Sample records for diffraction xrd particle

  1. Ostwald ripening and interparticle-diffraction effects for illite crystals

    USGS Publications Warehouse

    Eberl, D.D.; Srodon, J.

    1988-01-01

    The Warren-Averbach method, an X-ray diffraction (XRD) method used to measure mean particle thickness and particle-thickness distribution, is used to restudy sericite from the Silverton caldera. Apparent particle-thickness distributions indicate that the clays may have undergone Ostwald ripening and that this process has modified the K-Ar ages of the samples. The mechanism of Ostwald ripening can account for many of the features found for the hydrothermal alteration of illite. Expandabilities measured by the XRD peak-position method for illite/smectites (I/S) from various locations are smaller than expandabilities measured by transmission electron microscopy (TEM) and by the Warren-Averbach (W-A) method. This disparity is interpreted as being related to the presence of nonswelling basal surfaces that form the ends of stacks of illite particles (short-stack effect), stacks that, according to the theory of interparticle diffraction, diffract as coherent X-ray scattering domains. -from Authors

  2. FT-IR and Zeta potential measurements on TiO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Jaiveer; Rathore, Ravi; Kaurav, Netram, E-mail: netramkaurav@yahoo.co.uk

    2016-05-23

    In the present investigation, ultrafine TiO particles have been synthesized successfully by thermal decomposition method. The sample was characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. As-synthesized TiO nanoparticles have a cubic structure as characterized by power X-ray diffraction (XRD), which shows that TiO nanoparticles have narrow size distribution with particle size 11.5 nm. FTIR data shows a strong peak at 1300 cm{sup −1}, assignable to the Ti-O stretching vibrations mode.

  3. Measurement of fundamental illite particle thicknesses by X-ray diffraction using PVP-10 intercalation

    USGS Publications Warehouse

    Eberl, D.D.; Nüesch, R.; Šucha, Vladimír; Tsipursky, S.

    1998-01-01

    The thicknesses of fundamental illite particles that compose mixed-layer illite-smectite (I-S) crystals can be measured by X-ray diffraction (XRD) peak broadening techniques (Bertaut-Warren-Averbach [BWA] method and integral peak-width method) if the effects of swelling and XRD background noise are eliminated from XRD patterns of the clays. Swelling is eliminated by intercalating Na-saturated I-S with polyvinylpyrrolidone having a molecular weight of 10,000 (PVP-10). Background is minimized by using polished metallic silicon wafers cut perpendicular to (100) as a substrate for XRD specimens, and by using a single-crystal monochromator. XRD measurements of PVP-intercalated diagenetic, hydrothermal and low-grade metamorphic I-S indicate that there are at least 2 types of crystallite thickness distribution shapes for illite fundamental particles, lognormal and asymptotic; that measurements of mean fundamental illite particle thicknesses made by various techniques (Bertant-Warren-Averbach, integral peak width, fixed cation content, and transmission electron microscopy [TEM]) give comparable results; and that strain (small differences in layer thicknesses) generally has a Gaussian distribution in the log-normal-type illites, but is often absent in the asymptotic-type illites.

  4. An Investigation of the Interatomic Bonding Characteristics of a Ti - 51at.% Al Alloy by X-Ray Diffraction

    DTIC Science & Technology

    1991-06-01

    GROUP SUBGROUP X-ray Diffraction, XRD, TiAI, titanium , aluminum, bonding characteristics, titanium aluminides , Debye-Waller temperature factor...XRD Powder Particles (575X) .............. 47 viii I. INTRODUCTION Titanium aluminides are recognized for their high specific strength, particularly at...bonding characteristics of binary titanium aluminides . Upon the introduction of a third element to the system, a rearrangement of the valence

  5. Synthesis of Lead Sulfide Nanoparticles by Chemical Precipitation Method

    NASA Astrophysics Data System (ADS)

    Chongad, L. S.; Sharma, A.; Banerjee, M.; Jain, A.

    2016-10-01

    Lead sulfide (PbS) nanoparticles were prepared by chemical precipitation method (CPM) with the assistance of H2S gas. The microstructure and morphology of the synthesized nanoparticles have been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the PbS nanoparticles reveal formation of cubic phase. To investigate the quality of prepared nanoparticles, the particles size, lattice constant, strain, dislocation density etc. have been determined using XRD. TEM images reveal formation of cubic nanoparticles and the particle size determined from TEM images agree well with those from XRD.

  6. Elucidating the Wavelength Dependence of Phonon Scattering in Nanoparticle-Matrix Composites using Phonon Spectroscopy

    DTIC Science & Technology

    2016-07-11

    composites with x - ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Rutherford backscattering spectroscopy...RBS), particle-induced x - ray emission (PIXE), and energy dispersive x - ray spectroscopy (EDX). This work complements earlier works on CdSe...sample shows only In2Se3 and CdIn2Se4 XRD peaks (Figure 1.4e), it is stoichiometrically   Figure 1.4. X - ray diffraction patterns of (a) γ-In2Se3

  7. MUDMASTER: A Program for Calculating Crystalline Size Distributions and Strain from the Shapes of X-Ray Diffraction Peaks

    USGS Publications Warehouse

    Eberl, D.D.; Drits, V.A.; Środoń, Jan; Nüesch, R.

    1996-01-01

    Particle size may strongly influence the physical and chemical properties of a substance (e.g. its rheology, surface area, cation exchange capacity, solubility, etc.), and its measurement in rocks may yield geological information about ancient environments (sediment provenance, degree of metamorphism, degree of weathering, current directions, distance to shore, etc.). Therefore mineralogists, geologists, chemists, soil scientists, and others who deal with clay-size material would like to have a convenient method for measuring particle size distributions. Nano-size crystals generally are too fine to be measured by light microscopy. Laser scattering methods give only average particle sizes; therefore particle size can not be measured in a particular crystallographic direction. Also, the particles measured by laser techniques may be composed of several different minerals, and may be agglomerations of individual crystals. Measurement by electron and atomic force microscopy is tedious, expensive, and time consuming. It is difficult to measure more than a few hundred particles per sample by these methods. This many measurements, often taking several days of intensive effort, may yield an accurate mean size for a sample, but may be too few to determine an accurate distribution of sizes. Measurement of size distributions by X-ray diffraction (XRD) solves these shortcomings. An X-ray scan of a sample occurs automatically, taking a few minutes to a few hours. The resulting XRD peaks average diffraction effects from billions of individual nano-size crystals. The size that is measured by XRD may be related to the size of the individual crystals of the mineral in the sample, rather than to the size of particles formed from the agglomeration of these crystals. Therefore one can determine the size of a particular mineral in a mixture of minerals, and the sizes in a particular crystallographic direction of that mineral.

  8. Characterization of 17-4PH stainless steel powders produced by supersonic gas atomization

    NASA Astrophysics Data System (ADS)

    Zhao, Xin-Ming; Xu, Jun; Zhu, Xue-Xin; Zhang, Shao-Ming; Zhao, Wen-Dong; Yuan, Guo-Liang

    2012-01-01

    17-4PH stainless steel powders were prepared using a supersonic nozzle in a close-coupled gas atomization system. The characteristics of powder particles were carried out by means of a laser particle size analyzer, scanning electron microscopy (SEM), and the X-ray diffraction (XRD) technique. The results show that the mass median particle diameter is about 19.15 μm. Three main types of surface microstructures are observed in the powders: well-developed dendrite, cellular, and cellular dendrite structure. The XRD measurements show that, as the particle size decreases, the amount of fcc phase gradually decreases and that of bcc phase increases. The cooling rate is inversely related to the particle size, i.e., it decreases with an increase in particle size.

  9. X-ray diffraction and X-ray K absorption near edge studies of copper (II) complexes with amino acids

    NASA Astrophysics Data System (ADS)

    Sharma, P. K.; Mishra, Ashutosh; Malviya, Varsha; Kame, Rashmi; Malviya, P. K.

    2017-05-01

    Synthesis of copper (II) complexes [CuL1L2X].nH2O, where n=1, 2,3 (X=Cl,Br,NO3) (L1is 2,2’-bipyridine and L2 is L-tyrosine) by the chemical root method. The XRD data for the samples have been recorded. EXAFS spectra have also been recorded at the K-edge of Cu using the dispersive beam line BL-8 at 2.5 Gev Indus-2 Synchrotron radiation source at RRCAT, Indore, India. XRD and EXAFS data have been analysed using the computer software. X-ray diffraction studies of all complexes indicate their crystalline nature. Lattice parameter, bond length, particle size have been determined from XRD data.

  10. Synthesis and characterization of nanostructured titanium carbide for fuel cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Paviter; Singh, Harwinder; Singh, Bikramjeet

    2016-04-13

    Titanium carbide (TiC) nanoparticles have been successfully synthesized by carbo-thermic reaction of titanium and acetone at 800 °C. This method is relatively low temperature synthesis route. It can be used for large scale production of TiC. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA) techniques. XRD analysis confirmed the formation of single phase TiC. XRD analysis confirmed that the particles are spherical in shape with an average particle size of 13 nm. DTA analysis shows that the phase is stable upto 900 °C and the material can be used formore » high temperature applications.« less

  11. First X-Ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest Aeolian Bedform at Gale Crater

    NASA Technical Reports Server (NTRS)

    Bish, D. L.; Blake, D. F.; Vaniman, D. T.; Chipera, S. J.; Sarrazin, P.; Morris, R. V.; Ming, D. W.; Treiman, A. H.; Downs, R. T.; Morrison, S. M.; hide

    2013-01-01

    Numerous orbital and landed observations of the martian surface suggest a reasonably uniform martian soil composition, likely as a result of global aeolian mixing [1, 2]. Chemical data for martian soils are abundant [e.g., 2, 3], and phase information has been provided by lander thermal emission and Moessbauer spectroscopic measurements [3, 4, 5, 6]. However, until now no X-ray diffraction (XRD) data were available for martian soil nor has XRD ever been used on another body apart from Earth. XRD is generally considered the most definitive method for determining the crystalline phases in solid samples, and it is the method of choice for determining mineralogy. CheMin s first XRD analysis on Mars coincided with the 100th anniversary of the discovery of X-ray diffraction by von Laue. Curiosity delivered scooped samples of loose, unconsolidated material ("soil") acquired from an aeolian bedform at the Rocknest locality to instruments in the body of the rover (the laboratory). Imaging shows that the soil has a range of particle sizes, of 1-2 mm and smaller, presumably representing contributions from global, regional, and local sources.

  12. The effect of doped zinc on the structural properties of nano-crystalline (Se0.8Te0.2)100-xZnx

    NASA Astrophysics Data System (ADS)

    Kumar, Arun; Singh, Harkawal; Gill, P. S.; Goyal, Navdeep

    2016-05-01

    The effect of metallic zinc (Zn) on the structural properties of (Se0.8Te0.2)1-XZnX (x=0, 2, 6, 8, 10) samples analyzed by X-ray Diffraction (XRD). The presence of sharp peaks in XRD patterns confirmed the crystalline nature of the samples and is indexed in orthorhombic crystal structure. XRD studies predicts that the average particle size of all the samples are about 46.29 nm, which is less than 100 nm and hence have strong tendency of agglomeration. Williamson-Hall plot method was used to evaluate the lattice strain. The dislocation density and no. of unit cells of the samples were calculated which show the inverse relation with each other. Morphology index derived from FWHM of XRD data explains the direct relationship with the particle size.

  13. Fabricating the spherical and flake silver powder used for the optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Ju, Wei; Ma, Wangjing; Zhang, Fangzhi; Chen, Yixiang; Xie, Jinpeng

    2018-01-01

    The spherical and flake silver powder with different particle size for the optoelectronic devices was partly prepared by using chemical reduction and ball milling method, and charactered by scanning electron microscope (SEM), X-ray diffraction (XRD), laser particle size analyzer and thermo-gravimetric(TG) analyzer. The particle size of three series of spherical silver powder fabricated by chemical reduction is about 1.5μm, 1μm and 0.6μm, respectively; after being mechanical milling, the particle size of flake silver powder with high flaky rate is about 10μm, 6μm and 2μm respectively. Thermo gravimetric (TG) and XRD analyses showed that the silver powders have high purity and crystalline, and then the laser particle size and SEM analyses showed that the silver powders has good uniformity.

  14. Transmission X-ray Diffraction (XRD) Patterns Relevant to the MSL Chemin Amorphous Component: Sulfates And Silicates

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Rampe, E. B.; Graff, T. G.; Archer, P. D., Jr.; Le, L.; Ming, D. W.; Sutter, B.

    2015-01-01

    The Mars Science Laboratory (MSL) CheMin instrument on the Curiosity rover is a transmission X-ray diffractometer (Co-Kalpha radiation source and a approx.5deg to approx.52deg 2theta range) where the analyzed powder samples are constrained to have discrete particle diameters <150 microns by a sieve. To date, diffraction patterns have been obtained for one basaltic soil (Rocknest (RN)) and four drill fines of coherent rock (John Klein (JK), Cumberland (CB), Windjana (WJ), and Confidence Hills (CH)). The CheMin instrument has detected and quantified the abundance of both primary igneous (e.g., feldspar, olivine, and pyroxene) and secondary (e.g., Ca-sulfates, hematite, akaganeite, and Fe-saponite) minerals. The diffraction patterns of all CheMin samples are also characterized by a broad diffraction band centered near 30deg 2theta and by increasing diffraction intensity (scattering continuum) from approx.15deg to approx.5deg, the 2theta minimum. Both the broad band and the scattering continuum are attributed to the presence of an XRD amorphous component. Estimates of amorphous component abundance, based on the XRD data itself and on mass-balance calculations using APXS data crystalline component chemistry derived from XRD data, martian meteorites, and/or stoichiometry [e.g., 6-9], range from approx.20 wt.% to approx.50 wt.% of bulk sample. The APXSbased calculations show that the amorphous component is rich in volatile elements (esp. SO3) and is not simply primary basaltic glass, which was used as a surrogate to model the broad band in the RN CheMin pattern. For RN, the entire volatile inventory (except minor anhydrite) is assigned to the amorphous component because no volatile-bearing crystalline phases were reported within detection limits [2]. For JK and CB, Fesaponite, basanite, and akaganeite are volatile-bearing crystalline components. Here we report transmission XRD patterns for sulfate and silicate phases relevant to interpretation of MSL-CheMin XRD amorphous components.

  15. Improving aluminum particle reactivity by annealing and quenching treatments: Synchrotron X-ray diffraction analysis of strain

    DOE PAGES

    McCollum, Jena; Pantoya, Michelle L.; Tamura, Nobumichi

    2015-11-06

    In bulk material processing, annealing and quenching metals such as aluminum (Al) can improve mechanical properties. On a single particle level, affecting mechanical properties may also affect Al particle reactivity. Our study examines the effect of annealing and quenching on the strain of Al particles and the corresponding reactivity of aluminum and copper oxide (CuO) composites. Micron-sized Al particles were annealed and quenched according to treatments designed to affect Al mechanical properties. Furthermore, synchrotron X-ray diffraction (XRD) analysis of the particles reveals that thermal treatment increased the dilatational strain of the aluminum-core, alumina-shell particles. Flame propagation experiments also show thermalmore » treatments effect reactivity when combined with CuO. An effective annealing and quenching treatment for increasing aluminum reactivity was identified. Our results show that altering the mechanical properties of Al particles affects their reactivity.« less

  16. MultiLaue: A Technique to Extract d-spacings from Laue XRD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi

    We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less

  17. MultiLaue: A Technique to Extract d-spacings from Laue XRD

    DOE PAGES

    Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi; ...

    2016-07-25

    We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less

  18. Synthesis of Silver and Gold Nanoparticles Using Antioxidants from Blackberry, Blueberry, Pomegranate, and Turmeric Extracts

    EPA Science Inventory

    Greener synthesis of Ag and Au nanoparticles is described using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. The synthesized particles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HR...

  19. Synthesis and characterization of porous CaCO3 micro/nano-particles

    NASA Astrophysics Data System (ADS)

    Achour, A.; Arman, A.; Islam, M.; Zavarian, A. A.; Basim Al-Zubaidi, A.; Szade, J.

    2017-06-01

    Porous CaCO3 particles, both micro and nano sized, were synthesized in a mixture of Ca(OH)2, hyaluronic acid (HA), glycine, NaOH and NaCl solution with supercritical carbon dioxide. The particles were characterized using X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscope, Raman spectroscope (RS), X-ray photoelectron spectroscope (XPS) and scanning electron microscope techniques. All these techniques showed that the particles crystallize into only one CaCO3 structure, namely the vaterite phase. In addition, FTIR, RS and XPS indicated the presence of residual reactive species i.e. glycine, NaCl, and HA. The XRD results confirmed the presence of NaCl and γ-glycine, which is a crystalline material. Moreover, the HA seems to be mostly embedded in the bulk of the micro-particles. Such materials are promising for biomedical applications such as drug delivery.

  20. Effect of particle size and laser power on the Raman spectra of CuAlO2 delafossite nanoparticles

    NASA Astrophysics Data System (ADS)

    Yassin, O. A.; Alamri, S. N.; Joraid, A. A.

    2013-06-01

    A transparent conductive oxide CuAlO2 delafossite is studied using x-ray powder diffraction (XRD) and micro-Raman spectroscopy measurements as a function of the particle size and laser power from 2 to 20 mW. The XRD results indicate that the lattice parameters and the cell volume expand as the particle size reduces. Large red shifts (˜60 cm-1) and line broadening (˜50 cm-1) are observed as the particle size becomes of the order of 13 nm. These huge values can only be justified if collective effects on the Raman spectra created by the lattice expansion, confinement of phonons and enhanced phonon-phonon interactions are included in the interpretations of the Raman spectra of the CuAlO2 nanoparticles.

  1. Setup for in situ x-ray diffraction study of swift heavy ion irradiated materials.

    PubMed

    Kulriya, P K; Singh, F; Tripathi, A; Ahuja, R; Kothari, A; Dutt, R N; Mishra, Y K; Kumar, Amit; Avasthi, D K

    2007-11-01

    An in situ x-ray diffraction (XRD) setup is designed and installed in the materials science beam line of the Pelletron accelerator at the Inter-University Accelerator Centre for in situ studies of phase change in swift heavy ion irradiated materials. A high vacuum chamber with suitable windows for incident and diffracted X-rays is integrated with the goniometer and the beamline. Indigenously made liquid nitrogen (LN2) temperature sample cooling unit is installed. The snapshots of growth of particles with fluence of 90 MeV Ni ions were recorded using in situ XRD experiment, illustrating the potential of this in situ facility. A thin film of C60 was used to test the sample cooling unit. It shows that the phase of the C60 film transforms from a cubic lattice (at room temperature) to a fcc lattice at around T=255 K.

  2. Setup for in situ x-ray diffraction study of swift heavy ion irradiated materials

    NASA Astrophysics Data System (ADS)

    Kulriya, P. K.; Singh, F.; Tripathi, A.; Ahuja, R.; Kothari, A.; Dutt, R. N.; Mishra, Y. K.; Kumar, Amit; Avasthi, D. K.

    2007-11-01

    An in situ x-ray diffraction (XRD) setup is designed and installed in the materials science beam line of the Pelletron accelerator at the Inter-University Accelerator Centre for in situ studies of phase change in swift heavy ion irradiated materials. A high vacuum chamber with suitable windows for incident and diffracted X-rays is integrated with the goniometer and the beamline. Indigenously made liquid nitrogen (LN2) temperature sample cooling unit is installed. The snapshots of growth of particles with fluence of 90MeV Ni ions were recorded using in situ XRD experiment, illustrating the potential of this in situ facility. A thin film of C60 was used to test the sample cooling unit. It shows that the phase of the C60 film transforms from a cubic lattice (at room temperature) to a fcc lattice at around T =255K.

  3. XRD measurement of mean thickness, thickness distribution and strain for illite and illite-smectite crystallites by the Bertaut-Warren-Averbach technique

    USGS Publications Warehouse

    Drits, Victor A.; Eberl, Dennis D.; Środoń, Jan

    1998-01-01

    A modified version of the Bertaut-Warren-Averbach (BWA) technique (Bertaut 1949, 1950; Warren and Averbach 1950) has been developed to measure coherent scattering domain (CSD) sizes and strains in minerals by analysis of X-ray diffraction (XRD) data. This method is used to measure CSD thickness distributions for calculated and experimental XRD patterns of illites and illite-smectites (I-S). The method almost exactly recovers CSD thickness distributions for calculated illite XRD patterns. Natural I-S samples contain swelling layers that lead to nonperiodic structures in the c* direction and to XRD peaks that are broadened and made asymmetric by mixed layering. Therefore, these peaks cannot be analyzed by the BWA method. These difficulties are overcome by K-saturation and heating prior to X-ray analysis in order to form 10-Å periodic structures. BWA analysis yields the thickness distribution of mixed-layer crystals (coherently diffracting stacks of fundamental illite particles). For most I-S samples, CSD thickness distributions can be approximated by lognormal functions. Mixed-layer crystal mean thickness and expandability then can be used to calculate fundamental illite particle mean thickness. Analyses of the dehydrated, K-saturated samples indicate that basal XRD reflections are broadened by symmetrical strain that may be related to local variations in smectite interlayers caused by dehydration, and that the standard deviation of the strain increases regularly with expandability. The 001 and 002 reflections are affected only slightly by this strain and therefore are suited for CSD thickness analysis. Mean mixed-layer crystal thicknesses for dehydrated I-S measured by the BWA method are very close to those measured by an integral peak width method.

  4. Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica

    NASA Astrophysics Data System (ADS)

    Sett, Arghya; Gadewar, Manoj; Sharma, Pragya; Deka, Manab; Bora, Utpal

    2016-06-01

    In this study, we report a novel method of gold nanoparticle (AuNP) synthesis using aqueous fruit extract of Dillenia indica. The phytochemicals present in the fruit extract act as an effective reducing and capping agent to synthesize AuNPs. The synthesized AuNPs were characterized by spectrophotometry, transmission electron microscopy (TEM), x-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. TEM studies revealed the particles of various sizes and mainly spherical in shape. Selected-area electron diffraction (SAED) patterns and high-resolution transmission electron microscopy (HRTEM) images confirmed the crystallinity of the particles. The XRD patterns showed peaks at (111), (200), (220) which exhibited preferential orientation of the AuNPs as face-centered cubic crystal. FTIR measurements confirmed the coating of phenolic compounds on the AuNPs indicating a possible role of biomolecules for the capping and efficient stabilization of the AuNPs. The synthesized AuNPs did not show any form of cytotoxicity in the normal fibroblast cell line L929.

  5. Effect of Synthesis Parameter on Crystal Structures and Magnetic Properties of Magnesium Nickel Ferrite (Mg0.5Ni0.5Fe2O4) Nanoparticles

    NASA Astrophysics Data System (ADS)

    Maulia, R.; Putra, R. A.; Suharyadi, E.

    2017-05-01

    Mg0.5Ni0.5Fe2O4 nanoparticles have been successfully synthesized by using co-precipitation method and varying the synthesis parameter, i.e. synthesis temperature and NaOH concentration. X-ray Diffraction (XRD) pattern showed that nanoparticles have cubic spinel structures with an additional phase of γ-Fe2O3 and particle size varies within the range of 4.3 - 6.7 nm. This variation is due to the effect of various synthesis parameters. Transmission Electron Microscopy (TEM) image showed that the nanoparticles exhibited agglomeration. The observed diffraction ring from selected area electron diffraction showed that the sample was polycrystalline and confirmed the peak appearing in XRD. The coercivities showed an increasing trend with an increase in particle size from 44.7 Oe to 49.6 Oe for variation of NaOH concentration, and a decreasing trend with an increase in particle size from 46.8 to 45.1 Oe for variation of synthesis temperature. The maximum magnetization showed an increasing trend with an increase in the ferrite phase from 3.7 emu/g to 5.4 emu/g possessed in the sample with variations on NaOH concentration. The maximum magnetization for the sample with variations on synthesis temperature varied from 4.4 emu/g to 5.7 emu/g due to its crystal structures.

  6. Anatomy of a metabentonite: nucleation and growth of illite crystals and their colescence into mixed-layer illite/smectite

    USGS Publications Warehouse

    Eberl, D.D.; Blum, A.E.; Serravezza, M.

    2011-01-01

    The illite layer content of mixed-layer illite/smectite (I/S) in a 2.5 m thick, zoned, metabentonite bed from Montana decreases regularly from the edges to the center of the bed. Traditional X-ray diffraction (XRD) pattern modeling using Markovian statistics indicated that this zonation results from a mixing in different proportions of smectite-rich R0 I/S and illite-rich R1 I/S, with each phase having a relatively constant illite layer content. However, a new method for modeling XRD patterns of I/S indicates that R0 and R1 I/S in these samples are not separate phases (in the mineralogical sense of the word), but that the samples are composed of illite crystals that have continuous distributions of crystal thicknesses, and of 1 nm thick smectite crystals. The shapes of these distributions indicate that the crystals were formed by simultaneous nucleation and growth. XRD patterns for R0 and R1 I/S arise by interparticle diffraction from a random stacking of the crystals, with swelling interlayers formed at interfaces between crystals from water or glycol that is sorbed on crystal surfaces. It is the thickness distributions of smectite and illite crystals (also termed fundamental particles, or Nadeau particles), rather than XRD patterns for mixed-layer I/S, that are the more reliable indicators of geologic history, because such distributions are composed of well-defined crystals that are not affected by differences in surface sorption and particle arrangements, and because their thickness distribution shapes conform to the predictions of crystal growth theory, which describes their genesis.

  7. Corrosion Resistance of a Sand Particle-Modified Enamel Coating Applied to Smooth Steel Bars

    PubMed Central

    Tang, Fujian; Chen, Genda; Brow, Richard K.; Koenigstein, Michael L.

    2014-01-01

    The protective performance of a sand particle-modified enamel coating on reinforcing steel bars was evaluated in 3.5 wt% NaCl solution by electrochemical impedance spectroscopy (EIS). Seven percentages of sand particles by weight were investigated: 0%, 5%, 10%, 20%, 30%, 50% and 70%. The phase composition of the enamel coating and sand particles were determined with the X-ray diffraction (XRD) technique. The surface and cross-sectional morphologies of the sand particle-modified enamel coating were characterized using scanning electron microscopy (SEM). XRD tests revealed three phases of sand particles: SiO2, CaCO3 and MgCO3. SEM images demonstrated that the enamel coating wetted well with the sand particles. However, a weak enamel coating zone was formed around the sand particles due to concentrated air bubbles, leading to micro-cracks as hydrogen gas pressure builds up and exceeds the tensile strength of the weak zone. As a result, the addition of sand particles into the enamel coating reduced both the coating and corrosion resistances. PMID:28788203

  8. CdO-NPs; synthesis from 1D new nano Cd coordination polymer, characterization and application as anti-cancer drug for reducing the viability of cancer cells

    NASA Astrophysics Data System (ADS)

    Afzalian Mend, Behnaz; Delavar, Mahmoud; Darroudi, Majid

    2017-04-01

    The hexagonal CdO nano-particles (CdO-NPs) was prepared using new nano Cd coordination polymer, [Cd(NO3)(bipy)(pzca)]n (1) as a precursor, through direct calcination process at 500 °C. The precursor (1) was synthesized by sonochemical method. The new nano compound (1) was characterized by IR spectroscopy, elemental analyses, X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and thermal gravimetric analyses. The structure of nano coordination polymer was determined by comparing the XRD pattern of nano and single-crystal of compound (1). The nano CdO was characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). In addition, the activity and efficiency of nano CdO as an anti-cancer drug was studied on cancer cells with different concentration. The results shows that the viability of cancer cells reduced above 2 μg/mL of CdO-NPs concentration.

  9. Preparation of biocompatible magnetite-carboxymethyl cellulose nanocomposite: characterization of nanocomposite by FTIR, XRD, FESEM and TEM.

    PubMed

    Habibi, Neda

    2014-10-15

    The preparation and characterization of magnetite-carboxymethyl cellulose nano-composite (M-CMC) material is described. Magnetite nano-particles were synthesized by a modified co-precipitation method using ferrous chloride tetrahydrate and ferric chloride hexahydrate in ammonium hydroxide solution. The M-CMC nano-composite particles were synthesized by embedding the magnetite nanoparticles inside carboxymethyl cellulose (CMC) using a freshly prepared mixture of Fe3O4 with CMC precursor. Morphology, particle size, and structural properties of magnetite-carboxymethyl cellulose nano-composite was accomplished using X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. As a result, magnetite nano-particles with an average size of 35nm were obtained. The biocompatible Fe3O4-carboxymethyl cellulose nano-composite particles obtained from the natural CMC polymers have a potential range of application in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Synthesis and characterization of Ni doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Gedam, P. P.; Ganorkar, R. P.; Mahure, M. A.; Pahurkar, V. G.; Muley, G. G.

    2018-05-01

    In this paper, we present synthesis of L-valine assisted surface modification of Ni doped ZnO nanoparticles (NPs) using chemical precipitation method. Samples were calcined at 500oC for 2h. Uncalcined and calcined samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible (UV-vis) spectroscopy. Ni doped ZnO NPs with average particle size of 8 nm have been successfully obtained using L-valine as surface modifying agent. Increase in the particle size was observed after the calcination. XRD and TEM studies confirmed the purity, surface morphology and hexagonal wurtzite crystal structure of ZnO NPs. UV-vis spectroscopy indicated the blue shift of excitons absorption wavelength and surface modification by L-valine.

  11. Ultrasonic-assisted synthesis of nano lead(II) coordination polymer as precursors for preparation of lead(II) oxide nano-structures: Thermal, optical properties and XRD studies.

    PubMed

    Ghavidelaghdam, Elham; Shahverdizadeh, Gholam Hossein; Motameni Tabatabai, Javad; Mirtamizdoust, Babak

    2018-04-01

    Nano structure of a lead (II) coordination polymer [Pb 2 (C 2 Cl 3 O 2 ) 2 (NO 3 ) 2 (C l2 H 8 N 2 ) 2 ] n (1), has been synthesized by a sonochemical method in different concentrations. The nano particles were characterized by scanning electron microscopy (SEM) X-ray powder diffraction (XRD), FT-IR spectroscopy and elemental analyses. The thermal stability of nano structure is closely investigated via thermal gravimetric (TGA), and compared with crystalline structure. The compounds are then heated to 600 °C to produce PbO nano particles. The resulting PbO is characterized through XRD and SEM analyses. Concentration of initial reagents effects on size and morphology of nano-structured compound 1 have been studied and show that low concentrations of initial reagents decreased particles size and leaded to uniform nano particles morphology. The photoluminescence properties of the prepared compound, as crystalline and as nanoparticles, have been investigated. The result showed a good correlation between the size and emission wavelength. Copyright © 2017. Published by Elsevier B.V.

  12. Synthesis and Properties of Ortho-Nitro-Fe Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, A.; Mishra, Niyati; Sharma, R.

    2011-07-15

    Ortho-Nitro-Fe complex (Transition metal complex) has synthesized by chemical route method and properties of made complex has characterized by X-Ray diffraction (XRD), Moessbauer spectroscopy, Fourier transformation infra-red spectroscopy (FTIR) and X-Ray photoelectron spectroscopy (XPS). XRD analysis shows that sample is crystalline in nature and having particle size in the range of few nano meters. Moessbauer spectroscopy at room temperature shows the oxidation state of Iron (central metal ion) after complaxasion. FTIR spectra of the complex confirms the coordination of metal ion with ligand.

  13. Synthesis and Raman scattering of GaN nanorings, nanoribbons and nanowires

    NASA Astrophysics Data System (ADS)

    Li, Z. J.; Chen, X. L.; Li, H. J.; Tu, Q. Y.; Yang, Z.; Xu, Y. P.; Hu, B. Q.

    Low-dimensional GaN materials, including nanorings, nanoribbons and smooth nanowires have been synthesized by reacting gallium and ammonia using Ag particles as a catalyst on the substrate of MgO single crystals. They were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). EDX, XRD indicated that the low-dimensional nanomaterials were wurtzite GaN. New features are found in Raman scatterings for these low-dimensional GaN materials, which are different from the previous observations of GaN materials.

  14. In-situ determination of metallic variation and multi-association in single particles by combining synchrotron microprobe, sequential chemical extraction and multivariate statistical analysis.

    PubMed

    Zhu, Yu-Min; Zhang, Hua; Fan, Shi-Suo; Wang, Si-Jia; Xia, Yi; Shao, Li-Ming; He, Pin-Jing

    2014-07-15

    Due to the heterogeneity of metal distribution, it is challenging to identify the speciation, source and fate of metals in solid samples at micro scales. To overcome these challenges single particles of air pollution control residues were detected in situ by synchrotron microprobe after each step of chemical extraction and analyzed by multivariate statistical analysis. Results showed that Pb, Cu and Zn co-existed as acid soluble fractions during chemical extraction, regardless of their individual distribution as chlorides or oxides in the raw particles. Besides the forms of Fe2O3, MnO2 and FeCr2O4, Fe, Mn, Cr and Ni were closely associated with each other, mainly as reducible fractions. In addition, the two groups of metals had interrelations with the Si-containing insoluble matrix. The binding could not be directly detected by micro-X-ray diffraction (μ-XRD) and XRD, suggesting their partial existence as amorphous forms or in the solid solution. The combined method on single particles can effectively determine metallic multi-associations and various extraction behaviors that could not be identified by XRD, μ-XRD or X-ray absorption spectroscopy. The results are useful for further source identification and migration tracing of heavy metals. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Functional biocompatible magnetite-cellulose nanocomposite fibrous networks: Characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis.

    PubMed

    Habibi, Neda

    2015-02-05

    The preparation and characterization of functional biocompatible magnetite-cellulose nano-composite fibrous material is described. Magnetite-cellulose nano-composite was prepared by a combination of the solution-based formation of magnetic nano-particles and subsequent coating with amino celluloses. Characterization was accomplished using X-ray powder diffraction (XRD), fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. The peaks of Fe3O4 in the XRD pattern of nanocomposite confirm existence of the nanoparticles in the amino cellulose matrix. Magnetite-cellulose particles exhibit an average diameter of roughly 33nm as demonstrated by field emission scanning electron microscopy. Magnetite nanoparticles were irregular spheres dispersed in the cellulose matrix. The vibration corresponding to the NCH3 functional group about 2850cm(-1) is assigned in the FTIR spectra. Functionalized magnetite-cellulose nano-composite polymers have a potential range of application as targeted drug delivery system in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Synthesis of nano-sized ZnO particles by co-precipitation method with variation of heating time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwaningsih, S. Y., E-mail: sriyanisaputri@gmail.com; Pratapa, S.; Triwikantoro

    Zinc oxide powders have been synthesized by a co-precipitation method at low temperature (85 °C), using zinc acetate dihydrate, ammonia, hydrochloric acid solutions as the reactants. A number of process parameters such as reaction temperature, solution basicity or pH and heating time are the main factors affecting the morphology and physical properties of the ZnO nanostructures. In this work the effect of heating time on the morphology and particles size were studied. The as-synthesized ZnO powders were characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The samples were also analyzed using Fourier transform infrared (FTIR). Rietveld refinementmore » of XRD data confirms that ZnO crystallizes in the hexagonal wurtzite structure with high degree of purity and the (101) plane predominant. The XRD results show that the average crystallite sizes were about 66, 27 and 12 nm for 3, 4 and 5 h of heating times, respectively. The XRD analysis indicated that a fraction of nano-sized ZnO powders were in the form of aggregates, which was also verified by TEM image. The TEM photograph demonstrated that the nano-sized ZnO particles were a pseudo-spherical shape.« less

  17. Determination of Microstructural Parameters of Nanocrystalline Hydroxyapatite Prepared by Mechanical Alloying Method

    NASA Astrophysics Data System (ADS)

    Joughehdoust, Sedigheh; Manafi, Sahebali

    2011-12-01

    Hydroxyapatite [HA, Ca10(PO4)6(OH)2] is chemically similar to the mineral component of bones and hard tissues. HA can support bone ingrowth and osseointegration when used in orthopaedic, dental and maxillofacial applications. In this research, HA nanostructure was synthesized by mechanical alloying method. Phase development, particle size and morphology of HA were investigated by X-ray diffraction (XRD) pattern, zetasizer instrument, scanning electron microscopy (SEM), respectively. XRD pattern has been used to determination of the microstructural parameters (crystallite size, lattice parameters and crystallinity percent) by Williamson-Hall equation, Nelson-Riley method and calculating the areas under the peaks, respectively. The crystallite size and particle size of HA powders were in nanometric scales. SEM images showed that some parts of HA particles have agglomerates. The ratio of lattice parameters of synthetic hydroxyapatite (c/a = 0.73) was determined in this study is the same as natural hydroxyapatite structure.

  18. Stable tetragonal phase and magnetic properties of Fe-doped HfO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Sales, T. S. N.; Cavalcante, F. H. M.; Bosch-Santos, B.; Pereira, L. F. D.; Cabrera-Pasca, G. A.; Freitas, R. S.; Saxena, R. N.; Carbonari, A. W.

    2017-05-01

    In this paper, the effect in structural and magnetic properties of iron doping with concentration of 20% in hafnium dioxide (HfO2) nanoparticles is investigated. HfO2 is a wide band gap oxide with great potential to be used as high-permittivity gate dielectrics, which can be improved by doping. Nanoparticle samples were prepared by sol-gel chemical method and had their structure, morphology, and magnetic properties, respectively, investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with electron back scattering diffraction (EBSD), and magnetization measurements. TEM and SEM results show size distribution of particles in the range from 30 nm to 40 nm with small dispersion. Magnetization measurements show the blocking temperature at around 90 K with a strong paramagnetic contribution. XRD results show a major tetragonal phase (94%).

  19. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    NASA Astrophysics Data System (ADS)

    Stan, Manuela; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut; Vodnar, Dan Cristian; Katona, Gabriel

    2015-12-01

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn2+ ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.

  20. Metal copper films deposited on cenosphere particles by magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Yu, Xiaozheng; Xu, Zheng; Shen, Zhigang

    2007-05-01

    Metal copper films with thicknesses from several nanometres to several micrometres were deposited on the surface of cenosphere particles by the magnetron sputtering method under different working conditions. An ultrasonic vibrating generator equipped with a conventional magnetron sputtering apparatus was used to prevent the cenosphere substrates from accumulating during film growth. The surface morphology, the chemical composition, the average grain size and the crystallization of cenosphere particles were characterized by field emission scanning electron microscopy (FE-SEM), inductively coupled plasma-atom emission spectrometer, x-ray photoelectron spectroscopy and x-ray diffraction (XRD) analysis, respectively, before and after the plating process. The results indicate that the copper films were successfully deposited on cenosphere particles. It was found from the FE-SEM results that the films were well compacted and highly uniform in thickness. The XRD results show that the copper film coated on cenospheres has a face centred cubic structure and the crystallization of the film sample increases with increasing sputtering power.

  1. Synthesis, characterization, and hydrogen uptake studies of magnesium nanoparticles by solution reduction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rather, Sami ullah, E-mail: rathersami@gmail.com

    2014-12-15

    Graphical abstract: X-ray diffraction (XRD) pattern of magnesium nanoparticles synthesized by solution reduction method with and without TOPO. - Highlights: • Simple and convenient method of preparing Mg nanoparticles. • Characterized by XRD, SEM, FESEM and TEM. • Trioctylphosphine oxide offers a greater control over the size of the particles. • Hydrogen uptake of samples at different temperatures and pressure of 4.5 MPa. - Abstract: Facile and simple, surfactant-mediated solution reduction method was used to synthesize monodisperse magnesium nanoparticles. Little amount of magnesium oxide nanoparticles were also formed due to the presence of TOPO and easy oxidation of magnesium, eventhough,more » all precautions were taken to avoid oxidation of the sample. Precise size control of particles was achieved by carefully varying the concentration ratio of two different types of surfactants, – trioctylphosphine oxide and hexadecylamine. Recrystallized magnesium nanoparticle samples with and without TOPO were analyzed by X-ray diffraction, scanning electron microscope, field emission scanning electron microscope, and transmission electron microscope. The peak diameters of particles were estimated from size distribution analysis of the morphological data. The particles synthesized in the presence and absence of TOPO found to have diameters 46.5 and 34.8 nm, respectively. This observed dependence of particle size on the presence of TOPO offers a convenient method to control the particle size by simply using appropriate surfactant concentrations. Exceptional enhancement in hydrogen uptake and kinetics in synthesized magnesium nanoparticles as compared to commercial magnesium sample was due to the smaller particle size and improved morphology. Overall hydrogen uptake not affected by the little variation in particle size with and without TOPO.« less

  2. Plasma Sprayed Hydroxyapatite Coatings: Influence of Spraying Power on Microstructure

    NASA Astrophysics Data System (ADS)

    Mohd, S. M.; Abd, M. Z.; Abd, A. N.

    2010-03-01

    The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to enhance the bonding between the implant and bone in human body. The coating process was implemented at different spraying power for each spraying condition. The coatings formed from a rapid solidification of molten and partly molten particles that impact on the surface of substrate at high velocity and high temperature. The study was concentrated on different spraying power that is between 23 to 31 kW. The effect of different power on the coatings microstructure was investigated using scanning electron microscope (SEM) and phase composition was evaluated using X-ray diffraction (XRD) analysis. The coatings surface morphology showed distribution of molten, partially melted particles and some micro-cracks. The produced coatings were found to be porous as observed from the cross-sectional morphology. The coatings XRD results indicated the presence of crystalline phase of HA and each of the patterns was similar to the initial powder. Regardless of different spraying power, all the coatings were having similar XRD patterns.

  3. Influences of Co doping on the structural and optical properties of ZnO nanostructured

    NASA Astrophysics Data System (ADS)

    Majeed Khan, M. A.; Wasi Khan, M.; Alhoshan, Mansour; Alsalhi, M. S.; Aldwayyan, A. S.

    2010-07-01

    Pure and Co-doped ZnO nanostructured samples have been synthesized by a chemical route. We have studied the structural and optical properties of the samples by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), field-emission transmission electron microscope (FETEM), energy-dispersive X-ray (EDX) analysis and UV-VIS spectroscopy. The XRD patterns show that all the samples are hexagonal wurtzite structures. Changes in crystallite size due to mechanical activation were also determined from X-ray measurements. These results were correlated with changes in particle size followed by SEM and TEM. The average crystallite sizes obtained from XRD were between 20 to 25 nm. The TEM images showed the average particle size of undoped ZnO nanostructure was about 20 nm whereas the smallest average grain size at 3% Co was about 15 nm. Optical parameters such as absorption coefficient ( α), energy band gap ( E g ), the refractive index ( n), and dielectric constants ( σ) have been determined using different methods.

  4. Synthesis of nanocrystalline CdS thin film by SILAR and their characterization

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Satpati, B.; Bhattacharyya, S. R.; Ghosh, R.; Mitra, P.

    2015-01-01

    Cadmium sulphide (CdS) thin film was prepared by successive ion layer adsorption and reaction (SILAR) technique using ammonium sulphide as anionic precursor. Characterization techniques of XRD, SEM, TEM, FTIR and EDX were utilized to study the microstructure of the films. Structural characterization by x-ray diffraction reveals the polycrystalline nature of the films. Cubic structure is revealed from X-ray diffraction and selected area diffraction (SAD) patterns. The particle size estimated using X-ray line broadening method is approximately 7 nm. Instrumental broadening was taken into account while particle size estimation. TEM shows CdS nanoparticles in the range 5-15 nm. Elemental mapping using EFTEM reveals good stoichiometric composition of CdS. Characteristic stretching vibration mode of CdS was observed in the absorption band of FTIR spectrum. Optical absorption study exhibits a distinct blue shift in band gap energy value of about 2.56 eV which confirms the size quantization.

  5. Study of structural and magnetic properties of cobalt ferrite nanoparticles sintered at different temperature

    NASA Astrophysics Data System (ADS)

    Kumari, Mukesh; Bhatnagar, Mukesh Chander

    2018-05-01

    Cobalt ferrite (CFO) has been synthesized in the form of nanoparticles (NPs) through sol-gel auto-combustion method. The prepared NPs of CFO were sintered for four hours at various temperatures from 300°C to 900°C. The physical properties of the sintered samples have been optimized using X-ray diffraction (XRD), Raman spectroscopy and physical properties measurement system (PPMS). The XRD and Raman studies have confirmed the cubic spinel phase formation of CFO NPs. XRD results showed that as we increase the sintering temperature the crystallite size of particles increases. Whereas the magnetic studies revealed that the saturation magnetization (MS) increases while the coercivity (HC) of nanoparticles decreases with increase of sintering temperature.

  6. Preparation and characterization of Fe50Co50 nanostructured alloy

    NASA Astrophysics Data System (ADS)

    Yepes, N.; Orozco, J.; Caamaño, Z.; Mass, J.; Pérez, G.

    2014-04-01

    Nanostructured Fe50Co50 alloy was prepared by mechanical alloying of Fe and Co powders in a planetary high energy ball milling. The microstructure and structural evolution of the alloy have been investigated as a function of milling time (0 h, 8 h, 20 h and 35 h) by scanning electron microscopy (SEM) and X-Ray diffraction (XRD) characterization techniques. SEM micrographs showed different powder particles morphologies during the mechanical alloying stages. By XRD analysis it could be identified the structural phases of the alloy and the crystallite size was calculated as a function of the milling time.

  7. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    PubMed

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  8. Coherent 3D nanostructure of γ-Al{sub 2}O{sub 3}: Simulation of whole X-ray powder diffraction pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakharukova, V.P., E-mail: verapakh@catalysis.ru; Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk; Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Novosibirsk 630090

    2017-02-15

    The structure and nanostructure features of nanocrystalline γ-Al{sub 2}O{sub 3} obtained by dehydration of boehmite with anisotropic platelet-shaped particles were investigated. The original models of 3D coherent nanostructure of γ-Al{sub 2}O{sub 3} were constructed. The models of nanostructured γ-Al{sub 2}O{sub 3} particles were first confirmed by a direct simulation of powder X–Ray diffraction (XRD) patterns using the Debye Scattering Equation (DSE) with assistance of high-resolution transmission electron microscopy (HRTEM) study. The average crystal structure of γ-Al{sub 2}O{sub 3} was shown to be tetragonally distorted. The experimental results revealed that thin γ-Al{sub 2}O{sub 3} platelets were heterogeneous on a nanometer scalemore » and nanometer-sized building blocks were separated by partially coherent interfaces. The XRD simulation results showed that a specific packing of the primary crystalline blocks in the nanostructured γ-Al{sub 2}O{sub 3} particles with formation of planar defects on (001), (100), and (101) planes nicely accounted for pronounced diffuse scattering, anisotropic peak broadening and peak shifts in the experimental XRD pattern. The identified planar defects in cation sublattice seem to be described as filling cation non-spinel sites in existing crystallographic models of γ-Al{sub 2}O{sub 3} structure. The overall findings provided an insight into the complex nanostructure, which is intrinsic to the metastable γ-Al{sub 2}O{sub 3} oxide. - Highlights: • Thin plate-like crystallites of γ-Al{sub 2}O{sub 3} were obtained. • Models of 3D coherent nanostructure of γ-Al{sub 2}O{sub 3} were constructed. • Models were verified by simulating XRD patterns using the Debye Scattering Equation. • Specific broadening of XRD peaks was explained in terms of planar defects. • Primary crystalline blocks in γ-Al{sub 2}O{sub 3} are separated by partially coherent interfaces.« less

  9. Chemical Species, Micromorphology, and XRD Fingerprint Analysis of Tibetan Medicine Zuotai Containing Mercury

    PubMed Central

    Li, Cen; Yang, Hongxia; Xiao, Yuancan; Zhandui; Sanglao; Wang, Zhang; Ladan, Duojie; Bi, Hongtao

    2016-01-01

    Zuotai (gTso thal) is one of the famous drugs containing mercury in Tibetan medicine. However, little is known about the chemical substance basis of its pharmacodynamics and the intrinsic link of different samples sources so far. Given this, energy dispersive spectrometry of X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), and powder X-ray diffraction (XRD) were used to assay the elements, micromorphology, and phase composition of nine Zuotai samples from different regions, respectively; the XRD fingerprint features of Zuotai were analyzed by multivariate statistical analysis. EDX result shows that Zuotai contains Hg, S, O, Fe, Al, Cu, and other elements. SEM and AFM observations suggest that Zuotai is a kind of ancient nanodrug. Its particles are mainly in the range of 100–800 nm, which commonly further aggregate into 1–30 μm loosely amorphous particles. XRD test shows that β-HgS, S8, and α-HgS are its main phase compositions. XRD fingerprint analysis indicates that the similarity degrees of nine samples are very high, and the results of multivariate statistical analysis are broadly consistent with sample sources. The present research has revealed the physicochemical characteristics of Zuotai, and it would play a positive role in interpreting this mysterious Tibetan drug. PMID:27738409

  10. Chemical Species, Micromorphology, and XRD Fingerprint Analysis of Tibetan Medicine Zuotai Containing Mercury.

    PubMed

    Li, Cen; Yang, Hongxia; Du, Yuzhi; Xiao, Yuancan; Zhandui; Sanglao; Wang, Zhang; Ladan, Duojie; Bi, Hongtao; Wei, Lixin

    2016-01-01

    Zuotai ( gTso thal ) is one of the famous drugs containing mercury in Tibetan medicine. However, little is known about the chemical substance basis of its pharmacodynamics and the intrinsic link of different samples sources so far. Given this, energy dispersive spectrometry of X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), and powder X-ray diffraction (XRD) were used to assay the elements, micromorphology, and phase composition of nine Zuotai samples from different regions, respectively; the XRD fingerprint features of Zuotai were analyzed by multivariate statistical analysis. EDX result shows that Zuotai contains Hg, S, O, Fe, Al, Cu, and other elements. SEM and AFM observations suggest that Zuotai is a kind of ancient nanodrug. Its particles are mainly in the range of 100-800 nm, which commonly further aggregate into 1-30  μ m loosely amorphous particles. XRD test shows that β -HgS, S 8 , and α -HgS are its main phase compositions. XRD fingerprint analysis indicates that the similarity degrees of nine samples are very high, and the results of multivariate statistical analysis are broadly consistent with sample sources. The present research has revealed the physicochemical characteristics of Zuotai , and it would play a positive role in interpreting this mysterious Tibetan drug.

  11. Synthesis of Calcite Nano Particles from Natural Limestone assisted with Ultrasonic Technique

    NASA Astrophysics Data System (ADS)

    Handayani, M.; Sulistiyono, E.; Firdiyono, F.; Fajariani, E. N.

    2018-03-01

    This article represents a precipitation method assisted with ultrasonic process to synthesize precipitated calcium carbonate nano particles from natural limestone. The synthesis of nanoparticles material of precipitated calcium carbonate from commercial calcium carbonate was done for comparison. The process was performed using ultrasonic waves at optimum condition, that is, at temperature of 80oC for 10 minutes with various amplitudes. Synthesized precipitated calcium carbonate nanoparticles were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Particle Size Analyzer (PSA). The result of PSA measurements showed that precipitated calcium carbonate nano particles was obtained with the average size of 109 nm.

  12. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan, Manuela, E-mail: manuela.stan@itim-cj.ro; Popa, Adriana; Toloman, Dana

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn{sup 2+} ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes andmore » oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.« less

  13. Preparation and Characterization of Nano-CL-20 Explosive

    NASA Astrophysics Data System (ADS)

    Bayat, Yadollah; Zeynali, Vida

    2011-10-01

    Nano-CL-20 was prepared via precipitative crystallization by spraying a solution of CL-20 in a solvent (ethyl acetate) into a nonsolvent (isooctane). Scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) were used to characterize the appearance and the size of the particles. The results revealed that nano-CL-20 particles have the shape of spheres or ellipsoids with an average size of 95 nm. Due to their small diameter and high surface energy, the particles tended to agglomerate. Impact sensitivity of nanosize CL-20 was decreased in comparison to micrometer-size CL-20.

  14. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    NASA Astrophysics Data System (ADS)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard; Thorborg, Jesper; Tiedje, Niels; Hattel, Jesper

    2018-02-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper. First, a material equivalent to the ductile cast iron matrix is manufactured and subjected to dilatometric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between the graphite particles and the matrix during manufacturing of the industrial part considered in the XRD study. The model indicates that, besides the viscoplastic deformation of the matrix, the effect of the inelastic deformation of the graphite has to be considered to explain the magnitude of the XRD strain. Moreover, the model shows that the large elastic strain perturbations recorded with XRD close to the graphite-matrix interface are not artifacts due to e.g. sharp gradients in chemical composition, but correspond to residual stress concentrations induced by the conical sectors forming the internal structure of the graphite particles. In contrast to common belief, these results thus suggest that ductile cast iron parts cannot be considered, in general, as stress-free at the microstructural scale.

  15. The SPRING Nanoenergetics Hub at UTD

    DTIC Science & Technology

    2008-12-01

    synthesis and processing of advanced nanostructured materials, the structure and property characterization needed for materials optimization, the...nano-particles into hexane solvent a deposited films. Here we are modeling that processes to see how the droplet evaporation progresses in time. What...nanofibers was determined by powder X-ray diffraction (XRD) (Scintag XDS 2000 X-ray diffractometer with Cu Ka radiation). The fiber morphology was

  16. High-energy ball milling technique for ZnO nanoparticles as antibacterial material

    PubMed Central

    Salah, Numan; Habib, Sami S; Khan, Zishan H; Memic, Adnan; Azam, Ameer; Alarfaj, Esam; Zahed, Nabeel; Al-Hamedi, Salim

    2011-01-01

    Nanoparticles of zinc oxide (ZnO) are increasingly recognized for their utility in biological applications. In this study, the high-energy ball milling (HEBM) technique was used to produce nanoparticles of ZnO from its microcrystalline powder. Four samples were ball milled for 2, 10, 20, and 50 hours, respectively. The structural and optical modifications induced in the ‘as synthesized’ nanomaterials were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), and photoluminescence emission spectra (PL). SEM and TEM results show a gradual decrease in particle size from around 600 to ∼30 nm, with increased milling time. The initial microstructures had random shapes, while the final shape became quite spherical. XRD analysis showed ZnO in a hexagonal structure, broadening in the diffracted peaks and going from larger to smaller particles along with a relaxation in the lattice constant c. The value of c was found to increase from 5.204 to 5.217 Å with a decrease in particle size (600 to ∼30 nm). PL result showed a new band at around 365 nm, whose intensity is found to increase as the particles size decreases. These remarkable structural and optical modifications induced in ZnO nanoparticles might prove useful for various applications. The increase in c value is an important factor for increasing the antibacterial effects of ZnO, suggesting that the HEBM technique is quite suitable for producing these nanoparticles for this purpose. PMID:21720499

  17. High Resolution Transmission Electron Microscopy (HRTEM) of nanophase ferric oxides

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Morris, R. V.; Ming, D. W.; Lauer, H. V., Jr.

    1994-01-01

    Iron oxide minerals are the prime candidates for Fe(III) signatures in remotely sensed Martian surface spectra. Magnetic, Mossbauer, and reflectance spectroscopy have been carried out in the laboratory in order to understand the mineralogical nature of Martian analog ferric oxide minerals of submicron or nanometer size range. Out of the iron oxide minerals studied, nanometer sized ferric oxides are promising candidates for possible Martian spectral analogs. 'Nanophase ferric oxide (np-Ox)' is a generic term for ferric oxide/oxihydroxide particles having nanoscale (less than 10 nm) particle dimensions. Ferrihydrite, superparamagnetic particles of hematite, maghemite and goethite, and nanometer sized particles of inherently paramagnetic lepidocrocite are all examples of nanophase ferric oxides. np-Ox particles in general do not give X-ray diffraction (XRD) patterns with well defined peaks and would often be classified as X-ray amorphous. Therefore, different np-Oxs preparations should be characterized using a more sensitive technique e.g., high resolution transmission electron microscopy (HRTEM). The purpose of this study is to report the particle size, morphology and crystalline order, of five np-Ox samples by HRTEM imaging and electron diffraction (ED).

  18. Influence the dopant concentration on the photocatalytic activity: Dy3+, Eu3+ doped TiO2

    NASA Astrophysics Data System (ADS)

    Zikriya, Mohamed; Nadaf, Y. F.; Pramod, A. G.; Renuka, C. G.

    2018-05-01

    Titanium dioxide (TiO2) nanoparticles were synthesis by means of hydrothermal process from metatitanic acid. The impacts reaction temperature, stirring process and aging time on the morphology, the transfer of nanoparticles particles were characterized. The morphology of the nanoparticles was described in detail with scanning electron microscopy. In the dynamic of hydrothermal method, stirring can cut down the reaction time of change from particles to nanoparticles. As can be seen from the XRD patterns, the diffraction peaks get broadened as the Eu3+ focus is increased, proposing an orderly abatement in the grain size. The Crystallite size was calculated for pure, Dy3+ and Eu3+ doped TiO2 from diffraction plane by Sherrer's formula and it was found that 13 nm to 18 nm. From SEM images the majorities of TiO2 particles are oblate spheroid or spheroid and look looser, and some macropores could be seen on a few particles.

  19. High-Temperature, Perhaps Silicic, Volcanism on Mars Evidenced by Tridymite Detection in High-SiO2 Sedimentary Rock at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Vaniman, D. T.; Blake, D. F.; Gellert, R.; Chipera, S. J.; Rampe, E. B.; Ming, D. W.; Morrison, S. M.; Downs, R. T.; Treiman, A. H.; hide

    2016-01-01

    The Mars Science Laboratory (MSL) rover, Curiosity, has been exploring sedimentary rocks within Gale crater since landing in August, 2012. On the lower slopes of Aeolis Mons (a.k.a. Mount Sharp), drill powder was collected from a high-silica (74 wt% SiO2) outcrop named Buckskin (BK). It was a surprise to find that the Buckskin sample contained significant amounts of the relatively rare silica polymorph tridymite. We describe the setting of the Buckskin sample, the detection of tridymite by the MSL Chemistry and Mineralogy (CheMin) X-ray diffraction instrument, and detection implications. Geologic setting: The Buckskin outcrop is part of the Murray formation exposed in the Marias Pass area. The formation was previously studied by CheMin in the Pahrump Hills member [1] where three samples of drill fines were analyzed (Confidence Hills (CH), Mojave2 (MJ) and Telegraph Peak (TP) [2]). Assuming approximately horizontal bedding, the Buckskin outcrop is approx.15 m stratigraphically above the bottom of the Pahrump Hills member. Mudstone, generally characterized by fine lamination, is the dominant depositional facies [1]. Buckskin Mineralogical and Chemical Composition: The CheMin instrument and XRD pattern analysis procedures have been previously discussed [3-6]. The diffraction pattern used for quantitative XRD analysis (Fig. 1) is the sum of the first 4 of 45 diffraction images. The remaining images are all characterized by both on-ring and off-ring diffraction spots that we attributed to poor grain motion and particle clumping. Coincident with particle clumping was a significant decrease in the intensity of the tridymite diffraction peaks (Fig. 2a). The derived mineralogical composition of the crystalline component (derived from the first 4 diffraction images) is given in Table 1. The tridymite is well-crystalline and its pattern is refined as monoclinic tridymite (Fig 1). Mineral chemical compositions were derived from XRD unit cell parameters or obtained from stoichiometry. The XRD-calculated amorphous component was 50 +/- 15 wt%. We constrained the value to 60 wt% because it is the minimum value necessary to give a positive Al2O3 concentration for the amorphous component using APXS data for the post-sieve dump pile (Table 2). The amorphous component has high SiO2 (approx.77 wt%) and high anion (SO3+P2O5+Cl 10 wt%) concentrations. Calculation shows that a cation-anion balance is achieved if the cations in the amorphous component except SiO2 and TiO2, which do not readily form salts, are assumed to be present as amorphous mixed-cation sulfates, phosphates, and chlorides (or perchlorates/ chlorates).

  20. Effects of formulation variables and characterization of guaifenesin wax microspheres for controlled release.

    PubMed

    Mani, Narasimhan; Park, M O; Jun, H W

    2005-01-01

    Sustained-release wax microspheres of guaifenesin, a highly water-soluble drug, were prepared by the hydrophobic congealable disperse method using a salting-out procedure. The effects of formulation variables on the loading efficiency, particle properties, and in-vitro drug release from the microspheres were determined. The type of dispersant, the amount of wetting agent, and initial stirring time used affected the loading efficiency, while the volume of external phase and emulsification speed affected the particle size of the microspheres to a greater extent. The crystal properties of the drug in the wax matrix and the morphology of the microspheres were studied by differential scanning calorimetry (DSC), powder x-ray diffraction (XRD), and scanning electron microscopy (SEM). The DSC thermograms of the microspheres showed that the drug lost its crystallinity during the microencapsulation process, which was further confirmed by the XRD data. The electron micrographs of the drug-loaded microspheres showed well-formed spherical particles with a rough exterior.

  1. Synthesis and characterization of CdO nano particles by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Vadgama, V. S.; Vyas, R. P.; Jogiya, B. V.; Joshi, M. J.

    2017-05-01

    Cadmium Oxide (CdO) is an inorganic compound and one of the main precursors to other cadmium compounds. It finds applications in cadmium plating, storage batteries, in transparent conducting film, etc. Here, an attempt is made to synthesize CdO nano particles by sol-gel technique. The gel was prepared using cadmium nitrate tetra hydrate (Cd(NO3)2.4H2O) and aqueous ammonium hydroxide (NH4OH) as a precursor. The synthesized powder is further characterized by techniques like Powder X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and Thermal gravimetric analysis (TGA). Powder XRD analysis suggested the nano-crystalline nature of the sample with the cubic crystal system. Nano scaled particles of spherical morphology with the size ranging from 50-100 nm are observed from TEM images. While, FT-IR study is used to confirm the presence of different functional groups. Thermo-gravimetric analysis suggests the highly thermally stable nature of the samples. The results are discussed.

  2. Microstructure and Mechanical Behavior of Microwave Sintered Cu50Ti50 Amorphous Alloy Reinforced Al Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Reddy, M. Penchal; Ubaid, F.; Shakoor, R. A.; Mohamed, A. M. A.

    2018-06-01

    In the present work, Al metal matrix composites reinforced with Cu-based (Cu50Ti50) amorphous alloy particles synthesized by ball milling followed by a microwave sintering process were studied. The amorphous powders of Cu50Ti50 produced by ball milling were used to reinforce the aluminum matrix. They were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and compression testing. The analysis of XRD patterns of the samples containing 5 vol.%, 10 vol.% and 15 vol.% Cu50Ti50 indicates the presence of Al and Cu50Ti50 peaks. SEM images of the sintered composites show the uniform distribution of reinforced particles within the matrix. Mechanical properties of the composites were found to increase with an increasing volume fraction of Cu50Ti50 reinforcement particles. The hardness and compressive strength were enhanced to 89 Hv and 449 MPa, respectively, for the Al-15 vol.% Cu50Ti50 composites.

  3. Polymethacrylic acid as a new precursor of CuO nanoparticles

    NASA Astrophysics Data System (ADS)

    Hosny, Nasser Mohammed; Zoromba, Mohamed Shafick

    2012-11-01

    Polymethacrylic acid and its copper complexes have been synthesized and characterized. These complexes have been used as precursors to produce CuO nanoparticles by thermal decomposition in air. The stages of decompositions and the calcination temperature of the precursors have been determined from thermal analyses (TGA). The obtained CuO nanoparticles have been characterized by X-ray diffraction (XRD), scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). XRD showed a monoclinic structure with particle size 8-20 nm for the synthesized copper oxide nanoparticles. These nanoparticles are catalytically active in decomposing hydrogen peroxide and a mechanism of decomposition has been suggested.

  4. In situ SAXS study on size changes of platinum nanoparticles with temperature

    NASA Astrophysics Data System (ADS)

    Wang, W.; Chen, X.; Cai, Q.; Mo, G.; Jiang, L. S.; Zhang, K.; Chen, Z. J.; Wu, Z. H.; Pan, W.

    2008-09-01

    Poly(vinylpyrrolidone) (PVP)-coated platinum (Pt) nanoparticles were prepared in methanol-water reduction method. In situ small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) techniques were used to probe the size change of particles and crystallites with temperature. Tangent-by-tangent (TBT) method of SAXS data analysis was improved and used to get the particle size distribution (PSD) from SAXS intensity. Scherrer’s equation was used to derive the crystallite size from XRD pattern. Combining SAXS and XRD results, a step-like characteristic of the Pt nanoparticle growth has been found. Three stages (diffusion, aggregation, and agglomeration) can be used to describe the growth of the Pt nanoparticles and nanocrystallites. Aggregation was found to be the main growth mode of the Pt nanoparticles during heating. The maximum growth rates of Pt nanoparticles and Pt nanocrystallites, as well as the maximum aggregation degree of Pt nanocrystallites were found, respectively, at 250 °C, 350 °C and 300 °C. These results are helpful to understanding the growth mode of nanoparticles, as well as controlling the nanoparticle size.

  5. Preparation and physical properties of polycrystalline (Bi1-xPbx)2Sr2Ca2Cu3Oy high T c superconductors

    NASA Astrophysics Data System (ADS)

    Awan, M. S.; Maqsood, M.; Mirza, S. A.; Yousaf, M.; Maqsood, A.

    1995-02-01

    (Bi1-xPbx:)2Sr2Ca2Cu3Oy ( x = 0.3) high critical transition temperature ( T c) superconductors are synthesized by the solid-state reaction method in polycrystalline form. X-ray diffraction (XRD) studies, direct current (dc) electrical resistivity measurements, scanning electron microscopic (SEM) studies, critical current density measurements, and zero-field alternating current (ac) susceptibility measurements are performed to investigate the physical changes, structural changes, and magnetic behavior of the superconducting samples. X-ray diffraction studies show that a high T c phase exists with orthorhombic symmetry in the specimen. According to the XRD data, the lattice parameters of the high T c phase were determined as a = 0.537(1) nm, b = 0.539(1) nm, and c = 3.70(1) nm. The compound exhibits a superconducting transition at 106 ±1 K for zero resistance. The ac susceptibility measurements in zero field confirm the dc electrical resistivity results; hence both support the XRD results. The particle size and structural changes as a function of the cold-pressing and aging effect are also reported.

  6. Phase purity of NiCo2O4, a catalyst candidate for electrolysis of water

    NASA Technical Reports Server (NTRS)

    Singer, J.; Fielder, W. L.; Garlick, R. G.; Negas, T.

    1987-01-01

    NiCo2O4 is shown to be difficult to obtain as a pure phase, and may never have been so obtained. High resolution x-ray diffractometry is required for its precise characterization. Film XRD is not likely to show the asymmetry in the spinel diffraction lines, caused by poorly crystallized NiO, as seen in diffractometer traces. The Co3O4 which is expected to accompany NiO as an impurity in NiCo2O4 syntheses has the same diffraction pattern as the binary oxide. Firings of the co-precipitated hydroxides at 300, 350, and 400 C, including one in pure O2, failed to produce single phase cobaltate. Scanning electron microscopy showed all the sintered products to range over several orders of magnitude in agglomerate/particle size. Surface areas by BET were all in the range 40 to 110 m sq/g, equivalent to particles of 200 to 100 Angstrom diameter. The spinel diffraction line breadths were compatible with those approximate dimensions.

  7. Research on the Treatment of Wastewater by Waste Ceramic Adsorption

    NASA Astrophysics Data System (ADS)

    He, Lingfeng; Zhang, Yongli; Shi, Liang

    2018-03-01

    The process of preparing porous ceramic with waste porcelain powder as aggregate was researched. The affect of assimilate time on cuprum removal efficiency in wastewater containing copper was investigated. The results show the water copper removal rate increased along with the augment of assimilate time, and the assimilate time is suitable for 35 min; XRD characterizations show the porous ceramic catalyst before and after calcination in active components of X ray diffraction peak position almost had no changes, and the diffraction intensity slightly changed with calcination and absorption, and diffraction peaks became sharper, and its crystallinity was improved. Baking leads to the growth of crystal particles, and the performance of porous ceramics is stable before and after adsorption.

  8. Characterisation of Sol-Gel Synthesis of Phase Pure CaTiO3 Nano Powders after Drying

    NASA Astrophysics Data System (ADS)

    Mallik, P. K.; Biswal, G.; Patnaik, S. C.; Senapati, S. K.

    2015-02-01

    According to a few recent studies, calcium titanate (CT) is a material that is similar to hydroxyapatite in biological properties. However, calcium titanate is not currently being used in the biomedical applications as to hydroxyapatite. The objective is to prepare nano calcium titanate powders from the equimolar solution of calcium oxide, ethanol and Titanium (IV) isopropoxide via sol-gel synthesis. The phase analysis and morphology of powder particles were studied by X-ray diffraction (XRD), while the composition and size of powder particles were determined by Transmission electron microscope (TEM) attached with energy dispersive x-ray spectrometer (EDS). As results, XRD confirm the presence of phase pure crystalline CaTiO3 after drying at 100°C for 24 hours, while TEM analysis confirms about 13 nm sizes of CaTiO3 particles and some agglomerated particle of 20-30 nm. Moreover, EDS analysis indicates that the approximately stoichiometric Ca/Ti ratio 1:1 was obtained in the CaTiO3 powders. Finally, it can be concluded that described sol-gel synthesis could be novel method for the production of nano CaTiO3 particles at lower temperature compared to any other methods of production.

  9. Microstructural, optical and electrical transport properties of Cd-doped SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmad, Naseem; Khan, Shakeel; Mohsin Nizam Ansari, Mohd

    2018-03-01

    We have successfully investigated the structural, optical and dielectric properties of Cd assimilated SnO2 nanoparticles synthesized via very convenient precipitation route. The structural properties were studied by x-ray diffraction method (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy. As-synthesized samples in the form of powder were examined for its morphology and average particle size by Transmission electron microscopy (TEM). The optical properties were studied by diffuse reflectance spectroscopy. Dielectric properties such that complex dielectric constant and ac conductivity were investigated by LCR meter. Average crystallite size calculated by XRD and average particle size obtained from TEM were found to be consistent and below 50 nm for all samples. The optical band gap of as-synthesized powder samples from absorption study was found in the range of 3.76 to 3.97 eV. The grain boundary parameters such that Rgb, Cgb and τ were evaluated using impedance spectroscopy.

  10. Characterization of magnetic material in the mound-building termite Macrotermes gilvus in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Esa, Mohammad Faris Mohammad; Rahim, Faszly; Hassan, Ibrahim Haji; Hanifah, Sharina Abu

    2015-09-01

    Magnetic material such as magnetite are known as particles that respond to external magnetic field with their ferromagnetic properties as they are believed contribute to in responding to the geomagnetic field. These particles are used by terrestrial animals such as termites for navigation and orientation. Since our earth react as giant magnetic bar, the magnitude of this magnetic field present by intensity and direction (inclination and direction). The magnetic properties and presence of magnetite in termites Macrotermes gilvus, common mound-building termite were tested. M. gilvus termites was tested with a Vibrating Sample Magnetometer VSM to determine the magnetic properties of specimen. The crushed body sample was characterized with X-Ray Diffraction XRD to show the existent of magnetic material (magnetite) in the specimens. Results from VSM indicate that M. gilvus has diamagnetism properties. The characterization by XRD shows the existent of magnetic material in our specimen in low concentration.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esa, Mohammad Faris Mohammad; Hassan, Ibrahim Haji; Rahim, Faszly

    Magnetic material such as magnetite are known as particles that respond to external magnetic field with their ferromagnetic properties as they are believed contribute to in responding to the geomagnetic field. These particles are used by terrestrial animals such as termites for navigation and orientation. Since our earth react as giant magnetic bar, the magnitude of this magnetic field present by intensity and direction (inclination and direction). The magnetic properties and presence of magnetite in termites Macrotermes gilvus, common mound-building termite were tested. M. gilvus termites was tested with a Vibrating Sample Magnetometer VSM to determine the magnetic properties ofmore » specimen. The crushed body sample was characterized with X-Ray Diffraction XRD to show the existent of magnetic material (magnetite) in the specimens. Results from VSM indicate that M. gilvus has diamagnetism properties. The characterization by XRD shows the existent of magnetic material in our specimen in low concentration.« less

  12. Synthesis of nanocrystalline zirconia by amorphous citrate route: structural and thermal (HTXRD) studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhagwat, Mahesh; Ramaswamy, Veda

    Nanocrystalline zirconia powder with a fairly narrow particle size distribution has been synthesized by the amorphous citrate route. The sample obtained has a high BET surface area of 89 m{sup 2} g{sup -1}. Rietveld refinement of the powder X-ray diffraction (XRD) profile of the zirconia sample confirms stabilization of zirconia in the tetragonal phase with around 8% monoclinic impurity. The data show the presence of both anionic as well as cationic vacancies in the lattice. Crystallite size determined from XRD is 8 nm and is in close agreement with the particle size determined by TEM. The in situ high temperature-X-raymore » diffraction (HTXRD) study revealed high thermal stability of the mixture till around 1023 K after which the transformation of tetragonal phase into the monoclinic phase has been seen as a function of temperature till 1473 K. This transformation is accompanied by an increase in the crystallite size of the sample from 8 to 55 nm. The thermal expansion coefficients are 9.14 x 10{sup -6} K{sup -1} along 'a'- and 15.8 x 10{sup -6} K{sup -1} along 'c'-axis. The lattice thermal expansion coefficient in the temperature range 298-1623 K is 34.6 x 10{sup -6} K{sup -1}.« less

  13. Chemical and morphological characterization of TSP and PM2.5 by SEM-EDS, XPS and XRD collected in the metropolitan area of Monterrey, Mexico

    NASA Astrophysics Data System (ADS)

    González, Lucy T.; Rodríguez, F. E. Longoria; Sánchez-Domínguez, M.; Leyva-Porras, C.; Silva-Vidaurri, L. G.; Acuna-Askar, Karim; Kharisov, B. I.; Villarreal Chiu, J. F.; Alfaro Barbosa, J. M.

    2016-10-01

    Total suspended particles (TSP) and particles smaller than 2.5 μm (PM2.5) were collected at four sites in the metropolitan area of Monterrey (MAM) in Mexico. The samples were characterized by X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and Scanning Electron Microscopy (SEM). In order to determine the possible sources of emissions of atmospheric particulate matter, a principal component analysis (PCA) was performed. The XRD results showed that the major crystalline compounds found in the TPS were CaCO3 and SiO2; while in the PM2.5 CaSO4 was found. The XPS analysis showed that the main elements found on the surface of the particles were C, O, Si, Ca, S, and N. The deconvolution carried out on the high-resolution spectra for C1s, S2p and N1s, showed that the aromatics, sulfates and pyrrolic-amides were the main groups contributing to the signal of these elements, respectively. The C-rich particles presented a spherical morphology, while the Ca- and Si-based particles mostly showed a prismatic shape. The PCA analysis together with the results obtained from the characterization techniques, suggested that the main contributors to the CaCO3 particles collected in the PM were most probably produced and emitted into the atmosphere by local construction industries and exploitation of rich-deposits of calcite. Meanwhile, the SiO2 found in the MAM originated from the suspension of geological material abundant in the region, and the carbon particles were mainly produced by the combustion of fossil fuels.

  14. Synthesis of gadolinium carbonate-conjugated-poly(ethylene)glycol (Gd{sub 2}(CO{sub 3}){sub 3}@PEG) particles via a modified solvothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasution, Erika L. Y.; Ahab, Atika; Nuryadin, Bebeh W.

    2016-02-08

    PEGylated gadolinium carbonate ((Gd{sub 2}(CO{sub 3}){sub 3})@PEG) powder was successfully synthesized by a modified solvothermal method. The synthesized products were characterized by means of X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Spectroscopy (EDS). A systematic change in the chemical surface composition, crystallinity and size properties of the Gd{sub 2}(CO{sub 3}){sub 3}@PEG particles was observed by increasing the reaction time at 5 hours, 7 hours, and 8 hours. The corresponding XRD patterns showed that the Gd{sub 2}(CO{sub 3}){sub 3} particles had hexagonal symmetry (JCPDS No. 37-0559) with a crystallite size of 3.5,more » 2.9, and 4.6 nm. FTIR spectra showed that the Gd{sub 2}(CO{sub 3}){sub 3})@PEG particles were formed with the PEG as carbonyl and hydroxyl group attached to the surface. SEM analysis showed that the Gd{sub 2}(CO{sub 3}){sub 3})@PEG particles had a flake-like morphology of homogeneous sized particles and agglomerates. EDS analysis confirmed the presence of constituent Gd{sub 2}(CO{sub 3}){sub 3} elements.« less

  15. Electrodeposition of Zn-doped α-nickel hydroxide with flower-like nanostructure for supercapacitors

    NASA Astrophysics Data System (ADS)

    You, Zheng; Shen, Kui; Wu, Zhicheng; Wang, Xiaofeng; Kong, Xianghua

    2012-08-01

    Zn-doped α-nickel hydroxide materials with flower-like nanostructures are synthesized by electrochemical deposition method. The samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (SEM) and electrochemical measurements. XRD spectra indicate nickel hydroxide doped with Zn is α-Ni(OH)2 with excellent crystallization. The SEM observation shows that the formation of Zn-doped Ni(OH)2 includes two steps: a honeycomb-like film forms on the substrate first, then flower-like particles forms on the films. The nickel hydroxide doped with 5% Zn can maintain a maximum specific capacitance of 860 F g-1, suggesting its potential application in electrochemical capacitors.

  16. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Singh, Bikramjeet; Singh, Paviter; Kumar, Manjeet; Thakur, Anup; Kumar, Akshay

    2015-05-01

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H3BO3). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT).

  17. Zeta-potential and particle size studies of silver sulphide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vikash, E-mail: vikash@csr.res.in; Tarachand,; Ganesan, V.

    Silver sulfide (Ag{sub 2}S) nanoparticles (NPs) were prepared successfully for the first time using diethylene glycol (DEG) as a surfactant. X-ray diffraction (XRD) data revealed single phase nature of the compound and energy-dispersive X-ray (EDX) confirmed its nominal composition. Their sizes were 43 nm from XRD, 50 nm from atomic force microscopy (AFM) and 19 nm & 213 nm from dynamic light scattering (DLS); their differences have been discussed. Autotitration study of zeta potential of these NPs in deionized water by DLS at different pH values confirmed an isoelectric point at pH = 5.14 and their very unstable nature in deionized water.

  18. Nano sized La2Co2O6 double perovskite synthesized by sol gel method

    NASA Astrophysics Data System (ADS)

    Solanki, Neha; Lodhi, Pavitra Devi; Choudhary, K. K.; Kaurav, Netram

    2018-05-01

    We report here the synthesis of double perovskite La2Co2O6 (LCO) compound by a sol gel route method. The double perovskite structure of LCO system was confirmed via X-ray diffraction (XRD) analysis. Further, the lattice parameter, unit cell volume and bond length were refined by means of rietveld analysis using the full proof software. Debye Scherer formula was used to determine the particle size. The compound crystallized in triclinic structure with space group P-1 in ambient condition. We also obtained Raman modes from XRD spectra of poly-crystalline LCO sample. These results were interpreted for the observation of phonon excitations in this compound.

  19. Effect of interparticle interactions on size determination of zirconia and silica based systems – A comparison of SAXS, DLS, BET, XRD and TEM

    PubMed Central

    Pabisch, Silvia; Feichtenschlager, Bernhard; Kickelbick, Guido; Peterlik, Herwig

    2012-01-01

    The aim of this work is a systematic comparison of size characterisation methods for two completely different model systems of oxide nanoparticles, i.e. amorphous spherical silica and anisotropic facet-shaped crystalline zirconia. Size and/or size distribution were determined in a wide range from 5 to 70 nm using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), nitrogen sorption (BET), X-ray diffraction (XRD) and transmission electron microscopy (TEM). A nearly perfect coincidence was observed only for SAXS and TEM for both types of particles. For zirconia nanoparticles considerable differences between different measurement methods were observed. PMID:22347721

  20. Synthesis and Characterization of Nd(3+)-Doped CaF2 Nanoparticles.

    PubMed

    Yuan, Dan; Li, Weiwei; Mei, Bingchu; Song, Jinghong

    2015-12-01

    The Ca(1-x)F(2+x):Nd(x) nanoparticles were synthesized by chemical direct precipitation method. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Image analyzer, absorption spectrum and transmittance were taken to characterization the phases, morphologies, sizes, size distribution and optical properties of the samples. The results indicate that the Ca(1-x)F(2+x):Nd(x) samples can be rationally modified in size and morphology by altering the Nd3+ ions doping concentration. With increasing concentration of Nd3+ ions, the particle size decreased from 24 to 14 nm, the intensity of the diffraction peaks decreased, the Ca(1-x)F(2+x):Nd(x) particles aggregated ion of the formed clusters which should have an effect on both speed and orientation of the particles growth. The transmittance of ceramics with a thickness of 2 mm showed that the transmittance can reach 90% when the doping concentration was 5%, which should be profitable for LD pumping.

  1. Synthesis, Characterization, and Mechanism of Formation of Janus-Like Nanoparticles of Tantalum Silicide-Silicon (TaSi2/Si)

    PubMed Central

    Nomoev, Andrey V.; Bardakhanov, Sergey P.; Schreiber, Makoto; Bazarova, Dashima Zh.; Baldanov, Boris B.; Romanov, Nikolai A.

    2014-01-01

    Metal-semiconductor Janus-like nanoparticles with the composition tantalum silicide-silicon (TaSi2/Si) were synthesized for the first time by means of an evaporation method utilizing a high-power electron beam. The composition of the synthesized particles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), selective area electron diffraction (SAED), and energy dispersive X-ray fluorescence (EDX) analysis. The system is compared to previously synthesized core-shell type particles in order to show possible differences responsible for the Janus-like structure forming instead of a core-shell architecture. It is proposed that the production of Janus-like as opposed to core-shell or monophase particles occurs due to the ability of Ta and Si to form compounds and the relative content of Ta and Si atoms in the produced vapour. Based on the results, a potential mechanism of formation for the TaSi2/Si nanoparticles is discussed. PMID:28346996

  2. Synthesis, Characterization, and Mechanism of Formation of Janus-Like Nanoparticles of Tantalum Silicide-Silicon (TaSi₂/Si).

    PubMed

    Nomoev, Andrey V; Bardakhanov, Sergey P; Schreiber, Makoto; Bazarova, Dashima Zh; Baldanov, Boris B; Romanov, Nikolai A

    2014-12-25

    Metal-semiconductor Janus-like nanoparticles with the composition tantalum silicide-silicon (TaSi₂/Si) were synthesized for the first time by means of an evaporation method utilizing a high-power electron beam. The composition of the synthesized particles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), selective area electron diffraction (SAED), and energy dispersive X-ray fluorescence (EDX) analysis. The system is compared to previously synthesized core-shell type particles in order to show possible differences responsible for the Janus-like structure forming instead of a core-shell architecture. It is proposed that the production of Janus-like as opposed to core-shell or monophase particles occurs due to the ability of Ta and Si to form compounds and the relative content of Ta and Si atoms in the produced vapour. Based on the results, a potential mechanism of formation for the TaSi₂/Si nanoparticles is discussed.

  3. Formation and characterization of high surface area thermally stabilized titania/silica composite materials via hydrolysis of titanium(IV) tetra-isopropoxide in sols of spherical silica particles.

    PubMed

    Khalil, Kamal M S; Elsamahy, Ahmed A; Elanany, Mohamed S

    2002-05-15

    A direct synthetic route leading to titania particles dispersed on nonporous spherical silica particles has been investigated; 5, 10, and 20% (w/w) titania/silica sols mixtures were achieved via hydrolyzation of titanium tetra-isopropxide solution in the mother liquor of a freshly prepared sol of spherical silica particles (Stöber particles). Titania/silica materials were produced by subsequent drying and calcination of the xerogels so obtained for 3 h at 400 and 600 degrees C. The materials were investigated by means of thermal analyses (TGA and DSC), FT-IR, N(2) gas adsorption-desorption, powder X-ray diffraction (XRD), and transmission electron microscopy (TEM). In spite of the low surface area (13.1 m(2)/g) of the pure spherical silica particles calcined at 400 degrees C, high surface area and mesoporous texture titania/silica materials were obtained (e.g., S(BET) ca. 293 m(2)/g for the 10% titania/silica calcined at 400 degrees C). Moreover, the materials were shown to be amorphous toward XRD up to 600 degrees C, while reasonable surface areas were preserved. It has been concluded that dispersion of titania particles onto the surface of the nonporous spherical silica particles increase their roughness, therefore leading to composite materials of less firm packing and mesoporosity.

  4. Fabrication of silica hollow particles using yeast cells as a template

    NASA Astrophysics Data System (ADS)

    Liao, Shenglan; Lin, Liqin; Chen, Xiaofang; Liu, Jingru; Zhang, Biao

    2018-04-01

    Inorganic hollow particles have attracted great interest in recent years. In this study, silica micro spheres were produced. Yeast cells were used as a biological template. The silica shell was synthesized by the hydrolysis of tetraethoxysilane (TEOS) in water-alcohol mixtures as solvent using ammonia as a catalyst according to the Stoeber process. Various approaches including X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transformed infrared (FT-IR) spectroscopy were used to characterize the products. The results showed that the thermally treated samples were SiO2 hollow microspheres with a diameter varying between 1-5μm.

  5. XRD measurement of mean crystallite thickness of illite and illite/smectite: Reappraisal of the Kubler index and the Scherrer equation

    USGS Publications Warehouse

    Drits, Victor A.; Środoń, Jan; Eberl, D.D.

    1997-01-01

    The standard form of the Scherrer equation, which has been used to calculate the mean thickness of the coherent scattering domain (CSD) of illite crystals from X-ray diffraction (XRD) full width data at half maximum (FWHM) intensity, employs a constant, Ksh, of 0.89. Use of this constant is unjustified, even if swelling has no effect on peak broadening, because this constant is valid only if all CSDs have a single thickness. For different thickness distributions, the Scherrer “constant” has very different values.Analysis of fundamental particle thickness data (transmission electron microscopy, TEM) for samples of authigenic illite and illite/smectite from diagenetically altered pyroclastics and filamentous illites from sandstones reveals a unique family of lognormal thickness distributions for these clays. Experimental relations between the distributions' lognormal parameters and mean thicknesses are established. These relations then are used to calculate the mean thickness of CSDs for illitic samples from XRD FWHM, or from integral XRD peak widths (integrated intensity/maximum intensity).For mixed-layer illite/smectite, the measured thickness of the CSD corresponds to the mean thickness of the mixed-layer crystal. Using this measurement, the mean thickness of the fundamental particles that compose the mixed-layer crystals can be calculated after XRD determination of percent smectitic interlayers. The effect of mixed layering (swelling) on XRD peak width for these samples is eliminated by using the 003 reflection for glycolated samples, and the 001, 002 or 003 reflection for dehydrated, K-saturated samples. If this technique is applied to the 001 reflection of air-dried samples (Kubler index measurement), mean CSD thicknesses are underestimated due to the mixed-layering effect.The technique was calibrated using NEW MOD©-simulated XRD profiles of illite, and then tested on well-characterized illite and illite/smectite samples. The XRD measurements are in good agreement with estimates of the mean thickness of fundamental particles obtained both from TEM measurements and from fixed cations content, up to a mean value of 20 layers. Correction for instrumental broadening under the conditions employed here is unnecessary for this range of thicknesses.

  6. [Color-tunable nano-material alpha-NaYF4 : Yb, Er, Tm prepared by microemulsion-hydrothermal method].

    PubMed

    Long, Dan-Dan; Zhang, Qing-Xia; Wang, Yu; Zhang, Fan; Wang, Yan-Fei; Zhou, Xin; Qi, Xiao-Hua; Zhang, Heng; Yan, Jing-Hui; Zou, Ming-Qiang

    2013-08-01

    NaYF4 : Yb3+, Er3+, Tm3+ nanoparticles were prepared by microemulsion-hydrothermal method. Crystal phase, morphology and structure of the samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The luminescence properties were studied by up-conversional fluorescence spectroscopy. The XRD patterns of as-prepared samples were in agreement with the PDF # 77-2042 of cubic NaYF4. SEM images of the particles showed that the samples were cotton-like spherical in shape and which were assembled by smaller nano-particles. The average size was 120 nm, while the shape was regular and the particle size was homogeneous. Under the excitation of 980 nm, the as-prepared particles could emit blue (438 and 486 nm), green (523 and 539 nm) and red (650 nm) light simultaneously. It can be seen from the color coordinates figure (CIE) that when doping concentration ratio of Tm3+ and E3+ increased from 0 to 2, the whole emitting light color of samples movedto green region. While the ratio was 1 : 1, pseudo white light was obtained. As the ratio changed from 2 to 7, the luminous color was moved to red region.

  7. Length-Scale-Dependent Phase Transformation of LiFePO4 : An In situ and Operando Study Using Micro-Raman Spectroscopy and XRD.

    PubMed

    Siddique, N A; Salehi, Amir; Wei, Zi; Liu, Dong; Sajjad, Syed D; Liu, Fuqiang

    2015-08-03

    The charge and discharge of lithium ion batteries are often accompanied by electrochemically driven phase-transformation processes. In this work, two in situ and operando methods, that is, micro-Raman spectroscopy and X-ray diffraction (XRD), have been combined to study the phase-transformation process in LiFePO4 at two distinct length scales, namely, particle-level scale (∼1 μm) and macroscopic scale (∼several cm). In situ Raman studies revealed a discrete mode of phase transformation at the particle level. Besides, the preferred electrochemical transport network, particularly the carbon content, was found to govern the sequence of phase transformation among particles. In contrast, at the macroscopic level, studies conducted at four different discharge rates showed a continuous but delayed phase transformation. These findings uncovered the intricate phase transformation in LiFePO4 and potentially offer valuable insights into optimizing the length-scale-dependent properties of battery materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Decolorization of Methylene Blue by Persulfate Activated with FeO Magnetic Particles.

    PubMed

    Hung, Chang-Mao; Chen, Chiu-Wen; Liu, Yi-Yuan; Dong, Cheng-Di

    2016-08-01

    In this study, the degradation of methylene blue (MB) was conducted to evaluate the feasibility of using persulfate oxidation activated with iron oxide (FeO) magnetic particles. The results demonstrated that the decolorization rate of MB increased with increasing FeO concentration, exhibiting maximum efficiency at pH0 3.0. The kinetics of MB was studied in the binary FeO catalyst and persulfate oxidation system. The surface properties of FeO before and after reaction was analyzed using cyclic voltammogram (CV), three-dimensional excitation-emission fluorescence matrix (EEFM) spectroscopy, zeta potential, particle size distribution measurements, X-ray diffraction (XRD) and environmental scanning electron microscopy-energy dispersive X-ray spectrometry (ESEM-EDS). The CV data indicated that a reversible redox reaction holds the key to explaining the significant activity of the catalyst. EEFM was used to evaluate the catalyst yield of FeO by fluorescence intensity plots with excitation/emission at 220/300 nm and 260/300 nm. The XRD and ESEM-EDS results confirmed the presence of FeO in the catalyst.

  9. Nano-crystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions.

    PubMed

    Handley-Sidhu, Stephanie; Renshaw, Joanna C; Yong, Ping; Kerley, Robert; Macaskie, Lynne E

    2011-01-01

    Hydroxyapatites were analysed using electron microscopy, X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis. Examination of a bacterially produced hydroxyapatite (Bio-HA) by scanning electron microscopy showed agglomerated nano-sized particles; XRD analysis confirmed that the Bio-HA was hydroxyapatite, with an organic matter content of 7.6%; XRF analysis gave a Ca/P ratio of 1.55, also indicative of HA. The size of the Bio-HA crystals was calculated as ~25 nm from XRD data using the Scherrer equation, whereas Comm-HA powder size was measured as ≤ 50 μm. The nano-crystalline Bio-HA was ~7 times more efficient in removing Sr(2+) from synthetic groundwater than Comm-HA. Dissolution of HA as indicated by the release of phosphate into the solution phase was higher in the Comm-HA than the Bio-HA, indicating a more stable biomaterial which has a potential for the remediation of contaminated sites.

  10. Synthesis and optical properties of silver nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Jaiveer; Kaurav, Netram, E-mail: netramkaurav@yahoo.co.uk; Choudhary, K. K.

    The preparation of stable, uniform silver nanoparticles by reduction of silver acetate by ethylene glycol (EG) is reported in the present paper. It is a simple process of recent interest for obtaining silver nanoparticles. The samples were characterized by X-Ray diffraction (XRD), which reveals an average particle size (D) of 38 nm. The UV/Vis spectra show that an absorption peak, occurring due to surface plasmon resonance (SPR), exists at 319 nm.

  11. Degradation product analysis from the photocatalytic oxidation/reduction of 2,4-dichlorophenol in the presence of mesoporous silica encapsulated TiO2 particles and TiO2 dispersions (presentation)

    EPA Science Inventory

    Thin films of Degussa P-25 TiO2 encapsulated in an SBA-15 mesoporous silica matrix were prepared. The TiO2/SBA-15 thin film structure was verified using transmission electron microscopy (TEM) and small angle X-ray diffraction (XRD). During irradiation with 350 nm light, the TiO...

  12. Synthesis, characterization and visible-light driven photocatalysis by differently structured CdS/ZnS sandwich and core-shell nanocomposites

    NASA Astrophysics Data System (ADS)

    Qutub, Nida; Pirzada, Bilal Masood; Umar, Khalid; Mehraj, Owais; Muneer, M.; Sabir, Suhail

    2015-11-01

    CdS/ZnS sandwich and core-shell nanocomposites were synthesized by a simple and modified Chemical Precipitation method under ambient conditions. The synthesized composites were characterized by XRD, SEM, TEM, EDAX and FTIR. Optical properties were analyzed by UV-vis. Spectroscopy and the photoluminescence study was done to monitor the recombination of photo-generated charge-carriers. Thermal stability of the synthesized composites was analyzed by Thermal Gravimetric Analysis (TGA). XRD revealed the formation of nanocomposites as mixed diffraction peaks were observed in the XRD pattern. SEM and TEM showed the morphology of the nanocomposites particles and their fine particle size. EDAX revealed the appropriate molar ratios exhibited by the constituent elements in the composites and FTIR gave some characteristic peaks which indicated the formation of CdS/ZnS nanocomposites. Electrochemical Impedance Spectroscopy was done to study charge transfer properties along the nanocomposites. Photocatalytic properties of the synthesized composites were monitored by the photocatalytic kinetic study of Acid Blue dye and p-chlorophenol under visible light irradiation. Results revealed the formation of stable core-shell nanocomposites and their efficient photocatalytic properties.

  13. Ensemble modeling of very small ZnO nanoparticles.

    PubMed

    Niederdraenk, Franziska; Seufert, Knud; Stahl, Andreas; Bhalerao-Panajkar, Rohini S; Marathe, Sonali; Kulkarni, Sulabha K; Neder, Reinhard B; Kumpf, Christian

    2011-01-14

    The detailed structural characterization of nanoparticles is a very important issue since it enables a precise understanding of their electronic, optical and magnetic properties. Here we introduce a new method for modeling the structure of very small particles by means of powder X-ray diffraction. Using thioglycerol-capped ZnO nanoparticles with a diameter of less than 3 nm as an example we demonstrate that our ensemble modeling method is superior to standard XRD methods like, e.g., Rietveld refinement. Besides fundamental properties (size, anisotropic shape and atomic structure) more sophisticated properties like imperfections in the lattice, a size distribution as well as strain and relaxation effects in the particles and-in particular-at their surface (surface relaxation effects) can be obtained. Ensemble properties, i.e., distributions of the particle size and other properties, can also be investigated which makes this method superior to imaging techniques like (high resolution) transmission electron microscopy or atomic force microscopy, in particular for very small nanoparticles. For the particles under study an excellent agreement of calculated and experimental X-ray diffraction patterns could be obtained with an ensemble of anisotropic polyhedral particles of three dominant sizes, wurtzite structure and a significant relaxation of Zn atoms close to the surface.

  14. Microwave assisted scalable synthesis of titanium ferrite nanomaterials

    NASA Astrophysics Data System (ADS)

    Shukla, Abhishek; Bhardwaj, Abhishek K.; Singh, S. C.; Uttam, K. N.; Gautam, Nisha; Himanshu, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, R.

    2018-04-01

    Titanium ferrite magnetic nanomaterials are synthesized by one-step, one pot, and scalable method assisted by microwave radiation. Effects of titanium content and microwave exposure time on size, shape, morphology, yield, bonding nature, crystalline structure, and magnetic properties of titanium ferrite nanomaterials are studied. As-synthesized nanomaterials are characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer measurements. XRD measurements depict the presence of two phases of titanium ferrite into the same sample, where crystallite size increases from ˜33 nm to 37 nm with the increase in titanium concentration. UV-Vis measurement showed broad spectrum in the spectral range of 250-600 nm which reveals that its characteristic peaks lie between ultraviolet and visible region; ATR-FTIR and Raman measurements predict iron-titanium oxide structures that are consistent with XRD results. The micrographs of TEM and selected area electron diffraction patterns show formation of hexagonal shaped particles with a high degree of crystallinity and presence of multi-phase. Energy dispersive spectroscopy measurements confirm that Ti:Fe compositional mass ratio can be controlled by tuning synthesis conditions. Increase of Ti defects into titanium ferrite lattice, either by increasing titanium precursor or by increasing exposure time, enhances its magnetic properties.

  15. Comparative investigation of Fourier Transform Infrared (FT-IR) spectroscopy and X-ray Diffraction (XRD) in the determination of cotton fiber crystallinity

    USDA-ARS?s Scientific Manuscript database

    Despite considerable efforts in developing the curve-fitting protocol to evaluate the crystallinity index (CI) from the X-ray diffraction (XRD) measurement, in its present state XRD procedure can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous po...

  16. Structure, Elastic Constants and XRD Spectra of Extended Solids under High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batyrev, I. G.; Coleman, S. P.; Ciezak-Jenkins, J. A.

    We present results of evolutionary simulations based on density functional calculations of a potentially new type of energetic materials called extended solids: P-N and N-H. High-density structures with covalent bonds generated using variable and fixed concentration methods were analysed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction (XRD) spectra. X-ray diffraction spectra were calculated using a virtual diffraction algorithm that computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculated XRD patterns were used to search for the structure of extended solids present at experimental pressures by optimizing data accordingmore » to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Elastic constants has been calculated for thermodynamically stable structures of P-N system.« less

  17. Factors controlling crystallization of miserite glass-ceramic.

    PubMed

    Muhammed, Fenik K; Moorehead, Robert; van Noort, Richard; Pollington, Sarah

    2015-12-01

    The purpose of this study was to investigate a range of variables affecting the synthesis of a miserite glass-ceramic (GC). Miserite glass was synthesized by the melt quench technique. The crystallization kinetics of the glass were determined using Differential Thermal Analysis (DTA). The glasses were ground with dry ball-milling and then sieved to different particle sizes prior to sintering. These particle sizes were submitted to heat treatment regimes in a high temperature furnace to form the GC. The crystal phases of the GC were analyzed by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to examine the microstructure of the cerammed glass. XRD analysis confirmed that the predominant crystalline phase of the GC was miserite along with a minor crystalline phase of cristobalite only when the particle size is <20 μm and the heat treatment at 1000°C was carried out for 4h and slowly cooled at the furnace rate. For larger particle sizes and faster cooling rates, a pseudowollastonite crystalline phase was produced. Short sintering times produced either a pseudowollastonite or xonotolite crystalline phase. The current study has shown that particle size and heat treatment schedules are major factors in controlling the synthesis of miserite GC. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Phase diagram and structural evolution of tin/indium (Sn/In) nanosolder particles: from a non-equilibrium state to an equilibrium state.

    PubMed

    Shu, Yang; Ando, Teiichi; Yin, Qiyue; Zhou, Guangwen; Gu, Zhiyong

    2017-08-31

    A binary system of tin/indium (Sn/In) in the form of nanoparticles was investigated for phase transitions and structural evolution at different temperatures and compositions. The Sn/In nanosolder particles in the composition range of 24-72 wt% In were synthesized by a surfactant-assisted chemical reduction method under ambient conditions. The morphology and microstructure of the as-synthesized nanoparticles were analyzed by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and X-ray diffraction (XRD). HRTEM and SAED identified InSn 4 and In, with some Sn being detected by XRD, but no In 3 Sn was observed. The differential scanning calorimetry (DSC) thermographs of the as-synthesized nanoparticles exhibited an endothermic peak at around 116 °C, which is indicative of the metastable eutectic melting of InSn 4 and In. When the nanosolders were subjected to heat treatment at 50-225 °C, the equilibrium phase In 3 Sn appeared while Sn disappeared. The equilibrium state was effectively attained at 225 °C. A Tammann plot of the DSC data of the as-synthesized nanoparticles indicated that the metastable eutectic composition is about 62% In, while that of the DSC data of the 225 °C heat-treated nanoparticles yielded a eutectic composition of 54% In, which confirmed the attainment of the equilibrium state at 225 °C. The phase boundaries estimated from the DSC data of heat-treated Sn/In nanosolder particles matched well with those in the established Sn-In equilibrium phase diagram. The phase transition behavior of Sn/In nanosolders leads to a new understanding of binary alloy particles at the nanoscale, and provides important information for their low temperature soldering processing and applications.

  19. Crystallization processes in Ge{sub 2}Sb{sub 2}Se{sub 4}Te glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svoboda, Roman, E-mail: roman.svoboda@upce.cz; Bezdička, Petr; Gutwirth, Jan

    2015-01-15

    Highlights: • Crystallization kinetics of Ge{sub 2}Sb{sub 2}Se{sub 4}Te glass was studied in dependence on particle size by DSC. • All studied fractions were described in terms of the SB autocatalytic model. • Relatively high amount of Te enhances manifestation of bulk crystallization mechanisms. • XRD analysis of samples crystallized under different conditions showed correlation with DSC data. • XRD analysis revealed a new crystallization mechanism indistinguishable by DSC. - Abstract: Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis were used to study crystallization in Ge{sub 2}Sb{sub 2}Se{sub 4}Te glass under non-isothermal conditions as a function of the particlemore » size. The crystallization kinetics was described in terms of the autocatalytic Šesták–Berggren model. An extensive discussion of all aspects of a full-scale kinetic study of a crystallization process was undertaken. Dominance of the crystallization process originating from mechanically induced strains and heterogeneities was confirmed. Substitution of Se by Te was found to enhance the manifestation of the bulk crystallization mechanisms (at the expense of surface crystallization). The XRD analysis showed significant dependence of the crystalline structural parameters on the crystallization conditions (initial particle size of the glassy grains and applied heating rate). Based on this information, a new microstructural crystallization mechanism, indistinguishable by DSC, was proposed.« less

  20. Endophytic fungal isolate mediated biosynthesis of silver nanoparticles and their free radical scavenging activity and anti microbial studies.

    PubMed

    Netala, Vasudeva Reddy; Kotakadi, Venkata Subbaiah; Bobbu, Pushpalatha; Gaddam, Susmila Aparna; Tartte, Vijaya

    2016-12-01

    The present study reports that the biosynthesis of AgNPs using an endophytic fungus isolated from the ethnomedicinal plant Centella asiatica. The endophytic fungus was identified as Aspergillus versicolor ENT7 based on 18S rRNA gene sequencing (NCBI Accession number KF493864). The AgNPs synthesized were characterized by UV-visible spectroscopy, Fourier transform infra-red spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), particle size analyzer, and zeta potential measurements. The UV-Vis absorption spectra showed the peak at 429 nm which confirmed the synthesis of AgNPs. TEM analysis revealed that the AgNPs were spherical in shape with 3-40 nm in size; similar results were also obtained by Horiba particle size analyzer with 5-40 nm in size. The synthesized AgNPs were highly stable due to their high negative zeta potential value of -38.2 mV. XRD studies showed (111), (200), (220), (311), and (222) planes of the face-centered cubic (FCC) lattice, indicating the crystalline nature of the AgNPs. Selected area electron diffraction (SAED) pattern of the AgNPs showed five circular fringes which were in accordance with XRD data and confirmed the formation of high crystalline nature of AgNPs. FTIR measurements indicated the peaks at 3273, 2925, 1629, 1320, and 1020 cm -1 corresponding to different functional groups possibly involved in the synthesis and stabilization of AgNPs. The synthesized AgNPs exhibited effective free radical scavenging activity with the IC50 value of 60.64 µg/ml. The synthesized AgNPs were found to be highly toxic against both gram-positive and gram-negative bacteria and also showed a very good antifungal activity.

  1. Micro structrual characterization and analysis of ball milled silicon carbide

    NASA Astrophysics Data System (ADS)

    Madhusudan, B. M.; Raju, H. P.; Ghanaraja., S.

    2018-04-01

    Mechanical alloying has been one of the prominent methods of powder synthesis technique in solid state involving cyclic deformation, cold welding and fracturing of powder particles. Powder particles in this method are subjected to greater mechanical deformation due to the impact of ball-powder-ball and ball-powder-container collisions that occurs during mechanical alloying. Strain hardening and fracture of particles decreases the size of the particles and creates new surfaces. The objective of this Present work is to use ball milling of SiC powder for different duration of 5, 10, 15 and 20 hours by High energy planetary ball milling machine and to evaluate the effect of ball milling on SiC powder. Micro structural Studies using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and EDAX has been investigated.

  2. A facile synthesis of metal nanoparticle - graphene composites for better absorption of solar radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bindu; Mulla, Rafiq; Rabinal, M. K., E-mail: mkrabinal@yahoo.com

    2015-06-24

    Herein, a facile chemical approach has been adopted to prepare silver nanoparticles (AgNPs)- graphene (G) composite to study photothermal effect. Sodium borohydride (SBH), a strong reducing agent has been selected for this work. Effect of SBH concentrations on optical behavior of AgNPs-G composite was also investigated. Resultant materials were characterized by various techniques including X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), optical absorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM micrographs confirm wrapping of AgNPs into graphene whereas XRD analysis reveals their particle size variation between 47 nm to 69 nm. Optical studies throw a light on theirmore » strong absorption behavior towards solar radiation.« less

  3. The PM2.5 capture of poly (lactic acid)/nano MOFs eletrospinning membrane with hydrophilic surface

    NASA Astrophysics Data System (ADS)

    Wang, Yating; Dai, Xiu; Li, Xu; Wang, Xinlong

    2018-03-01

    In this article, metal organic frameworks (MOFs) material is introduced in the poly (lactic acid) (PLA) by electrospinning to fabricate the nanocomposite membrane. The acrylic acid (AA) is grafted onto the membrane under UV light. The prepared membrane is studied by scanning electron microscopy (SEM), x-ray diffraction (XRD), thermogravimetry (TG), contact angle test and tensile strength test. The SEM image and XRD indicate that nano MOFs particles adhere to the membrane. Contact angle test shows that grafting AA on the composite fiber membrane improves its hydrophilicity effectively. TG analyses show that the particulate matter (PM) capture capacity of PLA membrane with 2 wt% ZIF-8 content is 22%, which rises to 37% after grafting.

  4. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Bikramjeet; Singh, Paviter; Kumar, Akshay, E-mail: akshaykumar.tiet@gmail.com

    2015-05-15

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H{sub 3}BO{sub 3}). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications asmore » well boron neutron capture therapy (BNCT)« less

  5. Comparing results of X-ray diffraction, µ-Raman spectroscopy and neutron diffraction when identifying chemical phases in seized nuclear material, during a comparative nuclear forensics exercise.

    PubMed

    Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea; Ramebäck, Henrik; Marie, Olivier; Ravat, Brice; Delaunay, François; Young, Emma; Blagojevic, Ned; Hester, James R; Thorogood, Gordon; Nelwamondo, Aubrey N; Ntsoane, Tshepo P; Roberts, Sarah K; Holliday, Kiel S

    2018-01-01

    This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2 , U 3 O 8 and an intermediate species U 3 O 7 in the third material.

  6. The effect of ultrasonic irradiation on the structure, morphology and photocatalytic performance of ZnO nanoparticles by sol-gel method.

    PubMed

    Mahdavi, Reza; Ashraf Talesh, S Siamak

    2017-11-01

    In this research, the effect of ultrasonic irradiation power (0, 75, 150 and 200W) and time (0, 5, 15 and 20min) on the structure, morphology and photocatalytic activity of zinc oxide nanoparticles synthesized by sol-gel method was investigated. Crystallographic structures and the morphologies of the resultant powders were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns showed that ZnO samples were crystallized in their pure phase. The purity of samples was increased by increasing the ultrasonic irradiation power and time. Not only did ultrasonic irradiation unify both the structure and the morphology, but also it reduced the size and prohibited particles from aggregation. The optical behavior of the samples was studied by UV-vis spectroscopy. Photocatalytic activity of particles was measured by degradation of methyl orange under radiation of ultraviolet light. Ultrasound nanoparticles represented higher degradation compared to non-ultrasound ones. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Synthesis of High Valence Silver-Loaded Mesoporous Silica with Strong Antibacterial Properties

    PubMed Central

    Chen, Chun-Chi; Wu, Hsin-Hsien; Huang, Hsin-Yi; Liu, Chen-Wei; Chen, Yi-Ning

    2016-01-01

    A simple chemical method was developed for preparing high valence silver (Ag)-loaded mesoporous silica (Ag-ethylenediaminetetraacetic acid (EDTA)-SBA-15), which showed strong antibacterial activity. Ag-EDTA-SBA-15 exhibited stronger and more effective antibacterial activity than commercial Ag nanoparticles did, and it offered high stability of high valence silver in the porous matrix and long-lasting antibacterial activity. The synthesized materials were characterized using Fourier transform infrared spectroscopy, powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) analysis, and transmission electron microscopy (TEM). Ag existed in both surface complexation and Ag particles. EDTA anchored within a porous structure chelated Ag ions in higher oxidation states and prevented their agglomeration and oxidation reduction. The XRD results showed that most Ag in the Ag-EDTA-SBA-15 existed in higher oxidation states such as Ag(II) and Ag(III). However, the XPS and TEM results showed that Ag easily reduced in lower oxidation states and agglomerated as Ag particles on the exterior layer of the SBA-15. PMID:26742050

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deus, R.C.; Cortés, J.A., E-mail: leandrosrr89@gmail.com; Ramirez, M.A.

    Highlights: • CeO{sub 2} nanoparticles were obtained by microwave-hydrothermal method. • Rietveld refinement reveals a cubic structure. • KOH mineralizer agent exhibit weak agglomeration at low temperature and shorter time. - Abstract: The structural and photoluminescent properties at room temperature of CeO{sub 2} and La-doped CeO{sub 2} particles were undertaken. The obtained particles were synthesized by a microwave-assisted hydrothermal method (MAH) under different lanthanum contents. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman), Ultra-violet spectroscopy (UV–vis) and photoluminescence (PL) measurements were carried out. XRD revealed that the powders are free of secondary phases and crystallize in themore » cubic structure. Raman data show that increasing La doping content increase oxygen vacancies due to lattice expansion. The UV/vis absorption spectroscopy suggested the presence of intermediate energy levels in the band gap of structurally ordered powders. Lanthanum addition creates oxygen vacancies and shifts the photoluminescence in the low energy range leading to intense PL emission.« less

  9. Tuning effect of polysaccharide Chitosan on structural, morphological, optical and photoluminescence properties of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Magesh, G.; Bhoopathi, G.; Nithya, N.; Arun, A. P.; Ranjith Kumar, E.

    2018-05-01

    Chitosan/ZnO nanocomposites was synthesized by in-situ chemical precipitation method. The effect of polysaccharide Chitosan concentration (0.1 g, 0.5 g, 1 g and 3 g) was investigated by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) with Energy dispersive spectroscopy (EDX), High Resolution Transmission Electron Microscopy (HRTEM), UV-visible (UV), Fourier Transform Infrared (FTIR) and Photoluminescence Spectroscopy (PL). XRD pattern confirms the hexagonal wurtzite structure of the Chitosan/ZnO nanocomposites. The structural morphology and the elemental composition of the samples were analysed by FESEM and EDX respectively. From TEM analysis, it is observed that the particles in spindle shape morphology with average particle size ranges 10-20 nm. UV-Vis analysis reveals that the Chitosan concentration affect the absorption band edge and shift towards lower wavelength. The oxygen vacancy induced photoluminescence of ZnO nanoparticles was observed and its intensity decreases by tuning the Chitosan concentration.

  10. Magnetic, hyperthermic and structural properties of zn substituted CaFe2O4 powders

    NASA Astrophysics Data System (ADS)

    Kheradmand, Abbas; Vahidi, Omid; Masoudpanah, S. M.

    2018-03-01

    In the present study, we have synthesized single phase Ca1 - x Zn x Fe2O4 powders by hydrothermal method. The cation distribution between the tetrahedral and octahedral sites in the spinel structure and the magnetic properties as a function of the zinc substitution have been investigated by X-ray diffraction (XRD), infrared spectroscopy and vibrating sample magnetometer methods. The obtained XRD pattern indicated that the synthesized particles had single phase cubic spinel structure with no impurity. The magnetic measurements showed that the saturation magnetization increased from 83 to 98 emu/g with the addition of zinc due to the decrease of inversity. The particle size observed by electron microscopy decreased from 1.38 to 0.97 µm with the increase of zinc addition. The Ca0.7Zn0.3Fe2O4 powders exhibited appropriate heating capability for hyperthermia applications with the maximum AC heating temperature of 20 °C and specific loss power of 9.29 W/g.

  11. Synthesis and characterization of new ion-imprinted polymer for separation and preconcentration of uranyl (UO2(2+)) ions.

    PubMed

    Ahmadi, Seyed Javad; Noori-Kalkhoran, Omid; Shirvani-Arani, Simindokht

    2010-03-15

    UO(2)(2+) ion-imprinted polymer materials used for solid-phase extraction were prepared by copolymerization of a ternary complex of uranyl ions with styrene and divinyl benzene in the presence of 2,2'-azobisisobutyronitrile. The imprinted particles were leached by HCl 6M. Various parameters in polymerization steps such as DVB/STY ratio, time of polymerization and temperature of polymerization were varied to achieve the most efficient uranyl-imprinted polymer. X-ray diffraction (XRD), infra-red spectroscopy (IR), thermo gravimetric analysis (TGA), UV-vis and nitrogen sorption were used to characterize the polymer particles. The XRD results showed that uranyl ions were completely removed from the polymer after leaching process. IR Analysis indicated that the N,N'-ethylenebis(pyridoxylideneiminato) remained intact in the polymer even after leaching. Some parameters such as pH, weight of the polymer, elution time, eluent volume and aqueous phase volume which affects the efficiency of the polymer were studied. (c) 2009 Elsevier B.V. All rights reserved.

  12. Rietveld Refinement on X-Ray Diffraction Patterns of Bioapatite in Human Fetal Bones

    PubMed Central

    Meneghini, Carlo; Dalconi, Maria Chiara; Nuzzo, Stefania; Mobilio, Settimio; Wenk, Rudy H.

    2003-01-01

    Bioapatite, the main constituent of mineralized tissue in mammalian bones, is a calcium-phosphate-based mineral that is similar in structure and composition to hydroxyapatite. In this work, the crystallographic structure of bioapatite in human fetuses was investigated by synchrotron radiation x-ray diffraction (XRD) and microdiffraction (μ-XRD) techniques. Rietveld refinement analyses of XRD and μ-XRD data allow for quantitative probing of the structural modifications of bioapatite as functions of the mineralization process and gestational age. PMID:12609904

  13. Photosynthetic microorganism-mediated synthesis of akaganeite (beta-FeOOH) nanorods.

    PubMed

    Brayner, Roberta; Yéprémian, Claude; Djediat, Chakib; Coradin, Thibaud; Herbst, Fréderic; Livage, Jacques; Fiévet, Fernand; Couté, Alain

    2009-09-01

    Common Anabaena and Calothrix cyanobacteria and Klebsormidium green algae are shown to form intracellularly akaganeite beta-FeOOH nanorods of well-controlled size and unusual morphology at room temperature. X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy X-ray energy dispersive spectrometry (SEM-EDS) analyses are used to investigate particle structure, size, and morphology. A mechanism involving iron-siderophore complex formation is proposed and compared with iron biomineralization in magnetotactic bacteria.

  14. Reaction Heterogeneity in LiNi 0.8 Co 0.15 Al 0.05 O 2 Induced by Surface Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grenier, Antonin; Liu, Hao; Wiaderek, Kamila M.

    2017-08-15

    Through operando synchrotron powder X-ray diffraction (XRD) analysis of layered transition metal oxide electrodes of composition LiNi0.8Co0.15Al0.05O2 (NCA), we decouple the intrinsic bulk reaction mechanism from surface-induced effects. For identically prepared and cycled electrodes stored in different environments, we demonstrate that the intrinsic bulk reaction for pristine NCA follows solid-solution mechanism, not a two-phase as suggested previously. By combining high resolution powder X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and surface sensitive X-ray photoelectron spectroscopy (XPS), we demonstrate that adventitious Li2CO3 forms on the electrode particle surface during exposure to air, through reaction with atmospheric CO2. This surfacemore » impedes ionic and electronic transport to the underlying electrode, with progressive erosion of this layer during cycling giving rise to different reaction states in particles with an intact vs an eroded Li2CO3 surface-coating. This reaction heterogeneity, with a bimodal distribution of reaction states, has previously been interpreted as a “two-phase” reaction mechanism for NCA, as an activation step that only occurs during the first cycle. Similar surface layers may impact the reaction mechanism observed in other electrode materials using bulk probes such as operando powder XRD.« less

  15. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvaraj, Mahalakshmi; Department of Material Science, School of Chemistry, Madurai Kamaraj University, Tamilnadu Madurai-625 021; Venkatachalapathy, V.

    2015-11-15

    Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO{sub 3}) nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C) employing barium dichloride (BaCl{sub 2}) and titanium tetrachloride (TiCl{sub 4}) as precursors and sodium hydroxide (NaOH) as mineralizer for synthesis of BaTiO{sub 3} nanopowders. The as-prepared BaTiO{sub 3} powders were investigated for structural characteristics using x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phasemore » directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula). SEM and TEM analysis verified that the BaTiO{sub 3} nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED) shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric) phases of undoped BaTiO{sub 3} nanopowders can be stabilized by the sol-hydrothermal method.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apaydin, Ramazan Oguzhan; Ebin, Burcak; Gurmen, Sebahattin

    Copper-Nickel (CuNi) nanostructured alloy particles were produced by Ultrasonic Spray Pyrolysis and Hydrogen Reduction Method (USP-HR) from high purity copper and nickel nitrate aqueous solutions. The effect of the precursor solution in the range of 0.1 and 0.5 mol/L on the morphology and crystallite size of CuNi nanoparticles were investigated under 2 h running time, 700 °C operating temperature and 0.5 L/min H{sub 2} flow rate. Particle size, morphology, composition and crystallite structure were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-Ray Diffraction (XRD). Particle characterization studies show that nanostructured alloy particles have cubic crystal structuremore » and they are in submicron size range with spherical morphology. The crystallite sizes of the particles calculated with Scherrer formula are 40 and 34 nm and average particles sizes observed from the SEM images are 300 and 510 nm for each experiment respectively.« less

  17. Study on industrial wastewater treatment using superconducting magnetic separation

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Zhao, Zhengquan; Xu, Xiangdong; Li, Laifeng

    2011-06-01

    The mechanism of industrial wastewater treatment using superconducting magnetic separation is investigated. Fe 3O 4 nanoparticles were prepared by liquid precipitation and characterized by X-ray diffraction (XRD). Polyacrylic acid (PAA) film was coated on the magnetic particles using plasma coating technique. Transmission electron microscope (TEM) observation and infrared spectrum measurement indicate that the particle surface is well coated with PAA, and the film thickness is around 1 nm. Practical paper factory wastewater treatment using the modified magnetic seeds in a superconducting magnet (SCM) was carried out. The results show that the maximum removal rate of chemical oxygen demand (COD) by SCM method can reach 76%.

  18. Coal emissions adverse human health effects associated with ultrafine/nano-particles role and resultant engineering controls.

    PubMed

    Oliveira, Marcos L S; Navarro, Orlando G; Crissien, Tito J; Tutikian, Bernardo F; da Boit, Kátia; Teixeira, Elba C; Cabello, Juan J; Agudelo-Castañeda, Dayana M; Silva, Luis F O

    2017-10-01

    There are multiple elements which enable coal geochemistry: (1) boiler and pollution control system design parameters, (2) temperature of flue gas at collection point, (3) feed coal and also other fuels like petroleum coke, tires and biomass geochemistry and (4) fuel feed particle size distribution homogeneity distribution, maintenance of pulverisers, etc. Even though there is a large number of hazardous element pollutants in the coal-processing industry, investigations on micrometer and nanometer-sized particles including their aqueous colloids formation reactions and their behaviour entering the environment are relatively few in numbers. X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/ (Energy Dispersive Spectroscopy) EDS/ (selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis were used as an integrated characterization techniques tool box to determine both geochemistry and nanomineralogy for coal fly ashes (CFAs) from Brazil´s largest coal power plant. Ultrafine/nano-particles size distribution from coal combustion emissions was estimated during the tests. In addition the iron and silicon content was determined as 54.6% of the total 390 different particles observed by electron bean, results aimed that these two particles represent major minerals in the environment particles normally. These data may help in future investigations to asses human health actions related with nano-particles. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Physicochemical characterization of Capstone depleted uranium aerosols III: morphologic and chemical oxide analyses.

    PubMed

    Krupka, Kenneth M; Parkhurst, Mary Ann; Gold, Kenneth; Arey, Bruce W; Jenson, Evan D; Guilmette, Raymond A

    2009-03-01

    The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using x-ray diffraction (XRD), and particle morphologies were examined using scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). The oxidation state of a DU aerosol is important as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles were spherical, occasionally with dendritic or lobed surface structures. Others appear to have fractures that perhaps resulted from abrasion and comminution, or shear bands that developed from plastic deformation of the DU material. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small bits of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of Health Physics to interpret the results of lung solubility studies and in selecting input parameters for dose assessments.

  20. Physicochemical Characterization of Capstone Depleted Uranium Aerosols III: Morphologic and Chemical Oxide Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupka, Kenneth M.; Parkhurst, MaryAnn; Gold, Kenneth

    2009-03-01

    The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using X-ray diffraction (XRD) and particle morphologies using scanning electron microscopy/energy dispersive spectrometry (SEM/EDS). The oxidation state of a DU aerosol is importantmore » as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles appear to have been fractured (perhaps as a result of abrasion and comminution); others were spherical, occasionally with dendritic or lobed surface structures. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small chunks of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of The Journal of Health Physics to interpret the results of lung solubility studies and in selecting input parameters for dose assessments.« less

  1. Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Harish, G. S.; Sreedhara Reddy, P.

    2015-09-01

    Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2-3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm-1) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping.

  2. Frequency dependent dielectric properties of combustion synthesized Dy2Ti2O7 pyrochlore oxide

    NASA Astrophysics Data System (ADS)

    Jeyasingh, T.; Saji, S. K.; Kavitha, V. T.; Wariar, P. R. S.

    2018-05-01

    Nanocrystalline pyrochlore material Dysprosium Titanate (Dy2Ti2O7) has been synthesized through a single step optimized combustion route. The phase purity and phase formation of the combustion product has been characterized using X-Ray diffraction analysis (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) analysis. X-Ray diffraction analysis (XRD) reveal that Dy2Ti2O7 is highly crystalline in nature with cubic structure in the Fd3m space group. The microstructures and average particle size of the prepared nanopowder were examined by High Resolution Transmission Electron Microscopy (HR-TEM). The optical band gap of the Dy2Ti2O7 nanoparticles is determined from the absorption spectrum, was attributed to direct allowed transitions through optical band gap of 3.98 eV. The frequency dependent dielectric measurements have been carried out on the sintered pellet in the frequency range 1 Hz-10 MHz. The measured value of dielectric constant (ℇ') was ˜ 43 and loss tangent (tan δ) was 4×10-3 at 1 MHz, at room temperature.

  3. Luminescence study of ZnSe/PVA (polyvinyl alcohol) composite film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lahariya, Vikas

    The ZnSe nanocrystals have been prepared into poly vinyl alcohol(PVA) polymer matrix on glass using ZnCl2 and Na2SeSO3 as zinc and selenium source respectively. Poly vinyl Alcohol (PVA) used as polymer matrix cum capping agent due to their high viscosity and water solubility. It is transparent for visible region and prevents Se- ions to photo oxidation. The ZnSe/PVA composite film was deposited on glass substrate. The film was characterized by X Ray Diffraction (XRD) and UV-Visible absorption Spectroscopy and Photoluminescence. The X Ray Diffraction (XRD) study confirms the nanometer size (10 nm) particle formation within PVA matrix with cubic zinc blendmore » crystal structure. The UV-Visible Absorption spectrum of ZnSe/PVA composite film shown blue shift in absorption edge indicating increased band gap due to quantum confinement. The calculated energy band gap from the absorption edge using Tauc relation is 3.4 eV. From the Photoluminescence study a broad peak at 435 nm has been observed in violet blue region due to recombination of surface states.« less

  4. Hydrothermal synthesis and characterization of hydroxyapatite and fluorhydroxyapatite nano-size powders.

    PubMed

    Montazeri, Leila; Javadpour, Jafar; Shokrgozar, Mohammad Ali; Bonakdar, Shahin; Javadian, Sayfoddin

    2010-08-01

    Pure hydroxyapatite (HAp) and fluoride-containing apatite powders (FHAp) were synthesized using a hydrothermal method. The powders were assessed by x-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM) and F-selective electrode. X-ray diffraction results revealed the formation of single phase apatite structure for all the compositions synthesized in this work. However, the addition of a fluoride ion led to a systematic shift in the (3 0 0) peak of the XRD pattern as well as modifications in the FTIR spectra. It was found that the efficiency of fluoride ion incorporation decreased with the increase in the fluoride ion content. Fluorine incorporation efficiency was around 60% for most of the FHAp samples prepared in the current study. Smaller and less agglomerated particles were obtained by fluorine substitution. The bioactivity of the powder samples with different fluoride contents was compared by performing cell proliferation, alkaline phosphatase (ALP) and Alizarin red staining assays. Human osteoblast cells were used to assess the cellular responses to the powder samples in this study. Results demonstrated a strong dependence of different cell activities on the level of fluoridation.

  5. Comparing results of X-ray diffraction, µ-Raman spectroscopy and neutron diffraction when identifying chemical phases in seized nuclear material, during a comparative nuclear forensics exercise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea

    This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2, U 3O 8 and an intermediate species U 3Omore » 7 in the third material.« less

  6. Comparing results of X-ray diffraction, µ-Raman spectroscopy and neutron diffraction when identifying chemical phases in seized nuclear material, during a comparative nuclear forensics exercise

    DOE PAGES

    Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea; ...

    2018-01-24

    This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2, U 3O 8 and an intermediate species U 3Omore » 7 in the third material.« less

  7. Effect of pH on the structural, optical and morphological properties of Ga-doped ZnO nanoparticles by reflux precipitation method

    NASA Astrophysics Data System (ADS)

    Ungula, J.; Dejene, B. F.; Swart, H. C.

    2018-04-01

    Gallium-doped zinc oxide nanoparticles (GZO NPs) were synthesized by the reflux precipitation method at 1, 3, 5, 7 and 8 pH conditions of Ga/Zn precursor solution (Ga/Zn sol.). Analysis of X-ray diffraction (XRD) spectra showed that the diffraction peak intensities of GZO NPs increased and the crystallite sizes varied from 11 to 27 nm with an increase in the pH of the Zn/Ga sol. Scanning electron microscopy micrographs showed agglomerated tiny particles that formed on big slabs of nanorods at the lower pH, but fine and enlarged particles on nano-spherical bases formed at the higher pH values. The photoluminescence exciton peak intensities of the GZO NPs and their respective FWHM increased to a maximum at the 5 pH and then reduced slightly as the solution got more basic. The increase of the deep level peak intensities with the increase in the pH followed the XRD diffraction intensity results. It was observed that both the exciton and DLE peaks emission positions shifted to lower wavelengths up to the 5 pH and then red shifted for a further increase in the pH values. The UV-vis analysis also demonstrated that the optical properties of the GZO NPs improved with the increase Ga/Zn sol. pH, as shown by the blue shift of the absorption edge of the reflectance spectra. The band gap energy was tuned from 3.18 to 3.31 eV with the increase in the pH from 1 to 5. An additional increase in the pH yielded no significant change in the optical properties of the GZO NPs.

  8. Combustion synthesis and characterization of blue long lasting phosphor CaAl2O4: Eu2+, Dy3+ and its novel application in latent fingerprint and lip mark detection

    NASA Astrophysics Data System (ADS)

    Sharma, Vishal; Das, Amrita; Kumar, Vijay; Kumar, Vinay; Verma, Kartikey; Swart, H. C.

    2018-04-01

    This work investigates the structural, optical and photometric characterization of a Eu2+/Dy3+ doped calcium aluminates phosphor (CaAl2O4: Eu2+/Dy3+) for finger and lip print detections. Synthesis of CaAl2O4: Eu2+/Dy3+ (CAED) phosphors were carried out via a combustion synthesis method with urea as a fuel. Eu2+/Dy3+ doped CaAl2O4 phosphors have been studied with X-ray diffraction (XRD, Energy Dispersive X-Ray Spectroscopy Selected Area Diffraction (SAED) and High resolution Transmission Electron Microscope (HR-TEM). The XRD pattern shows that the synthesized Eu2+/Dy3+ doped CaAl2O4 phosphor have a single monoclinic structure and show that the addition of the dopant/co-dopants didn't change the crystal structure. The formation of monoclinic phase was confirmed by the selected area diffraction pattern. The TEM micrograph displays the morphology of the synthesized Eu2+/Dy3+ doped CaAl2O4 phosphors as spherical particles with an average particle size of 33 nm. The optical band gap was calculated using the diffuse reflectance for the synthesized nanophosphor powders. The photoluminescence emission spectra was recorded for the synthesized powder, with an excitation wavelength of 326 nm and the major bands was recorded at 447 nm corresponding to the blue color and two minor bands were recorded at 577 nm and 616 nm. To the best of our knowledge, this work is the first to show the use of CaAl2O4: Eu2+/Dy3+ nanophosphor in developing latent fingerprint and lip print effectively.

  9. Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation.

    PubMed

    Cianconi, L; Palopoli, P; Campanella, V; Mancini, M

    2016-12-01

    The aim of this study was to determine the chemical composition and the phases' microstructure of Aureoseal Plus (OGNA, Italy) and ProRoot MTA (Dentsply Tulsa Dental, USA) and to compare their characteristics. Study Design: Comparing Aureoseal Plus and ProRoot MTA microstructure by means of several analyses type. The chemical analysis of the two cements was assessed following the UNI EN ISO 196-2 norm. X-Ray fluorescence (XRF) was used to determine the element composition. The crystalline structure was analysed quantitatively using x-ray diffraction (XRD). Powders morphology was evaluated using a scanning electron microscope (SEM) with backscattering detectors, and a field emission scanning electron microscope (FESEM). Elemental analysis was performed by energy dispersive x-ray analysis (EDS). The semi-quantitative XRF analysis showed the presence of heavy metal oxides in both cements. The XRD spectra of the two cements reported the presence of dicalcium silicate, tricalcium silicate, tricalcium aluminate, tetracalcium aluminoferrite, bismuth oxide and gypsum. SEM analysis showed that ProRoot MTA powder is less coarse and more homogeneous than Aureoseal. Both powders are formed by particles of different shapes: round, prismatic and oblong. The EDS analysis showed that some ProRoot MTA particles, differently from Aureoseal, contain Ca, Si, Al and Fe. Oblong particles in ProRoot and Aureoseal are rich of bismuth. The strong interest in developing new Portland cement-based endodontic sealers will create materials with increased handling characteristics and physicochemical properties. A thorough investigation on two cement powders was carried out by using XRF, XRD, SEM and EDS analysis. To date there was a lack of studies on Aureoseal Plus. This cement is similar in composition to ProRoot MTA. Despite that it has distinctive elements that could improve its characteristics, resulting in a good alternative to MTA.

  10. Preparation and characterization of bismuth oxichloride (BiOCl) nanoparticles and nano zerovalent iron (nZVI)

    NASA Astrophysics Data System (ADS)

    Sarwan, Bhawna; Pare, Brijesh; Deep Acharya, Aman

    2017-05-01

    In this work, we have synthesized nano scale zerovalent iron (nZVI) particles by borohydride reduction method and bismuth oxichloride (BiOCl) by a hydrolysis method. X-ray powder diffraction (XRD) was used for the structural and chemical characterization, while scanning/transmission electron microscopy (SEM/TEM) were employed to determine the physical properties of the nanoparticles. The reactivity of synthesized nanoparticles was compared by decolorization of nile blue (NB) dye under visible irradiation.

  11. Effect of high intensity ultrasound on the mesostructure of hydrated zirconia

    NASA Astrophysics Data System (ADS)

    Kopitsa, G. P.; Baranchikov, A. E.; Ivanova, O. S.; Yapryntsev, A. D.; Grigoriev, S. V.; Pranzas, P. Klaus; Ivanov, V. K.

    2012-02-01

    We report structural changes in amorphous hydrated zirconia caused by high intensity ultrasonic treatment studied by means of small-angle neutron scattering (SANS) and X-ray diffraction (XRD). It was established that sonication affects the mesostructure of ZrO2×xH2O gels (i.e. decreases their homogeneity, increases surface fractal dimension and the size of monomer particles). Ultrasound induced structural changes in hydrated zirconia governs its thermal behaviour, namely decreases the rate of tetragonal to monoclinic zirconia phase transition.

  12. Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes

    PubMed Central

    2010-01-01

    The synthesis of nanoparticles silica oxide from rice husk, sugar cane bagasse and coffee husk, by employing vermicompost with annelids (Eisenia foetida) is reported. The product (humus) is calcinated and extracted to recover the crystalline nanoparticles. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS) show that the biotransformation allows creating specific crystalline phases, since equivalent particles synthesized without biotransformation are bigger and with different crystalline structure. PMID:20802789

  13. In vitro bioactivity and antimicrobial tuning of bioactive glass nanoparticles added with neem (Azadirachta indica) leaf powder.

    PubMed

    Prabhu, M; Ruby Priscilla, S; Kavitha, K; Manivasakan, P; Rajendran, V; Kulandaivelu, P

    2014-01-01

    Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50 nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications.

  14. In Vitro Bioactivity and Antimicrobial Tuning of Bioactive Glass Nanoparticles Added with Neem (Azadirachta indica) Leaf Powder

    PubMed Central

    Prabhu, M.; Ruby Priscilla, S.; Kavitha, K.; Manivasakan, P.; Rajendran, V.; Kulandaivelu, P.

    2014-01-01

    Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50 nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications. PMID:25276834

  15. [Preparation of panax notoginseng saponins-tanshinone H(A) composite method for pulmonary delivery with spray-drying method and its characterization].

    PubMed

    Wang, Hua-Mei; Fu, Ting-Ming; Guo, Li-Wei

    2013-02-01

    To prepare panax notoginseng saponins-tanshinone II(A) composite particles for pulmonary delivery, in order to explore a dry powder particle preparation method ensuring synchronized arrival of multiple components of traditional Chinese medicine compounds at absorption sites. Panax notoginseng saponins-tanshinone II(A) composite particles were prepared with spray-drying method, and characterized by scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), X-ray diffraction (XRD), infrared analysis (IR), dry laser particle size analysis, high performance liquid chromatography (HPLC) and the aerodynamic behavior was evaluated by a Next Generation Impactor (NGI). The dry powder particles produced had narrow particle size distribution range and good aerodynamic behavior, and could realize synchronized administration of multiple components. The spray-drying method is used to combine traditional Chinese medicine components with different physical and chemical properties in the same particle, and product into traditional Chinese medicine compound particles in line with the requirements for pulmonary delivery.

  16. Synthesis and characterization of Al & SiCp nano particles by non-contact ultrasonic assisted method

    NASA Astrophysics Data System (ADS)

    Swain, Pradyut Kumar; Das, Ratnakar; Sahoo, Ashok Kumar; Naik, Bikash; Padhi, Payodhar

    2018-05-01

    The present study deals with proper mixing of SiCp nano particle in the aluminum metal matrix in two stages of processing i.e. primary and secondary. During primary processing, the breaking of agglomeration of nano particles take place and these are mixed with liquid aluminum powder using high frequency(35kHz) mechanical vibration. But, during secondary processing, mixing of nano particles along with subsequent cooling take place using high frequency non contact ultrasonic method. The study also reveals that in the liquid metal nano particle were uniformly dispersed and the segregation of the particles near the grain boundaries is due to pushing of the nano particle during grain growth. The study was performed by taking aluminum as matrix and SiCp as reinforcement with weight fraction of 2% and 3% and SiCp particles sizes of 30nm each. Scanning electron microscopy(SEM) and X-ray diffraction(XRD) were conducted for characterization of nano composite material.

  17. Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation

    PubMed Central

    Zhang, Hongjia; Sui, Tan; Daisenberger, Dominik; Fong, Kai Soon

    2018-01-01

    High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning) or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short). As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated using multiple direction strain data, leading to full in-plane strain evaluation. It is therefore concluded that XRD-DIC provides a reliable and robust method for strain evaluation from 2D powder diffraction data. The XRD-DIC approach simplifies the analysis process by skipping 2D to 1D conversion, and opens new possibilities for robust 2D powder diffraction data analysis for full in-plane strain evaluation. PMID:29543728

  18. Probing the interaction of Rh, Co and bimetallic Rh-Co nanoparticles with the CeO2 support: catalytic materials for alternative energy generation.

    PubMed

    Varga, E; Pusztai, P; Óvári, L; Oszkó, A; Erdőhelyi, A; Papp, C; Steinrück, H-P; Kónya, Z; Kiss, J

    2015-10-28

    The interaction of CeO2-supported Rh, Co and bimetallic Rh-Co nanoparticles, which are active catalysts in hydrogen production via steam reforming of ethanol, a process related to renewable energy generation, was studied by X-ray diffraction (XRD), high resolution electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). Furthermore, diffuse reflectance infrared spectroscopy (DRIFTS) of adsorbed CO as a probe molecule was used to characterize the morphology of metal particles. At small loadings (0.1%), Rh is in a much dispersed state on ceria, while at higher contents (1-5%), Rh forms 2-8 nm particles. Between 473-673 K pronounced oxygen transfer from ceria to Rh is observed and at 773 K significant agglomeration of Rh occurs. On reduced ceria, XPS indicates a possible electron transfer from Rh to ceria. The formation of smaller ceria crystallites upon loading with Co was concluded from XRD and HRTEM; for 10% Co, the CeO2 particle size decreased from 27.6 to 10.7 nm. A strong dissolution of Co into ceria and a certain extent of encapsulation by ceria were deduced by XRD, XPS and LEIS. In the bimetallic system, the presence of Rh enhances the reduction of cobalt and ceria. During thermal treatments, reoxidation of Co occurs, and Rh agglomeration as well as oxygen migration from ceria to Rh are hindered in the presence of cobalt.

  19. Physicochemical characterizations of nano-palm oil fuel ash

    NASA Astrophysics Data System (ADS)

    Rajak, Mohd Azrul Abdul; Majid, Zaiton Abdul; Ismail, Mohammad

    2015-07-01

    Palm Oil Fuel Ash (POFA) is known as a good supplementary cementing material due to its siliceous-rich content. The application of nanotechnology in the pozzolanic materials could invent new functions in the efficiency of physical and chemical properties of materials. Thus, the present study aims to generate nano-sized POFA and characterize the physicochemical properties of nano-palm oil fuel ash (nPOFA). The nPOFA was prepared by mechanically grinding micro POFA using a high intensity ball milling for 6 hours. The physicochemical properties of nPOFA were characterized via X-Ray Fluoresence (XRF), Scanning Emission microscopy- Energy Dispersive X-Ray (SEM-EDX), Transmission Electron Microscope (TEM) and X-Ray Diffraction (XRD). The particle size of nPOFA acquired from TEM analysis was in the range of 20 nm to 90 nm, while the average crystallite size calculated from XRD diffractogram was 61.5 nm. The resulting nPOFA has a BET surface area of 145.35 m2/g, which is more than 85% increment in surface area compared to micro-sized POFA. The morphology and elemental studies showed the presence of spherical as well as irregularly shaped and fine nPOFA particles contains with high silicon content. The presence of α-quartz as the major phase of the nPOFA was identified through XRD analysis. The study concludes that nPOFA has the potential as a supplementary cementing material due to the high silica content, high surface area and the unique behaviors of nano-structured particles.

  20. Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener.

    PubMed

    Loiola, A R; Andrade, J C R A; Sasaki, J M; da Silva, L R D

    2012-02-01

    Zeolite 4A (LTA) has been successfully synthesized by a hydrothermal method, where kaolin was used as silica and alumina source. The synthesized zeolite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser granulometry, and FTIR spectroscopy. XRD data from the Rietveld refinement method confirmed only one crystallographic phase. Zeolite A morphology was observed by SEM analysis, and it showed well-defined crystals with slightly different sizes but with the same cubic shape. Particle size distribution of the crystals was confirmed by laser granulometry, whereas FTIR spectroscopy revealed significant structural differences between the starting material and the final zeolite product used as water softener. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Synthesis and characterization of high-quality cobalt vanadate crystals and their applications in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Bhuiyan, Md. Tofajjol Hossen; Rahman, Md. Afjalur; Rahman, Md. Atikur; Sultana, Rajia; Mostafa, Md. Rakib; Tania, Asmaul Husna; Sarker, Md. Abdur Razzaque

    2016-12-01

    High-quality cobalt vanadate crystals have been synthesized by solid-state reaction route. Structure and morphology of the synthesized powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. The XRD patterns revealed that the as prepared materials are of high crystallinity and high quality. The SEM images showed that the crystalline CoV2O6 material is very uniform and well separated, with particle (of) area 252 μm. The electronic and optical properties were investigated by impedance analyzer and UV-visible spectrophotometer. Temperature-dependent electrical resistivity was measured using four-probe technique. The crystalline CoV2O6 material is a semiconductor and its activation energy is 0.05 eV.

  2. Boron-doped diamond synthesized at high-pressure and high-temperature with metal catalyst

    NASA Astrophysics Data System (ADS)

    Shakhov, Fedor M.; Abyzov, Andrey M.; Kidalov, Sergey V.; Krasilin, Andrei A.; Lähderanta, Erkki; Lebedev, Vasiliy T.; Shamshur, Dmitriy V.; Takai, Kazuyuki

    2017-04-01

    The boron-doped diamond (BDD) powder consisting of 40-100 μm particles was synthesized at 5 GPa and 1500-1600 °C from a mixture of 50 wt% graphite and 50 wt% Ni-Mn catalyst with an addition of 1 wt% or 5 wt% boron powder. The size of crystal domains of doped and non-doped diamond was evaluated as a coherent scattering region by X-ray diffraction (XRD) and using small-angle neutron scattering (SANS), being ≥180 nm (XRD) and 100 nm (SANS). Magnetic impurities of NiMnx originating from the catalyst in the synthesis, which prevent superconductivity, were detected by magnetization measurements at 2-300 K. X-ray photoelectron spectroscopy, the temperature dependence of the resistivity, XRD, and Raman spectroscopy reveal that the concentration of electrically active boron is as high as (2±1)×1020 cm-3 (0.1 at%). To the best of our knowledge, this is the highest boron content for BDD synthesized in high-pressure high-temperature process with metal catalysts.

  3. Magnetic composites from minerals: study of the iron phases in clay and diatomite using Mössbauer spectroscopy, magnetic measurements and XRD

    NASA Astrophysics Data System (ADS)

    Cabrera, M.; Maciel, J. C.; Quispe-Marcatoma, J.; Pandey, B.; Neri, D. F. M.; Soria, F.; Baggio-Saitovitch, E.; de Carvalho, L. B.

    2014-01-01

    Magnetic particles as matrix for enzyme immobilization have been used and due to the enzymatic derivative can be easily removed from the reaction mixture by a magnetic field. This work presents a study about the synthesis and characterization of iron phases into magnetic montmorillonite clay (mMMT) and magnetic diatomaceous earth (mDE) by 57Fe Mössbauer spectroscopy (MS), magnetic measurements and X-ray diffraction (XRD). Also these magnetic materials were assessed as matrices for the immobilization of invertase via covalent binding. Mössbauer spectra of the magnetic composites performed at 4.2 K showed a mixture of magnetite and maghemite about equal proportion in the mMMT, and a pure magnetite phase in the sample mDE. These results were verified using XRD. The residual specific activity of the immobilized invertase on mMMT and mDE were 83 % and 92.5 %, respectively. Thus, both magnetic composites showed to be promising matrices for covalent immobilization of invertase.

  4. Fabrication and Characterization of Surrogate Fuel Particles Using the Spark Erosion Method

    NASA Astrophysics Data System (ADS)

    Metzger, Kathryn E.

    In light of the disaster at the Fukushima Daiichi Nuclear Plant, the Department of Energy's Advanced Fuels Program has shifted its interest from enhanced performance fuels to enhanced accident tolerance fuels. Dispersion fuels possess higher thermal conductivities than traditional light water reactor fuel and as a result, offer improved safety margins. The benefits of a dispersion fuel are due to the presence of the secondary non-fissile phase (matrix), which serves as a barrier to fission products and improves the overall thermal performance of the fuel. However, the presence of a matrix material reduces the fuel volume, which lowers the fissile content of dispersion. This issue can be remedied through the development of higher density fuel phases or through an optimization of fuel particle size and volume loading. The latter requirement necessitates the development of fabrication methods to produce small, micron-order fuel particles. This research examines the capabilities of the spark erosion process to fabricate particles on the order of 10 μm. A custom-built spark erosion device by CT Electromechanica was used to produce stainless steel surrogate fuel particles in a deionized water dielectric. Three arc intensities were evaluated to determine the effect on particle size. Particles were filtered from the dielectric using a polycarbonate membrane filter and vacuum filtration system. Fabricated particles were characterized via field emission scanning electron microscopy (FESEM), laser light particle size analysis, energy-dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD), and gas pycnometry. FESEM images reveal that the spark erosion process produces highly spherical particles on the order of 10 microns. These findings are substantiated by the results of particle size analysis. Additionally, EDS and XRD results indicate the presence of oxide phases, which suggests the dielectric reacted with the molten debris during particle formation.

  5. The use of castor oil and ricinoleic acid in lead chalcogenide nanocrystal synthesis

    NASA Astrophysics Data System (ADS)

    Kyobe, Joseph W. M.; Mubofu, Egid B.; Makame, Yahya M. M.; Mlowe, Sixberth; Revaprasadu, Neerish

    2016-08-01

    A green solution-based thermolysis method for the synthesis of lead chalcogenide (PbE, E = S, Se, Te) nanocrystals in castor oil (CSTO) and its isolate ricinoleic acid (RA) is described. The blue shift observed from the optical spectra of CSTO and RA-capped PbE nanocrystals (NCs) confirmed the evidence of quantum confinement. The dimensions of PbE NCs obtained from NIR absorption spectra, transmission electron microscopy (TEM), and X-ray diffraction (XRD) studies were in good agreement. The particle sizes estimated were in the range of 20, 25, and 130 nm for castor oil-capped PbS, PbSe, and PbTe, respectively. Well-defined close to cubic-shaped particles were observed in the scanning electron microscopy (SEM) images of PbSe and PbTe nanocrystals. The high-resolution TEM and selective area electron diffraction (SAED) micrographs of the as-synthesized crystalline PbE NCs showed distinct lattice fringes with d-spacing distances corroborating with the standard values reported in literature.

  6. Facile synthesis of hollow Co3O4 microspheres and its use as a rapid responsive CL sensor of combustible gases.

    PubMed

    Teng, Fei; Yao, Wenqing; Zheng, Youfei; Ma, Yutao; Xu, Tongguang; Gao, Guizhi; Liang, Shuhui; Teng, Yang; Zhu, Yongfa

    2008-09-15

    The hollow Co(3)O(4) microspheres (HCMs) were prepared by the carbonaceous templates, which did not need the surface pretreatment. The chemiluminescence (CL) and catalytic properties for CO oxidation over these hollow samples were evaluated. The samples were characterized by scanning electron microscopy (SEM), energy disperse spectra (EDS), transmission electron microscopy (TEM), selected area electron diffraction (ED), X-ray diffraction (XRD), temperature-programmed desorption (TPD) and N(2) adsorption. The influences of filter' band length, flow rate of gas, test temperature, and particle structure on CL intensities were mainly investigated. It was found that compared with the solid Co(3)O(4) particles (SCPs), HCMs had a stronger CL intensity, which was ascribed to its hollow structure; and that CL properties of the catalysts were well correlated with their reaction activities. Moreover, HCMs were used to fabricate a highly sensitive gas detector, which is a rapid and effective method for the selection of catalysts or the detection of environmental deleterious gases.

  7. Synthesis of silver nanoparticles by silver salt reduction and its characterization

    NASA Astrophysics Data System (ADS)

    Muzamil, Muhammad; Khalid, Naveed; Danish Aziz, M.; Aun Abbas, S.

    2014-06-01

    The wet chemical method route by metal salt reduction has been used to synthesize nanoparticles, using silver nitrate as an inorganic salt, aldehyde as a reducing agent and amino acid as a catalyst. During the reaction aldehyde oxidizes to carboxylic acid and encapsulates the silver nanoparticles to prevent agglomeration and provide barrier in the growth of particle. The existing work produces particles using lab grade chemical, here the presented work is by using industrial grade chemicals to make the process more cost & time effective. The nano silver powder has been studied for their formation, particle size, shape & compositional analysis using Scanning Electron Microscope (SEM) equipped with EDS. The particles size distributions were analyzed by Laser Particle Analyzer (LPA), structure & morphological analysis using x-ray diffraction (XRD) and Fourier-transform-infrared Spectroscopy (FTIR) confirmed the stabilization of particles by coating of carboxylic group. These studies infer that the particles are mostly spherical in shape and have an average size between 70 to 350 nm.

  8. Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by sol-gel process.

    PubMed

    Milella, E; Cosentino, F; Licciulli, A; Massaro, C

    2001-06-01

    In the present work a titania network encapsulating a hydroxyapatite particulate phase is proposed as a bioceramic composite coating. The coating on a titanium substrate was produced starting from a sol containing a mixture of titania colloidal particles and hydroxyapatite submicron particles using the dip-coating technique. The microstructure, the morphology and the surface chemical composition of the coating were characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. Adhesion tests were also performed. These analyses showed that the obtained coating was chemically clean, homogeneous, rough, porous, with a low thickness and well-defined phase composition as well as a good adhesion to the substrate.

  9. Note: application of a pixel-array area detector to simultaneous single crystal X-ray diffraction and X-ray absorption spectroscopy measurements.

    PubMed

    Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M

    2014-04-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  10. Quantifying Morphological Features of α-U3O8 with Image Analysis for Nuclear Forensics.

    PubMed

    Olsen, Adam M; Richards, Bryony; Schwerdt, Ian; Heffernan, Sean; Lusk, Robert; Smith, Braxton; Jurrus, Elizabeth; Ruggiero, Christy; McDonald, Luther W

    2017-03-07

    Morphological changes in U 3 O 8 based on calcination temperature have been quantified enabling a morphological feature to serve as a signature of processing history in nuclear forensics. Five separate calcination temperatures were used to synthesize α-U 3 O 8 , and each sample was characterized using powder X-ray diffraction (p-XRD) and scanning electron microscopy (SEM). The p-XRD spectra were used to evaluate the purity of the synthesized U-oxide; the morphological analysis for materials (MAMA) software was utilized to quantitatively characterize the particle shape and size as indicated by the SEM images. Analysis comparing the particle attributes, such as particle area at each of the temperatures, was completed using the Kolmogorov-Smirnov two sample test (K-S test). These results illustrate a distinct statistical difference between each calcination temperature. To provide a framework for forensic analysis of an unknown sample, the sample distributions at each temperature were compared to randomly selected distributions (100, 250, 500, and 750 particles) from each synthesized temperature to determine if they were statistically different. It was found that 750 particles were required to differentiate between all of the synthesized temperatures with a confidence interval of 99.0%. Results from this study provide the first quantitative morphological study of U-oxides, and reveals the potential strength of morphological particle analysis in nuclear forensics by providing a framework for a more rapid characterization of interdicted uranium oxide samples.

  11. Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process.

    PubMed

    Won, Dong-Han; Kim, Min-Soo; Lee, Sibeum; Park, Jeong-Sook; Hwang, Sung-Joo

    2005-09-14

    Solid dispersions of felodipine were formulated with HPMC and surfactants by the conventional solvent evaporation (CSE) and supercritical anti-solvent precipitation (SAS) methods. The solid dispersion particles were characterized by particle size, zeta potential, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), solubility and dissolution studies. The effects of the drug/polymer ratio and surfactants on the solubility of felodipine were also studied. The mean particle size of the solid dispersions was 200-250 nm; these had a relatively regular spherical shape with a narrow size distribution. The particle size of the solid dispersions from the CSE method increased at 1 h after dispersed in distilled water. However, the particle sizes of solid dispersions from the SAS process were maintained for 6 h due to the increased solubility of felodipine. The physical state of felodipine changed from crystalline to amorphous during the CSE and SAS processes, confirmed by DSC/XRD data. The equilibrium solubility of the felodipine solid dispersion prepared by the SAS process was 1.5-20 microg/ml, while the maximum solubility was 35-110 microg/ml. Moreover, the solubility of felodipine increased with decreasing drug/polymer ratio or increasing HCO-60 content. The solid dispersions from the SAS process showed a high dissolution rate of over 90% within 2 h. The SAS process system may be used to enhance solubility or to produce oral dosage forms with high dissolution rate.

  12. Mineralogy by X-ray Diffraction on Mars: The Chemin Instrument on Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Bristow, T. F.; Bish, D. L.; Ming, D. W.; Blake, D. F.; Morris, R. V.; Rampe, E. B.; Chipera, S. J.; Treiman, A. H.; Morrison, S. M.; hide

    2014-01-01

    To obtain detailed mineralogy information, the Mars Science Laboratory rover Curiosity carries CheMin, the first X-ray diffraction (XRD) instrument used on a planet other than Earth. CheMin has provided the first in situ XRD analyses of full phase assemblages on another planet.

  13. Effects of uniformities of deposition of respirable particles on filters on determining their quartz contents by using the direct on-filter X-ray diffraction (DOF XRD) method.

    PubMed

    Chen, Ching-Hwa; Tsaia, Perng-Jy; Lai, Chane-Yu; Peng, Ya-Lian; Soo, Jhy-Charm; Chen, Cheng-Yao; Shih, Tung-Sheng

    2010-04-15

    In this study, field samplings were conducted in three workplaces of a foundry plant, including the molding, demolding, and bead blasting, respectively. Three respirable aerosol samplers (including a 25-mm aluminum cyclone, nylon cyclone, and IOSH cyclone) were used side-by-side to collect samples from each selected workplace. For each collected sample, the uniformity of the deposition of respirable dusts on the filter was measured and its free silica content was determined by both the DOF XRD method and NIOSH 7500 XRD method (i.e., the reference method). A same trend in measured uniformities can be found in all selected workplaces: 25-mm aluminum cyclone>nylon cyclone>IOSH cyclone. Even for samples collected by the sampler with the highest uniformity (i.e., 25-mm aluminum cyclone), the use of the DOF XRD method would lead to the measured free silica concentrations 1.15-2.89 times in magnitude higher than that of the reference method. A new filter holder should be developed with the minimum uniformity comparable to that of NIOSH 7500 XRD method (=0.78) in the future. The use of conversion factors for correcting quartz concentrations obtained from the DOF XRD method based on the measured uniformities could be suitable for the foundry industry at this stage. 2009 Elsevier B.V. All rights reserved.

  14. The effect of PVP on morphology, optical properties and electron paramagnetic resonance of Zn0.5Co0.5Fe2-xPrxO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Bitar, Z.; El-Said Bakeer, D.; Awad, R.

    2017-07-01

    Zinc Cobalt nano ferrite doped with Praseodymium, Zn0.5Co0.5Fe2-xPrxO4 (0 ≤ x ≤ 0.2), were prepared by co-precipitation method from an aqueous solution containing metal chlorides and two concentrations of poly(vinylpyrrolidone) (PVP) 0 and 30g/L as capping agent. The samples were characterized using X-ray powder diffraction (XRD), Transmission Electron Microscope (TEM), UV-visible optical spectroscopy, Fourier transform infrared (FTIR) and Electron Paramagnetic Resonance (EPR). XRD results display the formation of cubic spinel structure with space group Fd3m and the lattice parameter (a) is slightly decreased for PVP capping samples. The particle size that determined by TEM, decreases for PVP capping samples. The optical band energy Eg increases for PVP capping samples, confirming the variation of energy gap with the particle size. The FTIR results indicate that the metal oxide bands were shifted for the PVP capping samples. EPR data shows that the PVP addition increases the magnetic resonance field and hence decreases the g-factor.

  15. Nano-sized, quaternary titanium(IV) metal-organic frameworks with multidentate ligands.

    PubMed

    Baranwal, Balram Prasad; Singh, Alok Kumar

    2010-12-01

    Some mononuclear nano-sized, quaternary titanium(IV) complexes having the general formula [Ti(acac)(OOCR)2(SB)] (where Hacac=acetylacetone, R=C15H31 or C17H35, HSB=Schiff bases) have been synthesized using different multidentate ligands. These were characterized by elemental analyses, molecular weight determinations and spectral (FTIR, 1H NMR and powder XRD) studies. Conductance measurement indicated their non-conducting nature which may behave like insulators. Structural parameters like the values of limiting indices h, k, l, cell constants a, b, c, angles α, β, γ and particle size are calculated from powder XRD data for complex 1 which indicated nano-sized triclinic system in them. Bidentate chelating nature of acetylacetone, carboxylate and Schiff base anions in the complexes was established by their infrared spectra. Molecular weight determinations confirmed mononuclear nature of the complexes. On the basis of physico-chemical studies, coordination number 8 was assigned for titanium(IV) in the complexes. Transmission electron microscopy (TEM) and the selected area electron diffraction (SAED) studies indicated spherical particles with poor crystallinity. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Role of triton X-100 and hydrothermal treatment on the morphological features of nanoporous hydroxyapatite nanorods.

    PubMed

    Iyyappan, E; Wilson, P; Sheela, K; Ramya, R

    2016-06-01

    Hydroxyapatite (HA) particles were synthesized using Ca(NO3)2·4H2O and (NH4)2HPO4 as precursors with varying contents of non-ionic surfactant viz., triton X-100 (organic modifier) via co-precipitation method followed by hydrothermal treatment. The prepared HA particles have been characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), Energy Dispersive X-ray Analysis (EDX), High Resolution Scanning Electron Microscopy (HRSEM), High Resolution Transmission Electron Microscopy (HRTEM) and Nitrogen adsorption-desorption experiments. The XRD and FTIR studies indicate the formation of HA phase in all the synthesized samples. The specific roles of triton X-100 and hydrothermal treatment in dispersing and in directing the crystal growth respectively have been discussed by comparing the observations from individual experiments using triton X-100 and hydrothermal treatment with that of combined protocol involving both. The plausible mechanism for the individual roles of both triton X-100 and hydrothermal treatment have been proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Facile Synthesis of Calcium Borate Nanoparticles and the Annealing Effect on Their Structure and Size

    PubMed Central

    Erfani, Maryam; Saion, Elias; Soltani, Nayereh; Hashim, Mansor; Wan Abdullah, Wan Saffiey B.; Navasery, Manizheh

    2012-01-01

    Calcium borate nanoparticles have been synthesized by a thermal treatment method via facile co-precipitation. Differences of annealing temperature and annealing time and their effects on crystal structure, particle size, size distribution and thermal stability of nanoparticles were investigated. The formation of calcium borate compound was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Thermogravimetry (TGA). The XRD patterns revealed that the co-precipitated samples annealed at 700 °C for 3 h annealing time formed an amorphous structure and the transformation into a crystalline structure only occurred after 5 h annealing time. It was found that the samples annealed at 900 °C are mostly metaborate (CaB2O4) nanoparticles and tetraborate (CaB4O7) nanoparticles only observed at 970 °C, which was confirmed by FTIR. The TEM images indicated that with increasing the annealing time and temperature, the average particle size increases. TGA analysis confirmed the thermal stability of the annealed samples at higher temperatures. PMID:23203073

  18. Cytotoxicity Evaluation and Magnetic Characteristics of Mechano-thermally Synthesized CuNi Nanoparticles for Hyperthermia

    NASA Astrophysics Data System (ADS)

    Amrollahi, P.; Ataie, A.; Nozari, A.; Seyedjafari, E.; Shafiee, A.

    2015-03-01

    CuNi alloys are very well known, both in academia and industry, based on their wide range of applications. In the present investigation, the previously synthesized Cu0.5Ni0.5 nanoparticles (NPs) by mechano-thermal method were studied more extensively. Phase composition and morphology of the samples were studied by employing x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. The Curie temperature ( T c) was determined by differential scanning calorimetry (DSC). In vitro cytotoxicity was studied through methyl-thiazolyl-tetrazolium (MTT) assay. XRD and FESEM results indicated the formation of single-phase Cu0.5Ni0.5. TEM micrographs showed that the mean particle size of powders is 20 nm. DSC results revealed that T c of mechano-thermally synthesized Cu0.5Ni0.5 is 44 °C. The MTT assay results confirmed the viability and proliferation of human bone marrow stem cells in contact with Cu0.5Ni0.5 NPs. In summary, the fabricated particles were demonstrated to have potential in low concentrations for cancer treatment applications.

  19. Temperature-controlled cross-linking of silver nanoparticles with diels-alder reaction and its application on antibacterial property

    NASA Astrophysics Data System (ADS)

    Liu, Lian; Yang, Pengfei; Li, Junying; Zhang, Zhiliang; Yu, Xi; Lu, Ling

    2017-05-01

    Sliver nanoparticles (AgNPs) were synthesized and functionalized with furan group on their surface, followed by the reverse Diels-Alder (DA) reaction with bismaleimide to vary the particle size, so as to give different antibacterial activities. These nanoparticles were characterized using Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Ultraviolet-Visible (UV-vis), Nanoparticle Size Analyzer and X-Ray Photoelectron Spectroscopy (XPS). It was found that the cross-linking reaction with bismaleimide had a great effect on the size of AgNPs. The size of the AgNPs could be controlled by the temperature of DA/r-DA equilibrium. The antibacterial activity was assessed using the inhibition zone diameter by introducing the particles into a media containing Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, respectively. It was found that these particles were effective bactericides. Furthermore, the antibacterial activity of the nanoparticles decreased orderly as the particle size enlarged.

  20. Effects of Solvent Diols on the Synthesis of ZnFe2O4 Particles and Their Use as Heterogeneous Photo-Fenton Catalysts

    PubMed Central

    Anchieta, Chayene Gonçalves; Cancelier, Adriano; Mazutti, Marcio Antonio; Jahn, Sérgio Luiz; Kuhn, Raquel Cristine; Gündel, Andre; Chiavone-Filho, Osvaldo; Foletto, Edson Luiz

    2014-01-01

    A solvothermal method was used to prepare zinc ferrite spinel oxide (ZnFe2O4) using ethylene glycol and 1,4 butanediol as solvent diols, and the influence of diols on the physical properties of ZnFe2O4 particles was investigated. The produced particles were characterized by X-ray powder diffraction (XRD), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and nitrogen adsorption isotherms, and the catalytic activity for the organic pollutant decomposition by heterogeneous photo-Fenton reaction was investigated. Both solvents produced particles with cubic spinel structure. Microporous and mesoporous structures were obtained when ethylene glycol and 1,4 butanediol were used as diols, respectively. A higher pore volume and surface area, as well as a higher catalytic activity for the pollutant degradation were found when 1,4 butanediol was used as solvent. PMID:28788191

  1. Tracing the source of difficult to settle fine particles which cause turbidity in the Hitotsuse Reservoir, Japan.

    PubMed

    Murakami, Toshiki; Suzuki, Yoshihiro; Oishi, Hiroyuki; Ito, Kenichi; Nakao, Toshio

    2013-05-15

    A unique method to trace the source of "difficult-to-settle fine particles," which are a causative factor of long-term turbidity in reservoirs was developed. This method is characterized by cluster analysis of XRD (X-ray diffraction) data and homology comparison of major component compositions between "difficult-to-settle fine particles" contained in landslide soil samples taken from the upstream of a dam, and suspended "long-term turbid water particles" in the reservoir, which is subject to long-term turbidity. The experiment carried out to validate the proposed method, demonstrated a high possibility of being able to make an almost identical match between "difficult-to-settle fine particles" taken from landslide soils at specific locations and "long-term turbid water particles" taken from a reservoir. This method has the potential to determine substances causing long-term turbidity and the locations of soils from which those substances came. Appropriate countermeasures can then be taken at those specific locations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation.

    PubMed

    Kim, Donghyun; Lee, Hoik; Sohn, Daewon

    2014-08-01

    A hybrid gel was prepared from acid activated clay (AA clay) and acrylic acid by gamma ray irradiation. Irradiated inorganic particles which have peroxide groups act as initiator because it generates oxide radicals by increasing temperature. Inorganic nanoparticles which are rigid part in hybrid gel also contribute to increase the mechanical property as a crosslinker. We prepared two hybrid gels to compare the effect of acid activated treatment of clay; one is synthesized with raw clay particles and another is synthesized with AA clay particles. The composition and structure of AA clay particles and raw clay particles were confirmed by X-ray diffraction (XRD), X-ray fluorescence instrument and surface area analyzer. And chemical and physical property of hybrid gel with different ratios of acrylic acid and clay particle was tested by Raman spectroscope and universal testing machine (UTM). The synthesized hydrogel with 76% gel contents can elongated approximately 1000% of its original size.

  3. Method of Generating X-Ray Diffraction Data for Integral Detection of Twin Defects in Super-Hetero-Epitaxial Materials

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2009-01-01

    A method provides X-ray diffraction (XRD) data suitable for integral detection of a twin defect in a strained or lattice-matched epitaxial material made from components having crystal structures having symme try belonging to different space groups. The material is mounted in a n X-ray diffraction (XRD) system. In one embodiment, the XRD system's goniometer angle Omega is set equal to (Theta(sub B)-Beta) where The ta(sub B) is a Bragg angle for a designated crystal plane of the allo y that is disposed at a non-perpendicular orientation with respect to the {111) crystal plane, and Beta is the angle between the designate d crystal plane and a { 111 } crystal plane of one of the epitaxial components. The XRD system's detector angle is set equal to (Theta(su b B)+Beta). The material can be rotated through an angle of azimuthal rotation Phi about the axis aligned with the material. Using the det ector, the intensity of the X-ray diffraction is recorded at least at the angle at which the twin defect occurs.

  4. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity.

    PubMed

    Liu, Yongliang; Thibodeaux, Devron; Gamble, Gary; Bauer, Philip; VanDerveer, Don

    2012-08-01

    Despite considerable efforts in developing curve-fitting protocols to evaluate the crystallinity index (CI) from X-ray diffraction (XRD) measurements, in its present state XRD can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous fraction in a sample. The greatest barrier to establishing quantitative XRD is the lack of appropriate cellulose standards, which are needed to calibrate the XRD measurements. In practice, samples with known CI are very difficult to prepare or determine. In a previous study, we reported the development of a simple algorithm for determining fiber crystallinity information from Fourier transform infrared (FT-IR) spectroscopy. Hence, in this study we not only compared the fiber crystallinity information between FT-IR and XRD measurements, by developing a simple XRD algorithm in place of a time-consuming and subjective curve-fitting process, but we also suggested a direct way of determining cotton cellulose CI by calibrating XRD with the use of CI(IR) as references.

  5. Synthesis of colloidal silver iron oxide nanoparticles--study of their optical and magnetic behavior.

    PubMed

    Kumar, Anil; Singhal, Aditi

    2009-07-22

    Silver iron oxide nanoparticles of fairly small size (average diameter approximately 1 nm) with narrow size distribution have been synthesized by the interaction of colloidal beta- Fe2O3 and silver nanoparticles. The surface morphology and size of these particles have been analyzed by using atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Their structural analysis has been carried out by employing x-ray diffraction (XRD), selected-area electron diffraction (SAED), optical and infrared (IR) spectroscopic techniques. The ageing of these particles exhibits the formation of self-assembly, possibly involving weak supramolecular interactions between Ag(I)O4 and Fe(III)O4 species. These particles display the onset of absorption in the near-infrared region and have higher absorption coefficient in the visible range compared to that of its precursors. Magnetic measurements reveal an interesting transition in their magnetic behavior from diamagnetic to superparamagnetic. The magnetic moment of these particles attains a limiting value of about 0.19 emu cm(-2), which is more than two times higher than that of colloidal beta- Fe2O3. With enhanced optical and magnetic properties, this system is suggested to have possible applications in optoelectronic and magnetic devices.

  6. Preparation and Characterization of Cellulose Microcrystalline (MCC) from Fiber of Empty Fruit Bunch Palm Oil

    NASA Astrophysics Data System (ADS)

    Nasution, H.; Yurnaliza; Veronicha; Irmadani; Sitompul, S.

    2017-03-01

    Alpha cellulose which was isolated from cellulose of fiber empty fruit bunch palm oil was hidrolized with hydrochloric acid (2,5N) at 80°C to produce microcrystalline cellulose (MCC). Microcrystalline cellulose is an important additional ingredient in the pharmaceutical, food, cosmetics, and structural composites. In this study, MCC, alpha cellulose, and cellulose were characterized and thereafter were compared. Characterizations were made using some equipment such as x-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and thermogravimetry analyzer (TGA). X-ray diffraction and infrared spectroscopy were studied to determine crystallinity and molecular structure of MCC, where scanning electron microscopy images were conducted for information about morfology of MCC. Meanwhile, thermal resistance of MCC was determined using thermogravimetry analyzer (TGA). From XRD and FTIR, the obtained results showed that the crystalline part was traced on MCC, where the -OH and C-O groups tended to reduced as alpha cellulose has changed to MCC. From SEM the image showed the reduction of particle size of MCC, while the thermal resistance of MCC was found lower as compared with cellulose and alpha cellulose as well, which was attributed to the lower molecular weight of MCC.

  7. Rare earth substitution on structural and optical behaviour of CdSe thin films

    NASA Astrophysics Data System (ADS)

    Singh, Sarika; Shrivastava, A. K.; Tapdiya, Swati

    2018-05-01

    A series of Sm2+,Gd2+ doped with Cadmium selenide CdSe (x =0.01) has been prepared by using Chemical bath deposition technique. Structural, Optical and Morphological studies were performed using X-ray diffraction (XRD), UV-Visible spectrometer, Raman Studies and Scanning Electron Microscopy (SEM). XRD patterns confirm the samples with Sm,Gd ions, some diffraction peaks appeared which belongs to the cubic phase structure. The values of lattice parameter (a) decreased and particle size decrease on doping. Morphology of the grown films reveals that surface are homogeneous and uniformly spread on the substrates. The elemental analysis of CdSe doped Sm and Gd (1%) different composition was analyzed by Energy Dispersive X-Rays (EDX). The optical values of some important parameters of the studied films were calculated by UVstudy are determined from transmission spectra at wavelength 200 to 900nm. Optical band gap Eg was calculated by tauc relation. Energy band gap of CdSe doped with Sm and Gd varies at 1.8eV and 1.9eV respectively. Bandgap In Raman analysis, a prominent peak shows that confirmation of nano crystalline phase. And intensity of peaks was decreasing after doping.

  8. Upconversion luminescence of Er3+/Yb3+ doped Sr5(PO4)3OH phosphor powders

    NASA Astrophysics Data System (ADS)

    Mokoena, P. P.; Swart, H. C.; Ntwaeaborwa, O. M.

    2018-04-01

    Sr5(PO4)3OH co-doped with Er3+and Yb3+ powder phosphors were synthesized by urea combustion method. The crystal structure was analyzed using X-ray diffraction (XRD). Particle morphology was analyzed using a Jeol JSM 7800F thermal field emission scanning electron microscope (FE-SEM) and the chemical composition analysis was carried out using an Oxford Instruments AzTEC energy dispersive spectrometer (EDS) attached to the FE-SEM. Upconversion emission was measured by using a FLS980 Spectrometer equipped with a 980 nm NIR laser as the excitation source, and a photomultiplier (PMT) detector. The XRD data of the Sr5(PO4)3OH powder exhibited characteristic diffraction patterns of the hexagonal structure referenced in the standard JCPDS card number 00-033-1348. The sharp peaks revealed the formation of crystalline Sr5(PO4)3OH. The powders were made up of hexagonal nanospheres. The enhanced red emission due to the 4F9/2 → 4I15/2 transitions of Er3+ was observed and was attributed to up conversion (UC) energy transfer from Yb3+. The upconversion energy transfer mechanism from Yb3+ to Er3+ is discussed.

  9. Synthesis, crystal growth, optical, thermal, and mechanical properties of a nonlinear optical single crystal: ammonium sulfate hydrogen sulphamate (ASHS)

    NASA Astrophysics Data System (ADS)

    Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.

    2018-04-01

    Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.

  10. Study of free radicals in gamma irradiated cellulose of cultural heritage materials using Electron Paramagnetic Resonance

    NASA Astrophysics Data System (ADS)

    Kodama, Yasko; Rodrigues, Orlando, Jr.; Garcia, Rafael Henrique Lazzari; Santos, Paulo de Souza; Vasquez, Pablo A. S.

    2016-07-01

    Main subject of this article was to study room temperature stable radicals in Co-60 gamma irradiated contemporary paper using Electron Paramagnetic Resonance spectrometer (EPR). XRD was used to study the effect of ionizing radiation on the morphology of book paper. SEM images presented regions with cellulose fibers and regions with particles agglomeration on the cellulose fibers. Those agglomerations were rich in calcium, observed by EDS. XRD analysis confirmed presence of calcium carbonate diffraction peaks. The main objective of this study was to propose a method using conventional kinetics chemical reactions for the observed radical formed by ionizing radiation. Therefore, further analyses were made to study the half-life and the kinetics of the free radical created. This method can be suitably applied to study radicals on cultural heritage objects.

  11. Improved microstructure of cement-based composites through the addition of rock wool particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Wei-Ting; Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan; Cheng, An, E-mail: ancheng@niu.edu.tw

    2013-10-15

    Rock wool is an inorganic fibrous substance produced by steam blasting and cooling molten glass. As with other industrial by-products, rock wool particles can be used as cementitious materials or ultra fine fillers in cement-based composites. This study investigated the microstructure of mortar specimens produced with cement-based composites that include various forms of rock wool particles. It conducted compressive strength testing, rapid chloride penetration tests, X-ray diffraction analysis, thermo-gravimetric analysis, and scanning electronic microscopy to evaluate the macro- and micro-properties of the cement-based composites. Test results indicate that inclusion of rock wool particles in composites improved compressive strength and reducedmore » chloride ion penetration at the age of 91 days due to the reduction of calcium hydroxide content. Microscopic analysis confirms that the use of rock wool particles contributed to the formation of a denser, more compact microstructure within the hardened paste. In addition, X-ray diffraction analysis shows few changes in formation of pozzolanic reaction products and no new hydrations are formed with incorporating rock wool particles. - Highlights: • We report the microstructural characterization of cement-based composites. • Different mixes produced with various rock wool particles have been tested. • The influence of different mixes on macro and micro properties has been discussed. • The macro properties are included compressive strength and permeability. • XRD and SEM observations confirm the pozzolanic reaction in the resulting pastes.« less

  12. Remote X-Ray Diffraction and X-Ray Fluorescence Analysis on Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Blake, David F.; DeVincenzi, D. (Technical Monitor)

    1999-01-01

    The legacy of planetary X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) began in 1960 when W. Parish proposed an XRD instrument for deployment on the moon. The instrument was built and flight qualified, but the Lunar XRD program was cancelled shortly before the first human landing in 1969. XRF chemical data have been collected in situ by surface landers on Mars (Viking 1 & 2, Pathfinder) and Venus (Venera 13 & 14). These highly successful experiments provide critical constraints on our current understanding of surface processes and planetary evolution. However, the mineralogy, which is more critical to planetary surface science than simple chemical analysis, will remain unknown or will at best be imprecisely constrained until X-ray diffraction (XRD) data are collected. Recent progress in X-ray detector technology allows the consideration of simultaneous XRD (mineralogic analysis) and high-precision XRF (elemental analysis) in systems miniaturized to the point where they can be mounted on fixed landers or small robotic rovers. There is a variety of potential targets for XRD/XRF equipped landers within the solar system, the most compelling of which are the poles of the moon, the southern highlands of Mars and Europa.

  13. Effect of wet grinding on structural properties of ball clay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purohit, A., E-mail: anuradha.purohit34@gmail.com; Chander, S.; Dhaka, M. S.

    2015-05-15

    In this paper, the effect of wet grinding on structural properties of ball clay is undertaken. The wet grinding treatment was performed employing ball and vibro mills for different time spells of 2, 4, 8 and 16 hours. The structural properties were carried out using X-ray diffraction (XRD). The structure of ground samples is found to be simple cubic. The crystallographic parameters are calculated and slight change in lattice constant, inter planner spacing and particle size is observed with grinding treatment. The results are in agreement with the available literature.

  14. Physicochemical characterizations of nano-palm oil fuel ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajak, Mohd Azrul Abdul, E-mail: azrulrajak88@gmail.com; Preparatory Centre of Science and Technology, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah; Majid, Zaiton Abdul, E-mail: zaiton@kimia.fs.utm.my

    2015-07-22

    Palm Oil Fuel Ash (POFA) is known as a good supplementary cementing material due to its siliceous-rich content. The application of nanotechnology in the pozzolanic materials could invent new functions in the efficiency of physical and chemical properties of materials. Thus, the present study aims to generate nano-sized POFA and characterize the physicochemical properties of nano-palm oil fuel ash (nPOFA). The nPOFA was prepared by mechanically grinding micro POFA using a high intensity ball milling for 6 hours. The physicochemical properties of nPOFA were characterized via X-Ray Fluoresence (XRF), Scanning Emission microscopy- Energy Dispersive X-Ray (SEM-EDX), Transmission Electron Microscope (TEM)more » and X-Ray Diffraction (XRD). The particle size of nPOFA acquired from TEM analysis was in the range of 20 nm to 90 nm, while the average crystallite size calculated from XRD diffractogram was 61.5 nm. The resulting nPOFA has a BET surface area of 145.35 m{sup 2}/g, which is more than 85% increment in surface area compared to micro-sized POFA. The morphology and elemental studies showed the presence of spherical as well as irregularly shaped and fine nPOFA particles contains with high silicon content. The presence of α-quartz as the major phase of the nPOFA was identified through XRD analysis. The study concludes that nPOFA has the potential as a supplementary cementing material due to the high silica content, high surface area and the unique behaviors of nano-structured particles.« less

  15. Clay pigment structure characterisation as a guide for provenance determination--a comparison between laboratory powder micro-XRD and synchrotron radiation XRD.

    PubMed

    Švarcová, Silvie; Bezdička, Petr; Hradil, David; Hradilová, Janka; Žižak, Ivo

    2011-01-01

    Application of X-ray diffraction (XRD)-based techniques in the analysis of painted artworks is not only beneficial for indisputable identification of crystal constituents in colour layers, but it can also bring insight in material crystal structure, which can be affected by their geological formation, manufacturing procedure or secondary changes. This knowledge might be helpful for art historic evaluation of an artwork as well as for its conservation. By way of example of kaolinite, we show that classification of its crystal structure order based on XRD data is useful for estimation of its provenance. We found kaolinite in the preparation layer of a Gothic wall painting in a Czech church situated near Karlovy Vary, where there are important kaolin deposits. Comparing reference kaolin materials from eight various Czech deposits, we found that these can be differentiated just according to the kaolinite crystallinity. Within this study, we compared laboratory powder X-ray micro-diffraction (micro-XRD) with synchrotron radiation X-ray diffraction analysing the same real sample. We found that both techniques led to the same results.

  16. Preparation and properties of calcium oxide from eggshells via calcination

    NASA Astrophysics Data System (ADS)

    Tangboriboon, N.; Kunanuruksapong, R.; Sirivat, A.

    2012-12-01

    Duck eggs are one of the most versatile cooking ingredients in which residue eggshells are discarded. Raw duck eggshells were calcined at temperatures between 300 to 900 °C, for 1, 3, and 5 h. Both the raw and calcined duck eggshells were characterized by FTIR, STA, XRD, XRF, TEM, BET, a particle size analyzer, and an impedance analyzer. The proper calcination conditions are: 900 °C and 1 h, yielding calcium oxide with a purity of 99.06 % w/w. The calcium carbonate of the rhombohedral form (CaCO3) transforms completely into the calcium oxide or lime of the face centered cubic form (CaO) at 900 °C, as shown by XRD diffraction patterns. The transmission electron microscopy (TEM) images of the calcium oxide reveal a moderately good dispersion of nearly uniform particles. The calcium oxide has a white color, a spherical shape, high porosity, and narrow particles size distribution. The percentage of ceramic yield of the calcium oxide is 53.53, as measured by STA (TG-DTA-DTG). The calcium oxide has a N2 adsorption-desorption isotherm indicating the meso-porosity range. The dielectric constant and the electrical conductivity of the calcined calcium oxide are 35 and 1:0×10-6(Ω·m)-1, respectively, at the frequency of 500 Hz.

  17. Carbon-encapsulated cobalt nanoparticles: synthesis, properties, and magnetic particle hyperthermia efficiency

    NASA Astrophysics Data System (ADS)

    Kotoulas, A.; Dendrinou-Samara, C.; Sarafidis, C.; Kehagias, Th.; Arvanitidis, J.; Vourlias, G.; Angelakeris, M.; Kalogirou, Orestis

    2017-12-01

    A facile and low-cost method for structuring carbon-encapsulated cobalt nanoparticles (Co@C) is presented. Three samples were solvothermally prepared in one step at 220 °C and one in two steps at 200 °C. Three different polyols such as propylene glycol, triethylene glycol, and tetraethylene glycol were used as carbon sources, solvents, and reducing agents. The samples were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. Concerning the crystal structure of the particles, a mixture of hcp/ fcc Co phases was obtained in three of the samples, independently of the polyol used. The coexistence of cubic and hexagonal phases was revealed both from XRD and high-resolution TEM (HRTEM). The formation of the cubic fcc structure, despite the relatively low reaction temperature, is attributed to the role of the interface between carbon coating and metallic core. The presence of carbon coating was demonstrated by Raman spectrometry, exhibiting the characteristic D and G graphitic bands, and by HRTEM observations. All samples showed ferromagnetic behavior with saturation magnetization up to 158 emu/g and coercivity up to 206 Oe. From the magnetic particle hyperthermia measurements recorded at a frequency of 765 kHz, a maximum SLP value of 241 W/g was obtained.

  18. Flux Growth of Highly Crystalline Photocatalytic BaTiO3 Particle Layers on Porous Titanium Sponge Substrate and Insights into the Formation Mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Li, B.

    2017-09-01

    A unique architecture of idiomorphic and highly crystalline BaTiO3 particle layers directly grown on a porous titanium sponge substrate was successfully achieved for the first time using a facile molten salt method at a relatively low temperature of 700 °C. Specifically, the low-melting KCl-NaCl eutectic salts and barium hydroxide octahydrate were employed as the reaction medium and barium source, respectively. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV-vis diffuse reflectance spectrophotometry were used to characterize the structure, morphology and optical property of the obtained samples. The results revealed that the flux-grown tetragonal BaTiO3 products had well-defined and uniform morphology with an average size of 300 nm and a band gap of ∼3.16 eV. Based on XRD, EDS, SEM, and TEM, the possible formation mechanism responsible for the well-developed architecture of BaTiO3 particle layers was proposed and discussed. Furthermore, the photocatalytic activity of the flux-grown BaTiO3 products for organic pollutant degradation under simulated sunlight irradiation was also investigated.

  19. Physical and magnetic properties of (Ba/Sr) substituted magnesium nano ferrites

    NASA Astrophysics Data System (ADS)

    Ateia, Ebtesam E.; Takla, E.; Mohamed, Amira T.

    2017-10-01

    In the presented paper, strontium (Sr) and barium (Ba) nano ferrites were synthesized by citrate auto combustion method. The investigated samples are characterized by X-ray diffraction technique (XRD), field emission scanning electron microscopy, high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. The structural properties of the obtained samples were examined by XRD analysis showing that the synthesized nanoparticles are in cubic spinel structure. The average crystallite sizes are in the range of 22.66 and 21.95 nm for Mg0.7Ba0.3Fe2O4 and Mg0.7 Sr0.3Fe2O4 respectively. The VSM analysis confirms the existence of ferromagnetic nature of Sr2+/Ba2+ substituted magnesium nano particles. Exchange interaction between hard (Sr/Ba) and soft (Mg) magnetic phases improves the structural and magnetic properties of nano ferrite particles. Rigidity modulus, longitudinal and shear wave velocities are predicted theoretically from Raman spectroscopy and structural data of the investigated spinel ferrite. The magnetic and structural properties of magnesium are enhanced by doping with barium and strontium nano particles. The saturation magnetization, remanent magnetization and coercivity reported on vibrating sample magnetometer curve illustrate the promising industrial and magnetic recording applications of the prepared samples.

  20. Flexible magnetic membranes based on bacterial cellulose and its evaluation as electromagnetic interference shielding material.

    PubMed

    Marins, Jéssica A; Soares, Bluma G; Barud, Hernane S; Ribeiro, Sidney J L

    2013-10-01

    Flexible magnetic membranes with high proportion of magnetite were successfully prepared by previous impregnation of the never dried bacterial cellulose pellicles with ferric chloride followed by reduction with sodium bisulfite and alkaline treatment for magnetite precipitation. Membranes were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating magnetometer, field emission scanning electron microscopy (FEG-SEM) and impedance spectroscopy. Microwave properties of these membranes were investigated in the X-band (8.2 to 12.4 GHz). FEG-SEM micrographs show an effective coverage of the BC nanofibers by Fe3O4 nanoparticles. Membranes with up to 75% in weight of particles have been prepared after 60 min of reaction. Magnetite nanoparticles in the form of aggregates well adhered to the BC fibers were observed by SEM. The average crystal sizes of the magnetic particles were in the range of 10±1 to 13±1 nm (estimated by XRD). The magnetic particles in the BC pellicles presented superparamagnetic behavior with a saturation magnetization in the range of 60 emu g(-1) and coercive force around 15 Oe. These magnetic pellicles also displayed high electrical permittivity and a potential application as microwave absorber materials. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Oleic acid coated magnetic nano-particles: Synthesis and characterizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Biswajit, E-mail: bpanda@mes.ac.in; Goyal, P. S.

    2015-06-24

    Magnetic nano particles of Fe{sub 3}O{sub 4} coated with oleic acid were synthesized using wet chemical route, which involved co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions. The nano particles were characterized using XRD, TEM, FTIR, TGA and VSM. X-ray diffraction studies showed that nano particles consist of single phase Fe{sub 3}O{sub 4} having inverse spinel structure. The particle size obtained from width of Bragg peak is about 12.6 nm. TEM analysis showed that sizes of nano particles are in range of 6 to 17 nm with a dominant population at 12 - 14 nm. FTIR and TGA analysis showed that -COOH groupmore » of oleic acid is bound to the surface of Fe{sub 3}O{sub 4} particles and one has to heat the sample to 278° C to remove the attached molecule from the surface. Further it was seen that Fe{sub 3}O{sub 4} particles exhibit super paramagnetism with a magnetization of about 53 emu/ gm.« less

  2. Synthesis of Cu/SiO2 Core-Shell Particles Using Hyperbranched Polyester as Template and Dispersant

    NASA Astrophysics Data System (ADS)

    Han, Wensong

    2017-07-01

    Third-generation hyperbranched polyester (HBPE3) was synthesized by stepwise polymerization with N, N-diethylol-3-amine methylpropionate as AB2 monomer and pentaerythritol as core molecule. Then, Cu particles were prepared by reduction of copper nitrate with ascorbic acid in aqueous solution using HBPE3 as template. Finally, Cu/SiO2 particles were prepared by coating silica on the surface of Cu particles. The structure and morphology of the samples were characterized by Fourier-transform infrared (FT-IR) spectrometry, x-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results confirmed the formation of the silica coating on the surface of Cu and that the Cu/SiO2 particles had spherical shape with particle size in the range of 0.8 μm to 2 μm. Compared with pure Cu, the synthesized Cu/SiO2 core-shell particles exhibited better oxidation resistance at high temperature. Moreover, the oxidation resistance of the Cu/SiO2 particles increased significantly with increasing tetraethyl orthosilicate (TEOS) concentration.

  3. Preparation of bismuth titanate/calcium alginate composite bead and its photocatalytic degradation of dye pollutants

    NASA Astrophysics Data System (ADS)

    Gan, Huihui; Dong, Nanyang; Lu, Linxiao; Fu, Yan; Zhang, Huining; Qian, Yongxin; Zhang, Kefeng; Jin, Huixia

    2017-08-01

    In this study, the bismuth titanate/calcium alginate composite bead was synthesized by immobilizing bismuth titanate Bi4Ti3O12 particles into 1.5% sodium alginate (SA) matrix. The Bi4Ti3O12 particles were characterized by X-ray diffraction (XRD). The photocatalytic activity for the degradation of dye Rhodamine B in solution by as-prepared bismuth titanate/calcium alginate composite bead was investigated. The as-prepared composite beads CA/BTO-700 exhibited best photocatalytic efficiency for the degradation of RhB compared with CA/BTO-800 and CA/BTO-900 under simulated solar light. After 4 cycles in photocatalytic degradation of RhB, the degradation rate of the CA/BTO-700 nearly remained unchanged.

  4. Magnetic Properties of Copper Doped Nickel Ferrite Nanoparticles Synthesized by Co Precipitation Method

    NASA Astrophysics Data System (ADS)

    Anjana, V.; John, Sara; Prakash, Pooja; Nair, Amritha M.; Nair, Aravind R.; Sambhudevan, Sreedha; Shankar, Balakrishnan

    2018-02-01

    Nickel ferrite nanoparticles with copper atoms as dopant have been prepared using co-precipitation method with general formula Ni1-xCuxFe2O4 (x=0.2, 0.4, 0.6, 0.8 and 1) and are sintered at quite ambient temperature. Structural and magnetic properties were examined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction method (XRD) and Vibrating Sample Magnetometer (VSM) to study the influence of copper doping in nickel ferrite magnetic nanoparticles. X-ray studies proves that the particles are possessing single phase spinel structure with an average particle size calculated using Debye Scherer formula. Magnetic measurements reveal that saturation magnetization value (Ms) decreases while magnetic coercivity (Hc) increases upon doping.

  5. Effect of solvent composition on oxide morphology during flame spray pyrolysis of metal nitrates.

    PubMed

    Strobel, Reto; Pratsinis, Sotiris E

    2011-05-28

    The effect of solvent composition on particle formation during flame spray pyrolysis of inexpensive metal-nitrates has been investigated for alumina, iron oxide, cobalt oxide, zinc oxide and magnesium oxide. The as-prepared materials were characterized by electron microscopy, nitrogen adsorption, X-ray diffraction (XRD) and disc centrifugation (XDC). The influence of solvent parameters such as boiling point, combustion enthalpy and chemical reactivity on formation of either homogeneous nanoparticles by evaporation/nucleation/coagulation (gas-to-particle conversion) or large particles through precipitation and conversion within the sprayed droplets (droplet-to-particle conversion) is discussed. For Al(2)O(3), Fe(2)O(3), Co(3)O(4) and partly also MgO, the presence of a carboxylic acid in the FSP solution resulted in homogeneous nanoparticles. This is attributed to formation of volatile metal carboxylates in solution as evidenced by attenuated total reflectance spectroscopy (ATR). For ZnO and MgO rather homogeneous nanoparticles were formed regardless of solvent composition. For ZnO this is attributed to its relatively low dissociation temperature compared to other oxides. While for MgO this is traced to the high decomposition temperature of Mg(NO(3))(2) together with Mg(OH)(2)↔MgO transformations. Cobalt oxide (Co(3)O(4)) nanoparticles made by FSP were not aggregated but rather loosely agglomerated as determined by the excellent agreement between XRD- and XDC-derived crystallite and particle sizes, respectively, pointing out the potential of FSP to make non-aggregated particles. This journal is © the Owner Societies 2011

  6. Structure and morphology evolution of silica-modified pseudoboehmite aerogels during heat treatment

    NASA Astrophysics Data System (ADS)

    Pakharukova, V. P.; Shalygin, A. S.; Gerasimov, E. Yu.; Tsybulya, S. V.; Martyanov, O. N.

    2016-01-01

    Silica-modified pseudoboehmite aerogels (0, 10, 20 at% of Si) were prepared by sol-gel method followed by supercritical drying. The phase transformations, changes in structure and morphology upon calcination were thoroughly investigated by advanced X-Ray diffraction (XRD) techniques and high-resolution transmission electron microscopy (HRTEM). Obtained pseudoboehmite samples had specific nanostructure: ultrathin two-dimensional (2D) crystallites were loosely packed. The silica dopant drastically enhanced the crystallite anisotropy. Thus, the aerogel with Al:Si atomic ratio of 9:1 consisted of the pseudoboehmite nanosheets with thickness of one unit cell (average dimensions of 14.0×1.2×14.5 nm). The specific nanostructure caused remarkable features of experimental XRD patterns, including anisotropic peak broadening and appearance of forbidden reflection. Direct simulation of XRD patterns with using the Debye Scattering Equation allowed the size and morphology of pseudoboehmite crystallites to be determined. The silica addition strongly delayed formation of γ-alumina and further phase transformations upon calcinaton. Thermal stability of alumina was suggested to be affected by the particle morphology inherited from the pseudoboehmite precursor.

  7. Electrical Properties and Dipole Relaxation Behavior of Zinc-Substituted Cobalt Ferrite

    NASA Astrophysics Data System (ADS)

    Supriya, Sweety; Kumar, Sunil; Kar, Manoranjan

    2017-12-01

    Co1- x Zn x Fe2O4 ceramics with x = 0.00, 0.05, 0.10, 0.15 and 0.20 were synthesized by a modified citric acid sol-gel method. The crystalline phase of the samples was characterized by the powder x-ray diffraction technique (XRD) and the Rietveld analysis of the XRD patterns. The morphology and particle size were studied using field emission scanning electron microscopy. Fourier transform infrared spectroscopy studies were consistent with the XRD results. The impedance measurements were carried out from 100 Hz to 10 MHz at different temperatures from 40°C to 300°C. The frequency dispersion of dielectric was analyzed with a modified Debye equation. The activation energy derived from the dielectric constant and the impedance follows the Arrhenius law and are comparable with each other. The dielectric relaxation and impedance relaxation are correlated in terms of activation energy, show a good temperature stability of the dielectrics and are useful for their applications in microelectronic devices such as filters, capacitors, resonators, etc.

  8. Effects on structural, optical, and magnetic properties of pure and Sr-substituted MgFe2O4 nanoparticles at different calcination temperatures

    NASA Astrophysics Data System (ADS)

    Loganathan, A.; Kumar, K.

    2016-06-01

    In the present work, pure and Sr2+ ions substituted Mg ferrite nanoparticles (NPs) had been prepared by co-precipitation method and their structural, optical, and magnetic properties at different calcination temperatures were studied. On this purpose, thermo gravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy, UV-Visible diffused reflectance spectroscopy, impedance spectroscopy, and vibrating sample magnetometer were carried out. The exo- and endothermic processes of synthesized precursors were investigated by TG-DTA measurements. The structural properties of the obtained products were examined by XRD analysis and show that the synthesized NPs are in the cubic spinel structure. The existence of two bands around 578-583 and 430-436 cm-1 in FT-IR spectrum also confirmed the formation of spinel-structured ferrite NPs. The lattice constants and particle size are estimated using XRD data and found to be strongly dependent on calcination temperatures. The optical, electrical, and magnetic properties of ferrite compositions also investigated and found to be strongly dependant on calcination temperatures.

  9. Nanocomposite bulk of mechanically milled Al-Pb samples consolidated pore-free by the high-energy rate forming technique.

    PubMed

    Csanády, Agnes; Sajó, István; Lábár, János L; Szalay, András; Papp, Katalin; Balaton, Géza; Kálmán, Erika

    2005-06-01

    It is shown that pore-free bulk samples were produced by the high-energy rate forming axis-symmetrical powder compaction method for different application purposes in case of the very different, immiscible Al and Pb metal pair. The starting Al-Pb nanocomposites were made by mechanical milling of atomized Al and Pb powders either in a SPEX 9000 or a Fritsch Pulverisette 4 mill. Due to the conditions that milling was carried out in air, the PbO layer, originally existing at the surface of the atomized Pb powder, ruptured and was also dispersed in the composite. The presence of the nano PbO particles was proven by XRD and TEM (BF, DF, SAED). When the energy of milling was high, the PbO crystallites became so small that they could hardly be seen by XRD technique. Local distribution of the PbO nanoparticles was still visible in a TEM, using the process diffraction method. Both XRD and SAED proved to be useful for the evaluation of the results of the milling process and compaction.

  10. Synthesis, structural, characterization and dielectric spectroscopy of PVDF - BaTiO3 polymer composite

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. S.; Belavi, P. B.; Khadke, U. V.

    2018-05-01

    In this paper we report the method of synthesis of ferroelectric polymer Polyvinyldene fluoride (PVDF) and Barium Titanate (BaTiO3) composite self supporting thin films and its dielectric response. BaTiO3 was synthesized by solid state reaction method. The PVDF - BaTiO3 polymer composites with various concentrations were synthesized by solution mixing method using Dimethylformadide (DMF) as a solvent. The phase transformation and surface methodology of the prepared composites were characterized by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) respectively. The XRD pattern confirms the formation of tetragonal pervoskite structure of ferroelectric phase. The XRD pattern shows the proper mixing of BaTiO3 particles intestinally and found to be improving its crystallinity with increase of BaTiO3 composition in the PVDF matrix. The dielectric properties of the composites as a function of frequency were computed using impedance analyzer. The dielectric constant decreases with increase of frequency shows the Maxwell - Wagner type of interfacial polarization in accordance with Koop's phenomenological theory.

  11. La-Sr-Ni-Co-O based perovskite-type solid solutions as catalyst precursors in the CO 2 reforming of methane

    NASA Astrophysics Data System (ADS)

    Valderrama, Gustavo; Kiennemann, Alain; Goldwasser, Mireya R.

    La 1- xSr xNi 0.4Co 0.6O 3 and La 0.8Sr 0.2Ni 1- yCo yO 3 solid solutions with perovskite-type structure were synthesized by the sol-gel resin method and used as catalytic precursors in the dry reforming of methane with CO 2 to syngas, between 873 and 1073 K at atmospheric pressure under continuous flow of reactant gases with CH 4/CO 2 = 1 ratio. These quaternary oxides were characterized by X-ray diffraction (XRD), BET specific surface area and temperature-programmed reduction (TPR) techniques. XRD analyses of the more intense diffraction peaks and cell parameter measurements showed formation of La-Sr-Ni-Co-O solid solutions with La 0.9Sr 0.1CoO 3 and/or La 0.9Sr 0.1NiO 3 as the main crystallographic phases present on the solids depending on the degree of substitution. TPR analyses showed that Sr doping decreases the temperature of reduction via formation of intermediary species producing Ni 0, Co 0 with particle sizes in the range of nanometers over the SrO and La 2O 3 phases. These metallic nano particles highly dispersed in the solid matrix are responsible for the high activity shown during the reaction and avoid carbon formation. The presence of Sr in doping quantities also promotes the secondary reactions of carbon formation and water-gas shift in a very small extension during the dry reforming reaction.

  12. Impact of high pressure treatment on functional, rheological, pasting, and structural properties of lentil starch dispersions.

    PubMed

    Ahmed, Jasim; Thomas, Linu; Taher, Ayoub; Joseph, Antony

    2016-11-05

    Lentil starch (LS) dispersions (flour to water 1:4w/w) were subjected to high pressure (HP) treatment at 0.1, 400, 500 and 600MPa for 10min, followed by evaluation on the functional, particle size, rheological, pasting, and structural properties of post-process samples. Water holding capacity of pressurized starch increased with the pressure intensity due to increase in damaged starch. The amount of resistant starch increased from 5 to 6.8% after pressure treatment at 600MPa. An increase in starch granule particle size (196-207μm) was obvious after HP treatment. The lentil starch was completely gelatinized after pressure treatment at 600MPa for 10min as evidenced from differential scanning calorimetry, rheometry, X-ray diffraction (XRD) and scanning electron microscopy observation. The elastic modulus, G' of lentil starch gel was less frequency dependent, and higher in magnitude at high pressure (>500MPa) than at lower pressure range (≤400MPa). XRD analysis revealed the disappearance of two diffraction peak intensities at 14.86° and 22.82° at 600MPa for 10min, which confirms the transformation of crystalline to amorphous region of lentil starch. Pasting properties were significantly influenced by the pressure treatment especially at 600MPa, resulting in a considerable decrease in peak viscosity, breakdown and final viscosity, and an increase in peak time. It can be inferred that the functional properties of pressure-treated LS are mainly based on the structural destruction of granules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Remote In-Situ Quantitative Mineralogical Analysis Using XRD/XRF

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Bish, D.; Vaniman, D.; Chipera, S.; Sarrazin, P.; Collins, S. A.; Elliott, S. T.

    2001-01-01

    X-Ray Diffraction (XRD) is the most direct and accurate method for determining mineralogy. The CHEMIN XRD/XRF instrument has shown promising results on a variety of mineral and rock samples. Additional information is contained in the original extended abstract.

  14. Characterization of hydrothermally synthesized SnS nanoparticles for solar cell application

    NASA Astrophysics Data System (ADS)

    Rajwar, Birendra Kumar; Sharma, Shailendra Kumar

    2018-05-01

    In the present study, SnS nanoparticles were synthesized by simple hydrothermal method using stannous chloride and thiourea as tin (Sn) and sulfur (S) precursor respectively. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy and UV-Vis Spectroscopy techniques. XRD pattern reveals that as-prepared nanoparticles exhibit orthorhombic structure. Average particles size was calculated using Scherrer's formula and found to be 23 nm. FESEM image shows that the as-prepared nanoparticles are in plate like structure. Direct optical band gap (Eg) of as-synthesized nanoparticles was calculated through UV-Vis Spectroscopy measurement and found to be 1.34 eV, which is near to optimum need for photovoltaic solar energy conversion (1.5 eV). Thus this SnS, narrowband gap semiconductor material can be applied as an alternative absorber material for solar cell application.

  15. Investigation of Embedded Si/C System Exposed to a Hybrid Reaction of Centrifugal-Assisted Thermite Method

    PubMed Central

    Mahmoodian, Reza; Yahya, Rosiyah; Dabbagh, Ali; Hamdi, Mohd; Hassan, Mohsen A.

    2015-01-01

    A novel method is proposed to study the behavior and phase formation of a Si+C compacted pellet under centrifugal acceleration in a hybrid reaction. Si+C as elemental mixture in the form of a pellet is embedded in a centrifugal tube. The pellet assembly and tube are exposed to the sudden thermal energy of a thermite reaction resulted in a hybrid reaction. The hybrid reaction of thermite and Si+C produced unique phases. X-ray diffraction pattern (XRD) as well as microstructural and elemental analyses are then investigated. XRD pattern showed formation of materials with possible electronic and magnetic properties. The cooling rate and the molten particle viscosity mathematical model of the process are meant to assist in understanding the physical and chemical phenomena took place during and after reaction. The results analysis revealed that up to 85% of materials converted into secondary products as ceramics-matrix composite. PMID:26641651

  16. Rietveld analysis of the effect of annealing atmosphere on phase evolution of nanocrystalline TiO2 powders.

    PubMed

    Salari, M; Rezaee, M; Chidembo, A T; Konstantinov, K; Liu, H K

    2012-06-01

    The structural evolution of nanocrystalline TiO2 was studied by X-ray diffraction (XRD) and the Rietveld refinement method (RRM). TiO2 powders were prepared by the sol-gel technique. Post annealing of as-synthesized powders in the temperature range from 500 degrees C to 800 degrees C under air and argon atmospheres led to the formation of TiO2 nanoparticles with mean crystallite size in the range of 37-165 nm, based on the Rietveld refinement results. It was found that the phase structure, composition, and crystallite size of the resulting particles were dependent on not only the annealing temperature, but also the annealing atmosphere. Rietveld refinement of the XRD data showed that annealing the powders under argon atmosphere promoted the polymorphic phase transformation from anatase to rutile. Field emission scanning electron microscopy (FESEM) was employed to investigate the morphology and size of the annealed powders.

  17. Microwave-assisted synthesis and characterization of nickel ferrite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Gopal; Sen, Ravindra; Gupta, Nitish, E-mail: nitish.nidhi75@gmail.com

    2015-08-28

    Nickel ferrite nanoparticles (NiFe{sub 2}O{sub 4}) were successfully prepared by microwave-assisted combustion method (MWAC) using citric Electron acid as a chelating agent. NiFe{sub 2}O{sub 4} nanoparticles were characterized by X-ray diffraction (XRD) pattern, Scanning Microscopy (SEM), Fourier transform infrared (FTIR) and UV-Visible techniques. XRD analysis revealed that NiFe{sub 2}O{sub 4} nanoparticles have spinel cubic structure with the average crystalline size of 26.38 nm. SEM analysis revealed random and porous structural morphology of particles and FTIR showed absorption bands related to octahedral and tetrahedral sites, in the range 400–600cm{sup −1} which strongly favor the formation of NiFe{sub 2}O{sub 4} nanoparticles. The opticalmore » band gap is determined by UV Visible method and found to be 5.4 eV.« less

  18. Study of structural, spectroscopic and dielectric properties of multiferroic cadmium doped Samarium manganite synthesized by solid state reaction method

    NASA Astrophysics Data System (ADS)

    Gupta, Vandana; Raina, Bindu; Verma, Seema; Bamzai, K. K.

    2018-05-01

    Samarium manganite doped with cadmium having general formula Sm1-xCdxMnO3 for x = 0.05, 0.15 were synthesized by solid state reaction technique. These compositions were characterized by various techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and dielectric. XRD analysis confirms the single phase formation with pervoskites structure having orthorhombic phase. Densities were determined and compared with the results obtained by Archimedes principle. The scanning electron micrograph shows that the particle size distribution is almost homogeneous and spherical in shape. FTIR analysis confirms the presence of various atomic bonds within a molecule. A very large value of dielectric constant was observed at low frequencies due to the presence of grains and interfaces. The dielectric constant value decreases with increase in cadmium doping at samarium site.

  19. Structural and magnetic properties of chromium doped zinc ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebastian, Rintu Mary; Thankachan, Smitha; Xavier, Sheena

    2014-01-28

    Zinc chromium ferrites with chemical formula ZnCr{sub x}Fe{sub 2−x}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were prepared by Sol - Gel technique. The structural as well as magnetic properties of the synthesized samples have been studied and reported here. The structural characterizations of the samples were analyzed by using X – Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), and Transmission Electron Microscope (TEM). The single phase spinel cubic structure of all the prepared samples was tested by XRD and FTIR. The particle size was observed to decrease from 18.636 nm to 6.125more » nm by chromium doping and induced a tensile strain in all the zinc chromium mixed ferrites. The magnetic properties of few samples (x = 0.0, 0.4, 1.0) were investigated using Vibrating Sample Magnetometer (VSM)« less

  20. Thermoluminescence dosimetry properties of new Cu doped CaF(2) nanoparticles.

    PubMed

    Zahedifar, M; Sadeghi, E

    2013-12-01

    Nanoparticles of Cu-doped calcium fluoride were synthesised by using the hydrothermal method. The structure of the prepared nanomaterial was characterised by the X-ray diffraction (XRD) pattern and energy dispersive spectrometer. The particle size of 36 nm was calculated from the XRD data. Its shape and size were also observed by scanning electron microscope. Thermoluminescence (TL) and photoluminescence of the produced phosphor were also considered. The computerised glow curve deconvolution procedure was used to identify the number of glow peaks included in the TL glow curve of the CaF2:Cu nanoparticles. The TL glow curve contains two overlapping glow peaks at ∼413 and 451 K. The TL response of this phosphor was studied for different Cu concentrations and the maximum sensitivity was found at 1 mol% of Cu impurity. Other dosimetric characteristics of the synthesised nanophosphor are also presented and discussed.

  1. On the 16O 6+ ion irradiation induced magnetic moment generation in ZnFe2O4 nano ferrite

    NASA Astrophysics Data System (ADS)

    Satalkar, M.; Kane, S. N.; Raghuvanshi, S.

    2018-05-01

    X-ray diffraction (XRD) was utilized to study the effect of 80 MeV 16O 6+ ion irradiation of the as-burnt ZnFe2O4 samples, prepared by sol-gel auto-combustion technique. The samples were irradiated at fluence: 1 × 1011, 1 × 1012, 1 × 1013, 1 × 1014 ions/cm2 to observe the effect of irradiation on structural properties and cationic distribution. XRD confirms the formation of single phase nanocrystalline cubic spinel ferrites with Scherrer's particle diameter (D) ranging between 15.7 - 17.4 nm. Results very distinctly show the electronic energy loss induced changes in: - experimental and theoretical lattice parameter (aexp., ath.), tetrahedral and octahedral bond length (RA, RB), and shared tetrahedral and octahedral edge (dAE, dBE). The paper reports the generation of magnetic moment of Zn ferrite by swift heavy ion irradiation induced distortion at tetrahedral site.

  2. Investigation of Embedded Si/C System Exposed to a Hybrid Reaction of Centrifugal-Assisted Thermite Method.

    PubMed

    Mahmoodian, Reza; Yahya, Rosiyah; Dabbagh, Ali; Hamdi, Mohd; Hassan, Mohsen A

    2015-01-01

    A novel method is proposed to study the behavior and phase formation of a Si+C compacted pellet under centrifugal acceleration in a hybrid reaction. Si+C as elemental mixture in the form of a pellet is embedded in a centrifugal tube. The pellet assembly and tube are exposed to the sudden thermal energy of a thermite reaction resulted in a hybrid reaction. The hybrid reaction of thermite and Si+C produced unique phases. X-ray diffraction pattern (XRD) as well as microstructural and elemental analyses are then investigated. XRD pattern showed formation of materials with possible electronic and magnetic properties. The cooling rate and the molten particle viscosity mathematical model of the process are meant to assist in understanding the physical and chemical phenomena took place during and after reaction. The results analysis revealed that up to 85% of materials converted into secondary products as ceramics-matrix composite.

  3. Novel perovskite coating of strontium zirconate in Inconel substrate

    NASA Astrophysics Data System (ADS)

    Venkatesh, G.; Blessto, B.; Rao, C. Santhosh Kumar; Subramanian, R.; Berchmans, L. John

    2018-02-01

    Thermal Barrier Coatings (TBC) provides a low thermal conductivity barrier to heat transfer from the hot gas in the engine to the surface of the coated alloy component. SrZrO3 powder are prepared by Sol Gel synthesis method. The synthesized powder sample is characterized by X Ray Diffraction Technique (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) and the results are interpreted. The Polycrystalline nature of SrZrO3 is confirmed and lattice spacing are determined in XRD. SEM shows sub-micron sized particles and a fringed pattern is observed in TEM. The IN718 specimen is Wire Cut and Sand Blasted. A SrZrO3 double layer is coated over the Inconel specimen through a Bond Coat made of NiCoCrAlY by Plasma spraying Process and also characterized. SEM analysis of the Coating shows diffusion of Fe, Sr into the substrate.

  4. One step electrochemical synthesis of bimetallic PdAu supported on nafion–graphene ribbon film for ethanol electrooxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shendage, Suresh S., E-mail: sureshsshendage@gmail.com; Singh, Abilash S.; Nagarkar, Jayashree M., E-mail: jm.nagarkar@ictmumbai.edu.in

    2015-10-15

    Highlights: • Electrochemical deposition of bimetallic PdAu NPs. • Highly loaded PdAu NPs are obtained. • Nafion–graphene supported PdAu NPs shows good activity for ethanol electrooxidation. - Abstract: A nafion–graphene ribbon (Nf–GR) supported bimetallic PdAu nanoparticles (PdAu/Nf–GR) catalyst was prepared by electrochemical codeposition of Pd and Au at constant potential. The prepared catalyst was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The average particle size of PdAu nanoparticles (NPs) determined from XRD was 3.5 nm. The electrocatalytic activity of the PdAu/Nf–GR catalyst was examined by cyclic voltametry.more » It was observed that the as prepared catalyst showed efficient activity and good stability for ethanol electrooxidation in alkaline medium.« less

  5. Synthesis and characterization of silver-copper core-shell nanoparticles using polyol method for antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.

    2016-06-01

    Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.

  6. Third order nonlinear optical properties of Mn doped CeO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Mani Rahulan, K.; Angeline Little Flower, N.; Annie Sujatha, R.; Mohana Priya, P.; Gopalakrishnan, C.

    2018-05-01

    Mn doped CeO2 nanoparticles with different ratios of Mn were synthesized by hydrothermal method and their structural properties were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). XRD patterns revealed that the peaks are highly crystalline structure with no segregation of Mn. The surface morphology from SEM reveals that particle size decreases with increase in Mn concentration. Nonlinear optical studies of the samples were measured by single-beam open aperture Z-scan technique using 5 ns laser pulses at 532 nm. The measured optical nonlinearity of all the samples exhibit typical third order nonlinear optical behavior including two-photon absorption (2 PA) and reverse saturable absorption (RSA). The experimental results show that the presence of RSA in these nanoparticles makes them a promising material for the fabrication of optical limiting devices. .

  7. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-Ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance (29Si MAS NMR and 13CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance (29Si MAS NMR and 13CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles. Electronic supplementary information (ESI) available: FTIR, Raman spectral data, additional TEM pictures, N2 adsorption and physical characteristics of hollow particles data, and cycling performance of dense silica particles. See DOI: 10.1039/c1nr10804b

  8. Impedance spectroscopic and dielectric properties of nanosized Y2/3Cu3Ti4O12 ceramic

    NASA Astrophysics Data System (ADS)

    Sharma, Sunita; Yadav, Shiv Sundar; Singh, M. M.; Mandal, K. D.

    2014-11-01

    Yttrium Copper Titanate (Y2/3Cu3Ti4O12) nanoceramic is structurally analogous to CaCu3Ti4O12 (CCTO). X-ray diffraction (XRD) of Y2/3Cu3Ti4O12 (YCTO) shows the presence of all normal peaks of CCTO. SEM micrograph exhibits the presence of bimodal grains of size ranging from 1-2 μm. Bright field TEM image clearly displays nanocrystalline particle which is supported by presence of a few clear rings in the corresponding selected area electron diffraction (SAED) pattern. It exhibits a high value of dielectric constant (ɛ‧ = 8434) at room temperature and 100 Hz frequency with characteristic relaxation peaks. Impedance and modulus studies revealed the presence of temperature-dependent Maxwell-Wagner type of relaxation in the ceramic.

  9. Effect of Zn2+, Fe3+ and Cr3+ addition to hydroxyapatite for its application as an active constituent of sunscreens

    NASA Astrophysics Data System (ADS)

    de Araujo, T. S.; de Souza, S. O.; de Sousa, E. M. B.

    2010-11-01

    Biocompatible phosphate materials are used in different applications like bone and dental implants, drug delivery systems and others, but could also be applied in inorganic sunscreens. Using sunscreens is extremely necessary, because long time exposure to sun can cause skin cancer. In this work chemical precipitation method has been used to produce hydroxyapatite. Cr3+, Zn2+ and Fe3+ doped samples were characterized using powder X-Ray Diffraction (XRD) and Optical Absorption techniques. X-ray diffraction measurements confirmed the materials were in the expected crystalline structures. The crystallite size as measured from the X-ray pattern was 23-27 nm (±1). The absorption spectra in the ultraviolet and visible ranges indicate that appropriately doped and sized hydroxyapatite particles may have potential applications as active constituents of sunscreens.

  10. Effect of particle in-flight behavior on the composition of thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Bai, Y.; Tang, J. J.; Liu, K.; Ding, C. H.; Yang, J. F.; Han, Z. H.

    2013-12-01

    In this work, 6 to 11 mol% YO1.5-stabilized zirconia (YSZ) coatings were deposited by supersonic and conventional atmospheric plasma spraying. During spraying, the surface temperature and velocity of in-flight particles were monitored by Spray Watch 2i on-line system. The phase composition of as-sprayed coatings was analyzed by X-ray diffractometry (XRD). Lattice parameters, tetragonality and the content of YO1.5 (mol%) of as-sprayed coatings were calculated according to the position of (0 0 4) and (4 0 0) diffraction peaks. It was found that the as-sprayed coatings were composed of metastable non-transformable tetragonal phase (t‧). However, the amount of YO1.5 (mol%) in the as-sprayed coatings decreased with the increase of melting index of in-flight particles due to the partial evaporation of YO1.5 during spraying.

  11. Evaluation of Microstructure and Mechanical Properties of Al-TiC Metal Matrix Composite Prepared by Conventional, Microwave and Spark Plasma Sintering Methods

    PubMed Central

    Ghasali, Ehsan; Fazili, Ali; Alizadeh, Masoud; Shirvanimoghaddam, Kamyar; Ebadzadeh, Touradj

    2017-01-01

    In this research, the mechanical properties and microstructure of Al-15 wt % TiC composite samples prepared by spark plasma, microwave, and conventional sintering were investigated. The sintering process was performed by the speak plasma sintering (SPS) technique, microwave and conventional furnaces at 400 °C, 600 °C, and 700 °C, respectively. The results showed that sintered samples by SPS have the highest relative density (99% of theoretical density), bending strength (291 ± 12 MPa), and hardness (253 ± 23 HV). The X-ray diffraction (XRD) investigations showed the formation of TiO2 from the surface layer decomposition of TiC particles. Scanning electron microscopy (SEM) micrographs demonstrated uniform distribution of reinforcement particles in all sintered samples. The SEM/EDS analysis revealed the formation of TiO2 around the porous TiC particles. PMID:29088114

  12. Interaction of DNA bases with silver nanoparticles: assembly quantified through SPRS and SERS.

    PubMed

    Basu, Soumen; Jana, Subhra; Pande, Surojit; Pal, Tarasankar

    2008-05-15

    Colloidal silver nanoparticles were prepared by reducing silver nitrate with sodium borohydride. The synthesized silver particles show an intense surface plasmon band in the visible region. The work reported here describes the interaction between nanoscale silver particles and various DNA bases (adenine, guanine, cytosine, and thymine), which are used as molecular linkers because of their biological significance. In colloidal solutions, the color of silver nanoparticles may range from red to purple to orange to blue, depending on the degree of aggregation as well as the orientation of the individual particles within the aggregates. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and absorption spectroscopy were used to characterize the assemblies. DNA base-induced differential silver nanoparticle aggregation was quantified from the peak separation (relates to color) of surface plasmon resonance spectroscopy (SPRS) and the signal intensity of surface-enhanced Raman scattering (SERS), which rationalize the extent of silver-nucleobase interactions.

  13. Synthesis, Dielectric, Electrical and Optical characterization of ZnO synthesized by chemical route using polymer precursors

    NASA Astrophysics Data System (ADS)

    Mishra, Raman; Bajpai, P. K.

    2011-11-01

    Nano-size ZnO (particle size 7.8 nm) have been prepared from a versatile, efficient and technically simple polymer matrix based precursor solution. The precursor solution constituted of zinc nitrates with polymer PVA in presence of mono-/disaccharides. Annealing the precursor mass at 900 °C single phase zinc oxide nano-particles are obtained. X-ray diffraction analysis confirms hexagonal crystal structure with lattice parameter a = b = 3.261 A0, c = 5.220 A0. The estimated average particle size obtained from XRD data is ≈7.8 nm. The impedance analysis reveals that the grain resistance decreases with increase in temperature as expected for a semi-conducting material. The relaxation is polydispersive and conduction is mainly through grains. Optical properties and AC/DC conduction activation energies are estimated from Arrhenius plots and conduction mechanism is discussed.

  14. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation

    NASA Astrophysics Data System (ADS)

    Sheng, Wei; Wei, Wei; Li, Junjian; Qi, Xiaoliang; Zuo, Gancheng; Chen, Qi; Pan, Xihao; Dong, Wei

    2016-11-01

    We report a modified approach for the functionalized magnetic mesoporous silica nanoparticles (MMSN) using polymer microspheres incorporated with magnetic nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) and the core-shell magnetic silica nanoparticles (MSN). These particles were functionalized with amino groups via the addition of aminosilane directly to the particle sol. We then evaluate their DNA separation abilities and find the capacity of DNA binding significantly increased (210.22 μg/mg) compared with normal magnetic silica spheres (138.44 μg/mg) by using an ultraviolet and visible spectrophotometer (UV). The morphologies, magnetic properties, particle size, pore size, core-shell structure and Zeta potential are characterized by Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM), Powder X-ray diffraction (XRD), and dynamic light scattering (DLS). This work demonstrates that our MMSN own an excellent potential application in bioseparation and drug delivery.

  15. Effect of annealing on particle size, microstructure and gas sensing properties of Mn substituted CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, E. Ranjith; Kamzin, A. S.; Janani, K.

    2016-11-01

    Microstructure, morphological and gas sensor studies of Mn substituted cobalt ferrite nanoparticles synthesized by a simple evaporation method and auto- combustion method. The influence of heat treatment on phase and particle size of spinel ferrite nanoparticles were determined by X-ray diffraction and Mossbauer spectroscopy. The XRD study reveals that the lattice constant and crystallite size of the samples increases with the increase of annealing temperature. Last one was confirmed by Mossbauer data. The lowest size of particles of MnCoFe2O4 (~3 nm) is obtained by auto combustion method. The spherical shaped nanoparticles are recorded by TEM. Furthermore, conductance response of Mn-Co ferrite nanomaterial was measured by exposing the material to reducing gas like liquefied petroleum gas (LPG) which showed a sensor response of ~0.19 at an optimum operating temperature of 250 °C.

  16. Luminescence properties of rare earth doped metal oxide nanostructures: A case of Eu-ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, D.; Acharya, B. S.; Panda, N. R., E-mail: nihar@iitbbs.ac.in

    2016-05-06

    The present study reports the growth and luminescence properties of Eu doped ZnO nanostructures. The experiment has been carried out by synthesizing the materials by simple wet-chemical method. X-ray diffraction (XRD) studies show expansion of ZnO lattice with the incorporation of Eu ions which has been confirmed from the appearance of Eu{sub 2}O{sub 3} as a minor phase in the XRD pattern. The estimation of crystallite size from XRD results matches closely with the results obtained from transmission electron microscopy. Further, these results show the formation of nanosized Eu-ZnO particles of average size around 60 nm stacked on each other. FTIRmore » studies show the presence of both Zn-O and Eu-O modes in the spectra supporting the results obtained from XRD. The interesting results obtained from photoluminescence (PL) measurements show the presence of both band edge emission in UV region and the defect emissions in violet, blue and green region. The appearance of {sup 5}D{sub 0}→{sup 7}F{sub J} transitions of Eu{sup 3+} ions in red region clearly suggests the possible occurrence of energy transfer between the energy states of ZnO host and Eu{sup 3+} ions.« less

  17. X-Ray Amorphous Phases in Terrestrial Analog Volcanic Sediments: Implications for Amorphous Phases in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Smith, R. J.; Horgan, B.; Rampe, E.; Dehouck, E.; Morris, R. V.

    2017-01-01

    X-ray diffraction (XRD) amorphous phases have been found as major components (approx.15-60 wt%) of all rock and soil samples measured by the CheMin XRD instrument in Gale Crater, Mars. The nature of these phases is not well understood and could be any combination of primary (e.g., glass) and secondary (e.g., allophane) phases. Amorphous phases form in abundance during surface weathering on Earth. Yet, these materials are poorly characterized, and it is not certain how properties like composition and structure change with formation environment. The presence of poorly crystalline phases can be inferred from XRD patterns by the appearance of a low angle rise (< or approx.10deg 2(theta)) or broad peaks in the background at low to moderate 2(theta) angles (amorphous humps). CheMin mineral abundances combined with bulk chemical composition measurements from the Alpha Particle X-ray Spectrometer (APXS) have been used to estimate the abundance and composition of the XRD amorphous materials in soil and rock samples on Mars. Here we apply a similar approach to a diverse suite of terrestrial samples - modern soils, glacial sediments, and paleosols - in order to determine how formation environment, climate, and diagenesis affect the abundance and composition of X-ray amorphous phases.

  18. Roosevelt Hot Springs, Utah FORGE X-Ray Diffraction Data

    DOE Data Explorer

    Nash, Greg; Jones, Clay

    2018-02-07

    This dataset contains X-ray diffraction (XRD) data taken from wells and outcrops as part of the DOE GTO supported Utah FORGE project located near Roosevelt Hot Springs. It contains an Excel spreadsheet with the XRD data, a text file with sample site names, types, and locations in UTM, Zone 12, NAD83 coordinates, and a GIS shapefile of the sample locations with attributes.

  19. In situ Raman spectroscopy of LiFePO4: size and morphology dependence during charge and self-discharge.

    PubMed

    Wu, Jing; Dathar, Gopi Krishna Phani; Sun, Chunwen; Theivanayagam, Murali G; Applestone, Danielle; Dylla, Anthony G; Manthiram, Arumugam; Henkelman, Graeme; Goodenough, John B; Stevenson, Keith J

    2013-10-25

    Previous studies of the size dependent properties of LiFePO4 have focused on the diffusion rate or phase transformation pathways by bulk analysis techniques such as x-ray diffraction (XRD), neutron diffraction and electrochemistry. In this work, in situ Raman spectroscopy was used to study the surface phase change during charge and self-discharge on a more localized scale for three morphologies of LiFePO4: (1) 25 ± 6 nm width nanorods, (2) 225 ± 6 nm width nanorods and (3) ∼2 μm porous microspheres. Both the large nanorod and microsphere geometries showed incomplete delithiation at the end of charge, which was most likely caused by anti-site defects along the 1D diffusion channels in the bulk of the larger particles. Based on the in situ Raman measurements, all of the morphologies studied exhibited self-discharge with time. Among them, the smallest FePO4 particles self-discharged (lithiated) the fastest. While nanostructuring LiFePO4 can offer advantages in terms of lowering anti-site defects within particles, it also creates new problems due to high surface energies that allow self-discharge. The in situ Raman spectroscopy also showed that carbon coating did not provide significant improvement to the stability of the lithiated particles.

  20. Structural, morphological and interfacial characterization of Al-Mg/TiC composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contreras, A.; Angeles-Chavez, C.; Flores, O.

    2007-08-15

    Morphological and structural characterization of Al-Mg/TiC composites obtained by infiltration process and wetting by the sessile drop technique were studied. Focusing at the interface, wetting of TiC substrates by molten Al-Mg-alloys at 900 deg. C was investigated. Electron probe microanalysis (EPMA) indicated that aluminum carbide (Al{sub 4}C{sub 3}) is formed at the interface and traces of TiAl{sub 3} in the wetting assemblies were detected. Scanning Electron Microscopy (SEM) observations show that TiC particles do not appear to be uniformly attacked to produce a continuous layer of Al{sub 4}C{sub 3} at the interface. Molten Al-Mg-alloys were infiltrated into TiC preforms withmore » flowing argon at a temperature of 900 deg. C. In the composites no reaction phase was observed by SEM. Quantification of the Al phase in the composite was carried out by X-ray diffraction (XRD) and Rietveld analysis. Chemical mapping analyzed by SEM shows that the Al-Mg alloy surrounds TiC particles. In the composites with 20 wt.% of Mg the Al-Mg-{beta} phase was detected through XRD.« less

  1. Sulfur Nanoparticles Synthesis and Characterization from H2S Gas, Using Novel Biodegradable Iron Chelates in W/O Microemulsion

    NASA Astrophysics Data System (ADS)

    Deshpande, Aniruddha S.; Khomane, Ramdas B.; Vaidya, Bhalchandra K.; Joshi, Renuka M.; Harle, Arti S.; Kulkarni, Bhaskar D.

    2008-06-01

    Sulfur nanoparticles were synthesized from hazardous H2S gas using novel biodegradable iron chelates in w/o microemulsion system. Fe3+ malic acid chelate (0.05 M aqueous solution) was studied in w/o microemulsion containing cyclohexane, Triton X-100 and n-hexanol as oil phase, surfactant, co-surfactant, respectively, for catalytic oxidation of H2S gas at ambient conditions of temperature, pressure, and neutral pH. The structural features of sulfur nanoparticles have been characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive spectroscopy (EDS), diffused reflectance infra-red Fourier transform technique, and BET surface area measurements. XRD analysis indicates the presence of α-sulfur. TEM analysis shows that the morphology of sulfur nanoparticles synthesized in w/o microemulsion system is nearly uniform in size (average particle size 10 nm) and narrow particle size distribution (in range of 5 15 nm) as compared to that in aqueous surfactant systems. The EDS analysis indicated high purity of sulfur (>99%). Moreover, sulfur nanoparticles synthesized in w/o microemulsion system exhibit higher antimicrobial activity (against bacteria, yeast, and fungi) than that of colloidal sulfur.

  2. Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Singaravelan, R.; Bangaru Sudarsan Alwar, S.

    2015-12-01

    This work exemplifies a simple and rapid method for the synthesis of silver nanodendrite with a novel electrochemical technique. The antibacterial activity of these silver nanoparticles (Ag NPs) against pathogenic bacteria was investigated along with the routine study of optical and spectral characterisation. The optical properties of the silver nanoparticles were characterised by diffuse reflectance spectroscopy. The optical band gap energy of the electrodeposited Ag NPs was determined from the diffuse reflectance using Kubelka-Munk formula. X-ray diffraction (XRD) studies were carried out to determine the crystalline nature of the silver nanoparticles which confirmed the formation of silver nanocrystals. The XRD pattern revealed that the electrodeposited Ag NPs were in the cubic geometry with dendrite preponderance. The average particle size and the peak broadening were deliberated using Debye-Scherrer equation and lattice strain due to the peak broadening was studied using Williamson-Hall method. Surface morphology of the Ag NPs was characterised by high-resolution scanning electron microscope and the results showed the high degree of aggregation in the particles. The antibacterial activity of the Ag NPs was evaluated and showed unprecedented level antibacterial activity against multidrug resistant strains such as Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia and Escherichia coli in combination with Streptomycin.

  3. A comprehensive investigation of structural, morphological, hydrogen absorption and magnetic properties of MmNi4.22Co0.48Mn0.15Al0.15 alloy

    NASA Astrophysics Data System (ADS)

    Zareii, Seyyed Mojtaba; Arabi, Hadi; Pourarian, Faiz

    2014-05-01

    A comprehensive study of structural, morphological, hydrogen absorption and magnetic properties of MmNi4.22 Co0.48Mn0.15Al0.15 alloy as a promising hydrogen storage media was investigated. The X-ray diffraction (XRD) profiles show that the alloy maintains its crystal structure (hexagonal LaNi5-type) even after 30 hydrogenation/dehydrogenation (H/D) cycles. However, the XRD peaks are found to be slightly broadened after cycling. SEM images reveal that particles size of the cycled sample decreases, with more uniform particle size distribution compared to noncycled ones. The pressure-composition (PC) isotherms and kinetics curves of hydrogen absorption reaction were obtained at different working temperatures by using a homemade Sievert apparatus. The enthalpy and entropy of hydride formation of the alloy were evaluated. Furthermore, the Jander diffusion and Johnson-Mehl-Avrami models as the fitting models were employed to study the kinetic mechanism of hydriding reaction and its activation energy. The room temperature magnetic measurements indicate that the milling and H/D cycling change the magnetic properties of the as-annealed alloy.

  4. Characterization of bismuth selenide (Bi2Se3) thin films obtained by evaporating the hydrothermally synthesised nano-particles

    NASA Astrophysics Data System (ADS)

    Indirajith, R.; Rajalakshmi, M.; Gopalakrishnan, R.; Ramamurthi, K.

    2016-03-01

    Bismuth selenide (Bi2Se3) was synthesized by hydrothermal method at 200 °C and confirmed by powder X-ray diffraction (XRD) studies. The synthesized material was utilized to deposit bismuth selenide thin films at various substrate temperatures (Room Temperature-RT, 150 °C, 250 °C, 350 °C and 450 °C) by electron beam evaporation technique. XRD study confirmed the polycrystalline nature of the deposited Bi2Se3films. Optical transmittance spectra showed that the deposited (at RT) films acquire relatively high average transmittance of 60%in near infrared region (1500-2500 nm). An indirect allowed optical band gap calculated from the absorption edge for the deposited films is ranging from 0.62 to 0.8 eV. Scanning electron and atomic force microscopy analyses reveal the formation of nano-scale sized particles on the surface and that the nature of surface microstructures is influenced by the substrate temperature. Hall measurements showed improved electrical properties, for the films deposited at 350 °C which possess 2.8 times the mobility and 0.9 times the resistivity of the films deposited at RT.

  5. Synthesis, characterization and magnetic properties of nanocrystalline FexNi80-xCo20 ternary alloys

    NASA Astrophysics Data System (ADS)

    Dalavi, Shankar B.; Theerthagiri, J.; Raja, M. Manivel; Panda, R. N.

    2013-10-01

    Fe-Ni-Co alloys of various compositions (FexNi80-xCo20,x=20-50) were synthesized by using a sodium borohydride reduction route. The phase purity and crystallite size was ascertained by using powder X-ray diffraction (XRD). The alloys crystallize in the face centered cubic (fcc) structure with lattice parameters, a=3.546-3.558 Å. The XRD line broadening indicates the fine particle nature of the materials. The estimated crystallite sizes were found to be 27.5, 27, 24, and 22.8 nm for x=20, 30, 40, and 50; alloys respectively. Scanning electron micrograph studies indicates particle sizes to be in the range of 83-60 nm for Fe-Ni-Co alloys. The values of saturation magnetization for FexNi80-xCo20 are found to be in the range of 54.3-41.2 emu/g and are significantly lower than the bulk values (175-180 emu/g). The coercivity decreases from 170 to 122 Oe with decrease in Fe content. The observed magnetic behavior has been explained on the basis of size, surface effects, spin canting and the presence of superparamagnetic fractions in the ultrafine materials.

  6. Size-dependent photocatalytic activity of La0.8Sr0.2MnO3 nanoparticles prepared by hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Rahmani Afje, F.; Ehsani, M. H.

    2018-04-01

    Synthesize of La0.8Sr0.2MnO3 (LSMO) manganite were carried out in different particle sizes by hydrothermal method. Structural and optical properties of the prepared specimens were studied by x-ray diffraction (XRD), Fourier transform infra-red (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), and UV–vis spectroscopy. The XRD study, coupled with the Rietveld refinement, exhibited rhombohedral structure with R-3C space group. Using the FT-IR and FESEM analyses, the perovskite structure of the samples with Nano-rod-like morphologies were inferred. Furthermore, the average sizes of 48.11, 70.99 and 111.45 nm were obtained for the ones sintered at 800, 900, and 1000 °C temperatures, respectively. The optical research showed that band gap energy is about 2.13 eV, being suitable in visible-light photocatalytic activity for water purification from dyes and toxic organic materials. The photo-degradation efficiency for decolorizing methyl orange solution (10 ppm) for various samples (100 ppm) were systematically probed and a strong relation is concluded between particle size and photocatalytic activity.

  7. Properties of Gd{sub 2}O{sub 3} nanoparticles studied by hyperfine interactions and magnetization measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correa, E. L., E-mail: eduardo.correa@usp.br; Bosch-Santos, B.; Cavalcante, F. H. M.

    2016-05-15

    The magnetic behavior of Gd{sub 2}O{sub 3} nanoparticles, produced by thermal decomposition method and subsequently annealed at different temperatures, was investigated by magnetization measurements and, at an atomic level, by perturbed γ − γ angular correlation (PAC) spectroscopy measuring hyperfine interactions at {sup 111}In({sup 111}Cd) probe nuclei. Nanoparticle structure, size and shape were characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Magnetization measurements were carried out to characterize the paramagnetic behavior of the samples. XRD results show that all samples crystallize in the cubic-C form of the bixbyite structure with space group Ia3. TEM images showed that particlesmore » annealed at 873 K present particles with highly homogeneous sizes in the range from 5 nm to 10 nm and those annealed at 1273 K show particles with quite different sizes from 5 nm to 100 nm, with a wide size distribution. PAC and magnetization results show that samples annealed at 873 and 1273 K are paramagnetic. Magnetization measurements show no indication of blocking temperatures for all samples down to 2 K and the presence of antiferromagnetic correlations.« less

  8. Synthesis, Optical and Structural Properties of Copper Sulfide Nanocrystals from Single Molecule Precursors

    PubMed Central

    Ajibade, Peter A.; Botha, Nandipha L.

    2017-01-01

    We report the synthesis and structural studies of copper sulfide nanocrystals from copper (II) dithiocarbamate single molecule precursors. The precursors were thermolysed in hexadecylamine (HDA) to prepare HDA-capped CuS nanocrystals. The optical properties of the nanocrystals studied using UV–visible and photoluminescence spectroscopy showed absorption band edges at 287 nm that are blue shifted, and the photoluminescence spectra show emission curves that are red-shifted with respect to the absorption band edges. These shifts are as a result of the small crystallite sizes of the nanoparticles leading to quantum size effects. The structural studies were carried out using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy. The XRD patterns indicates that the CuS nanocrystals are in hexagonal covellite crystalline phases with estimated particles sizes of 17.3–18.6 nm. The TEM images showed particles with almost spherical or rod shapes, with average crystallite sizes of 3–9.8 nm. SEM images showed morphology with ball-like microspheres on the surfaces, and EDS spectra confirmed the presence of CuS nanoparticles. PMID:28336865

  9. Preparation and Properties of Surface-Coated HMX with Viton and Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Wang, Jingyu; Ye, Baoyun; An, Chongwei; Wu, Bidong; Li, Hequn; Wei, Yanju

    2016-07-01

    To improve the safety performance of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) particles, the new carbon material graphene oxide (GO) and Viton were used to coat HMX via a solvent-slurry process. For comparison, the HMX/Viton/graphite (HMX/Viton/G) and HMX/Viton composites were also prepared by the same process. Atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and differential scanning calorimetry (DSC) were employed to characterize the morphology, composition, and thermal decomposition of samples. The impact sensitivity and shock wave sensitivity of HMX-based composites were also measured and analyzed. The results of SEM, XRD, and XPS indicate that the cladding layer of HMX-based composites is successfully constructed. HMX/Viton/GO composites exhibit better thermal stability compared to HMX and HMX/Viton. The results show that both impact and shock wave sensitivities of HMX/Viton/GO composites are much lower than that of HMX/Viton. In addition, GO sheets exhibit a better desensitizing effect than G sheets. These combined properties suggest that nano-GO has good compatibility with explosives and can be utilized as a desensitizer in HMX particles.

  10. Optical and superparamagnetic behavior of ZnFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Lal, Ganesh; Punia, Khushboo; Dolia, S. N.; Kumar, Sudhish

    2018-05-01

    Nanoparticles of zinc ferrite have been synthesized using a low temperature citrate sol-gel route and characterized by powder X-ray diffraction (XRD), Raman & UV-Vis-NIR spectroscopic and SQUID magnetometry measurements. Analysis of XRD pattern and Raman spectrum confirmed that the synthesized ZnFe2O4 sample crystallizes in single phase fcc spinel ferrite structure and the average particle size of nanoparticles is estimated to 24nm. Optical absorption study shows that maximum photo absorption take place in the visible band and peaking in UV band at 206nm and the band gap energy is estimated to Eg = 2.1eV. Zero Field Cooled (ZFC) and Field Cooled (FC) modes of magnetization down to 5K and in fields up to 20kOe shows that ZnFe2O4 nanoparticles exhibits superparamagnetism with high magneto-crystalline anisotropy and high magnetization. Small difference of 9K between the separation temperature TS=˜30K and blocking temperature TB= 21K are suggestive of the formation of ferromagnetic clusters and a narrow particle size distribution of the nanoparticles in superparamagnetic ZnFe2O4 nanoparticles.

  11. Sulfur Nanoparticles Synthesis and Characterization from H2S Gas, Using Novel Biodegradable Iron Chelates in W/O Microemulsion

    PubMed Central

    2008-01-01

    Sulfur nanoparticles were synthesized from hazardous H2S gas using novel biodegradable iron chelates in w/o microemulsion system. Fe3+–malic acid chelate (0.05 M aqueous solution) was studied in w/o microemulsion containing cyclohexane, Triton X-100 andn-hexanol as oil phase, surfactant, co-surfactant, respectively, for catalytic oxidation of H2S gas at ambient conditions of temperature, pressure, and neutral pH. The structural features of sulfur nanoparticles have been characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive spectroscopy (EDS), diffused reflectance infra-red Fourier transform technique, and BET surface area measurements. XRD analysis indicates the presence of α-sulfur. TEM analysis shows that the morphology of sulfur nanoparticles synthesized in w/o microemulsion system is nearly uniform in size (average particle size 10 nm) and narrow particle size distribution (in range of 5–15 nm) as compared to that in aqueous surfactant systems. The EDS analysis indicated high purity of sulfur (>99%). Moreover, sulfur nanoparticles synthesized in w/o microemulsion system exhibit higher antimicrobial activity (against bacteria, yeast, and fungi) than that of colloidal sulfur.

  12. Role of Mn2+ concentration in the linear and nonlinear optical properties of Ni1-xMnxSe nanoparticles

    NASA Astrophysics Data System (ADS)

    Anugop, B.; Prasanth, S.; Rithesh Raj, D.; Vineeshkumar, T. V.; Pranitha, S.; Mahadevan Pillai, V. P.; Sudarsanakumar, C.

    2016-12-01

    Ni1-xMnxSe nanoparticles (x = 0.1, 0.3, 0.5, 0.7, 0.9) were successfully synthesized by chemical co-precipitation method and their structural and optical properties were studied using X-ray diffraction, transmission electron microscopy, UV-Visible absorption and photo luminescence spectroscopy. XRD pattern reveals the hexagonal structure of the particles and the peak positions were shifted to higher 2θ values with increase in Mn2+ concentration. The average particle size determined from XRD varies from 6 to 11 nm. The UV-Visible absorption spectrum shows absorption edge around the blue region and is red-shifted with increasing Mn2+ concentration consequently the optical bandgap energy is decreasing. The PL emission spectrum shows a broad emission around 380 nm, and the intensity of the emission decreases with increase in Mn2+ concentration. The nonlinear optical properties of the samples were analysed using Z-scan technique and the samples show optical limiting behaviour and the 2 PA coefficient increases with increasing Mn2+ concentration. Overall, manganese concentration influences the linear and nonlinear optical properties of Ni1-xMnxSe nanoparticles.

  13. Molten salt synthesis and characterization of Li4Ti5-xMnxO12 (x = 0.0, 0.05 and 0.1) as anodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Nithya, V. D.; Kalai Selvan, R.; Vediappan, Kumaran; Sharmila, S.; Lee, Chang Woo

    2012-11-01

    Sub-micrometer sized Li4Ti5-xMnxO12 (x = 0.0, 0.05 and 0.1) particles were synthesized by a single step molten salt method using LiCl-KCl as a flux. The synthesized material was structurally characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra. The XRD analysis revealed the particles to be highly crystalline and have a face-centered cubic spinel structure. The presence of possible functional group was confirmed through FTIR analysis. The FE-SEM images showed the particles to be polyhedral in shape with uniform size distribution. It was also revealed that there was a particle size reduction with the effect of Mn4+ dopant ions. The electrochemical studies performed using cyclic voltammogram (CV), charge-discharge, and electrochemical impedance analysis (EIS) indicate that Li4Ti4.9Mn0.1O4 possesses a better discharge capacity (305 mAh/g), cycling stability, and charge carrier conductivity than both Li4Ti4.95Mn0.05O12 (265 mAh/g) and Li4Ti5O12 (240 mAh/g). The cycling stability reveals that the acceptable capacity fading was observed even after 20th cycle. The results of electrochemical studies infer that Li4Ti4.9Mn0.1O4 could be utilized as a suitable anode material for Li-ion batteries.

  14. New nano-sized Al2O3-BN coating 3Y-TZP ceramic composites for CAD/CAM-produced all-ceramic dental restorations. Part I. Fabrication of powders.

    PubMed

    Yang, Se Fei; Yang, Li Qiang; Jin, Zhi Hao; Guo, Tian Wen; Wang, Lei; Liu, Hong Chen

    2009-06-01

    Partially sintered 3 mol % yttria-stabilized tetragonal zirconium dioxide (ZrO(2), zirconia) polycrystal (3Y-TZP) ceramics are used in dental posterior restorations with computer-aided design-computer-aided manufacturing (CAD/CAM) techniques. High strength is acquired after sintering, but shape distortion of preshaped compacts during their sintering is inevitable. The aim of this study is to fabricate new machinable ceramic composites with strong mechanical properties that are fit for all-ceramic dental restorations. Aluminum oxide (Al(2)O(3))-coated 3Y-TZP powders were first prepared by the heterogeneous precipitation method starting with 3Y-TZP, Al(NO(3))(3) . 9H(2)O, and ammonia, then amorphous boron nitride (BN) was produced and the as-received composite powders were coated via in situ reaction with boric acid and urea. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to analyze the status of Al(2)O(3)-BN on the surface of the 3Y-TZP particles. TEM micrographs show an abundance of Al(2)O(3) particles and amorphous BN appearing uniformly on the surface of the 3Y-TZP particles after the coating process. The size of the Al(2)O(3) particles is about 20 nm. The XRD pattern shows clearly the peak of amorphous BN among the peaks of ZrO(2).

  15. Tetraethylorthosilicate (TEOS) applied in the surface modification of hydroxyapatite to develop polydimethylsiloxane/hydroxyapatite composites.

    PubMed

    Bareiro, O; Santos, L A

    2014-03-01

    Nanometric hydroxyapatite (HAp) particles were modified with 5 or 10 wt.% tetraethylorthosilicate (TEOS) solutions in order to prepare polydimethylsiloxane/hydroxyapatite (PDMS/HAp) composites. The surface modification of the HAp particles was studied by transmission electron spectroscopy (TEM) and by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) equipment. The dispersion state of the modified particles in the PDMS matrix was also assessed by SEM. The composite phase composition was characterized by X-ray diffraction (XRD). The composite thermodynamic parameters of cross-linking were analyzed by differential scanning calorimetry (DSC). TEM micrographs and EDS spectra indicated evidence of silica-coating formation on the surface of modified HAp particles. SEM results showed that the HAp particles formed agglomerates in the PDMS matrix. It was found that the introduction of HAp particles into the PDMS changed the enthalpy of cross-linking and the temperature of the beginning of the cross-linking reaction. EDS results indicated that the surface modification of HAp produced composites showing thermodynamic parameters that were more similar to those of unfilled PDMS. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Review on characterization of nano-particle emissions and PM morphology from internal combustion engines: Part 2 [Review on morphology and nanostructure characterization of nano-particle emission from internal combustion engines

    DOE PAGES

    Choi, Seungmok; Myung, C. L.; Park, S.

    2014-03-05

    This study presents a review of the characterization of physical properties, morphology, and nanostructure of particulate emissions from internal combustion engines. Because of their convenience and readiness of measurement, various on-line commercial instruments have been used to measure the mass, number, and size distribution of nano-particles from different engines. However, these on-line commercial instruments have inherent limitations in detailed analysis of chemical and physical properties, morphology, and nanostructure of engine soot agglomerates, information that is necessary to understand the soot formation process in engine combustion, soot particle behavior in after-treatment systems, and health impacts of the nano-particles. For these reasons,more » several measurement techniques used in the carbon research field, i.e., highresolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and Raman spectroscopy, were used for analysis of engine particulate matter (PM). This review covers a brief introduction of several measurement techniques and previous results from engine nano-particle characterization studies using those techniques.« less

  17. Removal of Cu(II) metal ions from aqueous solution by amine functionalized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kothavale, V. P.; Karade, V. C.; Waifalkar, P. P.; Sahoo, Subasa C.; Patil, P. S.; Patil, P. B.

    2018-04-01

    The adsorption behavior of Cu(II) metal cations was investigated on the amine functionalized magnetic nanoparticles (MNPs). TheMNPs were synthesized by thesolvothermal method and functionalized with (3-Aminopropyl)triethoxysilane (APTES). MNPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM). The MNPs have pure magnetite phase with particle size around 10-12 nm. MNPs exhibits superparamagnetic behavior with asaturation magnetization of 68 emu/g. The maximum 38 % removal efficiency was obtained for Cu(II) metal ions from the aqueous solution.

  18. Synthesis of Silver Nanoparticles Using Bombyxmori Silk Fibroin and Their Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Shivananda, C. S.; Lakshmeesha Rao, B.; Pasha, Azmath; Sangappa, Y.

    2016-09-01

    Present work describes the synthesis of colloidal silver nanoparticles using Bombyx mori silk fibroin under white light environment at room temperature. The bio reduction of silver ions showed the unique surface plasmon resonance (SPR) band at 420 nm which was confirmed by UV-visible spectroscopy. Transmission electron microscopy (TEM) showed the synthesized AgNPs are spherical in shape with the average particle size of 35-40 nm. X-ray diffraction (XRD) pattren evidenced the crystalline nature of the AgNPs with FCC structure. The biosynthesized AgNPs showed effective antibacterial activity against bacterial stains Bacillus subtilis, and Salmonella typhi.

  19. Structural characterization of nanocrystalline cadmium sulphide powder prepared by solvent evaporation technique

    NASA Astrophysics Data System (ADS)

    Pandya, Samir; Tandel, Digisha; Chodavadiya, Nisarg

    2018-05-01

    CdS is one of the most important compounds in the II-VI group of semiconductor. There are numerous applications of CdS in the form of nanoparticles and nanocrystalline. Semiconductors nanoparticles (also known as quantum dots), belong to state of matter in the transition region between molecules and solids, have attracted a great deal of attention because of their unique electrical and optical properties, compared to bulk materials. In the field of optoelectronic, nanocrystalline form utilizes mostly in the field of catalysis and fluid technology. Considering these observations, presented work had been carried out, i.e. based on the nanocrystalline material preparation. In the present work CdS nano-crystalline powder was synthesized by a simple and cost effective chemical technique to grow cadmium sulphide (CdS) nanoparticles at 200 °C with different concentrations of cadmium. The synthesis parameters were optimized. The synthesized powder was structurally characterized by X-ray diffraction and particle size analyzer. In the XRD analysis, Micro-structural parameters such as lattice strain, dislocation density and crystallite size were analysed. The broadened diffraction peaks indicated nanocrystalline particles of the film material. In addition to that the size of the prepared particles was analyzed by particle size analyzer. The results show the average size of CdS particles ranging from 80 to 100 nm. The overall conclusion of the work can be very useful in the synthesis of nanocrystalline CdS powder.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Cheng-Jun, E-mail: cjsun@aps.anl.gov; Brewe, Dale L.; Heald, Steve M.

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorptionmore » near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.« less

  1. Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf

    NASA Astrophysics Data System (ADS)

    Philip, Daizy

    2010-11-01

    This paper reports the rapid biological synthesis of spherical gold nanoparticles at room temperature using fresh/dry leaf extract of Mangifera indica. This is a simple, cost-effective, stable for long time and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au nanoparticles of size ˜20 nm and 17 nm. The nanoparticles were obtained within 2 min of addition of the extract to the solution of HAuCl 4·3H 2O and the colloid is found to be stable for more than 5 months. Smaller and more uniformly distributed particles could be obtained with dried leaf extract. The nanoparticles obtained are characterized by UV-vis, transmission electron microscopy (TEM) and X-ray diffraction (XRD). Crystalline nature of the nanoparticles in the fcc structure is confirmed by the peaks in the XRD pattern corresponding to (1 1 1), (2 0 0), (2 2 0), (3 1 1) and (2 2 2) planes, bright circular spots in the selected area electron diffraction (SAED) and clear lattice fringes in the high-resolution TEM image. The possible biomolecules responsible for efficient stabilization are suggested by studying the FTIR spectrum of the sample. This environmentally benign method provides much faster synthesis and colloidal stability comparable to those of chemical reduction.

  2. The effects of fuel type in synthesis of NiFe2O4 nanoparticles by microwave assisted combustion method

    NASA Astrophysics Data System (ADS)

    Karcıoğlu Karakaş, Zeynep; Boncukçuoğlu, Recep; Karakaş, İbrahim H.

    2016-04-01

    In this study, it was investigated the effects of the used fuels on structural, morphological and magnetic properties of nanoparticles in nanoparticle synthesis with microwave assisted combustion method with an important method in quick, simple and low cost at synthesis of the nanoparticles. In this aim, glycine, urea and citric acid were used as fuel, respectively. The synthesised nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmet-Teller surface area (BET), and vibrating sample magnetometry (VSM) techniques. We observed that fuel type is quite effective on magnetic properties and surface properties of the nanoparticles. X-ray difractograms of the obtained nanoparticles were compared with standard powder diffraction cards of NiFe2O4 (JCPDS Card Number 54-0964). The results demonstrated that difractograms are fully compatible with standard reflection peaks. According to the results of the XRD analysis, the highest crystallinity was observed at nanoparticles synthesized with glycine. The results demonstrated that the nanoparticles prepared with urea has the highest surface area. The micrographs of SEM showed that all of the nanoparticles have nano-crystalline behaviour and particles indication cubic shape. VSM analysis demonstrated that the type of fuel used for synthesis is highly effective a parameter on magnetic properties of nanoparticles.

  3. Spinel NixZn1-xFe2O4 (0.0 ≤ x ≤ 1.0) nano-photocatalysts: Synthesis, characterization and photocatalytic degradation of methylene blue dye

    NASA Astrophysics Data System (ADS)

    Padmapriya, G.; Manikandan, A.; Krishnasamy, V.; Jaganathan, Saravana Kumar; Antony, S. Arul

    2016-09-01

    Spinel NixZn1-xFe2O4 (x = 0.0 to 1.0) nanoparticles were successfully synthesized by a simple microwave combustion method (MCM) using metal nitrates as raw materials and glycine as the fuel. The structural, morphological and opto-magnetic properties of the spinel NixZn1-xFe2O4 ferrites were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray (EDX) spectroscopy, high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED) pattern, UV-Visible diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). Powder XRD, and EDX analysis was confirmed the formation of pure phase of spinel ferrites. HR-SEM and HR-TEM analysis was confirmed the formation of sphere like-particle morphology of the samples with smaller agglomeration. VSM analysis clearly showed the superparamagnetic and ferromagnetic nature of the samples. The Ms value is 3.851 emu/g for undoped ZnFe2O4 sample and it increased with increase in Ni content. Photo-catalytic degradation (PCD) of methylene blue (MB) dye using the samples were carried out and observed good PCD results.

  4. TEA controllable preparation of magnetite nanoparticles (Fe3O4 NPs) with excellent magnetic properties

    NASA Astrophysics Data System (ADS)

    Han, Chengliang; Zhu, Dejie; Wu, Hanzhao; Li, Yao; Cheng, Lu; Hu, Kunhong

    2016-06-01

    A fast and controllable synthesis method for superparamagnetic magnetite nanoparticles (Fe3O4 NPs) was developed in Fe(III)-triethanolamine (TEA) solution. The phase structure, morphology and particle size of the as-synthesized samples were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the magnetic particles were pure Fe3O4 with mean sizes of approximately 10 nm. The used TEA has key effects on the formation of well dispersing Fe3O4 NPs. Vibrating sample magnetometer (VSM) result indicated that the as-obtained Fe3O4 NPs exhibited superparamagnetic behavior and the saturation magnetization (Ms) was about 70 emu/g, which had potential applications in magnetic science and technology.

  5. Factors influencing phase compositions and structure of plasma sprayed hydroxyapatite coatings during heat treatment

    NASA Astrophysics Data System (ADS)

    Lu, Yu-Peng; Song, Yi-Zhong; Zhu, Rui-Fu; Li, Mu-Sen; Lei, Ting-Quan

    2003-02-01

    Heat treatment was expected to enhance the long-term reliability of hydroxyapatite (HA) coatings on metal substrates. In this study, factors influencing phase compositions and structure of plasma sprayed hydroxyapatite coatings during heat treatment were carefully analyzed. The phases were characterized by using X-ray diffraction (XRD), the OH - ion contents were determined by Fourier transform infrared (FTIR) spectroscopy. Of the involved factors, heating temperature is of more importance. The appropriate heat treatments is (600- 700 ° C)×2 h for coatings made from fine particles (10-20 μm) and 600 ° C×2 h for coatings made from coarse particles (50-80 μm). The excessive high temperatures and long holding times were unfavorable for the structural integrity of HA.

  6. In situ formation deposited ZnO nanoparticles on silk fabrics under ultrasound irradiation.

    PubMed

    Khanjani, Somayeh; Morsali, Ali; Joo, Sang W

    2013-03-01

    Deposition of zinc(II) oxide (ZnO) nanoparticles on the surface of silk fabrics was prepared by sequential dipping steps in alternating bath of potassium hydroxide and zinc nitrate under ultrasound irradiation. This coating involves in situ generation and deposition of ZnO in a one step. The effects of ultrasound irradiation, concentration and sequential dipping steps on growth of the ZnO nanoparticles have been studied. Results show a decrease in the particles size as increasing power of ultrasound irradiation. Also, increasing of the concentration and sequential dipping steps increase particle size. The physicochemical properties of the nanoparticles were determined by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and wavelength dispersive X-ray (WDX). Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Structural and optical properties of Ni-doped CdS thin films prepared by chemical bath deposition method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Premarani, R.; Saravanakumar, S., E-mail: sarophy84@gmail.com; Chandramohan, R.

    2015-06-24

    The structural and optical behavior of undoped Cadmiun Sulphide (CdS) and Ni-doped CdS thinfilms prepared by Chemical Bath Deposition (CBD) technique is reported. The crystallite sizes of the thinfilms have been characterized by X-ray diffraction pattern (XRD). The particle sizes increase with the increase of Ni content in the CdS thinfilms. Scanning Electron Microscope (SEM) results indicated that CdS thinfilms is made up of aggregate of spherical-like particles. The composition was estimated by Energy Dispersive Analysis of X-ray (EDX) and reported. Spectroscopic studies revealed considerable improvement in transmission and the band gap of the films changes with addition of Nimore » dopant that is associated with variation in crystallite sizes in the nano regime.« less

  8. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Janaki, A. Chinnammal; Sailatha, E.; Gunasekaran, S.

    2015-06-01

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity.

  9. Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization.

    PubMed

    Sujitha, Mohanan V; Kannan, Soundarapandian

    2013-02-01

    This study reports the biological synthesis of gold nanoparticles by the reduction of HAuCl(4) by using citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) juice extract as the reducing and stabilizing agent. A various shape and size of gold nanoparticles were formed when the ratio of the reactants were altered with respect to 1.0mM chloroauric acid solution. The gold nanoparticles obtained were characterized by UV-visible spectra, transmission electron microscopy (TEM) and X-ray diffraction (XRD). TEM studies showed the particles to be of various shapes and sizes and particle size ranges from 15 to 80 nm. Selected-area electron diffraction (SAED) pattern confirmed fcc phase and crystallinity of the particles. The X-ray diffraction analysis revealed the distinctive facets (111, 200, 220 and 222 planes) of gold nanoparticles. Dynamic light scattering (DLS) studies revealed that the average size for colloid gp(3) of C. limon, C. reticulata and C. sinensis are 32.2 nm, 43.4 nm and 56.7 nm respectively. The DLS graph showed that the particles size was larger and more polydispersed compared to the one observed by TEM due to the fact that the measured size also includes the bio-organic compounds enveloping the core of the Au NPs. Zeta potential value for gold nanoparticles obtained from colloid gp(3) of C. limon, C. reticulata and C. sinensis are -45.9, -37.9 and -31.4 respectively indicating the stability of the synthesized nanoparticles. Herein we propose a novel, previously unexploited method for the biological syntheses of polymorphic gold nanoparticles with potent biological applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Surface sodium lignosulphonate-immobilized sawdust particle as an efficient adsorbent for capturing Hg2+ from aqueous solution.

    PubMed

    Gao, Shan; Luo, Tiantian; Zhou, Qi; Luo, Wenjun; Li, Haifeng; Jing, Luru

    2018-05-01

    In this work, the soluble sodium lignosulphonate (LS Na ) molecules were successfully grafted onto the surface of pine sawdust (PSD) particles to obtain an efficient adsorbent (PSD-LS) for removing Hg 2+ from wastewater. In advance, the surface of sawdust particles were carboxymethylated by chloroacetic acid, the LS Na would be anchored on the surface by a heterogeneous esterification reaction occurred between the hydroxyl of LS Na and carboxyl on PSD surface. The resultant product (PSD-LS) exhibited a good adsorption performance for Hg 2+ with adsorption capacity up to 164.77 mg/g and it was characterized by scanning electron microscope (SEM), energy dispersive X-ray diffraction (EDX), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The effects of pH, contact time, adsorption temperature and initial concentration on the adsorption of Hg 2+ were investigated. Results showed that the pseudo-second-order kinetics and Langmuir isotherm model could describe the adsorption process better. In addition, the composite adsorbent has outstanding reusability with high and stable desorption rates under several continuous cycle. These findings suggested that PSD-LS was a potential adsorbent to remove hazardous metal ions from wastewater. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Ziegler-Natta Catalyst Based on MgCl₂/Clay/ID/TiCl₄ for the Synthesis of Spherical Particles of Polypropylene Nanocomposites.

    PubMed

    Cardoso, Renata da Silva; Oliveira, Jaqueline da Silva; Ramis, Luciana Bortolin; Marques, Maria de Fátima V

    2018-07-01

    In the present work, we have designed MgCl2/clay/internal donor (ID)/TiCl4 based bisupported Ziegler-Natta catalysts containing varying amounts of organoclay (montmorillonite) in order to synthesize spherical particles of polypropylene/clay nanocomposites (PCN). The organoclay was introduced into the catalyst support formulation and PCN was obtained using the in situ polymerization technique. Decreasing the reaction time, it was possible to obtain nanocomposites with high concentrations of clay (masterbatches). Micrographs of SEM confirmed the spherical morphology of the catalysts. In addition, XRD patterns show that the active sites for polymerization were inserted in the clay galleries. The catalytic performance was evaluated in slurry propylene polymerization using triethylaluminium as cocatalyst and silane as external electron donor at 70 °C, 4 bar, and different reaction times. The PCNs obtained containing different clay amounts were characterized by X-ray diffraction, thermal analyses, transmission electronic microscopy, and extractables in heptane. The results revealed that the synthesized PP/clay particles were also spherical showing that the morphological control is possible even using catalysts containing high amounts of clay. The PCN presented high degradation temperature (459 °C). The XRD peak related to the clay interlamellar distance has shifted to lower angles, and TEM images confirmed the formation of exfoliated/intercalated clay on the PP matrix and absence of microparticles of clay.

  12. In situ X-ray diffraction analysis of (CF x) n batteries: signal extraction by multivariate analysis

    DOE PAGES

    Rodriguez, Mark A.; Keenan, Michael R.; Nagasubramanian, Ganesan

    2007-11-10

    In this study, (CF x) n cathode reaction during discharge has been investigated using in situ X-ray diffraction (XRD). Mathematical treatment of the in situ XRD data set was performed using multivariate curve resolution with alternating least squares (MCR–ALS), a technique of multivariate analysis. MCR–ALS analysis successfully separated the relatively weak XRD signal intensity due to the chemical reaction from the other inert cell component signals. The resulting dynamic reaction component revealed the loss of (CF x) n cathode signal together with the simultaneous appearance of LiF by-product intensity. Careful examination of the XRD data set revealed an additional dynamicmore » component which may be associated with the formation of an intermediate compound during the discharge process.« less

  13. Abiotic versus biotic iron mineral transformation studied by a miniaturized backscattering Mössbauer spectrometer (MIMOS II), X-ray diffraction and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Markovski, C.; Byrne, J. M.; Lalla, E.; Lozano-Gorrín, A. D.; Klingelhöfer, G.; Rull, F.; Kappler, A.; Hoffmann, T.; Schröder, C.

    2017-11-01

    Searching for biomarkers or signatures of microbial transformations of minerals is a critical aspect for determining how life evolved on Earth, and whether or not life may have existed in other planets, including Mars. In order to solve such questions, several missions to Mars have sought to determine the geochemistry and mineralogy on the Martian surface. This research includes the two miniaturized Mössbauer spectrometers (MIMOS II) on board the Mars Exploration Rovers Spirit and Opportunity, which have detected a variety of iron minerals on Mars, including magnetite (Fe2+Fe3+2O4) and goethite (α-FeO(OH)). On Earth, both minerals can derive from microbiological activity (e.g. through dissimilatory iron reduction of ferrihydrite by Fe(III)-reducing bacteria). Here we used a lab based MIMOS II to characterize the mineral products of biogenic transformations of ferrihydrite to magnetite by the Fe(III)-reducing bacteria Geobacter sulfurreducens. In combination with Raman spectroscopy and X-ray diffraction (XRD), we observed the formation of magnetite, goethite and siderite. We compared the material produced by biogenic transformations to abiotic samples in order to distinguish abiotic and biotic iron minerals by techniques that are or will be available onboard Martian based laboratories. The results showed the possibility to distinguish the abiotic and biotic origin of the minerals. Mossbauer was able to distinguish the biotic/abiotic magnetite with the interpretation of the geological context (Fe content mineral assemblages and accompanying minerals) and the estimation of the particle size in a non-destructive way. The Raman was able to confirm the biotic/abiotic principal peaks of the magnetite, as well as the organic principal vibration bands attributed to the bacteria. Finally, the XRD confirmed the particle size and mineralogy.

  14. Liquid contrabands classification based on energy dispersive X-ray diffraction and hybrid discriminant analysis

    NASA Astrophysics Data System (ADS)

    YangDai, Tianyi; Zhang, Li

    2016-02-01

    Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.

  15. Experimental determination of spin-dependent electron density by joint refinement of X-ray and polarized neutron diffraction data.

    PubMed

    Deutsch, Maxime; Claiser, Nicolas; Pillet, Sébastien; Chumakov, Yurii; Becker, Pierre; Gillet, Jean Michel; Gillon, Béatrice; Lecomte, Claude; Souhassou, Mohamed

    2012-11-01

    New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahir, Dahlang, E-mail: dtahir@fmipa.unhas.ac.id; Bakri, Fahrul; Liong, Syarifuddin

    We have studied the molecular properties, structural properties, and chemical composition of composites by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and X-ray fluorescence (XRF) spectroscopy, respectively. FTIR spectra shows absorption band of hydroxyl group (-OH), methyl group (-CH{sub 3}) and aromatic group (C-C). The absorption band for aromatic group (C-C) shows the formation of carbonaceous in composites. XRF shows chemical composition of composites, which the main chemicals are SO{sub 3}, Cl, and ZnO. The loss on ignition value (LOI) of activated charcoal indicates high carbonaceous matter. The crystallite size for diffraction pattern from hydrogel polymer is aboutmore » 17 nm and for activated charcoal are about 19 nm. The crystallite size of the polymer is lower than that of activated charcoal, which make possible of the particle from filler in contact with each other to form continuous conducting polymer through polymer matrix.« less

  17. Enhancement in surface area and magnetization of CoFe2O4 nanoparticles for targeted drug delivery application

    NASA Astrophysics Data System (ADS)

    Kale, Swati B.; Somvanshi, Sandeep B.; Sarnaik, M. N.; More, S. D.; Shukla, S. J.; Jadhav, K. M.

    2018-05-01

    This paper reports facile synthesis, characterizations by X-ray diffraction and scanning electron microscopy and magnetic behaviour of cobalt ferrite nanoparticles. Cobalt ferrite nanoparticles were prepared by sol-gel auto combustion technique using glycine as a fuel. Phase purity and nanocrystalline nature of the prepared sample was confirmed through X-ray diffraction technique. No extra peak other than cubic spinel structure was observed in the XRD pattern. The crystallite size calculated by using Scherrer's formula is of the order of 21.6 nm indicating the nanocrystalline nature of the prepared cobalt ferrite sample. The surface morphological studies were carried out using scanning electron microscope (SEM). SEM image shows homogeneous, agglomerated particles with sponge-like form. The saturation magnetization, coercivity and remenance magnetization obtained by hysteresis curve clearly gives the evidence of excellent and enhanced magnetic behaviour.

  18. Effect of surfactant concentration in the electrolyte on the tribological properties of nickel-tungsten carbide composite coatings produced by pulse electro co-deposition

    NASA Astrophysics Data System (ADS)

    Kartal, Muhammet; Uysal, Mehmet; Gul, Harun; Alp, Ahmet; Akbulut, Hatem

    2015-11-01

    A nickel plating bath containing WC particles was used to obtain hard and wear-resistant particle reinforced Ni/WC MMCs on steel surfaces for anti-wear applications. Copper substrates were used for electro co-deposition of Ni matrix/WC with the particle size of <1 μm tungsten carbide reinforcements. The influence of surfactant (sodium dodecyl sulfate, SDS) concentration on particle distribution, microhardness and wear resistance of composite coatings has been studied. The nickel films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of the surfactant on the zeta potential, co-deposition and distribution of WC particles in the nickel matrix, as well as the tribological properties of composite coatings were also investigated. The tribological behaviors of the electrodeposited WC composite coatings sliding against M50 steel ball (Ø 10 mm) were examined on a CSM Instrument. All friction and wear tests were performed without lubrication at room temperature and in the ambient air (relative humidity 55-65%).

  19. Synthesis of AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maulik, Ornov; Kumar, Vinod, E-mail: vkt.meta@mnit.ac.in; Adjunct Faculty, Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017

    2015-12-15

    Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7 mol) high-entropy alloys (HEAs) were synthesized by mechanical alloying. The effect of Mg content on the phase evolution of HEAs was investigated using X-Ray diffractometry (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) pattern analysis. The particle morphology and composition of HEAs were investigated by scanning electron microscopy (SEM). Thermodynamic parameters were calculated and analyzed to explain the formation of a solid solution. XRD analysis revealed BCC as major phase and FCC as a minor phase in as-milled AlFeCuCr and AlFeCuCrMg{sub 0.5} HEAs. Also, XRD analysis of as-milledmore » AlFeCuCrMg, AlFeCuCrMg{sub 1.7} confirmed the formation of two BCC phases (BCC 1 and BCC 2). TEM–SAED analysis of AlFeCuCrMg{sub x} HEAs concurred with XRD results. Microstructural features and mechanism for solid solution formation have been conferred in detail. Phase formation of the present HEAs has been correlated with calculated thermodynamic parameters. Differential thermal analysis (TGA-DTA) of these alloys confirmed that there is no substantial phase change up to 500 °C. - Highlights: • Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) HEAs were prepared by mechanical alloying. • Phase evolution and lattice parameter were studied by X-Ray Diffraction. • Crystallite size and lattice microstrain calculated failed to obey the Williamson–Hall method. • Criterions for formation of simple solid solution were compared to the thermodynamic parameters of the present HEAs. • Increase in the Mg concentration in AlMg{sub x}FeCuCr (x = 0, 0.5, 1, 1.7) HEAs supports the formation of BCC phase.« less

  20. Biogenic silver nanoparticles: efficient and effective antifungal agents

    NASA Astrophysics Data System (ADS)

    Netala, Vasudeva Reddy; Kotakadi, Venkata Subbaiah; Domdi, Latha; Gaddam, Susmila Aparna; Bobbu, Pushpalatha; Venkata, Sucharitha K.; Ghosh, Sukhendu Bikash; Tartte, Vijaya

    2016-04-01

    Biogenic synthesis of silver nanoparticles (AgNPs) by exploiting various plant materials is an emerging field and considered green nanotechnology as it involves simple, cost effective and ecofriendly procedure. In the present study AgNPs were successfully synthesized using aqueous callus extract of Gymnema sylvestre. The aqueous callus extract treated with 1nM silver nitrate solution resulted in the formation of AgNPs and the surface plasmon resonance (SPR) of the formed AgNPs showed a peak at 437 nm in the UV Visible spectrum. The synthesized AgNPs were characterized using Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and X-ray diffraction spectroscopy (XRD). FTIR spectra showed the peaks at 3333, 2928, 2361, 1600, 1357 and 1028 cm-1 which revealed the role of different functional groups possibly involved in the synthesis and stabilization of AgNPs. TEM micrograph clearly revealed the size of the AgNPs to be in the range of 3-30 nm with spherical shape and poly-dispersed nature; it is further confirmed by Particle size analysis that the stability of AgNPs is due its high negative Zeta potential (-36.1 mV). XRD pattern revealed the crystal nature of the AgNPs by showing the braggs peaks corresponding to (111), (200), (220) and (311) planes of face-centered cubic crystal phase of silver. Selected area electron diffraction pattern showed diffraction rings and confirmed the crystalline nature of synthesized AgNPs. The synthesized AgNPs exhibited effective antifungal activity against Candida albicans, Candida nonalbicans and Candida tropicalis.

  1. X-Ray Diffraction and Fluorescence Measurements for In Situ Planetary Instruments

    NASA Astrophysics Data System (ADS)

    Hansford, G.; Hill, K. S.; Talboys, D.; Vernon, D.; Ambrosi, R.; Bridges, J.; Hutchinson, I.; Marinangeli, L.

    2011-12-01

    The ESA/NASA ExoMars mission, due for launch in 2018, has a combined X-ray fluorescence/diffraction instrument, Mars-XRD, as part of the onboard analytical laboratory. The results of some XRF (X-ray fluorescence) and XRD (X-ray diffraction) tests using a laboratory chamber with representative performance are reported. A range of standard geological reference materials and analogues were used in these tests. The XRD instruments are core components of the forthcoming NASA Mars Science Laboratory (MSL) and ESA/NASA ExoMars missions and will provide the first demonstrations of the capabilities of combined XRD/XRF instrumentation in situ on an extraterrestrial planetary surface. The University of Leicester team is part of the Italy-UK collaboration that is responsible for building the ExoMars X-ray diffraction instrument, Mars-XRD [1,2]. Mars-XRD incorporates an Fe-55 radioisotope source and three fixed-position charge-coupled devices (CCDs) to simultaneously acquire an X-ray fluorescence spectrum and a diffraction pattern providing a measurement of both elemental and mineralogical composition. The CCDs cover an angular range of 2θ = 6° to 73° enabling the analysis of a wide range of geologically important minerals including phyllosilicates, feldspars, oxides, carbonates and evaporites. The identification of hydrous minerals may help identify past Martian hydrothermal systems capable of preserving traces of life. Here we present some initial findings from XRF and XRD tests carried out at the University of Leicester using an Fe-55 source and X-ray sensitive CCD. The XRF/XRD test system consists of a single CCD on a motorised arm, an Fe-55 X-ray source, a collimator and a sample table which approximately replicate the reflection geometry of the Mars-XRD instrument. It was used to test geological reference standard materials and Martian analogues. This work was funded by the Science and Technology Facilities Council, UK. References [1] Marinangeli, L., Hutchinson, I., Baliva, A., Stevoli, A., Ambrosi, R., Critani, F., Delhez, R., Scandelli, L., Holland, A., Nelms, N. & the Mars-XRD Team, Proceedings of the 38th Lunar and Planetary Science Conference, 12 - 16 March 2007, League City, Texas, USA. [2] L. Marinangeli, I. B. Hutchinson, A. Stevoli, G. Adami, R. Ambrosi, R. Amils, V. Assis Fernandes, A. Baliva, A. T. Basilevsky, G. Benedix, P. Bland, A. J. Böttger, J. Bridges, G. Caprarelli, G. Cressey, F. Critani, N. d'Alessandro, R. Delhez, C. Domeneghetti, D. Fernandez-Remolar, R. Filippone, A. M. Fioretti, J. M. Garcia Ruiz, M. Gilmore, G. M. Hansford, G. Iezzi, R. Ingley, M. Ivanov, G. Marseguerra, L. Moroz, C. Pelliciari, P. Petrinca, E. Piluso, L. Pompilio, J. Sykes, F. Westall and the MARS-XRD Team, EPSC-DPS Joint Meeting 2011, 3 - 7 October 2011, La Cité Internationale des Congrès Nantes Métropole, Nantes, France.

  2. Cobalt ferrite nano-composite coated on glass by Doctor Blade method for photo-catalytic degradation of an azo textile dye Reactive Red 4: XRD, FESEM and DRS investigations.

    PubMed

    Habibi, Mohammad Hossein; Parhizkar, Janan

    2015-11-05

    Cobalt ferrite nano-composite was prepared by hydrothermal route using cobalt nitrate, iron nitrate and ethylene glycol as chelating agent. The nano-composite was coated on glass by Doctor Blade method and annealed at 300 °C. The structural, optical, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy (UV-Vis DRS). Powder XRD analysis confirmed formation of CoFe2O4 spinel phase. The estimated particle size from FESEM data was 50 nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra was 1.3 eV. Photocatalytic degradation of Reactive Red 4 as an azo textile was investigated in aqueous solution under irradiation showed 68.0% degradation of the dye within 100 min. The experimental enhanced activity compare to pure Fe2O3 can be ascribed to the formation of composite, which was mainly attributable to the transfer of electron and hole to the surface of composite and hinder the electron hole recombination. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Development of Ternary and Quaternary Catalysts for the Electrooxidation of Glycerol

    PubMed Central

    Artem, L. M.; Santos, D. M.; De Andrade, A. R.; Kokoh, K. B.; Ribeiro, J.

    2012-01-01

    This work consisted in the preparation of platinum-based catalysts supported on carbon (Vulcan XC-72) and investigation of their physicochemical and electrochemical properties. Catalysts of the C/Pt-Ni-Sn-Me (Me = Ru or Ir) type were prepared by the Pechini method at temperature of 350°C. Four different compositions were homemade: C/Pt60Sn10Ni30, C/Pt60Sn10Ni20Ru10, C/Pt60Sn10Ni10Ru20, and C/Pt60Sn10Ni10Ir20. These catalysts were electrochemically and physically characterized by cyclic voltammetry (CV), chronoamperometry (CA) in the presence of glycerol 1.0 mol dm−3, X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and HRTEM experiments were close to values ranging from 3 to 8.5 nm. The CV results indicate behavior typical of Pt-based catalysts in acid medium. The CV and CA data reveal that quaternary catalysts present the highest current density for the electrooxidation of glycerol. PMID:22623905

  4. CoO doping effects on the ZnO films through EBPDV technique

    NASA Astrophysics Data System (ADS)

    Inês Basso Bernardi, Maria; Queiroz Maia, Lauro June; Antonelli, Eduardo; Mesquita, Alexandre; Li, Maximo Siu; Gama, Lucianna

    2014-03-01

    Nanometric Zn1-xCo xO (x = 0.020, 0.025 and 0.030 in mol.%) nanopowders were obtained from low temperature calcination of a resin prepared using the Pechini's method. Firing the Zn1-xCoxO resin at 400 °C/2 h a powder with hexagonal structure was obtained as measured by X-ray diffraction (XRD). The powder presented average particle size of 40 nm observed by field emission scanning electronic microscopy (FE-SEM) micrographs and average crystallite size of 10 nm calculated from the XRD using Scherrer's equation. Nanocrystalline Zn1-xCo xO films with good homogeneity and optical quality were obtained with 280-980 nm thicknesses by electron beam physical vapour deposition (EBPVD) under vacuum onto silica substrate at 25 °C. Scanning electron microscopy with field emission gun showed that the film microstructure is composed by spherical grains and some needles. In these conditions of deposition the films presented only hexagonal phase observed by XRD. The UV-visible-NIR and diffuse reflectance properties of the films were measured and the electric properties were calculated using the reflectance and transmittance spectra.

  5. Structural, magnetic and electronic structural properties of Mn doped CeO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumari, Kavita; Vij, Ankush; Hashim, Mohd.; Chae, K. H.; Kumar, Shalendra

    2018-05-01

    Nanoparticles of Ce1-xMnxO2, (x=0.0, 0.01, and 0.05) have been synthesized by using co-precipitation method, and then characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), near edge x-ray absorption fine structure (NEXAFS) spectroscopy and dc magnetization measurements. XRD results clearly showed that the all the samples have single phase nature and exclude the presence of any secondary phase. The average particle size calculated using XRD TEM measurements found to decrease with increase in Mn doping in the range of 4.0 - 9.0 nm. The structural parameters such as strain, interplaner distance and lattice parameter is observed to decrease with increase in doping. The morphology of Ce1-xMnxO2 nanoparticles measured using TEM micrographs indicate that nanoparticle have spherical shape morphology. Magnetic hysteresis curve for Ce1-xMnxO2, (x = 0.0, 0.01, and 0.05) confirms the ferromagnetic ordering room temperature. The value of saturation magnetization is observed to decrease with increase in temperature from 10 K to 300 K. The NEXAFS spectra measured at Ce M4,5 edge reveals that Ce-ions are in +4 valance state.

  6. Precipitation-Induced Changes in Microstrain and Its Relation with Hardness and Tempering Parameter in 17-4 PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mahadevan, S.; Manojkumar, R.; Jayakumar, T.; Das, C. R.; Rao, B. P. C.

    2016-06-01

    17-4 PH (precipitation hardening) stainless steel is a soft martensitic stainless steel strengthened by aging at appropriate temperature for sufficient duration. Precipitation of copper particles in the martensitic matrix during aging causes coherency strains which improves the mechanical properties, namely hardness and strength of the matrix. The contributions to X-ray diffraction (XRD) profile broadening due to coherency strains caused by precipitation and crystallite size changes due to aging are separated and quantified using the modified Williamson-Hall approach. The estimated normalized mean square strain and crystallite size are used to explain the observed changes in hardness. Microstructural changes observed in secondary electron images are in qualitative agreement with crystallite size changes estimated from XRD profile analysis. The precipitation kinetics in the age-hardening regime and overaged regime are studied from hardness changes and they follow the Avrami kinetics and Wilson's model, respectively. In overaged condition, the hardness changes are linearly correlated to the tempering parameter (also known as Larson-Miller parameter). Similar linear variation is observed between the normalized mean square strain (determined from XRD line profile analysis) and the tempering parameter, in the incoherent regime which is beyond peak microstrain conditions.

  7. In-situ XRD vs ex-situ vacuum annealing of tantalum oxynitride thin films: Assessments on the structural evolution

    NASA Astrophysics Data System (ADS)

    Cunha, L.; Apreutesei, M.; Moura, C.; Alves, E.; Barradas, N. P.; Cristea, D.

    2018-04-01

    The purpose of this work is to discuss the main structural characteristics of a group of tantalum oxynitride (TaNxOy) thin films, with different compositions, prepared by magnetron sputtering, and to interpret and compare the structural changes, by X-ray diffraction (XRD), when the samples are vacuum annealed under two different conditions: i) annealing, followed by ex-situ XRD: one sample of each deposition run was annealed at a different temperature, until a maximum of 800 °C, and the XRD patterns were obtained, at room temperature, after each annealing process; ii) annealing with in-situ XRD: the diffraction patterns are obtained, at certain temperatures, during the annealing process, using always the same sample. In-situ XRD annealing could be an interesting process to perform annealing, and analysing the evolution of the structure with the temperature, when compared to the classical process. A higher structural stability was observed in some of the samples, particularly on those with highest oxygen content, but also on the sample with non-metal (O + N) to metal (Ta) ratio around 0.5.

  8. Amperometric sensing of hydrogen peroxide using glassy carbon electrode modified with copper nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sophia, J.; Muralidharan, G., E-mail: muraligru@gmail.com

    2015-10-15

    In this paper, fabrication of glassy carbon electrode (GCE) modified with nano copper particles is discussed. The modified electrode has been tested for the non-enzymatic electrochemical detection of hydrogen peroxide (H{sub 2}O{sub 2}). The copper nanoparticles (Cu NPs) were prepared employing a simple chemical reduction method. The presence of Cu NPs was confirmed through UV–visible (UV–vis) absorption spectroscopy and X-ray diffraction (XRD) analysis. The size and morphology of the particles were investigated using transmission electron microscopy (TEM). The electrochemical properties of the fabricated sensor were studied via cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The electrochemical sensor displayedmore » excellent performance features towards H{sub 2}O{sub 2} detection exhibiting wide linear range, low detection limit, swift response time, good reproducibility and stability.« less

  9. Synthesis and luminescence properties of vanadium-doped nanosized zinc oxide aerogel

    NASA Astrophysics Data System (ADS)

    El Mir, L.; El Ghoul, J.; Alaya, S.; Ben Salem, M.; Barthou, C.; von Bardeleben, H. J.

    2008-05-01

    We report the elaboration of vanadium-doped ZnO nanoparticles prepared by a sol-gel processing technique. In our approach, the water for hydrolysis was slowly released by esterification reaction followed by a supercritical drying in ethyl alcohol. Vanadium doping concentration of 10 at% has been investigated. The obtained nanopowder was characterised by various techniques such as particle size analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence (PL). In the as-prepared state, the powder with an average particle size of 25 nm presents a strong luminescence band in the visible range after thermal treatment at 500 °C in air. The energy position of the obtained PL band depends on the wavelength excitation and presents a blue shift with measurement temperature increase. Different possible attributions of this emission band will be discussed.

  10. Microscale Interface Synthesis of Ni-B Amorphous Nanoparticles from NiSO4 by Sodium Borohydride Reduction in Microreactor

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Peng, Jinhui; Meng, Binfang; Li, Wei; Liu, Bingguo; Luo, Huilong

    2016-09-01

    Amorphous nanoparticles have attracted a large amount of interest due to their superior catalytic activity and unique selectivity. The Ni-B amorphous nanoparticles were synthesized from aqueous reduction of NiSO4 by sodium borohydride in microscale interface at room temperature. The size, morphology, elemental compositions, and the chemical composition on the surface of Ni-B amorphous nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). All the results showed that the synthesized particles are Ni-B amorphous nanoparticles with uniform in size distribution and having good dispersion. The mean particle diameter of Ni-B amorphous nanoparticles was around 9 nm. The present work provides an alternative synthesis route for the Ni-B amorphous nanoparticles.

  11. Powder properties of hydrogenated ball-milled graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y., E-mail: y.zhang062012@gmail.com; Wedderburn, J.; Harris, R.

    2014-12-15

    Ball milling is an effective way of producing defective and nanostructured graphite. In this work, the hydrogen storage properties of graphite, ball-milled in a tungsten carbide milling pot under 3 bar hydrogen for various times (0–40 h), were investigated by TGA-Mass Spectrometry, XRD, SEM and laser diffraction particle size analysis. For the conditions used in this study, 10 h is the optimum milling time resulting in desorption of 5.5 wt% hydrogen upon heating under argon to 990 °C. After milling for 40 h, the graphite became significantly more disordered, and the amount of desorbed hydrogen decreased. After milling up tomore » 10 h, the BET surface area increased while particle size decreased; however, there is no apparent correlation between these parameters, and the hydrogen storage properties of the hydrogenated ball-milled graphite.« less

  12. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions

    NASA Astrophysics Data System (ADS)

    Subbarao, Udumula; Marakatti, Vijaykumar S.; Amshumali, Mungalimane K.; Loukya, B.; Singh, Dheeraj Kumar; Datta, Ranjan; Peter, Sebastian C.

    2016-12-01

    Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP) using NaBH4 as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process.

  13. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea.

    PubMed

    Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul; Koo, Yong Sung; Jung, Jong Hoon; Son, Youn-Suk; Kim, Jo-Chun; Kim, HyeKyoung; Ro, Chul-Un

    2012-04-30

    Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail-wheel-brake and catenaries-pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the <25 μm size fractions with minor fractions of Mg, Al, Si, Ca, S, and C. From SEM analysis, the floor dusts of the <25 μm size fractions collected on railroad ties appeared to be smaller than 10 μm, indicating that their characteristics should somewhat reflect the characteristics of airborne particles in the tunnel and the platform. As most floor dusts are magnetic, PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 μm, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi station was iron metal, whereas those at Yangjae station contained a small amount of Fe mixed with Na, Mg, Al, Si, S, Ca, and C. The difference in composition of the Fe-containing particles between the two subway stations was attributed to the different ballast tracks used. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Effect of iron doping on structural and microstructural properties of nanocrystalline ZnSnO3 thin films prepared by spray pyrolysis techniques

    NASA Astrophysics Data System (ADS)

    Pathan, Idris G.; Suryawanshi, Dinesh N.; Bari, Anil R.; Patil, Lalchand A.

    2018-05-01

    This work presents the effect of iron doping having different volume ratios (1 ml, 2.5 ml and 5 ml) on the structural, microstructural and electrical properties of zinc stannate thin films, prepared by spray pyrolysis method. These properties were characterized with X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). In our study, XRD pattern indicates that ZnSnO3 has a perovskite phase with face exposed hexahedron structure. The electron diffraction fringes observed are in consistent with the peak observed in XRD patterns. Moreover the sensor reported in our study is cost-effective, user friendly and easy to fabricate.

  15. Green synthesis of Silver and Gold Nanoparticles for Enhanced catalytic and bactericidal activity

    NASA Astrophysics Data System (ADS)

    Naraginti, S.; Tiwari, N.; Sivakumar, A.

    2017-11-01

    A rapid one step green synthetic method using kiwi fruit extract was employed for preparation of silver and gold nanoparticles. The synthesized nanoparticles were successfully used as green catalysts for the reduction of 4-nitrophenol (4-NP) and methylene blue (MB). They also exhibited excellent antimicrobial activity against clinically isolated Pseudomonas aeruginosa (P.aeruginosa) and Staphylococcus aureus (S.aureus). It was noticed that with increase in concentration of the aqueous silver and gold solutions, particle size of the Ag and Au NPS showed increase as evidenced from UV-Visible spectroscopy and TEM micrograph. The method employed for the synthesis required only a few minutes for more than 90% formation of nanoparticles when the temperature was raised to 80°C. It was also noticed that the catalytic activity of nanoparticles depends upon the size of the particles. These nanoparticles were observed to be crystalline from the clear lattice fringes in the transmission electron microscopic (TEM) images, bright circular spots in the selected area electron diffraction (SAED) pattern and peaks in the X-ray diffraction (XRD) pattern. The Fourier-transform infrared (FTIR) spectrum indicated the presence of different functional groups in the biomolecule capping the nanoparticles.

  16. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications.

    PubMed

    Mahdavi, Mahnaz; Ahmad, Mansor Bin; Haron, Md Jelas; Namvar, Farideh; Nadi, Behzad; Rahman, Mohamad Zaki Ab; Amin, Jamileh

    2013-06-27

    Superparamagnetic iron oxide nanoparticles (MNPs) with appropriate surface chemistry exhibit many interesting properties that can be exploited in a variety of biomedical applications such as magnetic resonance imaging contrast enhancement, tissue repair, hyperthermia, drug delivery and in cell separation. These applications required that the MNPs such as iron oxide Fe₃O₄ magnetic nanoparticles (Fe₃O₄ MNPs) having high magnetization values and particle size smaller than 100 nm. This paper reports the experimental detail for preparation of monodisperse oleic acid (OA)-coated Fe₃O₄ MNPs by chemical co-precipitation method to determine the optimum pH, initial temperature and stirring speed in order to obtain the MNPs with small particle size and size distribution that is needed for biomedical applications. The obtained nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence spectrometry (EDXRF), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), and vibrating sample magnetometer (VSM). The results show that the particle size as well as the magnetization of the MNPs was very much dependent on pH, initial temperature of Fe²⁺ and Fe³⁺ solutions and steering speed. The monodisperse Fe₃O₄ MNPs coated with oleic acid with size of 7.8 ± 1.9 nm were successfully prepared at optimum pH 11, initial temperature of 45°C and at stirring rate of 800 rpm. FTIR and XRD data reveal that the oleic acid molecules were adsorbed on the magnetic nanoparticles by chemisorption. Analyses of TEM show the oleic acid provided the Fe₃O₄ particles with better dispersibility. The synthesized Fe₃O₄ nanoparticles exhibited superparamagnetic behavior and the saturation magnetization of the Fe₃O₄ nanoparticles increased with the particle size.

  17. Pyro-synthesis of a high rate nano-Li3V2(PO4)3/C cathode with mixed morphology for advanced Li-ion batteries.

    PubMed

    Kang, Jungwon; Mathew, Vinod; Gim, Jihyeon; Kim, Sungjin; Song, Jinju; Im, Won Bin; Han, Junhee; Lee, Jeong Yong; Kim, Jaekook

    2014-02-10

    A monoclinic Li3V2(PO4)3/C (LVP/C) cathode for lithium battery applications was synthesized by a polyol-assisted pyro-synthesis. The polyol in the present synthesis acts not only as a solvent, reducing agent and a carbon source but also as a low-cost fuel that facilitates a combustion process combined with the release of ultrahigh exothermic energy useful for nucleation process. Subsequent annealing of the amorphous particles at 800°C for 5 h is sufficient to produce highly crystalline LVP/C nanoparticles. A combined analysis of X-ray diffraction (XRD) and neutron powder diffraction (NPD) patterns was used to determine the unit cell parameters of the prepared LVP/C. Electron microscopic studies revealed rod-type particles of length ranging from nanometer to micrometers dispersed among spherical particles with average particle-sizes in the range of 20-30 nm. When tested for Li-insertion properties in the potential windows of 3-4.3 and 3-4.8 V, the LVP/C cathode demonstrated initial discharge capacities of 131 and 196 mAh/g (~100% theoretical capacities) at 0.15 and 0.1 C current densities respectively with impressive capacity retentions for 50 cycles. Interestingly, the LVP/C cathode delivered average specific capacities of 125 and 90 mAh/g at current densities of 9.6 C and 15 C respectively within the lower potential window.

  18. Functionalization of a nanostructured hydroxyapatite with Cu(II) compounds as a pesticide: in situ transmission electron microscopy and environmental scanning electron microscopy observations of treated Vitis vinifera L. leaves.

    PubMed

    Battiston, Enrico; Salvatici, Maria C; Lavacchi, Alessandro; Gatti, Antonietta; Di Marco, Stefano; Mugnai, Laura

    2018-02-19

    The present study evaluated a biocompatible material for plant protection with the aim of reducing the amount of active substance applied. We used a synthetic hydroxyapatite (HA) that has been studied extensively as a consequence of its bioactivity and biocompatibility. An aggregation between HA nanoparticles and four Cu(II) compounds applied to Vitis vinifera L. leaves as a pesticide was studied. Formulations were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS) and electron microscopy and applied in planta to verify particle aggregation and efficiency in controlling the pathogen Plasmopara viticola. The XRD patterns showed different crystalline phases dependig on the Cu(II) compound formulated with HA particles, DLS showed that nanostructured particles are stable as aggregates out of the nanometer range and, in all formulations, transmission electron microscopy (TEM) and environmental scanning electron microscopy (ESEM) microscopy showed large aggregates which were partially nanostructured and were recognized as stable in their micrometric dimensions. Such particles did not show phytotoxic effects after their application in planta. A formulation based on HA and a soluble Cu(II) compound showed promising results in the control of the fungal pathogen, confirming the potential role of HA as an innovative delivery system of Cu(II) ions. The present work indicates the possibility of improving the biological activity of a bioactive substance by modifying its structure through an achievable formulation with a biocompatible material. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  19. [Study on Hydrothermal Preparation and Luminescence Properties of Luminescent Material BaSrMg(PO₄)₂:Eu³⁺].

    PubMed

    Hu, Qing-song; Zhu, Cheng-jing; Xia, Yue-yi; Wang, Li-li; Liu, Wen-han; Pan, Zai-fa

    2016-02-01

    Eu³⁺ doped BaSrMg (PO₄)₂ were prepared by a hydrothermal method. The crystal structure and morphology of BaSrMg(PO₄)₂:Eu³⁺ phosphor were characterized by X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FESEM). The effects of different pH values (5, 6, 7 and 8) and different reaction temperatures (120, 140, 160, 180 and 200 °C) on the crystal structure and morphology of BaSrMg(PO₄)₂:Eu³⁺ phosphor were studied in this paper. The results of XRD indicate that diffraction peaks are sharp and strong only when pH value is 6, meanwhile the FESEM shows the morphology is regular-shaped. The XRD patterns show amorphous halos superimposed with several weak sharp peaks for the samples preparing under the pH values of 5, 7 and 8. It indicates that these three samples are solid solution or mixed phases, which are in accord with the results of FESEM. From the fluorescence spectra, the peaks in the excitation spectra were assigned to the transition from ⁷F₀ to ⁵D₄, ⁵L₈, ⁵L₆ and ⁵D₂, while the peaks of emission spectra corresponding to the transition of ⁵D₁ --> ⁷F₁ and ⁵D₀-->⁷Fj (J = 0, 1, 2, 3 and 4). The strongest emission peak of the optimized phosphor located at 613 nm (⁵D0--> ⁷F₂), excited by the main excitation peak with wavelength of 394 nm. The splitting of the emission peaks changes depends on pH values and temperatures, which indicating that luminescence properties is closely related to the crystal structure and morphology of particles.

  20. Electrical properties of CZTS pellets made from microwave-processed powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghediya, Prashant R., E-mail: prashantghediya@yahoo.co.in; Chaudhuri, Tapas K.

    2015-06-24

    Electrical properties of the kesterite copper zinc tin sulphide (CZTS) pellets in the temperature range from 300 K to 500 K are reported. The pellets are p-type with thermoelectric power (TEP) of + 175 µV/K. Electrical conductivity (σ) increases with the temperatures and is found to be due to thermionic emission (TE) over grain boundary (GB) barriers with activation energy of 170 meV. CZTS pellets are made from micropowders synthesized by microwave irradiation of precursor solution. Formation of kesterite CZTS is confirmed by X-ray diffraction (XRD) and Raman spectroscopy. Scanning Electron Microscope (SEM) shows that powder is micron sized spherical particles.

  1. Room Temperature Magnetic Behavior In Nanocrystalline Ni-Doped Zro2 By Microwave-Assisted Polyol Synthesis

    NASA Astrophysics Data System (ADS)

    Parimita Rath, Pragyan; Parhi, Pankaj Kumar; Ranjan Panda, Sirish; Priyadarshini, Barsharani; Ranjan Sahoo, Tapas

    2017-08-01

    This article, deals with a microwave-assisted polyol method to demonstrate a low temperature route < 250°C, to prepare a high temperature cubic zirconia phase. Powder XRD pattern shows broad diffraction peaks suggesting nanometric size of the particles. Magnetic behavior of 1-5 at% Ni doped samples show a threshold for substitutional induced room temperature ferromagnetism up to 3 at% of Ni. TGA data reveals that Ni-doped ZrO2 polyol precursors decompose exothermically below 300°C. IR data confirms the reduction of Zr(OH)4 precipitates to ZrO2, in agreement with the conclusions drawn from the TGA analysis.

  2. Extreme sensitivity of magnetic properties on the synthesis routes in La{sub 0.7}Sr{sub 0.3}MnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Ashutosh, E-mail: ashutosh.pph13@iitp.ac.in; Sharma, Himanshu; Tomy, C. V.

    2016-05-06

    La{sub 0.7}Sr{sub 0.3}MnO{sub 3} polycrystalline samples have been prepared using different synthesis routes. X-ray Diffraction (XRD) confirms that the samples are of single phase with R-3c space group. The surface morphology and particle size has been observed using Field Emission Scanning Electron Microscopy (FESEM). Magnetic measurement shows that the magnetization in the materials are affected by low crystallite size which destroys the spin ordering due to strain at grain boundaries and this also leads to reduction in magnetization as well as high coercivity in the material.

  3. CuO urchin-nanostructures synthesized from a domestic hydrothermal microwave method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyson, D.; Laboratorio de Ensino de Ciencias, DME Universidade Federal da Paraiba, PB; Volanti, D.P.

    This letter reports the synthesis of CuO urchin-nanostructures by a simple and novel hydrothermal microwave method. The formation and growth of urchin-nanostructures is mainly affected by the addition of polyethylene glycol (PEG). The hierarchical malachite particles are uniform spheres with a diameter of 0.7-1.9 {mu}m. CuO urchin-nanostructures were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FEG-SEM) and nitrogen adsorption (BET). The specific surface area of the CuO nanostructured microspheres was about 170.5 m{sup 2}/g. A possible mechanism for the formation of such CuO urchin-nanostructures is proposed.

  4. Observation of ferromagnetism in Mn doped KNbO3

    NASA Astrophysics Data System (ADS)

    Manikandan, M.; Venkateswaran, C.

    2015-06-01

    Pure and Mn doped KNbO3 have been prepared by ball milling assisted ceramic method. Mn ion had been doped at Nb site to induce ferromagnetism at room temperature. X-ray diffraction (XRD) patterns reveal the formation of orthorhombic phase. High resolution scanning electron micrograph (HR-SEM) of both pure and Mn doped samples show a mixture of spherical and plate like particles. Room temperature magnetic behavior of both the samples were analyzed using vibrating sample magnetometer (VSM). 5% Mn doped KNbO3 exhibits ferromagnetic behavior. Observed ferromagnetic feature has been explained by interactions between bound magnetic polarons which are created by Mn4+ ions.

  5. Pole Figure Explorer v. 1.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Benthem, Mark H.

    2016-05-04

    This software is employed for 3D visualization of X-ray diffraction (XRD) data with functionality for slicing, reorienting, isolating and plotting of 2D color contour maps and 3D renderings of large datasets. The program makes use of the multidimensionality of textured XRD data where diffracted intensity is not constant over a given set of angular positions (as dictated by the three defined dimensional angles of phi, chi, and two-theta). Datasets are rendered in 3D with intensity as a scaler which is represented as a rainbow color scale. A GUI interface and scrolling tools along with interactive function via the mouse allowmore » for fast manipulation of these large datasets so as to perform detailed analysis of diffraction results with full dimensionality of the diffraction space.« less

  6. Influence of cobalt doping on structural and magnetic properties of BiFeO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Khan, U.; Adeela, N.; Javed, K.; Riaz, S.; Ali, H.; Iqbal, M.; Han, X. F.; Naseem, S.

    2015-11-01

    Nanocrystalline cobalt-doped bismuth ferrites with general formula of BiFe1- δ Co δ O3 (0 ≤ δ ≤ 0.1) have been synthesized using solution evaporation method. Structure and phase identification was performed with X-ray diffraction (XRD) technique. The results confirm the formation of rhombohedral-distorted Perovskite structure with R3c symmetry. A decrease in lattice parameters and an increase in X-ray density have been observed with increasing cobalt concentration in BiFeO3. Particle size determined by transmission electron microscope was in good agreement with XRD, i.e., 39 nm. Room-temperature coercivity and saturation magnetization of nanoparticles were increased up to 7.5 % of cobalt doping. Low-temperature magnetic measurements of selected sample showed increasing behavior in saturation magnetization, coercivity, effective magnetic moments, and anisotropy constant. An increase in coercivity with decrease in temperature followed theoretical model of Kneller's law, while modified Bloch's model was employed for saturation magnetization in temperature range of 5-300 K.

  7. Estimation of lattice strain in nanocrystalline RuO2 by Williamson-Hall and size-strain plot methods

    NASA Astrophysics Data System (ADS)

    Sivakami, R.; Dhanuskodi, S.; Karvembu, R.

    2016-01-01

    RuO2 nanoparticles (RuO2 NPs) have been successfully synthesized by the hydrothermal method. Structure and the particle size have been determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). UV-Vis spectra reveal that the optical band gap of RuO2 nanoparticles is red shifted from 3.95 to 3.55 eV. BET measurements show a high specific surface area (SSA) of 118-133 m2/g and pore diameter (10-25 nm) has been estimated by Barret-Joyner-Halenda (BJH) method. The crystallite size and lattice strain in the samples have been investigated by Williamson-Hall (W-H) analysis assuming uniform deformation, deformation stress and deformation energy density, and the size-strain plot method. All other relevant physical parameters including stress, strain and energy density have been calculated. The average crystallite size and the lattice strain evaluated from XRD measurements are in good agreement with the results of TEM.

  8. Synthesis, Optical and Electrochemical Properties of Y2O3 Nanoparticles Prepared by Co-Precipitation Method.

    PubMed

    Saravanan, Thulasingam; Raj, Srinivasan Gokul; Chandar, Nagamuthu Raja Krishna; Jayavel, Ramasamy

    2015-06-01

    Y2O3 nanoparticles were synthesized by co-precipitation route using yttrium nitrate hexahydrate and ammonium hydroxide as precursors. The prepared sample was calcined at 500 degrees C and subjected to various characterization studies like thermal analysis (TG/DTA), X-ray diffraction (XRD), transmission electron microscope (TEM), UV-visible (UV-Vis) and photoluminescence (PL) spectroscopy. The XRD pattern showed the cubic fluorite structure of Y2O3 without any impurity peaks, revealing high purity of the prepared sample. TEM images revealed that the calcined Y2O3 nanoparticles consist of spherical-like morphology with an average particle size of 12 nm. The absorption spectrum of calcined samples shows blue-shift compared to the as-prepared sample, which was further confirmed by PL studies. The possible formation mechanism of Y2O3 nanoparticles has been discussed based on the experimental results. Electrochemical behavior of Y2O3 nanoparticles was studied by cyclic voltammetry to assess their suitability for supercapacitor applications.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusoff, Yusriha Mohd; Salimi, Midhat Nabil Ahmad; Anuar, Adilah

    Many studies have been carried out in order to prepare hydroxyapatite (HAp) by various methods. In this study, we focused on the preparation of HAp nanoparticles by using sol-gel technique in which few parameters are optimized which were stirring rate, aging time and sintering temperature. HAp nanoparticles were prepared by using precursors of calcium nitrate tetrahydrate, Ca(NO{sub 3}){sub 2}.4H{sub 2}O and phosphorous pentoxide, P{sub 2}O{sub 5}. Both precursors are mixed in ethanol respectively before they were mixed together in which it formed a stable sol. Fourier transform infrared (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were used formore » its characterization in terms of functional group, phase composition, crystallite size and morphology of the nanoparticles produced. FTIR spectra showed that the functional groups that present in all five samples were corresponding to the formation of HAp. Besides, XRD shows that only one phase was formed which was hydroxyapatite. Meanwhile, SEM shows that the small particles combine together to form agglomeration.« less

  10. Controllable self-assembly of mesoporous hydroxyapatite.

    PubMed

    Chen, Jingdi; Wang, Zihao; Wen, Zhenliang; Yang, Shen; Wang, Jianhua; Zhang, Qiqing

    2015-03-01

    In this paper, mesoporous hydroxyapatite (HAp) of controllable pore size was tailored with the template of a biodegradable mono-alkyl phosphate (MAP) via a simple route by hydrothermal treatment. A serial study of the various experimental parameters on pore size of HAp was investigated. The additive amount of MAP and hydrothermal temperature were important factors for the pore structure and pore size. Powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and nitrogen adsorption-desorption (BET, BJH) were used to characterize the structure and composition of the HAp samples. Both XRD and BJH results indicated that regular mesoporous HAp nanoparticles (with a mean pore size of 3.5nm) were successfully produced. As shown in transmission electron microscopy (TEM), orderly uniform pore structure appeared in the HAp particles. Because of the special structure of the MAP and the interaction between ionized MAP and other ions in solution, the product presents uniform mesoporous structure with well-defined pore size. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Preparation of hydroxyapatite nanoparticles by sol-gel method with optimum processing parameters

    NASA Astrophysics Data System (ADS)

    Yusoff, Yusriha Mohd; Salimi, Midhat Nabil Ahmad; Anuar, Adilah

    2015-05-01

    Many studies have been carried out in order to prepare hydroxyapatite (HAp) by various methods. In this study, we focused on the preparation of HAp nanoparticles by using sol-gel technique in which few parameters are optimized which were stirring rate, aging time and sintering temperature. HAp nanoparticles were prepared by using precursors of calcium nitrate tetrahydrate, Ca(NO3)2.4H2O and phosphorous pentoxide, P2O5. Both precursors are mixed in ethanol respectively before they were mixed together in which it formed a stable sol. Fourier transform infrared (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were used for its characterization in terms of functional group, phase composition, crystallite size and morphology of the nanoparticles produced. FTIR spectra showed that the functional groups that present in all five samples were corresponding to the formation of HAp. Besides, XRD shows that only one phase was formed which was hydroxyapatite. Meanwhile, SEM shows that the small particles combine together to form agglomeration.

  12. Y-TZP zirconia regeneration firing: Microstructural and crystallographic changes after grinding.

    PubMed

    Ryan, Daniel Patrick Obelenis; Fais, Laiza Maria Grassi; Antonio, Selma Gutierrez; Hatanaka, Gabriel Rodrigues; Candido, Lucas Miguel; Pinelli, Ligia Antunes Pereira

    2017-07-26

    This study evaluated microstructural and crystallographic phase changes after grinding (G) and regeneration firing/anneling (R) of Y-TZP ceramics. Thirty five bars (Lava TM and Ice Zirkon) were divided: Y-TZP pre-sintered, control (C), regeneration firing (R), dry grinding (DG), dry grinding+regeneration firing (DGR), wet grinding (WG) and wet grinding+regeneration firing (WGR). Grinding was conducted using a diamond bur and annealing at 1,000°C. The microstructure was analyzed by SEM and the crystalline phases by X-ray diffraction (XRD). XRD showed that pre-sintered specimens contained tetragonal and monoclinic phases, while groups C and R showed tetragonal, cubic and monoclinic phases. After grinding, the cubic phase was eliminated in all groups. Annealing (DGR and WGR) resulted in only tetragonal phase. SEM showed semi-circular cracks after grinding and homogenization of particles after annealing. After grinding, surfaces show tetragonal and monoclinic phases and R can be assumed to be necessary prior to porcelain layering when grinding is performed.

  13. Improved magnetic and electrical properties of Cu doped Fe-Ni invar alloys synthesized by chemical reduction technique

    NASA Astrophysics Data System (ADS)

    Ahmad, Sajjad; Ziya, Amer Bashir; Ashiq, Muhammad Naeem; Ibrahim, Ather; Atiq, Shabbar; Ahmad, Naseeb; Shakeel, Muhammad; Khan, Muhammad Azhar

    2016-12-01

    Fe-Ni-Cu invar alloys of various compositions (Fe65Ni35-xCux, x=0, 0.2, 0.6, 1, 1.4 and 1.8) were synthesized via chemical reduction route. These alloys were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM) techniques. The XRD analysis revealed the formation of face centered cubic (fcc) structure. The lattice parameter and the crystallite size of the investigated alloys were calculated and the line broadening indicated the nano-crystallites size of alloy powder. The particle size was estimated from SEM and it decreases by the incorporation of Cu and found to be in the range of 24-40 nm. The addition of Cu in these alloys appreciably enhances the saturation magnetization and it increases from 99 to 123 emu/g. Electrical conductivity has been improved with Cu addition. The thermal conductivity was calculated using the Wiedemann-Franz law.

  14. Structural and photoluminescence properties of Ce, Dy, Er-doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayachandraiah, C.; Kumar, K. Siva; Krishnaiah, G., E-mail: ginnerik@gmail.com

    2015-06-24

    Undoped ZnO and rare earth elements (Ce, Dy and Er with 2 at. %) doped nanoparticles were synthesized by wet chemical co-precipitation method at 90°C with Polyvinylpyrrolidone (PVP) as capping agent. The structural, morphological, compositional and photoluminescence studies were performed with X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energy dispersive spectroscopy (EDS), FTIR spectroscopy and Photoluminescence (PL) respectively. XRD results revealed hexagonal wurtzite structure with average particle size around 18 nm - 14 nm and are compatible with TEM results. EDS confirm the incorporation of Ce, Dy and Er elements into the host ZnO matrix and is validated by FTIR analysis. PLmore » studies showed a broad intensive emission peak at 558 nm in all the samples. The intensity for Er- doped ZnO found maximum with additional Er shoulder peaks at 516nm and 538 nm. No Ce, Dy emission centers were found in spectra.« less

  15. Effects of metal binder on the microstructure and mechanical properties of Al2O3-based micro-nanocomposite ceramic tool material

    NASA Astrophysics Data System (ADS)

    Ni, Xiu-ying; Zhao, Jun; Sun, Jia-lin; Gong, Feng; Li, Zuo-li

    2017-07-01

    The Al2O3-(W,Ti)C composites with Ni and Mo additions varying from 0vol% to 12vol% were prepared via hot pressing sintering under 30 MPa. The microstructure was investigated via X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS). Mechanical properties such as flexural strength, fracture toughness, and Vickers hardness were also measured. Results show that the main phases A12O3 and (W,Ti)C were detected by XRD. Compound MoNi also existed in sintered nanocomposites. The fracture modes of the nanocomposites were both intergranular and transgranular fractures. The plastic deformation of metal particles and crack bridging were the main toughening mechanisms. The maximum flexural strength and fracture toughness were obtained for 9vol% and 12vol% additions of Ni and Mo, respectively. The hardness of the composites reduced gradually with increasing content of metals Ni and Mo.

  16. Shock induced reaction of Ni/Al nanopowder mixture.

    PubMed

    Meng, C M; Wei, J J; Chen, Q Y

    2012-11-01

    Nanopowder Ni/Al mixture (mixed in Al:Ni = 2:1 stoichiometry) was shock compressed by employing single and two-stage light gas gun. The particle size of Al and Ni are 100-200 nm and 50-70 nm respectively, morphologies of Al and Ni are sphere like either. Recovered product was characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis. According to the XRD spectrum, the mixed powder undergo complete reaction under shock compression, reaction product consist of Ni2Al3, NiAl and corundum structure Al2O3 compound. Grain size of Ni-Al compound is less than 100 nm. With the shock pressure increasing, the ratio of Ni2Al3 decreased obviously. The corundum crystal size is 400-500 nm according to the SEM observation. The results of shock recovery experiments and analysis show that the threshold pressure for reaction of nano size powder Ni/Al mixture is much less than that of micro size powder.

  17. Size dependent compressibility of nano-ceria: Minimum near 33 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodenbough, Philip P.; Chemistry Department, Columbia University, New York, New York 10027; Song, Junhua

    2015-04-20

    We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite sizemore » decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size.« less

  18. A novel method for the functionalization of aminoacids L-glycine, L-glutamic acid and L-arginine on maghemite/magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Bruno, A. J.; Correa, J. R.; Peláez-Abellán, E.; Urones-Garrote, E.

    2018-06-01

    Nanoparticles of maghemite/magnetite functionalized with L-glycine, L-glutamic acid and L-arginine were synthesized by a novel method. The novel procedure consists in an alternative of that reported by Massart for the precipitation of magnetite in which the aminoacid is added in the carboxylate form. The amounts of aminoacid in the initial molar concentrations were 35%, 45% and 65% with respect to the ferrophase. The obtained nanoparticles were characterized by several techniques: X-ray diffraction (XRD), Fourier transform IR spectroscopy (FT-IR), transmission electron microscopy (TEM), Electron energy-loss spectroscopy (EELS) and magnetometry. The IR spectroscopy confirmed that the selected aminoacids were functionalized on the surface of iron oxide. XRD and EELS confirm that iron oxide consists of a maghemite-magnetite intermediate phase with an average particle size about 6 nm, which was measured by transmission electron microscopy. The superparamagnetic character of the nanoparticles was evaluated by magnetometry.

  19. Synthesis of SrFe12O19 magnetic nanoparticles by EDTA complex method

    NASA Astrophysics Data System (ADS)

    Wang, Shifa; Li, Danming; Xiao, Yuhua; Dang, Wenqiang; Feng, Jie

    2017-10-01

    A modified polyacrylamide gel route was used to prepare SrFe12O19 magnetic nanoparticles; ethylenediaminetetraacetic acid (EDTA) was used as a carboxyl chelating agent. The phase purity, morphology and magnetic properties of as-prepared samples were analyzed via X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometery (VSM). XRD analysis indicates that high-purity SrFe12O19 magnetic nanoparticles can be synthesized at 700°C in air. The characteristic peaks of as-prepared sample at 210, 283, 321, 340, 381, 411, 432, 475, 532, 618, 686, and 726 cm-1 were observed in Raman spectra. SEM and TEM show that the synthesized SrFe12O19 magnetic nanoparticles are uniform with the mean particle size of 60 nm. VSM measurement shows that the maximum magnetic energy product (BH)max of sample prepared using EDTA as a chelating agent is higher than that of sample prepared using citric acid as a chelating agent.

  20. Structural and magnetic characterizations of Co2FeGa/SiO2 nanoparticles prepared via chemical route

    NASA Astrophysics Data System (ADS)

    Priyanka, Dhaka, Rajendra S.

    2018-04-01

    We report the synthesis of Co2FeGa/SiO2 nanoparticles by sol-gel method and characterization usingx-ray diffraction (XRD), transmission electron microscopy (TEM) and magnetic measurements. The Rietveld refinementsof XRD data with space group Fm-3m clearly show the formation of A2 disordersingle phase and the lattice constant isfound to be 5.738 Å. The energy-dispersive x-ray spectroscopy (EDX) confirm the elemental composition close the desired values. The value of coercivity is found to be around 283 Oe and 126 Oe, measured at 10 K and 300 K, respectively. We observed the saturation magnetization significantly lower than expected from Slater-Pauling rule. This decrease in the magnetic moment might be due to the presence of amorphous SiO2 during the synthesis process. A large content of small size SiO2 particles along with Co2FeGa nanoparticles are also found in TEM study.

  1. Synthesis, structural and optical properties of PVP coated transition metal doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Desai, N. V.; Shaikh, I. A.; Rawal, K. G.; Shah, D. V.

    2018-05-01

    The room temperature photoluminescence (PL) of transition metal doped ZnS nanoparticles is investigated in the present study. The PVP coated ZnS nanoparticles doped with transition metals are synthesized by facile wet chemical co-precipitation method with the concentration of impurity 1%. The UV-Vis absorbance spectra have a peak at 324nm which shifts slightly to 321nm upon introduction of the impurity. The incorporation of the transition metal as dopant is confirmed by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The particle size and the morphology are characterized by scanning electron microscopy (SEM), XRD and UV-Vis spectroscopy. The average size of synthesized nanoparticles is about 2.6nm. The room temperature photoluminescence (PL) of undoped and doped ZnS nanoparticles show a strong and sharp peak at 782nm and 781.6nm respectively. The intensity of the PL changes with the type of doping having maximum for manganese (Mn).

  2. Preparation and characterization of bee venom-loaded PLGA particles for sustained release.

    PubMed

    Park, Min-Ho; Jun, Hye-Suk; Jeon, Jong-Woon; Park, Jin-Kyu; Lee, Bong-Joo; Suh, Guk-Hyun; Park, Jeong-Sook; Cho, Cheong-Weon

    2016-12-14

    Bee venom-loaded poly(lactic-co-glycolic acid) (PLGA) particles were prepared by double emulsion-solvent evaporation, and characterized for a sustained-release system. Factors such as the type of organic solvent, the amount of bee venom and PLGA, the type of PLGA, the type of polyvinyl alcohol, and the emulsification method were considered. Physicochemical properties, including the encapsulation efficiency, drug loading, particle size, zeta-potential and surface morphology were examined by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The size of the bee venom-loaded PLGA particles was 500 nm (measured using sonication). Zeta-potentials of the bee venom-loaded PLGA particles were negative owing to the PLGA. FT-IR results demonstrated that the bee venom was completely encapsulated in the PLGA particles, indicated by the disappearance of the amine and amide peaks. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that the bee venom in the bee venom-loaded PLGA particles was intact. In vitro release of the bee venom from the bee venom-loaded PLGA particles showed a sustained-release profile over 1 month. Bee venom-loaded PLGA particles can help improve patients' quality of life by reducing the number of injections required.

  3. Characterization of CuCl quantum dots grown in NaCl single crystals via optical measurements, X-ray diffraction, and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Miyajima, Kensuke; Akatsu, Tatsuro; Itoh, Ken

    2018-05-01

    We evaluated the crystal size, shape, and alignment of the lattice planes of CuCl quantum dots (QDs) embedded in NaCl single crystals by optical measurements, X-ray diffraction (XRD) patterns, and transmission electron microscopy (TEM). We obtained, for the first time, an XRD pattern and TEM images for CuCl QDs in NaCl crystals. The XRD pattern showed that the lattice planes of the CuCl QDs were parallel to those of the NaCl crystals. In addition, the size of the QDs was estimated from the diffraction width. It was apparent from the TEM images that almost all CuCl QDs were polygonal, although some cubic QDs were present. The mean size and size distribution of the QDs were also obtained. The dot size obtained from optical measurements, XRD, and TEM image were almost consistent. Our new findings can help to reveal the growth mechanism of semiconductor QDs embedded in a crystallite matrix. In addition, this work will play an important role in progressing the study of optical phenomena originating from assembled semiconductor QDs.

  4. Effect of Cooling Rate on Morphology of TiAl3 Particles in Al-4Ti Master Alloy.

    PubMed

    Zhao, Jianhua; Wang, Tao; Chen, Jing; Fu, Lu; He, Jiansheng

    2017-02-27

    The Al-4Ti master alloy was fabricated by aluminum (Al) and sponge titanium particle in a resistance furnace at different cooling rates. This work aims to investigate the relationship between the cooling rate and morphology of TiAl3. The microstructure and composition of master alloys at different cooling rates were characterized and analyzed by optical microscopy (OM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and SEM with energy dispersive spectroscopy (EDS). The results showed that various morphologies of TiAl3 particles in the Al-4Ti master alloy could be acquired at different cooling rates. Petal-like, blocky, and flake-like TiAl3 particles in the Al-4Ti master alloy were respectively acquired at the cooling rates of 3.36 K/s, 2.57 K/s, and 0.31 K/s. It was also found that the morphology of TiAl3 particles in the prepared master alloy changed from petal-like to blocky, then finally to flake-like, with the decrease of cooling rate. In addition, the morphology of the TiAl3 particles has no effect on the phase inversion temperature of Al-4Ti master alloy.

  5. Effect of Cooling Rate on Morphology of TiAl3 Particles in Al–4Ti Master Alloy

    PubMed Central

    Zhao, Jianhua; Wang, Tao; Chen, Jing; Fu, Lu; He, Jiansheng

    2017-01-01

    The Al–4Ti master alloy was fabricated by aluminum (Al) and sponge titanium particle in a resistance furnace at different cooling rates. This work aims to investigate the relationship between the cooling rate and morphology of TiAl3. The microstructure and composition of master alloys at different cooling rates were characterized and analyzed by optical microscopy (OM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and SEM with energy dispersive spectroscopy (EDS). The results showed that various morphologies of TiAl3 particles in the Al–4Ti master alloy could be acquired at different cooling rates. Petal-like, blocky, and flake-like TiAl3 particles in the Al–4Ti master alloy were respectively acquired at the cooling rates of 3.36 K/s, 2.57 K/s, and 0.31 K/s. It was also found that the morphology of TiAl3 particles in the prepared master alloy changed from petal-like to blocky, then finally to flake-like, with the decrease of cooling rate. In addition, the morphology of the TiAl3 particles has no effect on the phase inversion temperature of Al–4Ti master alloy. PMID:28772598

  6. A facile synthesis of poly(aniline-co-o-bromoaniline) copolymer: Characterization and application as semiconducting material

    NASA Astrophysics Data System (ADS)

    Mahudeswaran, A.; Vivekanandan, J.; Vijayanand, P. S.; Kojima, T.; Kato, S.

    2016-01-01

    Poly(aniline-co-o-bromoaniline) (p(an-co-o-BrAn)) copolymer has been synthesized using chemical oxidation method in the hydrochloric acid medium. Copolymerization of aniline with o-bromoaniline of different compositions, such as 1:1, 1:2, 2:1, 1:3 and 3:1 molar ratios were prepared. The synthesized copolymer is soluble in polar solvents like dimethyl sulphoxide (DMSO), dimethyl formamide (DMF), Tetrahydrofuran (THF) and 1-methyl 2-pyrrolidone (NMP). The copolymer is analyzed by various characterization techniques, such as FTIR, UV-Visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), conductivity, Differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). FTIR spectrum confirms the characteristic peaks of the copolymer containing benzenoid and quinoid ring stretching. UV spectrum reveals the formation of π-π∗ transition and n-π∗ transition between the energy levels. XRD peaks reveal that the copolymer possesses amorphous nature. Morphological study reveals that the agglomerated particles form globular structure and size of the each particle is about 100 nm. The electrical conductivity of the copolymers is found in the range of 10-5Scm-1. These organic semiconductor materials can be used to fabricate thinner and cheaper environmental friendly optoelectronic devices that will replace the conventional inorganic semiconductors.

  7. Comparative study of nano-sized particles CoFe2O4 effects on superconducting properties of Y-123 and Y-358

    NASA Astrophysics Data System (ADS)

    Slimani, Y.; Hannachi, E.; Ben Salem, M. K.; Hamrita, A.; Varilci, A.; Dachraoui, W.; Ben Salem, M.; Ben Azzouz, F.

    2014-10-01

    The effects of nano-sized CoFe2O4 particles (10 nm) addition on the structural and the normal state resistivity of YBa2Cu3O7 (noted Y-123) and Y3Ba5Cu8O18 (noted Y-358) polycrystalline were systematically studied. Samples were synthesized in oxygen atmosphere using a standard solid state reaction technique by adding CoFe2O4 up to 2 wt%. Phases, microstructure and superconductivity have been systematically investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrical measurements ρ(T). XRD results reveal that the lattice parameters change for both Y-123 and Y-358 phases. SEM observations reveal that the grain size is reduced with increasing the content of CoFe2O4. The measurements for the resistivity dependence of temperature show that the depression in superconducting temperature is more pronounced for CoFe2O4 addition in Y-358 compound than in Y-123 one. These results may be attributed to the existence of much more disorder due to a greater number of Cu sites to be substituted by Fe and Co in Y-358 compared to Y-123.

  8. Isolation and characterisation of nanoparticles from tef and maize starch modified with stearic acid.

    PubMed

    Cuthbert, Wokadala O; Ray, Suprakas S; Emmambux, Naushad M

    2017-07-15

    Nanoparticles were isolated from tef and maize starch modified with added stearic acid after pasting at 90°C for 130min. This was followed by thermo-stable alpha-amylase hydrolysis of the paste. The resultant residues were then characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), dynamic laser scattering particle size distribution (DLPSD), atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM). XRD and DSC showed that the isolated residues consisted of amylose-lipid complexes. These complexes were type II with melting temperature above 104°C. DLPSD, AFM and HRTEM showed that the isolated tef and maize starch residues consisted of nanoparticles which became more distinct with increased hydrolysis time. The isolated tef and maize nanoparticles had distinct particles of about 3-10nm and 2.4-6.7nm, respectively and the yield was about 24-30%. The results demonstrated that distinct (physically separate) nanoparticles of less than 10nm can be isolated after formation during pasting of tef and maize starch with stearic acid. The production and isolation of the nanoparticles uses green chemistry principles and these nanoparticles can be used in food and non-food systems as nanofillers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Synthesis of AuPd alloyed nanoparticles via room-temperature electron reduction with argon glow discharge as electron source.

    PubMed

    Yang, Manman; Wang, Zongyuan; Wang, Wei; Liu, Chang-Jun

    2014-01-01

    Argon glow discharge has been employed as a cheap, environmentally friendly, and convenient electron source for simultaneous reduction of HAuCl4 and PdCl2 on the anodic aluminum oxide (AAO) substrate. The thermal imaging confirms that the synthesis is operated at room temperature. The reduction is conducted with a short time (30 min) under the pressure of approximately 100 Pa. This room-temperature electron reduction operates in a dry way and requires neither hydrogen nor extra heating nor chemical reducing agent. The analyses using X-ray photoelectron spectroscopy (XPS) confirm all the metallic ions have been reduced. The characterization with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) shows that AuPd alloyed nanoparticles are formed. There also exist some highly dispersed Au and Pd monometallic particles that cannot be detected by XRD and transmission electron microscopy (TEM) because of their small particle sizes. The observed AuPd alloyed nanoparticles are spherical with an average size of 14 nm. No core-shell structure can be observed. The room-temperature electron reduction can be operated in a larger scale. It is an easy way for the synthesis of AuPd alloyed nanoparticles.

  10. Co-precipitation synthesis of nano-composites consists of zinc and tin oxides coatings on glass with enhanced photocatalytic activity on degradation of Reactive Blue 160 KE2B.

    PubMed

    Habibi, Mohammad Hossein; Mardani, Maryam

    2015-02-25

    Nano-composite containing zinc oxide-tin oxide was obtained by a facile co-precipitation route using tin chloride tetrahydrate and zinc chloride as precursors and coated on glass by Doctor Blade deposition. The crystalline structure and morphology of composites were evaluated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The XRD results showed peaks relative to zinc oxide with hexagonal wurtzite structure and tin oxide with tetragonal structure. FESEM observations showed that the nano-composite consisted of aggregates of particles with an average particle size of 18 nm. The photocatalytic activity of the pure SnO2, pure ZnO, ZnSnO3-Zn2SnO4 and ZnO-SnO2 nano-structure thin films was examined using the degradation of a textile dye Reactive Blue 160 (KE2B). ZnO-SnO2 nano-composite showed enhanced photo-catalytic activity than the pure zinc oxide and tin oxide. The enhanced photo-catalytic activity of the nano-composite was ascribed to an improved charge separation of the photo-generated electron-hole pairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Novel synthesis strategy for composite hydrogel of collagen/hydroxyapatite-microsphere originating from conversion of CaCO3 templates.

    PubMed

    Wei, Qingrong; Lu, Jian; Wang, Qiaoying; Fan, Hongsong; Zhang, Xingdong

    2015-03-20

    Inspired by coralline-derived hydroxyapatite, we designed a methodological route to synthesize carbonated-hydroxyapatite microspheres from the conversion of CaCO3 spherulite templates within a collagen matrix under mild conditions and thus constructed the composite hydrogel of collagen/hydroxyapatite-microspheres. Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) were employed to confirm the successful generation of the carbonated hydroxyapatite phase originating from CaCO3, and the ratios of calcium to phosphate were tracked over time. Variations in the weight portion of the components in the hybrid gels before and after the phase transformation of the CaCO3 templates were identified via thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) shows these composite hydrogels have a unique multiscale microstructure consisting of a collagen nanofibril network and hydroxyapatite microspheres. The relationship between the hydroxyapatite nanocrystals and the collagen fibrils was revealed by transmission electron microscopy (TEM) in detail, and the selected area electron diffraction (SAED) pattern further confirmed the results of the XRD analyses which show the typical low crystallinity of the generated hydroxyapatite. This smart synthesis strategy achieved the simultaneous construction of microscale hydroxyapatite particles and collagen fibrillar hydrogel, and appears to provide a novel route to explore an advanced functional hydrogel materials with promising potentials for applications in bone tissue engineering and reconstruction medicine.

  12. Definitive Mineralogical Analysis of Mars Analog Rocks Using the CheMin XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Sarrazin, P.; Bish, D. L.; Feldman, S.; Chipera, S. J.; Vaniman, D. T.; Collins, S.

    2004-01-01

    Mineral identification is a critical component of Mars Astrobiological missions. Chemical or elemental data alone are not definitive because a single elemental or chemical composition or even a single bonding type can represent a range of substances or mineral assemblages. Minerals are defined as unique structural and compositional phases that occur naturally. There are about 15,000 minerals that have been described on Earth, all uniquely identifiable via diffraction methods. There are likely many minerals yet undiscovered on Earth, and likewise on Mars. If an unknown phase is identified on Mars, it can be fully characterized by structural (X-ray Diffraction, XRD) and elemental analysis (X-ray Fluorescence, XRF) without recourse to other data because XRD relies on the principles of atomic arrangement for its determinations. XRD is the principal means of identification and characterization of minerals on Earth.

  13. Physicochemical and photocatalytic studies of Ln3+- ZnO for water disinfection and wastewater treatment applications

    NASA Astrophysics Data System (ADS)

    Ibrahim, Marwa M.; Asal, Saad

    2017-12-01

    In the present work, x mol Ln3+ modified ZnO Nano-particles (Ln = Sm3+, Eu3+ and Gd3+ ions; x = 0.008, 0.015, 0.025, 0.03 and 0.05) were synthesized by precipitation method. These Nano-particles are characterized by different advanced techniques; such as X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive spectroscopic (EDX), UV-Visible diffuse reflectance, and fluorescence (FL) spectroscopy. Doping by lanthanides improves the crystal, surface area, porosity, morphology, as well as the optical adsorption and emission of UV light properties of the prepared photo-catalysts. Photo-catalytic activity for the prepared Nano-materials was determined using both, fluorescent probe and dye methods. Results showed that the highly active Nano-particle is 0.025 Gd3+-ZnO. The highly active sample (0.025 mol Gd3+- ZnO) successfully mineralized textile dye and real refractory wastewater samples under sunlight illumination using CPC photo-reactor. Prepared photo-catalysts were also applied for water disinfection.

  14. Microstructure and thermal conductivity of surfactant-free NiO nanostructures

    NASA Astrophysics Data System (ADS)

    Sahoo, Pranati; Misra, Dinesh K.; Salvador, Jim; Makongo, Julien P. A.; Chaubey, Girija S.; Takas, Nathan J.; Wiley, John B.; Poudeu, Pierre F. P.

    2012-06-01

    High purity, nanometer sized surfactant-free nickel oxide (NiO) particles were produced in gram scale using a solution combustion method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), gas pycnometry and gas adsorption analysis (BET). The average particle size of the as-synthesized NiO increases significantly with the preheating temperature of the furnace, while the specific surface area decreases. A BET specific surface area of ∼100 m2/g was obtained for NiO nanoparticles with size as small as 3 nm synthesized at 300 °C. The thermal conductivity (κ) of pressed pellets of the synthesized NiO nanoparticles obtained using spark plasma sintering (SPS) and uniaxial hot pressing is drastically decreased (∼60%) compared to that of NiO single crystal. This strong reduction in κ with particle size suggests the suitability of the synthesized surfactant-free NiO nanoparticles for use as nanoinclusions when designing high performance materials for waste heat recovery.

  15. New-Generation Aluminum Composite with Bottom Ash Industrial Waste

    NASA Astrophysics Data System (ADS)

    Mandal, A. K.; Sinha, O. P.

    2018-02-01

    Industrial waste bottom ash (BA) from a pulverized coal combustion boiler containing hard wear-resistant particles was utilized in this study to form an aluminum composite through a liquid metallurgy route. Composites comprising 5 wt.% and 10 wt.% bottom ash were characterized for their physiochemical, microstructural, mechanical, as well as tribological properties, along with pure aluminum. Scanning electron microscopy (SEM) microstructure revealed uniform distribution of BA particles throughout the matrix of the composite, whereas x-ray diffraction (XRD) analysis confirmed presence of aluminosilicate phase. Addition of 10 wt.% BA improved the Brinell hardness number (BHN) from 13 to 19 and ultimate tensile strength (UTS) from 71 MPa to 87 MPa, whereas ductility was adversely reduced after 5% BA addition. Incorporation of BA particles resulted in reduced dry sliding wear rates examined up to 80 N load compared with aluminum. Hence, such composites having lower cost could be applied as significantly hard, wear-resistant materials in applications in the automotive industry.

  16. Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose paper for imparting antimicrobial activity.

    PubMed

    Li, Zhihan; Zhang, Ming; Cheng, Dong; Yang, Rendang

    2016-10-20

    Immobilized silver nano-particles (Ag NPs) possess excellent antimicrobial properties due to their unique surface characteristics. In this paper, immobilized silver nano-particles were synthesized in the presence of chitin nano-crystals (CNC) based on the Tollens mechanism (reduction of silver ion by aldehydes in the chitosan oligosaccharides (COS)) under microwave-assisted conditions. The prepared Ag NPs-loaded CNC nano-composites were then applied onto the paper surface via coating for the preparation of antibacterial paper. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) results confirmed that the Ag NPs were immobilized onto the CNC. The transmission electron microscope (TEM) and scanning electron microscopy (SEM) results further revealed that the spherical Ag NPs (5-12nm) were well dispersed on the surface of CNC. The coated paper made from the Ag NPs-loaded CNC nano-composites exhibited a high effectiveness of the antibacterial activity against E. coli or S. aureus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The effect of reaction temperature on the particle size of bismuth oxide nanoparticles synthesized via hydrothermal method

    NASA Astrophysics Data System (ADS)

    Zulkifli, Zulfa Aiza; Razak, Khairunisak Abdul; Rahman, Wan Nordiana Wan Abdul

    2018-05-01

    Bismuth oxide (Bi2O3) nanoparticles have been synthesized at different temperatures from 70 to 120˚C without any subsequent heat treatment using hydrothermal method. The particle size, and crystal structure of as-synthesized particles were investigated by X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), Energy-dispersive X-ray spectroscopy (EDX) and Fourier transform Infra-Red (FTIR). The nanoparticles are of a pure moniclinic Bi2O3 phase with rods shape. The average size of nanoparticles increases with the increase of reaction temperature. It was clear that longer reaction temperature allows precipitation completely occured and form larger nanoparticles (NPs). The crystallinity of Bi2O3 also are of high purity even at lower reaction temperature. The FTIR spectrum showed the absorption band at 845 cm-1 which is attributed to Bi-O-Bi bond, and the strong absorption band recorded at 424 cm-1 that is due to the stretching mode of Bi-O.

  18. New-Generation Aluminum Composite with Bottom Ash Industrial Waste

    NASA Astrophysics Data System (ADS)

    Mandal, A. K.; Sinha, O. P.

    2018-06-01

    Industrial waste bottom ash (BA) from a pulverized coal combustion boiler containing hard wear-resistant particles was utilized in this study to form an aluminum composite through a liquid metallurgy route. Composites comprising 5 wt.% and 10 wt.% bottom ash were characterized for their physiochemical, microstructural, mechanical, as well as tribological properties, along with pure aluminum. Scanning electron microscopy (SEM) microstructure revealed uniform distribution of BA particles throughout the matrix of the composite, whereas x-ray diffraction (XRD) analysis confirmed presence of aluminosilicate phase. Addition of 10 wt.% BA improved the Brinell hardness number (BHN) from 13 to 19 and ultimate tensile strength (UTS) from 71 MPa to 87 MPa, whereas ductility was adversely reduced after 5% BA addition. Incorporation of BA particles resulted in reduced dry sliding wear rates examined up to 80 N load compared with aluminum. Hence, such composites having lower cost could be applied as significantly hard, wear-resistant materials in applications in the automotive industry.

  19. Pozzolanic Characterization Of Waste Rice Husk Ash (RHA) From Muar, Malaysia

    NASA Astrophysics Data System (ADS)

    Hadipramana, J.; Riza, F. V.; Rahman, I. A.; Loon, L. Y.; Adnan, S. H.; Zaidi, A. M. A.

    2016-11-01

    Investigation of Rice Husk Ash (RHA) thoroughly under controlled burning is regular issue to obtain result to produce the amorphous silica that has high pozzolanic reactivity characteristic. This paper offered an observation about characteristic of ground and un-ground of un-controlled burning temperature RHA that were taken from rice millings in Muar, Johor Malaysia. Such tests as X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Particle Size Analysis and Specific Area Surface, Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron microscope (SEM) were conducted in this investigation to carry out the characteristic of RHA samples. The results show that the RHA was consist approximately 89.90% of silica and the RHA possessed the amorphous particle were dominant than its crystalline part. This proves that the RHA has a big potential as a pozzolanic material considering the silica content and porous structure. In addition, particle size analysis decides whether the pozzolanic reactivity can be increased by grinding process.

  20. X-Ray Diffraction for In-Situ Mineralogical Analysis of Planetesimals.

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D. F.; Dera, P.; Downs, R. T.; Taylor, J.

    2017-12-01

    X-ray diffraction (XRD) is a general purpose technique for definitive, quantitative mineralogical analysis. When combined with XRF data for sample chemistry, XRD analyses yield as complete a characterization as is possible by any spacecraft-capable techniques. The MSL CheMin instrument, the first XRD instrument flown in space, has been used to establish the quantitative mineralogy of the Mars global soil, to discover the first habitable environment on another planet, and to provide the first in-situ evidence of silicic volcanism on Mars. CheMin is now used to characterize the depositional and diagenetic environments associated with the mudstone sediments of lower strata of Mt. Sharp. Conventional powder XRD requires samples comprised of small grains presented in random orientations. In CheMin, sample cells are vibrated to cause loose powder to flow within the cell, driven by granular convection, which relaxes the requirement for fine grained samples. Nevertheless, CheMin still requires mechanisms to collect, crush, sieve and deliver samples before analysis. XTRA (Extraterrestrial Regolith Analyzer) is an evolution of CheMin intended to analyze fines in as-delivered surface regolith, without sample preparation. Fine-grained regolith coats the surfaces of most airless bodies in the solar system, and because this fraction is typically comminuted from the rocky regolith, it can often be used as a proxy for the surface as a whole. HXRD (Hybrid-XRD) is concept under development to analyze rocks or soils without sample preparation. Like in CheMin, the diffracted signal is collected with direct illumination CCD's. If the material is sufficiently fine-grained, a powder XRD pattern of the characteristic X-ray tube emission is obtained, similar to CheMin or XTRA. With coarse grained crystals, the white bremsstrahlung radiation of the tube is diffracted into Laue patterns. Unlike typical Laue applications, HXRD uses the CCD's capability to distinguish energy and analyze the "colors" of each Laue spot, which enable phase identification. The concept was demonstrated with prototypes and dedicated crystallographic software was developed for identification the minerals responsible for the Laue patterns. High TRL subsystems are under development for future deployment opportunities of these new XRD instruments.

  1. Controlling the Optical and Magnetic Properties of Nanostructured Cuprous Oxide Synthesized from Waste Electric Cables

    NASA Astrophysics Data System (ADS)

    Abdelbasir, S. M.; El-Sheikh, S. M.; Rashad, M. M.; Rayan, D. A.

    2018-03-01

    Cuprous oxide Cu2O nanopowders were purposefully synthesised from waste electric cables (WECs) via a simple precipitation route at room temperature using lactose as a reducing agent. In this regard, dimethyl sulfoxide (DMSO) was first applied as an organic solvent for the dissolution of the cable insulating materials. Several parameters were investigated during dissolution of WECs such as dissolution temperature, time and solid/liquid ratio to determine the dissolution percentage of the insulating materials in DMSO. The morphology and the optical properties of the formed Cu2O particles were investigated using X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy and UV-visible-near IR spectrophotometer. XRD data confirmed the presence of single crystalline phase of Cu2O nanoparticles. FE-SEM and TEM images revealed spherical, cubic and octahedral shapes with the various particle sizes ranged from 16 to 57 nm depending on the synthesis conditions. A possible mechanism explaining the Cu2O nanostructures formation was proposed. The band gap energies of the Cu2O nanostructures were estimated and the values were located between 1.5 and 2.08 eV. Photoluminescence spectroscopy analysis clearly showed a noticeably blue-shifted emission for the synthesized samples compared to spectrum of the bulk. Eventually, magnetic properties of the synthesized nanoparticles have been measured by vibrating sample magnetometer and the attained results implied that the synthesized particles are weakly ferromagnetic in nature at normal temperature.

  2. Synthesis of SiC nanoparticles by SHG 532 nm Nd:YAG laser ablation of silicon in ethanol

    NASA Astrophysics Data System (ADS)

    Khashan, Khawla S.; Ismail, Raid A.; Mahdi, Rana O.

    2018-06-01

    In this work, colloidal spherical nanoparticles NPs of silicon carbide SiC have been synthesized using second harmonic generation 532 nm Nd:YAG laser ablation of silicon target dipped in ethanol solution at various laser fluences (1.5-5) J/cm2. X-Ray diffraction XRD, scanning electron microscopy SEM, transmission electron microscope TEM, Fourier transformed infrared spectroscopy FT-IR, Raman spectroscopy, photoluminescence PL spectroscopy, and UV-Vis absorption were employed to examine the structural, chemical and optical properties of SiC NPs. XRD results showed that all synthesised SiC nanoparticles are crystalline in nature and have hexagonal structure with preferred orientation along (103) plane. Raman investigation showed three characteristic peaks 764,786 and 954 cm-1, which are indexing to transverse optic TO phonon mode and longitudinal optic LO phonon mode of 4H-SiC structure. The optical absorption data showed that the values of optical energy gap of SiC nanoparticles prepared at 1.5 J/cm2 was 3.6 eV and was 3.85 eV for SiC synthesised at 5 J/cm2. SEM investigations confirmed that the nanoparticles synthesised at 5 J/cm2 are agglomerated to form larger particles. TEM measurements showed that SiC particles prepared at 1.5 J/cm2 have spherical shape with average size of 25 nm, while the particles prepared at 5 J/cm2 have an average size of 55 nm.

  3. Macroscopic and microscopic variation in recovered magnesium phosphate materials: implications for phosphorus removal processes and product re-use.

    PubMed

    Massey, Michael S; Ippolito, James A; Davis, Jessica G; Sheffield, Ron E

    2010-02-01

    Phosphorus (P) recovery and re-use will become increasingly important for water quality protection and sustainable nutrient cycling as environmental regulations become stricter and global P reserves decline. The objective of this study was to examine and characterize several magnesium phosphates recovered from actual wastewater under field conditions. Three types of particles were examined including crystalline magnesium ammonium phosphate hexahydrate (struvite) recovered from dairy wastewater, crystalline magnesium ammonium phosphate hydrate (dittmarite) recovered from a food processing facility, and a heterogeneous product also recovered from dairy wastewater. The particles were analyzed using "wet" chemical techniques, powder X-ray diffraction (XRD), and scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy (SEM-EDS). The struvite crystals had regular and consistent shape, size, and structure, and SEM-EDS analysis clearly showed the struvite crystals as a surface precipitate on calcium phosphate seed material. In contrast, the dittmarite crystals showed no evidence of seed material, and were not regular in size or shape. The XRD analysis identified no crystalline magnesium phosphates in the heterogeneous product and indicated the presence of sand particles. However, magnesium phosphate precipitates on calcium phosphate seed material were observed in this product under SEM-EDS examination. These substantial variations in the macroscopic and microscopic characteristics of magnesium phosphates recovered under field conditions could affect their potential for beneficial re-use and underscore the need to develop recovery processes that result in a uniform, consistent product.

  4. Methylcellulose-Directed Synthesis of Nanocrystalline Zeolite NaA with High CO₂ Uptake.

    PubMed

    Shakarova, Dilshod; Ojuva, Arto; Bergström, Lennart; Akhtar, Farid

    2014-07-28

    Zeolite NaA nanocrystals with a narrow particle size distribution were prepared by template-free hydrothermal synthesis in thermo-reversible methylcellulose gels. The effects of the amount of methylcellulose, crystallization time and hydrothermal treatment temperature on the crystallinity and particle size distribution of the zeolite NaA nanocrystals were investigated. We found that the thermogelation of methylcellulose in the alkaline Na₂O-SiO₂-Al₂O₃-H₂O system played an important role in controlling the particle size. The synthesized zeolite nanocrystals are highly crystalline, as demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) shows that the nanocrystals can also display a well-defined facetted morphology. Gas adsorption studies on the synthesized nanocrystalline zeolite NaA showed that nanocrystals with a size of 100 nm displayed a high CO₂ uptake capacity (4.9 mmol/g at 293 K at 100 kPa) and a relatively rapid uptake rate compared to commercially available, micron-sized particles. Low-cost nanosized zeolite adsorbents with a high and rapid uptake are important for large scale gas separation processes, e.g., carbon capture from flue gas.

  5. Electrosynthesis and characterization of zinc tungstate nanoparticles

    NASA Astrophysics Data System (ADS)

    Rahimi-Nasrabadi, Mehdi; Pourmortazavi, Seied Mahdi; Ganjali, Mohammad Reza; Hajimirsadeghi, Seiedeh Somayyeh; Zahedi, Mir Mahdi

    2013-09-01

    Zinc tungstate nanoparticles with different sizes are produced through an electrolysis process including a zinc plate anode in sodium tungstate solution. The shape and size of the product was found to be controlled by varying reaction parameters such as electrolysis voltage, stirring rate of electrolyte solution and temperature. The morphological (SEM) characterization analysis was performed on the product and UV-Vis spectrophotometry and FT-IR spectroscopy was utilized to characterize the electrodeposited nanoparticles. Study of the particle size of the product versus the electrolysis voltage showed that, increasing the voltage from 4 to 8 V, led to the particle size of zinc tungstate to decrease, but further increasing the voltage from 8 to 12 V, the particle size of the produced particles increased. The size and shape of the product was also found to be dependent on the stirring rate and temperature of the electrolyte solution. X-ray diffraction (XRD), scanning electron microscopy (SEM), FT-IR spectroscopy, and photoluminescence, were used to study the structure as well as composition of the nano-material prepared under optimum conditions.

  6. Fabrication and characterization of a novel hydrophobic CaCO3 grafted by hydroxylated poly(vinyl chloride) chains

    NASA Astrophysics Data System (ADS)

    Bao, Lixia; Yang, Simei; Luo, Xin; Lei, Jingxin; Cao, Qiue; Wang, Jiliang

    2015-12-01

    The hydroxylated PVC (PVC-OH) was successfully synthesized by a suspension polymerization of vinyl chloride (VC), butyl acrylate (BA) and hydroxyethyl acrylate (HEA). Novel hydrophobic CaCO3 was then prepared by a urethane formation reaction between methylene diphenyl diisocyanate (MDI) and the sbnd OH groups both in the PVC-OH chains and on the surface of pristine CaCO3 particles. The effect of the PVC-OH content on the grafting ratio of treated CaCO3 particles was extensively investigated. Combining the result of Fourier transform infrared (FTIR) with that of water contact angle, it can be concluded that the hydrophobicity of CaCO3 had been efficiently improved by the PVC-OH segments grafted on the surface of CaCO3 particles. X-ray diffraction (XRD), thermal gravity analysis (TGA), scanning electron microscope (SEM) and transmission electron microscope (TEM) were also used to study crystalline behaviors, thermal stability and surface morphology of the modified CaCO3 particles, respectively. The change of specific surface area implying surface modification was investigated as well.

  7. Simple sol-gel process to obtain silica-coated anatase particles with enhanced TiO2-SiO2 interfacial area.

    PubMed

    Resende, S F; Nunes, E H M; Houmard, M; Vasconcelos, W L

    2014-11-01

    In this study we prepared silica-titania composites with a low SiO2:TiO2 molar ratio. These materials were prepared using a simple sol-gel route in which a hydrothermal treatment was used to obtain mesoporous anatase particles. Pure titania was also synthetized for comparison purposes. These materials were examined by scanning and transmission electron microscopy (SEM and TEM, respectively), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and nitrogen sorption tests. A thin silica coating was formed on the anatase particles. It was observed that the presence of this coating led to samples with an enhanced thermal stability. Indeed, the composites prepared in this work showed an anatase structure and a high specific surface area (SSA), even after their calcination at 800°C. Thus, we believe that the synthetized material present an outstanding SiO2-TiO2 interfacial area associated with a high amount of anatase particles which could improve its photoactive properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles.

    PubMed

    Kuśnieruk, Sylwia; Wojnarowicz, Jacek; Chodara, Agnieszka; Chudoba, Tadeusz; Gierlotka, Stanislaw; Lojkowski, Witold

    2016-01-01

    Hydroxyapatite (HAp) nanoparticles of tunable diameter were obtained by the precipitation method at room temperature and by microwave hydrothermal synthesis (MHS). The following parameters of the obtained nanostructured HAp were determined: pycnometric density, specific surface area, phase purity, lattice parameters, particle size, particle size distribution, water content, and structure. HAp nanoparticle morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction measurements confirmed crystalline HAp was synthesized, which was pure in terms of phase. It was shown that by changing the synthesis parameters, the diameter of HAp nanoparticles could be controlled. The average diameter of the HAp nanoparticles was determined by Scherrer's equation via the Nanopowder XRD Processor Demo web application, which interprets the results of specific surface area and TEM measurements using the dark-field technique. The obtained nanoparticles with average particle diameter ranging from 8-39 nm were characterized by having homogeneous morphology with a needle shape and a narrow particle size distribution. Strong similarities were found when comparing the properties of some types of nanostructured hydroxyapatite with natural occurring apatite found in animal bones and teeth.

  9. Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route

    NASA Astrophysics Data System (ADS)

    Maaz, K.; Karim, S.; Mumtaz, A.; Hasanain, S. K.; Liu, J.; Duan, J. L.

    2009-06-01

    Magnetic nanoparticles of nickel ferrite (NiFe 2O 4) have been synthesized by co-precipitation route using stable ferric and nickel salts with sodium hydroxide as the precipitating agent and oleic acid as the surfactant. X-ray diffraction (XRD) and transmission electron microscope (TEM) analyses confirmed the formation of single-phase nickel ferrite nanoparticles in the range 8-28 nm depending upon the annealing temperature of the samples during the synthesis. The size of the particles ( d) was observed to be increasing linearly with annealing temperature of the sample while the coercivity with particle size goes through a maximum, peaking at ˜11 nm and then decreases for larger particles. Typical blocking effects were observed below ˜225 K for all the prepared samples. The superparamagnetic blocking temperature ( T B) was found to be increasing with increasing particle size that has been attributed to the increased effective anisotropy energy of the nanoparticles. The saturation moment of all the samples was found much below the bulk value of nickel ferrite that has been attributed to the disordered surface spins or dead/inert layer in these nanoparticles.

  10. Enhanced reactivity of nanoscale iron particles through a vacuum annealing process

    NASA Astrophysics Data System (ADS)

    Riba, Olga; Barnes, Robert J.; Scott, Thomas B.; Gardner, Murray N.; Jackman, Simon A.; Thompson, Ian P.

    2011-10-01

    A reactivity study was undertaken to compare and assess the rate of dechlorination of chlorinated aliphatic hydrocarbons (CAHs) by annealed and non-annealed nanoscale iron particles. The current study aims to resolve the uncertainties in recently published work studying the effect of the annealing process on the reduction capability of nanoscale Fe particles. Comparison of the normalized rate constants (m2/h/L) obtained for dechlorination reactions of trichloroethene (TCE) and cis-1,2-dichloroethene (cis-1,2-DCE) indicated that annealing nanoscale Fe particles increases their reactivity 30-fold. An electron transfer reaction mechanism for both types of nanoscale particles was found to be responsible for CAH dechlorination, rather than a reduction reaction by activated H2 on the particle surface (i.e., hydrogenation, hydrogenolysis). Surface analysis of the particulate material using X-ray diffraction (XRD) and transmission electron microscopy (TEM) together with surface area measurement by Brunauer, Emmett, Teller (BET) indicate that the vacuum annealing process decreases the surface area and increases crystallinity. BET surface area analysis recorded a decrease in nanoscale Fe particle surface area from 19.0 to 4.8 m2/g and crystallite dimensions inside the particle increased from 8.7 to 18.2 nm as a result of annealing.

  11. Modeling and measurements of XRD spectra of extended solids under high pressure

    NASA Astrophysics Data System (ADS)

    Batyrev, I. G.; Coleman, S. P.; Stavrou, E.; Zaug, J. M.; Ciezak-Jenkins, J. A.

    2017-06-01

    We present results of evolutionary simulations based on density functional calculations of various extended solids: N-Si and N-H using variable and fixed concentration methods of USPEX. Predicted from the evolutionary simulations structures were analyzed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction spectra. Stability of the predicted system was estimated from convex-hull plots. X-ray diffraction spectra were calculated using a virtual diffraction algorithm which computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculations of thousands of XRD spectra were used to search for a structure of extended solids at certain pressures with best fits to experimental data according to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Comparison of Raman and IR spectra calculated for best fitted structures with available experimental data shows reasonable agreement for certain vibration modes. Part of this work was performed by LLNL, Contract DE-AC52-07NA27344. We thank the Joint DoD / DOE Munitions Technology Development Program, the HE C-II research program at LLNL and Advanced Light Source, supported by BES DOE, Contract No. DE-AC02-05CH112.

  12. Polyethylene glycol (PEG) assisted size-controlled SnO{sub 2} nanoparticles by sol-gel process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, P., E-mail: ptrip71@yahoo.com; Ahmed, Ateeq; Ali, Tinku

    2016-05-23

    Tetragonal phase tin oxide (SnO{sub 2}) nanoparticles have been synthesized by sol–gel method using SnCl{sub 4}.5H{sub 2}O and polyethylene glycol (PEG) of different concentration. The phase, size and purity of the final products are characterized by X-ray diffraction (XRD). The morphology is confirmed by scanning electron microscopy (SEM) analysis. There exists relationship between the concentration of PEG and particle size of SnO{sub 2} nanoparticles. Increase in concentration of PEG caused the reduction of particle size of tin oxide nanoparticles. The results suggest that the concentration of PEG plays a significant role in determining the size of SnO{sub 2} nanoparticles synthesizedmore » via this method. The optical property of the product has been explored by Ultraviolet (UV-visible) and Fourier Transform Infrared (FTIR) spectroscopic techniques.« less

  13. Preparation of ZrO II/nano-TiO II composite powder by sol-gel method

    NASA Astrophysics Data System (ADS)

    Baharvandi, H. R.; Mohammadi, E.; Abdizadeh, H.; Hadian, A. M.; Ehsani, N.

    2007-07-01

    The effects of concentration of TTIP, amount of distilled water, and calcination temperature on morphology and particle size distribution of ZrO II/nano-TiO II catalysts were investigated. Mixed ZrO II/nano-TiO II powders were prepared by a modified sol-gel method by varying the mole fraction of TTIP from 0.002 to 0.01, H IIO/TTIP fraction from 2 to 8, and various stirring time (2, 4, and 10 h). The prepared ZrO II/nano-TiO II powders have been characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and TG/DTA. Each oxide was calcined at the temperature between 110 and 1000°C. The results showed that the calcinations temperature has a pronounced effect on the phase formation and particle size of the calcined zirconium titanate (ZT) powders.

  14. Bioactivity of gelatin coated magnetic iron oxide nanoparticles: in vitro evaluation.

    PubMed

    Gaihre, Babita; Khil, Myung Seob; Kang, Hyo Kyoung; Kim, Hak Yong

    2009-02-01

    Current research explores formation of bone like apatite on gelatin coated magnetic iron oxide nanoparticles (GIOPs) to evaluate the bioactivity of the material. The GIOPs were soaked in simulated body fluid (SBF) and the apatite formation on the surface was investigated in regular interval of time. Fourier transform-infrared (FT-IR) and x-ray diffraction spectroscopic (XRD) analyses were done to investigate the chemical changes and field emission-scanning electron microscopic (FE-SEM) analysis was done to investigate the morphological changes occurring on the surface of the GIOPs after soaking in different time intervals. The kinetic studies of the apatite growth in SBF suggest that initially calcium and phosphorous ions were deposited to the surface of the GIOPs from the SBF leading to formation of amorphous Ca/P particles. Later, after 9 days of the incubation the amorphous particles were fused to form needle and blade like crystalline structures of bone like apatite.

  15. Antibacterial and catalytic activities of green synthesized silver nanoparticles.

    PubMed

    Bindhu, M R; Umadevi, M

    2015-01-25

    The aqueous beetroot extract was used as reducing agent for silver nanoparticles synthesis. The synthesized nanoparticles were characterized using UV-visible spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface plasmon resonance peak of synthesized nanoparticles was observed at 438 nm. As the concentration of beetroot extract increases, absorption spectra shows blue shift with decreasing particle size. The prepared silver nanoparticles were well dispersed, spherical in shape with the average particle size of 15 nm. The prepared silver nanoparticles are effective in inhibiting the growth of both gram positive and gram negative bacteria. The prepared silver nanoparticles reveal faster catalytic activity. This natural method for synthesis of silver nanoparticles offers a valuable contribution in the area of green synthesis and nanotechnology avoiding the presence of hazardous and toxic solvents and waste. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Composite Ni-Co-fly ash coatings on 5083 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Panagopoulos, C. N.; Georgiou, E. P.; Tsopani, A.; Piperi, L.

    2011-03-01

    Ni-Co-fly ash coatings were deposited on zincate treated 5083 wrought aluminium alloy substrates with the aid of the electrodeposition technique. Structural and chemical characterization of the produced composite coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-Co-fly ash coatings were found to consist of a crystalline Ni-Co solid solution with dispersed fly ash particles. In addition, chemical analysis of the Ni-Co matrix showed that it consisted of 80 wt.% Ni and 20 wt.% Co. The co-deposition of fly ash particles leads to a significant increase of the microhardness of the coating. The corrosion behaviour of the Ni-Co-fly ash/zincate coated aluminium alloy, in a 0.3 M NaCl solution (pH = 3.5), was studied by means of potentiodynamic corrosion experiments.

  17. Antibacterial property of fabrics coated by magnesium-based brucites

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sha, Lin; Zhao, Jiao; Li, Qian; Zhu, Yimin; Wang, Ninghui

    2017-04-01

    A kind of environmental-friendly magnesium-based antibacterial agent was reported for the first time, which was composited by brucites with different particle sizes. The antibacterial fabrics were produced by coating the magnesium-based antibacterial agents on the 260T polyester pongee fabrics with waterborne polyurethane. The coating process was simple, low-cost, and harmless to human health and environment. Characteristics of the antibacterial agents and fabrics were studied by particulate size distribution analyzer (PSDA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results demonstrated that the coating layer was covered tightly on the fabrics and compositing of different particles by a certain proportion made full filling of the coating layer. Meanwhile, compositing did not change the structure of brucites. The antibacterial fabrics presented strong antibacterial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), with the reduction percentage of 96.6% and 100%, respectively, and the antibacterial fabrics attained excellent washing durability.

  18. Synthesis And Characterization Of Reduced Size Ferrite Reinforced Polymer Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borah, Subasit; Bhattacharyya, Nidhi S.

    2008-04-24

    Small sized Co{sub 1-x}Ni{sub x}Fe{sub 2}O{sub 4} ferrite particles are synthesized by chemical route. The precursor materials are annealed at 400, 600 and 800 C. The crystallographic structure and phases of the samples are characterized by X-ray diffraction (XRD). The annealed ferrite samples crystallized into cubic spinel structure. Transmission Electron Microscopy (TEM) micrographs show that the average particle size of the samples are <20 nm. Particulate magneto-polymer composite materials are fabricated by reinforcing low density polyethylene (LDPE) matrix with the ferrite samples. The B-H loop study conducted at 10 kHz on the toroid shaped composite samples shows reduction in magneticmore » losses with decrease in size of the filler sample. Magnetic losses are detrimental for applications of ferrite at high powers. The reduction in magnetic loss shows a possible application of Co-Ni ferrites at high microwave power levels.« less

  19. Nanocrystalline Chalcopyrite Materials (CuInS2 and CuInSe2) via Low-Temperature Pyrolysis of Molecular Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Castro, Stephanie L.; Bailey, Sheila G.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Hepp, Aloysius F.

    2003-01-01

    Nanometer sized particles of the chalcopyrite compounds CuInS2 and CuInSe2 were synthesized by thermal decomposition of molecular single-source precursors (PPh3)2CuIn(SEt)4 and (PPh3)2CuIn(SePh)4, respectively, in the non-coordinating solvent dioctyl phthalate at temperatures between 200 and 300 C. The nanoparticles range in size from 3 - 30 nm and are aggregated to form roughly spherical clusters of about 500 nm in diameter. X-ray diffraction of the nanoparticle powders shows greatly broadened lines indicative of very small particle sizes, which is confirmed by TEM. Peaks present in the XRD can be indexed to reference patterns for the respective chalcopyrite compounds. Optical spectroscopy and elemental analysis by energy dispersive spectroscopy support the identification of the nanoparticles as chalcopyrites.

  20. Hydrothermal synthesis and infrared emissivity property of flower-like SnO{sub 2} particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, J. X.; Beijing Institute of Environmental Features, Beijing, 100854; Zhang, Z. Y., E-mail: zhangzy@nwu.edu.cn

    The flower-like SnO{sub 2} particles are synthesized through a simple hydrothermal process. The microstructure, morphology and the infrared emissivity property of the as-prepared products are characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), and infrared spectroradio meter (ISM) respectively. The results show that the as-prepared SnO{sub 2} products are all indexed to tetragonal cassiterite phase of SnO{sub 2}. The different molarity ratios of the OH{sup −} concentration to Sn{sup 4+} concentration ([OH{sup −}]:[Sn{sup 4+}]) and the polyacrylamide (PAM) lead to the different morphological structures of SnO{sub 2}, which indicates that both the [OH{sup −}]:[Sn{sup 4+}]more » and the PAM play an important role in the morphological evolution respectively. The infrared emissivities of the as-prepared SnO{sub 2} products are discussed.« less

  1. Molten Salt Synthesis and Structural Characterization of BaTiO3 Nanocrystal Ceramics

    NASA Astrophysics Data System (ADS)

    Ahda, S.; Misfadhila, S.; Parikin, P.; Putra, T. Y. S. P.

    2017-02-01

    A new synthesis route to obtain high-purity barium titanate powder, BaTiO3, using the molten salt method by reacting the raw materials (BaCO3 and TiO2) in an atmosphere of molten NaCl and KCl, has been developed. The synthesized BaTiO3 ceramic particles have been successfully carried out at the sintering temperature 950°C for 4 hours. The Rietveld refinement of the XRD diffraction patterns was employed to characterize the structural information of the nanocrystalline BaTiO3 ceramics. The lattice parameters (a=4.0043 Å, b=4.0308Å with space group P4mm) of tetragonal perovskite structure, as an indication of piezoelectric characteristics, have been successfully determined by the Rietveld refinement. While the crystallitte particle size and strains have been obtained for the values of 110.6 nm and 0.74 % respectively

  2. Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities

    NASA Astrophysics Data System (ADS)

    Suresh, Gopal; Gunasekar, Poosali Hariharan; Kokila, Dhanasegaran; Prabhu, Durai; Dinesh, Devadoss; Ravichandran, Nagaiya; Ramesh, Balasubramanian; Koodalingam, Arunagirinathan; Vijaiyan Siva, Ganesan

    2014-06-01

    Green synthesis of silver nanoparticles (AgNPs) using aqueous root extract of Delphinium denudatum (Dd) by reduction of Ag+ ions from silver nitrate solution has been investigated. The synthesized DdAgNPs were characterized by using UV-Vis spectroscopy, X-ray diffraction (XRD), Field emission scanning electron microscope (FESEM) and Fourier transform infrared spectroscopy (FTIR). The prepared DdAgNPs showed maximum absorbance at 416 nm and particles were polydispersed in nature, spherical in shape and the size of the particle obtained was ⩽85 nm. The DdAgNPs exhibited antibacterial activity against Staphylococcus aureus ATCC 6538, Bacillus cereus NCIM 2106, Escherichia coli ATCC 8739 and Pseudomonas aeruginosa ATCC 9027. The DdAgNPs showed potent larvicidal activity against second instar larvae of dengue vector Aedes aegypti with a LC50 value of 9.6 ppm.

  3. Synthesis of nano-titanium dioxide by sol-gel route

    NASA Astrophysics Data System (ADS)

    Kaler, Vandana; Duchaniya, R. K.; Pandel, U.

    2016-04-01

    Nanosized titanium dioxide powder was synthesised via sol-gel route by hydrolysis of titanium tetraisopropoxide with ethanol and water mixture in high acidic medium. The synthesized nanopowder was further characterized by X-ray Diffraction, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and Ultraviolet Visible Spectroscopy in order to determine size, morphology and crystalline structure of the material. The synthesis of nano-TiO2 powder in anatase phase was realized by XRD. The optical studies of nano-TiO2 powder was carried out by UV-Vis spectroscopy and band gap was calculated as 3.5eV, The SEM results with EDAX confirmed that prepared nano-TiO2 particles were in nanometer range with irregular morphology. The FTIR analysis showed that only desired functional groups were present in sample. These nano-TiO2 particles have applications in solar cells, chemical sensors and paints, which are thrust areas these days.

  4. Mechanistic approach to study conjugation of nanoparticles for biomedical applications.

    PubMed

    Uddin, Imran

    2018-05-16

    Interaction of nanoparticles with biological systems turns out to be vibrant for their efficient application in biomedical field. Here, we have shown antibiotic amakicin loaded nanoparticles are responsible for the dual role as reducing and stabilizing the silver nanoparticles without the use of any undesired chemicals. Synthesized nanoparticles are well-dispersed having quasi spherical morphology with an average particle size around 10-11 nm. Crystallinity of nanoparticles was measured using selected area electron diffraction (SAED) and powder XRD analysis which show that particles are perfectly crystalline with cubic phase of geometry. UV-Vis, FTIR and circular dichroism (CD) analysis explained the presence and interaction of antibiotic on the nanoparticle's surface. Amakicin functionalized Ag nanoparticles used in this study have shown enhanced antibacterial activity against E. coli. These studies will help in designing an in-depth understanding that how nanostructures can possibly interact with biological systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Performance of carbon nanofiber supported Pd-Ni catalysts for electro-oxidation of ethanol in alkaline medium

    NASA Astrophysics Data System (ADS)

    Maiyalagan, T.; Scott, Keith

    Carbon nanofibers (CNF) supported Pd-Ni nanoparticles have been prepared by chemical reduction with NaBH 4 as a reducing agent. The Pd-Ni/CNF catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical voltammetry analysis. TEM showed that the Pd-Ni particles were quite uniformly distributed on the surface of the carbon nanofiber with an average particle size of 4.0 nm. The electro-catalytic activity of the Pd-Ni/CNF for oxidation of ethanol was examined by cyclic voltammetry (CV). The onset potential was 200 mV lower and the peak current density four times higher for ethanol oxidation for Pd-Ni/CNF compared to that for Pd/C. The effect of an increase in temperature from 20 to 60 °C had a great effect on increasing the ethanol oxidation activity.

  6. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Yudha, Septian P.; Mutiara, Nur Afisa Lintang

    2016-02-01

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction.

  7. Novel Sample-handling Approach for XRD Analysis with Minimal Sample Preparation

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Chipera, S.; Bish, D.; Blake, D.; Feldman, S.; Vaniman, D.; Bryson, C.

    2004-01-01

    Sample preparation and sample handling are among the most critical operations associated with X-ray diffraction (XRD) analysis. These operations require attention in a laboratory environment, but they become a major constraint in the deployment of XRD instruments for robotic planetary exploration. We are developing a novel sample handling system that dramatically relaxes the constraints on sample preparation by allowing characterization of coarse-grained material that would normally be impossible to analyze with conventional powder-XRD techniques.

  8. Water-dispersible hydroxyapatite nanoparticles synthesized in aqueous solution containing grape seed extract

    NASA Astrophysics Data System (ADS)

    Zhou, Ruchao; Si, Shaoxiong; Zhang, Qiyi

    2012-02-01

    A novel and effective method for the preparation of water-dispersible nano-hydroxyapatite (nHAp) particles was reported. nHAp was prepared in the presence of grape seed polyphenol (GSP) solution with different concentrations. Chemical precipitation method was adopted to produce pure nHAp and modified nHAp (nHAp-GSP) at 60 °C for 2 h. The chemical nature of the products was detected by Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis (TGA). Moreover, the crystal structure and morphology of particles was confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicated that the spherical nHAp particles with a diameter of 20-50 nm could be synthesized at 60 °C. The zeta potential values of pure nHAp and nHAp-GSP are -0.36 mV and -26.1 mV respectively. According to the sedimentary time, the colloidal stability of nHAp-GSP in water could be improved dramatically with the increase of GSP content and the particles tended to exist as dispersive nanoparticles without aggregation. All the results indicated that GSP exhibited strong binding to nHAp and enhanced the colloidal stability of nHAp particles.

  9. Sustainable Blended Cements-Influences of Packing Density on Cement Paste Chemical Efficiency.

    PubMed

    Knop, Yaniv; Peled, Alva

    2018-04-18

    This paper addresses the development of blended cements with reduced clinker amount by partial replacement of the clinker with more environmentally-friendly material (e.g., limestone powders). This development can lead to more sustainable cements with reduced greenhouse gas emission and energy consumption during their production. The reduced clicker content was based on improved particle packing density and surface area of the cement powder by using three different limestone particle diameters: smaller (7 µm, 3 µm) or larger (70 µm, 53 µm) than the clinker particles, or having a similar size (23 µm). The effects of the different limestone particle sizes on the chemical reactivity of the blended cement were studied by X-ray diffraction (XRD), thermogravimetry and differential thermogravimetry (TG/DTG), loss on ignition (LOI), isothermal calorimetry, and the water demand for reaching normal consistency. It was found that by blending the original cement with limestone, the hydration process and the reactivity of the limestone itself were increased by the increased surface area of the limestone particles. However, the carbonation reaction was decreased with the increased packing density of the blended cement with limestone, having various sizes.

  10. A mechanochemical approach to get stunningly uniform particles of magnesium-aluminum-layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Qi, Fenglin; Li, Shuping; Wei, Shaohua; Zhou, Jiahong

    2012-10-01

    A mechanochemical approach is developed in preparing a series of magnesium-aluminum-layered double hydroxides (Mg-Al-LDHs). This approach includes a mechanochemical process which involved manual grinding of solid salts in an agate mortar and afterwards peptization process. In order to verify the LDHs structure synthesized in the grinding process, X-ray diffraction (XRD) patterns, transmission electron microscopy (TEM) photos and thermogravimetry/differential scanning calorimetry (TG-DSC) property of the product without peptization were characterized and the results show that amorphous particles with low crystallinity and poor thermal stability are obtained, and the effect of peptization is to improve the properties, more accurately, regular particles with high crystallinity and good thermal stability can be gained after peptization. Furthermore, the fundamental experimental parameters including grinding time, the molar ratio of Mg to Al element (defined as R value) and the water content were systematically examined in order to control the size and morphologies of LDHs particles, regular hexagonal particles or the spherical nanostructures can be efficiently obtained and the particle sizes were controlled in the range of 52-130 nm by carefully adjusting these parameters. At last, stunningly uniform Mg-Al-LDHs particles can be synthesized under proper R values, suitable grinding time and high degree of supersaturation.

  11. Structural, magnetic and dielectric properties of polyaniline/MnCoFe2O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    Chitra, Palanisamy; Muthusamy, Athianna; Jayaprakash, Rajan

    2015-12-01

    Ferromagnetic PANI containing MnCoFe2O4 nanocomposites were synthesized by in-situ chemical polymerization of aniline incorporated MnCoFe2O4 nanoparticles (20%, 10% w/w of fine powders) with and without ultrasonic treatment. The MnCoFe2O4 nanoparticles were synthesized by auto combustion method. The PANI/MnCoFe2O4 nanocomposites were characterized with Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The average particle size of the resulting PANI/MnCoFe2O4 nanocomposites was confirmed from the TEM and XRD analysis. The structure and morphology of the composites were confirmed by FT-IR spectroscopy, XRD and SEM. In addition, the electrical and magnetic properties of the nanocomposites were investigated. The PANI/MnCoFe2O4 nanocomposites under applied magnetic field exhibited the hysteresis loops of ferromagnetic nature at room temperature. The variation of Dielectric constant, Dielectric loss, and AC conductivity of PANI/MnCoFe2O4 nanocomposites at room temperature as a function of frequency in the range 50 Hz-5 MHz has been studied. Effect of ultrasonication on the PANI/MnCoFe2O4 nanocomposites was also investigated.

  12. Synthesis of fluorapatite–hydroxyapatite nanoparticles and toxicity investigations

    PubMed Central

    Montazeri, N; Jahandideh, R; Biazar, Esmaeil

    2011-01-01

    In this study, calcium phosphate nanoparticles with two phases, fluorapatite (FA; Ca10(PO4)6F2) and hydroxyapatite (HA; Ca10(PO4)6(OH)2), were prepared using the solgel method. Ethyl phosphate, hydrated calcium nitrate, and ammonium fluoride were used, respectively, as P, Ca, and F precursors with a Ca:P ratio of 1:72. Powders obtained from the sol-gel process were studied after they were dried at 80°C and heat treated at 550°C. The degree of crystallinity, particle and crystallite size, powder morphology, chemical structure, and phase analysis were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Zetasizer experiments. The results of XRD analysis and FTIR showed the presence of hydroxyapatite and fluorapatite phases. The sizes of the crystallites estimated from XRD patterns using the Scherrer equation and the crystallinity of the hydroxyapatite phase were about 20 nm and 70%, respectively. Transmission electron microscope and SEM images and Zetasizer experiments showed an average size of 100 nm. The in vitro behavior of powder was investigated with mouse fibroblast cells. The results of these experiments indicated that the powders were biocompatibile and would not cause toxic reactions. These compounds could be applied for hard-tissue engineering. PMID:21499417

  13. Effect of grain size on the magnetic properties of superparamagnetic Ni 0.5Zn 0.5Fe 2O 4 nanoparticles by co-precipitation process

    NASA Astrophysics Data System (ADS)

    Chen, D. G.; Tang, X. G.; Wu, J. B.; Zhang, W.; Liu, Q. X.; Jiang, Y. P.

    2011-06-01

    Ni 0.5Zn 0.5Fe 2O 4 (NZFO) spinel-type nanoparticles were directly fabricated by the chemical co-precipitation process using metal nitrate and acetate as precursors since nitrogen and carbon would be taken away in the forms of oxynitride and oxycarbide, respectively, after the precursors were annealed and then investigated in detail by employing X-ray diffraction (XRD), magnetic measurement and Raman spectroscopy. XRD analysis indicates that the as-prepared nanocrystals are all of a pure cubic spinel structure with their sizes ranging from 20.8 to 53.3 nm, as well as peaks of some samples shifting to lower angles due to lattice expansion. Calculations from the derived XRD data indicate that the activation energy is 30.83 kJ/mol. The magnetic measurements show that these samples are superparamagnetic. The saturation magnetization increases with annealing temperature, which may be explained by super-exchange interactions of Fe ions occurring at A- and B-sites. The variation of coercivity with particle size is interpreted on the basis of domain structure and crystal anisotropy. Furthermore, these nanoparticles exhibit a redshift phenomenon at lower temperatures seen in the Raman spectra, which could be related to ionic substitution.

  14. X-ray physico-chemical imaging during activation of cobalt-based Fischer-Tropsch synthesis catalysts

    NASA Astrophysics Data System (ADS)

    Beale, Andrew M.; Jacques, Simon D. M.; Di Michiel, Marco; Mosselmans, J. Frederick W.; Price, Stephen W. T.; Senecal, Pierre; Vamvakeros, Antonios; Paterson, James

    2017-11-01

    The imaging of catalysts and other functional materials under reaction conditions has advanced significantly in recent years. The combination of the computed tomography (CT) approach with methods such as X-ray diffraction (XRD), X-ray fluorescence (XRF) and X-ray absorption near-edge spectroscopy (XANES) now enables local chemical and physical state information to be extracted from within the interiors of intact materials which are, by accident or design, inhomogeneous. In this work, we follow the phase evolution during the initial reduction step(s) to form Co metal, for Co-containing particles employed as Fischer-Tropsch synthesis (FTS) catalysts; firstly, working at small length scales (approx. micrometre spatial resolution), a combination of sample size and density allows for transmission of comparatively low energy signals enabling the recording of `multimodal' tomography, i.e. simultaneous XRF-CT, XANES-CT and XRD-CT. Subsequently, we show high-energy XRD-CT can be employed to reveal extent of reduction and uniformity of crystallite size on millimetre-sized TiO2 trilobes. In both studies, the CoO phase is seen to persist or else evolve under particular operating conditions and we speculate as to why this is observed. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.

  15. Effects of copper on the preparation and characterization of Na-Ca-P borate glasses.

    PubMed

    Shailajha, S; Geetha, K; Vasantharani, P; Sheik Abdul Kadhar, S P

    2015-03-05

    Glasses in the system Na2O-CaO-B2O3-P2O5: CuO have been prepared by melt quenching at 1200°C and rapidly cooling at room temperature. The structural, optical and thermal properties have been investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectroscopy, thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform infrared (FTIR) spectroscopy, high resolution scanning electron microscopy (HRSEM) with energy dispersive X-ray (EDX) spectroscopy and high resolution transmission electron microscope (HRTEM) with energy dispersive X-ray (EDAX). The amorphous and crystalline nature of these samples was verified by XRD. Glass transition, crystallization and thermal stability were determined by TG-DTA investigations. Direct optical energy band gaps before and after doping with different percents of copper oxide were evaluated from 4.81eV to 2.99eV indicated the role of copper in the glassy matrix by UV spectra. FTIR spectrum reveals characteristic absorption bands due to various groups of triangular and tetrahedral borate network. Due to the amorphous nature, the particles like agglomerates on the glass surface were investigated by the HRSEM analysis. The crystalline nature of the samples in XRD is confirmed by SAED pattern using HRTEM. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Final Report for X-ray Diffraction Sample Preparation Method Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ely, T. M.; Meznarich, H. K.; Valero, T.

    WRPS-1500790, “X-ray Diffraction Saltcake Sample Preparation Method Development Plan/Procedure,” was originally prepared with the intent of improving the specimen preparation methodology used to generate saltcake specimens suitable for XRD-based solid phase characterization. At the time that this test plan document was originally developed, packed powder in cavity supports with collodion binder was the established XRD specimen preparation method. An alternate specimen preparation method less vulnerable, if not completely invulnerable to preferred orientation effects, was desired as a replacement for the method.

  17. Metastable and equilibrium phase formation in sputter-deposited Ti/Al multilayer thin films

    NASA Astrophysics Data System (ADS)

    Lucadamo, G.; Barmak, K.; Lavoie, C.; Cabral, C., Jr.; Michaelsen, C.

    2002-06-01

    The sequence and kinetics of metastable and equilibrium phase formation in sputter deposited multilayer thin films was investigated by combining in situ synchrotron x-ray diffraction (XRD) with ex situ electron diffraction and differential scanning calorimetry (DSC). The sequence included both cubic and tetragonal modifications of the equilibrium TiAl3 crystal structure. Values for the formation activation energies of the various phases in the sequence were determined using the XRD and DSC data obtained here, as well as activation energy data reported in the literature.

  18. An X-ray diffraction method for semiquantitative mineralogical analysis of Chilean nitrate ore

    USGS Publications Warehouse

    Jackson, J.C.; Ericksent, G.E.

    1997-01-01

    Computer analysis of X-ray diffraction (XRD) data provides a simple method for determining the semiquantitative mineralogical composition of naturally occurring mixtures of saline minerals. The method herein described was adapted from a computer program for the study of mixtures of naturally occurring clay minerals. The program evaluates the relative intensities of selected diagnostic peaks for the minerals in a given mixture, and then calculates the relative concentrations of these minerals. The method requires precise calibration of XRD data for the minerals to be studied and selection of diffraction peaks that minimize inter-compound interferences. The calculated relative abundances are sufficiently accurate for direct comparison with bulk chemical analyses of naturally occurring saline mineral assemblages.

  19. An x-ray diffraction method for semiquantitative mineralogical analysis of chilean nitrate ore

    USGS Publications Warehouse

    John, C.; George, J.; Ericksen, E.

    1997-01-01

    Computer analysis of X-ray diffraction (XRD) data provides a simple method for determining the semiquantitative mineralogical composition of naturally occurring mixtures of saline minerals. The method herein described was adapted from a computer program for the study of mixtures of naturally occurring clay minerals. The program evaluates the relative intensities of selected diagnostic peaks for the minerals in a given mixture, and then calculates the relative concentrations of these minerals. The method requires precise calibration of XRD data for the minerals to be studied and selection of diffraction peaks that minimize inter-compound interferences. The calculated relative abundances are sufficiently accurate for direct comparison with bulk chemical analyses of naturally occurring saline mineral assemblages.

  20. Budesonide nanocrystal-loaded hyaluronic acid microparticles for inhalation: In vitro and in vivo evaluation.

    PubMed

    Liu, Tingting; Han, Meihua; Tian, Fang; Cun, Dongmei; Rantanen, Jukka; Yang, Mingshi

    2018-02-01

    Most inhaled pharmaceutical formulations on the market are intended to exert immediate pharmacological action, even although inhaled sustained-release formulations can be needed to reduce the frequency of dosing. The purpose of this study was to investigate the pulmonary retention and pharmacokinetics of a poorly water-soluble drug after loading its nanocrystal form into inhalable mucoadhesive microparticles composed of hyaluronic acid. It was intended to prolong the pharmacological effect without compromising the dissolution rate of the poorly water-soluble drug. In this study, budesonide, a corticosteroid anti-inflammatory drug, was used as a model poorly water-soluble drug. Submicron budesonide particles were prepared by wet ball milling, and subsequently loaded into hyaluronic acid microparticles by the spray drying process. The ball-milled budesonide particles and the spray-dried microparticles were characterized using dynamic light scattering (DLS), laser diffraction, Scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC). Selected formulations were evaluated in terms of their dissolution/release rate, aerosol performance, muco-adhesion and pharmacokinetics in rats. As shown by XRD and DSC analysis, the nanonized budesonide particles in this study were mainly in crystalline form. The dissolution/release study showed that the in vitro release of budesonide from the microparticles was not significantly sustained compared with the dissolution rate of budesonide nanocrystals (BUD-NC). However, the budesonide in the microparticles exhibited prolonged retention on the surface of porcine tracheal tube owing to the muco-adhesion ability of hyaluronic acid. After intratracheal administration to rats, the BUD-NC exhibited a similar pharmacokinetic profile to that of budesonide solution via i.v. injection. In contrast, budesonide loaded in the mucoadhesive microparticles exhibited a significantly prolonged T max and increased bioavailability with the animal model. This study demonstrated that inhaled microparticles composed of hyaluronic acid could produce sustained budesonide pharmacological effects. This can be attributed to the mucoadhesion of the polymer that overcame the mucociliary clearance and, consequently, prolonged the retention of the active substance in the lung without necessarily reducing the in vitro dissolution rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A facile sol-gel strategy for the scalable synthesis of CuFe2O4 nanoparticles with enhanced infrared radiation property: Influence of the synthesis conditions

    NASA Astrophysics Data System (ADS)

    Hou, Haili; Xu, Guoyue; Tan, Shujuan; Zhu, Yongmei

    2017-09-01

    CuFe2O4 particles were successfully engineered by a facile sol-gel method. The synthesized products were characterized physically by X-ray diffraction (XRD), scanning electron microscopy (SEM). Besides, the effects of the sintering temperature and the molar ration of citric acid/the total metal cations (CA/MC) on their infrared radiant properties were investigated at the wavelength of 3-5 μm. The highest infrared emission value ca. 0.911 was obtained when the test temperature was conducted at 800 °C, indicating its potential application in infrared heating, infrared coating and drying fields.

  2. Effect of bismuth substitution in strontium hexaferrite

    NASA Astrophysics Data System (ADS)

    Sahoo, M. R.; Kuila, S.; Sweta, K.; Barik, A.; Vishwakarma, P. N.

    2018-05-01

    Bismuth (Bi) substituted M-type strontium hexaferrite (Sr1-xBix Fe12O19, x=0 and 0.02) are synthesized by sol-gel auto combustion method. Powder X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) shows increase in lattice parameter and particle size (500 nm to 3 micron) respectively, for Bi substituted sample. Magnetization via M-H shows decrease in magnetic hardness for Bi substituted samples. M-T data for parent (x=0) sample shows an antiferromagnetic transition in the ZFC plot at 495 °C. This antiferromagnetic transition is replaced by a ferromagnetic transition for FCW measurement. Similar behavior is displayed by the Bi substituted sample with transition temperature reduced to 455 °C.

  3. Comparison of the morphology, chemical composition and microstructure of cryptocrystalline graphite and carbon black

    NASA Astrophysics Data System (ADS)

    Quan, Ying; Liu, Qinfu; Zhang, Shilong; Zhang, Shuai

    2018-07-01

    The structures of cryptocrystalline graphite (CG) and carbon black (CB) have been analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), organic elemental analysis (OEA), X-ray diffraction (XRD), RAMAN and high-resolution transmission electron microscopy (HRTEM). These results indicate that CG has the same elemental composition as CB, with carbon being the major element present. SL sample (CG with low graphitization degree) and CB exhibit similar microcrystalline structures. CG was shown to contain a layered graphitic structure that was significantly different to the primary spherical particles present in CB. It is proposed that these CG sheets may potentially be reduced and delaminated to afford multilayer graphene structures with improved material properties.

  4. Low temperature synthesis and characterization of carbonated hydroxyapatite nanocrystals

    NASA Astrophysics Data System (ADS)

    Anwar, Aneela; Asghar, Muhammad Nadeem; Kanwal, Qudsia; Kazmi, Mohsin; Sadiqa, Ayesha

    2016-08-01

    Carbonate substituted hydroxyapatite (CHA) nanorods were synthesized via coprecipitation method from aqueous solution of calcium nitrate tetrahydrate and diammonium hydrogen phosphate (with urea as carbonate ion source) in the presence of ammonium hydroxide solution at 70 °C at the conditions of pH 11. The obtained powders were physically characterized using transmission electron microscopy (TEM), X-ray powder diffraction analysis (XRD), and FTIR and Raman spectroscopy. The particle size was evaluated by Dynamic light scattering (DLS). The chemical structural analysis of as prepared sample was performed using X-ray photoelectron spectroscopy (XPS). After ageing for 12 h, and heat treatment at 1000 °C for 1 h, the product was obtained as highly crystalline nanorods of CHA.

  5. Plasma in-liquid method for reduction of zinc oxide in zinc nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Amaliyah, Novriany; Mukasa, Shinobu; Nomura, Shinfuku; Toyota, Hiromichi; Kitamae, Tomohide

    2015-02-01

    Metal air-batteries with high-energy density are expected to be increasingly applied in electric vehicles. This will require a method of recycling air batteries, and reduction of metal oxide by generating plasma in liquid has been proposed as a possible method. Microwave-induced plasma is generated in ethanol as a reducing agent in which zinc oxide is dispersed. Analysis by energy-dispersive x-ray spectrometry (EDS) and x-ray diffraction (XRD) reveals the reduction of zinc oxide. According to images by transmission electron microscopy (TEM), cubic and hexagonal metallic zinc particles are formed in sizes of 30 to 200 nm. Additionally, spherical fiber flocculates approximately 180 nm in diameter are present.

  6. Local structure analysis of diluted magnetic semiconductor Co and Al co-doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyodo, K.; Morimoto, S.; Yamazaki, T.

    2016-02-01

    In this study, Co and Al ions co-doped ZnO nanoparticles (Zn(Al, Co)O NPs) were prepared by our original chemical preparation method. The obtained samples prepared by this method, were encapsulated in amorphous SiO{sub 2}. X-ray diffraction (XRD) results showed Zn(Al, Co)O NPs had a single-phase nature with hexagonal wurtzite structure. These particle sizes could be controlled to be approximately 30 nm. We investigate the effect that the increase in the carrier has on the magnetization by doping Al to Co-doped ZnO NPs. The local structures were qualitatively analyzed using X-ray absorption fine structure (XAFS) measurements.

  7. Effects of Polyethylene Glycol and Citric Acid on Preparation and Hydrodechlorination Activity of Molybdenum Phosphide

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomeng; Lu, Shaoxiang; Xu, Hanghui; Ren, Lili

    2018-07-01

    Molybdenum phosphide (MoP), modified by polyethylene glycol (PEG) and citric acid (CA), exhibited 2 to 3 times superior activity than the MoP modified by CA alone. And the optimal activity temperature was reduced from 500 to 450oC. The catalyst was fully characterized by a variety of techniques including X-ray diffraction (XRD), N2 adsorption-desorption isotherm, scanning electron microscopy (SEM), transmission electron microscopy (TEM). The results showed that the addition of PEG and CA increased the surface area of MoP and decreased the particle size of MoP. Furthermore, the reaction mechanism also has been discussed by combining the activity data and characterization results.

  8. Environment friendly route of iron oxide nanoparticles from Zingiber officinale (ginger) root extract

    NASA Astrophysics Data System (ADS)

    Xin Hui, Yau; Yi Peng, Teoh; Wei Wen, Liu; Zhong Xian, Ooi; Peck Loo, Kiew

    2016-11-01

    Iron oxide nanoparticles were prepared from the reaction between the Zingiber officinale (ginger) root extracts and ferric chloride solution at 50°C for 2 h in mild stirring condition. The synthesized powder forms of nanoparticles were further characterized by using UV-Vis spectroscopy and X-ray Diffraction spectrometry. UV-Vis analysis shows the absorption peak of iron oxide nanoparticles is appeared at 370 nm. The calculation of crystallite size from the XRD showed that the average particle size of iron oxide nanoparticles was 68.43 nm. Therefore, this eco-friendly technique is low cost and large scale nanoparticles synthesis to fulfill the demand of various applications.

  9. Structural properties and electrochemistry of α-LiFeO2

    NASA Astrophysics Data System (ADS)

    Abdel-Ghany, A. E.; Mauger, A.; Groult, H.; Zaghib, K.; Julien, C. M.

    2012-01-01

    In this work, we study the physico-chemistry and electrochemistry of lithium ferrite synthesized by solid-state reaction. Characterization included X-ray diffraction (XRD), scanning electronic microscopy (SEM), Raman scattering (RS), Fourier transform infrared spectroscopy (FTIR), and SQUID magnetometry. XRD peaks gradually sharpen with increasing firing temperature; all the diffraction peaks can be indexed to the cubic α-LiFeO2 phase (Fm3m space group) with the refined cell parameter a = 4.155 Å. RS and FTIR spectra show the vibrational modes due to covalent Fe-O bonds and the Li-cage mode at low-frequency. The electrochemical properties of Li/LiFeO2 are revisited along with the post-mortem analysis of the positive electrode material using XRD and Raman experiments.

  10. Improving the oxidation resistance and stability of Ag nanoparticles by coating with multilayered reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Li, Yahui; Zhang, Huayu; Wu, Bowen; Guo, Zhuo

    2017-12-01

    A kind of coating nanostructure, Ag nanoparticles coated with multilayered reduced graphene oxide (RGO), is fabricated by employing a three-step reduction method in an orderly manner, which is significantly different from the conventional structures that are simply depositing or doping with Ag nanoparticles on RGO via chemical reduction. The as-prepared nanostructure is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electronic diffraction (SEAD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results show that the obtained Ag/RGO nanostructure is observed to be a perfect coating structure with well dispersed Ag particles, which is responsible for the remarkable oxidation resistance. The results of XPS spectra indicate the content of metallic Ag is far greater than that of Ag oxides despite of prolonged exposure to the air, which fully demonstrate the excellent stability of thus coating nanostructure.

  11. Characterization of sodium phenytoin co-gelled with titania for a controlled drug-release system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, T.; Instituto Nacional de Neurologia y Neurocirugia 'MVS', Av. Insurgentes Sur 3877. Col. La Fama. P.O. Box 14269 Mexico D. F.; Quintana, P.

    2007-08-15

    Sodium phenytoin, C{sub 15}H{sub 11}N{sub 2}NaO{sub 2}, in several concentrations was co-gelled with titania (TiO{sub 2}), by a sol-gel process. This technique is a promising method to encapsulate several drugs, in this case, phenytoin is an anticonvulsant used to control epileptic seizures. Samples were prepared by adding different concentrations (X = 50, 100, 200 and 250 mg per 20 g of titania matrix) of sodium phenytoin (Ph) to a solution of titanium n-butoxide. The resulting titania-Ph-X materials were characterized by transmission electron microscopy (TEM), Fourier transformed infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and Brunauer-Emmet-Teller (BET) surface areas. The porous nanomaterialsmore » showed a wide range of particle size, from 10 to 210 nm, with a mean pore diameter of 5 nm. X-ray diffraction showed an amorphous structure of the prepared samples.« less

  12. Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Phumying, Santi; Labuayai, Sarawuth; Thomas, Chunpen; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan; Maensiri, Santi

    2013-06-01

    Magnetite (Fe3O4) nanoparticles have been successfully synthesized by a novel hydrothermal method using ferric acetylacetonate (Fe(C5H8O2)3) and aloe vera plant-extracted solution. The influences of different reaction temperatures and times on the structure and magnetic properties of the synthesized Fe3O4 nanoparticles were investigated. The synthesized nanoparticles are crystalline and have particle sizes of ˜6-30 nm, as revealed by transmission electron microscopy (TEM). The results of X-ray diffraction (XRD), High resolution TEM (HRTEM) and selected area electron diffraction (SAED) indicate that the synthesized Fe3O4 nanoparticles have the inverse cubic spinel structure without the presence of any other phase impurities. The hysteresis loops of the Fe3O4 nanoparticles at room temperature show superparamagnetic behavior and the saturation magnetization of the Fe3O4 samples increases with increasing reaction temperature and time.

  13. CMC-coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Sitthichai, Sudarat; Pilapong, Chalermchai; Thongtem, Titipun; Thongtem, Somchai

    2015-11-01

    Pure Fe3O4 nanoparticles and Fe3O4 magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl2·4H2O and FeCl3·6H2O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe3O4 MNPs consisting of Fe2+ and Fe3+ ions with 543.3-mM-1 s-1 high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.

  14. Structural changes in shock compressed silicon observed using time-resolved x-ray diffraction at the Dynamic Compression Sector

    NASA Astrophysics Data System (ADS)

    Turneaure, Stefan; Zdanowicz, E.; Sinclair, N.; Graber, T.; Gupta, Y. M.

    2015-06-01

    Structural changes in shock compressed silicon were observed directly using time-resolved x-ray diffraction (XRD) measurements at the Dynamic Compression Sector at the Advanced Photon Source. The silicon samples were impacted by polycarbonate impactors accelerated to velocities greater than 5 km/s using a two-stage light gas gun resulting in impact stresses of about 25 GPa. The 23.5 keV synchrotron x-ray beam passed through the polycarbonate impactor, the silicon sample, and an x-ray window (polycarbonate or LiF) at an angle of 30 degrees relative to the impact plane. Four XRD frames (~ 100 ps snapshots) were obtained with 153.4 ns between frames near the time of impact. The XRD measurements indicate that in the peak shocked state, the silicon samples completely transformed to a high-pressure phase. XRD results for both shocked polycrystalline silicon and single crystal silicon will be presented and compared. Work supported by DOE/NNSA.

  15. Effect of intrinsic zinc oxide coating on the properties of Al-doped zinc oxide nanorod arrays

    NASA Astrophysics Data System (ADS)

    Saidi, S. A.; Mamat, M. H.; Ismail, A. S.; Malek, M. F.; Yusoff, M. M.; Sin, N. D. Md.; Zoolfakar, A. S.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    The aim of this study was to explore the influence of intrinsic zinc oxide (ZnO) coating fabricated by a simple immersion method. X-ray powder diffraction (XRD) analysis indicated that the Al-doped ZnO nanorod arrays films had a hexagonal wurtzite structure, similar to that of an intrinsic ZnO coating. Structural properties of the samples were characterised using field emission scanning electron microscopy (FESEM; JEOL JSM-7600F) and optical properties using X-ray diffraction (XRD). The XRD results showed that all films were crystallized under hexagonal wurtzite structure and presented a preferential orientation along the c-axis (002) was obtained. The XRD results showed that the intrinsic ZnO coating material had a strong orientation, whereas the ZnO was randomly oriented. Overall these results indicate that intrinsic ZnO coating are pontetial for the creation of functional materials such as barrier protection, optoelectronic devices, humidity sensor and ultraviolet photoconductive sensor.

  16. Dechlorination of disinfection by-product monochloroacetic acid in drinking water by nanoscale palladized iron bimetallic particle.

    PubMed

    Chen, Chao; Wang, Xiangyu; Chang, Ying; Liu, Huiling

    2008-01-01

    Nanoscale palladized iron (Pd/Fe) bimetallic particles were prepared by reductive deposition method. The particles were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope (SEM), transmission electron microscope (TEM), and Brunauer-Emmett-Teller-nitrogen (BET-N2) method. Data obtained from those methods indicated that nanoscale Pd/Fe bimetallic particles contained alpha-Fe0. Detected Pd to Fe ratio by weight (Pd/Fe ratio) was close to theoretical value. Spherical granules with diameter of 47 +/- 11.5 nm connected with one another to form chains and the chains composed nanoscale Pd/Fe bimetallic particles. Specific surface area of particles was 51 m2/g. The factors, such as species of reductants, Pd/Fe ratio, dose of nanoscale Pd/Fe bimetallic particles added into solutions, solution initial pH, and a variety of solvents were studied. Dechlorination effect of monochloroacetic acid by different reductants followed the trend: nanoscale Pd/Fe bimetallic particles of 0.182% Pd/Fe > nanoscale Fe > reductive Fe. When the Pd/Fe ratio was lower than 0.083%, increasing Pd/Fe ratio would increase dechlorination efficiency (DE) of MCAA. When the Pd/Fe ratio was higher than 0.083%, increasing Pd/Fe ratio caused a decrease in DE. Adding more nanoscale Pd/Fe bimetallic particles to solution would enhance DE. The DE of MCAA decreased as initial pH of solution increased.

  17. Photocatalytic activity of binary metal oxide nanocomposites of CeO2/CdO nanospheres: Investigation of optical and antimicrobial activity.

    PubMed

    Magdalane, C Maria; Kaviyarasu, K; Vijaya, J Judith; Siddhardha, Busi; Jeyaraj, B

    2016-10-01

    We report the synthesis of high quality CeO2-CdO binary metal oxide nanocomposites were synthesized by a simple chemical precipitation and hydrothermal method. Cerium nitrate and cadmium nitrate were used as precursors. Composition, structure and morphology of the nanocomposites were analyzed by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). XRD pattern proves that the final product has cubic phase and the particle size diameter of the nanocomposites are 27nm, XRD results also indicated that the crystalline properties of the nanocomposite were improved without affecting the parent lattice, FESEM analysis indicates that the product is composed of spherical particles in clusters. The morphological and optical properties of CeO2-CdO nanosamples were characterized by HRTEM and DRS spectroscopy. The IR results showed high purity of products and indicated that the nanocomposites are made up of CeO2 and CdO bonds. Absorption spectra exhibited an upward shift in characteristic peaks caused by the addition of transition metal oxide, suggesting that crystallinity of both the metal oxide is improved due to specific doping level. TGA plots further confirmed the purity and stability of nanomaterials prepared. Hence the nanocomposite has cubic crystal lattice and form a homogeneous solid structure. From the result, Cd(2+) ions are embedded in the cubic crystal lattice of ceria. The growth rate increases which are ascribed to the cationic doping with a lower valence cation. Ce-Cd binary metal oxide nanocomposites showed antibacterial activity, it showed the better growth inhibition towards p.aeruginosa. Exploit of photodegradation and photocatalytic activity of large scale synthesis of CeO2-CdO binary metal oxide nanocomposites was reported. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Characterization of crystal structure features of a SIMOX substrate

    NASA Astrophysics Data System (ADS)

    Eidelman, K. B.; Shcherbachev, K. D.; Tabachkova, N. Yu.; Podgornii, D. A.; Mordkovich, V. N.

    2015-12-01

    The SIMOX commercial sample (Ibis corp.) was investigated by a high-resolution X-ray diffraction (HRXRD), a high-resolution transmission electron microscopy (HRTEM) and an Auger electron spectroscopy (AES) to determine its actual parameters (the thickness of the top Si and a continuous buried oxide layer (BOX), the crystalline quality of the top Si layer). Under used implantation conditions, the thickness of the top Si and BOX layers was 200 nm and 400 nm correspondingly. XRD intensity distribution near Si(0 0 4) reciprocal lattice point was investigated. According to the oscillation period of the diffraction reflection curve defined thickness of the overtop silicon layer (220 ± 2) nm. HRTEM determined the thickness of the oxide layer (360 nm) and revealed the presence of Si islands with a thickness of 30-40 nm and a length from 30 to 100 nm in the BOX layer nearby "BOX-Si substrate" interface. The Si islands are faceted by (1 1 1) and (0 0 1) faces. No defects were revealed in these islands. The signal from Si, which corresponds to the particles in an amorphous BOX matrix, was revealed by AES in the depth profiles. Amount of Si single crystal phase at the depth, where the particles are deposited, is about 10-20%.

  19. Unified Theory for Decoding the Signals from X-Ray Florescence and X-Ray Diffraction of Mixtures.

    PubMed

    Chung, Frank H

    2017-05-01

    For research and development or for solving technical problems, we often need to know the chemical composition of an unknown mixture, which is coded and stored in the signals of its X-ray fluorescence (XRF) and X-ray diffraction (XRD). X-ray fluorescence gives chemical elements, whereas XRD gives chemical compounds. The major problem in XRF and XRD analyses is the complex matrix effect. The conventional technique to deal with the matrix effect is to construct empirical calibration lines with standards for each element or compound sought, which is tedious and time-consuming. A unified theory of quantitative XRF analysis is presented here. The idea is to cancel the matrix effect mathematically. It turns out that the decoding equation for quantitative XRF analysis is identical to that for quantitative XRD analysis although the physics of XRD and XRF are fundamentally different. The XRD work has been published and practiced worldwide. The unified theory derives a new intensity-concentration equation of XRF, which is free from the matrix effect and valid for a wide range of concentrations. The linear decoding equation establishes a constant slope for each element sought, hence eliminating the work on calibration lines. The simple linear decoding equation has been verified by 18 experiments.

  20. A Curved Image-Plate Detector System for High-Resolution Synchrotron X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarin, P.; Haggerty, R; Yoon, W

    2009-01-01

    The developed curved image plate (CIP) is a one-dimensional detector which simultaneously records high-resolution X-ray diffraction (XRD) patterns over a 38.7 2{theta} range. In addition, an on-site reader enables rapid extraction, transfer and storage of X-ray intensity information in {le}30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X-ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate,more » regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X-ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high-temperature XRD.« less

  1. Simple X-ray diffraction algorithm for direct determination of cotton crystallinity

    USDA-ARS?s Scientific Manuscript database

    Traditionally, XRD had been used to study the crystalline structure of cotton celluloses. Despite considerable efforts in developing the curve-fitting protocol to evaluate the crystallinity index (CI), in its present state, XRD measurement can only provide a qualitative or semi-quantitative assessme...

  2. Effect of silver doping on the elastic properties of CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Dey, P. C.; Das, R.

    2018-05-01

    CdS and Ag doped CdS (CdS/Ag) nanoparticles have been prepared via chemical method from a Cadmium acetate precursor and Thiourea. The synthesized CdS and CdS/Ag nanoparticles have been characterized by the X-ray Diffraction and High Resolution Transmission Electron Microscope. Here, these nanoparticles have been synthesized at room temperature and all the characterization have also been done at room temperature only. The XRD results reveal that the products are crystalline with cubic zinc blende structure. HRTEM images show that the prepared nanoparticles are nearly spherical in shape. Williamson-Hall method and Size-Strain Plot (SSP) have been used to study the individual contribution of crystalline sizes and lattice strain on the peak broadening of the CdS and CdS/Ag nanoparticles. The different modified model of Williamson-Hall method such as, uniform deformation model, uniform stress deformation model and uniform energy density deformation model and SSP method have been used to calculate the different physical parameter such as lattice strain, stress and energy density for all diffraction peaks of the XRD, corresponding to the CdS and silver doped CdS (CdS/Ag). The obtained results reveal that the average particle size of the prepared CdS and CdS/Ag nanoparticles estimated from the HRTEM images, Williamson-Hall analysis and SSP method are highly correlated with each other. Further, all these result confirms that doping of Ag significantly affects the elastic properties of CdS.

  3. Amorphous Analogs of Martian Global Soil: Pair Distribution Function Analyses and Implications for Scattering Models of Chemin X-ray Diffraction Data

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Bish, D. L.; Rampe, E. B.; Morris, R. V.

    2015-01-01

    Soils on Mars have been analyzed by the Mars Exploration Rovers (MER) and most recently by the Mars Science Laboratory (MSL) rover. Chemical analyses from a majority of soil samples suggest that there is a relatively uniform global soil composition across much of the planet. A soil site, Rocknest, was sampled by the MSL science payload including the CheMin X-ray diffractometer and the Alpha Particle X-ray Spectrometer (APXS). Che- Min X-ray diffraction (XRD) data revealed crystalline phases and a broad, elevated background, indicating the presence of amorphous or poorly ordered materials (Fig 1). Based on the chemical composition of the bulk soil measured by APXS and the composition of crystalline phases derived from unit-cell parameters determined with CheMin data, the percentages of crystalline and amorphous phases were calculated at 51% and 49%, respectively. Attempts to model the amorphous contribution to CheMin XRD patterns were made using amorphous standards and full-pattern fitting methods and show that the broad, elevated background region can be fitted by basaltic glass, allophane, and palagonite. However, the modeling shows only that these phases have scattering patterns similar to that for the soil, not that they represent unique solutions. Here, we use pair distribution function (PDF) analysis to determine the short-range order of amorphous analogs in martian soils and better constrain the amorphous material detected by CheMin.

  4. Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange.

    PubMed

    Umamaheswari, C; Lakshmanan, A; Nagarajan, N S

    2018-01-01

    The present study reports, novel and greener method for synthesis of gold nanoparticles (AuNPs) using 5,7-dihydroxy-6-metoxy-3 ' ,4 ' methylenedioxyisoflavone (Dalspinin), isolated from the roots of Dalbergia coromandeliana was carried out for the first time. The synthesized gold nanoparticles were characterized by UV-Vis spectroscopy, high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The observed surface plasmon resonance (SPR) at 532nm in the UV-Vis absorption spectrum indicates the formation of gold nanoparticles. The powder XRD and SAED pattern for synthesized gold nanoparticles confirms crystalline nature. The HR-TEM images showed that the AuNPs formed were small in size, highly monodispersed and spherical in shape. The average particle sizes of the AuNPs are found to be ~10.5nm. The prepared AuNPs were found to be stable for more than 5months without any aggregation. The catalytic degradation studies of the synthesized AuNPs towards degradation of congo red and methyl orange, showed good catalytic in the complete degradation of both the dyes. The reduction catalyzed by gold nanoparticles followed the pseudo-first order kinetics, with a rate constant of 4.5×10 -3 s -1 (R 2 =0.9959) and 1.7×10 -3 s -1 (R 2 =0.9918) for congo red (CR) and methyl orange (MO), respectively. Copyright © 2017. Published by Elsevier B.V.

  5. Indium doped ZnO nano-powders prepared by RF thermal plasma treatment of In2O3 and ZnO

    NASA Astrophysics Data System (ADS)

    Lee, Mi-Yeon; Song, Min-Kyung; Seo, Jun-Ho; Kim, Min-Ho

    2015-06-01

    Indium doped ZnO nano-powders were synthesized by the RF thermal plasma treatment of In2O3 and ZnO. For this purpose, micron-sized ZnO powder was mixed with In2O3 powder at the In/Zn ratios of 0.0, 1.2, and 2.4 at. % by ball milling for 1 h, after which the mixtures were injected into RF thermal plasma generated at the plate power level of ˜140 kV A. As observed from the field emission scanning electron microscopy (FE-SEM) images of the RF plasma-treated powders, hexagonal prism-shaped nano-crystals were mainly obtained along with multi-pod type nano-particles, where the number of multi-pods decreased with increasing In/Zn ratios. In addition, the X-ray diffraction (XRD) data for the as-treated nano-powders showed the diffraction peaks for the In2O3 present in the precursor mixture to disappear, while the crystalline peaks for the single phase of ZnO structure shifted toward lower Bragg angles. In the UV-vis absorption spectra of the as-treated powders, redshifts were also observed with increases of the In/Zn ratios. Together with the FE-SEM images and the XRD data, the redshifts were indicative of the doping process of ZnO with indium, which took place during the RF thermal plasma treatment of In2O3 and ZnO.

  6. Structural, compositional, optical and colorimetric characterization of TiN-nanoparticles

    NASA Astrophysics Data System (ADS)

    Reinholdt, A.; Pecenka, R.; Pinchuk, A.; Runte, S.; Stepanov, A. L.; Weirich, Th. E.; Kreibig, U.

    2004-10-01

    We present results of an investigation of TiN nanoparticles, which were produced by laser ablation/evaporation and adiabatic expansion with the nanoparticle beam apparatus LUCAS. Compositional and structural characterization, using secondary ion mass spectrometry (SIMS), electron energy loss spectroscopy (EELS), X-ray diffraction (XRD) and selected area electron diffraction (SAED), revealed that crystalline and almost stoichiometric particles were formed and that they are susceptible to oxidation. Furthermore, transmission electron microscopy (TEM) analysis showed that TiN nanoparticles exhibit cuboid shapes. The size distributions were obtained using the edge length as parameter. They are fairly broad and the mean particle diameter depends on the seeding gas flow (the pressure) that is applied to the ablation chamber during production. In situ optical transmission spectra of the TiN nanoparticles deposited on a quartz substrate indicate a pronounced single Mie resonance at around 1.7 eV and an absorption flank starting at approximately 3.0 eV. The experimental optical extinction spectra of different samples were fitted using Mie theory calculations. The dielectric function of bulk TiN was modified to account for size and interface damping of the Mie resonance. Due to the distinct absorption band, TiN may be used as a color pigment. The dependence of the color stimulus on the extinction cross-section as well as on the product of the particle concentration and the sample thickness were examined. Chromaticity coordinates were derived according to the CIE 1976 (L^*a^*b^*) color space from the in situ optical transmission spectra.

  7. Controlled precipitation of nesquehonite (MgCO 3·3H 2O) by the reaction of MgCl 2 with (NH 4) 2CO 3

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Li, Zhibao; Demopoulos, George P.

    2008-03-01

    In this study, homogeneous (unseeded) precipitation of nesquehonite (MgCO 3·3H 2O) by the reaction of MgCl 2 with (NH 4) 2CO 3 in supersaturated solutions was investigated. Factors that influence the precipitation of MgCO 3·3H 2O, such as reaction temperature, initial concentration, stirring speed, titration speed, equilibration time, have been studied. SEM images and particle size distribution show that the temperature, initial concentration and titration speed have significant effect on nesquehonite's crystal morphology and particle size. In addition, stirring speed and equilibration time also have some influence on its properties. X-ray powder diffraction (XRD) results show that the obtained crystals compositions are greatly affected by the reaction temperature. With the morphological transformation, their corresponding composition also change from MgCO 3· xH 2O to Mg 5(CO 3) 4(OH) 2·4H 2O in the interval of 288-333 K. With the optimization of operating conditions, the crystals can grow up to a length of about 40 μm and a width of 5 μm, indicating good filtration properties. High-purity nesquehonite obtained in this study was calcined to produce highly pure MgO at 1073 K as shown by XRD results.

  8. In-vitro efficacy of different morphology zinc oxide nanopowders on Streptococcus sobrinus and Streptococcus mutans.

    PubMed

    Mohd Bakhori, Siti Khadijah; Mahmud, Shahrom; Ling, Chuo Ann; Sirelkhatim, Amna Hassan; Hasan, Habsah; Mohamad, Dasmawati; Masudi, Sam'an Malik; Seeni, Azman; Abd Rahman, Rosliza

    2017-09-01

    ZnO with two different morphologies were used to study the inhibition of Streptococcus sobrinus and Streptococcus mutans which are closely associated with tooth cavity. Rod-like shaped ZnO-A and plate-like shaped ZnO-B were produced using a zinc boiling furnace. The nanopowders were characterized using energy filtered transmission electron microscopy (EFTEM), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, Raman spectroscopy and dynamic light scattering (DLS) to confirm the properties of the ZnO polycrystalline wurtzite structures. XRD results show that the calculated crystallite sizes of ZnO-A and ZnO-B were 36.6 and 39.4nm, respectively, whereas DLS revealed particle size distributions of 21.82nm (ZnO-A) and 52.21nm (ZnO-B). PL spectra showed ion vacancy defects related to green and red luminescence for both ZnO particles. These defects evolved during the generation of reactive oxygen species which contributed to the antibacterial activity. Antibacterial activity was investigated using microdilution technique towards S. sobrinus and S. mutans at different nanopowder concentrations. Results showed that ZnO-A exhibited higher inhibition on both bacteria compared with ZnO-B. Moreover, S. mutans was more sensitive compared with S. sobrinus because of its higher inhibition rate. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Fabrication of nano structural biphasic materials from phosphogypsum waste and their in vitro applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Khaled R., E-mail: Kh_rezk966@yahoo.com; Mousa, Sahar M.; Inorganic Chemistry Department, National Research Centre, Dokki, P.O. Box 12622, 11787 Cairo

    2014-02-01

    Graphical abstract: (a) Schema of the process, (b) TEM of nano particles of biphasic materials and (c) SEM of post-immersion. - Highlights: • Ratio of HA and β-TCP phases were controlled by thermal treatment. • HA partially decomposed into β-TCP with other bioactive phases. • Calcined HA at 900 °C is the best for the bioactivity behavior. - Abstract: In this study, a novel process of preparing biphasic calcium phosphate (BCP) is proposed. Also its bioactivity for the utilization of the prepared BCP as a biomaterial is studied. A mixture of calcium hydroxyapatite (HAP) and tricalcium phosphate (β-TCP) could bemore » obtained by thermal treatment of HAP which was previously prepared from phosphogypsum (PG) waste. The chemical and phase composition, morphology and particle size of prepared samples was characterized by X-ray diffraction (XRD), Infrared spectroscopy (IR), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The bioactivity was investigated by soaking of the calcined samples in simulated body fluid (SBF). Results confirmed that the calcination temperatures played an important role in the formation of calcium phosphate (CP) materials. XRD results indicated that HAP was partially decomposed into β-TCP. The in vitro data confirmed that the calcined HAP forming BCP besides other phases such as pyrophosphate and silica are bioactive materials. Therefore, BCP will be used as good biomaterials for medical applications.« less

  10. Bio-synthesis of triangular and hexagonal gold nanoparticles using palm oil fronds’ extracts at room temperature

    NASA Astrophysics Data System (ADS)

    Usman, Adamu Ibrahim; Aziz, Azlan Abdul; Abu Noqta, Osama

    2018-01-01

    Development of bio-reduction techniques for nanoparticles (NPs) synthesis in medical application remains a challenge to numerous researchers. This work reports a novel technique for the synthesis of triangular and hexagonal gold nanoparticles (AuNP) using palm oil fronds’ (POFs) extracts. The functional groups in the POFs’ extracts operate as a persuasive capping and reducing agent to growth AuNPs. The prepared AuNPs were characterized using UV-vis spectrophotometry, Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering, energy filtered transmission electron microscopy (EFTEM), and x-ray diffraction (XRD). The analysis of FTIR validates the coating of alkynes and phenolic composites on the AuNPs. This shows a feasible function of biomolecules for efficient stabilization of the AuNPs. EFTEM clearly show the triangular and hexagonal shapes of the prepared AuNPs. The XRD patterns display the peaks of fcc crystal structures at (111), (200), (220), (311) and (222), with average particle sizes of 66.7 and 79.02 nm for 1% and 5% POFs extracts concentrations respectively at room temperature. While at 120 °C the average particles size recorded for 1% and 5% of POFs extract concentrations were 32.17 nm and 45.66 nm respectively, and the reaction completed in less than 2 min. The prepared NPs could be potentially applied in biomedical application, due to their excellent stability and refine morphology without agglomeration.

  11. Growth, characterization and estimation of lattice strain and size in CdS nanoparticles: X-ray peak profile analysis

    NASA Astrophysics Data System (ADS)

    Solanki, Rekha Garg; Rajaram, Poolla; Bajpai, P. K.

    2018-05-01

    This work is based on the growth, characterization and estimation of lattice strain and crystallite size in CdS nanoparticles by X-ray peak profile analysis. The CdS nanoparticles were synthesized by a non-aqueous solvothermal method and were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman and UV-visible spectroscopy. XRD confirms that the CdS nanoparticles have the hexagonal structure. The Williamson-Hall (W-H) method was used to study the X-ray peak profile analysis. The strain-size plot (SSP) was used to study the individual contributions of crystallite size and lattice strain from the X-rays peaks. The physical parameters such as strain, stress and energy density values were calculated using various models namely, isotropic strain model, anisotropic strain model and uniform deformation energy density model. The particle size was estimated from the TEM images to be in the range of 20-40 nm. The Raman spectrum shows the characteristic optical 1LO and 2LO vibrational modes of CdS. UV-visible absorption studies show that the band gap of the CdS nanoparticles is 2.48 eV. The results show that the crystallite size estimated from Scherrer's formula, W-H plots, SSP and the particle size calculated by TEM images are approximately similar.

  12. Modification of bone-like apatite nanoparticle size and growth kinetics by alizarin red S

    NASA Astrophysics Data System (ADS)

    Ibsen, Casper Jon Steenberg; Birkedal, Henrik

    2010-11-01

    The formation of nanocrystals in biomineralization such as in bone occurs under the influence of organic molecules. Prompted by this fact, the effect of alizarin red S, a dye used in in vivo bone labeling methods, on bone-like carbonated apatite nanocrystal formation was investigated as a function of alizarin red S additive concentration. The obtained nanoparticles were investigated by powder X-ray diffraction (XRD), FTIR as well thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) while the kinetics of nanoparticle formation was investigated by in situ pH and synchrotron XRD measurements. Increasing alizarin red S concentration lead to amorphous particles over a threshold concentration and to smaller crystallites in a dose-dependent fashion. Alizarin red S induced a macroscopic lattice strain that scaled linearly with the alizarin red S concentration; this effect is reminiscent of that seen in biogenic calcium carbonates. TGA showed that the amorphous particles contained significantly more water than the crystalline samples and the DSC data showed that crystallization occurs after loss of most of the included organic material. The in situ studies showed that the formation of apatite goes via the very rapid formation of an amorphous precursor that after a certain nucleation time crystallizes into apatite. This nucleation time increased exponentially with alizarin red S concentration showing that this additive strongly stabilizes the amorphous precursor phase.

  13. Size- and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes

    PubMed Central

    Raza, Muhammad Akram; Kanwal, Zakia; Rauf, Anum; Sabri, Anjum Nasim; Riaz, Saira; Naseem, Shahzad

    2016-01-01

    Silver nanoparticles (AgNPs) of different shapes and sizes were prepared by solution-based chemical reduction routes. Silver nitrate was used as a precursor, tri-sodium citrate (TSC) and sodium borohydride as reducing agents, while polyvinylpyrrolidone (PVP) was used as a stabilizing agent. The morphology, size, and structural properties of obtained nanoparticles were characterized by scanning electron microscopy (SEM), UV-visible spectroscopy (UV-VIS), and X-ray diffraction (XRD) techniques. Spherical AgNPs, as depicted by SEM, were found to have diameters in the range of 15 to 90 nm while lengths of the edges of the triangular particles were about 150 nm. The characteristic surface plasmon resonance (SPR) peaks of different spherical silver colloids occurring in the wavelength range of 397 to 504 nm, whereas triangular particles showed two peaks, first at 392 nm and second at 789 nm as measured by UV-VIS. The XRD spectra of the prepared samples indicated the face-centered cubic crystalline structure of metallic AgNPs. The in vitro antibacterial properties of all synthesized AgNPs against two types of Gram-negative bacteria, Pseudomonas aeruginosa and Escherichia coli were examined by Kirby–Bauer disk diffusion susceptibility method. It was noticed that the smallest-sized spherical AgNPs demonstrated a better antibacterial activity against both bacterial strains as compared to the triangular and larger spherical shaped AgNPs. PMID:28335201

  14. Effect of Modified Nanoclay Composite on Blended PVDF/PEG Electrolyte Membranes for Fuel Cell Applications

    NASA Astrophysics Data System (ADS)

    Bahavan Palani, P.; Sainul Abidin, K.; Kannan, R.; Rajashabala, S.

    This research work describes the fabrication of polymer blend nanocomposite membranes using the solution casting method. These membranes were fabricated with Poly (Vinylidene Fluoride) (PVdF) as host, Poly (Ethylene Glycol) (PEG) in steps of 2wt.% as blending polymer and Montmorillonite (MMT) nanoclay particles in steps of 3wt.% which were used as received. The protonated MMT was synthesized through an ion exchange process with column chromatographic technique. The prepared membrane’s performance was investigated using different characterization techniques of Thermo Gravimetric Analysis (TGA), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), water uptake, IEC and electrochemical impedance spectroscopy. Thermal stability was decreased while adding PEG into PVDF but it is controlled with the addition of MMT on PVDF/PEG blend matrix. Moreover, It is noticed that, the increase of water uptake, IEC by the increasing additive concentration of PEG and MMT. XRD studies reveal the increased amorphous phase with uniform exfoliation of nanoclay particles. The highest proton conductivity value of 0.127S cm‑1 is obtained with 9wt.% of MMT in the PVdF/PEG/MMT composite membranes at room temperature with 100% Relative Humid (RH) condition and 10 V.% of sulfonation. The blended nanocomposite membranes fulfill the requirements of proton exchange membrane for fuel cell application.

  15. Dissolution and storage stability of nanostructured calcium carbonates and phosphates for nutrition

    NASA Astrophysics Data System (ADS)

    Posavec, Lidija; Knijnenburg, Jesper T. N.; Hilty, Florentine M.; Krumeich, Frank; Pratsinis, Sotiris E.; Zimmermann, Michael B.

    2016-10-01

    Rapid calcium (Ca) dissolution from nanostructured Ca phosphate and carbonate (CaCO3) powders may allow them to be absorbed in much higher fraction in humans. Nanosized Ca phosphate and CaCO3 made by flame-assisted spray pyrolysis were characterized by nitrogen adsorption, X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy. As-prepared nanopowders contained both CaCO3 and CaO, but storing them under ambient conditions over 130 days resulted in a complete transformation into CaCO3, with an increase in both crystal and particle sizes. The small particle size could be stabilized against such aging by cation (Mg, Zn, Sr) and anion (P) doping, with P and Mg being most effective. Calcium phosphate nanopowders made at Ca:P ≤ 1.5 were XRD amorphous and contained γ-Ca2P2O7 with increasing hydroxyapatite content at higher Ca:P. Aging of powders with Ca:P = 1.0 and 1.5 for over 500 days gradually increased particle size (but less than for CaCO3) without a change in phase composition or crystallinity. In 0.01 M H3PO4 calcium phosphate nanopowders dissolved ≈4 times more Ca than micronsized compounds and about twice more Ca than CaCO3 nanopowders, confirming that nanosizing and/or amorphous structuring sharply increases Ca powder dissolution. Because higher Ca solubility in vitro generally leads to greater absorption in vivo, these novel FASP-made Ca nanostructured compounds may prove useful for nutrition applications, including supplementation and/or food fortification.

  16. Production of salbutamol sulfate for inhalation by high-gravity controlled antisolvent precipitation.

    PubMed

    Chiou, Herbert; Li, Li; Hu, Tingting; Chan, Hak-Kim; Chen, Jian-Feng; Yun, Jimmy

    2007-02-22

    The purpose of this study was to produce salbutamol sulfate (SS) as a model anti-asthmatic drug using high-gravity controlled precipitation (HGCP) through antisolvent crystallisation. An aqueous solution of SS was passed through a HGCP reactor with isopropanol as antisolvent to induce precipitation. Spray drying was employed to obtain dry powders. Scanning electron microscopy, X-ray powder diffraction (XRD), density measurement, thermal gravimetric analysis, and dynamic vapour sorption were carried out to characterise the powder physical properties. The aerosol performance of the powders was measured using an Aeroliser connected to a multiple stage liquid impinger operating at 60 L/min. The HGCP SS particles were elongated with 0.1 microm in width but varying length of several mum, which formed spherical agglomerates when spray dried. The particles showed the same XRD pattern and true density (1.3g/cm3) as the raw material, indicating that they belonged to the same crystalline form. However, the spray dried agglomerates had a much lower tapped density (0.1g/cm3) than the raw material (0.6g/cm3). Compared with the powder obtained by spray drying directly from an aqueous solution, the SS powders obtained from HGCP were much less hygroscopic (0.6% versus 10% water uptake at 90% RH). The in vitro aerosol performance showed a fine particle fraction FPFloaded and FPFemitted up to 54.5+/-4.9% and 71.3+/-10.0%, respectively. In conclusion, SS powder with suitable physical and aerosol properties can be obtained through antisolvent HGCP followed by spray drying.

  17. PyXRD v0.6.7: a free and open-source program to quantify disordered phyllosilicates using multi-specimen X-ray diffraction profile fitting

    NASA Astrophysics Data System (ADS)

    Dumon, M.; Van Ranst, E.

    2016-01-01

    This paper presents a free and open-source program called PyXRD (short for Python X-ray diffraction) to improve the quantification of complex, poly-phasic mixed-layer phyllosilicate assemblages. The validity of the program was checked by comparing its output with Sybilla v2.2.2, which shares the same mathematical formalism. The novelty of this program is the ab initio incorporation of the multi-specimen method, making it possible to share phases and (a selection of) their parameters across multiple specimens. PyXRD thus allows for modelling multiple specimens side by side, and this approach speeds up the manual refinement process significantly. To check the hypothesis that this multi-specimen set-up - as it effectively reduces the number of parameters and increases the number of observations - can also improve automatic parameter refinements, we calculated X-ray diffraction patterns for four theoretical mineral assemblages. These patterns were then used as input for one refinement employing the multi-specimen set-up and one employing the single-pattern set-ups. For all of the assemblages, PyXRD was able to reproduce or approximate the input parameters with the multi-specimen approach. Diverging solutions only occurred in single-pattern set-ups, which do not contain enough information to discern all minerals present (e.g. patterns of heated samples). Assuming a correct qualitative interpretation was made and a single pattern exists in which all phases are sufficiently discernible, the obtained results indicate a good quantification can often be obtained with just that pattern. However, these results from theoretical experiments cannot automatically be extrapolated to all real-life experiments. In any case, PyXRD has proven to be useful when X-ray diffraction patterns are modelled for complex mineral assemblages containing mixed-layer phyllosilicates with a multi-specimen approach.

  18. Anti-bacteria activity of carbon nanotubes grown on trimetallic catalyst

    NASA Astrophysics Data System (ADS)

    Ibrahim, S. O.; Abdulkareem, A. S.; Isah, K. U.; Ahmadu, U.; Bankole, M. T.; Kariim, I.

    2018-06-01

    Trimetallic catalyst was prepared using wet impregnation method to produce carbon nanotubes (CNTs) through the method of catalytic chemical vapor deposition (CCVD). Characterization of the developed catalyst and CNTs were carried out using thermogravimetric analysis (TGA), x-ray diffraction (XRD), specific surface area Brunauer-Emmett-Teller (BET), Fourier-transform infrared spectroscopy (FTIR), high-resolution scanning electron microscopy (HRSEM)/energy dispersive x-ray spectroscopy (EDS) and high-resolution transmission electron microscopy (HRTEM)/selected area electron diffraction (SAED). The BET and TGA analysis indicated that the catalyst has a high surface area and is thermally stable. The FTIR of the developed catalyst shows notable functional group with presence of unbound water. The HRSEM of the catalyst revealed agglomerated, homogeneous and porous particles while the HRSEM/HRTEM of the produced CNTs gave the formation of long strand of multiwalled carbon nanotubes (MWCNTs), and homogeneous crystalline fringe like structure with irregular diameter. EDS revealed the dominance of carbon in the elemental composition. XRD/SAED patterns of the catalyst suggest high dispersion of the metallic particles in the catalyst mixture while that of the CNTs confirmed that the produced MWCNTs were highly graphitized and crystalline in nature with little structural defects. The anti-bacteria activity of the produced MWCNTs on Klebsiella pneumoneae, Escherichia coli, and Pseudomonas aeruginosa was also carried out. It was observed that the produced MWCNTs have an inhibitory property on bacteria; Escherichia coli and Klebsiella pneumoneae from zero day ( and ) through to twelfth day (Nil count) respectively. It has no effect on Pseudomonas aeruginosa with too numerous to count at zero-sixth day, but a breakdown in its growth at ninth-twelfth day (). This study implied that MWCNTs with varying diameter and well-ordered nano-structure can be produced from catalyst via CCVD method, and it can be recommended that the MWCNTs can be used to treat infected media contaminated with Klebsiella pneumoneae, Escherichia coli, and Pseudomonas aeruginosa.

  19. Hydrothermal synthesis of highly crystalline RuS{sub 2} nanoparticles as cathodic catalysts in the methanol fuel cell and hydrochloric acid electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yanjuan; College of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun 130012; Li, Nan, E-mail: lin@jlu.edu.cn

    2015-05-15

    Highlights: • Highly crystalline RuS{sub 2} nanoparticles have been first synthesized by a “one-step” hydrothermal method. • The product presents a pure cubic phase of stoichiometric ratio RuS{sub 2} with average particle size of 14.8 nm. • RuS{sub 2} nanoparticles were used as cathodic catalysts in methanol fuel cell and hydrochloric acid electrolysis. • The catalyst outperforms commercial Pt/C in methanol tolerance and stability towards Cl{sup −}. - Abstract: Highly crystalline ruthenium sulfide (RuS{sub 2}) nanoparticles have been first synthesized by a “one-step” hydrothermal method at 400 °C, using ruthenium chloride and thiourea as reactants. The products were characterized bymore » powder X-ray diffraction (XRD), scanning electron microscopy/energy disperse spectroscopy (SEM/EDS), thermo gravimetric-differential thermal analyze (TG-DTA), transmission electron microscopy equipped with selected area electron diffraction (TEM/SAED). Fourier transform infrared spectra (IR), and X-ray photoelectron spectroscopy (XPS). XRD result illustrates that the highly crystalline product presents a pure cubic phase of stoichiometric ratio RuS{sub 2} and the average particle size is 14.8 nm. SEM and TEM images display the products have irregular shape of 6–25 nm. XPS analyst indicates that the sulfur exists in the form of S{sub 2}{sup 2−}. Cyclic voltammetry (CV), rotating disk electrode (RDE), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) measurements are conducted to evaluate the electrocatalytic activity and stability of the highly crystalline RuS{sub 2} nanoparticles in oxygen reduction reaction (ORR) for methanol fuel cell and hydrochloric acid electrolysis. The results illustrate that RuS{sub 2} is active towards oxygen reduction reaction. Although the activity of RuS{sub 2} is lower than that of Pt/C, the RuS{sub 2} catalyst outperforms commercial Pt/C in methanol tolerance and stability towards Cl{sup −}.« less

  20. Application of graphene oxide-poly (vinyl alcohol) polymer nanocomposite for memory devices

    NASA Astrophysics Data System (ADS)

    Kaushal, Jyoti; Kaur, Ravneet; Sharma, Jadab; Tripathi, S. K.

    2018-05-01

    Significant attention has been gained by polymer nanocomposites because of their possible demands in future electronic memory devices. In the present work, device based on Graphene Oxide (GO) and polyvinyl alcohol (PVA) has been made and examined for the memory device application. The prepared Graphene oxide (GO) and GO-PVA nanocomposite (NC) has been characterized by X-ray Diffraction (XRD). GO nanosheets show the diffraction peak at 2θ = 11.60° and the interlayer spacing of 0.761 nm. The XRD of GO-PVA NC shows the diffraction peak at 2θ =18.56°. The fabricated device shows bipolar switching behavior having ON/OFF current ratio ˜102. The Write-Read-Erase-Read (WRER) cycles test shows that the Al/GO-PVA/Ag device has good stability and repeatability.

  1. Thermal behaviour and microanalysis of coal subbituminus

    NASA Astrophysics Data System (ADS)

    Heriyanti; Prendika, W.; Ashyar, R.; Sutrisno

    2018-04-01

    Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) is used to study the thermal behaviour of sub-bituminous coal. The DSC experiment was performed in air atmosphere up to 125 °C at a heating rate of 25 °C min1. The DSC curve showed that the distinct transitional stages in the coal samples studied. Thermal heating temperature intervals, peak and dissociation energy of the coal samples were also determined. The XRD analysis was used to evaluate the diffraction pattern and crystal structure of the compounds in the coal sample at various temperatures (25-350 °C). The XRD analysis of various temperatures obtained compounds from the coal sample, dominated by quartz (SiO2) and corundum (Al2O3). The increase in temperature of the thermal treatment showed a better crystal formation.

  2. A facile synthesis for cauliflower like CeO2 catalysts from Ce-BTC precursor and their catalytic performance for CO oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Hou, Fulin; Yang, Yang; Wang, Yuxin; Liu, Ning; Chen, Dan; Yang, Yiqiong

    2017-11-01

    The paper presents a novel and facile method for preparing cauliflowerlike CeO2 through direct decomposition of cerium based metal-organic framework (MOF) Ce-BTC (BTC = 1,3,5-benzenetricarboxylic acid) straw in air. Several analytical tools such as Scanning electron microscopy (SEM), X-ray diffraction (XRD), Thermogravimetric (TG), N2 adsorption-desorption, Temperature programmed reduction (TPR), Raman, X-ray photoelectron spectroscopic (XPS) and Photoluminescence (PL) have been used to characterize Ce-BTC and CeO2. The Ce-BTC calcined at 500 °C (CeO2-500) maintains the morphology of its template ;Ce-BTC; and forms a special cauliflower-like structure. XRD patterns showed that the catalyst has a perfect CeO2 crystal structure and has a smaller particle size. The prepared CeO2 cauliflowers exhibit excellent catalytic activities, long-term stability, and cycling stability for CO oxidation. The improved catalytic activities could be attributed to porous nanorods of CeO2 cauliflowers, which provide more active sites and oxygen vacancy for CO oxidation.

  3. Morphological evolution of Bi2Se3 nanocrystalline materials synthesized by microwave assisted solvothermal method

    NASA Astrophysics Data System (ADS)

    Bera, Sumit; Behera, P.; Mishra, A. K.; Krishnan, M.; Patidar, M. M.; Singh, D.; Gangrade, M.; Venkatesh, R.; Deshpande, U. P.; Phase, D. M.; Ganesan, V.

    2018-04-01

    Structural, morphological and spectroscopic properties of Bi2Se3 nanoparticles synthesized by microwave assisted solvothermal method were investigated systematically. A controlled synthesis of different morphologies by a small variation in synthesis procedure is demonstrated. Powder X-ray diffraction (XRD) confirmed the formation of single phase. Crystallite and particle size reductions were studied with XRD and AFM (Atomic Force Microscopy). Different morphologies such as hexagonal nanoflakes with cross section of around˜6µm, nanoflower and octahedral agglomerated crystals of nearly ˜60 nm size have been observed in scanning electron microscope while varying the microwave assisted synthesis procedures. A significant blue shift observed in diffuse reflectance spectroscopy evidences the energy gap tuning as a result of morphological evolution. The difference in morphology observed in this three fast, facile and scalable synthesis is advantageous for tuning the thermoelectric figure of merit and for probing the surface states of these topological insulators. Low temperature resistivity remains similar for all three variants depicting a 2D character as evidenced by a -lnT term of localization.

  4. STRUCTURAL, OPTICAL AND ELECTRICAL PROPERTIES OF PET POLYMER FILMS MODIFIED BY LOW ENERGY Ar+ ION BEAMS

    NASA Astrophysics Data System (ADS)

    Fawzy, Y. H. A.; Abdel-Hamid, H. M.; El-Okr, M. M.; Atta, A.

    Polyethylene terephthalate (PET) films with thickness 40μm are irradiated with 3keV argon ion beams with different fluence ranging from 0.5×1018ions.cm-2 to 2×1018ions.cm-2 using locally designed broad ion source. The changes in the PET structure are characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) and scanning electron microscope (SEM) techniques. The XRD patterns show that the peak intensity decreases with irradiation and the particle size decreases from 65.75 Å for the un-irradiated to 52.80 Å after irradiation. The FTIR indicates partial decrease and reduction in the intensity of the bands due to the degradation of the polymer after ion irradiation. The optical energy band gap decreases from 3.14eV to 3.05eV and the number of carbon cluster increases from 119 to 126 after ion irradiation. The results show a slight increase in the electrical conductivities and the dielectric constant (ɛ). The results indicate the effectiveness of using PET films as capacitors and resistors in industrial applications.

  5. Thermal, structural, functional, optical and magnetic studies of pure and Ba doped CdO nanoparticles.

    PubMed

    Sivakumar, S; Venkatesan, A; Soundhirarajan, P; Khatiwada, Chandra Prasad

    2015-12-05

    In this research, a chemical precipitation method was used to synthesize undoped and doped cadmium oxide nanoparticles and studied by TG-DTA, XRD, FT-IR, SEM, with EDX and antibacterial activities, respectively. The melting points, thermal stability and the kinetic parameters like entropy (ΔS), enthalpy (ΔH), Gibb's energy (ΔG), activation energy (E), frequency factor (A) were evaluated from TG-DTA measurements. X-ray diffraction analysis (XRD) brought out the information about the synthesized products exist in spherical in shape with cubic structure. The functional groups and band area of the samples were established by Fourier transform infrared (FT-IR) spectroscopy. The direct and indirect band gap energy of pure and doped samples were determined by UV-Vis-DRS. The surface morphological, elemental compositions and particles sizes were evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Finally, antibacterial activities indicated the Gram-positive and Gram-negative bacteria are more active in transporter, dehydrogenize and periplasmic enzymatic activities of pure and doped samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Mesoporous CdS via Network of Self-Assembled Nanocrystals: Synthesis, Characterization and Enhanced Photoconducting Property.

    PubMed

    Patra, Astam K; Banerjee, Biplab; Bhaumik, Asim

    2018-01-01

    Semiconduction nanoparticles are intensively studied due to their huge potential in optoelctronic applications. Here we report an efficient chemical route for hydrothermal synthesis of aggregated mesoporous cadmium sulfide (CdS) nanoparticles using supramolecular-assembly of ionic and water soluble sodium salicylate as the capping agent. The nanostructure, mesophase, optical property and photoconductivity of these mesoporous CdS materials have been characterized by using small and wide angle powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2-sorption, Raman analysis, Fourier transformed infrared (FT-IR), UV-Visible DSR spectroscopy, and photoconductivity measurement. Wide angle XRD pattern and high resolution TEM image analysis suggested that the particle size of the materials is within 10 nm and the nanoparticles are in well-crystallized cubic phase. Mesoporous CdS nanoparticles showed drastically enhanced photoelectrochemical response under visible light irradiation on entrapping a photosensitizer (dye) molecule in the interparticle spaces. Efficient synthesis strategy and the enhanced photo response in the mesoporous CdS material could facilitate the designing of other porous semiconductor oxide/sulfide and their applications in photon-to-electron conversion processes.

  7. Matrix Dissolution Techniques Applied to Extract and Quantify Precipitates from a Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Lu, Junfang; Wiskel, J. Barry; Omotoso, Oladipo; Henein, Hani; Ivey, Douglas G.

    2011-07-01

    Microalloyed steels possess good strength and toughness, as well as excellent weldability; these attributes are necessary for oil and gas pipelines in northern climates. These properties are attributed in part to the presence of nanosized carbide and carbonitride precipitates. To understand the strengthening mechanisms and to optimize the strengthening effects, it is necessary to quantify the size distribution, volume fraction, and chemical speciation of these precipitates. However, characterization techniques suitable for quantifying fine precipitates are limited because of their fine sizes, wide particle size distributions, and low volume fractions. In this article, two matrix dissolution techniques have been developed to extract precipitates from a Grade100 (yield strength of 690 MPa) microalloyed steel. Relatively large volumes of material can be analyzed, and statistically significant quantities of precipitates of different sizes are collected. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) are combined to analyze the chemical speciation of these precipitates. Rietveld refinement of XRD patterns is used to quantify fully the relative amounts of the precipitates. The size distribution of the nanosized precipitates is quantified using dark-field imaging in the TEM.

  8. Sonochemical method for producing titanium metal powder.

    PubMed

    Halalay, Ion C; Balogh, Michael P

    2008-07-01

    We demonstrate a sonochemical method for producing titanium metal powder. The method uses low intensity ultrasound in a hydrocarbon solvent at near-ambient temperatures to first create a colloidal suspension of liquid sodium-potassium alloy in the solvent and then to reduce liquid titanium tetrachloride to titanium metal under cavitation conditions. XRD data collected for the reaction products after the solvent removal show only NaCl and KCl, with no diffraction peaks attributable to titanium metal or other titanium compounds, indicating either the formation of amorphous metal or extremely small crystallite size. TEM micrographs show that hollow spheres formed of halide salts and titanium metal, with diameters with diameters ranging from 100 to 500 nm and a shell thickness of 20 to 40 nm form during the synthesis, suggesting that the sonochemical reaction occurs inside the liquid shell surrounding the cavitation bubbles. Metal particle sizes are estimated to be significantly smaller than 40 nm from TEM data. XRD data of the powder after annealing and prior to removal of the alkali chloride salts provides direct evidence that titanium metal was formed during the sonochemical synthesis.

  9. The effect of carbon nanotubes functionalization on the band-gap energy of TiO2-CNT nanocomposite

    NASA Astrophysics Data System (ADS)

    Shahbazi, Hessam; Shafei, Alireza; Sheibani, Saeed

    2018-01-01

    In this paper the morphology and structure of TiO2-CNT nanocomposite powder obtained by an in situ sol-gel process were investigated. The synthesized nanocomposite powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and diffuse reflectance spectroscopy (DRS). The effect of functionalizing of CNT on the properties was studied. XRD results showed amorphous structure before calcination. Also, anatase phase TiO2 was formed after calcination at 400 °C. The SEM results indicate different distributions of TiO2 on CNTs. As a result, well dispersed TiO2 microstructure on the surface of CNTs was observed after functionalizing, while compact and large aggregated particles were found without functionalizing. The average thickness of uniform and well-defined coated TiO2 layer was in the range of 30-40 nm. The DRS results have determined the reflective properties and band gap energies of nanocomposite powders and have shown that functionalizing of CNTs caused the change of band-gap energy from 2.98 to 2.87 eV.

  10. UV-visible spectroscopic estimation of photodegradation of rhodamine-B dye using tin(IV) oxide nanoparticles.

    PubMed

    Sangami, G; Dharmaraj, N

    2012-11-01

    Nanocrystalline, tin(IV) oxide (SnO(2)) particles has been prepared by thermal decomposition of tin oxalate precursor obtained from the reactions of tin(IV) chloride and sodium oxalate using eggshell membrane (ESM). The as-prepared SnO(2) nanoparticles were characterized by thermal studies, transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Raman, FT-IR and UV-visible studies and used as a photocatalyst for the degradation of rhodamine-B (Rh-B) dye. The size of the prepared nanoparticles was in the range of 5-12nm as identified from the TEM images. Powder XRD data revealed the presence of a tetragonal, rutile crystalline phase of the tin(IV) oxide nanoparticles. Thermal analysis showed that the decomposition of tin oxalate precursor to yield the titled tin(IV) oxide nanoparticles was completed below 500°C. The extent of degradation of Rh-B in the presence of SnO(2) monitored by absorption spectral measurements demonstrated that 94.48% of the selected dye was degraded upon irradiation with UV light for 60 min. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Fluorine-doped NiO nanostructures: Structural, morphological and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Singh, Kulwinder; Kumar, Manjeet; Singh, Dilpreet; Singh, Manjinder; Singh, Paviter; Singh, Bikramjeet; Kaur, Gurpreet; Bala, Rajni; Thakur, Anup; Kumar, Akshay

    2018-05-01

    Nanostructured NiO has been prepared by co-precipitation method. In this study, the effect of fluorine doping (1, 3 and 5 wt. %) on the structural, morphological as well as optical properties of NiO nanostructures has been studied. X-ray diffraction (XRD) has employed for studying the structural properties. Cubic crystal structure of NiO was confirmed by the XRD analysis. Crystallite size increased with increase in doping concentration. Nelson-Riley factor (NRF) analysis indicated the presence of defect states in the synthesized samples. Field emission scanning electron microscopy showed the spherical morphology of the synthesized samples and also revealed that the particle size varied with dopant content. The optical properties were studied using UV-Visible Spectroscopy. The results indicated that the band gap energy of the synthesized nanostructures decreased with increase in doping concentration upto 3% but increased as the doping concentration was further raised to 5%. This can be ascribed to the defect states variations in the synthesized samples. The results suggested that the synthesized nanostructures are promising candidate for optoelectronic as well as gas sensing applications.

  12. Efficient photo-catalytic degradation of malachite green using nickel tungstate material as photo-catalyst.

    PubMed

    Helaïli, N; Boudjamaa, A; Kebir, M; Bachari, K

    2017-03-01

    The present study focused on the evaluation of photo-catalytic and photo-electrochemical properties of the photo-catalyst based on nickel tungstate material prepared by a nitrate method through the degradation of malachite green (MG) dye's. The effect of catalyst loading and dye concentration was examined. Physico-chemical, optical, electrical, electrochemical, and photo-electrochemical properties of the prepared material were analyzed by X-ray diffraction (XRD), fourier transform-infrared spectroscopy (FTIR), BET analysis, optical reflectance diffuse (DR), scanning electron microscopy (SEM/EDX), electrical conductivity, cyclic voltammetry (CV), current intensity, mott-shottky, and nyquist. XRD revealed the formation of monoclinic structure with a small particle size. BET surface area of the sample was around 10 m 2 /g. The results show that the degradation of MG was more than 80%, achieved after 3 h of irradiation at pH 4.6 and with a catalyst loading of 75 mg. Also, it was found that the dye photo-degradation obeyed the pseudo-first order kinetic via Langmuir Hinshelwood model.

  13. Size-controlled synthesis of NiFe2O4 nanospheres via a PEG assisted hydrothermal route and their catalytic properties in oxidation of alcohols by periodic acid

    NASA Astrophysics Data System (ADS)

    Paul, Bappi; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar

    2016-05-01

    A novel and facile approach for synthesis of spinel nickel ferrites (NiFe2O4) nanoparticles (NPs) employing homogeneous chemical precipitation followed by hydrothermal heating is reported. The synthesis involves use of tributylamine (TBA) as a hydroxylating agent in synthesis of nickel ferrites. Polyethylene glycol (PEG) 4000 was used as surfactant. As-synthesized NiFe2O4 NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption isotherm (BET) and vibrating sample magnetometry (VSM). The XRD pattern revealed formation of cubic face-centered NiFe2O4 and TEM image showed spherical particles of sizes 2-10 nm. These NiFe2O4 NPs were used as magnetically recoverable catalyst in oxidation of cyclic alcohols to their corresponding aldehydes by periodic acid. This eco-friendly procedure affords products in very high yield and selectivity. The reusability of the catalyst is proved to be noteworthy as the material exhibits no significant changes in its catalytic activity even after five cycles of reuse.

  14. Al3+ ions dependent structural and magnetic properties of Co-Ni nano-alloys.

    PubMed

    Kadam, R H; Alone, Suresh T; Gaikwad, Anil S; Birajdar, A P; Shirsath, Sagar E

    2014-06-01

    Ferrite samples with a chemical formula Co0.5Ni0.5Al(x)Fe(2-x)O4 (where x = 0.0, 0.25, 0.5, 0.75 and 1.0) were synthesized by sol-gel auto-combustion method. The synthesized samples were annealed at 600 degrees C for 4 h. An analysis of X-ray diffraction (XRD) patterns reveals the formation of single phase cubic spinel structure. The lattice parameter decreased linearly with the increasing Al content x. Nano size of the powders were confirmed by the transmission electron micrographs (TEM). Particle size, bulk density decreased whereas specific surface area and porosity of the samples increased with the Al substitution. Cation distribution of constituent ions shows linear dependence of Al substitution. Based on the cation distribution obtained from XRD data, structural parameters such as lattice parameters, ionic radii of available sites and the oxygen parameter 'u' is calculated. Saturation magnetization (M(s)), magneton number (n(B)) and coercivity (H(c)) decreased with the Al substitution. Possible explanation for the observed structural and magnetic behavior with various Al content are discussed.

  15. Intercalated chitosan/hydroxyapatite nanocomposites: Promising materials for bone tissue engineering applications.

    PubMed

    Nazeer, Muhammad Anwaar; Yilgör, Emel; Yilgör, Iskender

    2017-11-01

    Preparation and characterization of chitosan/hydroxyapatite (CS/HA) nanocomposites displaying an intercalated structure is reported. Hydroxyapatite was synthesized through sol-gel process. Formic acid was introduced as a new solvent to obtain stable dispersions of nano-sized HA particles in polymer solution. CS/HA dispersions with HA contents of 5, 10 and 20% by weight were prepared. Self-assembling of HA nanoparticles during the drying of the solvent cast films led to the formation of homogeneous CS/HA nanocomposites. Composite films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-rays (EDX) analysis, Fourier transform infrared (FTIR) spectroscopy, X-rays diffraction (XRD) analysis and thermogravimetric analysis (TGA). SEM and AFM confirmed the presence of uniformly distributed HA nanoparticles on the chitosan matrix surface. XRD patterns and cross-sectional SEM images showed the formation of layered nanocomposites. Complete degradation of chitosan matrix in TGA experiments, led to the formation of nanoporous 3D scaffolds containing hydroxyapatite, β-tricalcium phosphate and calcium pyrophosphate. CS/HA composites can be considered as promising materials for bone tissue engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Estimation of lattice strain in nanocrystalline RuO2 by Williamson-Hall and size-strain plot methods.

    PubMed

    Sivakami, R; Dhanuskodi, S; Karvembu, R

    2016-01-05

    RuO2 nanoparticles (RuO2 NPs) have been successfully synthesized by the hydrothermal method. Structure and the particle size have been determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). UV-Vis spectra reveal that the optical band gap of RuO2 nanoparticles is red shifted from 3.95 to 3.55eV. BET measurements show a high specific surface area (SSA) of 118-133m(2)/g and pore diameter (10-25nm) has been estimated by Barret-Joyner-Halenda (BJH) method. The crystallite size and lattice strain in the samples have been investigated by Williamson-Hall (W-H) analysis assuming uniform deformation, deformation stress and deformation energy density, and the size-strain plot method. All other relevant physical parameters including stress, strain and energy density have been calculated. The average crystallite size and the lattice strain evaluated from XRD measurements are in good agreement with the results of TEM. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Kyllinga brevifolia mediated greener silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Isa, Norain; Bakhari, Nor Aziyah; Sarijo, Siti Halimah; Aziz, Azizan; Lockman, Zainovia

    2017-12-01

    Kyllinga brevifolia extract (KBE) was studied in this research as capping as well as reducing agent for the synthesis of greener plant mediated silver nanoparticles. This research was conducted in order to identify the compounds in the KBE that probable to work as reductant for the synthesis of Kyllinga brevifolia-mediated silver nanoparticles (AgNPs). Screening test such as Thin Layer Chromatography (TLC), Fourier Transform Infra-Red (FTIR), Carlo Erba Elemental analysis and Gas Chromatography-Mass Spectroscopy (GCMS) were used in identifying the natural compounds in KBE. The as-prepared AgNPs were characterized by UV-vis spectroscopy (UV-vis), Transmission Electron Microscope (TEM) and X-ray Diffraction (XRD). The TEM images showed that the as-synthesized silver have quasi-spherical particles are distributed uniformly with a narrow distribution from 5 nm to 40 nm. The XRD results demonstrated that the obtained AgNPs were face centre-cubic (FCC) structure. The catalytic activity of AgNPs on reduction of methylene blue (MB) using sodium borohydride (SB) was analyzed using UV-vis spectroscopy. This study showed that the efficacy of mediated AgNPs in catalysing the reduction of MB.

  18. One Step Synthesis of NiO Nanoparticles via Solid-State Thermal Decomposition at Low-Temperature of Novel Aqua(2,9-dimethyl-1,10-phenanthroline)NiCl2 Complex

    PubMed Central

    Barakat, Assem; Al-Noaimi, Mousa; Suleiman, Mohammed; Aldwayyan, Abdullah S.; Hammouti, Belkheir; Ben Hadda, Taibi; Haddad, Salim F.; Boshaala, Ahmed; Warad, Ismail

    2013-01-01

    [NiCl2(C14H12N2)(H2O)] complex has been synthesized from nickel chloride hexahydrate (NiCl2·6H2O) and 2,9-dimethyl-1,10-phenanthroline (dmphen) as N,N-bidentate ligand. The synthesized complex was characterized by elemental analysis, infrared (IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy and differential thermal/thermogravimetric analysis (TG/DTA). The complex was further confirmed by single crystal X-ray diffraction (XRD) as triclinic with space group P-1. The desired complex, subjected to thermal decomposition at low temperature of 400 ºC in an open atmosphere, revealed a novel and facile synthesis of pure NiO nanoparticles with uniform spherical particle; the structure of the NiO nanoparticles product was elucidated on the basis of Fourier transform infrared (FT-IR), UV-vis spectroscopy, TG/DTA, XRD, scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDXS) and transmission electron microscopy (TEM). PMID:24351867

  19. Effect of surfactant types and their concentration on the structural characteristics of nanoclay

    NASA Astrophysics Data System (ADS)

    Zawrah, M. F.; Khattab, R. M.; Saad, E. M.; Gado, R. A.

    2014-03-01

    A series of organo-modified nanoclays was synthesized using three different surfactants having different alkyl chain lengths and concentrations [0.5-5.0 cation exchange capacity (CEC)]. These surfactants were Ethanolamine (EA), Cetyltrimethylammoniumbromide (CTAB) and Tetraoctadecylammoniumbromide (TO). The obtained modified nanoclays were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM) and compared with unmodified nanoclay. The results of XRD analysis indicated that the basal d-spacing has increased with increasing alkyl chain length and surfactant concentration. From the obtained microstructures of these organo-modified nanoclays, the mechanism of surfactant adsorption was proposed. At relatively low loading of surfactant, most of surfactant entered the spacing by an ion-exchange mechanism and is adsorbed onto the interlayer cation sites. When the concentration of the surfactant exceeds the CEC of clay, the surfactant molecules then adhere to the surface adsorbed surfactant. Some surfactants entered the interlayers, whereas the others were attached to the clay surface. When the concentration of surfactant increased further beyond 2.0 CEC, the surfactants might occupy the inter-particle space within the house-of-cards aggregate structure.

  20. Effect of carbon coating on spontaneous C12A7 whisker formation

    NASA Astrophysics Data System (ADS)

    Zaikovskii, Vladimir I.; Volodin, Alexander M.; Stoyanovskii, Vladimir O.; Cherepanova, Svetlana V.; Vedyagin, Aleksey A.

    2018-06-01

    A carbon nanoreactor concept was applied to study the stabilization effect of carbon shell on phase composition and morphology of dodecacalcium hepta-aluminate Ca12Al14O33. The starting C12A7 powder was obtained using aluminum and calcium hydroxides as precursors. Carbon shell was formed by a chemical vapor deposition of divinyl at 550 °C. After the calcination at 1400 °C, the product was characterized by X-ray diffraction analysis (XRD) and high resolution transmission electron microscopy (HRTEM). It was observed for a first time that spontaneous formation of calcium aluminate whiskers take place under the conditions described. Each whisker consists of a 'head' (globular particle of 0.5 microns in diameter) and a 'tail' (prolonged whisker of few microns in length and 0.1-0.2 microns in diameter). According to HRTEM, the 'head' is characterized with microcrystal lattice of Ca12Al14O33 compound. XRD data show the presence of CaAl2O4 phase traces. The 'head' and 'tail' of the whisker are covered with structured graphene layers of 10 nm and 3 nm, correspondingly.

  1. Nano-sized ZnO powders prepared by co-precipitation method with various pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwaningsih, S. Y., E-mail: sriyanisaputri@gmail.com; Pratapa, S.; Triwikantoro,

    2016-04-19

    In this work, nano-sized ZnO powders have been synthesized by the co-precipitation method with Zn(CH3COOH)2.2H2O, HCl, and NH3.H2O as raw materials in various pH ranging from 8 to 10. The purity, microstructure, chemical group analysis, morphology of the prepared ZnO powders were studied by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), energy dispersive X-ray spectrometry (EDX), and scanning electron microscope (SEM), respectively. Rietveld refinement of XRD data showed that ZnO crystallizes in the wurtzite structure with high purity. The obtained powders were nano-sized particles with the average crystallite size about 17.9 ± 2.1 nm synthesized with pH of 9.5, atmore » 85°C, and stirring time of 6 h. The SEM results have visualied the morphology of ZnO nanoparticles with spherical-like shape. The effect of processing conditions on morphology of ZnO was also discussed.« less

  2. Synthesis and Characterization of ZNO/MN Nanocomposite by using Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Ningsih, S. K. W.; Bahrizal, B.; Nasra, E.; Nizar, U. K.; Farisya, R.

    2018-04-01

    Zink oxide doped Mn nanocomposites were synthesized by simple sol-gel method at low temperature by using combination of aquadest with methanol as the solvent and ethylene glycol as the additive. Zink acetate dehydrate and manganese chloride tetrahydrate were used as the precursors. Composition dopants were 1,3,5,and 7%. The crystals were formed by drying at 110°C for 1 hour, after which they were heated at ± 500°C for 2 hours. The as-prepared ZnO/Mn nanocomposites were characterized by X-ray diffraction (XRD) and UV Diffuse Reflectance Spectrometer (UVDRS). The XRD patterns of the ZnO nanocrystals showed that they are mostly hexagonal wurtzite with specific peaks at 2θ = 31, 34, 36, 47, 56, 63, 66 dan 69. The sizes of the ZnO doped Mn particles produced with 1%, 3%, 5% and 7% were18-95; 17-87; 18-96 19-98 nm, respectively. UVDRS analysis showed that the band gap of the ZnO were 2,60; 2,90; 2,99 dan 3,01 eV for 1%, 3%, 5% and 7% Mn respectively.

  3. Synthesis and characterization of fluorapatite-titania (FAp-TiO 2) nanocomposite via mechanochemical process

    NASA Astrophysics Data System (ADS)

    Ebrahimi-Kahrizsangi, Reza; Nasiri-Tabrizi, Bahman; Chami, Akbar

    2010-09-01

    In this paper, synthesis of bionanocomposite of fluorapatite-titania (FAp-TiO 2) was studied by using one step mechanochemical process. Characterization of the products was accomplished by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. Based on XRD patterns and FT-IR spectroscopy, correlation between the structural features of the nanostructured FAp-TiO 2 and the process conditions was discussed. Variations in crystallite size, lattice strain, and volume fraction of grain boundary were investigated during milling and the following heat treatment. Crystallization of the nanocomposite occurred after thermal treatment at 650 °C. Morphological features of powders were influenced by the milling time. The resulting FAp-20 wt.%TiO 2 nanocomposite powder exhibited an average particle size of 15 nm after 20 h of milling. The results show that the one step mechanosynthesis technique is an effective route to prepare FAp-based nanocomposites with excellent morphological and structural features.

  4. Synthesis and structural characterization of polyaniline/cobalt chloride composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asha, E-mail: arana5752@gmail.com; Goyal, Sneh Lata; Kishore, Nawal

    2016-05-23

    Polyaniline (PANI) and PANI /cobalt chloride composites were synthesized by in situ chemical oxidative polymerization of aniline with CoCl{sub 2}.6H{sub 2}O using ammonium peroxidisulphate as an oxidant. These composites were characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The XRD study reveals that both PANI and composites are amorphous. The XRD and SEM results confirm the presence of cobalt chloride in the composites.

  5. Preparation and characterization of uniform nanosized cephradine by combination of reactive precipitation and liquid anti-solvent precipitation under high gravity environment.

    PubMed

    Zhong, Jie; Shen, Zhigang; Yang, Yan; Chen, Jianfeng

    2005-09-14

    In this work, a novel direct method, which was combined with reactive precipitation and liquid anti-solvent precipitation under high gravity environment, had been developed to prepare nanosized cephradine with narrow particle size distribution. Compared with commercial crude cephradine, the prepared cephradine showed a significant decrease in particle size, a significant increase in the specific surface area and shorter dissolving time when used for injection. The characteristic particle size was between 200-400 nm. The specific surface area increased from 2.95 to 10.87 m2/g after micronization. When the amount of L-arginin decreased from 0.25 to 0.18 g, the mixture of nanosized cephradine and L-arginine could still dissolve in 1 min. The X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) analysis indicated that the physical characteristics and molecular states remained unchanged after the recrystallization process. This method had potential application in industrial fields because of its low cost, efficient processing and the ease of scaling-up.

  6. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries.

    PubMed

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance ((29)Si MAS NMR and (13)CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.

  7. Core-shell structured SiO2@YVO4:Dy3+/Sm3+ phosphor particles: sol-gel preparation and characterization.

    PubMed

    Wang, H; Yu, M; Lin, C K; Lin, J

    2006-08-01

    Spherical SiO(2) particles have been coated with YVO(4):Dy(3+)/Sm(3+) phosphor layers by a Pechini sol-gel process, leading to the formation of core-shell structured SiO(2)@YVO(4):Dy(3+)/Sm(3+) particles. X-ray diffraction (XRD), Fourier-transform IR spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting SiO(2)@YVO(4):Dy(3+)/Sm(3+) core-shell phosphors. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ca. 300 nm), smooth surface and non-agglomeration. The thickness of shells could be easily controlled by changing the number of deposition cycles (20 nm for one deposition cycle). The core-shell particles show strong characteristic emission from Dy(3+) for SiO(2)@YVO(4):Dy(3+) and from Sm(3+) for SiO(2)@YVO(4):Sm(3+) due to an efficient energy transfer from YVO(4) host to them. The PL intensity of Dy(3+) and Sm(3+) increases with raising the annealing temperature and the number of coating cycles.

  8. Synthesis and characterization of nanocrystalline Al 2024-B4C composite powders by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Varol, T.; Canakci, A.

    2013-06-01

    In the present work, the effect of milling parameters on the morphology and microstructure of nanostructure Al2024-B4C composite powders obtained by mechanical alloying (MA) was studied. The effects of milling time and B4C content on the morphology, microstructure and particle size of nanostructure Al2024-B4C composite powders have been investigated. Different amounts of B4C particles (0, 5, 10 and 20 wt.%) were mixed with Al2024 powders and milled in a planetary ball mill for 30, 60, 120, 300, 420 and 600 min. Al 2024-B4C composite powders were characterized using a scanning electron microscope (SEM), laser particle-size analyzer, X-ray diffraction analysis (XRD) and the Vickers microhardness test. The results showed that the nanostructure Al2024-B4C composite powders were produced when they were milled for 600 min. The size of composite powder in the milled powder mixture was affected by the milling time and content of B4C particles. Moreover, it was observed that when MA reached a steady state, the properties of composite powders were stabilized.

  9. Effect of magnesium content on the microstructure and dry sliding wear behavior of centrifugally cast functionally graded A356-Mg2Si in situ composites

    NASA Astrophysics Data System (ADS)

    Ram, Subhash Chandra; Chattopadhyay, K.; Chakrabarty, I.

    2018-04-01

    Functionally graded A356 alloy (Al–7.2Si–0.3Mg) –Mg2Si in situ composites have been synthesized via centrifugal casting route. Mg2Si particles tend to migrate towards the core of the tubular product by centrifugal force. The in situ formed Mg2Si particles in composites are characterized by x-ray diffraction (XRD) analysis, Energy dispersive spectrometry (EDS), Optical, Scanning Electron and Transmission Electron Microscopy. Apart from primary blocky Mg2Si particles the matrix contains other phases viz. Al-Si eutectic, pseudo-binary Al-Mg2Si eutectic and Al-Fe-Si intermetallics. Density is found to decrease and %porosity is increased with increase in volume fraction of Mg2Si. Maximum hardness was observed at the inner core region due to maximum segregation of Mg2Si particles and gradually decreases towards the outer periphery region. The dry sliding wear was evaluated with varying parameters such as normal loads (N) and sliding distances (m). A substantial increase in wear resistance at the inner core region is observed. From the worn surface characterization, the wear mechanisms have been explained.

  10. Fabrication of ternary Ni-TiO2-TiC composite coatings and their enhanced microhardness for metal finishing application

    NASA Astrophysics Data System (ADS)

    Kumaraguru, S.; Kumar, Gopika G.; Raghu, S.; Gnanamuthu, RM.

    2018-07-01

    Nickel (Ni) is extensively used for major engineering application. But nickel exhibits lower mechanical properties such as hardness and wear resistance than Ni-based composite materials. So, in this work, we significantly improve the mechanical properties of Ni by incorporating titanium dioxide (TiO2) and titanium carbide (TiC) particles. Ni-TiO2-TiC composite coatings are successfully prepared on mild steel specimens by means of electrodeposition technique. The prepared coatings are characterized by employing X-ray diffraction (XRD), energy dispersive X-ray fluorescence spectroscopy (EDXRF), scanning electron microscopy (SEM), atomic force microscopy (AFM) and Vicker's hardness tester. The surface morphological analysis points out the growth of cauliflower morphology and pyramid-like structure decorated with spherical particles at room temperature. Likewise, hill-valley like structure has been formed in the electrolyte temperature of 75 °C. The upshot of electrolyte temperature and concentration of TiO2-TiC particles on the microhardness of the composite deposits is investigated. The microhardness value is superior when the higher quantity of TiO2-TiC particles encapsulated in the coatings.

  11. Mulberry leaf extract mediated synthesis of gold nanoparticles and its anti-bacterial activity against human pathogens

    NASA Astrophysics Data System (ADS)

    Adavallan, K.; Krishnakumar, N.

    2014-06-01

    Gold nanoparticles (Au-NPs) were synthesized at room temperature using Morus alba (mulberry) leaf extract as reducing and stabilizing agent. The development of plant mediated synthesis of nanoparticles is gaining importance due to its simplicity, low cost, non-toxicity, eco-friendliness, long term stability and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au-NPs. The formation and morphology of biosynthesized nanoparticles are investigated with the help of UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) techniques. Au-NPs formation was screened by UV-Vis spectroscopy through color conversion due to surface plasmon resonance band at 538 nm for Au-NPs. DLS studies revealed that the average size of Au-NPs was 50 nm. TEM studies showed the particles to be nearly spherical with few irregular shapes and particle size ranges 15-53 nm. The AFM image clearly shows the surface morphology of the well-dispersed Au-NPs with less than 50 nm. The high crystallinity of nanoparticles is evident from bright circular spots in the selected area electron diffraction (SAED) pattern. X-ray diffraction pattern showed high purity and face-centered cubic structure of Au-NPs. The FT-IR results indicate the presence of different functional groups present in the biomolecule capping the nanoparticles. Further, biosynthesized Au-NPs show strong zone of inhibition against Vibrio cholera (gram-negative) and Staphylococcus aureus (gram-positive) whereas, chemically synthesized Au-NPs and mulberry leaf extract exhibit a fair zone of inhibition.

  12. Microwave-Assisted Synthesis of Perovskite SrSnO 3 Nanocrystals in Ionic Liquids for Photocatalytic Applications

    DOE PAGES

    Alammar, Tarek; Hamm, Ines; Grasmik, Viktoria; ...

    2017-06-05

    Nanosized SrSnO 3 photocatalysts have been successfully synthesized by microwave synthesis in various ionic liquids (ILs) followed by a heat treatment process to optimize the materials’ crystallinity. The influence of the ILs with various cations such as 1-butyl-3-methylimidazolium ([C 4mim] +), 6-bis(3-methylimidazolium-1-yl)hexane ([C 6(mim) 2] 2+), butylpyridinium ([C 4Py] +), and tetradecyltrihexylphosphonium ([P 66614] +) and bis(trifluoromethanesulfonyl)amide ([Tf 2N] -) as the anion on the structure, crystallization, and morphology of the products was investigated. The samples were characterized by X-ray diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM), surface area analysis by gas adsorption, X-ray photoelectron spectroscopy (XPS), diffuse reflectancemore » UV–vis spectroscopy, and Raman and IR spectroscopy. According to structure characterization by XRD and Raman spectroscopy all samples crystallized phase-pure in the orthorhombic GdFeO 3 perovskite structure type. SEM reveals that, on the basis of the IL, the obtained SrSnO 3 nanoparticles exhibit different morphologies and sizes. Rod-shaped particles are formed in [C 4mim][Tf 2N], [C 6(mim) 2][Tf 2N] 2, and [P 66614][Tf 2N]. However, the particle dimensions and size distribution vary depending on the IL and range from quite thin and long needlelike particles with a narrow size distribution obtained in [P 66614][Tf 2N] to relatively larger particles with a broader size distribution obtained in [C 6(mim) 2][Tf 2N] 2. In contrast, in [C 4Py][Tf 2N] nanospheres with a diameter of about 50 nm form. For these particles the highest photocatalytic activity was observed. Our investigations indicate that the improved photocatalytic activity of this material results from the synergistic effect of the relatively large surface area associated with nanosize and an appropriate energy band structure.« less

  13. Application of Mythen detector: In-situ XRD study on the thermal expansion behavior of metal indium

    NASA Astrophysics Data System (ADS)

    Du, Rong; Chen, ZhongJun; Cai, Quan; Fu, JianLong; Gong, Yu; Wu, ZhongHua

    2016-07-01

    A Mythen detector has been equipped at the beamline 4B9A of Beijing Synchrotron Radiation Facility (BSRF), which is expected to enable BSRF to perform time-resolved measurement of X-ray diffraction (XRD) full-profiles. In this paper, the thermal expansion behavior of metal indium has been studied by using the in-situ XRD technique with the Mythen detector. The indium was heated from 303 to 433 K with a heating rate of 2 K/min. The in-situ XRD full-profiles were collected with a rate of one profile per 10 seconds. Rietveld refinement was used to extract the structural parameters. The results demonstrate that these collected quasi-real-time XRD profiles can be well used for structural analysis. The metal indium was found to have a nonlinear thermal expansion behavior from room temperature to the melting point (429.65 K). The a-axis of the tetragonal unit cell expands with a biquadratic dependency on temperature, while the c-axis contracts with a cubic dependency on temperature. By the time-resolved XRD measurements, it was observed that the [200] preferred orientation can maintain to about 403.15 K. While (110) is the last and detectable crystal plane just before melting of the polycrystalline indium foil. This study is not only beneficial to the application of metal indium, but also exhibits the capacity of in-situ time-resolved XRD measurements at the X-ray diffraction station of BSRF.

  14. The Effect of Rare Earth Dopants in Crystal Structure of Bi-2212 Superconductor

    NASA Astrophysics Data System (ADS)

    Suharta, W. G.; Widagda, IGA.; Putra, K.; Suyanto, H.

    2017-03-01

    Bi2Sr2CaCu2O8+∂ samples have been successfully synthesized by doping rare earth (RE) variations using wet-mixing method. Samples calcined at 600°C for 3 hours and sintered at 850°C for 10 hours. The purpose of research is to determine the effect of the RE dopant on the microscopic structure of BSCRECO superconductors. Therefore, the research was conducted characterization by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Measurements with XRD could be carried out and crystal system of Bi2Sr2CaCu2O8+∂ with rare earth (RE) dopants could be determined clearly. Generally, crystallization has occurred very well demonstrated by the diffraction peaks are sharp, which is dominated by the emergence of Bi-2212 phase. Search match results of XRD spectrum showed Bi2Sr2CuOx (2201) and Ca2CuO3 (21) as an impurity phase with small intensity. Also, that is showing volume fraction from 85 to 92% and orthorombic value for all samples from 5 to 7%. The effect of RE dopants resulted a shift angle 2θ and changes in the volume of the unit cells of each sample. The value of the unit cell volume of the largest to smallest is BS(CN)CO, BS(CNG)CO, BS(CNEG)CO, BS(CNE)CO, BS(CG)CO, BS(CEG)CO and BS(CE)CO. Measurement with FTIR showed the bending vibration absorption by CO3 2- in the wavelength range between 1500 and 1520 cm-1, vibration of M-O between 420 and 650 cm-1, the complex formation of BSCCO in the wavelength range between 1690 and 1700 cm-1. Measurement with SEM showed rod shape with particle size in hundreds nanometer.

  15. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    PubMed

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.

  16. Structure and morphology evolution of silica-modified pseudoboehmite aerogels during heat treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakharukova, V.P., E-mail: verapakh@catalysis.ru; Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk; Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Novosibirsk 630090

    Silica-modified pseudoboehmite aerogels (0, 10, 20 at% of Si) were prepared by sol–gel method followed by supercritical drying. The phase transformations, changes in structure and morphology upon calcination were thoroughly investigated by advanced X-Ray diffraction (XRD) techniques and high-resolution transmission electron microscopy (HRTEM). Obtained pseudoboehmite samples had specific nanostructure: ultrathin two-dimensional (2D) crystallites were loosely packed. The silica dopant drastically enhanced the crystallite anisotropy. Thus, the aerogel with Al:Si atomic ratio of 9:1 consisted of the pseudoboehmite nanosheets with thickness of one unit cell (average dimensions of 14.0×1.2×14.5 nm). The specific nanostructure caused remarkable features of experimental XRD patterns, includingmore » anisotropic peak broadening and appearance of forbidden reflection. Direct simulation of XRD patterns with using the Debye Scattering Equation allowed the size and morphology of pseudoboehmite crystallites to be determined. The silica addition strongly delayed formation of γ-alumina and further phase transformations upon calcinaton. Thermal stability of alumina was suggested to be affected by the particle morphology inherited from the pseudoboehmite precursor. - Graphical abstract: Pseudoboehmite samples had specific nanostructure: ultrathin two-dimensional (2D) crystallites were loosely packed. - Highlights: • Silica-doped boehmites were prepared by sol–gel method with supercritical drying. • Ultrathin two-dimensional crystallites of pseudoboehmite were obtained. • Changes in structure and morphology upon calcination were studied. • Simulation of XRD patterns was performed with use of the Debye Scattering Equation. • Thermal stability of alumina depended on morphology inherited from pseudoboehmite.« less

  17. XANES: observation of quantum confinement in the conduction band of colloidal PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Demchenko, I. N.; Chernyshova, M.; He, X.; Minikayev, R.; Syryanyy, Y.; Derkachova, A.; Derkachov, G.; Stolte, W. C.; Piskorska-Hommel, E.; Reszka, A.; Liang, H.

    2013-04-01

    The presented investigations aimed at development of inexpensive method for synthesized materials suitable for utilization of solar energy. This important issue was addressed by focusing, mainly, on electronic local structure studies with supporting x-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis of colloidal galena nano-particles (NPs) and quantum dots (QDs) synthesized using wet chemistry under microwave irradiation. Performed x-ray absorption near edge structure (XANES) analysis revealed an evidence of quantum confinement for the sample with QDs, where the bottom of the conduction band was shifted to higher energy. The QDs were found to be passivated with oxides at the surface. Existence of sulfate/sulfite and thiosulfate species in pure PbS and QDs, respectively, was identified.

  18. Superhydrophobic coatings on wood substrate for self-cleaning and EMI shielding

    NASA Astrophysics Data System (ADS)

    Xing, Yingjie; Xue, Yaping; Song, Jinlong; Sun, Yankui; Huang, Liu; Liu, Xin; Sun, Jing

    2018-04-01

    A layer of superhydrophobic coating having good electromagnetic shielding and self-cleaning performance was fabricated on a wood surface through an electroless copper plated process. The superhydrophobic property of the wood surface was measured by contact angle (CA) and roll-off angle (RA) measurements. The microstructure and chemical composition of the superhydrophobic coating were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The analysis revealed that the microscale particles were uniformly distributed on the wood surface and the main component of the coating is metallic copper. The as-prepared Cu coatings on wood substrate exhibit a good superhydrophobicity with water contact angle about 160° and rolling angle less than 5°.

  19. Sulfide semiconductor materials prepared by high-speed electrodeposition and discussion of electrochemical reaction mechanism

    NASA Astrophysics Data System (ADS)

    Okamoto, Naoki; Kataoka, Kentaro; Saito, Takeyasu

    2017-07-01

    A manufacturing method for SnS using a one-step electrochemical technique was developed. The sulfide semiconductor was formed by electrodeposition using an aqueous bath at low temperatures. The sulfide semiconductor particles produced were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The highest current density at which SnS was formed was 1800 mA/cm2 at a bath temperature of 293 K, which is 36 times larger than that in a previous deposition process. Analysis of the chronoamperometric current-time transients indicated that in the potential range from -1100 to -2000 mV vs saturated calomel electrode (SCE), the electrodeposition of SnS can be explained by an instantaneous nucleation model.

  20. Electrodeposition of CuZn Alloys from the Non-Cyanide Alkaline Baths

    NASA Astrophysics Data System (ADS)

    Li, Minggang; Wei, Guoying; Hu, Shuangshuang; Xu, Shuhan; Yang, Yejiong; Miao, Qinfang

    2015-10-01

    Effect of copper sulfate on CuZn alloys electroplating from non-cyanide baths are investigated by different electrochemical methods. Cyclic voltammetry and current transient measurements are used to characterize the CuZn alloys electroplating system in order to analyze the nucleation and growth mechanism. The reduction of Cu and CuZn alloy on sheet iron substrates shows an instantaneous nucleation process. However, the reduction of Zn on sheet iron substrates shows a progressive nucleation process. The structure and surface morphology of CuZn alloys are analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The morphology of CuZn alloys obtained with 50 g L-1 copper sulfate presents a smooth and compact deposit and the size of crystal particle is uniform.

  1. Scintillation properties of Li6Y0.5Gd0.5(BO3)3: Ce3+ single crystal

    NASA Astrophysics Data System (ADS)

    Fawad, U.; Rooh, Gul; Kim, H. J.; Park, H.; Kim, Sunghwan; Khan, Sajid

    2015-01-01

    The Ce3+ doped mixed crystals of Li6Y(BO3)3 and Li6Gd(BO3)3 are grown by Czochralski technique with equal mole ratios of both Yttrium and Gadolinium i.e. Li6Y0.5Gd0.5(BO3)3. The grown crystals have the dimensions of ∅10×30 mm2. Powder X-ray diffraction (XRD) analysis confirmed single phase of the grown crystals. X-ray and laser induced luminescence spectra are presented. Scintillation properties such as energy resolution, light yield, decay time and α/β ratio under the excitation of 137Cs γ-ray photons and 241Am α-particles are also reported in this article.

  2. Synthesis of Zeolite-X from Bottom Ash for H2 Adsorption

    NASA Astrophysics Data System (ADS)

    Kurniawan, R. Y.; Romadiansyah, T. Q.; Tsamarah, A. D.; Widiastuti, N.

    2018-01-01

    Zeolite-X was synthesized from bottom ash power plant waste using fusion method on air atmosphere. The fused product dissolved in demineralized water and aluminate solution was added to adjust the SiO2/Al2O3 molar ratio gel prior hydrothermal process. The synthesis results were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Fourier Transform Infrared (FTIR). The results showed that the zeolite-X has a high crystallinity with octahedral particle. The pure-form zeolite-X then was characterized and tested for H2 gas adsorption by gravimetric method to determine the H2 gas adsorption capacity of zeolite-X from bottom ash and it was compared to synthetic zeolite-X.

  3. Synthesis and dielectric properties of zinc oxide nanoparticles using a biotemplate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P, Sharmila P, E-mail: sharmilavishram@gmail.com; Tharayil, Nisha J., E-mail: nishajohntharayil@gmail.com

    Zinc Oxide nanoparticles are synthesized using DNA as capping agent. Zinc oxide nanoparticles are synthesized using DNA as a capping agent. Structural and morphological characterizations are done using SEM, FTIR and XRD. The particle size and lattice parameters are calculated from the diffraction data. The optical properties are studied using UV-Vis absorption spectroscopy and bandgap variation with temperature is determined. The dielectric property of nanoparticles is studied by varying temperature and frequency. The dielectric constant and dispersion parameters are found out. Method of Cole-Cole analysis is used to study the high temperature dispersion of relaxation time. The variation of bothmore » AC and DC conductivity are studied and activation energy calculated.« less

  4. Electrodeposition of Fe{sub 3}O{sub 4} layer from solution of Fe{sub 2}(SO{sub 4}){sub 3} with addition ethylene glycol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlan, Dahyunir, E-mail: dahyunir@yahoo.com; Asrar, Allan

    2016-03-11

    The electrodeposition of Fe{sub 3}O{sub 4} layer from the solution Fe{sub 2}(SO{sub 4}){sub 3} with the addition of ethylene glycol on Indium Tin Oxide (ITO) substrate has been performed. The electrodeposition was carried out using a voltage of 5 volts for 120 seconds, with and without the addition of 2% wt ethylene glycol. Significant effects of temperature on the resulting the samples is observed when they are heated at 400 °C. Structural characterization using X-ray diffraction (XRD) shows that all samples produce a layer of Fe{sub 3}O{sub 4} with particle size less than 50 nanometers. The addition of ethylene glycolmore » and the heating of the sample causes a shrinkage in particle size. The scanning electron microscopy (SEM) characterization shows that Fe{sub 3}O{sub 4} layer resulting from the process of electrodeposition of Fe{sub 2}(SO{sub 4}){sub 3} without ethylene glycol, independent of whether the sample is heated or not, is uneven and buildup. Layer produced by the addition of ethylene glycol without heating produces spherical particles. On contrary, when the layer is heated the spherical particles transform to irregularly-shaped particles with smaller size.« less

  5. Facile and fast synthesis of SnS2 nanoparticles by pulsed laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Johny, J.; Sepulveda-Guzman, S.; Krishnan, B.; Avellaneda, D.; Shaji, S.

    2018-03-01

    Nanoparticles (NPs) of tin disulfide (SnS2) were synthesized using pulsed laser ablation in liquid (PLAL) technique. Effects of different liquid media and ablation wavelengths on the morphology and optical properties of the nanoparticles were studied. Nd: YAG laser wavelengths of 532 nm and 1064 nm (frequency 10 Hz and pulse width 10 ns) were used to irradiate SnS2 target immersed in liquid for the synthesis of SnS2 nanoparticles. Here PLAL was a fast synthesis technique, the ablation was only for 30 s. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis absorption spectroscopy and photoluminescence spectroscopy were used to characterize the SnS2 NPs. TEM images showed that the liquid medium and laser wavelength influence the morphology of the NPs. SAED patterns and high resolution TEM (HRTEM) images confirmed the crystallinity of the particles. XRD and XPS analyses confirmed that SnS2 NPs were having exact crystalline structure and chemical states as that of the target. Raman analysis also supported the results obtained by XRD and XPS. Optical band gaps of the nanocolloids evaluated from their UV-vis absorption spectra were 2.4-3.05 eV. SnS2 NPs were having luminescence spectra in the blue-green region irrespective of the liquid media and ablation wavelength.

  6. Effect of lattice strain on structural and magnetic properties of Ca substituted barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Supriya, Sweety; Pandey, Rabichandra; Pradhan, Lagen Kumar; Singh, Rakesh Kumar; Kar, Manoranjan

    2018-07-01

    The calcium (Ca2+) substituted M-type barium hexaferrite (Ba1-xCaxFe12O19) for Ca2+ (x = 0.00, 0.025, 0.050, 0.075, 0.100, 0.150, and 0.200) have been synthesized by the citrate sol-gel method. The X-ray diffraction (XRD) patterns with Rietveld refinement reveal the formation of hexagonal crystal structure with P63/mmc space group. The lattice parameters a = b and c decrease, whereas lattice strain found to increase with the increase in Ca concentration in the samples. The analysis of Raman spectra well supports the XRD patterns analysis. The average particle size is obtained from the FE-SEM (Field Emission Scanning Electron Microscopy) micrographs and these are similar to that of crystallite size obtained from the XRD pattern analysis. The saturation magnetization and magnetocrystalline anisotropy have been obtained by employing the "Law of Approach (LA) to Saturation magnetization" technique at room temperature. The saturation magnetization and magnetocrystalline anisotropy constant are maximum for 5% Ca substitution in barium hexaferrite. It could be due to lattice strain mediated magnetism. However, these magnetic properties decrease for more than the 5% Ca substitution in barium hexaferrite. It could be due to decrease of magnetic exchange interaction (Fe-O-Fe) in the sample. A correlation between magnetic interaction and lattice strain has been observed in Ca2+ substituted M-type barium hexaferrite.

  7. Electrochemical and Morphological Investigations of Ga Addition to Pt Electrocatalyst Supported on Carbon

    PubMed Central

    Paganoto, Giordano T.; Santos, Deise M.; Guimarães, Marco C. C.; Carneiro, Maria Tereza W. D.

    2017-01-01

    This paper is consisted in the synthesis of platinum-based electrocatalysts supported on carbon (Vulcan XC-72) and investigation of the addition of gallium in their physicochemical and electrochemical properties toward ethanol oxidation reaction (EOR). PtGa/C electrocatalysts were prepared through thermal decomposition of polymeric precursor method at a temperature of 350°C. Six different compositions were homemade: Pt50Ga50/C, Pt60Ga40/C, Pt70Ga30/C, Pt80Ga20/C, Pt90Ga10/C, and Pt100/C. These electrocatalysts were electrochemically characterized by cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS) in the presence and absence of ethanol 1.0 mol L−1. Thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were also carried out for a physicochemical characterization of those materials. XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and TEM analysis range from 7.2 nm to 12.9 nm. The CV results indicate behavior typical of Pt-based electrocatalysts in acid medium. The CV, EIS, and CA data reveal that the addition of up to 31% of gallium to the Pt highly improves catalytic activity on EOR response when compared to Pt100/C. PMID:28466065

  8. The Effect of Compaction Force on the Transition to Hydrate of Anhydrous Aripiprazole.

    PubMed

    Togo, Taichiro; Taniguchi, Toshiya; Nakata, Yoshitaka

    2018-01-01

    Aripiprazole (APZ) is used to treat schizophrenia and is administered as a tablet containing the anhydrous form of APZ. In this study, the effect of compaction force on the crystal form transition was investigated. The crystalline state was observed by X-ray diffraction (XRD). APZ Anhydrous Form II was compacted into tablets. The XRD intensity of anhydrous APZ became lower with higher compressive force. The degree of crystallinity decreased with the compaction force. The powder and the compacted tablets of anhydrous APZ were stored for one week under 60°C and 75% relative humidity. The powder showed no crystal form transition after storage. For the tablets, however, XRD peaks of APZ hydrate were observed after storage. The tablets compacted with higher force showed the higher XRD diffraction intensity of hydrate form. We concluded that the crystallinity reduction of APZ Anhydrous Form II by compaction caused and accelerated the transition to hydrate under high temperature and humidity conditions. In order to manufacture crystallographically stable tablets containing anhydrous APZ, it is important to prevent this crystallinity reduction during compaction.

  9. Interface morphology of a Cr(001)/Fe(001) superlattice determined by scanning tunneling microscopy and x-ray diffraction: A comparison

    NASA Astrophysics Data System (ADS)

    Schmidt, C. M.; Bürgler, D. E.; Schaller, D. M.; Meisinger, F.; Güntherodt, H.-J.; Temst, K.

    2001-01-01

    A Cr(001)/Fe(001) superlattice with ten bilayers grown by molecular beam epitaxy on a Ag(001) substrate is studied by in situ scanning tunneling microscopy (STM) and ex situ x-ray diffraction (XRD). Layer-resolved roughness parameters determined from STM images taken in various stages of the superlattice fabrication are compared with average values reported in the literature or obtained from the fits of our XRD data. Good agreement is found for the rms roughnesses describing vertical roughness and for the lateral correlation lengths characterizing correlated as well as uncorrelated interface roughness if peculiarities of STM and XRD are taken into account. We discuss in detail (i) the possible differences between the STM topography of a free surface and the morphology of a subsequently formed interface, (ii) contributions due to chemical intermixing at the interfaces, (iii) the comparison of XRD parameters averaged over all interfaces versus layer-resolved STM parameters, and (iv) the question of the coherent field of view for the determination of rms values.

  10. X-Ray Diffraction of different samples of Swarna Makshika Bhasma.

    PubMed

    Gupta, Ramesh Kumar; Lakshmi, Vijay; Jha, Chandra Bhushan

    2015-01-01

    Shodhana and Marana are a series of complex procedures that identify the undesirable effects of heavy metals/minerals and convert them into absorbable and assimilable forms. Study on the analytical levels is essential to evaluate the structural and chemical changes that take place during and after following such procedures as described in major classical texts to understand the mystery behind these processes. X-Ray Diffraction (XRD) helps to identify and characterize minerals/metals and fix up the particular characteristics pattern of prepared Bhasma. To evaluate the chemical changes in Swarna Makshika Bhasma prepared by using different media and methods. In this study, raw Swarna Makshika, purified Swarna Makshika and four types of Swarna Makshika Bhasma prepared by using different media and methods were analyzed by XRD study. XRD study of different samples revealed strongest peaks of iron oxide in Bhasma. Other phases of Cu2O, FeS2, Cu2S, FeSO4, etc., were also identified in many of the samples. XRD study revealed that Swarna Makshika Bhasma prepared by Kupipakwa method is better, convenient, and can save time.

  11. Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature

    PubMed Central

    Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J.; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; Schafer, Donald W.; Messerschmidt, Marc; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Grosse-Kunstleve, Ralf W.; Zwart, Petrus H.; White, William E.; Glatzel, Pieter; Adams, Paul D.; Bogan, Michael J.; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K.; Yachandra, Vittal K.; Bergmann, Uwe; Yano, Junko

    2013-01-01

    Intense femtosecond X-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) of microcrystals of Photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD/XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies. PMID:23413188

  12. Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature.

    PubMed

    Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; Difiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; Schafer, Donald W; Messerschmidt, Marc; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Grosse-Kunstleve, Ralf W; Zwart, Petrus H; White, William E; Glatzel, Pieter; Adams, Paul D; Bogan, Michael J; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K; Yachandra, Vittal K; Bergmann, Uwe; Yano, Junko

    2013-04-26

    Intense femtosecond x-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous x-ray diffraction (XRD) and x-ray emission spectroscopy (XES) of microcrystals of photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD-XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation-sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies.

  13. Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.

    PubMed

    Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming

    2015-06-01

    This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.

  14. Characterization of mineral phases of agricultural soil samples of Colombian coffee using Mössbauer spectroscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Rodríguez, Humberto Bustos; Lozano, Dagoberto Oyola; Martínez, Yebrayl Antonio Rojas; Pinilla, Marlene Rivera; Alcázar, German Antonio Pérez

    2012-03-01

    Soil chemical analysis, X-ray diffraction (XRD) and Mössbauer spectrometry (MS) of 57Fe were used to characterize mineral phases of samples taken from the productive layer (horizon A) of agricultural coffee soil from Tolima (Colombia). Chemical analysis shows the chemical and textural parameters of samples from two different regions of Tolima, i.e., Ibagué and Santa Isabel. By XRD phases like illite (I), andesine (A) and quartz (Q) in both samples were identified. The quantity of these phases is different for the two samples. The MS spectra taken at room temperature were adjusted by using five doublets, three of them associated to Fe + 3 type sites and the other two to Fe + 2 type sites. According to their isomer shift and quadrupole splitting the presence of phases like illite (detected by DRX), nontronite and biotite (not detected by XRD) can be postulated.

  15. Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science.

    PubMed

    Svarcová, Silvie; Kocí, Eva; Bezdicka, Petr; Hradil, David; Hradilová, Janka

    2010-09-01

    The uniqueness and limited amounts of forensic samples and samples from objects of cultural heritage together with the complexity of their composition requires the application of a wide range of micro-analytical methods, which are non-destructive to the samples, because these must be preserved for potential late revision. Laboratory powder X-ray micro-diffraction (micro-XRD) is a very effective non-destructive technique for direct phase analysis of samples smaller than 1 mm containing crystal constituents. It compliments optical and electron microscopy with elemental micro-analysis, especially in cases of complicated mixtures containing phases with similar chemical composition. However, modification of X-ray diffraction to the micro-scale together with its application for very heterogeneous real samples leads to deviations from the standard procedure. Knowledge of both the limits and the phenomena which can arise during the analysis is crucial for the meaningful and proper application of the method. We evaluated basic limits of micro-XRD equipped with a mono-capillary with an exit diameter of 0.1 mm, for example the size of irradiated area, appropriate grain size, and detection limits allowing identification of given phases. We tested the reliability and accuracy of quantitative phase analysis based on micro-XRD data in comparison with conventional XRD (reflection and transmission), carrying out experiments with two-phase model mixtures simulating historic colour layers. Furthermore, we demonstrate the wide use of micro-XRD for investigation of various types of micro-samples (contact traces, powder traps, colour layers) and we show how to enhance data quality by proper choice of experiment geometry and conditions.

  16. On-the-fly segmentation approaches for x-ray diffraction datasets for metallic glasses

    DOE PAGES

    Ren, Fang; Williams, Travis; Hattrick-Simpers, Jason; ...

    2017-08-30

    Investment in brighter sources and larger detectors has resulted in an explosive rise in the data collected at synchrotron facilities. Currently, human experts extract scientific information from these data, but they cannot keep pace with the rate of data collection. Here, we present three on-the-fly approaches—attribute extraction, nearest-neighbor distance, and cluster analysis—to quickly segment x-ray diffraction (XRD) data into groups with similar XRD profiles. An expert can then analyze representative spectra from each group in detail with much reduced time, but without loss of scientific insights. As a result, on-the-fly segmentation would, therefore, result in accelerated scientific productivity.

  17. Sand sources and transport pathways for the San Francisco Bay coastal system, based on X-ray diffraction mineralogy

    USGS Publications Warehouse

    Hein, James R.; Mizell, Kira; Barnard, Patrick L.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    The mineralogical compositions of 119 samples collected from throughout the San Francisco Bay coastal system, including bayfloor and seafloor, area beaches, cliff outcrops, and major drainages, were determined using X-ray diffraction (XRD). Comparison of the mineral concentrations and application of statistical cluster analysis of XRD spectra allowed for the determination of provenances and transport pathways. The use of XRD mineral identifications provides semi-quantitative compositions needed for comparisons of beach and offshore sands with potential cliff and river sources, but the innovative cluster analysis of XRD diffraction spectra provides a unique visualization of how groups of samples within the San Francisco Bay coastal system are related so that sand-sized sediment transport pathways can be inferred. The main vector for sediment transport as defined by the XRD analysis is from San Francisco Bay to the outer coast, where the sand then accumulates on the ebb tidal delta and also moves alongshore. This mineralogical link defines a critical pathway because large volumes of sediment have been removed from the Bay over the last century via channel dredging, aggregate mining, and borrow pit mining, with comparable volumes of erosion from the ebb tidal delta over the same period, in addition to high rates of shoreline retreat along the adjacent, open-coast beaches. Therefore, while previously only a temporal relationship was established, the transport pathway defined by mineralogical and geochemical tracers support the link between anthropogenic activities in the Bay and widespread erosion outside the Bay. The XRD results also establish the regional and local importance of sediment derived from cliff erosion, as well as both proximal and distal fluvial sources. This research is an important contribution to a broader provenance study aimed at identifying the driving forces for widespread geomorphic change in a heavily urbanized coastal-estuarine system.

  18. Synthesis of ZnO Photocatalysts Using Various Surfactants

    NASA Astrophysics Data System (ADS)

    Yao, Chengli; Zhu, Jinmiao; Li, Hongying; Zheng, Bin; Wei, Yanxin

    2017-12-01

    Zinc oxide (ZnO) nanostructured materials have received significant attention because of their unique physicochemical and electronic properties. In particular, the functional properties of ZnO are owed to its morphology and defect structure. ZnO particles were successfully synthesized by chemical precipitation. CTAB (cetyltrimethylammonium bromide), BS-12 (dodecyl dimethyl betaine) and graphene oxide (GO) were selected as templates to induce the formation of ZnO, respectively. By varying the amount of surfactant added during the synthesis process, the structural properties and the crystalline phase of the synthesized nanospheres were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet and visible spectrophotometry (UV‒Vis). Simultaneously, photo catalytic degradation of Rhodamine B (RhB) was carried out under natural sunlight irradiation while ZnO or ZnO/GO particles were used as catalyst. GO is prone to induce formation of wurtzite hexagonal phase of ZnO. Compared with CTAB and BS-12, ZnO/GO composites had a remarkably photocatalytic degradation.

  19. One-dimensional nanoferroic rods; synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Seddik, U.; Okasha, N.; Imam, N. G.

    2015-11-01

    One-dimensional nanoferroic rods of BaTiO3 were synthesized by improved citrate auto-combustion technology using tetrabutyl titanate. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize the prepared sample. The results indicated that the crystal structure of BaTiO3 is tetragonal phase with an average crystallite size of 47 nm. SEM image gives a cauliflower-like morphology of the agglomerated nanorods. The stoichiometry of the chemical composition of the BaTiO3 ceramic was confirmed by EDX. TEM micrograph exhibited that BaTiO3 nanoparticles have rod-like shape with an average length of 120 nm and width of 43 nm. AFM was used to investigate the surface topography and its roughness. The topography image in 3D showed that the BaTiO3 particles have a rod shape with an average particle size of 116 nm which in agreement with 3D TEM result.

  20. The internal microstructure and fibrous mineralogy of fly ash from coal-burning power stations.

    PubMed

    Brown, Patrick; Jones, Tim; BéruBé, Kelly

    2011-12-01

    Coal fly ash (CFA) is a significant environmental pollutant that presents a respiratory hazard when airborne. Although previous studies have identified the mineral components of CFA, there is a paucity of information on the structural habits of these minerals. Samples from UK, Polish and Chinese power stations were studied to further our understanding of the factors that affect CFA geochemistry and mineralogy. ICP-MS, FE-SEM/EDX, XRD, and laser diffraction were used to study physicochemical characteristics. Analysis revealed important differences in the elemental compositions and particle size distributions of samples between sites. Microscopy of HF acid-etched CFA revealed the mullite present possesses a fibrous habit; fibres ranged in length between 1 and 10 μm. Respirable particles (<10 μm) were frequently observed to contain fibrous mullite. We propose that the biopersistence of these refractory fibres in the lung environment could be contributing towards chronic lung diseases seen in communities and individuals continually exposed to high levels of CFA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Preparation and characterization of polyol assisted ultrafine Cu-Ni-Mg-Ca mixed ferrite via co-precipitation method

    NASA Astrophysics Data System (ADS)

    Boobalan, T.; Pavithradevi, S.; Suriyanarayanan, N.; Manivel Raja, M.; Ranjith Kumar, E.

    2017-04-01

    Nanocrystalline spinel ferrite of composition Cu0.2Ni0.2Mg0.2Ca0.4Fe2O4 is synthesized by wet hydroxyl co-precipitation method in ethylene glycol as chelating agent and sodium hydroxide as precipitator at pH 8. Ethylene glycol is utilized as the medium which serves as the dissolvable and in addition a complexing specialist. The synthesized particles are annealed at various temperatures. Thermogravimetric investigation affirms that at 280 °C ethylene glycol is dissipated totally and stable phase arrangement happens over 680 °C. FTIR spectra of as synthesized and annealed at 1050 °C recorded between 400 cm-1 and 4000 cm-1. Structural characterizations of all the samples are carried out by X-ray diffraction (XRD) technique. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) affirm that the particles are spherical and cubic shape with the crystallite size of 12 nm to 32 nm. Magnetic measurements are performed utilizing vibrating sample magnetometer at room temperature.

  2. Amphiphilic polypeptides as a bifunctional template in the mineralization of calcium carbonate at the air/water interface.

    PubMed

    Cao, Heng; Lin, Guoqiang; Yao, Jinrong; Shao, Zhengzhong

    2013-05-01

    A well-defined amphiphilic polypeptide, poly(glutamic acid)22 -block-poly(alanine)8 (PGlu22 -b-PAla8 ), which plays the roles of both soluble (functional) additive and insoluble (structural) matrix, is employed to mediate the mineralization of CaCO3 at the air/water interface. X-ray diffraction (XRD) and Raman spectroscopy, for example, show that the polymorph of CaCO3 particles obtained is calcite. The observations from SEM and TEM suggest that PGlu22 -b-PAla8 initiates the amorphous precursor phase and heterogeneous nucleation of CaCO3 at the air/water interface, while temporarily stabilizes the gelatinous precursors as a process-directing agent; nevertheless, the initial concentration of Ca(2+) controls the procedure of crystallization and the final morphology of CaCO3 particles. Such "bifunctional" amphiphilic-polypeptide-regulated mineralization at the air/water interface may be applied to the synthesis of many kinds of symmetrical inorganic/organic hybrids. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study

    PubMed Central

    Padmavathy, Nagarajan; Vijayaraghavan, Rajagopalan

    2008-01-01

    In this study, we investigate the antibacterial activity of ZnO nanoparticles with various particle sizes. ZnO was prepared by the base hydrolysis of zinc acetate in a 2-propanol medium and also by a precipitation method using Zn(NO3)2 and NaOH. The products were characterized by x-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. Bacteriological tests such as minimum inhibitory concentration (MIC) and disk diffusion were performed in Luria-Bertani and nutrient agar media on solid agar plates and in liquid broth systems using different concentrations of ZnO by a standard microbial method for the first time. Our bacteriological study showed the enhanced biocidal activity of ZnO nanoparticles compared with bulk ZnO in repeated experiments. This demonstrated that the bactericidal efficacy of ZnO nanoparticles increases with decreasing particle size. It is proposed that both the abrasiveness and the surface oxygen species of ZnO nanoparticles promote the biocidal properties of ZnO nanoparticles. PMID:27878001

  4. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study

    NASA Astrophysics Data System (ADS)

    Padmavathy, Nagarajan; Vijayaraghavan, Rajagopalan

    2008-07-01

    In this study, we investigate the antibacterial activity of ZnO nanoparticles with various particle sizes. ZnO was prepared by the base hydrolysis of zinc acetate in a 2-propanol medium and also by a precipitation method using Zn(NO3)2 and NaOH. The products were characterized by x-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. Bacteriological tests such as minimum inhibitory concentration (MIC) and disk diffusion were performed in Luria-Bertani and nutrient agar media on solid agar plates and in liquid broth systems using different concentrations of ZnO by a standard microbial method for the first time. Our bacteriological study showed the enhanced biocidal activity of ZnO nanoparticles compared with bulk ZnO in repeated experiments. This demonstrated that the bactericidal efficacy of ZnO nanoparticles increases with decreasing particle size. It is proposed that both the abrasiveness and the surface oxygen species of ZnO nanoparticles promote the biocidal properties of ZnO nanoparticles.

  5. Nanoscale Fe/Ag particles activated persulfate: optimization using response surface methodology.

    PubMed

    Silveira, Jefferson E; Barreto-Rodrigues, Marcio; Cardoso, Tais O; Pliego, Gema; Munoz, Macarena; Zazo, Juan A; Casas, José A

    2017-05-01

    This work studied the bimetallic nanoparticles Fe-Ag (nZVI-Ag) activated persulfate (PS) in aqueous solution using response surface methodology. The Box-Behnken design (BBD) was employed to optimize three parameters (nZVI-Ag dose, reaction temperature, and PS concentration) using 4-chlorophenol (4-CP) as the target pollutant. The synthesis of nZVI-Ag particles was carried out through a reduction of FeCl 2 with NaBH 4 followed by reductive deposition of Ag. The catalyst was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area. The BBD was considered a satisfactory model to optimize the process. Confirmatory tests were carried out using predicted and experimental values under the optimal conditions (50 mg L -1 nZVI-Ag, 21 mM PS at 57 °C) and the complete removal of 4-CP achieved experimentally was successfully predicted by the model, whereas the mineralization degree predicted (90%) was slightly overestimated against the measured data (83%).

  6. Morphological, structural and thermal studies of gallium nitride ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indrakanti, Rajani; Rao, V. Brahmaji; Kiran, C. Udaya

    2016-05-06

    We report the synthesis and Characterization of III-V doped Nano ferrite Ga{sub (2x+2)}N Fe{sub 2(49-x)}O{sub 3} for x=1 and x=5 by Sol-Gel method. The Morphological, structural and Thermal characterisation studies are done by using Transmission Electron Microscopy, Energy Dispersive X-ray Analysis, Selected Area Electron Diffraction, Thermo-Gravimetric Analysis and Differential Thermal Analysis. Using the Sci-Finder software we could not trace any reports related to GaNFe{sub 2}O{sub 3} in the literature. It has been observed from our studies that the particles are in the Cylindrical and the Globular structure. The particle diameter values from the Histograms are in good agreement with themore » XRD values that were communicated by us earlier. The SAED and the EDAX studies reveal the confirmation of the composition and also that the synthesized Ferrite exhibits crystalline nature. The TG-DTA results show that the compound indicates constant sample weight.« less

  7. Synthesis of nano-titanium dioxide by sol-gel route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaler, Vandana, E-mail: vandana.kaler@gmail.com; Duchaniya, R. K.; Pandel, U.

    Nanosized titanium dioxide powder was synthesised via sol-gel route by hydrolysis of titanium tetraisopropoxide with ethanol and water mixture in high acidic medium. The synthesized nanopowder was further characterized by X-ray Diffraction, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and Ultraviolet Visible Spectroscopy in order to determine size, morphology and crystalline structure of the material. The synthesis of nano-TiO{sub 2} powder in anatase phase was realized by XRD. The optical studies of nano-TiO{sub 2} powder was carried out by UV-Vis spectroscopy and band gap was calculated as 3.5eV, The SEM results with EDAX confirmed that prepared nano-TiO{sub 2} particles weremore » in nanometer range with irregular morphology. The FTIR analysis showed that only desired functional groups were present in sample. These nano-TiO{sub 2} particles have applications in solar cells, chemical sensors and paints, which are thrust areas these days.« less

  8. Glycerol capped PbS/CdS core/shell nanoparticles at different molar ratio and its application in biosensors: An optical properties study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, D., E-mail: ddasphy014@gmail.com; Hussain, A. M. P.

    2016-05-06

    Glycerol capped PbS/CdS core/shell type nanoparticles fabricated with two different molar ratios are characterized for study of structural and optical properties. The X-ray diffraction (XRD) pattern exhibits cubic phased polycrystalline nanocrystals. The calculated grain sizes from Williamson-Hall plot were found to be around 6 nm with increased strain. HRTEM investigation confirms the formation of core/shell nanostructures and the sizes of the particles were found to be around 7 nm which is in good agreement with the results of the W-H plot. An increase of band gap with the decrease in precursor concentration is confirmed from the blue shift in the absorption spectramore » and also from Tauc plot. A clear blue shifted intense emission is observed in the photoluminescence spectra with decrease in particle size. Intense luminescence from the core/shell nanostructure may be applied in bio labelling and biosensors.« less

  9. Removal of heavy metals using bentonite supported nano-zero valent iron particles

    NASA Astrophysics Data System (ADS)

    Zarime, Nur Aishah; Yaacob, Wan Zuhari Wan; Jamil, Habibah

    2018-04-01

    This study reports the composite nanoscale zero-valent iron (nZVI) which was successfully synthesized using low cost natural clay (bentonite). Bentonite composite nZVI (B-nZVI) was introduced to reduce the agglomeration of nZVI particles, thus will used for heavy metals treatment. The synthesized material was analyzed using physical, mineralogy and morphology analysis such as Brunnaer-Emmett-Teller (BET) surface area, Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and X-ray Photoelectron Spectroscopy (XPS). The batch adsorption test of Bentonite and B-nZVI with heavy metals solutions (Pb, Cu, Cd, Co, Ni and Zn) was also conducted to determine their effectiveness in removing heavy metals. Through Batch test, B-nZVI shows the highest adsorption capacity (qe= 50.25 mg/g) compared to bentonite (qe= 27.75 mg/g). This occurred because B-nZVI can reduce aggregation of nZVI, dispersed well in bentonite layers thus it can provide more sites for adsorbing heavy metals.

  10. Characterization of the Microstructure of the Compositionally Complex Alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1 (Postprint)

    DTIC Science & Technology

    2016-05-01

    limited to X-ray diffraction ( XRD ) and scanning electron microscopy (SEM). The alloy was reported to contain two bcc phases with similar lattice...it appears that the interface between the two phases is fairly coherent. Interestingly, the XRD study described in [8] suggested that there were two...line-scan shown in (h). 3 Distribution A. Approved for public reledifference in lattice parameter measurements realized in bulk samples ( XRD ) vs

  11. High Rate Deposition of Thick CrN and Cr2N Coatings Using Modulated Pulse Power (MPP) Magnetron Sputtering

    DTIC Science & Technology

    2010-12-01

    in the conventional Bragg-Bentano mode. The residual stress of the coatings was measured by glancing incident angle XRD (GIXRD) in the same X - ray ...micro-analysis (EPMA), x - ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), nanoindentation, scratch test, and ball-on...the coatings was determined by XRD using a SIEMENS X - ray diffractometer (Model KRISTALLOFLEX-810) operated with K-alpha Cu radiation (30 kV and 20 mA

  12. Deciphering the Complex Chemistry of Deep-Ocean Particles Using Complementary Synchrotron X-ray Microscope and Microprobe Instruments.

    PubMed

    Toner, Brandy M; German, Christopher R; Dick, Gregory J; Breier, John A

    2016-01-19

    The reactivity and mobility of natural particles in aquatic systems have wide ranging implications for the functioning of Earth surface systems. Particles in the ocean are biologically and chemically reactive, mobile, and complex in composition. The chemical composition of marine particles is thought to be central to understanding processes that convert globally relevant elements, such as C and Fe, among forms with varying bioavailability and mobility in the ocean. The analytical tools needed to measure the complex chemistry of natural particles are the subject of this Account. We describe how a suite of complementary synchrotron radiation instruments with nano- and micrometer focusing, and X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) capabilities are changing our understanding of deep-ocean chemistry and life. Submarine venting along mid-ocean ridges creates hydrothermal plumes where dynamic particle-forming reactions occur as vent fluids mix with deep-ocean waters. Whether plumes are net sources or sinks of elements in ocean budgets depends in large part on particle formation, reactivity, and transport properties. Hydrothermal plume particles have been shown to host microbial communities and exhibit complex size distributions, aggregation behavior, and composition. X-ray microscope and microprobe instruments can address particle size and aggregation, but their true strength is in measuring chemical composition. Plume particles comprise a stunning array of inorganic and organic phases, from single-crystal sulfides to poorly ordered nanophases and polymeric organic matrices to microbial cells. X-ray microscopes and X-ray microprobes with elemental imaging, XAS, and XRD capabilities are ideal for investigating these complex materials because they can (1) measure the chemistry of organic and inorganic constituents in complex matrices, usually within the same particle or aggregate, (2) provide strong signal-to-noise data with exceedingly small amounts of material, (3) simplify the chemical complexity of particles or sets of particles with a focused-beam, providing spatial resolution over 6 orders of magnitude (nanometer to millimeter), (4) provide elemental specificity for elements in the soft-, tender-, and hard-X-ray energies, (5) switch rapidly among elements of interest, and (6) function in the presence of water and gases. Synchrotron derived data sets are discussed in the context of important advances in deep-ocean technology, sample handling and preservation, molecular microbiology, and coupled physical-chemical-biological modeling. Particle chemistry, size, and morphology are all important in determining whether particles are reactive with dissolved constituents, provide substrates for microbial respiration and growth, and are delivered to marine sediments or dispersed by deep-ocean currents.

  13. Micro-X-ray diffraction assessment of shock stage in enstatite chondrites

    NASA Astrophysics Data System (ADS)

    Izawa, Matthew R. M.; Flemming, Roberta L.; Banerjee, Neil R.; McCausland, Philip J. A.

    2011-05-01

    A new method for assessing the shock stage of enstatite chondrites has been developed, using in situ micro-X-ray diffraction (μXRD) to measure the full width at half maximum (FWHMχ) of peak intensity distributed along the direction of the Debye rings, or chi angle (χ), corresponding to individual lattice reflections in two-dimensional XRD patterns. This μXRD technique differs from previous XRD shock characterization methods: it does not require single crystals or powders. In situ μXRD has been applied to polished thin sections and whole-rock meteorite samples. Three frequently observed orthoenstatite reflections were measured: (020), (610), and (131); these were selected as they did not overlap with diffraction lines from other phases. Enstatite chondrites are commonly fine grained, stained or darkened by weathering, shock-induced oxidation, and metal/sulfide inclusions; furthermore, most E chondrites have little olivine or plagioclase. These characteristics inhibit transmitted-light petrography, nevertheless, shock stages have been assigned MacAlpine Hills (MAC) 02837 (EL3) S3, Pecora Escarpment (PCA) 91020 (EL3) S5, MAC 02747 (EL4) S4, Thiel Mountains (TIL) 91714 (EL5) S2, Allan Hills (ALHA) 81021 (EL6) S2, Elephant Moraine (EET) 87746 (EH3) S3, Meteorite Hills (MET) 00783 (EH4) S4, EET 96135 (EH4-5) S2, Lewis Cliff (LEW) 88180 (EH5) S2, Queen Alexandra Range (QUE) 94204 (EH7) S2, LaPaz Icefield (LAP) 02225 (EH impact melt) S1; for the six with published shock stages, there is agreement with the published classification. FWHMχ plotted against petrographic shock stage demonstrates positive linear correlation. FWHMχ ranges corresponding to shock stages were assigned as follows: S1 < 0.7°, S2 = 0.7-1.2°, S3 = 1.2-2.3°, S4 = 2.3-3.5°, S5 > 3.5°, S6—not measured. Slabs of Abee (EH impact-melt breccia), and Northwest Africa (NWA) 2212 (EL6) were examined using μXRD alone; FWHMχ values place both in the S2 range, consistent with literature values. Micro-XRD analysis may be applicable to other shocked orthopyroxene-bearing rocks.

  14. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders.

    PubMed

    Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei

    2015-03-01

    Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods will become crucially important in the near future.

  15. Sorption of vanadium (V) onto natural soil colloids under various solution pH and ionic strength conditions.

    PubMed

    Luo, Xiuhua; Yu, Lin; Wang, Changzhao; Yin, Xianqiang; Mosa, Ahmed; Lv, Jialong; Sun, Huimin

    2017-02-01

    Batch sorption kinetics and isothermal characteristics of V(V) were investigated on three natural soil colloids (manual loessial soil colloid (MSC), aeolian sandy soil colloid (ASC), and cultivated loessial soil colloid (CSC)) under various solution pH and ionic strength (IS) conditions. Colloids were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), and fourier transform infrared spectroscopy (FTIR). AFM micrographs showed CSC with an aggregated shape with larger particle diameter as compared with ASC and MSC. XRD spectra revealed the presence of different minerals in natural soil colloids including biotite, kaolinite, calcite and quartz, which might contribute to sorption process. The sorption ability decreased with increase of colloidal particle size. The sorption was mainly attributed to complexation by active carboxylate and alcohol groups of colloidal components. Sorption kinetics and isotherms of V(V) onto natural soil colloids were best fitted with Pseudo-second-order and Freundlich models. Langmuir model indicated that sorption capacity of MSC and ASC was comparable (285.7 and 238.1 mg g -1 ); however, CSC exhibited the lowest sorption capacity (41.5 mg g -1 ) due to its larger particle diameter and aggregated shape. The maximum V(V) sorption capacity reached plateau values at a solution pH ranged between 5.0 and 9.0 for MSC and ASC, and 6.0-8.0 for CSC. Sorption capacity of V(V) onto natural soil colloids decreased with increasing IS. Based on result of this study we can conclude that sorption of V(V) onto natural soil colloids is pH- and IS-dependent. These findings provide insights on the remediation of vanadium-contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Dissolution behavior of Cu, Fe and Zn from gold sulfide concentrate during pre-oxidation using ozone in neutral media

    NASA Astrophysics Data System (ADS)

    Kurniawan, Mubarok, M. Zaki

    2018-04-01

    The aim of this work was to observe the dissolution behaviour of Cu, Fe and Zn from gold sulfide concentrate during preoxidation with ozone as the oxidant and distillation water as the media. The preoxidation experiments were carried out in five-necked reactor with variations of retention time, percent solid, particle size and oxygen dosage injected to ozone generator. The retention time was varied at 6 hours, 8 hours, 12 hours and 24 hours. The percent solid was varied at 10%, 20% and 30% while the particle size was varied at P80 -75 mesh dan P80 -20 mesh. The dosage of oxygen injection to ozone generator was varried at 1 liter per minute and 2 liter per minute. The ozone gas was produced by using ozone generator type OZ-03 and injected to the slurry by using Mazzei injector. The soluble Cu, Fe and Zn were measured by using Atomic Absorption Spectrophotometry (AAS). The concentrates were characterized by X-Ray Diffraction (XRD), mineragraphy, fire assay and Inductively Coupled Plasma (ICP). Fire assay, ICP and XRD were used to analyse the residues and froth. The solubilition of metals (Cu, Fe and Zn) was obtained through the formation of sulphate ion and H+ which decreased the pH, released a number of heat and then was continued by the formation of elemental sulphur (S°). The interaction of particles and gas yielded the formation of froth. The highest dissolution percentage of Cu, Fe and Zn was achieved through 24 hours oxidation at 20% (w/w), P80 -20 mesh and one liter per minute of oxygen injection dosage by 83.016%, 24.7303% and 91.6808%, respectively.

  17. [The study of ultra-fine diamond powder used in magnetic head polishing slurry].

    PubMed

    Jin, Hong-Yun; Hou, Shu-En; Pan, Yong; Xiao, Hong-Yan

    2008-05-01

    In the present paper, atomic absorption spectrometry(AAS), inductively-coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and laser Raman spectroscopy (RM) were employed to study the commercial ultra-fine diamond powders prepared by the static pressure-catalyst method and used in magnetic head polishing slurry. The results of AAS and ICP-MS indicated that there were silicon oxide, Fe, Ni, Al and some other metal elements in the ultra-fine powders. XRD patterns showed the peaks of SiO2 at 2theta = 35.6 degrees, 39.4 degrees and 59.7 degrees and diamond sharp peaks in agreement with the results above. Diamond sharp peaks implied perfect crystal and high-hardness beneficial to high-efficiency in polishing. The broader Raman band of graphite at 1 592 cm(-1) observed by Raman analysis proved graphite existing in the diamond powders. In the TEM images, the size of ultra-fine powders was estimated between 0.1 and 0.5 microm distributed in a wide scope, however, sharp edges of the powder particles was useful to polish. The ultra-fine diamond powders have many advantages, for example, high-hardness, well abrasion performance, high-polishing efficiency and being useful in magnetic head polishing slurry. But, the impurities influence the polishing efficiency, shortening its service life and the wide distribution reduces the polishing precision. Consequently, before use the powders must be purified and classified. The purity demands is 99.9% and trace silicon oxide under 0.01% should be reached. The classification demands that the particle distribution should be in a narrower scope, with the mean size of 100 nm and the percentage of particles lager than 200 nm not over 2%.

  18. Parametric Study of Slurry-Erosion of Hydroturbine Steels with and without Detonation Gun Spray Coatings using Taguchi Technique

    NASA Astrophysics Data System (ADS)

    Grewal, Harpreet Singh; Bhandari, Sanjeev; Singh, Harpreet

    2012-09-01

    WC-Co-Cr coatings were deposited on some hydroturbine 13Cr4Ni and 16Cr5Ni steels by the detonation-gun spray process. An in-depth characterization of the as-sprayed coating was done using X-ray diffraction (XRD) and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS) techniques. Microhardness and porosity measurements were also made. The coating was found to have a typical splat-like morphology with some indications of unmelted carbide particles. The XRD results showed the presence of WC as the primary phase along with W2C and Co6W6C as secondary phases. Furthermore, the slurry erosion behavior of the coatings was investigated to ascertain the usefulness of the coatings to reduce the slurry erosion of the steels. The effect of four operating factors viz. the velocity, impact angle, concentration, and particle size on the slurry erosion of coated and bare steels has been studied using a high-speed jet-type test rig. The sand used as an erodent was collected from a power plant to replicate the actual turbine conditions. It has been observed that the given cermet coating can enhance the erosion resistance of the steel. Velocity was found to be the most significant factor affecting the erosion behavior of the coating, whereas it was the erodent particle size in the case of uncoated steel. As evidenced from the SEM images, the platelet mechanism of erosion seemed to be the prominent one, causing the removal of material from the surface of the steel, whereas for the coating, the formation and interlinking of cracks resulted in the removal of material.

  19. THE EFFECT OF SATELLITE LINES FROM THE X-RAY SOURCE ON X-RAY DIFFRACTION PEAKS

    EPA Science Inventory

    The article discusses the development of a method for relating reactivity to crystallite size and strain parameters obtained by the Warren-Averbach technique. EPA has been using crystallite size and strain data obtained from x-ray diffraction (XRD) peak profile analysis to predic...

  20. Synthesis and spectroscopic investigations of hydroxyapatite using a green chelating agent as template

    NASA Astrophysics Data System (ADS)

    Gopi, D.; Bhuvaneshwari, N.; Indira, J.; Kavitha, L.

    2013-03-01

    Hydroxyapatite [Ca10(PO4)6(OH)2, HAP] particles have been successfully synthesized by a cost-effective, eco-friendly green template method using natural and commercially available sucrose as a chelating agent. The sucrose used in this method has been extracted from various sources, three from natural and one from commercially available sources are exploited in our study to achieve a controlled crystallinity, particle size as well as uniform morphology. Spectral characterizations involving Fourier transform infrared spectroscopy (FT-IR) for the functional group analysis of sucrose and HAP; carbon-13 nuclear magnetic resonance spectroscopy (13C NMR) for the identification of the carbon atoms in sucrose and in HAP; liquid chromatography/mass spectrometry (LC-MS) for the determination of the hydrolyzed products of sucrose; and X-ray diffraction (XRD) techniques for the phase identification of the HAP particles were performed. The morphology of the HAP particles were assessed thoroughly using a scanning electron microscope (SEM) equipped with energy dispersive X-ray analysis (EDAX). The experimental results indicate that the obtained HAP using the natural sucrose as a chelating agent is of phase pure, with a well defined morphology having discrete particles without any agglomeration than the HAP from commercially available sucrose. Further, the reduced particle size can be achieved from the stem sugarcane extract as the source of the chelating agent.

  1. Synthesis and spectroscopic investigations of hydroxyapatite using a green chelating agent as template.

    PubMed

    Gopi, D; Bhuvaneshwari, N; Indira, J; Kavitha, L

    2013-03-01

    Hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2), HAP] particles have been successfully synthesized by a cost-effective, eco-friendly green template method using natural and commercially available sucrose as a chelating agent. The sucrose used in this method has been extracted from various sources, three from natural and one from commercially available sources are exploited in our study to achieve a controlled crystallinity, particle size as well as uniform morphology. Spectral characterizations involving Fourier transform infrared spectroscopy (FT-IR) for the functional group analysis of sucrose and HAP; carbon-13 nuclear magnetic resonance spectroscopy ((13)C NMR) for the identification of the carbon atoms in sucrose and in HAP; liquid chromatography/mass spectrometry (LC-MS) for the determination of the hydrolyzed products of sucrose; and X-ray diffraction (XRD) techniques for the phase identification of the HAP particles were performed. The morphology of the HAP particles were assessed thoroughly using a scanning electron microscope (SEM) equipped with energy dispersive X-ray analysis (EDAX). The experimental results indicate that the obtained HAP using the natural sucrose as a chelating agent is of phase pure, with a well defined morphology having discrete particles without any agglomeration than the HAP from commercially available sucrose. Further, the reduced particle size can be achieved from the stem sugarcane extract as the source of the chelating agent. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Electroless nickel - phosphorus coating on crab shell particles and its characterization

    NASA Astrophysics Data System (ADS)

    Arulvel, S.; Elayaperumal, A.; Jagatheeshwaran, M. S.

    2017-04-01

    Being hydrophilic material, crab shell particles have only a limited number of applications. It is, therefore, necessary to modify the surface of the crab shell particles. To make them useful ever for the applications, the main theme we proposed in this article is to utilize crab shell particles (CSP) with the core coated with nickel phosphorus (NiP) as a shell using the electroless coating process. For dealing with serious environmental problems, utilization of waste bio-shells is always an important factor to be considered. Chelating ability of crab shell particles eliminates the surface activation in this work proceeding to the coating process. The functional group, phase structure, microstructure, chemical composition and thermal analysis of CSP and NiP/CSP were characterized using Fourier transform infra-red spectroscopy (FTIR), x-ray diffraction analyzer (XRD), scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDS), and thermogravimetric analysis (TGA). The combination of an amorphous and crystalline structure was exhibited by CSP and NiP/CSP. NiP/CSP has shown a better thermal stability when compared to uncoated CSP. Stability test, adsorption test, and conductivity test were conducted for the study of adsorption behavior and conductivity of the particles. CSP presented a hydrophilic property in contrast to hydrophobic NiP/CSP. NiP/CSP presented a conductivity of about 44% greater compared to the CSP without any fluctuations.

  3. Determination of magnetic domain state of carbon coated iron nanoparticles via 57Fe zero-external-field NMR

    NASA Astrophysics Data System (ADS)

    Manjunatha, M.; Kumar, Rajeev; Sahoo, Balaram; Damle, Ramakrishna; Ramesh, K. P.

    2018-05-01

    The magnetic domain state of carbon coated iron nanopowder (Fe@C) was studied by the internal field nuclear magnetic resonance (IFNMR) at 77 K using the spin echo technique. The structure and magnetic properties of the sample were further characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Mössbauer spectroscopy, vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA) and Raman Spectroscopy. The obtained IFNMR results of Fe@C powder were compared with that of micron sized carbonyl iron (CI) and electrolytic iron (EI) powders. The calculated critical size of the single domain iron particles in Fe@C is ∼ 16 nm. A higher enhancement in echo amplitude was observed due to better response of the domain walls of multidomain particles in comparison to the single domain particles. The echo signal of CI and EI particles exhibit a single narrow intense peak corresponding to the domain walls, whereas Fe@C exhibits two low amplitude peaks at two different frequencies: a low frequency (46.6 MHz) peak corresponds to the response of the domain walls of the multidomain particles and the other high frequency (47.2 MHz) signal (a shoulder) corresponding to the response of the magnetic nuclei inside the domain. Our results help in determining the domain state of iron-based magnetic particles using 57Fe-IFNMR.

  4. Properties of CuInS₂ Nano-Particles on TiO₂ by Spray Pyrolysis for CuInS₂/TiO₂ Composite Solar Cell.

    PubMed

    Park, Gye-Choon; Li, Zhen-Yu; Yang, O-Bong

    2017-04-01

    In this letter, for the absorption layer of a CuInS₂/TiO₂ composite solar cell, I–III–VI2 chalcopyrite semiconductor CuInS₂ nano-particles were deposited by using spray pyrolysis method on TiO2 porous film. Their material characteristics including structural and optical properties of CuInS₂ nano-particles on TiO₂ nanorods were analyzed as a function of its composition ratios of Cu:In:S. Crystalline structure, surface morphology and crystalline size were also investigated by X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), and High-Resolution TEM (HRTEM), respectively. On the other hand, optical property was characterized by an UV-Visible Spectrophotometer. As a result, it was found that the size of CuInS₂ nano-particles, which was formed at 300±5 °C, was smaller than 16 nm from HRTEM analyses, and it was identified that the CuInS₂ particle size was increased as increasing the heat-treatment temperature and time. However, as the size of CuInS₂ nano-particle becomes smaller, optical absorption edge of ternary compound film tends to move to the blue wavelength band. It turns out that the optical energy-band gap of the compound films was ranging from 1.48 eV to 1.53 eV.

  5. Synthesis of ZnO particles using water molecules generated in esterification reaction

    NASA Astrophysics Data System (ADS)

    Šarić, Ankica; Gotić, Marijan; Štefanić, Goran; Dražić, Goran

    2017-07-01

    Zinc oxide particles were synthesized without the addition of water by autoclaving (anhydrous) zinc acetate/alcohol and zinc acetate/acetic acid/alcohol solutions at 160 °C. The solvothermal synthesis was performed in ethanol or octanol. The structural, optical and morphological characteristics of ZnO particles were investigated by X-ray diffraction (XRD), UV-Vis spectroscopy, FE-SEM and TEM/STEM microscopy. 13C NMR spectroscopy revealed the presence of ester (ethyl- or octyl-acetate) in the supernatants which directly indicate the reaction mechanism. The formation of ester in this esterification reaction generated water molecule in situ, which hydrolyzed anhydrous zinc acetate and initiated nucleation and formation of ZnO. It was found that the size and shape of ZnO particles depend on the type of alcohol used as a solvent and on the presence of acetic acid in solution. The presence of ethanol in the ;pure; system without acetic acid favoured the formation of fine and uniform spherical ZnO nanoparticles (∼20 nm). With the addition of small amount of acetic acid the size of these small nanoparticles increased significantly up to a few hundred nanometers. The addition of small amount of acetic acid in the presence of octanol caused even more radical changes in the shape of ZnO particles, favouring the growth of huge rod-like particles (∼3 μm).

  6. Gas-to-particle conversion in the particle precipitation-aided chemical vapor deposition process II. Synthesis of the perovskite oxide yttrium chromite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieten, V.E.J. van; Dekker, J.P.; Hurkmans, E.J.

    1993-11-01

    In the particle precipitation-aided chemical vapor deposition process, an aerosol is formed in the gas phase at elevated temperatures. The particles are deposited on a cooled substrate. Coherent layers with a controlled porosity can be obtained by a simultaneous heterogeneous reaction, which interconnects the deposited particles. The synthesis of submicrometer powder of the perovskite oxide yttrium chromite (YCrO[sub 3]) by gas to particle conversion, which is the first step of the PP-CVD process, has been investigated, and preliminary results are shown. The powders have been synthesized using yttrium trichloride vapor (YCl[sub 3]), chromium trichloride vapor (CrCl[sub 3]), and steam andmore » oxygen as reactants. The influence of the input molar ratio of the elements on the composition and characteristics of the powders has been investigated. Phase composition has been determined by X-ray diffraction (XRD). The powders have been characterized by transmission electron microscopy (TEM) and sedimentation field flow fractionation (SF[sup 3]). At a reaction temperature of 1283 K the powders consist of the chromium sesquioxide (Cr[sub 2]O[sub 3]), or a mixture of Cr[sub 2]O[sub 3] and YCrO[sub 3]. At stoichiometeric input amounts of metal chlorides and steam the formation of YCrO[sub 3] seems to be favored. 19 refs., 6 figs., 3 tabs.« less

  7. Luminescent properties of YVO4:Eu/SiO2 core-shell composite particles

    NASA Astrophysics Data System (ADS)

    Bao, Amurisana; Lai, Hua; Yang, Yuming; Liu, Zhilong; Tao, Chunyan; Yang, Hua

    2010-02-01

    We report an efficient process for preparing monodisperse SiO2@Y0.95Eu0.05VO4 core-shell phosphors using a simple citrate sol-gel method and without the use of surface-coupling silane agents or large stabilizers. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectra were used to characterize the resulting SiO2@Y0.95Eu0.05VO4 core-shell phosphors. The XRD results demonstrate that the Y0.95Eu0.05VO4 particles crystallization on the surface of SiO2 annealing at 800 °C is perfectly and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have a near perfect spherical shape with narrow size distribution (average size ca. 500 nm and an average thickness of 50 nm), are not agglomerated, and have a smooth surface. The thickness of the YVO4:Eu3+ shells on the SiO2 cores could be easily tailored by changing the mass ratio of shell to core ( W = [YVO4]/[SiO2]) ( 50 nm for W = 30%). The Eu3+ shows a strong PL luminescence (dominated by 5D0 - 7F2 red emission at 618 nm) under the excitation of 320 nm UV light. The PL intensity of Eu3+ increases with increasing the annealing temperature and the values of W.

  8. Synthesis, characterization and biological studies of copper oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Jillani, Saquf; Jelani, Mohsan; Hassan, Najam Ul; Ahmad, Shahbaz; Hafeez, Muhammad

    2018-04-01

    The development of synthetic methods has been broadly accepted as an area of fundamental importance to the understanding and application of nanoscale materials. It allows the individual to modulate basic parameters such as morphology, particle size, size distributions, and composition. Several methods have been developed to synthesize CuO nanostructures with diverse morphologies, sizes, and dimensions using different chemical and physical based approaches. In this work, CuO nanostructures have been synthesized by aqueous precipitation method and simple chemical deposition method. The characterization of these products has been carried out by the x-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) and UV–vis spectroscopy. Biological activity such as antibacterial nature of synthesized CuO is also explored. XRD peaks analysis revealed the monoclinic crystalline phase of copper oxide nanostructures. While the rod-like and particle-like morphologies have been observed in SEM results. FTIR spectra have confirmed the formation of CuO nanoparticles by exhibiting its characteristic peaks corresponding to 494 cm‑1 and 604 cm‑1. The energy band gap of the as-prepared CuO nanostructures determined from UV–vis spectra is found to be 2.18 eV and 2.0 eV for precipitation and chemically deposited samples respectively. The antibacterial activity results described that the synthesized CuO nanoparticles showed better activity against Staphylococcus aureus. The investigated results suggested the synthesis of highly stable CuO nanoparticles with significant antibacterial activities.

  9. To study the effect of dopant NiO concentration and duration of calcinations on structural and optical properties of MgO-NiO nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajesh, E-mail: rkkaushik06@gmail.com; Deptt. of Physics,Vaish College of Engineering, Rohtak-124001, Haryana; Praveen,

    2016-05-06

    In present work Magnesium oxide (MgO) samples were doped with different concentration of Transition metal Nickel Oxide(NiO) by using Chemical co-precipitation method. The doping levels were varied from NiO (5%, 10%, 15%) and all the samples were calcined at 600°C for 4hrs and 8hrs respectively. Structural analysis of these calcined materials is carried out by X-ray diffraction (XRD) techniques which reveals that average crystalline sizes are in nano region i.e. 21.77nm-31.13 nm and tabulated in table 1. The powder of calcined samples were also characterized by using various other techniques i.e. Scanning Electron Microscopy (SEM), Fourier Transformation Infrared Spectroscopy (FTIR), UV-Visiblemore » spectroscopy, Transmission Electron Microscopy (TEM) etc. The effects of dopant concentration, calcined temperature, calcinations duration on samples were studied and also investigate the effect of varying dopant concentration on morphology and optical properties of calcined nanomaterials. From results it was observed that the crystallite size of nanocomposites increases with increases dopant concentration or increases calcinations duration. The optical band gap decreases with increases sintering time and increase with increases dopant concentrations. TEM results coincide with XRD results and show that particles are polycrystalline in nature. FTIR spectra show that for all samples particles are pure in composition and transmission rate increases with calcinations duration.« less

  10. Biosynthesis of Stable Antioxidant ZnO Nanoparticles by Pseudomonas aeruginosa Rhamnolipids

    PubMed Central

    Singh, Brahma Nand; Rawat, Ajay Kumar Singh; Khan, Wasi; Naqvi, Alim H.; Singh, Braj Raj

    2014-01-01

    During the last several years, various chemical methods have been used for synthesis of a variety of metal nanoparticles. Most of these methods pose severe environmental problems and biological risks; therefore the present study reports a biological route for synthesis of zinc oxide nanoparticles using Pseudomonas aeruginosa rhamnolipids (RLs) (denoted as RL@ZnO) and their antioxidant property. Formation of stable RL@ZnO nanoparticles gave mostly spherical particles with a particle size ranging from 35 to 80 nm. The RL@ZnO nanoparticles were characterized by UV-visible (UV–vis) spectroscopy, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), and thermal gravimetric analysis. The UV–vis spectra presented a characteristic absorbance peak at ∼360 nm for synthesized RL@ZnO nanoparticles. The XRD spectrum showed that RL@ZnO nanoparticles are crystalline in nature and have typical wurtzite type polycrystals. Antioxidant potential of RL@ZnO nanoparticles was assessed through 2,2–diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, and superoxide anion free radicals with varying concentration and time of the storage up to 15 months, while it was found to decline in bare ZnO nanoparticles. Similarly, the inhibitory effects on β-carotene oxidation and lipid peroxidation were also observed. These results elucidate the significance of P. aeruginosa RL as effective stabilizing agents to develop surface protective ZnO nanoparticles, which can be used as promising antioxidants in biological system. PMID:25187953

  11. Crystallization of MgFe2O4 from a glass in the system K2O/B2O3/MgO/P2O5/Fe2O3

    NASA Astrophysics Data System (ADS)

    El Shabrawy, Samha; Bocker, Christian; Rüssel, Christian

    2016-10-01

    Spherical magnetic Mg-Fe-O nanoparticles were successfully prepared by the crystallization of glass in the system K2O/B2O3/MgO/P2O5/Fe2O3. The magnetic glass ceramics were prepared by melting the raw materials using the conventional melt quenching technique followed by a thermal treatment at temperatures in the range 560-700 °C for a time ranging from 2 to 8 h. The studies of the X-ray diffraction, electron microscopy and FTIR spectra confirmed the precipitation of finely dispersed spherical (Mg, Fe) based spinel nanoparticles with a minor quantity of hematite (α-Fe2O3) in the glass matrix. The average size of the magnetic nano crystals increases slightly with temperature and time from 9 to 15 nm as determined by the line broadening from the XRD patterns. XRD studies show that annealing the glass samples for long periods of time at temperature ≥604 °C results in an increase of the precipitated hematite concentration, dissolution of the spinel phase and the formation of magnesium di-borate phase (Mg2B2O5). For electron microscopy, the particles were extracted by two methods; (i) replica extraction technique and (ii) dissolution of the glass matrix by diluted acetic acid. An agglomeration of the nano crystals to larger particles (25-35 nm) was observed.

  12. Effect of Ca substitution on some physical properties of nano-structured and bulk Ni-ferrite samples

    NASA Astrophysics Data System (ADS)

    Assar, S. T.; Abosheiasha, H. F.

    2015-01-01

    Nanoparticles of Ni1-xCaxFe2O4 (x=0.0, 0.02, 0.04, 0.06 and 0.10) were prepared by citrate precursor method. A part of these samples was sintered at 600 °C for 2 h in order to keep the particles within the nano-size while the other part was sintered at 1000 °C to let the particles to grow to the bulk size. The effect of Ca2+ ion substitution in nickel ferrite on some structural, magnetic, electrical and thermal properties was investigated. All samples were characterized by using X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). A two probe method was used to measure the dc electrical conductivity whereas the photoacoustic (PA) technique was used to determine the thermal diffusivity of the samples. To interpret different experimental results for nano and bulk samples some cation distributions were assumed based on the VSM and XRD data. These suggested cation distributions give logical explanations for other experimental results such as the observed values of the absorption bands in FTIR spectra and the dc conductivity results. Finally, in the thermal measurements it was found that increasing the Ca2+ ion content causes a decrease in the thermal diffusivity of both nano and bulk samples. The explanation of this behavior is ascribed to the phonon-phonon scattering.

  13. Hydrothermal formation of tobermorite studied by in situ X-ray diffraction under autoclave condition.

    PubMed

    Kikuma, Jun; Tsunashima, Masamichi; Ishikawa, Tetsuji; Matsuno, Shin-ya; Ogawa, Akihiro; Matsui, Kunio; Sato, Masugu

    2009-09-01

    Hydrothermal formation of tobermorite from a pre-cured cake has been investigated by transmission X-ray diffraction (XRD) using high-energy X-rays from a synchrotron radiation source in combination with a newly designed autoclave cell. The autoclave cell has a large and thin beryllium window for wide-angle X-ray diffraction; nevertheless, it withstands a steam pressure of more than 1.2 MPa, which enables in situ XRD measurements in a temperature range of 373 to 463 K under a saturated steam pressure. Formation and/or decomposition of several components has been successfully observed during 7.5 h of reaction time. From the intensity changes of the intermediate materials, namely non-crystalline C-S-H and hydroxylellestadite, two pathways for tobermorite formation have been confirmed. Thus, the newly developed autoclave cell can be used for the analyses of reaction mechanisms under specific atmospheres and temperatures.

  14. Growth of high quality and large-sized Rb 0.3MoO 3 single crystals by molten salt electrolysis method

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Xiong, Rui; Yi, Fan; Yin, Di; Ke, Manzhu; Li, Changzhen; Liu, Zhengyou; Shi, Jing

    2005-05-01

    High quality and large-sized Rb 0.3MoO 3 single crystals were synthesized by molten salt electrolysis method. X-ray diffraction (XRD) patterns and rocking curves, as well as the white beam Laue diffraction of X-ray images show the crystals grown by this method have high quality. The lattice constants evaluated from XRD patterns are a0=1.87 nm, b0=0.75 nm, c0=1.00 nm, β=118.83∘. The in situ selected area electron diffraction (SAED) patterns along the [101¯], [11¯1¯] and [103¯] zone axes at room temperature indicate that the Rb 0.3MoO 3 crystal possess perfect C-centered symmetry. Temperature dependence of the resistivity shows this compound undergoes a metal to semiconductor transition at 183 K.

  15. Hexamethylenetetramine assisted hydrothermal synthesis of BiPO4 and its electrochemical properties for supercapacitors

    NASA Astrophysics Data System (ADS)

    Nithya, V. D.; Kalai Selvan, R.; Vasylechko, Leonid

    2015-11-01

    The well defined microstructures of BiPO4 were successfully synthesized by the facile hexamethylenetetramine (HMT) assisted hydrothermal method. The low temperature monoclinic BiPO4 structure with space group P21/n, were obtained from X-ray diffraction (XRD) for the pristine and HMT-assisted BiPO4 with 1, 3, 5 and 10 mmole concentration. A transformation from low temperature monazite-type phase to the high temperature SbPO4-type phase of BiPO4 was observed at the 10 mmole concentration. There was a variation in the morphology from polyhedron to octahedra-like and finally into cube shape upon an increase in concentration of HMT. The role of reaction time in the morphology of BiPO4 particles was investigated. The selected area electron diffraction (SAED) pattern elucidated the ordered dot pattern and the calculated d-spacing revealed the formation of BiPO4. An increased specific capacitance of HMT assisted materials (202 F/g) compared with pristine BiPO4 (89 F/g) at 5 mA/cm2 was observed upon morphological variation due to HMT addition.

  16. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens

    NASA Astrophysics Data System (ADS)

    Kathiraven, T.; Sundaramanickam, A.; Shanmugam, N.; Balasubramanian, T.

    2015-04-01

    We present the synthesis and antibacterial activity of silver nanoparticles using Caulerpa racemosa, a marine algae. Fresh C. racemosa was collected from the Gulf of Mannar, Southeast coast of India. The seaweed extract was used for the synthesis of AgNO3 at room temperature. UV-visible spectrometry study revealed surface plasmon resonance at 413 nm. The characterization of silver nanoparticle was carried out using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and transmission electron microscope (TEM). FT-IR measurements revealed the possible functional groups responsible for reduction and stabilization of the nanoparticles. X-ray diffraction analysis showed that the particles were crystalline in nature with face-centered cubic geometry.TEM micrograph has shown the formation of silver nanoparticles with the size in the range of 5-25 nm. The synthesized AgNPs have shown the best antibacterial activity against human pathogens such as Staphylococcus aureus and Proteus mirabilis. The above eco-friendly synthesis procedure of AgNPs could be easily scaled up in future for the industrial and therapeutic needs.

  17. Synthesis of TiO2 Nanoparticle and its phase Transition

    NASA Astrophysics Data System (ADS)

    Mangrola, M. H.; Joshi, V. G.; Parmar, B. H.

    2011-12-01

    Here we report the synthesis of titanium dioxide (TiO2) nanoparticles and study of its phase transition from anataze to rutile. Titanium dioxide (TiO2) nanoparticles have been prepared by hydrolysis of Titanium isopropoxide an aqueous solution with constant value of pH 2 and peptizing the resultant suspension gel(white-Blue) and calcinate gel at different temperature. Structures of synthetic samples of TiO2 have been examined by X-ray diffraction (XRD) and scanning electron microscope (SEM). The anatase-rutile transition has been a popular topic due to its interest to scientific and engineering fields. . Here we have seen that the 100 °C calcinate powder consist of anatase fine crystalline phase with a particle size 14 to 15 nm. The prepared TiO2 nanoparticles have uniform size and morphology, and the phase transformation kinetics of obtained material was studied by interpretation of the X-ray diffraction patterns peaks. The phase transform occurred from anatase to rutile at calcinate temperature up to 600 °C. A very fine network texture made from uniform nanoparticles was revealed by scanning electron microscopy (SEM) analyses.

  18. Optical, Magnetic and Photocatalytic Activity Studies of Li, Mg and Sr Doped and Undoped Zinc Oxide Nanoparticles.

    PubMed

    Shanthi, S I; Poovaragan, S; Arularasu, M V; Nithya, S; Sundaram, R; Magdalane, C Maria; Kaviyarasu, K; Maaza, M

    2018-08-01

    Nanoparticles of Li, Mg and Sr doped and undoped zinc oxide was prepared by simple precipitation method. The structural, optical, and magnetic properties of the samples were investigated by the Powder X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Fourier Transform Infrared (FTIR) spectroscopy, Ultra-violet Visible spectroscopy (UV-vis) spectra, Photoluminescence (PL) and Vibrational Sample Magnetometer (VSM). The Powder X-ray diffraction data confirm the formation of hexagonal wurtzite structure of all doped and undoped ZnO. The SEM photograph reveals that the pores availability and particles size in the range of 10 nm-50 nm. FTIR and UV-Visible spectra results confirm the incorporation of the dopant into the ZnO lattice nanostructure. The UV-Visible spectra indicate that the shift of blue region (lower wavelength) due to bandgap widening. Photoluminescence intensity varies with doping due to the increase of oxygen vacancies in prepared ZnO. The pure ZnO exist paramagnetic while doped (Li, Mg and Sr) ZnO exist ferromagnetic property. The photocatalytic activity of the prepared sample also carried out in detail.

  19. Rare-earth doped gadolinia based phosphors for potential multicolor and white light emitting deep UV LEDs.

    PubMed

    Bedekar, Vinila; Dutta, Dimple P; Mohapatra, M; Godbole, S V; Ghildiyal, R; Tyagi, A K

    2009-03-25

    Gadolinium oxide host and europium/dysprosium/terbium doped gadolinium oxide nanoparticles were synthesized using the sonochemical technique. Gadolinium oxide nanocrystals were also co-doped with total 2 mol% of Eu(3+)/Dy(3+),Eu(3+)/Tb(3+),Dy(3+)/Tb(3+), and also Eu(3+)/Dy(3+)/Tb(3+) ions, by the same method. The nanoparticles obtained were characterized using powder x-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) techniques. The size of the particles ranged from 15 to 30 nm. The triple doped samples showed multicolor emission on single wavelength excitation. The photoluminescence results were correlated with the lifetime data to get an insight into the luminescence and energy transfer processes taking place in the system. On excitation at 247 nm, the novel nanocrystalline Gd(2)O(3):RE (RE = Dy, Tb) phosphor resulted in having very impressive CIE chromaticity coordinates of x = 0.315 and y = 0.316, and a correlated color temperature of 6508 K, which is very close to standard daylight.

  20. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method

    PubMed Central

    2012-01-01

    Background Nickel ferrite, a kind of soft magnetic materials is one of the most attracting class of materials due to its interesting and important properties and has many technical applications, such as in catalysis, sensors and so on. In this paper the synthesis of NiFe2O4 nanoparticles by the hydrothermal method is reported and the inhibition of surfactant (Glycerol or Sodium dodecyl sulfate) on the particles growth is investigated. Methods For investigation of the inhibition effect of surfactant on NiFe2O4 particles growth, the samples were prepared in presence of Glycerol and Sodium dodecyl sulfate. The X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM) and inductively coupled plasma atomic emission spectrometer (ICP-AES) techniques were used to characterize the samples. Results The results of XRD and ICP-AES show that the products were pure NiFe2O4 and also nanoparticles grow with increasing the temperature, while surfactant prevents the particle growth under the same condition. The average particle size was determined from the Scherrer's equation and TEM micrographs and found to be in the range of 50-60 nm that decreased up to 10-15 nm in presence of surfactant. The FT-IR results show two absorption bands near to 603 and 490 cm-1 for the tetrahedral and octahedral sites respectively. Furthermore, the saturated magnetization and coercivity of NiFe2O4 nanoparticles were in the range of 39.60 emu/g and 15.67 Qe that decreased for samples prepared in presence of surfactant. As well as, the nanoparticles exhibited a superparamagnetic behavior at room temperature. Conclusions Nanosized nickel ferrite particles were synthesized with and without surfactant assisted hydrothermal methods. The results show that with increasing of temperature, the crystallinity of nanoparticles is increased. In the presence of surfactants, the crystallinity of NiFe2O4 nanoparticles decreased in comparison with surfactant- free prepared samples. All of the nickel ferrite nanoparticles were superparamagnetic at room temperature. Graphical abstract PMID:22462726

Top