of different elements of nanocrystalline LSMFO. Furthermore, the crystallite size using the Debye-Scherrer formula and William-Hall analysis has been found as 24 nm and 29 nm, respectively. Our results support the idea that a good quality nanocrystalline LSMFO sample can be obtained using the ball milling route. We also discuss the DSC and TGA curves and analyse the results in terms of phase transition, calcination temperature and activation barrier energies.

  13. A little adjustment of synthetic strategy led to a new highly repeated heteropolyblue: Structure, characterizations and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Chen, Wu-Hua; Zhang, Zhu-Sen; Zhao, Jin-Hua; Qiu, Ze-Hai; Yuan, Qiu-Lan; Huang, Tian-Fu; Lin, Xue-Yu; Hu, Zhi-Biao

    2017-06-01

    Hydrothermal synthesis is known as the most efficient method to prepare novel structural polyoxometalate (POM)-based materials, but controlled synthesis of a structure-directing POM is always challenging task. The experimental repeatability is usually one of the key topics. To explore a reliable hydrothermal synthesis approach for new POMs will be a meaningful work. Our previous work, which we have hydrothermally synthesized the first Cr-complexes-capped Keggin-type POM, [Hdma]3[H2phen]{[Cr(phen)]2[MoV8MoVI4O36(PO4)]}·nH2O (n ≈ 2) (Chen et al., polyhedron, 2015, 85, 117), afford us some commendable synthetic experiences, arouse us some introspections as well for its tricky preparation conditions and low experimental repeatability. Based on the aforementioned work, a new high-repetition-rate and more steady heteropolyblue, [H3O]0.5(Hdma)2.5(dma)0.25{[Cr(phen)]2[MoV6MoVI6O8(PO4)]}·2H2O (1) (dma = dimethylamine (C2H7N), phen = 1,10-phenanthroline (C12H8N2)), has been successfully obtained by virtue of reasonably adjusting synthetic strategy. The adjustment of synthetic strategy includes controlling ratio of reactants and aging time, reasonably using redoxes and stepwise self-assembly plans. Compound 1 is the second POM with Keggin-type polyanion capped by Cr-complexes. Experiments demonstrate that compound 1 has good catalytic activity in the both degradation reactions of rhodamine B (RHB) and methyl orange (MO) under ultraviolet (UV)-light and oxidant H2O2 conditions. Detailed structural characterizations include single-crystal X-ray diffraction (XRD) analyses, energy-dispersive X-ray spectrometry (EDS) analyses, elemental analyses, cerate oxidimetry, powder XRD, fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible-near-infrared (UV-Vis-NIR) solid diffuse reflection spectrum and X-ray photoelectron spectroscopy (XPS) analyses. The electrochemical property (cyclic voltammetry (CV)) of compound 1 has also been studied.

  14. XRD analysis of undoped and Fe doped TiO{sub 2} nanoparticles by Williamson Hall method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharti, Bandna; Barman, P. B.; Kumar, Rajesh, E-mail: rajesh.kumar@juit.ac.in

    2015-08-28

    Undoped and Fe doped titanium dioxide (TiO{sub 2}) nanoparticles were synthesized by sol-gel method at room temperature. The synthesized samples were annealed at 500°C. For structural analysis, the prepared samples were characterized by X-ray diffraction (XRD). The crystallite size of TiO{sub 2} and Fe doped TiO{sub 2} nanoparticles were calculated by Scherer’s formula, and was found to be 15 nm and 11 nm, respectively. Reduction in crystallite size of TiO{sub 2} with Fe doping was observed. The anatase phase of Fe-doped TiO{sub 2} nanoparticles was also confirmed by X-ray diffraction. By using Williamson-Hall method, lattice strain and crystallite size weremore » also calculated. Williamson–Hall plot indicates the presence of compressive strain for TiO{sub 2} and tensile strain for Fe-TiO{sub 2} nanoparticles annealed at 500°C.« less

  15. Use of X-ray diffraction to quantify amorphous supplementary cementitious materials in anhydrous and hydrated blended cements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snellings, R., E-mail: ruben.snellings@epfl.ch; Salze, A.; Scrivener, K.L., E-mail: karen.scrivener@epfl.ch

    2014-10-15

    The content of individual amorphous supplementary cementitious materials (SCMs) in anhydrous and hydrated blended cements was quantified by the PONKCS [1] X-ray diffraction (XRD) method. The analytical precision and accuracy of the method were assessed through comparison to a series of mixes of known phase composition and of increasing complexity. A 2σ precision smaller than 2–3 wt.% and an accuracy better than 2 wt.% were achieved for SCMs in mixes with quartz, anhydrous Portland cement, and hydrated Portland cement. The extent of reaction of SCMs in hydrating binders measured by XRD was 1) internally consistent as confirmed through the standardmore » addition method and 2) showed a linear correlation to the cumulative heat release as measured independently by isothermal conduction calorimetry. The advantages, limitations and applicability of the method are discussed with reference to existing methods that measure the degree of reaction of SCMs in blended cements.« less

  16. Application of micro X-ray diffraction to investigate the reaction products formed by the alkali silica reaction in concrete structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dähn, R.; Arakcheeva, A.; Schaub, Ph.

    Alkali–silica reaction (ASR) is one of the most important deterioration mechanisms in concrete leading to substantial damages of structures worldwide. Synchrotron-based micro-X-ray diffraction (micro-XRD) was employed to characterize the mineral phases formed in micro-cracks of concrete aggregates as a consequence of ASR. This particular high spatial resolution technique enables to directly gain structural information on ASR products formed in a 40-year old motorway bridge damaged due to ASR. Micro-X-ray-fluorescence was applied on thin sections to locate the reaction products formed in veins within concrete aggregates. Micro-XRD pattern were collected at selected points of interest along a vein by rotating themore » sample. Rietveld refinement determined the structure of the ASR product consisting of a new layered framework similar to mountainite and rhodesite. Furthermore, it is conceivable that understanding the structure of the ASR product may help developing new technical treatments inhibiting ASR.« less

  17. Application of micro X-ray diffraction to investigate the reaction products formed by the alkali–silica reaction in concrete structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dähn, R., E-mail: rainer.daehn@psi.ch; Arakcheeva, A.; Schaub, Ph.

    Alkali–silica reaction (ASR) is one of the most important deterioration mechanisms in concrete leading to substantial damages of structures worldwide. Synchrotron-based micro-X-ray diffraction (micro-XRD) was employed to characterize the mineral phases formed in micro-cracks of concrete aggregates as a consequence of ASR. This high spatial resolution technique enables to directly gain structural information on ASR products formed in a 40-year old motorway bridge damaged due to ASR. Micro-X-ray-fluorescence was applied on thin sections to locate the reaction products formed in veins within concrete aggregates. Micro-XRD pattern were collected at selected points of interest along a vein by rotating the sample.more » Rietveld refinement determined the structure of the ASR product consisting of a new layered framework similar to mountainite and rhodesite. It is conceivable that understanding the structure of the ASR product may help developing new technical treatments inhibiting ASR.« less

  18. Enhanced model for determining the number of graphene layers and their distribution from X-ray diffraction data

    PubMed Central

    Ademi, Abdulakim; Grozdanov, Anita; Paunović, Perica; Dimitrov, Aleksandar T

    2015-01-01

    Summary A model consisting of an equation that includes graphene thickness distribution is used to calculate theoretical 002 X-ray diffraction (XRD) peak intensities. An analysis was performed upon graphene samples produced by two different electrochemical procedures: electrolysis in aqueous electrolyte and electrolysis in molten salts, both using a nonstationary current regime. Herein, the model is enhanced by a partitioning of the corresponding 2θ interval, resulting in significantly improved accuracy of the results. The model curves obtained exhibit excellent fitting to the XRD intensities curves of the studied graphene samples. The employed equation parameters make it possible to calculate the j-layer graphene region coverage of the graphene samples, and hence the number of graphene layers. The results of the thorough analysis are in agreement with the calculated number of graphene layers from Raman spectra C-peak position values and indicate that the graphene samples studied are few-layered. PMID:26665083

  19. STM-electroluminescence from clustered C3N4 nanodomains synthesized via green chemistry process.

    PubMed

    Andrade, E P; Costa, B B A; Chaves, C R; de Paula, A M; Cury, L A; Malachias, A; Safar, G A M

    2018-01-01

    A Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and synchrotron X-ray diffraction study on clustered C 3 N 4 nanoparticles (nanoflakes) is conducted on green-chemistry synthesized samples obtained from chitosan through high power sonication. Morphological aspects and the electronic characteristics are investigated. The observed bandgap of the nanoflakes reveals the presence of different phases in the material. Combining STM morphology, STS spectra and X-ray diffraction (XRD) results one finds that the most abundant phase is graphitic C 3 N 4 . A high density of defects is inferred from the XRD measurements. Additionally, STM-electroluminescence (STMEL) is detected in C 3 N 4 nanoflakes deposited on a gold substrate. The tunneling current creates photons that are three times more energetic than the tunneling electrons of the STM sample. We ponder about the two most probable models to explain the observed photon emission energy: either a nonlinear optical phenomenon or a localized state emission. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction.

    PubMed

    Dankar, Iman; Haddarah, Amira; Omar, Fawaz E L; Pujolà, Montserrat; Sepulcre, Francesc

    2018-09-15

    Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) techniques were used to study the effect of four food additives, agar, alginate, lecithin and glycerol, at three different concentrations, 0.5, 1 and 1.5%, on the molecular structure of potato puree prepared from commercial potato powder. Vibrational spectra revealed that the amylose-amylopectin skeleton present in the raw potato starch was missing in the potato powder but could be fully recovered upon water addition when the potato puree was prepared. FTIR peaks corresponding to water were clearly present in the potato powder, indicating the important structural role of water molecules in the recovery of the initial molecular conformation. None of the studied puree samples presented a crystalline structure or strong internal order. A comparison of the FTIR and XRD results revealed that the additives exerted some effects, mainly on the long-range order of the starch structure via interacting with and changing -OH and hydrogen bond interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Structural and Electronic Properties Study of Colombian Aurifer Soils by Mössbauer Spectroscopy and X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Bustos Rodríguez, H.; Rojas Martínez, Y.; Oyola Lozano, D.; Pérez Alcázar, G. A.; Fajardo, M.; Mojica, J.; Molano, Y. J. C.

    2005-02-01

    In this work a study on gold mineral samples is reported, using optical microscopy, X-ray diffraction (XRD) and Mössbauer spectroscopy (MS). The auriferous samples are from the El Diamante mine, located in Guachavez-Nariño (Colombia) and were prepared by means of polished thin sections. The petrography analysis registered the presence, in different percentages that depend on the sample, of pyrite, quartz, arsenopyirite, sphalerite, chalcopyrite and galena. The XRD analysis confirmed these findings through the calculated cell parameters. One typical Rietveld analysis showed the following weight percent of phases: 85.0% quartz, 14.5% pyrite and 0.5% sphalerite. In this sample, MS demonstrated the presence of two types of pyrite whose hyperfine parameters are δ 1 = 0.280 ± 0.002 mm/s and Δ 1 = 0.642 ± 0.002 mm/s, δ 2 = 0.379 ± 0.002 mm/s and Δ 2 = 0.613 ± 0.002 mm/s.

  2. Structural and morphological study on ZnO:Al thin films grown using DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Astuti, B.; Sugianto; Mahmudah, S. N.; Zannah, R.; Putra, N. M. D.; Marwoto, P.; Aryanto, D.; Wibowo, E.

    2018-03-01

    ZnO doped Al (ZnO:Al ) thin film was deposited on corning glass substrate using DC magnetron sputtering method. Depositon process of the ZnO:Al thin films was kept constant at plasma power, deposition temperature and deposition time are 40 watt, 400°C and 2 hours, respectivelly. Furthermore, for annealing process has been done on the variation of oxygen pressure are 0, 50, and 100 mTorr. X-ray diffraction (XRD), and SEM was used to characterize ZnO:Al thin film was obtained. Based on XRD characterization results of the ZnO:Al thin film shows that deposited thin film has a hexagonal structure with the dominant diffraction peak at according to the orientation of the (002) plane and (101). Finally, the crystal structure of the ZnO:Al thin films that improves with an increasing the oxygen pressure at annealing process up to 100 mTorr and its revealed by narrow FWHM value and also with dense crystal structure.

  3. Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica

    NASA Astrophysics Data System (ADS)

    Sett, Arghya; Gadewar, Manoj; Sharma, Pragya; Deka, Manab; Bora, Utpal

    2016-06-01

    In this study, we report a novel method of gold nanoparticle (AuNP) synthesis using aqueous fruit extract of Dillenia indica. The phytochemicals present in the fruit extract act as an effective reducing and capping agent to synthesize AuNPs. The synthesized AuNPs were characterized by spectrophotometry, transmission electron microscopy (TEM), x-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. TEM studies revealed the particles of various sizes and mainly spherical in shape. Selected-area electron diffraction (SAED) patterns and high-resolution transmission electron microscopy (HRTEM) images confirmed the crystallinity of the particles. The XRD patterns showed peaks at (111), (200), (220) which exhibited preferential orientation of the AuNPs as face-centered cubic crystal. FTIR measurements confirmed the coating of phenolic compounds on the AuNPs indicating a possible role of biomolecules for the capping and efficient stabilization of the AuNPs. The synthesized AuNPs did not show any form of cytotoxicity in the normal fibroblast cell line L929.

  4. Synthesis and characterization of nanocomposite polymer blend electrolyte thin films by spin-coating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapi, Sharanappa; Niranjana, M.; Devendrappa, H., E-mail: dehu2010@gmail.com

    2016-05-23

    Solid Polymer blend electrolytes based on Polyethylene oxide (PEO) and poly vinyl pyrrolidone (PVP) complexed with zinc oxide nanoparticles (ZnO NPs; Synthesized by Co-precipitation method) thin films have prepared at a different weight percent using the spin-coating method. The complexation of the NPs with the polymer blend was confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR). The variation in film morphology was examined by polarized optical micrographs (POMs). The thermal behavior of blends was investigated under non-isothermal conditions by differential thermal analyses (DTA). A single glass transition temperature for each blend was observed, which supports the existence ofmore » compatibility of such system. The obtained results represent that the ternary based thin films are prominent materials for battery and optoelectronic device applications.« less

  5. Modelling the atomic structure of Al92U8 metallic glass.

    PubMed

    Michalik, S; Bednarcik, J; Jóvári, P; Honkimäki, V; Webb, A; Franz, H; Fazakas, E; Varga, L K

    2010-10-13

    The local atomic structure of the glassy Al(92)U(8) alloy was modelled by the reverse Monte Carlo (RMC) method, fitting x-ray diffraction (XRD) and extended x-ray absorption fine structure (EXAFS) signals. The final structural model was analysed by means of partial pair correlation functions, coordination number distributions and Voronoi tessellation. In our study we found that the most probable atomic separations between Al-Al and U-Al pairs in the glassy Al(92)U(8) alloy are 2.7 Å and 3.1 Å with coordination numbers 11.7 and 17.1, respectively. The Voronoi analysis did not support evidence of the existence of well-defined building blocks directly embedded in the amorphous matrix. The dense-random-packing model seems to be adequate for describing the connection between solvent and solute atoms.

  6. Elaboration of the hydroxyapatite with different precursors and application for the retention of the lead.

    PubMed

    Meski, S; Ziani, S; Khireddine, H; Yataghane, F; Ferguene, N

    2011-01-01

    Carbonate hydroxyapatite (CHAP) was synthesized from different precursors; synthetic (CaCO3 and Ca(OH)2) and natural (egg shell before and after calcinations at 900 degrees C) under different conditions and characterized by using TG/DTG analysis, X-ray powder diffraction (XRD) method and Fourier transform infrared (FT-IR) spectroscopy techniques. The results of these analyses indicate that the four powders present the same structure of hydroxyapatite. Furthermore the four powders obtained were used for the retention of lead. The results obtained indicated that all powders present high adsorption capacity for lead, but from environmental and economic views, the hydroxyapatite synthesized from eggshell no calcined (HA2) is most advantageous. The influence of different sorption parameters, such as: initial metal concentration, equilibration time, solution pH and sorbent dosage was studied and discussed.

  7. Magnetic materials for mobile communication antennas substrate application

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Liang, Difei; Li, Weijia; Pang, Chao

    2017-11-01

    In this work, 3Ba0.7Sr0.3O·2CoO·10.8Fe2O3 and Ba2Co2Fe12O22 had been fabricated successfully by conventional ceramic process. Crystallographic structure and electromagnetic properties of two kind of hexagonal ferrite with different sintering temperature were investigated. X-ray Diffraction (XRD), Agilent-N5230A Network Analyzer were used to measure ferrite samples. The mobile phone antenna performance was analysed by HFSS. The results revealed that the main phase of two ferrite samples generated at lower temperature due to additive. The optimized parameters of ferrite are sintering temperature at 1000°C. And to emulate antenna model by HFSS find that Z-type and Y-type ferrite substrate can contribute to antenna frequency shifting, radiation efficiency were affected a little.

  8. Reuse of ornamental rock-cutting waste in aluminous porcelain.

    PubMed

    Silva, M A; Paes, H R; Holanda, J N F

    2011-03-01

    Large amounts of solid wastes are discarded in the ornamental rocks industry. This work investigates the incorporation of ornamental rock-cutting waste as a raw material into an aluminous porcelain body, replacing natural feldspar material by up to 35 wt.%. Formulations containing rock-cutting waste were pressed and sintered at 1350 °C. The porcelain pieces were tested to determine their properties (linear shrinkage, water absorption, apparent density, mechanical strength, and electrical resistivity). Development of the microstructure was followed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. The results showed that ornamental rock-cutting waste could be used in aluminous porcelains, in the range up to 10 wt.%, as a partial replacement for traditional flux material, resulting in a valid route for management of this abundant waste. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Amino Acid Contents of Meteorite Mineral Separates

    NASA Technical Reports Server (NTRS)

    Berger, E. L.; Burton, A. S; Locke, D.

    2017-01-01

    Indigenous amino acids have been found indigenous all 8 carbonaceous chondrite groups. However, the abundances, structural, enantiomeric and isotopic compositions of amino acids differ significantly among meteorites of different groups and petrologic types. This suggests that parent-body conditions (thermal or aqueous alteration), mineralogy, and the preservation of amino acids are linked. Previously, elucidating specific relationships between amino acids and mineralogy was not possible because the samples analyzed for amino acids were much larger than the scale at which petrologic heterogeneity is observed (sub mm-scale differences corresponding to sub-mg samples). Recent advances in amino acid measurements and application of techniques such as high resolution X-ray diffraction (HR-XRD) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) for mineralogical characterizations allow us to perform coordinated analyses on the scale at which mineral heterogeneity is observed.

  10. Fabrication of porous titanium scaffold materials by a fugitive filler method.

    PubMed

    Hong, T F; Guo, Z X; Yang, R

    2008-12-01

    A clean powder metallurgy route was developed here to produce Ti foams, using a fugitive polymeric filler, polypropylene carbonate (PPC), to create porosities in a metal-polymer compact at the pre-processing stage. The as-produced foams were studied by scanning electron microscopy (SEM), LECO combustion analyses and X-ray diffraction (XRD). Compression tests were performed to assess their mechanical properties. The results show that titanium foams with open pores can be successfully produced by the method. The compressive strength and modulus of the foams decrease with an increasing level of porosity and can be tailored to those of the human bones. After alkali treatment and soaking in a simulated body fluid (SBF) for 3 days, a thin apatite layer was formed along the Ti foam surfaces, which provides favourable bioactive conditions for bone bonding and growth.

  11. Studies on the chemical synthesis and characterization of lead oxide nanoparticles with different organic capping agents

    NASA Astrophysics Data System (ADS)

    Arulmozhi, K. T.; Mythili, N.

    2013-12-01

    Lead oxide (PbO) nanoparticles were chemically synthesized using Lead (II) acetate as precursor. The effects of organic capping agents such as Oleic acid, Ethylene Diamine Tetra Acetic acid (EDTA) and Cetryl Tri Methyl Butoxide (CTAB) on the size and morphology of the nanoparticles were studied. Characterization techniques such as X-ray diffraction (XRD), Fourier Transform-Infrared spectroscopy (FT-IR), Photoluminescence (PL) Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Spectroscopy (EDS) and Transmission Electron Microscopy (TEM) were used to analyse the prepared nanoparticles for their physical, structural and optical properties. The characterization studies reveal that the synthesized PbO nanoparticles had well defined crystalline structure and sizes in the range of 25 nm to 36 nm for capping agents used and 40 nm for pure PbO nanoparticles.

  12. Bimetallic Cu-Ni nanoparticles supported on activated carbon for catalytic oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Kimi, Melody; Jaidie, Mohd Muazmil Hadi; Pang, Suh Cem

    2018-01-01

    A series of bimetallic copper-nickel (CuNix, x = 0.1, 0.2, 0.5 and 1) nanoparticles supported on activated carbon (AC) were prepared by deposition-precipitation method for the oxidation of benzyl alcohol to benzaldehyde using hydrogen peroxide as oxidising agent. Analyses by means of X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) confirmed that Cu and Ni was successfully added on the surface of activated carbon. CuNi1/AC showed the best catalytic activity for the oxidation of benzyl alcohols to the corresponding aldehyde within a short reaction period at 80 °C. The catalytic performance is significantly enhanced by the addition of equal amount of Ni as compared to the monometallic counterpart. This result indicates the synergistic effect between Ni and Cu particles in the catalytic oxidation reaction.

  13. Matching 4.7-Å XRD Spacing in Amelogenin Nanoribbons and Enamel Matrix

    PubMed Central

    Sanii, B.; Martinez-Avila, O.; Simpliciano, C.; Zuckermann, R.N.; Habelitz, S.

    2014-01-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. PMID:25048248

  14. Facile synthesis of the Li-rich layered oxide Li1.23Ni0.09Co0.12Mn0.56O2 with superior lithium storage performance and new insights into structural transformation of the layered oxide material during charge-discharge cycle: in situ XRD characterization.

    PubMed

    Shen, Chong-Heng; Wang, Qin; Fu, Fang; Huang, Ling; Lin, Zhou; Shen, Shou-Yu; Su, Hang; Zheng, Xiao-Mei; Xu, Bin-Bin; Li, Jun-Tao; Sun, Shi-Gang

    2014-04-23

    In this work, the Li-rich oxide Li1.23Ni0.09Co0.12Mn0.56O2 was synthesized through a facile route called aqueous solution-evaporation route that is simple and without waste water. The as-prepared Li1.23Ni0.09Co0.12Mn0.56O2 oxide was confirmed to be a layered LiMO2-Li2MnO3 solid solution through ex situ X-ray diffraction (ex situ XRD) and transmission electron microscopy (TEM). Electrochemical results showed that the Li-rich oxide Li1.23Ni0.09Co0.12Mn0.56O2 material can deliver a discharge capacity of 250.8 mAhg(-1) in the 1st cycle at 0.1 C and capacity retention of 86.0% in 81 cycles. In situ X-ray diffraction technique (in situ XRD) and ex situ TEM were applied to study structural changes of the Li-rich oxide Li1.23Ni0.09Co0.12Mn0.56O2 material during charge-discharge cycles. The study allowed observing experimentally, for the first time, the existence of β-MnO2 phase that is appeared near 4.54 V in the first charge process, and a phase transformation of the β-MnO2 to layered Li0.9MnO2 is occurred in the initial discharge process by evidence of in situ XRD pattrens and selected area electron diffraction (SAED) patterns at different states of the initial charge and discharge process. The results illustrated also that the variation of the in situ X-ray reflections during charge-discharge cycling are clearly related to the changes of lattice parameters of the as-prepared Li-rich oxide during the charge-discharge cycles.

  15. Influence of sulfurization temperature on Cu2ZnSnS4 absorber layer on flexible titanium substrates for thin film solar cells

    NASA Astrophysics Data System (ADS)

    Gokcen Buldu, Dilara; Cantas, Ayten; Turkoglu, Fulya; Gulsah Akca, Fatime; Meric, Ece; Ozdemir, Mehtap; Tarhan, Enver; Ozyuzer, Lutfi; Aygun, Gulnur

    2018-02-01

    In this study, the effect of sulfurization temperature on the morphology, composition and structure of Cu2ZnSnS4 (CZTS) thin films grown on titanium (Ti) substrates has been investigated. Since Ti foils are flexible, they were preferred as a substrate. As a result of their flexibility, they allow large area manufacturing and roll-to-roll processes. To understand the effects of sulfurization temperature on the CZTS formation on Ti foils, CZTS films fabricated with various sulfurization temperatures were investigated with several analyses including x-ray diffraction (XRD), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy and Raman scattering. XRD measurements showed a sharp and intense peak coming from the (112) planes of the kesterite type lattice structure (KS), which is strong evidence for good crystallinity. The surface morphologies of our thin films were investigated using SEM. Electron dispersive spectroscopy was also used for the compositional analysis of the thin films. According to these analysis, it is observed that Ti foils were suitable as substrates for the growth of CZTS thin films with desired properties and the sulfurization temperature plays a crucial role for producing good quality CZTS thin films on Ti foil substrates.

  16. Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens.

    PubMed

    Alshehri, Saad M; Aldalbahi, Ali; Al-Hajji, Abdullah Baker; Chaudhary, Anis Ahmad; Panhuis, Marc In Het; Alhokbany, Norah; Ahamad, Tansir

    2016-03-15

    Silver nanoparticles (AgNPs) containing hydrogel composite were first synthesized by preparing a new hydrogel from carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), and the cross-linker ethylene glycol diglycidyl ether (EGDE), followed by the incorporation of AgNPs by microwave radiation. The resulting neat hydrogels and AgNPs-hydrogel composites were characterized using spectral, thermal, microscopic analysis and X-ray diffraction (XRD) analyses. The SEM and TEM results demonstrated that the synthesized AgNPs were spherical with diameters ranging from 8 to 14nm. In addition, the XRD analysis confirmed the nanocrystalline phase of silver with face-centered cubic (FCC) crystal structure. Energy dispersive spectroscopy (EDS) analysis of the AgNPs confirmed the presence of an elemental silver signal, and no peaks of any other impurities were detected. Additionally, the antibacterial activities of the neat hydrogel and AgNPs-hydrogel composites were measured by Kirby-Bauer method against urinary tract infection (UTI) pathogens. The rheology measurement revealed that the values of storage modulus (G') were higher than that of loss modulus (G″). The AgNPs-hydrogel composites exhibited higher antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris, Staphylococcus aureus and Proteus mirabilis compared to the corresponding neat hydrogel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Mineral and Lithology Mapping of Drill Core Pulps Using Visible and Infrared Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, G. R., E-mail: G.Taylor@unsw.edu.au

    2000-12-15

    A novel approach for using field spectrometry for determining both the mineralogy and the lithology of drill core pulps (powders) is developed and evaluated. The methodology is developed using material from a single drillhole through a mineralized sequence of rocks from central New South Wales. Mineral library spectra are used in linear unmixing routines to determine the mineral abundances in drill core pulps that represent between 1 m and 3 m of core. Comparison with X-Ray Diffraction (XRD) analyses shows that for most major constituents, spectrometry provides an estimate of quantitative mineralogy that is as reliable as that provided bymore » XRD. Confusion between the absorption features of calcite and those of chlorite causes the calcite contents determined by spectrometry to be unreliable. Convex geometry is used to recognize the spectra of those samples that are extreme and are representative of unique lithologies. Linear unmixing is used to determine the abundance of these lithologies in each drillhole sample and these abundances are used to interpret the geology of the drillhole. The interpreted geology agrees well with conventional drillhole logs of the visible geology and photographs of the split core. The methods developed provide a quick and cost-effective way of determining the lithology and alteration mineralogy of drill core pulps.« less

  18. Mineralogical Characterization of the Miocene Olcese Formation, Southern San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Lopez, K. A.; Baron, D.; Guo, J.; Woolford, J. M.

    2016-12-01

    The early to middle Miocene Olcese Formation in the southern San Joaquin Valley of California consists of shallow marine shelf sands in its lower and upper parts, and non-marine, frequently pumiceous sands in its middle part, and varies in thickness up to 1800 ft. There is little known as to the origin, nature, quantity, and distribution of clay minerals throughout the formation. This study examined 95 sidewall core samples from three wells, as well as 388 cutting samples from four wells and 12 samples from 3 outcrops. Well samples were from depths between 1,800 and 4,000 ft. Qualitative and quantitative mineralogy including clay minerals of the sidewall samples and selected cutting samples was determined by powder X-ray diffraction (XRD). XRD analyses were supplemented by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) and petrographic microscopy of selected samples. The main minerals of bulk samples include composite clay, quartz, potassium feldspar/plagioclase, calcite, and clinoptilolite. Content of composite clay varies between 17% and 51%. The clay-size fraction is predominantly composed of smectite, illite, kaolinite and chlorite with smectite being the most abundant. Smectite and clinoptilolite may be the alteration products of deeper burial of volcanic materials. The formation permeability could be significantly lowered by these authigenic minerals.

  19. Characterization of the carbonaceous materials obtained from different agro-industrial wastes.

    PubMed

    Ensuncho-Muñoz, A E; Carriazo, J G

    2015-01-01

    This paper reports the preparation and characterization of carbonaceous materials obtained from three types of vegetable wastes provided by agricultural industries. Soft carbonization (280°C) and H3PO4-activation procedures were used to convert the agricultural wastes to carbon powders with high adsorbent capacities. This process is excellent for eliminating and exploiting the huge masses (many tons) of vegetable residues remaining after each harvest every year in several Colombian agro-industries. The powders were characterized by X-ray diffraction (XRD), IR spectroscopy, scanning electron microscopy (SEM), and N2-adsorption isotherms. XRD and IR verified the formation of carbons, and SEM showed small particles (20-500 µm) with characteristic morphology for each type of residue used and abundant cavities of different sizes. The N2-adsorption analyses showed that the carbons had high adsorption capacities with important surface area values and large pore volumes. The use of the activated carbonaceous materials as adsorbent of azo dyes (allura red and sunset yellow) from aqueous solutions was evaluated. The results showed a good adsorption capacity indicating the potentiality of these materials as pollutant adsorbents in food industry wastewaters. These results indicate that these powders can be used as potential adsorbents for different gaseous or liquid pollutants.

  20. Structural, morphological and gas sensing study of zinc doped tin oxide nanoparticles synthesized via hydrothermal technique

    NASA Astrophysics Data System (ADS)

    Singh, Davender; Kundu, Virender Singh; Maan, A. S.

    2016-07-01

    The pure and Zn-doped SnO2 nanoparticles were prepared successfully by hydrothermal route on large scale having different doping concentration of zinc from 0 to 0.20%. The calcined nanoparticles were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) for structural and morphological studies. XRD analyses reveal that the nanoparticles of these doping concentrations are polycrystalline in nature and existed as tetragonal rutile structure, SEM study of images confirms the existence of very small, homogeneously distributed, and spherical nanoparticles. The particles size of the nanoparticles was calculated by Scherrer formula and was found in the range of 9-21 nm. The presence of dopant (i.e. zinc) and formation of Sn-O phase and hydrous nature of Zn-doped SnO2 nanoparticles are confirmed by EDX and FTIR study. The gas sensing properties of pure and Zn-doped SnO2 nanoparticles were investigated for various concentrations of methanol, ethanol and acetone at different operating temperatures and it has been found that with doping concentration of zinc (x = 0.20%) shows the maximum response 78% to methanol, 65% to ethanol and 62% to acetone respectively at different operating temperature within the measurement limit for a concentration of 100 ppm of each gases.

  1. Growth and characterization of novel organic 3-Hydroxy Benzaldehyde-N-methyl 4 Stilbazolium Tosylate crystals for NLO applications.

    PubMed

    Jagannathan, K; Umarani, P; Ratchagar, V; Ramesh, V; Kalainathan, S

    2016-01-15

    The 3-Hydroxy Benzaldehyde-N-methyl 4-Stilbazolium Tosylate (3- HBST) is a new organic NLO crystal and it is a new derivative in stilbazolium tosylate family. In this work we have synthesized 3-HBST and the single crystal was grown by conventional slow cooling method. The structure and lattice parameters of the grown crystal were determined by the single crystal X-ray diffraction (XRD) technique and it is exhibiting good crystalline nature which is observed from the powder XRD. In order to check the crystalline quality the rocking curve was recorded using multi crystal X-ray diffractometer. The functional groups were identified from both FTIR and NMR spectral analyses. The π-π* and n-π* optical transition energy levels were estimated from the absorption peaks. The NLO property was confirmed by measuring relative SHG efficiency by Kurtz powder test; it shows 24 times higher SHG efficiency than that of urea. In order to test the mechanical stability the Vickers and Knoop micro hardness measurement were carried out and found that the micro hardness number decreases with increasing load. The melting point was determined from Differential Scanning Colorimetry (DSC). Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Pulsed Laser Deposited Ferromagnetic Chromium Dioxide thin Films for Applications in Spintronics

    NASA Astrophysics Data System (ADS)

    Dwivedi, S.; Jadhav, J.; Sharma, H.; Biswas, S.

    Stable rutile type tetragonal chromium dioxide (CrO2) thin films have been deposited on lattice-matched layers of TiO2 by KrF excimer laser based pulsed laser deposition (PLD) technique using Cr2O3 target. The TiO2 seed layer was deposited on oxidized Si substrates by the same PLD process followed by annealing at 1100 °C for 4 h. The lattice-matched interfacial layer is required for the stabilization of Cr (IV) phase in CrO2, since CrO2 behaves as a metastable compound under ambient conditions and readily converts into its stable phase of Cr (III) oxide, Cr2O3. Analyses with X-ray diffraction (XRD), Glancing-angle XRD (GIXRD), Raman spectroscopy and grazing-angle Fourier transform infra-red (FTIR) spectroscopy confirm the presence of tetragonal CrO2 phase in the as-deposited films. Microstructure and surface morphology in the films were studied with field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). Electrical and magnetic characterizations of the films were performed at room temperature. Such type of stable half-metallic CrO2 thin films with low field magnetoresistive switching behaviour are in demand for applications as diverse as spin-FETs, magnetic sensors, and magneto-optical devices.

  3. An evaluation of controlled permeability formwork for long-term durability of structural concrete elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suryavanshi, A.K.; Swamy, R.N.

    1997-07-01

    The long-term performance of a concrete slab (CPF slab) exposed to chloride ingress and atmospheric carbonation from the surface generated by controlled permeability formwork (CPF) is investigated. The results are compared with a similar slab exposed to long-term chloride ingress and atmospheric carbonation from the cast face (Control slab). Techniques such as X-ray diffraction (XRD) and differential thermal analyses (DTA) were employed to determine the resistance against carbonation while, mercury porosimetry was used for investigating the pore size distribution at the surface of the slabs. Amount of acid soluble chlorides was determined by using Volhard`s method. The CPF employed atmore » the bottom of the mould was not fully effective in its intended purpose of generating a permanent and dense impermeable concrete layer adjacent to it when the design water-cement (w/c) ration of the concrete mix was 0.60. This resulted in an almost similar extent of carbonation at the surface for both CPF and control slabs as shown by XRD and DTA studies. Similarly, there were no significant differences in the amount of chlorides and their depths of penetration for both CPF and control slabs, although the former was marginally superior in chloride penetration resistance at the surface.« less

  4. Synthesis of AuPd alloyed nanoparticles via room-temperature electron reduction with argon glow discharge as electron source.

    PubMed

    Yang, Manman; Wang, Zongyuan; Wang, Wei; Liu, Chang-Jun

    2014-01-01

    Argon glow discharge has been employed as a cheap, environmentally friendly, and convenient electron source for simultaneous reduction of HAuCl4 and PdCl2 on the anodic aluminum oxide (AAO) substrate. The thermal imaging confirms that the synthesis is operated at room temperature. The reduction is conducted with a short time (30 min) under the pressure of approximately 100 Pa. This room-temperature electron reduction operates in a dry way and requires neither hydrogen nor extra heating nor chemical reducing agent. The analyses using X-ray photoelectron spectroscopy (XPS) confirm all the metallic ions have been reduced. The characterization with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) shows that AuPd alloyed nanoparticles are formed. There also exist some highly dispersed Au and Pd monometallic particles that cannot be detected by XRD and transmission electron microscopy (TEM) because of their small particle sizes. The observed AuPd alloyed nanoparticles are spherical with an average size of 14 nm. No core-shell structure can be observed. The room-temperature electron reduction can be operated in a larger scale. It is an easy way for the synthesis of AuPd alloyed nanoparticles.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rementeria, Rosalia; Poplawsky, Jonathan D.; Aranda, Maria M.

    Current studies using atom probe tomography (APT) show that bainitic ferrite formed at low temperature contains more carbon than what is consistent with the paraequilibrium phase diagram. However, nanocrystalline bainitic ferrite exhibits a non-homogeneous distribution of carbon atoms in arrangements with specific compositions, i.e. Cottrell atmospheres, carbon clusters, and carbides, in most cases with a size of a few nanometers. The ferrite volume within a single platelet that is free of these carbon-enriched regions is extremely small. Proximity histograms can be compromised on the ferrite side, and a great deal of care should be taken to estimate the carbon contentmore » in regions of bainitic ferrite free from carbon agglomeration. For this purpose, APT measurements were first validated for the ferritic phase in a pearlitic sample and further performed for the bainitic ferrite matrix in high-silicon steels isothermally transformed between 200 °C and 350 °C. Additionally, results were compared with the carbon concentration values derived from X-ray diffraction (XRD) analyses considering a tetragonal lattice and previous APT studies. In conclusion, the present results reveal a strong disagreement between the carbon content values in the bainitic ferrite matrix as obtained by APT and those derived from XRD measurements. Those differences have been attributed to the development of carbon-clustered regions with an increased tetragonality in a carbon-depleted matrix.« less

  6. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal.

    PubMed

    Dou, Xiaomin; Chen, Dezhen; Hu, Yuyan; Feng, Yuheng; Dai, Xiaohu

    2017-01-05

    Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400-800°C and an impregnating concentration ≨0.5wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Green Synthesis of Zinc Oxide Nanoparticles for Enhanced Adsorption of Lead Ions from Aqueous Solutions: Equilibrium, Kinetic and Thermodynamic Studies.

    PubMed

    Azizi, Susan; Mahdavi Shahri, Mahnaz; Mohamad, Rosfarizan

    2017-06-08

    In the present study, ZnO nanoparticles (NPs) were synthesized in zerumbone solution by a green approach and appraised for their ability to absorb Pb(II) ions from aqueous solution. The formation of as-synthesized NPs was established by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), and UV-visible studies. The XRD and TEM analyses revealed high purity and wurtzite hexagonal structure of ZnO NPs with a mean size of 10.01 ± 2.6 nm. Batch experiments were performed to investigate the impact of process parameters viz. Pb(II) concentration, pH of solution, adsorbent mass, solution temperature, and contact time variations on the removal efficiency of Pb(II). The adsorption isotherm data provided that the adsorption process was mainly monolayer on ZnO NPs. The adsorption process follows pseudo-second-order reaction kinetic. The maximum removal efficiencies were 93% at pH 5. Thermodynamic parameters such as enthalpy change (ΔH⁰), free energy change (ΔG⁰), and entropy change (ΔS⁰) were calculated; the adsorption process was spontaneous and endothermic. The good efficiency of the as-synthesized NPs makes them attractive for applications in water treatment, for removal of heavy metals from aqueous system.

  8. Magnetic and fluorescence properties of cerium-doped yttrium gadolinium aluminum iron garnet crystals

    NASA Astrophysics Data System (ADS)

    Aoki, Daichi; Shima, Mutsuhiro

    2014-11-01

    Magnetic and fluorescence properties of chemically synthesized Ce:Gd-YAIG (Ce0.05GdxY2.95-xAl5-yFeyO12) nanocrystals have been investigated. The structural characterization by X-ray diffraction (XRD) shows that a garnet phase has been identified in samples with 0 ≤ x ≤ 2.95 and 0 ≤ y ≤ 3.0. When y = 0, only garnet peaks are observed for 0 ≤ x ≤ 2.5, while both garnet and perovskite phases are present for x > 2.5. It is found from XRD Rietveld analyses that the site occupancy of Fe3+ at the tetrahedral and octahedral sites in the garnet is independent of the amount of Y3+ substituted by Ce3+ and Gd3+ at the dodecahedral sites. The saturation magnetization for the sample with x = 0 and y = 3.0 is 4.35 emu/g, while that with x = 2.5 and y = 3.0 is 87.5 emu/g. When the Fe3+ composition y is varied from 0 to 3.0 at x = 2.5, the intensity of fluorescence at the emission wavelength ˜570 nm significantly decreases presumably due to absorption by Fe3+ that is increased in the crystal.

  9. Structural characterization of precious-mean quasiperiodic Mo/V single-crystal superlattices grown by dual-target magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Birch, J.; Severin, M.; Wahlström, U.; Yamamoto, Y.; Radnoczi, G.; Riklund, R.; Sundgren, J.-E.; Wallenberg, L. R.

    1990-05-01

    A class of quasiperiodic superlattice structures, which can be generated by the concurrent inflation rule A-->AmB and B-->A (where m=positive integer), has been studied both theoretically and experimentally. Given that the ratios between the thicknesses of the two superlattice building blocks, A and B, are chosen to be γ(m)=[m+(m2+4)1/2]/2 (known as the ``precious means''), then the x-ray- and electron-diffraction peak positions are analytically found to be located at the wave vectors q=2πΛ-1r[γ(m)]k, where r and k are integers and Λ is an average superlattice wavelength. The analytically obtained results have been compared to experimental results from single-crystalline Mo/V superlattice structures, generated with m=1, 2, and 3. The superlattices were grown by dual-target dc-magnetron sputtering on MgO(001) substrates kept at 700 °C. X-ray diffraction (XRD) and selected-area electron diffraction (SAED) showed that the analytical model mentioned above predicts the peak positions of the experimental XRD and SAED spectra with a very high accuracy. Furthermore, numerical calculations of the diffraction intensities based on a kinematical model of diffraction showed good agreement with the experimental data for all three cases. In addition to a direct verification of the quasiperiodic modulation, both conventional and high-resolution cross-sectional transmission electron microscopy (XTEM) showed that the superlattices are of high crystalline quality with sharp interfaces. Based on lattice resolution images, the width of the interfaces was determined to be less than two (002) lattice-plane spacings (~=0.31 nm).

  10. X-ray diffraction study of A- plane non-polar InN epilayer grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Moret, Matthieu; Briot, Olivier; Gil, Bernard

    2015-03-01

    Strong polarisation-induced electric fields in C-plane oriented nitrides semiconductor layers reduce the performance of devices. Eliminating the polarization fields can be achieved by growing nitrides along non polar direction. We have grown non polar A-plane oriented InN on R-plane (1‾102) nitridated sapphire substrate by MOCVD. We have studied the structural anisotropy observed in these layers by analyzing High Resolution XRay Diffraction rocking curve (RC) experiments as a function of the in-plane beam orientation. A-plane InN epilayer have a unique epitaxial relationship on R-Plane sapphire and show a strong structural anisotropy. Full width at half maximum (FWHM) of the InN(11‾20) XRD RC values are contained between 44 and 81 Arcmin. FWHM is smaller when the diffraction occurs along the [0001] and the largest FWHM values, of the (11‾20) RC, are obtained when the diffraction occurs along the [1‾100] in-plane direction. Atomic Force Microscopy imaging revealed morphologies with well organized crystallites. The grains are structured along a unique crystallographic orientation of InN, leading to larger domains in this direction. This structural anisotropy can be, in first approximation, attributed to the difference in the domain sizes observed. XRD reciprocal space mappings (RSM) were performed in asymmetrical configuration on (13‾40) and (2‾202) diffraction plane. RSM are measured with a beam orientation corresponding to a maximal and a minimal width of the (11‾20) Rocking curves, respectively. A simple theoretical model is exposed to interpret the RSM. We concluded that the dominant contribution to the anisotropy is due to the scattering coherence length anisotropy present in our samples.

  11. Investigation of photoluminescence and dielectric properties of pure and Fe doped nickel oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Gupta, Jhalak; Ahmad, Arham S.

    2018-05-01

    The nanocrystallites of pure and Fe doped Nickel Oxide (NiO) were synthesized by the cost effective co-precipitation method using nickel nitrate as the initial precursor. The synthesized nickel oxide nanoparticles were characterized by X-Ray Diffraction (XRD), Photoluminiscence Spectroscopy (PL), LCR meter. The crystallite size of synthesized pure Nickel Oxide nanoparticles obtained by XRD using Debye Scherer's formula was found to be 21.8nm and the size decreases on increasing the dopant concentration. The optical properties were analyzed by PL and dielectric ones by using LCR meter.

  12. Preparation of Cu-doped nickel oxide thin films and their properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gowthami, V.; Meenakshi, M.; Anandhan, N.

    2014-04-24

    Copper doped Nickel oxide film was preferred on glass substrate by simple nebulizer technique keeping the substrate temperature at 350°C and characterized by X-ray diffraction (XRD), Photoluminescence (PL) and Four probe resistivity measurements. XRD studies indicated cubic structure and the crystallites are preferentially oriented along the [111] direction. Interesting results have been obtained from the study of PL spectra. A peak corresponding to 376nm in the emission spectra for 0%, 5% and 10% copper doped samples. The samples show sharp and strong UV emission corresponding to the near band edge emission under excitation of 275nm.

  13. Observation of martensitic transformation in Ni50Mn41Cu4Sn5 Heusler alloy prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Saini, Dinesh; Singh, Satyavir; Banerjee, M. K.; Sachdev, K.

    2017-05-01

    Mechanical alloying route has been employed for preparation of a single phase Ni50Mn41Cu4Sn5 (atomic %) Heusler alloy. Use of high energy planetary ball mill enables successful preparation of the same as authenticated by detailed X-ray diffraction (XRD) study. Microstructural study is carried out by optical and scanning electron microscopic techniques. XRD results reveal that increasing milling time leads to reduction in crystallite size and concurrent increase in lattice strain. Microstructural results indicate formation of self-assembled martensite twins.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Fang; Williams, Travis; Hattrick-Simpers, Jason

    Investment in brighter sources and larger detectors has resulted in an explosive rise in the data collected at synchrotron facilities. Currently, human experts extract scientific information from these data, but they cannot keep pace with the rate of data collection. Here, we present three on-the-fly approaches—attribute extraction, nearest-neighbor distance, and cluster analysis—to quickly segment x-ray diffraction (XRD) data into groups with similar XRD profiles. An expert can then analyze representative spectra from each group in detail with much reduced time, but without loss of scientific insights. As a result, on-the-fly segmentation would, therefore, result in accelerated scientific productivity.

  15. Preparation and characterization of Fe50Co50 nanostructured alloy

    NASA Astrophysics Data System (ADS)

    Yepes, N.; Orozco, J.; Caamaño, Z.; Mass, J.; Pérez, G.

    2014-04-01

    Nanostructured Fe50Co50 alloy was prepared by mechanical alloying of Fe and Co powders in a planetary high energy ball milling. The microstructure and structural evolution of the alloy have been investigated as a function of milling time (0 h, 8 h, 20 h and 35 h) by scanning electron microscopy (SEM) and X-Ray diffraction (XRD) characterization techniques. SEM micrographs showed different powder particles morphologies during the mechanical alloying stages. By XRD analysis it could be identified the structural phases of the alloy and the crystallite size was calculated as a function of the milling time.

  16. Structural and electrical study of ZrO{sub 2} nanoparticles modified with surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidhu, Gaganpreet Kaur; Kumar, Rajesh, E-mail: rajeshbaboria@gmail.com; Tripathi, S. K.

    2015-06-24

    Zirconia ceramic is one of the most investigated materials for its outstanding mechanical properties and ionic conduction properties, due to its high oxygen ion conduction. In order to achieve novel properties of zirconia nanoparticles, nanoparticles of zirconia are modified by using two different surfactants (SDS and CTAB) were prepared by in-situ method using zirconia/surfactant dispersions. Zirconia nanoparticles with surfactant (SDS or CTAB) were synthesized by hydrothermal method. The structural and optical properties of Zirconia/surfactant nanoparticles were investigated comprehensively by X-Ray diffraction (XRD), and electrical measurements. XRD highlights the crystalline behavior of nanoparticles.

  17. Multivariate analysis of DSC-XRD simultaneous measurement data: a study of multistage crystalline structure changes in a linear poly(ethylene imine) thin film.

    PubMed

    Kakuda, Hiroyuki; Okada, Tetsuo; Otsuka, Makoto; Katsumoto, Yukiteru; Hasegawa, Takeshi

    2009-01-01

    A multivariate analytical technique has been applied to the analysis of simultaneous measurement data from differential scanning calorimetry (DSC) and X-ray diffraction (XRD) in order to study thermal changes in crystalline structure of a linear poly(ethylene imine) (LPEI) film. A large number of XRD patterns generated from the simultaneous measurements were subjected to an augmented alternative least-squares (ALS) regression analysis, and the XRD patterns were readily decomposed into chemically independent XRD patterns and their thermal profiles were also obtained at the same time. The decomposed XRD patterns and the profiles were useful in discussing the minute peaks in the DSC. The analytical results revealed the following changes of polymorphisms in detail: An LPEI film prepared by casting an aqueous solution was composed of sesquihydrate and hemihydrate crystals. The sesquihydrate one was lost at an early stage of heating, and the film changed into an amorphous state. Once the sesquihydrate was lost by heating, it was not recovered even when it was cooled back to room temperature. When the sample was heated again, structural changes were found between the hemihydrate and the amorphous components. In this manner, the simultaneous DSC-XRD measurements combined with ALS analysis proved to be powerful for obtaining a better understanding of the thermally induced changes of the crystalline structure in a polymer film.

  18. Aspherical-atom modeling of coordination compounds by single-crystal X-ray diffraction allows the correct metal atom to be identified.

    PubMed

    Dittrich, Birger; Wandtke, Claudia M; Meents, Alke; Pröpper, Kevin; Mondal, Kartik Chandra; Samuel, Prinson P; Amin Sk, Nurul; Singh, Amit Pratap; Roesky, Herbert W; Sidhu, Navdeep

    2015-02-02

    Single-crystal X-ray diffraction (XRD) is often considered the gold standard in analytical chemistry, as it allows element identification as well as determination of atom connectivity and the solid-state structure of completely unknown samples. Element assignment is based on the number of electrons of an atom, so that a distinction of neighboring heavier elements in the periodic table by XRD is often difficult. A computationally efficient procedure for aspherical-atom least-squares refinement of conventional diffraction data of organometallic compounds is proposed. The iterative procedure is conceptually similar to Hirshfeld-atom refinement (Acta Crystallogr. Sect. A- 2008, 64, 383-393; IUCrJ. 2014, 1,61-79), but it relies on tabulated invariom scattering factors (Acta Crystallogr. Sect. B- 2013, 69, 91-104) and the Hansen/Coppens multipole model; disordered structures can be handled as well. Five linear-coordinate 3d metal complexes, for which the wrong element is found if standard independent-atom model scattering factors are relied upon, are studied, and it is shown that only aspherical-atom scattering factors allow a reliable assignment. The influence of anomalous dispersion in identifying the correct element is investigated and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Morphology and crystallinity of sisal nanocellulose after sonication

    NASA Astrophysics Data System (ADS)

    Sosiati, H.; Wijayanti, D. A.; Triyana, K.; Kamiel, B.

    2017-09-01

    Different preparation methods on the natural fibers resulted in different morphology. However, the relationships between type of natural fibers, preparation methods and the morphology of produced nanocellulose could not be exactly defined. The sisal nanocellulose was presently prepared by alkalization and bleaching followed by sonication to verify changes in the morphology and crystallinity of nanocellulose related to the formation mechanism. The extracted microcellulose was subjected to scanning electron microscopy (SEM) and x-ray diffraction (XRD) analysis. The isolated cellulose nanospheres were examined with respect to morphology by SEM and transmission electron microscopy (TEM) and, to crystallinity by electron diffraction analysis. Bleaching after alkalization made the microfibrils clearly separated from each other to the individual fiber whose width of the single fiber was ranging from 6 to 13 µm. The XRD crystallinity index (CI) of microcellulose gradually increased after the chemical treatments; 83.12% for raw sisal fiber, 88.57% for alkali treated fiber and 94.03% for bleached fibers. The ultrasonic agitation after bleaching that was carried out at 750 Watt, 20 kHz and amplitude of 39% for 2 h produces homogeneous cellulose nanospheres less than 50 nm in diameter with relatively low crystallinity. The electron diffraction analysis confirmed that the low crystallinity of produced nnocellulose is related to the effect of chemical treatment done before sonication.

  20. Compositional and quantitative microtextural characterization of historic paintings by micro-X-ray diffraction and Raman microscopy.

    PubMed

    Romero-Pastor, Julia; Duran, Adrian; Rodríguez-Navarro, Alejandro Basilio; Van Grieken, René; Cardell, Carolina

    2011-11-15

    This work shows the benefits of characterizing historic paintings via compositional and microtextural data from micro-X-ray diffraction (μ-XRD) combined with molecular information acquired with Raman microscopy (RM) along depth profiles in paint stratigraphies. The novel approach was applied to identify inorganic and organic components from paintings placed at the 14th century Islamic University-Madrasah Yusufiyya-in Granada (Spain), the only Islamic University still standing from the time of Al-Andalus (Islamic Spain). The use of μ-XRD to obtain quantitative microtextural information of crystalline phases provided by two-dimensional diffraction patterns to recognize pigments nature and manufacture, and decay processes in complex paint cross sections, has not been reported yet. A simple Nasrid (14th century) palette made of gypsum, vermilion, and azurite mixed with glue was identified in polychromed stuccos. Here also a Christian intervention was found via the use of smalt, barite, hematite, Brunswick green and gold; oil was the binding media employed. On mural paintings and wood ceilings, more complex palettes dated to the 19th century were found, made of gypsum, anhydrite, barite, dolomite, calcite, lead white, hematite, minium, synthetic ultramarine blue, and black carbon. The identified binders were glue, egg yolk, and oil.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamad, Khairul Anuar; Rusnan, Fara Naila; Seria, Dzulfahmi Mohd Husin

    Investigation on the physical characterization and comparison of organic thin film based on a soluble 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene is reported. Oriented thin-films of pentacene have been successfully deposited by flow-coating method, in which the chloroform solution is sandwiched between a transparent substrate and a slide glass, followed by slow-drawing of the substrate with respect to the slide glass. Molecular orientation of flow-coated TIPS-pentacene is comparable to that of the thermal-evaporated pentacene thin film by the X-ray diffraction (XRD) results. XRD results showed that the morphology of flow-coated soluble pentacene is similar to that of the thermal-evaporated pentacene thin films inmore » series of (00l) diffraction peaks where the (001) diffraction peaks are strongest in the nominally out-of-plane intensity and interplanar spacing located at approximately 2θ = 5.33° (d-spacing, d{sub 001} = 16 Å). Following that, ITO/p-TIPS-pentacene/n-ZnO/Au vertical diode was fabricated. The diode exhibited almost linear characteristics at low voltage with nonlinear characteristics at higher voltage which similar to a pn junction behavior. The results indicated that the TIPS-pentacene semiconductor active thin films can be used as a hole injection layer for fabrication of a vertical organic transistor.« less

  2. High performance Sb2S3/carbon composite with tailored artificial interface as an anode material for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Choi, Jeong-Hee; Ha, Chung-Wan; Choi, Hae-Young; Shin, Heon-Cheol; Lee, Sang-Min

    2017-11-01

    The electrochemical comparison between Sb2S3 and its composite with carbon (Sb2S3/C) involved by sodium ion carrier are explained by enhanced kinetics, particularly with respect to improved interfacial conductivity by surface modulation by carbon. Sb2S3 and Sb2S3/C are synthesized by a high energy mechanical milling process. The successful synthesis of these materials is confirmed with X-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy (TEM). As an anode material for sodium ion batteries, Sb2S3 exhibits an initial sodiation/desodiation capacity of 1,021/523 mAh g-1 whereas the Sb2S3/C composite exhibits a higher reversible capacity (642 mAh g-1). Furthermore, the cycle performance and rate capability of the Sb2S3/C composite are estimated to be much better than those of Sb and Sb2S3. Electrochemical impedance spectroscopy analysis shows that the Sb2S3/C composite exhibited charge transfer resistance and surface film resistance much lower than Sb2S3. X-ray photoelectron spectroscopy analyses of both electrodes demonstrate that NaF layer on Sb2S3/C composite electrode leads to the better electrochemical performances. In order to clarify the electrochemical reaction mechanism, ex-situ XRD based on differential capacity plots and ex-situ HR-TEM analyses of the Sb2S3/C composite electrode are carried out and its reaction mechanism was established.

  3. Crystal growth and characterization of bulk Sb2Te3 topological insulator

    NASA Astrophysics Data System (ADS)

    Sultana, Rabia; Gurjar, Ganesh; Patnaik, S.; Awana, V. P. S.

    2018-04-01

    The Sb2Te3 crystals are grown using the conventional self flux method via solid state reaction route, by melting constituent elements (Sb and Te) at high temperature (850 °C), followed by slow cooling (2 °C/h). As grown Sb2Te3 crystals are analysed for various physical properties by x-ray diffraction (XRD), Raman Spectroscopy, Scanning Electron Microscopy (SEM) coupled with Energy Dispersive x-ray Spectroscopy (EDAX) and electrical measurements under magnetic field (6 Tesla) down to low temperature (2.5 K). The XRD pattern revealed the growth of synthesized Sb2Te3 sample along (00l) plane, whereas the SEM along with EDAX measurements displayed the layered structure with near stoichiometric composition, without foreign contamination. The Raman scattering studies displayed known ({{{{A}}}1{{g}}}1, {{{{E}}}{{g}}}2 and {{{{A}}}1{{g}}}2) vibrational modes for the studied Sb2Te3. The temperature dependent electrical resistivity measurements illustrated the metallic nature of the as grown Sb2Te3 single crystal. Further, the magneto—transport studies represented linear positive magneto-resistance (MR) reaching up to 80% at 2.5 K under an applied field of 6 Tesla. The weak anti localization (WAL) related low field (±2 Tesla) magneto-conductance at low temperatures (2.5 K and 20 K) has been analysed and discussed using the Hikami—Larkin—Nagaoka (HLN) model. Summarily, the short letter reports an easy and versatile method for crystal growth of bulk Sb2Te3 topological insulator (TI) and its brief physical property characterization.

  4. Synthesis, characterization, and controlled release anticorrosion behavior of benzoate intercalated Zn-Al layered double hydroxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Zhang, Dun, E-mail: zhangdun@qdio.ac.cn

    2011-11-15

    Graphical abstract: The benzoate anion released from Zn-Al LDHs provides a more effective long-term protection against corrosion of Q235 carbon steel in 3.5% NaCl solution. Highlights: {yields} A benzoate anion corrosion inhibitor intercalated Zn-Al layered double hydroxides (LDHs) has been assembled by coprecipitation method. {yields} The kinetic simulation indicates that the ion-exchange one is responsible for the release process and the diffusion through particle is the rate limiting step. {yields} A significant reduction of the corrosion rate is observed when the LDH nanohybrid is present in the corrosive media. -- Abstract: Corrosion inhibitor-inorganic clay composite including benzoate anion intercalated Zn-Almore » layered double hydroxides (LDHs) are assembled by coprecipitation. Powder X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectrum analyses indicate that the benzoate anion is successfully intercalated into the LDH interlayer and the benzene planes are vertically bilayer-positioned as a quasi-guest ion-pair form in the gallery space. Kinetic simulation for the release data, XRD and FT-IR analyses of samples recovered from the release medium indicate that ion-exchange is responsible for the release process and diffusion through the particle is also indicated to be the rate-limiting step. The anticorrosion capabilities of LDHs loaded with corrosion inhibitor toward Q235 carbon steel are analyzed by polarization curve and electrochemical impedance spectroscopy methods. Significant reduction of corrosion rate is observed when the LDH nanohybrid is present in the corrosive medium. This hybrid material may potentially be applied as a nanocontainer in self-healing coatings.« less

  5. Structural analysis of HyFlex EDM instruments.

    PubMed

    Iacono, F; Pirani, C; Generali, L; Bolelli, G; Sassatelli, P; Lusvarghi, L; Gandolfi, M G; Giorgini, L; Prati, C

    2017-03-01

    To compare the phase transformation behaviour, the microstructure, the nano-hardness and the surface chemistry of electro-discharge machined HyFlex EDM instruments with conventionally manufactured HyFlex CM. New and laboratory used HyFlex EDM were examined by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Nano-hardness and modulus of elasticity were also investigated using a maximum load of 20 mN with a minimum of 40 significant indentations for each sample. Raman spectroscopy and field emission-scanning electron microscope (FE-SEM) were used to assess the surface chemistry of HyFlex EDM. HyFlex CM were subjected to the same investigations and used as a comparison. Nano-indentation data were statistically analysed using the Student's t-test. XRD analysis on HyFlex EDM revealed the presence of martensite and rhombohedral R-phase, while a mixture of martensite and austenite structure was identified in HyFlex CM. DSC analysis also disclosed higher austenite finish (Af) temperatures for electro-discharge machining (EDM) instruments. Significant differences in nano-hardness and modulus of elasticity were found between EDM and CM files (P < 0.05). FE-SEM and EDS analyses confirmed that both new EDM and CM files were covered by an oxide layer. Micro-Raman spectroscopy assessed the presence of rutile-TiO 2 . HyFlex EDM revealed peculiar structural properties, such as increased phase transformation temperatures and hardness. Present results corroborated previous findings and shed light on the enhanced mechanical behaviour of these instruments. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  6. Is Tridymite at Gale Crater Evidence for Silicic Volcanism on Mars?

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.; Vaniman, David T.; Ming, Douglas W.; Graff, Trevor G.; Downs, Robert T.; Fendrich, Kim; Mertzman, Stanley A.

    2016-01-01

    The X-ray diffraction (XRD) instrument (CheMin) onboard the MSL rover Curiosity detected 17 wt% of the SiO2 polymorph tridymite (relative to bulk sample) for the Buckskin drill sample (73 wt% SiO2) obtained from sedimentary rock in the Murray formation at Gale Crater, Mars. Other detected crystalline materials are plagioclase, sanidine, cristobalite, cation-deficient magnetite, and anhydrite. XRD amorphous material constitutes approx. 60 wt% of bulk sample, and the position of its broad diffraction peak near approx. 26 deg. 2-theta is consistent with opal-A. Tridymite is a lowpressure, high-temperature mineral (approx. 870 to 1670 deg. C) whose XRD-identified occurrence on the Earth is usually associated with silicic (e.g., rhyolitic) volcanism. High SiO2 deposits have been detected at Gale crater by remote sensing from martian orbit and interpreted as opal-A on the basis H2O and Si-OH spectral features. Proposed opal-A formation pathways include precipitation of silica from lake waters and high-SiO2 residues of acid-sulfate leaching. Tridymite is nominally anhydrous and would not exhibit these spectral features. We have chemically and spectrally analyzed rhyolitic samples from New Mexico and Iwodake volcano (Japan). The glassy (by XRD) NM samples have H2O spectral features similar to opal-A. The Iwodake sample, which has been subjected to high-temperature acid sulfate leaching, also has H2O spectral features similar to opal-A. The Iwodake sample has approx. 98 wt% SiO2 and 1% wt% TiO2 (by XRF), tridymite (>80 wt.% of crystalline material without detectable quartz by XRD), and H2O and Si-OH spectral features. These results open the working hypothesis that the opal-A-like high-SiO2 deposits at Gale crater detected from martian orbit are products of alteration associated with silicic volcanism. The presence or absence of tridymite will depend on lava crystallization temperatures (NM) and post crystallization alteration temperatures (Iwodake).

  7. In-plane x-ray diffraction for characterization of monolayer and few-layer transition metal dichalcogenide films

    NASA Astrophysics Data System (ADS)

    Chubarov, Mikhail; Choudhury, Tanushree H.; Zhang, Xiaotian; Redwing, Joan M.

    2018-02-01

    There is significant interest in the growth of single crystal monolayer and few-layer films of transition metal dichalcogenides (TMD) and other 2D materials for scientific exploration and potential applications in optics, electronics, sensing, catalysis and others. The characterization of these materials is crucial in determining the properties and hence the applications. The ultra-thin nature of 2D layers presents a challenge to the use of x-ray diffraction (XRD) analysis with conventional Bragg-Brentano geometry in analyzing the crystallinity and epitaxial orientation of 2D films. To circumvent this problem, we demonstrate the use of in-plane XRD employing lab scale equipment which uses a standard Cu x-ray tube for the analysis of the crystallinity of TMD monolayer and few-layer films. The applicability of this technique is demonstrated in several examples for WSe2 and WS2 films grown by chemical vapor deposition on single crystal substrates. In-plane XRD was used to determine the epitaxial relation of WSe2 grown on c-plane sapphire and on SiC with an epitaxial graphene interlayer. The evolution of the crystal structure orientation of WS2 films on sapphire as a function of growth temperature was also examined. Finally, the epitaxial relation of a WS2/WSe2 vertical heterostructure deposited on sapphire substrate was determined. We observed that WSe2 grows epitaxially on both substrates employed in this work under all conditions studied while WS2 exhibits various preferred orientations on sapphire substrate which are temperature dependent. In contrast to the sapphire substrate, WS2 deposited on WSe2 exhibits only one preferred orientation which may provide a route to better control the orientation and crystal quality of WS2. In the case of epitaxial graphene on SiC, no graphene-related peaks were observed in in-plane XRD while its presence was confirmed using Raman spectroscopy. This demonstrates the limitation of the in-plane XRD technique for characterizing low electron density materials.

  8. Structural and spectroscopic study of mechanically synthesized SnO{sub 2} nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vij, Ankush, E-mail: vij-anx@yahoo.com; Kumar, Ravi; Presently at Beant College of Engineering and Technology, Gurdaspur-143521

    2016-05-23

    We report the single step synthesis of SnO{sub 2} nanostructures using high energy mechanical attrition method. X-ray diffraction (XRD) pattern reveals the single phase rutile structure with appreciable broadening of diffraction peaks, which is a signature of nanostructure formation. The average crystallite size of SnO{sub 2} nanostructures has been calculated to be ~15 nm. The micro-Raman study reveals the shifting of A{sub 1g} Raman mode towards lower wave number, which is correlated with the nanostructure formation.

  9. In-situ XRD and EDS method study on the oxidation behaviour of Ni-Cu sulphide ore.

    PubMed

    Li, Guangshi; Cheng, Hongwei; Xiong, Xiaolu; Lu, Xionggang; Xu, Cong; Lu, Changyuan; Zou, Xingli; Xu, Qian

    2017-06-12

    The oxidation mechanism of sulfides is the key issue during the sulphide-metallurgy process. In this study, the phase transformation and element migration were clearly demonstrated by in-situ laboratory-based X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS), respectively. The reaction sequence and a four-step oxidation mechanism were proposed and identified. The elemental distribution demonstrated that at a low temperature, the Fe atoms diffused outward and the Ni/Cu atoms migrated toward the inner core, whereas the opposite diffusion processes were observed at a higher temperature. Importantly, the unique visual presentation of the oxidation behaviour provided by the combination of in-situ XRD and EDS might be useful for optimising the process parameters to improve the Ni/Cu extraction efficiency during Ni-Cu sulphide metallurgy.

  10. A study of tantalum pentoxide Ta 2O 5 structures up to 28 GPa

    DOE PAGES

    Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; ...

    2017-05-02

    In this study, tantalum pentoxide Ta 2O 5 with the orthorhombic L-Ta 2O 5 structure has been experimentally studied up to 28.3 GPa (at ambient temperature) using synchrotron angle-dispersive powder X-ray diffraction (XRD). The ambient pressure phase remains stable up to 25 GPa where with increased pressure a crystalline to amorphous phase transition occurs. A detailed equation of state (EOS), including pressure dependent lattice parameters, is reported. The results of this study were compared with a previous high-pressure XRD study by Li et al. A clear discrepancy between the ambient-pressure crystal structures and, consequently, the reported EOSs between the twomore » studies was revealed. Finally, he origin of this discrepancy is attributed to two different crystal structures used to index the XRD patterns.« less

  11. Adsorption of vitamin E on mesoporous titania nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw; Lin, C.T.; Wu, S.M.

    2010-07-15

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 {sup o}C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 {sup o}C tomore » 500 {sup o}C. The N{sub 2} adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.« less

  12. Extracellular synthesis of silver nanoparticles using the leaf extract of Coleus amboinicus Lour

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayanan, Kannan Badri; Sakthivel, Natarajan, E-mail: puns2005@gmail.com

    2011-10-15

    Highlights: {yields} Synthesis of AgNPs using the leaf extract of Coleus amboinicus L. was described. {yields} UV-vis absorption spectra showed the formation of isotrophic AgNPs at 437 nm in 6 h. {yields} XRD analysis showed intense peaks corresponding to fcc structure of AgNPs. {yields} HR-TEM analysis revealed the formation of stable anisotrophic and isotrophic AgNPs. -- Abstract: In the present investigation, Coleus amboinicus Lour. leaf extract-mediated green chemistry approach for the synthesis of silver nanoparticles was described. The nanoparticles were characterized by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmissionmore » electron microscopy (TEM). The influence of leaf extract on the control of size and shape of silver nanoparticles is reported. Upon an increase in the concentration of leaf extract, there was a shift in the shape of nanoparticles from anisotrophic nanostructures like triangle, decahedral and hexagonal to isotrophic spherical nanoparticles. Crystalline nature of fcc structured nanoparticles was confirmed by XRD spectrum with peaks corresponding to (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes and bright circular spots in the selected-area electron diffraction (SAED). Such environment friendly and sustainable methods are non-toxic, cheap and alternative to hazardous chemical procedures.« less

  13. Correlations of Apparent Cellulose Crystallinity Determined by XRD, NMR, IR, Raman, and SFG Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, David K; Lee, Christopher; Dazen, Kevin

    2015-07-04

    Although the cellulose crystallinity index (CI) is used widely, its limitations have not been adequately described. In this study, the CI values of a set of reference samples were determined from X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and infrared (IR), Raman, and vibrational sum frequency generation (SFG) spectroscopies. The intensities of certain crystalline peaks in IR, Raman, and SFG spectra positively correlated with the amount of crystalline cellulose in the sample, but the correlation with XRD was nonlinear as a result of fundamental differences in detection sensitivity to crystalline cellulose and improper baseline corrections for amorphous contributions. It ismore » demonstrated that the intensity and shape of the XRD signal is affected by both the amount of crystalline cellulose and crystal size, which makes XRD analysis complicated. It is clear that the methods investigated show the same qualitative trends for samples, but the absolute CI values differ depending on the determination method. This clearly indicates that the CI, as estimated by different methods, is not an absolute value and that for a given set of samples the CI values can be compared only as a qualitative measure.« less

  14. Correlations of Apparent Cellulose Crystallinity Determined by XRD, NMR, IR, Raman, and SFG Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Christopher M; Dazen, Kevin; Kafle, Kabindra

    2015-01-01

    Although the cellulose crystallinity index (CI) is used widely, its limitations have not been adequately described. In this study, the CI values of a set of reference samples were determined from X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and infrared (IR), Raman, and vibrational sum frequency generation (SFG) spectroscopies. The intensities of certain crystalline peaks in IR, Raman, and SFG spectra positively correlated with the amount of crystalline cellulose in the sample, but the correlation with XRD was nonlinear as a result of fundamental differences in detection sensitivity to crystalline cellulose and improper baseline corrections for amorphous contributions. It ismore » demonstrated that the intensity and shape of the XRD signal is affected by both the amount of crystalline cellulose and crystal size, which makes XRD analysis complicated. It is clear that the methods investigated show the same qualitative trends for samples, but the absolute CI values differ depending on the determination method. This clearly indicates that the CI, as estimated by different methods, is not an absolute value and that for a given set of samples the CI values can be compared only as a qualitative measure.« less

  15. Dynamic XRD, Shock and Static Compression of CaF2

    NASA Astrophysics Data System (ADS)

    Kalita, Patricia; Specht, Paul; Root, Seth; Sinclair, Nicholas; Schuman, Adam; White, Melanie; Cornelius, Andrew; Smith, Jesse; Sinogeikin, Stanislav

    2017-06-01

    The high-pressure behavior of CaF2 is probed with x-ray diffraction (XRD) combined with both dynamic compression, using a two-stage light gas gun, and static compression, using diamond anvil cells. We use XRD to follow the unfolding of a shock-driven, fluorite to cotunnite phase transition, on the timescale of nanoseconds. The dynamic behavior of CaF2 under shock loading is contrasted with that under static compression. This work leverages experimental capabilities at the Advanced Photon Source: dynamic XRD and shock experiments at the Dynamic Compression Sector, as well as XRD and static compression in diamond anvil cell at the High-Pressure Collaborative Access Team. These experiments and cross-platform comparisons, open the door to an unprecedented understanding of equations of state and phase transitions at the microstructural level and at different time scales and will ultimately improve our capability to simulate the behavior of materials at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Simulation study of an X-ray diffraction system for breast tumor detection

    NASA Astrophysics Data System (ADS)

    Marticke, F.; Montémont, G.; Paulus, C.; Michel, O.; Mars, J. I.; Verger, L.

    2017-09-01

    X-ray diffraction (XRD) is a powerful technique used to determine the molecular structure of biological tissues. In breast tissues for example, the scattering signatures of dense fibroglandular tissue and carcinoma have been shown to be significantly different. In this study, XRD was used as a second control level when conventional mammography results were unclear, for instance because of overly high breast density. A system optimized for this issue, called multifocal XRD, was developed combining energy dispersive spectral information at different scattering angles. This system allows depth-imaging in one go but needs an x,y-direction scan to image the region conventional mammography identified as suspect. The scan-time for about 10 cm3 with an incident flux of about 4 . 8 ṡ 107 photons per second would be around 2 s. For this study, breast phantoms with and without cancerous nodule were simulated to assess the separation power of the method and to determine the radiation dose required to obtain nearly ideal separation. For tumors situated in the center of the breast, the required dose was only about 0.3 mGy, even for breasts with high density. The tumor position was shown to have a low impact on detectability provided it remained in a zone where the system was sufficiently sensitive. The influence of incident spectrum maximum energy was also studied. The required dose remained very low with any of the incident spectra tested. Finally, an image slice was reconstructed in the x-direction and showed that the system can detect the presence of a small tumor (4 mm). Hence, XRD is a very promising tool to reduce the number of unnecessary invasive breast biopsies.

  17. Anatomy of a metabentonite: nucleation and growth of illite crystals and their colescence into mixed-layer illite/smectite

    USGS Publications Warehouse

    Eberl, D.D.; Blum, A.E.; Serravezza, M.

    2011-01-01

    The illite layer content of mixed-layer illite/smectite (I/S) in a 2.5 m thick, zoned, metabentonite bed from Montana decreases regularly from the edges to the center of the bed. Traditional X-ray diffraction (XRD) pattern modeling using Markovian statistics indicated that this zonation results from a mixing in different proportions of smectite-rich R0 I/S and illite-rich R1 I/S, with each phase having a relatively constant illite layer content. However, a new method for modeling XRD patterns of I/S indicates that R0 and R1 I/S in these samples are not separate phases (in the mineralogical sense of the word), but that the samples are composed of illite crystals that have continuous distributions of crystal thicknesses, and of 1 nm thick smectite crystals. The shapes of these distributions indicate that the crystals were formed by simultaneous nucleation and growth. XRD patterns for R0 and R1 I/S arise by interparticle diffraction from a random stacking of the crystals, with swelling interlayers formed at interfaces between crystals from water or glycol that is sorbed on crystal surfaces. It is the thickness distributions of smectite and illite crystals (also termed fundamental particles, or Nadeau particles), rather than XRD patterns for mixed-layer I/S, that are the more reliable indicators of geologic history, because such distributions are composed of well-defined crystals that are not affected by differences in surface sorption and particle arrangements, and because their thickness distribution shapes conform to the predictions of crystal growth theory, which describes their genesis.

  18. Synthesis, growth, structural, optical, spectral, thermal and mechanical studies of 4-methoxy 4-nitrostilbene (MONS): a new organic nonlinear optical single crystal.

    PubMed

    Dinakaran, Paul M; Bhagavannarayana, G; Kalainathan, S

    2012-11-01

    4-Methoxy 4-nitrostilbene (MONS), a new organic nonlinear optical material has been synthesized. Based on the solubility data good quality single crystal with dimensions up to 38×11×3 mm(3) has been grown by slow evaporation method using ethyl methyl ketone (MEK) as a solvent. Powder XRD confirms the crystalline property and also the diffraction planes have been indexed. The lattice parameters for the grown MONS crystals were determined by using single crystal X-ray diffraction analysis and it reveals that the crystal lattice system is triclinic. The crystalline perfection of the grown crystals has been analysed by high resolution X-ray diffraction (HRXRD) rocking curve measurements. Fourier transform infrared (FTIR) spectrum for powdered MONS sample confirms the functional groups present in the grown crystal. The UV-vis absorption spectrum has been recorded in the range of 190-1100 nm and the cut off wavelength 499 nm has been determined. The optical constants of MONS have been determined through UV-vis-NIR spectroscopy. The MONS crystals were further subjected to other characterizations. i.e., (1)H NMR, TG/DTA, photoluminescence and microhardness test. The Kurtz and Perry powder technique confirms the NLO property of the grown crystal and the SHG efficiency of MONS was found to be 1.55× greater than that of KDP crystal. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Remediation of uranium-contaminated groundwater by sorption onto hydoxyapatite derived from catfish bones

    USDA-ARS?s Scientific Manuscript database

    Hydroxyapatite was prepared from catfish bones, called catfish hydroxyapatite (CFHA), by mechanical and chemical treatment methods and was characterized by x-ray diffraction (X-RD) and scanning electron microscope (SEM) techniques to confirm the presence of hydroxyapatite. The ability of CFHA to rem...

  20. Assessing the Potential for Bioremediation through Formation and Fate of Metal Rich Granules in the Terrestrial Environment

    DTIC Science & Technology

    2011-05-01

    laboratory ► biochemistry and analytical laboratories BUILDING STRONG® Impacts of Lead (Pb) • Most common metal contaminant on US Army small arms...Diffraction (XRD): Crystalline phase identification through fingerprinting Tungsten and Calcium in Snail Shell W Identificati on of Selenium and

  1. SORPTION OF LEAD ON A RUTHENIUM COMPOUND: A MACROSCOPIC AND MICROSCOPIC STUDY

    EPA Science Inventory

    The objective of this study was to elucidate the sorption mechanism of Pb on the high-affinity ruthenium compound with time at pH 6 employing batch methods and X-ray absorption fine structure (XAFS) and X-ray diffraction (XRD) spectroscopies. For the spectroscopic studies, Pb so...

  2. Simple Analysis of Historical Lime Mortars

    ERIC Educational Resources Information Center

    Pires, Joa~o

    2015-01-01

    A laboratory experiment is described in which a simple characterization of a historical lime mortar is made by the determination of its approximate composition by a gravimetric method. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) are also used for the qualitative characterization of the lime mortar components. These…

  3. Structural transformation of biochar black carbon by C60 superstructure: Environmental implications

    USDA-ARS?s Scientific Manuscript database

    Aqueous fullerene C60 nanoparticles (nC60) are frequently considered within the environmental engineering community as the aggregate of 60-carbon molecules. This study employed transmission electron microscopy (TEM) and x-ray diffraction (XRD) to demonstrate that nC60 formed via prolonged stirring ...

  4. Uric Acid Spherulites in the Reflector Layer of Firefly Light Organ

    PubMed Central

    Goh, King-Siang; Sheu, Hwo-Shuenn; Hua, Tzu-En; Kang, Mei-Hua; Li, Chia-Wei

    2013-01-01

    Background In firefly light organs, reflector layer is a specialized tissue which is believed to play a key role for increasing the bioluminescence intensity through reflection. However, the nature of this unique tissue remains elusive. In this report, we investigated the role, fine structure and nature of the reflector layer in the light organ of adult Luciola cerata. Principal Findings Our results indicated that the reflector layer is capable of reflecting bioluminescence, and contains abundant uric acid. Electron microscopy (EM) demonstrated that the cytosol of the reflector layer's cells is filled with densely packed spherical granules, which should be the uric acid granules. These granules are highly regular in size (∼700 nm in diameter), and exhibit a radial internal structure. X-ray diffraction (XRD) analyses revealed that an intense single peak pattern with a d-spacing value of 0.320 nm is specifically detected in the light organ, and is highly similar to the diffraction peak pattern and d-spacing value of needle-formed crystals of monosodium urate monohydrate. However, the molar ratio evaluation of uric acid to various cations (K+, Na+, Ca2+ and Mg2+) in the light organ deduced that only a few uric acid molecules were in the form of urate salts. Thus, non-salt uric acid should be the source of the diffraction signal detected in the light organ. Conclusions In the light organ, the intense single peak diffraction signal might come from a unique needle-like uric acid form, which is different from other known structures of non-salt uric acid form. The finding of a radial structure in the granules of reflector layer implies that the spherical uric acid granules might be formed by the radial arrangement of needle-formed packing matter. PMID:23441187

  5. Rheological and structural characterisation of film-forming solutions and biodegradable edible film made from kefiran as affected by various plasticizer types.

    PubMed

    Ghasemlou, Mehran; Khodaiyan, Faramarz; Oromiehie, Abdulrasoul

    2011-11-01

    The rheological properties of kefiran film-forming solutions, as well as the structural characterisation of the resulting films, were investigated as a function of various plasticizer types. The behaviours of the storage (G') and loss (G″) moduli as a function of frequency were typical of gel-like material, with the G' higher than the G″. Kefiran-based films, which may find application as edible films, were prepared by a casting and solvent-evaporation method. Possible interaction between the adjacent chains in the kefiran polymer and various plasticizers was proven by Fourier-transform infrared spectroscopy (FT-IR). The crystallinity of plasticized kefiran film was also analysed using X-ray diffraction (XRD); this revealed an amorphous-crystalline structure. These results were explained by the film's microstructure, which was analysed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The present study has helped determine possible interactions of kefiran, plasticizer and water molecules in determining film properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Structural, microstructural and vibrational analyses of the monoclinic tungstate BiLuWO6

    NASA Astrophysics Data System (ADS)

    Ait Ahsaine, H.; Taoufyq, A.; Patout, L.; Ezahri, M.; Benlhachemi, A.; Bakiz, B.; Villain, S.; Guinneton, F.; Gavarri, J.-R.

    2014-10-01

    The bismuth lutetium tungstate phase BiLuWO6 has been prepared using a solid state route with stoichiometric mixtures of oxide precursors. The obtained polycrystalline phase has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. In the first step, the crystal structure has been refined using Rietveld method: the crystal cell was resolved using monoclinic system (parameters a, b, c, β) with space group A2/m. SEM images showed the presence of large crystallites with a constant local nominal composition (BiLuW). TEM analyses showed that the actual local structure could be better represented by a superlattice (a, 2b, c, β) associated with space groups P2 or P2/m. The Raman spectroscopy showed the presence of vibrational bands similar to those observed in the compounds BiREWO6 with RE=Y, Gd, Nd. However, these vibrational bands were characterized by large full width at half maximum, probably resulting from the long range Bi/Lu disorder and local WO6 octahedron distortions in the structure.

  7. Synthesis, spectroscopic, thermal and anticancer studies of metal-antibiotic chelations: Ca(II), Fe(III), Pd(II) and Au(III) chloramphenicol complexes

    NASA Astrophysics Data System (ADS)

    Al-Khodir, Fatima A. I.; Refat, Moamen S.

    2016-09-01

    Four Ca(II), Fe(III), Pd(II) and Au(III) complexes of chloramphenicol drug have been synthesized and well characterized using elemental analyses, (infrared, electronic, and 1H-NMR) spectra, magnetic susceptibility measurement, and thermal analyses. Infrared spectral data show that the chloramphenicol drug coordinated to Ca(II), Pd(II) and Au(III) metal ions through two hydroxyl groups with 1:1 or 1:2 M ratios, but Fe(III) ions chelated towards chloramphenicol drug via the oxygen and nitrogen atoms of amide group with 1:2 ratio based on presence of keto↔enol form. The X-ray powder diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques were used to identify the nano-size particles of both iron(III) and gold(III) chloramphenicol complexes. The antimicrobial assessments of the chloramphenicol complexes were scanned and collected the results against of some kind of bacteria and fungi. The cytotoxic activity of the gold(III) complex was tested against the human colon carcinoma (HCT-116) and human hepatocellular carcinoma (HepG-2) tumor cell lines.

  8. Data from the Mars Science Laboratory CheMin XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Vaniman, David; Blake, David; Bristow, Tom; DesMarais, David; Achilles, Cherie; Anderson, Robert; Crips, Joy; Morookian, John Michael; Spanovich, Nicole; Vasavada, Ashwin; hide

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity uses a Co tube source and a CCD detector to acquire mineralogy from diffracted primary X-rays and chemical information from fluoresced X-rays. CheMin has been operating at the MSL Gale Crater field site since August 5, 2012 and has provided the first X-ray diffraction (XRD) analyses in situ on a body beyond Earth. Data from the first sample collected, the Rocknest eolian soil, identify a basaltic mineral suite, predominantly plagioclase (approx.An50), forsteritic olivine (approx.Fo58), augite and pigeonite, consistent with expectation that detrital grains on Mars would reflect widespread basaltic sources. Minor phases (each <2 wt% of the crystalline component) include sanidine, magnetite, quartz, anhydrite, hematite and ilmenite. Significantly, about a third of the sample is amorphous or poorly ordered in XRD. This amorphous component is attested to by a broad rise in background centered at approx.27deg 2(theta) (Co K(alpha)) and may include volcanic glass, impact glass, and poorly crystalline phases including iron oxyhydroxides; a rise at lower 2(theta) may indicate allophane or hisingerite. Constraints from phase chemistry of the crystalline components, compared with a Rocknest bulk composition from the APXS instrument on Curiosity, indicate that in sum the amorphous or poorly crystalline components are relatively Si, Al, Mg-poor and enriched in Ti, Cr, Fe, K, P, S, and Cl. All of the identified crystalline phases are volatile-free; H2O, SO2 and CO2 volatile releases from a split of this sample analyzed by the SAM instrument on Curiosity are associated with the amorphous or poorly ordered materials. The Rocknest eolian soil may be a mixture of local detritus, mostly crystalline, with a regional or global set of dominantly amorphous or poorly ordered components. The Rocknest sample was targeted by MSL for "first time analysis" to demonstrate that a loose deposit could be scooped, sieved to <150 microns, and delivered to instruments in the body of the rover. A drilled sample of sediment in outcrop is anticipated. At the time of writing this abstract, promising outcrops are in range and this talk will provide an update on data collected with the CheMin instrument.

  9. X-Ray Diffraction Wafer Mapping Method for Rhombohedral Super-Hetero-Epitaxy

    NASA Technical Reports Server (NTRS)

    Park, Yoonjoon; Choi, Sang Hyouk; King, Glen C.; Elliott, James R.; Dimarcantonio, Albert L.

    2010-01-01

    A new X-ray diffraction (XRD) method is provided to acquire XY mapping of the distribution of single crystals, poly-crystals, and twin defects across an entire wafer of rhombohedral super-hetero-epitaxial semiconductor material. In one embodiment, the method is performed with a point or line X-ray source with an X-ray incidence angle approximating a normal angle close to 90 deg, and in which the beam mask is preferably replaced with a crossed slit. While the wafer moves in the X and Y direction, a narrowly defined X-ray source illuminates the sample and the diffracted X-ray beam is monitored by the detector at a predefined angle. Preferably, the untilted, asymmetric scans are of {440} peaks, for twin defect characterization.

  10. Research on the Treatment of Wastewater by Waste Ceramic Adsorption

    NASA Astrophysics Data System (ADS)

    He, Lingfeng; Zhang, Yongli; Shi, Liang

    2018-03-01

    The process of preparing porous ceramic with waste porcelain powder as aggregate was researched. The affect of assimilate time on cuprum removal efficiency in wastewater containing copper was investigated. The results show the water copper removal rate increased along with the augment of assimilate time, and the assimilate time is suitable for 35 min; XRD characterizations show the porous ceramic catalyst before and after calcination in active components of X ray diffraction peak position almost had no changes, and the diffraction intensity slightly changed with calcination and absorption, and diffraction peaks became sharper, and its crystallinity was improved. Baking leads to the growth of crystal particles, and the performance of porous ceramics is stable before and after adsorption.

  11. Coordinated Analyses of Antarctic Sediments as Mars Analog Materials Using Reflectance Spectroscopy and Current Flight-Like Instruments for CheMin, SAM and MOMA

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Franz, Heather B.; Goetz, Walter; Blake, David F.; Freissinet, Caroline; Steininger, Harald; Goesmann, Fred; Brinckerhoff, William B.; Getty, Stephanie; Pinnick, Veronica T.; hide

    2013-01-01

    Coordinated analyses of mineralogy and chemistry of sediments from the Antarctic Dry Valleys illustrate how data obtained using flight-ready technology of current NASA and ESA missions can be combined for greater understanding of the samples. Mineralogy was measured by X-ray diffraction (XRD) and visible/ near-infrared (VNIR) reflectance spectroscopy. Chemical analyses utilized a quadrupole mass spectrometer (QMS) to perform pyrolysis-evolved gas analysis (EGA) and gas chromatography-mass spectrometry (GC/MS) both with and without derivatization, as well as laser desorption-mass spectrometry (LD/MS) techniques. These analyses are designed to demonstrate some of the capabilities of near-term landed Mars missions, to provide ground truthing of VNIR reflectance data acquired from orbit by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on MRO and to provide detection limits for surface- operated instruments: the Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instrument suites onboard Mars Science Laboratory (MSL) and the Mars Organic Molecule Analyzer (MOMA) onboard ExoMars-2018. The new data from this study are compared with previous analyses of the sediments performed with other techniques. Tremolite was found in the oxic region samples for the first time using the CheMin-like XRD instrument. The NIR spectral features of tremolite are consistent with those observed in these samples. Although the tremolite bands are weak in spectra of these samples, spectral features near 2.32 and 2.39 micrometers could be detected by CRISM if tremolite is present on the martian surface. Allophane was found to be a good match to weak NIR features at 1.37-1.41, 1.92, and 2.19 micrometers in spectra of the oxic region sediments and is a common component of immature volcanic soils. Biogenic methane was found to be associated with calcite in the oxic region samples by the SAM/EGA instrument and a phosphoric acid derivative was found in the anoxic region sample using the SAM/MTBSTFA technique.

  12. Non-destructive Quantitative Phase Analysis and Microstructural Characterization of Zirconium Coated U-10Mo Fuel Foils via Neutron Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummins, Dustin Ray; Vogel, Sven C.; Hollis, Kendall Jon

    2016-10-18

    This report uses neutron diffraction to investigate the crystal phase composition of uranium-molybdenum alloy foils (U-10Mo) for the CONVERT MP-1 Reactor Conversion Project, and determines the effect on alpha-uranium contamination following the deposition of a Zr metal diffusion layer by various methods: plasma spray deposition of Zr powders at LANL and hot co-rolling with Zr foils at BWXT. In summary, there is minimal decomposition of the gamma phase U-10Mo foil to alpha phase contamination following both plasma spraying and hot co-rolling. The average unit cell volume, i.e. lattice spacing, of the Zr layer can be mathematically extracted from the diffractionmore » data; co-rolled Zr matches well with literature values of bulk Zr, while plasma sprayed Zr shows a slight increase in the lattice spacing, indicative of interstitial oxygen in the lattice. Neutron diffraction is a beneficial alternative to conventional methods of phase composition, i.e. x ray diffraction (XRD) and destructive metallography. XRD has minimal penetration depth in high atomic number materials, particularly uranium, and can only probe the first few microns of the fuel plate; neutrons pass completely through the foil, allowing for bulk analysis of the foil composition and no issues with addition of cladding layers, as in the final, aluminum-clad reactor fuel plates. Destructive metallography requires skilled technicians, cutting of the foil into small sections, hazardous etching conditions, long polishing and microscopy times, etc.; the neutron diffraction system has an automated sample loader and can fit larger foils, so there is minimal analysis preparation; the total spectrum acquisition time is ~ 1 hour per sample. The neutron diffraction results are limited by spectra refinement/calculation times and the availability of the neutron beam source. In the case of LANSCE at Los Alamos, the beam operates ~50% of the year. Following the lessons learned from these preliminary results, optimizations to the process and analysis can be made, and neutron diffraction can become a viable and efficient technique for gamma/alpha phase composition determination for nuclear fuels.« less

  13. The importance of XRD analysis in provenance and palaeoenvironmental studies of the Piedras de Afilar Formation, Neoproterozoic of Uruguay

    NASA Astrophysics Data System (ADS)

    Pamoukaghlian, K.; Poiré, D. G.; Gaucher, C.; Uriz, N.; Cingolani, C.; Frigeiro, P.

    2009-04-01

    The Piedras de Afilar Formation crops out in the southeast part of Uruguay, forming part of the Tandilia Terrane (sensu Bossi et al. 2005). Pamoukaghlian et al. (2006) and Gaucher et al. (2008) have published δ13C, δ18O and U/Pb SHRIMP results, which indicate a Neoproterozoic age for this formation. The palaeoenvironment has been defined as a shallow marine platform based on the presence of interference ripples, hummocky and mega-hummocky cross-stratification. X-ray diffraction (XRD) analyses help to better constrain the palaeoenvironment: the presence of chlorite/smectite found in black shales, suggest a reducing environment, and abundant illite indicates a cold to temperate climate. Provenance studies have been undertaken that utilise a combination of detailed palaeocurrent measurements, petrographic descriptions, XRD analyses, and geochemical isotopic analyses, including U/Pb SHRIMP determinations. Mineral compositional diagrams for sandstones suggest a stable cratonic provenance. Palaeocurrents are mainly from the NNE, indicating a provenance from the cratonic areas of the Tandilia Terrane. The illite crystal index indicates diagenetic to low-metamorphic conditions for the sequence; this is important to confirm that the identified minerals are authigenic. Clay minerals identified by XRD analysis of sandstones from the siliciclastic member are illite (80 - 90%), kaolinite (5 - 10%), and chlorite (5 - 10%). This is consistent with a provenance from the cratonic areas (quartz-feldspar dominated rock types). Isotopic analyses have been undertaken to provide better constraints on the tectonic setting. U/Pb SHRIMP ages for the youngest zircons are 990 Ma (Gaucher et al. 2008), and the basal granite (Granito de la Paz) is 2056 ± 11 Ma (Hartmann et al. 2001), suggesting a provenance from the Archaean basement for the Piedras de Afilar Formation, like its counterparts in the Rio de la Plata Craton. References Bossi, J., Piñeyro, D., Cingolani, C. (2005). El límite norte del Terreno Piedra Alta (Uruguay). Importancia de la faja milonítica sinestral de Colonia. Actas XVI Congreso Argentino de Geología, de La Plata. Gaucher, C., Poiré, D.G., Finney, S.C., Valencia, V.a., Blanco, G., Pamoukaghlian, K., Gómez Peral, L. (2008). Detrital zircón ages of Neoproterozoic sedimentary successions in Uruguay and Argentina: Insights into the geological evolution of the Rio de la Plata Craton. Precambrian Research. Hartmann, L.A., Campal, N., Santos, J.O., Mc. Neughton, N.J., Schipilov, A., Lafon, J.M. (2001). Archean crust in the Rio de la Plata Craton, Uruguay - SHRIMP U-Pb zircon reconnaissance geochronology. Journal of South American Earth Science, 14, 557-570. Pamoukaghlian, K., Gaucher, C., Bossi, J., Sial, N., Poire, D.G. (2006). First C and O isotopic data for the Piedras de Afilar Formation, Tandilia Terrane, Uruguay: their bearing on correlation and age. Fifth South American Symposium on Isotope Geology, Punta del Este.

  14. Bioactivity of gelatin coated magnetic iron oxide nanoparticles: in vitro evaluation.

    PubMed

    Gaihre, Babita; Khil, Myung Seob; Kang, Hyo Kyoung; Kim, Hak Yong

    2009-02-01

    Current research explores formation of bone like apatite on gelatin coated magnetic iron oxide nanoparticles (GIOPs) to evaluate the bioactivity of the material. The GIOPs were soaked in simulated body fluid (SBF) and the apatite formation on the surface was investigated in regular interval of time. Fourier transform-infrared (FT-IR) and x-ray diffraction spectroscopic (XRD) analyses were done to investigate the chemical changes and field emission-scanning electron microscopic (FE-SEM) analysis was done to investigate the morphological changes occurring on the surface of the GIOPs after soaking in different time intervals. The kinetic studies of the apatite growth in SBF suggest that initially calcium and phosphorous ions were deposited to the surface of the GIOPs from the SBF leading to formation of amorphous Ca/P particles. Later, after 9 days of the incubation the amorphous particles were fused to form needle and blade like crystalline structures of bone like apatite.

  15. Precipitation hardening behaviour of Al-Mg-Si alloy processed by cryorolling and room temperature rolling

    NASA Astrophysics Data System (ADS)

    Hussain, Maruff; Nageswara rao, P.; Singh, Dharmendra; Jayaganthan, R.

    2018-04-01

    The precipitation hardenable aluminium alloy (Al-Mg-Si) plates were solutionized and subjected to rolling at room temperature and liquid nitrogen temperature (RTR, CR) up to a true strain of ∼2.7. The rolled sheets were uniformly aged at room temperature and above room temperature (125 °C) to induce precipitation. The rolled and aged samples were analysed using differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), hardness and tensile tests. The strength and ductility were simultaneously improved after controlled ageing of the cryorolled (CR) and room temperature rolled (RTR) samples. However, the increment in strength is more in RTR material than CR material with same ductility. Transmission electron microscopy analysis revealed the formation of ultrafine grains (UFG) filled with dislocations and nanosized precipitates in the CR and RTR conditions after ageing treatment. The behaviour of CR and RTR alloy is same under natural ageing conditions.

  16. Facile synthesis of ZnPc nanocubes: An electron emitting material for field emission display devices

    NASA Astrophysics Data System (ADS)

    Samanta, M.; Ghorai, U. K.; Mukherjee, M.; Howli, P.; Chattopadhyay, K. K.

    2017-05-01

    A simple low temperature water chemical route for synthesizing Zinc Phthalocyanine (ZnPc) nanostructures were reported here. The as-prepared samples were well analysed by X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) technique. The plausible formation mechanism of cube like nanostructures was also explained here. Cold cathode emission properties of ZnPc nanocubes were studied by using an indigenously designed high vacuum system at anode to cathode distance 130 µm. The turn on field and enhancement factor is found to be 5.0 V/μm @ 1µA/cm2 and 1757 respectively. Cold cathode emission properties were further investigated theoretically by finite element method using ANSYS Maxwell simulation package. The obtained results strongly professed that ZnPc nanocubes can act as potential candidate for electron emitter for field emission display devices and many more.

  17. The effect of 150μm expandable graphite on char expansion of intumescent fire retardant coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullah, Sami, E-mail: samichemist1@gmail.com; Shariff, A. M., E-mail: azmish@petronas.com.my, E-mail: azmibustam@petronas.com.my; Bustam, M. A., E-mail: azmish@petronas.com.my, E-mail: azmibustam@petronas.com.my

    2014-10-24

    Intumescent is defined as the swelling of certain substances to insulate the underlying substrate when they are heated. In this research work the effect of 150μm expandable graphite (EG) was studied on char expansion, char morphology and char composition of intumescent coating formulations (ICFs). To study the expansion and thermal properties of the coating, nine different formulations were prepared. The coatings were tested at 500 °C for one hour and physically were found very stable and well bound with the steel substrate. The morphology was studied by Scanning Electron Microscopy (SEM). The char composition was analysed by X-ray Diffraction (XRD)more » and Fourier transform infrared spectroscopy (FTIR) techniques. EG above than 10.8wt% expands the char abruptly with uniform network structure and affect the outer surface of the char.« less

  18. Crocoite: An unusual mode of occurence for lead in coal

    USGS Publications Warehouse

    Li, Z.; Moore, T.A.; Weaver, S.D.; Finkelman, R.B.

    2001-01-01

    What is believed to be a very unusual mode of occurrence for lead in coal has been identified as crocoite (PbCrO4). As part of a larger study on trace elements and mineralogy in the Cretaceous Main Seam in New Zealand, crocoite was found in raw coal samples within the lower part of the coal seam. X-ray diffraction (XRD) and bulk chemical data from a SEM equipped with an energy dispersive X-ray analyser (EDXA) have confirmed the identity of this mineral. This is apparently the first time that crocoite has been reported in coal. Crocoite usually occurs only in the oxidised zone of lead mineral deposits. The occurrence of this mineral in the Main Seam coal implies that the deposit was exposed to an oxidising environment at some stage, most likely after coalification. Published by Elsevier Science B.V.

  19. Influence of UV irradiation on hydroxypropyl methylcellulose polymer films

    NASA Astrophysics Data System (ADS)

    Rao, B. Lakshmeesha; Shivananda, C. S.; Shetty, G. Rajesha; Harish, K. V.; Madhukumar, R.; Sangappa, Y.

    2018-05-01

    Hydroxypropyl Methylcellulose (HPMC) biopolymer films were prepared by solution casting technique and effects of UV irradiation on the structural and optical properties of the polymer films were analysed using X-ray Diffraction and UV-Visible studies. From XRD data, the microcrystalline parameters (crystallite size (LXRD) and crystallinity (Xc)) were calculated and found to be decreasing with UV irradiation due to photo-degradation process. From the UV-Vis absorption data, the optical bandgap (Eg), average numbers of carbon atoms per conjugation length (N) of the polymer chain and the refractive index (n) at 550 nm (average wavelength of visible light) of virgin and UV irradiated HPMC films were calculated. With increase in UV exposure time, the optical bandgap energy (Eg) increases, and hence average number of carbon atoms per conjugation length (N) decreases, supports the photo-degradation of HPMC polymer films. The refractive index of the HPMC films decreases after UV irradiation, due to photo-degradation induced chain rearrangements.

  20. A facile synthesis of zinc oxide/multiwalled carbon nanotube nanocomposite lithium ion battery anodes by sol-gel method

    NASA Astrophysics Data System (ADS)

    Köse, Hilal; Karaal, Şeyma; Aydın, Ali Osman; Akbulut, Hatem

    2015-11-01

    Free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials are prepared by a sol gel technique giving a new high capacity anode material for lithium ion batteries. Free-standing ZnO/MWCNT nanocomposite anodes with two different chelating agent additives, triethanolamine (TEA) and glycerin (GLY), yield different electrochemical performances. Field emission gun scanning electron microscopy (FEG-SEM), energy dispersive X-ray spectrometer (EDS), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) analyses reveal the produced anode electrodes exhibit a unique structure of ZnO coating on the MWCNT surfaces. Li-ion cell assembly using a ZnO/MWCNT/GLY free-standing anode and Li metal cathode possesses the best discharge capacity, remaining as high as 460 mAh g-1 after 100 cycles. This core-shell structured anode can offer increased energy storage and performance over conventional anodes in Li-ion batteries.

  1. Laboratory Testing of Silica Sol Grout in Coal Measure Mudstones.

    PubMed

    Pan, Dongjiang; Zhang, Nong; Xie, Zhengzheng; Feng, Xiaowei; Kong, Yong

    2016-11-22

    The effectiveness of silica sol grout on mudstones is reported in this paper. Using X-ray diffraction (XRD), the study investigates how the silica sol grout modifies mudstone mineralogy. Micropore sizes and mechanical properties of the mudstone before and after grouting with four different materials were determined with a surface area/porosity analyser and by uniaxial compression. Tests show that, after grouting, up to 50% of the mesopore volumes can be filled with grout, the dominant pore diameter decreases from 100 nm to 10 nm, and the sealing capacity is increased. Uniaxial compression tests of silica sol grouted samples shows that their elastic modulus is 21%-38% and their uniaxial compressive strength is 16%-54% of the non-grouted samples. Peak strain, however, is greater by 150%-270%. After grouting, the sample failure mode changes from brittle to ductile. This paper provides an experimental test of anti-seepage and strengthening properties of silica sol.

  2. Solid-state reaction kinetics and optical studies of cadmium doped magnesium hydrogen phosphate crystals

    NASA Astrophysics Data System (ADS)

    Verma, Madhu; Gupta, Rashmi; Singh, Harjinder; Bamzai, K. K.

    2018-04-01

    The growth of cadmium doped magnesium hydrogen phosphate was successfully carried out by using room temperature solution technique i.e., gel encapsulation technique. Grown crystals were confirmed by single crystal X-ray diffraction (XRD). The structure of the grown crystal belongs to orthorhombic crystal system and crystallizes in centrosymmetric space group. Kinetics of the decomposition of the grown crystals were studied by non-isothermal analysis. Thermo gravimetric / differential thermo analytical (TG/DTA) studies revealed that the grown crystal is stable upto 119 °C. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters. The optical studies shows that the grown crystals possess wide transmittance in the visible region and significant optical band gap of 5.5ev with cut off wavelength of 260 nm.

  3. Characterization of potassium bromide crystals grown in the aqueous solution of picric acid

    NASA Astrophysics Data System (ADS)

    Maheswari, J. Uma; Krishnan, C.; Kalyanaraman, S.; Selvarajan, P.

    2016-12-01

    Potassium bromide crystals were grown in the aqueous solution of picric acid by slow evaporation technique at room temperature. X-ray Diffraction (XRD) analysis ensures that the grown sample is in Fm3m space group and FCC structure. Energy Dispersive X-ray Spectroscopy (EDX) reveals the presence of elements in the title compound. UV-Vis-NIR spectrum reveals that the grown sample is a promising nonlinear optical (NLO) material. FTIR analysis confirms the functional groups present in the sample. The thermogravimetric (TG) and differential thermogravimetric (DTA) analyses ensure that the sample material is thermally stable up to 160 °C. The second harmonic efficiency of the sample is 1.3 times greater than that of standard KDP. The mechanical strength of the grown sample is estimated by Vickers microhardness tester. The electrical properties were investigated by impedance analysis and the results of various studies of the grown crystals are discussed.

  4. Pretreatment of Cellulose By Electron Beam Irradiation Method

    NASA Astrophysics Data System (ADS)

    Jusri, N. A. A.; Azizan, A.; Ibrahim, N.; Salleh, R. Mohd; Rahman, M. F. Abd

    2018-05-01

    Pretreatment process of lignocellulosic biomass (LCB) to produce biofuel has been conducted by using various methods including physical, chemical, physicochemical as well as biological. The conversion of bioethanol process typically involves several steps which consist of pretreatment, hydrolysis, fermentation and separation. In this project, microcrystalline cellulose (MCC) was used in replacement of LCB since cellulose has the highest content of LCB for the purpose of investigating the effectiveness of new pretreatment method using radiation technology. Irradiation with different doses (100 kGy to 1000 kGy) was conducted by using electron beam accelerator equipment at Agensi Nuklear Malaysia. Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD) analyses were studied to further understand the effect of the suggested pretreatment step to the content of MCC. Through this method namely IRR-LCB, an ideal and optimal condition for pretreatment prior to the production of biofuel by using LCB may be introduced.

  5. Boehmite-An Efficient and Recyclable Acid-Base Bifunctional Catalyst for Aldol Condensation Reaction.

    PubMed

    Reshma, P C Rajan; Vikneshvaran, Sekar; Velmathi, Sivan

    2018-06-01

    In this work boehmite was used as an acid-base bifunctional catalyst for aldol condensation reactions of aromatic aldehydes and ketones. The catalyst was prepared by simple sol-gel method using Al(NO3)3·9H2O and NH4OH as precursors. The catalyst has been characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), UV-visible spectroscopy (DRS), BET surface area analyses. Boehmite is successfully applied as catalyst for the condensation reaction between 4-nitrobenzaldehyde and acetone as a model substrate giving α, β-unsaturated ketones without any side product. The scope of the reaction is extended for various substituted aldehydes. A probable mechanism has been suggested to explain the cooperative behavior of the acidic and basic sites. The catalyst is environmentally friendly and easily recovered from the reaction mixture. Also the catalyst is reusable up to 3 catalytic cycles.

  6. Structural and Magnetic Properties of {Eu}(3+) Eu 3 + -Doped {CdNb}_{2} {O}_{6} CdNb 2 O 6 Powders

    NASA Astrophysics Data System (ADS)

    Topkaya, Ramazan; Boyraz, Cihat; Ekmekçi, Mete Kaan

    2018-03-01

    Europium-doped CdNb2O6 powders with the molar concentration of Eu^{3+} (0.5, 3 and 6 mol%) were successfully prepared at 900°C by using molten salt synthesis method. The effect of europium (Eu) molar concentration on the structural and temperature-dependent magnetic properties of CdNb2O6 powders has been investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), vibrating sample magnetometer (VSM) and ferromagnetic resonance (FMR) techniques in the temperature range of 10-300 K. XRD results confirm that all the powders have orthorhombic crystal structure. It has been confirmed from VSM and FMR measurements that Eu^{3+}-doped CdNb2O6 powders have ferromagnetic behaviour for each Eu^{3+} molar concentration between 10 and 300 K. XRD and EDX analyses indicate that there is no magnetic impurity in Eu^{3+}-doped CdNb_2O_6 powders, supporting that the ferromagnetic behaviour of the powders arises from Eu^{3+} ions. The observed ferromagnetism was elucidated with the intrinsic exchange interactions between the magnetic moments associated with the unpaired 4 f electrons in Eu^{3+} ions. The saturation magnetization decreases with increasing Eu^{3+} molar concentration. The temperature-dependent magnetization behaviour was observed not to agree with Curie-Weiss law because europium obeys Van Vleck paramagnetism. Broad FMR spectra and a g-value higher than 2 were observed from FMR measurements, indicating the ferromagnetic behaviour of the powders. It was found that while the resonance field of FMR spectra decreases, the linewidth increases as a function of Eu^{3+} molar concentration.

  7. Structural dynamics and activity of nanocatalysts inside fuel cells by in operando atomic pair distribution studies.

    PubMed

    Petkov, Valeri; Prasai, Binay; Shan, Shiyao; Ren, Yang; Wu, Jinfang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian

    2016-05-19

    Here we present the results from a study aimed at clarifying the relationship between the atomic structure and activity of nanocatalysts for chemical reactions driving fuel cells, such as the oxygen reduction reaction (ORR). In particular, using in operando high-energy X-ray diffraction (HE-XRD) we tracked the evolution of the atomic structure and activity of noble metal-transition metal (NM-TM) nanocatalysts for ORR as they function at the cathode of a fully operational proton exchange membrane fuel cell (PEMFC). Experimental HE-XRD data were analysed in terms of atomic pair distribution functions (PDFs) and compared to the current output of the PEMFC, which was also recorded during the experiments. The comparison revealed that under actual operating conditions, NM-TM nanocatalysts can undergo structural changes that differ significantly in both length-scale and dynamics and so can suffer losses in their ORR activity that differ significantly in both character and magnitude. Therefore we argue that strategies for reducing ORR activity losses should implement steps for achieving control not only over the length but also over the time-scale of the structural changes of NM-TM NPs that indeed occur during PEMFC operation. Moreover, we demonstrate how such a control can be achieved and thereby the performance of PEMFCs improved considerably. Last but not least, we argue that the unique capabilities of in operando HE-XRD coupled to atomic PDF analysis to characterize active nanocatalysts inside operating fuel cells both in a time-resolved manner and with atomic level resolution, i.e. in 4D, can serve well the ongoing search for nanocatalysts that deliver more with less platinum.

  8. Thermal behavior of polyhalite: a high-temperature synchrotron XRD study

    DOE PAGES

    Xu, Hongwu; Guo, Xiaofeng; Bai, Jianming

    2016-09-17

    As an accessory mineral in marine evaporites, polyhalite, K 2MgCa 2(SO 4) 4·2H 2O, coexists with halite (NaCl) in salt formations, which have been considered as potential repositories for permanent storage of high-level nuclear wastes. However, because of the heat generated by radioactive decays in the wastes, polyhalite may dehydrate, and the released water will dissolve its neighboring salt, potentially affecting the repository integrity. Thus, studying the thermal behavior of polyhalite is important. In this paper, a polyhalite sample containing a small amount of halite was collected from the Salado formation at the WIPP site in Carlsbad, New Mexico. Tomore » determine its thermal behavior, in situ high-temperature synchrotron X-ray diffraction was conducted from room temperature to 1066 K with the sample powders sealed in a silica-glass capillary. At about 506 K, polyhalite started to decompose into water vapor, anhydrite (CaSO 4) and two langbeinite-type phases, K 2Ca x Mg 2-x (SO 4) 3, with different Ca/Mg ratios. XRD peaks of the minor halite disappeared, presumably due to its dissolution by water vapor. With further increasing temperature, the two langbeinite solid solution phases displayed complex variations in crystallinity, composition and their molar ratio and then were combined into the single-phase triple salt, K 2CaMg(SO 4) 3, at ~919 K. Rietveld analyses of the XRD data allowed determination of structural parameters of polyhalite and its decomposed anhydrite and langbeinite phases as a function of temperature. Finally, from the results, the thermal expansion coefficients of these phases have been derived, and the structural mechanisms of their thermal behavior been discussed.« less

  9. Structure and luminescence properties of Tb3+-doped Lu3Al5O12 films prepared by Pechini sol-gel method

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Shen, Siqing; Xie, Jianjun; Shi, Ying; Ai, Fei

    2011-02-01

    Tb3+-doped Lu3Al5O12(hereinafter referred to as LuAG:Tb) films were successfully prepared by Pechini sol-gel process and spin-coating technique on carefully cleaned (111) silicon wafer. The microstructure and optical properties of the LuAG:Tb films were studied by X-ray diffraction (XRD), atomic force microscopy(AFM), as well as photoluminescence (PL) spectra. The XRD results showed that the precursor films started to crystallize at about 900°C. All as-calcined LuAG:Tb films showed the Tb3+ characteristic emission bands.

  10. Structure and luminescence properties of Tb3+-doped Lu3Al5O12 films prepared by Pechini sol-gel method

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Shen, Siqing; Xie, Jianjun; Shi, Ying; Ai, Fei

    2010-10-01

    Tb3+-doped Lu3Al5O12(hereinafter referred to as LuAG:Tb) films were successfully prepared by Pechini sol-gel process and spin-coating technique on carefully cleaned (111) silicon wafer. The microstructure and optical properties of the LuAG:Tb films were studied by X-ray diffraction (XRD), atomic force microscopy(AFM), as well as photoluminescence (PL) spectra. The XRD results showed that the precursor films started to crystallize at about 900°C. All as-calcined LuAG:Tb films showed the Tb3+ characteristic emission bands.

  11. Green synthesis of silver nanoparticles using tannins

    NASA Astrophysics Data System (ADS)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Qureshi, Ahmad Kaleem; Awang, Khalijah

    2014-09-01

    Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.

  12. Synthesis, structure and temperature dependent luminescence of Eu3+ doped hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Luo, Xiaobing; Luo, Xiaoxia; Wang, Hongwei; Deng, Yue; Yang, Peixin; Tian, Yili

    2018-01-01

    A series of Eu3+ substituted hydroxyapatite (HA) were prepared by co-precipitation reactions. The phase, fluorescence and temperature dependent luminescence of the phosphors were investigated by X-ray diffraction (XRD) and photoluminescence (PL). It is found that the doped Eu3+ ions have entered the hexagonal lattice with no obvious secondary phase were detected by XRD. The 5D0 → 7F0 transition was clearly split into two even at room temperature. The predominate 573 nm peak illustrates Eu3+ ions occupy more Ca(II) sites. The temperature dependent luminescent results show HA:xEu might be applied as one potential optical thermometry material.

  13. Cadmium effect on structural properties of Cu{sub 2}Zn{sub 1-x}Cd{sub x}SnS{sub 4} quinternary alloys nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibraheam, A. S.; Al-Douri, Y., E-mail: yaldouri@yahoo.com; Hashim, U.

    The study report novel sensing plat of extended quinternart materials, Cu{sub 2}Zn{sub 1-x}d{sub x}SnS{sub 4} quinternary alloy nanostructures were fabricated onto oxidized silicon substrate by sol-gel method and characterized were synthesized by X-ray diffraction (XRD). The XRD peaks were shifted towered the lower angle side with increasing cadmium content. The practical size average of the Cu{sub 2}Zn{sub 1-x}d{sub x}SnS{sub 4} quinternary alloy nanostructures between 34.55 to 63.30 nm.

  14. The Structure and Infrastructure of the Global Nanotechnology Literature

    DTIC Science & Technology

    2005-01-01

    transmiss.electron.microscopi 1.3%, morpholog 1.2%, zn 1.0%, cd 1.0%, microscopi 1.0%, synthesi 0.9%, diffract.xrd 0.8%, electron 0.8%, powder 0.8%, surfact 0.8...film 2.3%, product 2.3%, hydrotherm 1.1%, tem 1.0%, synthes 0.9%, reaction 0.9%, xrd 0.9%, layer 0.8%, zn 0.8%, surfac 0.7%, cd 0.7%, magnet 0.7...0.5%, sol.gel 0.5%, thick 0.5%, materi 0.5%, laser 0.5%, reaction 0.5%, capac 0.4%, synthesi 0.4%, thin 0.4%, surfac 0.4%, nanowir 0.4%, nanoparticl

  15. Astrobiological Significance of Definitive Mineralogical Analysis of Martian Surface Samples Using the CheMin XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Feldman, S. M.; Blake, D. F.; Sarrazin, P.; Bish, D. L.; Chipera, S. J.; Vaniman, D. T.; Collins, S.

    2004-01-01

    The search for evidence of habitability, or of extant or extinct life on Mars, will initially be a search for evidence of past or present conditions supportive of life. The three key requirements for the emergence of life are thought to be liquid water; a suitable energy source; and chemical building blocks. CheMin is a miniaturized XRD/XRF (X-Ray diffraction / X-ray fluorescence) instrument which has been developed for definitive mineralogic analysis of soils and rocks on the Martian surface. The CheMin instrument can provide information that is highly relevant to each of these habitability requirements as summarized below.

  16. Interplay of structural, optical and magnetic properties in Gd doped CeO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soni, S.; Dalela, S., E-mail: sdphysics@rediffmail.com; Kumar, Sudish

    In this research wok systematic investigation on the synthesis, characterization, optical and magnetic properties of Ce{sub 1-x}Gd{sub x}O{sub 2} (where x=0.02, 0.04, 0.06, and 0.10) synthesized using the Solid-state method. Structural, Optical and Magnetic properties of the samples were investigated by X-ray diffraction (XRD), UV-VIS-NIR spectroscopy and VSM. Fluorite structure is confirmed from the XRD measurement on Gd doped CeO{sub 2} samples. Magnetic studies showed that the Gd doped polycrystalline samples display room temperature ferromagnetism and the ferromagnetic ordering strengthens with the Gd concentration.

  17. Synthesis and characterization of nanocrystalline graphite from coconut shell with heating process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wachid, Frischa M., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Perkasa, Adhi Y., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Prasetya, Fandi A., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id

    Graphite were synthesized and characterized by heating process of coconut shell with varying temperature (400, 800 and 1000°C) and holding time (3 and 5 hours). After heating process, the samples were characterized by X-ray diffraction (XRD) and analyzed by X'pert HighScore Plus Software, Scanning Electron Microcope-Energy Dispersive X-Ray (SEM-EDX) and Transmission Electron Microscope-Energy Dispersive X-Ray (TEM-EDX). Graphite and londsdaelite phase were analyzed by XRD. According to EDX analysis, the sample was heated in 1000°C got the highest content of carbon. The amorphous carbon and nanocrystalline graphite were observed by SEM-EDX and TEM-EDX.

  18. Stability of fluorite-type La 2Ce 2O 7 under extreme conditions

    DOE PAGES

    Zhang, F. X.; Tracy, C. L.; Lang, M.; ...

    2016-03-03

    Here, the structural stability of fluorite-type La 2Ce 2O 7 was studied at pressure up to ~40 GPa and under hydrothermal conditions (~1 GPa, 350 °C), respectively, using synchrotron x-ray diffraction (XRD) and Raman scattering measurements. XRD measurements indicated that fluorite-type La 2Ce 2O 7 is not stable at pressures greater than 22.6 GPa and slowly transforms to a high-pressure phase. The high-pressure phase is not stable and changes back to the fluorite-type structure when pressure is released. The La 2Ce 2O 7 fluorite is also not stable under hydrothermal conditions and begins to react with water at 200~250 °C.more » Both Raman and XRD results suggest that lanthanum hydroxide La(OH) 3 and La 3+-doped CeO 2 fluorite are the dominant products after hydrothermal treatment.« less

  19. Comparing two tetraalkylammonium ionic liquids. II. Phase transitions.

    PubMed

    Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C; Ferreira, Fabio F; Costa, Fanny N; Giles, Carlos

    2016-06-14

    Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N1444][NTf2] experiences glass transition at low temperature, whereas [N1114][NTf2] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.

  20. XRD, SEM and infrared study into the intercalation of sodium hexadecyl sulfate (SHS) into hydrocalumite.

    PubMed

    Zhang, Ping; Wang, Tianqi; Zhang, Longlong; Wu, Daishe; Frost, Ray L

    2015-12-05

    Hydrocalumite (CaAl-LDH-Cl) interacted with a natural anionic surfactant, sodium hexadecyl sulfate (SHS), was performed using an intercalation method. To understand the intercalation behavior and characterize the resulting products, powder X-ray diffraction (XRD), scan electron microscopy (SEM) and mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique were used. The XRD analysis indicated that SHS was intercalated into CaAl-LDH-Cl successfully, resulting in an expansion of the interlayer (from 0.78 nm to 2.74 nm). The bands of C-H stretching vibrations of SHS were observed in the near-infrared spectra, which indicated that the resulting products were indeed CaAl-LDH-SHS. In addition, the bands of water stretching vibrations and OH groups shifted to higher wavenumbers when SHS was intercalated into CaAl-LDH-Cl interlayer space. Copyright © 2015 Elsevier B.V. All rights reserved.

Top