Structure, Elastic Constants and XRD Spectra of Extended Solids under High Pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batyrev, I. G.; Coleman, S. P.; Ciezak-Jenkins, J. A.
We present results of evolutionary simulations based on density functional calculations of a potentially new type of energetic materials called extended solids: P-N and N-H. High-density structures with covalent bonds generated using variable and fixed concentration methods were analysed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction (XRD) spectra. X-ray diffraction spectra were calculated using a virtual diffraction algorithm that computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculated XRD patterns were used to search for the structure of extended solids present at experimental pressures by optimizing data accordingmore » to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Elastic constants has been calculated for thermodynamically stable structures of P-N system.« less
Modeling and measurements of XRD spectra of extended solids under high pressure
NASA Astrophysics Data System (ADS)
Batyrev, I. G.; Coleman, S. P.; Stavrou, E.; Zaug, J. M.; Ciezak-Jenkins, J. A.
2017-06-01
We present results of evolutionary simulations based on density functional calculations of various extended solids: N-Si and N-H using variable and fixed concentration methods of USPEX. Predicted from the evolutionary simulations structures were analyzed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction spectra. Stability of the predicted system was estimated from convex-hull plots. X-ray diffraction spectra were calculated using a virtual diffraction algorithm which computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculations of thousands of XRD spectra were used to search for a structure of extended solids at certain pressures with best fits to experimental data according to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Comparison of Raman and IR spectra calculated for best fitted structures with available experimental data shows reasonable agreement for certain vibration modes. Part of this work was performed by LLNL, Contract DE-AC52-07NA27344. We thank the Joint DoD / DOE Munitions Technology Development Program, the HE C-II research program at LLNL and Advanced Light Source, supported by BES DOE, Contract No. DE-AC02-05CH112.
NASA Astrophysics Data System (ADS)
YangDai, Tianyi; Zhang, Li
2016-02-01
Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.
NASA Astrophysics Data System (ADS)
Sánchez Escribano, Vicente; Fernández López, Enrique; Panizza, Marta; Resini, Carlo; Gallardo Amores, José Manuel; Busca, Guido
2003-10-01
The X-ray diffraction (XRD) patterns and the Infrared, Raman and UV-visible spectra of CeO 2ZrO 2 powders prepared by co-precipitation are presented. Raman spectra provide evidence for the largely predominant cubic structure of the powders with CeO 2 molar composition higher than 25%. Also skeletal IR spectra allow to distinguish cubic from tetragonal phases which are instead not easily distinguished on the basis of the XRD patterns. All mixed oxides including pure ceria are strong UV absorbers although also absorb in the violet visible region. By carefully selecting their composition and treatment temperature, the onset of the radiation that they cut off can be chosen in the 425-475 nm interval. Although they are likely metastable, the cubic phases are still pure even after heating at 1173 K for 4 h.
Effects of Peripheral Architecture on the Properties of Aryl Polyhedral Oligomeric Silsesquioxanes
2012-07-26
POSS) molecules are described. These POSS materials were synthesized in our laboratory and characterized by single-crystal and powder X - ray diffraction ...powder X - ray diffraction (XRD), where applicable. 1H, 13C, and 29Si NMR spectra were obtained on Bruker 300 and 400 MHz spectrometers using 5 mm o.d...degree of cage ordering during precipitation. Referring back to Figure 14, strong X - ray scattering peaks in the spectra for 1 in the d- spacing range
Comparing two tetraalkylammonium ionic liquids. II. Phase transitions.
Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C; Ferreira, Fabio F; Costa, Fanny N; Giles, Carlos
2016-06-14
Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N1444][NTf2] experiences glass transition at low temperature, whereas [N1114][NTf2] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.
Preparation of Cu-doped nickel oxide thin films and their properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gowthami, V.; Meenakshi, M.; Anandhan, N.
2014-04-24
Copper doped Nickel oxide film was preferred on glass substrate by simple nebulizer technique keeping the substrate temperature at 350°C and characterized by X-ray diffraction (XRD), Photoluminescence (PL) and Four probe resistivity measurements. XRD studies indicated cubic structure and the crystallites are preferentially oriented along the [111] direction. Interesting results have been obtained from the study of PL spectra. A peak corresponding to 376nm in the emission spectra for 0%, 5% and 10% copper doped samples. The samples show sharp and strong UV emission corresponding to the near band edge emission under excitation of 275nm.
Misra, N L; Yadav, A K; Dhara, Sangita; Mishra, S K; Phatak, Rohan; Poswal, A K; Jha, S N; Sinha, A K; Bhattacharyya, D
2013-01-01
The preparation and characterization of Sb-doped Bi(2)UO(6) solid solutions, in a limited composition range, is reported for the first time. The solid solutions were prepared by solid-state reactions of Bi(2)O(3), Sb(2)O(3) and U(3)O(8) in the required stoichiometry. The reaction products were characterized by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements at the Bi and U L(3) edges. The XRD patterns indicate the precipitation of additional phases in the samples when Sb doping exceeds 4 at%. The chemical shifts of the Bi absorption edges in the samples, determined from the XANES spectra, show a systematic variation only up to 4 at% of Sb doping and support the results of XRD measurements. These observations are further supported by the local structure parameters obtained by analysis of the EXAFS spectra. The local structure of U is found to remain unchanged upon Sb doping indicating that Sb(+3) ions replace Bi(+3) during the doping of Bi(2)UO(6) by Sb.
X-ray diffraction and X-ray K absorption near edge studies of copper (II) complexes with amino acids
NASA Astrophysics Data System (ADS)
Sharma, P. K.; Mishra, Ashutosh; Malviya, Varsha; Kame, Rashmi; Malviya, P. K.
2017-05-01
Synthesis of copper (II) complexes [CuL1L2X].nH2O, where n=1, 2,3 (X=Cl,Br,NO3) (L1is 2,2’-bipyridine and L2 is L-tyrosine) by the chemical root method. The XRD data for the samples have been recorded. EXAFS spectra have also been recorded at the K-edge of Cu using the dispersive beam line BL-8 at 2.5 Gev Indus-2 Synchrotron radiation source at RRCAT, Indore, India. XRD and EXAFS data have been analysed using the computer software. X-ray diffraction studies of all complexes indicate their crystalline nature. Lattice parameter, bond length, particle size have been determined from XRD data.
Structural properties and electrochemistry of α-LiFeO2
NASA Astrophysics Data System (ADS)
Abdel-Ghany, A. E.; Mauger, A.; Groult, H.; Zaghib, K.; Julien, C. M.
2012-01-01
In this work, we study the physico-chemistry and electrochemistry of lithium ferrite synthesized by solid-state reaction. Characterization included X-ray diffraction (XRD), scanning electronic microscopy (SEM), Raman scattering (RS), Fourier transform infrared spectroscopy (FTIR), and SQUID magnetometry. XRD peaks gradually sharpen with increasing firing temperature; all the diffraction peaks can be indexed to the cubic α-LiFeO2 phase (Fm3m space group) with the refined cell parameter a = 4.155 Å. RS and FTIR spectra show the vibrational modes due to covalent Fe-O bonds and the Li-cage mode at low-frequency. The electrochemical properties of Li/LiFeO2 are revisited along with the post-mortem analysis of the positive electrode material using XRD and Raman experiments.
On-the-fly segmentation approaches for x-ray diffraction datasets for metallic glasses
Ren, Fang; Williams, Travis; Hattrick-Simpers, Jason; ...
2017-08-30
Investment in brighter sources and larger detectors has resulted in an explosive rise in the data collected at synchrotron facilities. Currently, human experts extract scientific information from these data, but they cannot keep pace with the rate of data collection. Here, we present three on-the-fly approaches—attribute extraction, nearest-neighbor distance, and cluster analysis—to quickly segment x-ray diffraction (XRD) data into groups with similar XRD profiles. An expert can then analyze representative spectra from each group in detail with much reduced time, but without loss of scientific insights. As a result, on-the-fly segmentation would, therefore, result in accelerated scientific productivity.
Hein, James R.; Mizell, Kira; Barnard, Patrick L.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.
2013-01-01
The mineralogical compositions of 119 samples collected from throughout the San Francisco Bay coastal system, including bayfloor and seafloor, area beaches, cliff outcrops, and major drainages, were determined using X-ray diffraction (XRD). Comparison of the mineral concentrations and application of statistical cluster analysis of XRD spectra allowed for the determination of provenances and transport pathways. The use of XRD mineral identifications provides semi-quantitative compositions needed for comparisons of beach and offshore sands with potential cliff and river sources, but the innovative cluster analysis of XRD diffraction spectra provides a unique visualization of how groups of samples within the San Francisco Bay coastal system are related so that sand-sized sediment transport pathways can be inferred. The main vector for sediment transport as defined by the XRD analysis is from San Francisco Bay to the outer coast, where the sand then accumulates on the ebb tidal delta and also moves alongshore. This mineralogical link defines a critical pathway because large volumes of sediment have been removed from the Bay over the last century via channel dredging, aggregate mining, and borrow pit mining, with comparable volumes of erosion from the ebb tidal delta over the same period, in addition to high rates of shoreline retreat along the adjacent, open-coast beaches. Therefore, while previously only a temporal relationship was established, the transport pathway defined by mineralogical and geochemical tracers support the link between anthropogenic activities in the Bay and widespread erosion outside the Bay. The XRD results also establish the regional and local importance of sediment derived from cliff erosion, as well as both proximal and distal fluvial sources. This research is an important contribution to a broader provenance study aimed at identifying the driving forces for widespread geomorphic change in a heavily urbanized coastal-estuarine system.
Comparing two tetraalkylammonium ionic liquids. II. Phase transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.
Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1114}][NTf{sub 2}], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1444}][NTf{sub 2}], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N{sub 1444}][NTf{sub 2}] experiences glass transition at low temperature, whereas [N{sub 1114}][NTf{sub 2}] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picturemore » of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.« less
Structure of chitosan thermosensitive gels containing graphene oxide
NASA Astrophysics Data System (ADS)
Tylman, Michał; Pieklarz, Katarzyna; Owczarz, Piotr; Maniukiewicz, Waldemar; Modrzejewska, Zofia
2018-06-01
The supramolecular hydrogels of chitosan and graphene oxide (GO) have been prepared at temperature of the human body, by controlling the concentration of GO and ratio of chitosan to GO. During the preparation of gels the sodium β-glycerophosphate (Na-β-GP) was used as a neutralizing agent. The structure of obtained gels was determined on the basis of FTIR spectra and XRD diffraction patterns. The results of structural studies have been referenced to gels without graphene oxide. It was found that the gels crystalline structure after the addition of GO does not change. The XRD diffraction patterns are characterized by a number of peaks associated with precipitated NaCl during drying and presence of sodium β-glycerophosphate.
The photoluminescent properties of Y2O3:Bi3+, Eu3+, Dy3+ phosphors for white-light-emitting diodes.
Han, Xiumei; Feng, Xu; Qi, Xiwei; Wang, Xiaoqiang; Li, Mingya
2014-05-01
Bi3+, Eu3+, Dy3+ activated Y2O3 phosphors were prepared through the sol-gel process. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, and photoluminescence (PL) spectra were used to characterize the resulting phosphors. The XRD patterns show the refined crystal structure of Y2O3. The energy transfer processes of Bi(3+)-Eu3+ occurred in the host lattices. The thermal stability of Y2O3:Bi3+, Eu3+, Dy3+ phosphors was studied. Under short wavelength UV excitation, the phosphors show excellent characteristic red, blue, and yellow emission with medium intensity.
NASA Astrophysics Data System (ADS)
Rodríguez, Humberto Bustos; Lozano, Dagoberto Oyola; Martínez, Yebrayl Antonio Rojas; Pinilla, Marlene Rivera; Alcázar, German Antonio Pérez
2012-03-01
Soil chemical analysis, X-ray diffraction (XRD) and Mössbauer spectrometry (MS) of 57Fe were used to characterize mineral phases of samples taken from the productive layer (horizon A) of agricultural coffee soil from Tolima (Colombia). Chemical analysis shows the chemical and textural parameters of samples from two different regions of Tolima, i.e., Ibagué and Santa Isabel. By XRD phases like illite (I), andesine (A) and quartz (Q) in both samples were identified. The quantity of these phases is different for the two samples. The MS spectra taken at room temperature were adjusted by using five doublets, three of them associated to Fe + 3 type sites and the other two to Fe + 2 type sites. According to their isomer shift and quadrupole splitting the presence of phases like illite (detected by DRX), nontronite and biotite (not detected by XRD) can be postulated.
Sethi, Sapna; Kothiyal, N C; Nema, Arvind K
2012-07-01
Leachate recirculation at neutral PH accompanied with buffer/nutrients addition has been used successfully in earlier stabilization of municipal solid waste in bioreactor landfills. In the present study, efforts were made to enhance the stabilization rate of municipal solid waste (MSW) and organic solid waste (OSW) in simulated landfill bioreactors by controlling the pH of recirculated leachate towards slightly alkaline side in absence of additional buffer and nutrients addition. Enhanced stabilization in waste samples was monitored with the help of analytical tools like Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Predominance of bands assigned to inorganic compounds and comparatively lower intensities of bands for organic compounds in the FTIR spectra of waste samples degraded with leachate recirculation under controlled pH confirmed higher rate of biodegradation and mineralization of waste than the samples degraded without controlled leachate recirculation. XRD spectra also confirmed to a greater extent of mineralization in the waste samples degraded under leachate recirculation with controlled pH. Comparison of XRD spectra of two types of wastes pointed out higher degree of mineralization in organic solid waste as compared to municipal solid waste.
Effect of particle size and laser power on the Raman spectra of CuAlO2 delafossite nanoparticles
NASA Astrophysics Data System (ADS)
Yassin, O. A.; Alamri, S. N.; Joraid, A. A.
2013-06-01
A transparent conductive oxide CuAlO2 delafossite is studied using x-ray powder diffraction (XRD) and micro-Raman spectroscopy measurements as a function of the particle size and laser power from 2 to 20 mW. The XRD results indicate that the lattice parameters and the cell volume expand as the particle size reduces. Large red shifts (˜60 cm-1) and line broadening (˜50 cm-1) are observed as the particle size becomes of the order of 13 nm. These huge values can only be justified if collective effects on the Raman spectra created by the lattice expansion, confinement of phonons and enhanced phonon-phonon interactions are included in the interpretations of the Raman spectra of the CuAlO2 nanoparticles.
Influence of supercritical CO(2) pressurization on the phase behavior of mixed cholesteryl esters.
Huang, Zhen; Feng, Mei; Su, Junfeng; Guo, Yuhua; Liu, Tie-Yan; Chiew, Yee C
2010-09-15
Evidences indicating the presence of phase transformations in the mixed cholesteryl benzoate (CBE) and cholesteryl butyrate (CBU) under the supercritical CO(2) pressurization, by means of differential scanning calorimetry (DSC) and X-ray diffraction (XRD), are presented in this work. These include (1) the DSC heating curve of pure CBU; (2) the DSC heating curves of CBU/CBE mixtures; (3) the XRD spectra of pure CBU; (4) the XRD spectra of CBU/CBE mixtures; (5) CBU and CBE are miscible in either solid phase or liquid phase over the whole composition range. As a result of the presence of these phase transformations induced by pressurization, it could be deduced that a solid solution of the CBU/CBE mixture might have formed at the interfaces under supercritical conditions, subsequently influencing their dissolving behaviors in supercritical CO(2). Copyright 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Thai V.; Fulton, John L.
2013-01-22
We present a new methodology involving the simultaneous refinement of both x-ray absorption and x-ray diffraction spectra (X-ray Absorption/Diffraction Structural Refinement,XADSR), to study hydration and ion pair structure of CaCl 2 and RbBr salts in concentrated aqueous solutions. The XADSR analysis includes the XAFS spectra analysis of both the cation and anion as a probe of their short-range structure with an XRD spectral analysis as a probe of the global structural. Together they deliver a comprehensive picture of the cation and anion hydration, the contact ion pair (CIP) structure and the solvent-separated ion pair (SSIP) structure. XADSR analysis of 6.0more » m aqueous CaCl 2 reveals that there are an insignificant number of Ca 2+-Cl- CIP’s, but there are approximately 3.4 SSIP’s separated by about 4.99 Å. In contrast XADSR analysis of aqueous RbBr yields about 0.7 pair CIP at a bond length 3.51 Å. The present work demonstrates a new approach for a direct co-refinement of XRD and XAFS spectra in a simple and reliable fashion, opening new opportunities for analysis in various disordered and crystalline systems. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the U.S. Department of Energy by Battelle.« less
Thermoluminescence and X-ray diffraction studies on sliced ancient porcelain samples
NASA Astrophysics Data System (ADS)
Leung, P. L.; Yang, B.
1999-09-01
The thermal activation characteristics (TACs) of the sensitivity of the '110°C' peak in 14 sliced ancient Chinese porcelain samples are studied. Comparing with the TACs of natural quartz and synthetic mullite, the relation between the TACs and the composition of the sample is discussed with reference to the X-ray diffraction (XRD) spectra. It is suggested that in some cases, contribution of the porcelain components other than quartz to the TACs is not negligible.
Intrinsic ferromagnetism in nanocrystalline Mn-doped ZnO depending on Mn concentration.
Subramanian, Munisamy; Tanemura, Masaki; Hihara, Takehiko; Soga, Tetsuo; Jimbo, Takashi
2011-04-01
The physical properties of Zn(1-x)Mn(x)O nanoparticles synthesized by thermal decomposition are extensively investigated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman light scattering and Hysteresis measurements. XRD and XPS spectra reveal the absence of secondary phase in nanocrystalline ZnO doped with 5% or less Mn; and, later confirms that the valance state of Mn to be 2+ for all the samples. Raman spectra exhibit a peak at 660 cm(-1) which we attribute to the intrinsic lattice defects of ZnO with increasing Mn concentration. Overall, our results demonstrate that ferromagnetic properties can be realized while Mn-doped ZnO obtained in the nanocrystalline form.
Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method
NASA Astrophysics Data System (ADS)
Ali, Mawlood Maajal; Mahdi, Hadeel Salih; Parveen, Azra; Azam, Ameer
2018-05-01
The nanoparticles of cerium oxide have been successfully synthesized by hydroxide mediated method, using cerium nitrate and sodium hydroxide as precursors. The microstructural properties were analyzed by X-ray diffraction technique (XRD). The X-ray diffraction results show that the cerium oxide nanoparticles were in cubic structure. The optical absorption spectra of cerium oxide were recorded by UV-VIS spectrophotometer in the range of 320 to 600 nm and photoluminescence spectra in the range of 400-540 nm and have been presented. The energy band gap was determined by Tauc relationship. The crystallite size was determined from Debye-Scherer equation and came out to be 6.4 nm.
Complex study on photoluminescence properties of YAG:Ce,Gd phosphors
NASA Astrophysics Data System (ADS)
Lisitsyn, V. M.; Ju, Yangyang; Stepanov, S. A.; Soschin, N. M.
2017-05-01
Luminescence characteristics of gadolinium co-doped yttrium aluminium garnet doped with cerium phosphors were studied. In this work, powder X-ray diffraction (XRD) spectra, elemental composition analyses, excitation and emission spectra, conversion efficiency of emission phosphor, corresponding (CIE) chromaticity colour coordinates and pulsed photoluminescence decay kinetic curves were investigated, all the measurements were performed at room temperature. The properties of the phosphors were studied by comparing the composition of the phosphors and their luminescent properties.
Structural and Mössbauer analysis of pure and Ce-Dy doped cobalt ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Hashim, Mohd.; Meena, Sher Singh; Kumar, Shalendra; Ahmed, Ateeq; Bhatt, Pramod
2018-05-01
Ce and Dy doped Cobalt ferrites with the chemical composition CoCexDyxFe2-2xO4 (x = 0.00 and 0.04) were synthesized via the chemical route using citrate-gel auto-combustion method. The structural analysis has been carried out with the help of x-ray diffraction (XRD). Formation of spinel cubic structure of the ferrites was confirmed by XRD analysis. Mössbauer spectra were recorded for both samples at room temperature. Presence of the well resolved sextet spectra corresponding to A and B sub-lattice clearly shows that both the samples have ferrimagnetic ordering at room temperature. Isomer shift observed from fitting of the Mössbauer spectra infers that Fe3+ ions are in high valence state. The decrease in the hyperfine field due to the doping of Ce and Dy clearly showed that magnetic interactions diluted due to the doping of Ce and Dy ions.
Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles
NASA Astrophysics Data System (ADS)
Harish, G. S.; Sreedhara Reddy, P.
2015-09-01
Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2-3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm-1) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping.
Synthesis and optical properties of Mg-Al layered double hydroxides precursor powders
NASA Astrophysics Data System (ADS)
Lin, Chia-Hsuan; Chu, Hsueh-Liang; Hwang, Weng-Sing; Wang, Moo-Chin; Ko, Horng-Huey
2017-12-01
The synthesis and optical properties of Mg-Al layered double hydroxide (LDH) precursor powders were investigated using X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED), high-resolution TEM (HRTEM), UV-transmission spectrometer, and fluorescence spectrophotometer. The FT-IR results show that the intense absorption at around 1363-1377 cm-1 can be assigned to the antisymmetric ν3 mode of interlayer carbonate anions because the LDH phase contains some CO32-. The XRD results show that all of the Mg-Al LDH precursor powders contain only a single phase of [Mg0.833Al0.167(OH)2](CO3)0.083.(H2O)0.75 but have broad and weak intensities of peaks. All of Mg-Al LDHs precursor powders before calcination have the same photoluminescence (PL) spectra. Moreover, these spectra were excited at λex = 235 nm, and the broad emission band was in the range 325-650 nm. In the range, there were relatively strong intensity at around 360, 407 and 510 nm, respectively.
Structural and optical properties of electrospun MoO3 nanowires
NASA Astrophysics Data System (ADS)
Das, Arnab Kumar; Modak, Rajkumar; Srinivasan, Ananthakrishnan
2018-05-01
Nanofibers of polyvinyl alcohol (PVA) containing ammonium molybdate were prepared by a combination of sol-gel and electrospinning techniques. Heat treatment of the as-spun composite nanofibers at 500 °C yielded MoO3 nanowires with a diameter of ˜180 nm. The product was characterized by X-ray diffraction (XRD), scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. XRD and Raman spectra of the heat nanowires clearly show the formation of orthorhombic single phase MoO3 structure without any impurity phases.
Synthesis and Properties of Ortho-Nitro-Fe Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, A.; Mishra, Niyati; Sharma, R.
2011-07-15
Ortho-Nitro-Fe complex (Transition metal complex) has synthesized by chemical route method and properties of made complex has characterized by X-Ray diffraction (XRD), Moessbauer spectroscopy, Fourier transformation infra-red spectroscopy (FTIR) and X-Ray photoelectron spectroscopy (XPS). XRD analysis shows that sample is crystalline in nature and having particle size in the range of few nano meters. Moessbauer spectroscopy at room temperature shows the oxidation state of Iron (central metal ion) after complaxasion. FTIR spectra of the complex confirms the coordination of metal ion with ligand.
NASA Astrophysics Data System (ADS)
Kamarudin, Nadira; Abdullah, Wan Saffiey Wan; Hamid, Muhammad Azmi Abdul; Dollah, Mohd Taufik
2014-09-01
This paper presents the characterization and TL properties of dysprosium (Dy) doped calcium sulfate (CaSO4) TL material produced by co-precipitation technique with 0.5mol% concentration of dopant. The morphology of the produced TL material was studied using scanning electron microscope (SEM) and the micrograph shows that rectangular parallelepiped shaped crystal with the average of 150 μm in length were produced. The crystallinity of the produced powder was studied using x-ray powder diffraction (XRD). The XRD spectra show that the TL material produced is high purity anhydrite CaSO4 with average crystallite size of 74 nm with orthorhombic crystal system. The TL behavior of produced CaSO4:Dy was studied using a TLD reader after exposure to gamma ray by Co60 source with the doses of 1,5 and 10 Gy. The glow curve shows linear response with glow peak around 230°C which is desired development in the field of radiation dosimetry.
NASA Technical Reports Server (NTRS)
Pujar, Vijay V.; Cawley, James D.; Levine, S. (Technical Monitor)
2000-01-01
Earlier results from computer simulation studies suggest a correlation between the spatial distribution of stacking errors in the Beta-SiC structure and features observed in X-ray diffraction patterns of the material. Reported here are experimental results obtained from two types of nominally Beta-SiC specimens, which yield distinct XRD data. These samples were analyzed using high resolution transmission electron microscopy (HRTEM) and the stacking error distribution was directly determined. The HRTEM results compare well to those deduced by matching the XRD data with simulated spectra, confirming the hypothesis that the XRD data is indicative not only of the presence and density of stacking errors, but also that it can yield information regarding their distribution. In addition, the stacking error population in both specimens is related to their synthesis conditions and it appears that it is similar to the relation developed by others to explain the formation of the corresponding polytypes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, S., E-mail: shilpatr3@gmail.com; Shripathi, T.; Tripathi, J.
The results are reported on solution cast PMMA-PCTFE blend films characterized using x-ray diffraction and FTIR. The nanocrystalline nature of PMMA is still seen in the blends, however, the bond modifications are clearly observed. The addition of PCTFE results in the modification in structural properties, as reflected in the XRD and FTIR spectra showing modifications in bonding as a function of PCTFE percentage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gawai, U. P.; Dole, B. N.; Khawal, H. A.
Ag doped ZnO nanocrystals were synthesized by co-precipitation method with the nominal compositions (x=0.00, 0.02, 0.04, 0.06). The as-synthesized Ag doped ZnO nanocrystals were characterized by X-ray diffraction (XRD), FTIR and UV-Vis. From XRD patterns samples shows hexagonal structure. The average crystallite size is in the range of 41-47 nm. All as synthesized Zn{sub 1−x}Ag{sub x}O nanocrystals are highly textured, with wurtzite structure along the (101) growth direction. The energy band gap of pure and Ag doped ZnO were calculated from UV-Vis spectra. FTIR spectra were confirmed that Ag substituted into ZnO. Chemical species of the samples were detected using FTIRmore » spectra An increase in the hexagonal lattice parameters of ZnO is observed on increasing the Ag concentration. An optical absorption study shows an increment in the band gap with increasing Ag content. From optical study the samples determines blue shift. Atomic packing fraction (APF) and c/a ratio were calculated using XRD data. It confirms the formation of ZnO with the stretching vibrational mode around at 506 to 510 cm{sup −1}.« less
NASA Astrophysics Data System (ADS)
Stan, Manuela; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut; Vodnar, Dan Cristian; Katona, Gabriel
2015-12-01
The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn2+ ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Fang; Williams, Travis; Hattrick-Simpers, Jason
Investment in brighter sources and larger detectors has resulted in an explosive rise in the data collected at synchrotron facilities. Currently, human experts extract scientific information from these data, but they cannot keep pace with the rate of data collection. Here, we present three on-the-fly approaches—attribute extraction, nearest-neighbor distance, and cluster analysis—to quickly segment x-ray diffraction (XRD) data into groups with similar XRD profiles. An expert can then analyze representative spectra from each group in detail with much reduced time, but without loss of scientific insights. As a result, on-the-fly segmentation would, therefore, result in accelerated scientific productivity.
Hu, Qing-song; Zhu, Cheng-jing; Xia, Yue-yi; Wang, Li-li; Liu, Wen-han; Pan, Zai-fa
2016-02-01
Eu³⁺ doped BaSrMg (PO₄)₂ were prepared by a hydrothermal method. The crystal structure and morphology of BaSrMg(PO₄)₂:Eu³⁺ phosphor were characterized by X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FESEM). The effects of different pH values (5, 6, 7 and 8) and different reaction temperatures (120, 140, 160, 180 and 200 °C) on the crystal structure and morphology of BaSrMg(PO₄)₂:Eu³⁺ phosphor were studied in this paper. The results of XRD indicate that diffraction peaks are sharp and strong only when pH value is 6, meanwhile the FESEM shows the morphology is regular-shaped. The XRD patterns show amorphous halos superimposed with several weak sharp peaks for the samples preparing under the pH values of 5, 7 and 8. It indicates that these three samples are solid solution or mixed phases, which are in accord with the results of FESEM. From the fluorescence spectra, the peaks in the excitation spectra were assigned to the transition from ⁷F₀ to ⁵D₄, ⁵L₈, ⁵L₆ and ⁵D₂, while the peaks of emission spectra corresponding to the transition of ⁵D₁ --> ⁷F₁ and ⁵D₀-->⁷Fj (J = 0, 1, 2, 3 and 4). The strongest emission peak of the optimized phosphor located at 613 nm (⁵D0--> ⁷F₂), excited by the main excitation peak with wavelength of 394 nm. The splitting of the emission peaks changes depends on pH values and temperatures, which indicating that luminescence properties is closely related to the crystal structure and morphology of particles.
Pei, Jing-cheng; Fan, Lu-wei; Xie, Hao
2014-12-01
Based on the conventional test methods, the infrared absorption spectrum, Raman spectrum and X-ray diffraction (XRD) were employed to study the characters of the vibration spectrum and mineral composition of Huanglong jade. The testing results show that Huanglong jade shows typical vibrational spectrum characteristics of quartziferous jade. The main infrared absorption bands at 1162, 1076, 800, 779, 691, 530 and 466 cm(-1) were induced by the asymmetric stretching vibration, symmetrical stretching vibration and bending vibration of Si-O-Si separately. Especially the absorption band near 800 cm(-1) is split, which indicates that Huanglong jade has good crystallinity. In Raman spectrum, the main strong vibration bands at 463 and 355 cm(-1) were attributed to bending vibration of Si-O-Si. XRD test confirmed that Quartz is main mineral composition of Huanglong jade and there is a small amount of hematite in red color samples which induced the red color of Huanglong jade. This is the first report on the infrared, Raman and XRD spectra feature of Huanglong jade. It will provide a scientific basis for the identification, naming and other research for huanglong jade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamarudin, Nadira; Abdullah, Wan Saffiey Wan; Dollah, Mohd Taufik
2014-09-03
This paper presents the characterization and TL properties of dysprosium (Dy) doped calcium sulfate (CaSO{sub 4}) TL material produced by co-precipitation technique with 0.5mol% concentration of dopant. The morphology of the produced TL material was studied using scanning electron microscope (SEM) and the micrograph shows that rectangular parallelepiped shaped crystal with the average of 150 μm in length were produced. The crystallinity of the produced powder was studied using x-ray powder diffraction (XRD). The XRD spectra show that the TL material produced is high purity anhydrite CaSO{sub 4} with average crystallite size of 74 nm with orthorhombic crystal system. Themore » TL behavior of produced CaSO{sub 4}:Dy was studied using a TLD reader after exposure to gamma ray by Co{sup 60} source with the doses of 1,5 and 10 Gy. The glow curve shows linear response with glow peak around 230°C which is desired development in the field of radiation dosimetry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stan, Manuela, E-mail: manuela.stan@itim-cj.ro; Popa, Adriana; Toloman, Dana
The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn{sup 2+} ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes andmore » oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.« less
Body-centered orthorhombic C 16 : A novel topological node-line semimetal
Wang, Jian -Tao; Weng, Hongming; Nie, Simin; ...
2016-05-11
We identify by ab initio calculations a novel topological semimetal carbon phase in all-sp 2 bonding networks with a 16-atom body-centered orthorhombic unit cell, termed bco-C 16. Total-energy calculations show that bco-C 16 is comparable to solid fcc-C 60 in energetic stability, and phonon and molecular dynamics simulations confirm its dynamical stability. This all-sp 2 carbon allotrope can be regarded as a three-dimensional modification of graphite, and its simulated x-ray diffraction (XRD) pattern matches well a previously unexplained diffraction peak in measured XRD spectra of detonation and chimney soot, indicating its presence in the specimen. Electronic band structure calculations revealmore » that bco-C 16 is a topological node-line semimetal with a single nodal ring. Lastly, these findings establish a novel carbon phase with intriguing structural and electronic properties of fundamental significance and practical interest.« less
NASA Astrophysics Data System (ADS)
Osuntokun, Jejenija; Ajibade, Peter A.
2016-09-01
Zn(II) and Cd(II) metal complexes of 1-cyano-1-carboethoxyethylene-2,2-dithiolato-κS,S'-bis(N,N-dimethylthiourea-κS) have been synthesized and characterized with analytical and spectroscopic techniques. The complexes were thermolysed in hexadecylamine at 200 °C to prepare ZnS and CdS nanoparticles. The nanoparticles were characterized with scanning electron microscope (SEM), transmission electron microscope (TEM), and powder X-ray diffraction (p-XRD). TEM images showed spherically shaped nanoparticles, whose sizes are in the range 4.33-7.21 nm for ZnS and 4.95-7.7 nm CdS respectively and XRD confirmed cubic crystalline phases for the nanoparticles. The optical band gap energy evaluated from the absorption spectra are 2.88 eV (430 nm) and 2.81 eV (440 nm) for the ZnS and CdS nanoparticles respectively. The as-prepared metal sulfide nanoparticles were further incorporated into polyvinyl alcohol (PVA) to give ZnS/PVA and CdS/PVA composites. The polymer nanocomposites were studied to investigate their morphology and thermal properties relative to the pure PVA. XRD diffractions indicated that the crystalline phases of the nanoparticles and the sizes in PVA matrices remained unaltered. Infra-red spectra studies revealed interactions between the PVA and the metal sulfide nanoparticles and TGA studies show that the ZnS/PVA and CdS/PVA nanocomposites exhibit better thermal stability than the pure PVA.
Structural and magnetic properties of nanocomposite iron-containing SiCxNy films
NASA Astrophysics Data System (ADS)
Pushkarev, R. V.; Fainer, N. I.; Maurya, K. K.
2017-02-01
New ferromagnetic films with composition SiCxNyFez were synthesized using chemical vapor deposition technique. Films were deposited using ferrocene, 1,1,1,3,3,3-hexamethyldisilazane (HMDS) and hydrogen gaseous mixture. Chemical and phase composition of the films were studied by FTIR, Raman spectroscopy and X-ray diffraction with grazing incidence (GI-XRD). FTIR spectra analysis confirmed the existence of Si-C and Si-N bonds. Graphite inclusions and amorphous carbon were determined by Raman spectra analysis. The surface of the SiCxNyFez films studied by SEM is covered by nanocrystallites of iron oxide Fe3O4 phase. The main purpose of GI-XRD analysis is to describe the layered structure of the films in detail. It was shown by GI-XRD study, that phase composition of the SiCxNyFez films varies from iron oxide Fe3O4 to iron silicide Fe3Si and silicon carbide SiC with the deposition temperature growing. It was established, that SiCxNyFez films are perspective for application in the spintronic field.
Hoke, Eric T.; Slotcavage, Daniel J.; Dohner, Emma R.; Bowring, Andrea R.
2015-01-01
We report on reversible, light-induced transformations in (CH3NH3)Pb(BrxI1–x)3. Photoluminescence (PL) spectra of these perovskites develop a new, red-shifted peak at 1.68 eV that grows in intensity under constant, 1-sun illumination in less than a minute. This is accompanied by an increase in sub-bandgap absorption at ∼1.7 eV, indicating the formation of luminescent trap states. Light soaking causes a splitting of X-ray diffraction (XRD) peaks, suggesting segregation into two crystalline phases. Surprisingly, these photo-induced changes are fully reversible; the XRD patterns and the PL and absorption spectra revert to their initial states after the materials are left for a few minutes in the dark. We speculate that photoexcitation may cause halide segregation into iodide-rich minority and bromide-enriched majority domains, the former acting as a recombination center trap. This instability may limit achievable voltages from some mixed-halide perovskite solar cells and could have implications for the photostability of halide perovskites used in optoelectronics. PMID:28706629
[Infrared spectroscopy and XRD studies of coral fossils].
Chen, Quan-li; Zhou, Guan-min; Yin, Zuo-wei
2012-08-01
Coral fossil is an old remain of multicellular animal on the earth, and formed by various geological processes. The structural characteristics and compositions of the coral fossils with different color and radial texture on the surface were studied by infrared absorption spectroscopy and X-ray powder diffraction analyses. The results show that the studied coral fossils mainly are composed of SiO2, and the radial microstructure characterized by the calcareous coral cross-section is preserved. It is formed by metasomatism by SiO2. The infrared absorption spectra of the coral fossil with different color and texture are essentially the same, showing typical infrared absorption spectra of the quartz jade. XRD analysis shows that the main components of the coral fossils with different color and texture are consistent and mainly composed of SiO2 with a trace amount of other minerals and without CaCO3.
NASA Astrophysics Data System (ADS)
Kumar, Alesh; Mariappan, C. R.
2018-04-01
Bioactive glass-ceramics 45.8 mol% SiO- 45.8 CaO - 8.4 B2O3 doped with Ag2O were synthesized by sol-gel method. The glass-ceramic nature of samples was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. Fourier transform infrared (FT-IR) spectra reveal the probable stretching and bending vibration modes of silicate and borate groups. UV-Visible spectra reveal the presence of Ag+ ions and metallic Ag in the glass matrix for Ag2O doped ceramic sample. Biocompatibility of the glass nature of samples was studied by soaking of samples in Dulbecco's Modified Eagle's Medium (DMEM) with subsequent XRD studies. It was found that bone-like apatite formation on the glasses after soaked in DMEM. Antibacterial studies of glass ceramics powder against gram positive and negative microorganisms were carried out.
Structural analysis of aluminium substituted nickel ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Singh, H. S.; Sangwa, Neha
2018-05-01
Aluminium substituted nickel ferrite nanoparticles were synthesized by High Energy Ball milling (HEBM) of the mixture of α-NiO, α-Al2O3 and α-Fe2O3 followed by annealing at 1000˚C. X-ray diffraction (XRD) and Energy dispersive spectroscopy analysis (EDS) characterization was done for Aluminium substituted nickel ferrite. The structural analysis reveals the formation of the single phase compound. The average grain size was estimated by X-ray diffraction technique ranges from 30 to 10 nm with the increasing concentration of Aluminium. EDS spectra conforms the homogeneous mixing and purity of ferrite.
NASA Astrophysics Data System (ADS)
Wang, Jian; Shen, Siqing; Xie, Jianjun; Shi, Ying; Ai, Fei
2011-02-01
Tb3+-doped Lu3Al5O12(hereinafter referred to as LuAG:Tb) films were successfully prepared by Pechini sol-gel process and spin-coating technique on carefully cleaned (111) silicon wafer. The microstructure and optical properties of the LuAG:Tb films were studied by X-ray diffraction (XRD), atomic force microscopy(AFM), as well as photoluminescence (PL) spectra. The XRD results showed that the precursor films started to crystallize at about 900°C. All as-calcined LuAG:Tb films showed the Tb3+ characteristic emission bands.
NASA Astrophysics Data System (ADS)
Wang, Jian; Shen, Siqing; Xie, Jianjun; Shi, Ying; Ai, Fei
2010-10-01
Tb3+-doped Lu3Al5O12(hereinafter referred to as LuAG:Tb) films were successfully prepared by Pechini sol-gel process and spin-coating technique on carefully cleaned (111) silicon wafer. The microstructure and optical properties of the LuAG:Tb films were studied by X-ray diffraction (XRD), atomic force microscopy(AFM), as well as photoluminescence (PL) spectra. The XRD results showed that the precursor films started to crystallize at about 900°C. All as-calcined LuAG:Tb films showed the Tb3+ characteristic emission bands.
NASA Astrophysics Data System (ADS)
Mahadik, Ashwini; Soni, P. H.; Desai, C. F.
2017-12-01
Among quite a number of technologically important NLO materials, Potassium Dihydrogen Phosphate (KDP) is one of the most favourable ones for second harmonic generation applications, such as in electro-optic modulators, parametric oscillators and harmonic generators. The authors report here their studies on KDP crystals doped with L-Cysteine (1 mol% and 2 mol%). The dopant inclusion in the crystals was confirmed using Fourier transform infrared (FT-IR) spectroscopy and Powder X-Ray Diffraction (XRD). The XRD results also confirm the tetragonal structure with lattice parameters a = b = 7.45 Å and c = 6.98 Å. The presence of functional groups of crystals was analyzed using the FTIR spectra. For band gap evaluation, UV-Vis spectra were used and it was found to be 3.41 eV, 4.40eVand 4.50 eV, respectively in the cases of pure KDP, 1 mol% and 2 mol% L-Cysteine dopings. The spectra quality indicates good transparency of the doped crystals in the visible region, a feature quite desirable for applications in optoelectronics.
Preparation and characterization of PVP-PVA–ZnO blend polymer nano composite films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Divya, S., E-mail: divi.fysics@gmail.com; Saipriya, G.; Hemalatha, J., E-mail: hemalatha@nitt.edu
Flexible self-standing films of PVP-PVA blend composites are prepared by using ZnO as a nano filler at different concentrations. The structural, compositional, morphological and optical studies made with the help of X-ray diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Scanning electron microscope (SEM), Atomic Force Microscopy (AFM), Ultraviolet-visible spectroscopy (UV-vis) and Photoluminescence (PL) spectra are presented in this paper. The results of XRD indicate that ZnO nanoparticles are formed with hexagonal phase in the polymeric matrix. SEM images show the dispersion of ZnO nano filler in the polymer matrix. UV–vis spectra reveal that the absorption peak is centered around 235more » nm and 370 nm for the nano composite films. The blue shift is observed with decrease in the concentration of the nano filler. PL spectra shows the excitation wavelength is given at 320 nm.The emission peaks were observed at 383 nm ascribing to the electronic transitions between valence band and conduction band and the peak at 430 nm.« less
NASA Astrophysics Data System (ADS)
Gorgolis, S.; Giannopoulou, A.; Anastassopoulos, D.; Kounavis, P.
2012-07-01
Photocurrent response, optical absorption, and x-ray diffraction (XRD) measurements in pentacene films grown on glass substrates are performed in order to obtain an insight into the mobile photocarriers generation mechanism. For film thickness of the order of 50 nm and lower, the photocurrent response spectra are found to follow the optical absorption spectra demonstrating the so-called symbatic response. Upon increasing the film thickness, the photoresponse demonstrates a transition to the so-called antibatic response, which is characterized by a maximum and minimum photocurrent for photon energies of minimum and maximum optical absorption, respectively. The experimental results are not in accordance with the model of important surface recombination rate. By taking into account the XRD patterns, the experimental photoresponse spectra can be reproduced by model simulations assuming efficient exciton dissociation at a narrow layer of the order of 20 nm near the pentacene-substrate interface. The simulated spectra are found sensitive to the film thickness, the absolute optical absorption coefficient, and the diffusion exciton length. By comparing the experimental with the simulated spectra, it is deduced that the excitons, which are created by optical excitation in the spectral region of 1.7-2.2 eV, diffuse with a diffusion length of the order of 10-80 nm to the pentacene-substrate interface where efficiently dissociate into mobile charge carriers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montero-Cabrera, M. E., E-mail: elena.montero@cimav.edu.mx; Fuentes-Cobas, L. E.; Macías-Ríos, E.
2015-07-23
The maghemite-like oxide system γ-Fe{sub 2-x}Cr{sub x}O{sub 3} (x=0.75, 1 and 1.25) was studied by X-ray absorption fine structure (XAFS) and by synchrotron radiation X-ray diffraction (XRD). Measurements were performed at the Stanford Synchrotron Radiation Lightsource at room temperature, at beamlines 2-1, 2-3 and 4-3. High-resolution XRD patterns were processed by means of the Rietveld method. In cases of atoms being neighbors in the Periodic Table, the order/disorder degree of the considered solutions is indiscernible by “normal” (absence of “anomalous scattering”) diffraction experiments. Thus, maghemite-like materials were investigated by XAFS in both Fe and Cr K-edges to clarify, via short-rangemore » structure characterization, the local ordering of the investigated system. Athena and Artemis graphic user interfaces for IFEFFIT and FEFF8.4 codes were employed for XAFS spectra interpretation. Pre-edge decomposition and theoretical modeling of X-ray absorption near edge structure (XANES) transitions were performed. By analysis of the Cr K-edge XANES, it has been confirmed that Cr is located in an octahedral environment. Fitting of the extended X-ray absorption fine structure (EXAFS) spectra was performed under the consideration that the central atom of Fe is allowed to occupy octa- and tetrahedral positions, while Cr occupies only octahedral ones. Coordination number of neighboring atoms, interatomic distances and their quadratic deviation average were determined for x=1, by fitting simultaneously the EXAFS spectra of both Fe and Cr K-edges. The results of fitting the experimental spectra with theoretical standards showed that the cation vacancies tend to follow a regular pattern within the structure of the iron-chromium maghemite (FeCrO{sub 3})« less
Electronic structure, magnetic and structural properties of Ni doped ZnO nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Shalendra, E-mail: shailuphy@gmail.com; Vats, Prashant; Gautam, S.
Highlights: • XRD, and HR-TEM results show the single phase nature of Ni doped ZnO nanoparticles. • dc magnetization results indicate the RT-FM in Ni doped ZnO nanoparticles. • Ni L{sub 3,2} edge NEXAFS spectra infer that Ni ions are in +2 valence state. • O K edge NEXAFS spectra show that O vacancy increases with Ni doping in ZnO. - Abstract: We report structural, magnetic and electronic structural properties of Ni doped ZnO nanoparticles prepared by auto-combustion method. The prepared nanoparticles were characterized by using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), near edge X-ray absorption finemore » structure (NEXAFS) spectroscopy, and dc magnetization measurements. The XRD and HR-TEM results indicate that Ni doped ZnO nanoparticles have single phase nature with wurtzite lattice and exclude the presence of secondary phase. NEXAFS measurements performed at Ni L{sub 3,2}-edges indicates that Ni ions are in +2 valence state and exclude the presence of Ni metal clusters. O K-edge NEXAFS spectra indicate an increase in oxygen vacancies with Ni-doping, while Zn L{sub 3,2}-edge show the absence of Zn-vacancies. The magnetization measurements performed at room temperature shows that pure and Ni doped ZnO exhibits ferromagnetic behavior.« less
Electrodeposition of Zn-doped α-nickel hydroxide with flower-like nanostructure for supercapacitors
NASA Astrophysics Data System (ADS)
You, Zheng; Shen, Kui; Wu, Zhicheng; Wang, Xiaofeng; Kong, Xianghua
2012-08-01
Zn-doped α-nickel hydroxide materials with flower-like nanostructures are synthesized by electrochemical deposition method. The samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (SEM) and electrochemical measurements. XRD spectra indicate nickel hydroxide doped with Zn is α-Ni(OH)2 with excellent crystallization. The SEM observation shows that the formation of Zn-doped Ni(OH)2 includes two steps: a honeycomb-like film forms on the substrate first, then flower-like particles forms on the films. The nickel hydroxide doped with 5% Zn can maintain a maximum specific capacitance of 860 F g-1, suggesting its potential application in electrochemical capacitors.
The Synthesis and Photoluminescent Properties of CaMoO₄:Eu³⁺ Nanocrystals by a Soft Chemical Route.
Li, Fuhai; Yu, Lixin; Sun, Jiaju; Li, Songchu; Wei, Shuilin
2017-04-01
In this paper, the CaMoO4:Eu3+ phosphors were prepared by a simple hydrothermal method assisted by the citric acid as the surfactant, and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and fluorescent spectrophotometry. The results of XRD show that the as-prepared samples are single phase. The process of the Ostwald ripening is controlled by the content of the citric acid in the hydrothermal reaction. The pH value of the precursor affects the shift of the charge transition band (CTB) in the excitation spectra. The reaction condition can strongly affect the luminescent intensity of the samples.
Nano sized La2Co2O6 double perovskite synthesized by sol gel method
NASA Astrophysics Data System (ADS)
Solanki, Neha; Lodhi, Pavitra Devi; Choudhary, K. K.; Kaurav, Netram
2018-05-01
We report here the synthesis of double perovskite La2Co2O6 (LCO) compound by a sol gel route method. The double perovskite structure of LCO system was confirmed via X-ray diffraction (XRD) analysis. Further, the lattice parameter, unit cell volume and bond length were refined by means of rietveld analysis using the full proof software. Debye Scherer formula was used to determine the particle size. The compound crystallized in triclinic structure with space group P-1 in ambient condition. We also obtained Raman modes from XRD spectra of poly-crystalline LCO sample. These results were interpreted for the observation of phonon excitations in this compound.
Structural phase analysis and photoluminescence properties of Mg-doped TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
Ali, T.; Ashraf, M. Anas; Ali, S. Asad; Ahmed, Ateeq; Tripathi, P.
2018-05-01
In this paper, we report the synthesis, characterization and photoluminescence properties of Mg-doped TiO2 nanoparticles (NPs). The samples were synthesized by sol-gel method and characterized using the standard analytical techniques such as X-ray diffraction (XRD), Transmission electron microscope (TEM), Energy dispersive X-ray spectroscopy (EDX), UV-visible and photoluminescence spectroscopy. The powder XRD spectra revealed that the synthesized samples are pure and crystalline in nature and showing tetragonal anatase phase of TiO2 NPs. UV-visible spectrum illustrates that an absorption edge shifts toward the visible region. This study may provide a new insight for making the nanomaterials which can be used in photocatalytic applications.
Ademi, Abdulakim; Grozdanov, Anita; Paunović, Perica; Dimitrov, Aleksandar T
2015-01-01
Summary A model consisting of an equation that includes graphene thickness distribution is used to calculate theoretical 002 X-ray diffraction (XRD) peak intensities. An analysis was performed upon graphene samples produced by two different electrochemical procedures: electrolysis in aqueous electrolyte and electrolysis in molten salts, both using a nonstationary current regime. Herein, the model is enhanced by a partitioning of the corresponding 2θ interval, resulting in significantly improved accuracy of the results. The model curves obtained exhibit excellent fitting to the XRD intensities curves of the studied graphene samples. The employed equation parameters make it possible to calculate the j-layer graphene region coverage of the graphene samples, and hence the number of graphene layers. The results of the thorough analysis are in agreement with the calculated number of graphene layers from Raman spectra C-peak position values and indicate that the graphene samples studied are few-layered. PMID:26665083
STM-electroluminescence from clustered C3N4 nanodomains synthesized via green chemistry process.
Andrade, E P; Costa, B B A; Chaves, C R; de Paula, A M; Cury, L A; Malachias, A; Safar, G A M
2018-01-01
A Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and synchrotron X-ray diffraction study on clustered C 3 N 4 nanoparticles (nanoflakes) is conducted on green-chemistry synthesized samples obtained from chitosan through high power sonication. Morphological aspects and the electronic characteristics are investigated. The observed bandgap of the nanoflakes reveals the presence of different phases in the material. Combining STM morphology, STS spectra and X-ray diffraction (XRD) results one finds that the most abundant phase is graphitic C 3 N 4 . A high density of defects is inferred from the XRD measurements. Additionally, STM-electroluminescence (STMEL) is detected in C 3 N 4 nanoflakes deposited on a gold substrate. The tunneling current creates photons that are three times more energetic than the tunneling electrons of the STM sample. We ponder about the two most probable models to explain the observed photon emission energy: either a nonlinear optical phenomenon or a localized state emission. Copyright © 2017 Elsevier B.V. All rights reserved.
Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction.
Dankar, Iman; Haddarah, Amira; Omar, Fawaz E L; Pujolà, Montserrat; Sepulcre, Francesc
2018-09-15
Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) techniques were used to study the effect of four food additives, agar, alginate, lecithin and glycerol, at three different concentrations, 0.5, 1 and 1.5%, on the molecular structure of potato puree prepared from commercial potato powder. Vibrational spectra revealed that the amylose-amylopectin skeleton present in the raw potato starch was missing in the potato powder but could be fully recovered upon water addition when the potato puree was prepared. FTIR peaks corresponding to water were clearly present in the potato powder, indicating the important structural role of water molecules in the recovery of the initial molecular conformation. None of the studied puree samples presented a crystalline structure or strong internal order. A comparison of the FTIR and XRD results revealed that the additives exerted some effects, mainly on the long-range order of the starch structure via interacting with and changing -OH and hydrogen bond interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Synthesis and optical properties of silver nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Jaiveer; Kaurav, Netram, E-mail: netramkaurav@yahoo.co.uk; Choudhary, K. K.
The preparation of stable, uniform silver nanoparticles by reduction of silver acetate by ethylene glycol (EG) is reported in the present paper. It is a simple process of recent interest for obtaining silver nanoparticles. The samples were characterized by X-Ray diffraction (XRD), which reveals an average particle size (D) of 38 nm. The UV/Vis spectra show that an absorption peak, occurring due to surface plasmon resonance (SPR), exists at 319 nm.
Synthesis and characterization of graphene oxide using modified Hummer's method
NASA Astrophysics Data System (ADS)
Kaur, Manpreet; Kaur, Harsimran; Kukkar, Deepak
2018-05-01
In the present study, a simple approach has been followed for the synthesis of graphene oxide (GO) using modified Hummers method in which graphite powder was oxidized in the presence of concentrated H2SO4 and KMnO4. The amount of NaNO3 and KMnO4 was varied to produce sheet like structure. The varied concentrations of NaNO3 and KMnO4 resulted in yielding large amount of the product. Structural, morphological and physicochemical features of the product were studied using UV-Visible spectrophotometer, Fourier Transform infrared spectroscopy (FTIR), and crystal structure was determined using X-ray powder diffraction (XRD). UV-Vis spectra of GO was observed at a maximum absorption of 230 nm due to (π-π*) transition of atomic carbon-carbon bonds. FTIR spectra revealed the presence of oxygen containing functional groups which ensures the complete exfoliation of graphite into graphene oxide X-ray powder diffraction pattern of the product showed the diffraction peak at (2θ = 26.7°) with an interlayer spacing of 0.334 nm. All the above characterizations successfully confirmed the formation of GO.
NASA Astrophysics Data System (ADS)
Kunj, Saurabh; Sreenivas, K.
2016-05-01
Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O2/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janeoo, Shashi; Sharma, Mamta, E-mail: mamta.phy85@gmail.com; Goswamy, J.
Polyaniline-indium oxide (In{sub 2}O{sub 3}/PANI) nanocomposite have been prepared by in-situ polymerization of aniline and as-synthesized In{sub 2}O{sub 3} nanoparticles. X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transformation infrared (FTIR) and UV/Vis spectroscopy techniques are used to investigate the structural and optical properties of In{sub 2}O{sub 3}/PANI nanocomposite. TEM analysis shows In{sub 2}O{sub 3} nanoparticles are embedded in PANI nanofibers. FTIR spectra show the good interactions between PANI nanofibers and In{sub 2}O{sub 3} nanoparticles. The band gap and electronic transitions in In{sub 2}O{sub 3}/PANI nanocomposite is determined by using UV/Vis spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunj, Saurabh, E-mail: saurabhkunj22@gmail.com; Sreenivas, K.
2016-05-23
Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O{sub 2}/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.
Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Shalendra, E-mail: shailuphy@gmail.com; School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773; Song, T.K., E-mail: tksong@changwon.ac.kr
Highlights: • XRD and HR-TEM results show the single phase nature of Co doped ZnO nanoparticles. • XMCD and dc magnetization results indicate the RT-FM in Co doped ZnO nanoparticles. • Co L{sub 3,2} NEXAFS spectra infer that Co ions are in 2+ valence state. • O K edge NEXAFS spectra show that O vacancy increases with Co doping in ZnO. - Abstract: We reported structural, magnetic and electronic structure studies of Co doped ZnO nanoparticles. Doping of Co ions in ZnO host matrix has been studied and confirmed using various methods; such as X-ray diffraction (XRD), field emission scanningmore » electron microscopy (FE-SEM), energy dispersed X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, magnetic hysteresis loop measurements and X-ray magnetic circular dichroism (XMCD). From the XRD and HR-TEM results, it is observed that Co doped ZnO nanoparticles have single phase nature with wurtzite structure and exclude the possibility of secondary phase formation. FE-SEM and TEM micrographs show that pure and Co doped nanoparticles are nearly spherical in shape. O K edge NEXAFS spectra indicate that O vacancies increase with Co doping. The Co L{sub 3,2} edge NEXAFS spectra revealed that Co ions are in 2+ valence state. DC magnetization hysteresis loops and XMCD results clearly showed the intrinsic origin of temperature ferromagnetism in Co doped ZnO nanoparticles.« less
NASA Astrophysics Data System (ADS)
Wang, Moo-Chin; Hon, Min-Hsiung; Chen, Hui-Ting; Yen, Feng-Lin; Hung, I.-Ming; Ko, Horng-Huey; Shih, Wei-Jen
2013-07-01
The effects of process parameters on the crystallization and morphology of hydroxyapatite (Ca10(PO4)6(OH)2, HA) powders synthesized from dicalcium phosphate dihydrate (CaHPO4·2H2O, DCPD) using a hydrolysis method have been investigated. X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were used to characterize the synthesized powders. When DCPD underwent hydrolysis in 2.5 NaOH solution (Na(aq)) at 303 K to 348 K (30 °C to 75 °C) for 1 hour, the XRD results revealed that HA was obtained for all the as-dried samples. The SEM morphology of the HA powders for DCPD hydrolysis produced at 348 K (75 °C) shows regular alignment and a short rod shape with a size of 200 nm in length and 50 nm in width. With DCPD hydrolysis in 2.5 M NaOH(aq) holding at 348 K (75 °C) for 1 to 24 hours, XRD results demonstrated that all samples were HA and no other phases could be detected. Moreover, the XRD results also show that all the as-dried powders still maintained the HA structure when DCPD underwent hydrolysis in 0.1 to 5 M NaOH(aq) at 348 K (75 °C) for 1 hour. Otherwise, the full transformation from HA to octa-calcium phosphate (OCP, Ca8H2(PO4)6·5H2O) occurred when hydrolysis happened in 10 M NaOH(aq). FT-IR spectra analysis revealed that some carbonated HA (Ca10(PO4)6(CO3), CHA) had formed. The SEM morphology results show that the 60 to 65 nm width of the uniformly long rods with regular alignment formed in the HA powder aggregates when DCPD underwent hydrolysis in 2.5 M NaOH(aq) at 348 K (75 °C) for 1 hour.
Synthesis and characterization of CdS/PVA nanocomposite films
NASA Astrophysics Data System (ADS)
Wang, Hongmei; Fang, Pengfei; Chen, Zhe; Wang, Shaojie
2007-08-01
A series CdS/PVA nanocomposite films with different amount of Cd salt have been prepared by means of the in situ synthesis method via the reaction of Cd 2+-dispersed poly vinyl-alcohol (PVA) with H 2S. The as-prepared films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption, photoluminescence (PL) spectra, Fourier transform infrared spectroscope (FTIR) and thermogravimetric analysis (TGA). The XRD results indicated the formation of CdS nanoparticles with hexagonal phase in the PVA matrix. The primary FTIR spectra of CdS/PVA nanocomposite in different processing stages have been discussed. The vibrational absorption peak of Cd sbnd S bond at 405 cm -1 was observed, which further testified the generation of CdS nanoparticles. The TGA results showed incorporation of CdS nanoparticles significantly altered the thermal properties of PVA matrix. The photoluminescence and UV-vis spectroscopy revealed that the CdS/PVA films showed quantum confinement effect.
NASA Astrophysics Data System (ADS)
Abraham, S. Daniel; David, S. Theodore; Bennie, R. Biju; Joel, C.; Kumar, D. Sanjay
2016-06-01
Bismuth vanadate (BiVO4) nanocrystals have been successfully synthesised using microwave-assisted combustion synthesis (MCS), and characterised using Fourier transform infrared (FT-IR) and Raman spectra, surface area analysis (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy Dispersive X-ray analysis (EDX), diffused reflectance spectroscopy (DRS) and Photoluminescence (PL) spectroscopy. The XRD results confirmed the formation of monoclinic bismuth vanadate. The formations of BiO & VO43-vibrations were ascertained from FT-IR data. The morphology of hallow internal structural micro entities were confirmed by SEM. The optical properties were determined by DRS and PL spectra. Hence, the influence of the preparation methods on the structure, morphology and optical activities of bismuth vanadate was investigated systematically. Photocatalytic degradation (PCD) of Alizarin Red S (ARS), an effective disrupting chemical in aqueous medium was investigated using BiVO4 nanoparticles. The kinetics of PCD was found to follow pseudo first-order.
Structural and electrical properties of Li4Ti5O12 anode material for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Vikram Babu, B.; Vijaya Babu, K.; Tewodros Aregai, G.; Seeta Devi, L.; Madhavi Latha, B.; Sushma Reddi, M.; Samatha, K.; Veeraiah, V.
2018-06-01
In this work we investigate Li4Ti5O12 (LTO) anode material synthesized by conventional solid state reaction method calcined at 850 °C for 16 h. Thermal analysis reveals the temperature dependence of the material properties. The phase composition, micro-morphology and elemental analysis of the compound are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectra (EDS) respectively. The results of XRD pattern possessed cubic spinel structure with space group Fd-3m. The morphological features of the powder sample are in the range of 1.1 μm. The EDS spectra confirm the constituent elemental composition of the sample. Electrical conductivity measurement at different frequencies and temperatures had been carried out; and at room temperature it is found to be 5.96 × 10-7 S/cm. Besides, for the different frequencies applied, the activation energies were calculated and obtained to be in the range of 0.2-0.4 eV.
YAlO3:Ce3+ powders: Synthesis, characterization, thermoluminescence and optical studies
NASA Astrophysics Data System (ADS)
Parganiha, Yogita; Kaur, Jagjeet; Dubey, Vikas; Shrivastava, Ravi
2015-09-01
Yttrium aluminum perovskite (YAP) is a promising high temperature ceramic material, known for its mechanical, structural and optical properties. YAP's also known as an ideal host material for solid-state lasers and phosphors. In this work, Ce3+ doped YAlO3 phosphors were synthesized by solid state reaction method, which is very suitable technique for large scale production. A prepared phosphor was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Photoluminescence spectra and Thermoluminescence (TL) glow curve study. The starting reagents used for sample preparation are Y2O3, Al2O3 and CeO2, boric acid used as a flux. Ratio of Y:Al was 1:1 which shows perovskite structure confirmed by the X-ray diffraction (XRD) study. The entire prepared sample was studied by PL excitation and emission spectra. Prominent peak at 446 nm (blue emission) which shows broad emission spectra of photoluminescence. It proves that prepared phosphor can act as a single host for blue emission of light and can be used for display applications. Commission Internationale de I'Eclairage (CIE) techniques proves the blue emission of light (x = .148, y = .117). TL glow curve analysis of prepared phosphor shows the prominent peak at 189 °C for the variable UV exposure time and high temperature peak shows the more stability and less fading in the prepared phosphor. Kinetic data of prepared phosphor were evaluated by peak shape method for variable UV exposure time (5-25 min).
Shanthi, S I; Poovaragan, S; Arularasu, M V; Nithya, S; Sundaram, R; Magdalane, C Maria; Kaviyarasu, K; Maaza, M
2018-08-01
Nanoparticles of Li, Mg and Sr doped and undoped zinc oxide was prepared by simple precipitation method. The structural, optical, and magnetic properties of the samples were investigated by the Powder X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Fourier Transform Infrared (FTIR) spectroscopy, Ultra-violet Visible spectroscopy (UV-vis) spectra, Photoluminescence (PL) and Vibrational Sample Magnetometer (VSM). The Powder X-ray diffraction data confirm the formation of hexagonal wurtzite structure of all doped and undoped ZnO. The SEM photograph reveals that the pores availability and particles size in the range of 10 nm-50 nm. FTIR and UV-Visible spectra results confirm the incorporation of the dopant into the ZnO lattice nanostructure. The UV-Visible spectra indicate that the shift of blue region (lower wavelength) due to bandgap widening. Photoluminescence intensity varies with doping due to the increase of oxygen vacancies in prepared ZnO. The pure ZnO exist paramagnetic while doped (Li, Mg and Sr) ZnO exist ferromagnetic property. The photocatalytic activity of the prepared sample also carried out in detail.
Zhang, Ping; Wang, Tianqi; Zhang, Longlong; Wu, Daishe; Frost, Ray L
2015-12-05
Hydrocalumite (CaAl-LDH-Cl) interacted with a natural anionic surfactant, sodium hexadecyl sulfate (SHS), was performed using an intercalation method. To understand the intercalation behavior and characterize the resulting products, powder X-ray diffraction (XRD), scan electron microscopy (SEM) and mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique were used. The XRD analysis indicated that SHS was intercalated into CaAl-LDH-Cl successfully, resulting in an expansion of the interlayer (from 0.78 nm to 2.74 nm). The bands of C-H stretching vibrations of SHS were observed in the near-infrared spectra, which indicated that the resulting products were indeed CaAl-LDH-SHS. In addition, the bands of water stretching vibrations and OH groups shifted to higher wavenumbers when SHS was intercalated into CaAl-LDH-Cl interlayer space. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of substrate temperature in the synthesis of BN nanostructures
NASA Astrophysics Data System (ADS)
Sajjad, M.; Zhang, H. X.; Peng, X. Y.; Feng, P. X.
2011-06-01
Boron nitride (BN) nanostructures were grown on molybdenum discs at different substrate temperatures using the short-pulse laser plasma deposition technique. Large numbers of randomly oriented nanorods of fiber-like structures were obtained. The variation in the length and diameter of the nanorods as a function of the substrate temperature was systematically studied. The surface morphologies of the samples were studied using scanning electron microscopy. Energy dispersive x-ray spectroscopy confirmed that both the elements boron and nitrogen are dominant in the nanostructure. The x-ray diffraction (XRD) technique was used to analyse BN phases. The XRD peak that appeared at 26° showed the presence of hexagonal BN phase, whereas the peak at 44° was related to cubic BN content in the samples. Raman spectroscopic analysis showed vibrational modes of sp2- and sp3-type bonding in the sample. The Raman spectra agreed well with XRD results.
Classification-free threat detection based on material-science-informed clustering
NASA Astrophysics Data System (ADS)
Yuan, Siyang; Wolter, Scott D.; Greenberg, Joel A.
2017-05-01
X-ray diffraction (XRD) is well-known for yielding composition and structural information about a material. However, in some applications (such as threat detection in aviation security), the properties of a material are more relevant to the task than is a detailed material characterization. Furthermore, the requirement that one first identify a material before determining its class may be difficult or even impossible for a sufficiently large pool of potentially present materials. We therefore seek to learn relevant composition-structure-property relationships between materials to enable material-identification-free classification. We use an expert-informed, data-driven approach operating on a library of XRD spectra from a broad array of stream of commerce materials. We investigate unsupervised learning techniques in order to learn about naturally emergent groupings, and apply supervised learning techniques to determine how well XRD features can be used to separate user-specified classes in the presence of different types and degrees of signal degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandrino, Djordje, E-mail: djordje.mandrino@imt.si; Paulin, Irena; Skapin, Sreco D.
2012-10-15
The decomposition of commercially available TiH{sub 2} was investigated while performing different thermal treatments. TiH{sub 2} powder, which is widely used as a foaming agent, was heat treated at 450 Degree-Sign C for various times, from 15 min to 120 min. Scanning electron microscopy (SEM) images of the surfaces at different magnifications were obtained and interpreted. A Bragg-Brentano X-ray diffractometer was used to measure the X-ray diffraction (XRD) spectra on all five samples. A close examination of the diffraction spectra showed that for an as-received sample and samples undergoing the longest thermal treatment (1 and 2 h) these spectra canmore » be explained as deriving from cubic TiH{sub 1.924}, while for the other two samples they can be explained as deriving from tetragonal TiH{sub 1.924}. A constant-unit-cell-volume phase transition between the cubic and tetragonal phases in TiH{sub 2-y}-type compounds had been described in the literature. The unit-cell parameters obtained from measured spectra confirm that within the measurement uncertainty the unit-cell volume is indeed constant in all five samples. Thermo-gravimetry (TG) and differential thermal analysis (DTA) measurements were performed on all the samples, showing that the intensity of the dehydrogenation depends on the previous treatment of the TiH{sub 2}. After the thermal analysis XRD of the samples was performed again and the material was found to exhibit a Ti-like unit cell, but slightly enlarged due to the unreleased hydrogen. - Highlights: Black-Right-Pointing-Pointer TiH{sub 2} samples were cubic or tetragonal TiH{sub 1.924} Black-Right-Pointing-Pointer Onset of the hydrogen release temperature increases with the pre-treatment time. Black-Right-Pointing-Pointer Thermal dehydrogenation for the as-prepared TiH{sub 2} is a three-step process. Black-Right-Pointing-Pointer After thermal analysis 2 residual hydrogen TiH{sub x} phases, close to {alpha}Ti, appeared.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhenhai; Wang, Qinglin; Ma, Yanzhang
Nanoscale materials exhibit properties that are quite distinct from those of bulk materials because of their size restricted nature. Here, we investigated the high-pressure structural stability of cubic (C-type) nano-Eu2O3 using in situ synchrotron X-ray diffraction (XRD), Raman and luminescence spectroscopy, and impedance spectra techniques. Our high-pressure XRD experimental results revealed a pressure-induced structural phase transition in nano-Eu2O3 from the C-type phase (space group: Ia-3) to a hexagonal phase (A-type, space group: P-3m1). Our reported transition pressure (9.3 GPa) in nano-Eu2O3 is higher than that of the corresponding bulk-Eu2O3 (5.0 GPa), which is contrary to the preceding reported experimental result.more » After pressure release, the A-type phase of Eu2O3 transforms into a new monoclinic phase (B-type, space group: C2/m). Compared with bulk-Eu2O3, C-type and A-type nano-Eu2O3 exhibits a larger bulk modulus. Our Raman and luminescence findings and XRD data provide consistent evidence of a pressure-induced structural phase transition in nano-Eu2O3. To our knowledge, we have performed the first high-pressure impedance spectra investigation on nano-Eu2O3 to examine the effect of the structural phase transition on its transport properties. We propose that the resistance inflection exhibited at ~12 GPa results from the phase boundary between the C-type and A-type phases. Besides, we summarized and discussed the structural evolution process by the phase diagram of lanthanide sesquioxides (Ln2O3) under high pressure.« less
Temperature dependent surface and spectral modifications of nano V2O5 films
NASA Astrophysics Data System (ADS)
Manthrammel, M. Aslam; Fatehmulla, A.; Al-Dhafiri, A. M.; Alshammari, A. S.; Khan, Aslam
2017-03-01
Nanocrystalline V2O5 films have been deposited on glass substrates at 300°C substrate temperature using thermal evaporation technique and were subjected to thermal annealing at different temperatures 350, 400, and 550°C. X-ray diffraction (XRD) spectra exhibit sharper and broader characteristic peaks respectively indicating the rearrangement of nanocrystallite phases with annealing temperatures. Other phases of vanadium oxides started emerging with the rise in annealing temperature and the sample converted completely to VO2 (B) phase at 550°C annealing. FESEM images showed an increase in crystallite size with 350 and 400°C annealing temperatures followed by a decrease in crystallite size for the sample annealed at 550°C. Transmission spectra showed an initial redshift of the fundamental band edge with 350 and 400°C while a blue shift for the sample annealed at 550°C, which was in agreement with XRD and SEM results. The films exhibited smart window properties as well as nanorod growth at specific annealing temperatures. Apart from showing the PL and defect related peaks, PL studies also supported the observations made in the transmission spectra.
Electrical and Optical Properties of Nanocrystalline A8ZnNb6O24 (A = Ba, Sr, Ca, Mg) Ceramics
NASA Astrophysics Data System (ADS)
John, Fergy; Thomas, Jijimon K.; Jacob, John; Solomon, Sam
2017-08-01
Nanoparticles of A8ZnNb6O24 (A = Ba, Sr, Ca, and Mg, abbreviated as BZN, SZN, CZN, and MZN) have been synthesized by an auto-igniting combustion technique and their structural and optical properties characterized. The phase purity, crystal structure, and particle size of the prepared nanopowders were examined by x-ray diffraction (XRD) analysis and transmission electron microscopy. The XRD results revealed that all the samples crystallized with hexagonal perovskite structure in space group P6 3 cm. The Fourier-transform infrared and Raman (FT-Raman) spectra of the samples were investigated in detail. The ultraviolet-visible (UV-Vis) absorption spectra of the samples were also recorded and their optical bandgap energy values calculated. The nanopowders synthesized by the combustion technique were sintered to 95% of theoretical density at temperature of 1250°C for 2 h. The surface morphology of the sintered pellets was studied by scanning electron microscopy. The photoluminescence spectra of the samples showed intense emission in the blue-green region. Complex impedance analysis was used to determine the grain and grain boundary effects on the dielectric behavior of the ceramics.
NASA Astrophysics Data System (ADS)
Li, Bin; Zhang, Qin-Jian; Shi, Yan-Chao; Li, Jia-Jun; Li, Hong; Lu, Fan-Xiu; Chen, Guang-Chao
2014-08-01
A nano-crystlline diamond film is grown by the dc arcjet chemical vapor deposition method. The film is characterized by scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction (XRD) and Raman spectra, respectively. The nanocrystalline grains are averagely with 80 nm in the size measured by XRD, and further proven by Raman and HRTEM. The observed novel morphology of the growth surface, pineapple-like morphology, is constructed by cubo-octahedral growth zones with a smooth faceted top surface and coarse side surfaces. The as-grown film possesses (100) dominant surface containing a little amorphous sp2 component, which is far different from the nano-crystalline film with the usual cauliflower-like morphology.
NASA Astrophysics Data System (ADS)
Yanti; Nurhayati, T.; Royani, I.; Widayani; Khairurrijal
2016-08-01
In this study, molecularly-imprinted polymer (MIP) was prepared by using a D-glucose template and a methacrylic acid (MAA) functional monomer. The obtained MIP was characterized using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy techniques to study the template imprinting results. For comparison, similar characterizations were also carried out for the respective non imprinted polymer (NIP). It was found that the polymer has semicrystalline structure, with crystallinity degree of the unleached- polymer, the NIP, and the MIP is 62.40%, 62.97%, and 63.47%, respectively. XRD patterns showed that the intensity peaks increases as D-glucose content decreases. The FTIR spectra of the MIP indicate the detail interaction of template and functional monomer.
Au-Ag-Cu nano-alloys: tailoring of permittivity
NASA Astrophysics Data System (ADS)
Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki
2016-04-01
Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective.
Vertical growth of ZnO nanorods on ZnO seeded FTO substrate for dye sensitized solar cells
NASA Astrophysics Data System (ADS)
Marimuthu, T.; Anandhan, N.
2018-04-01
Zinc oxide (ZnO) nanorods (NRs) were electrochemically grown on fluorine doped tin oxide (FTO) and ZnO seeded FTO substrates. X-ray diffraction (XRD) patterns, Raman spectra and photoluminescence (PL) spectra reveal that the hexagonal wurtzite structured ZnO grown on a seeded FTO substrate has a high crystallinity, crystal quality and less atomic defects. Felid emission scanning electron microscope (FE-SEM) images display a high growth density of NRs grown on seeded FTO substrate compared to NRs grown on FTO substrate. The efficiency of the DSSCs based on NRs grown on FTO and seeded FTO substrates is 0.85 and 1.52 %, respectively. UV-Vis absorption spectra and electrochemical impedance spectra depict that the NRs grown on seeded FTO photoanode have higher dye absorption and charge recombination resistance than that of the NRs grown on FTO substrate.
NASA Technical Reports Server (NTRS)
Morris, Richard V.; Schulze, Darrell G.; Lauer, Howard V., Jr.; Agresti, David G.; Shelfer, Tad D.
1992-01-01
The effect of substituting iron by aluminum in polymorphs of Fe2O3 and FeOOH on their reflectivity characteristics was investigated by comparing data on visible and NIR reflectivities and on static magnetic, XRD, and Moessbauer properties for a family of aluminum-substituted hematites alpha-(Fe,Al)2O3, with compositions where the values of the Al/(Al+Fe) ratio were up to 0.61. Samples were prepared by oxidation of magnetite, dehydroxylation of goethite, and direct precipitation. The analytical methods used for obtaining diffuse reflectivity spectra (350-2200 nm), Moessbauer spectra, and static magnetic data are those described by Morris et al. (1989).
NASA Astrophysics Data System (ADS)
Ungula, J.; Dejene, B. F.; Swart, H. C.
2018-04-01
Gallium-doped zinc oxide nanoparticles (GZO NPs) were synthesized by the reflux precipitation method at 1, 3, 5, 7 and 8 pH conditions of Ga/Zn precursor solution (Ga/Zn sol.). Analysis of X-ray diffraction (XRD) spectra showed that the diffraction peak intensities of GZO NPs increased and the crystallite sizes varied from 11 to 27 nm with an increase in the pH of the Zn/Ga sol. Scanning electron microscopy micrographs showed agglomerated tiny particles that formed on big slabs of nanorods at the lower pH, but fine and enlarged particles on nano-spherical bases formed at the higher pH values. The photoluminescence exciton peak intensities of the GZO NPs and their respective FWHM increased to a maximum at the 5 pH and then reduced slightly as the solution got more basic. The increase of the deep level peak intensities with the increase in the pH followed the XRD diffraction intensity results. It was observed that both the exciton and DLE peaks emission positions shifted to lower wavelengths up to the 5 pH and then red shifted for a further increase in the pH values. The UV-vis analysis also demonstrated that the optical properties of the GZO NPs improved with the increase Ga/Zn sol. pH, as shown by the blue shift of the absorption edge of the reflectance spectra. The band gap energy was tuned from 3.18 to 3.31 eV with the increase in the pH from 1 to 5. An additional increase in the pH yielded no significant change in the optical properties of the GZO NPs.
Large-size TlBr single crystal growth and defect study
NASA Astrophysics Data System (ADS)
Zhang, Mingzhi; Zheng, Zhiping; Chen, Zheng; Zhang, Sen; Luo, Wei; Fu, Qiuyun
2018-04-01
Thallium bromide (TlBr) is an attractive semiconductor material for fabrication of radiation detectors due to its high photon stopping power originating from its high atomic number, wide band gap and high resistivity. In this paper the vertical Bridgman method was used for crystal growth and TlBr single crystals with diameter of 15 mm were grown. X-ray diffraction (XRD) was used to identify phase and orientation. Electron backscatter diffraction (EBSD) was used to investigate crystal microstructure and crystallographic orientation. The optical and electric performance of the crystal was characterized by infrared (IR) transmittance spectra and I-V measurement. The types of point defects in the crystals were investigated by thermally stimulated current (TSC) spectra and positron annihilation spectroscopy (PAS). Four types of defects, with ionization energy of each defect fitting as follows: 0.1308, 0.1540, 0.3822 and 0.538 eV, were confirmed from the TSC result. The PAS result showed that there were Tl vacancies in the crystal.
The use of castor oil and ricinoleic acid in lead chalcogenide nanocrystal synthesis
NASA Astrophysics Data System (ADS)
Kyobe, Joseph W. M.; Mubofu, Egid B.; Makame, Yahya M. M.; Mlowe, Sixberth; Revaprasadu, Neerish
2016-08-01
A green solution-based thermolysis method for the synthesis of lead chalcogenide (PbE, E = S, Se, Te) nanocrystals in castor oil (CSTO) and its isolate ricinoleic acid (RA) is described. The blue shift observed from the optical spectra of CSTO and RA-capped PbE nanocrystals (NCs) confirmed the evidence of quantum confinement. The dimensions of PbE NCs obtained from NIR absorption spectra, transmission electron microscopy (TEM), and X-ray diffraction (XRD) studies were in good agreement. The particle sizes estimated were in the range of 20, 25, and 130 nm for castor oil-capped PbS, PbSe, and PbTe, respectively. Well-defined close to cubic-shaped particles were observed in the scanning electron microscopy (SEM) images of PbSe and PbTe nanocrystals. The high-resolution TEM and selective area electron diffraction (SAED) micrographs of the as-synthesized crystalline PbE NCs showed distinct lattice fringes with d-spacing distances corroborating with the standard values reported in literature.
Correlations of Apparent Cellulose Crystallinity Determined by XRD, NMR, IR, Raman, and SFG Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, David K; Lee, Christopher; Dazen, Kevin
2015-07-04
Although the cellulose crystallinity index (CI) is used widely, its limitations have not been adequately described. In this study, the CI values of a set of reference samples were determined from X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and infrared (IR), Raman, and vibrational sum frequency generation (SFG) spectroscopies. The intensities of certain crystalline peaks in IR, Raman, and SFG spectra positively correlated with the amount of crystalline cellulose in the sample, but the correlation with XRD was nonlinear as a result of fundamental differences in detection sensitivity to crystalline cellulose and improper baseline corrections for amorphous contributions. It ismore » demonstrated that the intensity and shape of the XRD signal is affected by both the amount of crystalline cellulose and crystal size, which makes XRD analysis complicated. It is clear that the methods investigated show the same qualitative trends for samples, but the absolute CI values differ depending on the determination method. This clearly indicates that the CI, as estimated by different methods, is not an absolute value and that for a given set of samples the CI values can be compared only as a qualitative measure.« less
Correlations of Apparent Cellulose Crystallinity Determined by XRD, NMR, IR, Raman, and SFG Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Christopher M; Dazen, Kevin; Kafle, Kabindra
2015-01-01
Although the cellulose crystallinity index (CI) is used widely, its limitations have not been adequately described. In this study, the CI values of a set of reference samples were determined from X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and infrared (IR), Raman, and vibrational sum frequency generation (SFG) spectroscopies. The intensities of certain crystalline peaks in IR, Raman, and SFG spectra positively correlated with the amount of crystalline cellulose in the sample, but the correlation with XRD was nonlinear as a result of fundamental differences in detection sensitivity to crystalline cellulose and improper baseline corrections for amorphous contributions. It ismore » demonstrated that the intensity and shape of the XRD signal is affected by both the amount of crystalline cellulose and crystal size, which makes XRD analysis complicated. It is clear that the methods investigated show the same qualitative trends for samples, but the absolute CI values differ depending on the determination method. This clearly indicates that the CI, as estimated by different methods, is not an absolute value and that for a given set of samples the CI values can be compared only as a qualitative measure.« less
Sun, Dong-Xiao; Li, Jin-Hua; Fang, Xuan; Chen, Xin-Ying; Fang, Fang; Chu, Xue-Ying; Wei, Zhi-Peng; Wang, Xiao-Hua
2014-07-01
In the present paper, we report the research on the effects of annealing temperature on the crystal quality and optical properties of ZnMgO films deposited by atom layer deposition(ALD). ZnMgO films were prepared on quartz substrates by ALD and then some of the samples were treated in air ambient at different annealing temperature. The effects of annealing temperature on the crystal quality and optical properties of ZnMgO films were characterized by X-ray diffraction (XRD), photoluminescence (PL) and ultraviolet-visible (UV-Vis) absorption spectra. The XRD results showed that the crystal quality of ZnMgO films was significantly improved when the annealing temperature was 600 degrees C, meanwhile the intensity of(100) diffraction peak was the strongest. Combination of PL and UV-Vis absorption measurements showed that it can strongly promote the Mg content increasing in ZnMgO films and increase the band gap of films. So the results illustrate that suitable annealing temperature can effectively improve the crystal quality and optical properties of ZnMgO films.
Montazeri, Leila; Javadpour, Jafar; Shokrgozar, Mohammad Ali; Bonakdar, Shahin; Javadian, Sayfoddin
2010-08-01
Pure hydroxyapatite (HAp) and fluoride-containing apatite powders (FHAp) were synthesized using a hydrothermal method. The powders were assessed by x-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM) and F-selective electrode. X-ray diffraction results revealed the formation of single phase apatite structure for all the compositions synthesized in this work. However, the addition of a fluoride ion led to a systematic shift in the (3 0 0) peak of the XRD pattern as well as modifications in the FTIR spectra. It was found that the efficiency of fluoride ion incorporation decreased with the increase in the fluoride ion content. Fluorine incorporation efficiency was around 60% for most of the FHAp samples prepared in the current study. Smaller and less agglomerated particles were obtained by fluorine substitution. The bioactivity of the powder samples with different fluoride contents was compared by performing cell proliferation, alkaline phosphatase (ALP) and Alizarin red staining assays. Human osteoblast cells were used to assess the cellular responses to the powder samples in this study. Results demonstrated a strong dependence of different cell activities on the level of fluoridation.
Habibi, Neda
2015-02-05
The preparation and characterization of functional biocompatible magnetite-cellulose nano-composite fibrous material is described. Magnetite-cellulose nano-composite was prepared by a combination of the solution-based formation of magnetic nano-particles and subsequent coating with amino celluloses. Characterization was accomplished using X-ray powder diffraction (XRD), fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. The peaks of Fe3O4 in the XRD pattern of nanocomposite confirm existence of the nanoparticles in the amino cellulose matrix. Magnetite-cellulose particles exhibit an average diameter of roughly 33nm as demonstrated by field emission scanning electron microscopy. Magnetite nanoparticles were irregular spheres dispersed in the cellulose matrix. The vibration corresponding to the NCH3 functional group about 2850cm(-1) is assigned in the FTIR spectra. Functionalized magnetite-cellulose nano-composite polymers have a potential range of application as targeted drug delivery system in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.
Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis
NASA Astrophysics Data System (ADS)
Philip, Daizy
2010-03-01
Biological synthesis of gold and silver nanoparticles of various shapes using the leaf extract of Hibiscus rosa sinensis is reported. This is a simple, cost-effective, stable for long time and reproducible aqueous room temperature synthesis method to obtain a self-assembly of Au and Ag nanoparticles. The size and shape of Au nanoparticles are modulated by varying the ratio of metal salt and extract in the reaction medium. Variation of pH of the reaction medium gives silver nanoparticles of different shapes. The nanoparticles obtained are characterized by UV-vis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR spectroscopy. Crystalline nature of the nanoparticles in the fcc structure are confirmed by the peaks in the XRD pattern corresponding to (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes, bright circular spots in the selected area electron diffraction (SAED) and clear lattice fringes in the high-resolution TEM image. From FTIR spectra it is found that the Au nanoparticles are bound to amine groups and the Ag nanoparticles to carboxylate ion groups.
NASA Astrophysics Data System (ADS)
Dong, Yanling; Liu, Yang; Lu, Dingze; Zheng, Feng; Fang, Pengfei; Zhang, Haining
2017-04-01
Photocatalysts containing different ratios of anatase and rutile are prepared via heat treatment of Degussa P-25 titania. X-ray diffraction (XRD), Bruuauer-Emmett-Teller (BET), ultraviolet-visible light diffuse reflectance spectra (DRS), Raman spectra (Raman), positron annihilation lifetime spectra (PAL) and temperature-programmed desorption (TPD) are applied to investigate the phase composition of the synthesized catalysts. Using crystal violet (CV) as the target pollutant, the unexpected visible light decolorization of rutile is observed. Despite the decreased specific surface area, the as-synthesized rutile samples exhibit much higher adsorption capability of CV than P-25 does, which in turn leads to improved photoreaction efficiency. Since the rutile samples can't absorb the visible light, the degradation under visible light irradiation is attributed to self-sensitization of CV on the surface of rutile.
Au-Ag-Cu nano-alloys: tailoring of permittivity
Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki
2016-01-01
Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective. PMID:27118459
NASA Astrophysics Data System (ADS)
Li, Yan; Zhang, Dongping; Wang, Bo; Liang, Guangxing; Zheng, Zhuanghao; Luo, Jingting; Cai, Xingmin; Fan, Ping
2013-12-01
Vanadium oxide thin films were prepared by DC reactive sputtering method, and the samples were annealed in Ar atmosphere under different temperature for 2 hours. The microstructure, optical and electrical properties of the as-grown and treated samples were characterized by XRD, spectrophotometer, and four-probe technique, respectively. XRD results investigated that the main content of the annealed sample are VO2 and V2O5. With annealing temperature increasing, the intensity of the VO2 phase diffraction peak strengthened. The electrical properties reveal that the annealed samples exhibit semiconductor-to-metal transition characteristic at about 40°C. Comparison of transmission spectra of the samples at room temperature and 100°C, a drastic drop in IR region is found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Vijay; Sonkawade, R. G.; Ali, Yasir
2012-06-05
We report the effects of heavy ion irradiation on the optical, structural, and chemical properties of polyethylene terephthalate (PET) film used in commercial bottled water. PET bottles were exposed with 120 MeV Ni ions at fluences varying from 3 x 10{sup 10} to 3 x 10{sup 12} ion/cm{sup 2}. The modifications so induced were analyzed by using UV-Vis, X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. Substantial decrease in optical band gap is observed with the increase in ion fluence. In the FTIR spectra, most of bands are decreased due the degradation of the molecular structure. XRD measurements showmore » the decrease in peak intensity, which reflects the loss of crystallinity after irradiation.« less
Comparative study of Ni and Cu doped ZnO nanoparticles: Structural and optical properties
NASA Astrophysics Data System (ADS)
Thakur, Shaveta; Thakur, Samita; Sharma, Jyoti; Kumar, Sanjay
2018-05-01
Nanoparticles of undoped and doped (0.1 M Ni2+ and Cu2+) ZnO are synthesized using chemical precipitation method. The crystallite size, morphology, chemical bonding and optical properties of as prepared nanoparticles are determined by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and UV-visible spectra. XRD analysis shows that the prepared samples are single phase and have hexagonal wurtzite structure. The crystallite size of the doped and undoped nanoparticles is determined using Scherrer method. The crystallite size is found to be increased with concentration of nickel and copper. All stretching and vibrational bands are observed at their specific positions through FTIR. The increase in band gap can be attributed to the different chemical nature of dopant and host cation.
Optical properties of ZnO/BaCO3 nanocomposites in UV and visible regions.
Zak, Ali Khorsand; Hashim, Abdul Manaf; Darroudi, Majid
2014-01-01
Pure zinc oxide and zinc oxide/barium carbonate nanoparticles (ZnO-NPs and ZB-NPs) were synthesized by the sol-gel method. The prepared powders were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-Vis), Auger spectroscopy, and transmission electron microscopy (TEM). The XRD result showed that the ZnO and BaCO3 nanocrystals grow independently. The Auger spectroscopy proved the existence of carbon in the composites besides the Zn, Ba, and O elements. The UV-Vis spectroscopy results showed that the absorption edge of ZnO nanoparticles is redshifted by adding barium carbonate. In addition, the optical parameters including the refractive index and permittivity of the prepared samples were calculated using the UV-Vis spectra. 81.05.Dz; 78.40.Tv; 42.70.-a.
2009-01-01
Worm-like nanorods and nanospheres of silver have been synthesized by photochemical decomposition of silver oxalate in water by UV irradiation in the presence of CTAB and PVP, respectively. No external seeds have been employed for the synthesis of Ag nanorods. The synthesized Ag colloids have been characterized by UV-visible spectra, powder XRD, HRTEM, and selected area electron diffraction (SAED). Ag nanospheres of average size around 2 nm have been obtained in the presence of PVP. XRD and TEM analyses revealed that top and basal planes of nanorods are bound with {111} facets. Williamson–Hall plot has revealed the presence of defects in the Ag nanospheres and nanorods. Formation of defective Ag nanocrystals is attributed to the heating effect of UV-visible irradiation. PMID:20596513
Structural and thermal properties of vanadium tellurite glasses
NASA Astrophysics Data System (ADS)
Kaur, Rajinder; Kaur, Ramandeep; Khanna, Atul; González, Fernando
2018-04-01
V2O5-TeO2 glasses containing 10 to 50 mol% V2O5 were prepared by melt quenching and characterized by X-ray diffraction (XRD), density, Differential Scanning Calorimetry (DSC) and Raman studies.XRD confirmed the amorphous nature of vanadium tellurite samples. The density of the glasses decreases and the molar volume increases on increasing the concentration of V2O5. The thermal properties, such as glass transition temperature Tg, crystallization temperature Tc, and the melting temperature Tm were measured. Tg decreases from a value of 288°C to 232°C. The changes in Tg were correlated with the number of bonds per unit volume, and the average stretching force constant. Raman spectra were used to elucidate the short-range structure of vanadium tellurite glasses.
Synthesis and properties of selenium trihydride at high pressures
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Xu, Wan; Wang, Yu; Jiang, Shuqing; Gorelli, Federico A.; Greenberg, Eran; Prakapenka, Vitali B.; Goncharov, Alexander F.
2018-02-01
The chemical reaction products of molecular hydrogen (H2) with selenium (Se) are studied by synchrotron x-ray diffraction (XRD) and Raman spectroscopy at high pressures. We find that a common H2Se is synthesized at 0.3 GPa using laser heating. Upon compression at 300 K, a crystal of the theoretically predicted Cccm H3Se has been grown at 4.6 GPa. At room temperature, H3Se shows a reversible phase decomposition after laser irradiation above 8.6 GPa, but remains stable up to 21 GPa. However, at 170 K Cccm H3Se persists up to 39.5 GPa based on XRD measurements, while low-temperature Raman spectra weaken and broaden above 23.1 GPa. At these conditions, the sample is visually nontransparent and shiny suggesting that metallization occurred.
NASA Astrophysics Data System (ADS)
Elilarassi, R.; Chandrasekaran, G.
2017-11-01
In the present investigation, diluted magnetic semiconductor (Zn1-xFexO) nanoparticles with different doping concentrations (x = 0, 0.02, 0.04, 0.06, and 0.08) were successfully synthesized by sol-gel auto-combustion method. The crystal structure, morphology, optical, electrical and magnetic properties of the prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis using x-rays (EDAX), ultraviolet-visible spectrophotometer, fluorescence spectroscope (FS), vibrating sample magnetometer (VSM) and broad band dielectric spectrometer (BDS). XRD results reveal that all the samples possess hexagonal wurtzite crystal structure with good crystalline quality. The absence of impurity phases divulge that Fe ions are well incorporated into the ZnO crystal lattice. The substitutional incorporation of Fe3+ at Zn sites is reflected in optical absorption spectra of the samples. Flouorescence spectra of the samples show a strong near-band edge related UV emission as well as defect related visible emissions. The semiconducting behavior of the samples has been confirmed through electrical conductivity measurements. Magnetic measurements indicated that all the samples possess ferromagnetism at room temperature.
Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics.
Hoke, Eric T; Slotcavage, Daniel J; Dohner, Emma R; Bowring, Andrea R; Karunadasa, Hemamala I; McGehee, Michael D
2015-01-01
We report on reversible, light-induced transformations in (CH 3 NH 3 )Pb(Br x I 1- x ) 3 . Photoluminescence (PL) spectra of these perovskites develop a new, red-shifted peak at 1.68 eV that grows in intensity under constant, 1-sun illumination in less than a minute. This is accompanied by an increase in sub-bandgap absorption at ∼1.7 eV, indicating the formation of luminescent trap states. Light soaking causes a splitting of X-ray diffraction (XRD) peaks, suggesting segregation into two crystalline phases. Surprisingly, these photo-induced changes are fully reversible; the XRD patterns and the PL and absorption spectra revert to their initial states after the materials are left for a few minutes in the dark. We speculate that photoexcitation may cause halide segregation into iodide-rich minority and bromide-enriched majority domains, the former acting as a recombination center trap. This instability may limit achievable voltages from some mixed-halide perovskite solar cells and could have implications for the photostability of halide perovskites used in optoelectronics.
Optical properties of zinc borotellurite glass doped with trivalent dysprosium ion
NASA Astrophysics Data System (ADS)
Ami Hazlin, M. N.; Halimah, M. K.; Muhammad, F. D.; Faznny, M. F.
2017-04-01
The zinc borotellurite doped with dysprosium oxide glass samples with chemical formula {[(TeO2) 0 . 7(B2O3) 0 . 3 ] 0 . 7(ZnO) 0 . 3 } 1 - x(Dy2O3)x (where x=0.01, 0.02, 0.03, 0.04 and 0.05 M fraction) were prepared by using conventional melt quenching technique. The structural and optical properties of the proposed glass systems were characterized by using X-ray diffraction (XRD) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and UV-VIS spectroscopy. The amorphous nature of the glass systems is confirmed by using XRD technique. The infrared spectra of the glass systems indicate three obvious absorption bands which are assigned to BO3 and TeO4 vibrational groups. Based on the absorption spectra obtained, the direct and indirect optical band gaps, as well as the Urbach energy were calculated. It is observed that both the direct and indirect optical band gaps increase with the concentration of Dy3+ ions. On the other hand, the Urbach energy is observed to decrease as the concentration of Dy3+ ions increases.
NASA Astrophysics Data System (ADS)
Cabrera, M.; Maciel, J. C.; Quispe-Marcatoma, J.; Pandey, B.; Neri, D. F. M.; Soria, F.; Baggio-Saitovitch, E.; de Carvalho, L. B.
2014-01-01
Magnetic particles as matrix for enzyme immobilization have been used and due to the enzymatic derivative can be easily removed from the reaction mixture by a magnetic field. This work presents a study about the synthesis and characterization of iron phases into magnetic montmorillonite clay (mMMT) and magnetic diatomaceous earth (mDE) by 57Fe Mössbauer spectroscopy (MS), magnetic measurements and X-ray diffraction (XRD). Also these magnetic materials were assessed as matrices for the immobilization of invertase via covalent binding. Mössbauer spectra of the magnetic composites performed at 4.2 K showed a mixture of magnetite and maghemite about equal proportion in the mMMT, and a pure magnetite phase in the sample mDE. These results were verified using XRD. The residual specific activity of the immobilized invertase on mMMT and mDE were 83 % and 92.5 %, respectively. Thus, both magnetic composites showed to be promising matrices for covalent immobilization of invertase.
NASA Astrophysics Data System (ADS)
Tarafder, Anal; Molla, Atiar Rahaman; Mukhopadhyay, Sunanda; Karmakar, Basudeb
2014-07-01
The transparent willemite, Zn2SiO4 (ZS) glass-ceramic nanocomposites were prepared from melt-quench derived ZnO-Al2O3-B2O3-SiO2 (ZABS) precursor glass by an isothermal heat-treatment process. The generation of willemite crystal phase, size and morphology with increase in heat-treatment time was examined by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. The average calculated crystallite size obtained from XRD is found to be in the range 80-120 nm. The decreased refractive index with increase in heat-treatment time attributed to partial replacement of ZnO4 units of willemite nanocrystals by AlO4 units and simultaneous generation of vacancies in the Zn-site. Fourier transform infrared (FTIR) reflection spectroscopy exhibits the structural evolution of willemite glass-ceramics. The photoluminescence spectra of Sm3+ ions exhibit emission transitions of 4G5/2 → 6HJ (J = 5/2, 7/2, 9/2, 11/2) and its excitation spectra shows an intense absorption band at 402 nm. These spectra reveal that the luminescence performance of the glass-ceramic nanocomposites is enhanced up to 14-fold with crystallization into willemite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefanovsky, S.V.; Institute of Physical Chemistry and Electrochemistry RAS, Leninskii av. 31, Moscow 119991; Nikonov, B.S.
2013-07-01
Sample glasses have been made using SB6 high level waste (HLW) simulant (high in both Al and Fe) with 12 different frit compositions at a constant waste loading of 36 wt.%. As follows from X-ray diffraction (XRD) and optical and scanning electron microscopy (SEM) data, all the samples are composed of primarily glass and minor concentration of spinel phases which form both isometric grains and fine cubic (∼1 μm) crystals. Infrared spectroscopy (IR) spectra of all the glasses within the range of 400-1600 cm{sup -1} consist of the bands due to stretching and bending modes in silicon-oxygen, boron-oxygen, aluminum-oxygen andmore » iron-oxygen structural groups. Raman spectra showed that for the spectra of all the glasses within the range of 850-1200 cm{sup -1} the best fit is achieved by suggestion of overlapping of three major components with maxima at 911-936 cm{sup -1}, 988-996 cm{sup -1} and 1020-1045 cm{sup -1}. The structural network is primarily composed of metasilicate chains and rings with embedded AlO{sub 4} and FeO{sub 4} tetrahedra. Major BO{sub 4} tetrahedra and BO{sub 3} triangles form complex borate units and are present as separate constituents. (authors)« less
Extracellular synthesis of silver nanoparticles using the leaf extract of Coleus amboinicus Lour
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayanan, Kannan Badri; Sakthivel, Natarajan, E-mail: puns2005@gmail.com
2011-10-15
Highlights: {yields} Synthesis of AgNPs using the leaf extract of Coleus amboinicus L. was described. {yields} UV-vis absorption spectra showed the formation of isotrophic AgNPs at 437 nm in 6 h. {yields} XRD analysis showed intense peaks corresponding to fcc structure of AgNPs. {yields} HR-TEM analysis revealed the formation of stable anisotrophic and isotrophic AgNPs. -- Abstract: In the present investigation, Coleus amboinicus Lour. leaf extract-mediated green chemistry approach for the synthesis of silver nanoparticles was described. The nanoparticles were characterized by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmissionmore » electron microscopy (TEM). The influence of leaf extract on the control of size and shape of silver nanoparticles is reported. Upon an increase in the concentration of leaf extract, there was a shift in the shape of nanoparticles from anisotrophic nanostructures like triangle, decahedral and hexagonal to isotrophic spherical nanoparticles. Crystalline nature of fcc structured nanoparticles was confirmed by XRD spectrum with peaks corresponding to (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes and bright circular spots in the selected-area electron diffraction (SAED). Such environment friendly and sustainable methods are non-toxic, cheap and alternative to hazardous chemical procedures.« less
NASA Astrophysics Data System (ADS)
Thu Trang Pham, Thi; Phuong Nguyen, Thu; Pham, Thi Nam; Phuong Vu, Thi; Tran, Dai Lam; Thai, Hoang; Thanh Dinh, Thi Mai
2013-09-01
In this paper, the synthesis of hydroxyapatite (HAp) nanopowder was studied by chemical precipitation method at different values of reaction temperature, settling time, Ca/P ratio, calcination temperature, (NH4)2HPO4 addition rate, initial concentration of Ca(NO3)2 and (NH4)2HPO4. Analysis results of properties, morphology, structure of HAp powder from infrared (IR) spectra, x-ray diffraction (XRD), energy dispersive x-ray (EDX) spectra and scanning electron microscopy (SEM) indicated that the synthesized HAp powder had cylinder crystal shape with size less than 100 nm, single-phase structure. The variation of the synthesis conditions did not affect the morphology but affected the size of HAp crystals.
Shao, Dadong; Jiang, Zhongqing; Wang, Xiangke; Li, Jiaxing; Meng, Yuedong
2009-01-29
Carboxymethyl cellulose (CMC) is grafted on multiwalled carbon nanotubes (MWCNT) by using plasma techniques. The CMC grafted MWCNT (MWCNT-g-CMC) is characterized by using Fourier transform infrared spectra (FT-IR), Raman spectra, powder X-ray diffraction (XRD), thermogravimetric analysis (TGA)-differential thermal analysis (DTA), scanning electron microscopy (SEM), and N(2)-BET methods in detail. The application of MWCNT-g-CMC in the removal of UO(2)(2+) from aqueous solution is investigated. MWCNT-g-CMC has much higher sorption ability in the removal of UO(2)(2+) than raw MWCNT. The MWCNT-g-CMC is a suitable material in the preconcentration and solidification of heavy metal ions from large volume of aqueous solutions.
NASA Astrophysics Data System (ADS)
Zhu, Yangguang; Tong, Chao; Xu, Chuanyan; Li, Yadong; Seo, Hyo Jin
2016-04-01
The phosphors of Na2Ca2-2xEu2xSi3O9 (x = 0, 0.03, 0.05, 0.07, 0.09) were first synthesized by sol-gel method. The crystal phase formations of the phosphors were detected by X-ray powder diffraction (XRD) measurements and the structure refinement. The photoluminescence spectra, the concentration quenching, the luminescence decay curves and the luminescence color chromaticity were measured, respectively. The excitation spectra indicate that the phosphors can be effectively excited by near UV-LED chips. Two kinds of Eu2+ sites centered at 545 nm and 505 nm were discussed by analyzing the spectra, concentration-dependent luminescence intensity and lifetimes. This is a potential tool for monitoring the bioactivity of 45S5 glass-ceramics in situ.
Facile and fast synthesis of SnS2 nanoparticles by pulsed laser ablation in liquid
NASA Astrophysics Data System (ADS)
Johny, J.; Sepulveda-Guzman, S.; Krishnan, B.; Avellaneda, D.; Shaji, S.
2018-03-01
Nanoparticles (NPs) of tin disulfide (SnS2) were synthesized using pulsed laser ablation in liquid (PLAL) technique. Effects of different liquid media and ablation wavelengths on the morphology and optical properties of the nanoparticles were studied. Nd: YAG laser wavelengths of 532 nm and 1064 nm (frequency 10 Hz and pulse width 10 ns) were used to irradiate SnS2 target immersed in liquid for the synthesis of SnS2 nanoparticles. Here PLAL was a fast synthesis technique, the ablation was only for 30 s. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis absorption spectroscopy and photoluminescence spectroscopy were used to characterize the SnS2 NPs. TEM images showed that the liquid medium and laser wavelength influence the morphology of the NPs. SAED patterns and high resolution TEM (HRTEM) images confirmed the crystallinity of the particles. XRD and XPS analyses confirmed that SnS2 NPs were having exact crystalline structure and chemical states as that of the target. Raman analysis also supported the results obtained by XRD and XPS. Optical band gaps of the nanocolloids evaluated from their UV-vis absorption spectra were 2.4-3.05 eV. SnS2 NPs were having luminescence spectra in the blue-green region irrespective of the liquid media and ablation wavelength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Van-Thai; Fulton, John L.
2016-06-21
In concentrated solutions of aqueous RbCl, all of the Rb+ and Cl- ions exist as contact ion pairs. This full structural assessment is derived from the refinement of three independent experimental measurements: the Rb and Cl K-edge x-ray absorption fine structure (XAFS) and the x-ray diffraction spectra (XRD). This simultaneous refinement of the XAFS and XRD data provides high accuracy since each method probes the structure of different local regions about the ions with high sensitivity. At high RbCl concentration (6 m (mol/kg )) the solution is dominated by Rb+ - Cl- contact ion pairs yielding an average of 1.5more » pairs at an Rb-Cl distance of 3.24 Å. Upon formation of these ion pairs, approximately 1.1 waters molecules are displaced from the Rb+ and 1.4 water molecules from Cl-. The hydration shells about both the cation and anion are also determined. These results greatly improve the understanding of monovalent ions and provide a basis for testing the Rb+-Cl- interaction potentials used in molecular dynamics (MD) simulation. This research was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.« less
NASA Astrophysics Data System (ADS)
Muchlis, Khairanissa; Aini Fauziyah, Nur; Soontaranon, Siriwat; Limpirat, Wanwisa; Pratapa, Suminar
2017-01-01
In this study, we have investigated polymorphic silica (SiO2) powders using, Wide Angle X-ray Scattering (WAXS) and X-Ray Absorption Near Edge Spectroscopy (XANES), laboratory X-Ray Diffraction (XRD) instruments. The WAXS and XANES spectra were collected using synchrotron radiation at Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima, Thailand. The silica powders were obtained by processing silica sand from Tanah Laut, South Kalimantan, Indonesia. Purification process of silica sand was done by magnetic separation and immersion with HCl. The purification step was needed to reduce impurity or undesirable non Si elements. Three polymorphs of silica were produced, i.e. amorphous phase (A), quartz (B), and cristobalite (C). WAXS profile for each phase was presented in terms of intensity vs. 2θ prior to analyses. Both XRD (λCuKα=1.54056 Å) and WAXS (λ=1.09 Å) patttern show that (1) A sample contains no crystallites, (2) B sample is monophasic, contains only quartz, and (3) C sample contains cristobalite and trydimite. XRD quantitative analysis using Rietica gave 98,8 wt% cristobalite, while the associated WAXS data provided 98.7 wt% cristobalite. Si K-edge XANES spectra were measured at energy range 1840 to 1920 eV. Qualitatively, the pre-edge and edge features for all phases are similar, but their main peaks in the post-edge region are different.
NASA Astrophysics Data System (ADS)
Piga, Giampaolo; Brunetti, Antonio; Lasio, Barbara; Malfatti, Luca; Galobart, Àngel; Dalla Vecchia, Fabio M.; Enzo, Stefano
2015-02-01
We have addressed an X-ray fluorescence (XRF) and X-ray diffraction (XRD) on a collection of thirteen fossil bone belonging to the Molí del Baró 1 paleontological site located near Sant Romà d'Abella (Isona i Conca Dellà Municipality, Lleida Province, Spain, dated to about 66.5 Ma, to investigate the fossilization occurred in this site in terms of physico-chemical properties. As a general behaviour, the XRD patterns showed the bioapatite mineral at a varying level of percentage, and accordingly, the correspondent XRF spectra turned out to be mainly dominated by the presence of Ca, obviously accompanied by phosphorus. Simultaneously, other elements such as Sr, Fe, Ba and Zn were found at non-negligible concentration levels and helped to assign the phase components in the XRD spectra. In three specimens, it was observed by XRD the rather unusual case where the original bioapatite bone mineral was completely substituted for by other mineralogical phases. In addition to this, celestite was also found as an important phase in ten specimens out of the thirteen examined. The occurrence of celestite in the bone structure appears a rather unusual observation within the literature of bones diagenesis. Its provenance is generally ascribed to marine vertebrate organisms, but the presence in the fossil bones of this site, where no evidence of marine environment exists, can be reconciled with occurrence of refluxing processes involving diagenetically altered fluids which were discharged into beds containing strontium sulphate-rich waters.
Soil emissivity and reflectance spectra measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobrino, Jose A.; Mattar, Cristian; Pardo, Pablo
We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14 {mu}m with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff's law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer andmore » converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer.« less
NASA Astrophysics Data System (ADS)
Nishanthini, R.; Muthu Menaka, M.; Pandi, P.; Bahavan Palani, P.; Neyvasagam, K.
The copper telluride (Cu2Te) thin film of thickness 240nm was coated on a microscopic glass substrate by thermal evaporation technique. The prepared films were annealed at 150∘C and 250∘C for 1h. The annealing effect on Cu2Te thin films was examined with different characterization methods like X-ray Diffraction Spectroscopy (XRD), Scanning Electron Microscopy (SEM), Ultra Violet-Visible Spectroscopy (UV-VIS) and Photoluminescence (PL) Spectroscopy. The peak intensities of XRD spectra were increased while increasing annealing temperature from 150∘C to 250∘C. The improved crystallinity of the thin films was revealed. However, the prepared films are exposed complex structure with better compatibility. Moreover, the shift in band gap energy towards higher energies (blue shift) with increasing annealing temperature is observed from the optical studies.
Study of ZnO and Mg doped ZnO nanoparticles by sol-gel process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansari, Mohd Meenhaz, E-mail: meenhazphysics@gmail.com; Arshad, Mohd; Tripathi, Pushpendra
Nano-crystalline undoped and Mg doped ZnO (Mg-ZnO) nanoparticles with compositional formula Mg{sub x}Zn{sub 1-x}O (x=0,1,3,5,7,10 and 12 %) were synthesized using sol-gel process. The XRD diffraction peaks match with the pattern of the standard hexagonal structure of ZnO that reveals the formation of hexagonal wurtzite structure in all samples. SEM images demonstrates clearly the formation of spherical ZnO nanoparticles, and change of the morphology of the nanoparticles with the concentration of the magnesium, which is in close agreement with that estimated by Scherer formula based on the XRD pattern. To investigate the doping effect on optical properties, the UV–VIS absorptionmore » spectra was obtained and the band gap of the samples calculated.« less
Nanobelt formation of magnesium hydroxide sulfate hydrate via a soft chemistry process.
Zhou, Zhengzhi; Sun, Qunhui; Hu, Zeshan; Deng, Yulin
2006-07-13
The nanobelt formation of magnesium hydroxide sulfate hydrate (MHSH) via a soft chemistry approach using carbonate salt and magnesium sulfate as reactants was successfully demonstrated. X-ray diffraction (XRD), energy dispersion X-ray spectra (EDS), selected area electron diffraction (SAED), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis revealed that the MHSH nanobelts possessed a thin belt structure (approximately 50 nm in thickness) and a rectangular cross profile (approximately 200 nm in width). The MHSH nanobelts suffered decomposition under electron beam irradiation during TEM observation and formed MgO with the pristine nanobelt morphology preserved. The formation process of the MHSH nanobelts was studied by tracking the morphology of the MHSH nanobelts during the reaction. A possible chemical reaction mechanism is proposed.
NASA Astrophysics Data System (ADS)
Baldan, M. R.; Almeida, E. C.; Azevedo, A. F.; Gonçalves, E. S.; Rezende, M. C.; Ferreira, N. G.
2007-11-01
The graphitization index provided by X-ray diffraction (XRD) and Raman spectrometry for reticulated vitreous carbon (RVC) substrates, carbonized at different heat treatment temperatures (HTT), is investigated. A systematic study of the dependence between the disorder-induced D and G Raman bands is presented. The crystallite size La was obtained for both X-ray diffraction and Raman spectrometry techniques. Particularly, the validity for La determination, from Raman spectra, is pointed out comparing the commonly used formula based on peaks amplitude ratio ( ID/ IG) and the recent proposed equation that uses the integrated intensities of D and G bands. The results discrepancy is discussed taken into account the strong contribution of the line broadening presented in carbon materials heat treated below 2000 °C.
NASA Astrophysics Data System (ADS)
Cheng, Pan; Zhou, Yaxun; Zhou, Minghan; Su, Xiue; Zhou, Zizhong; Yang, Gaobo
2017-11-01
Pr3+-doped tellurite glasses containing metallic silver NPs were synthesized by the conventional melt-quenching technique. Structural, thermal and optical properties of the synthesized glass samples were characterized by X-Ray diffraction (XRD) curves, Raman spectra, differential scanning calorimeter (DSC) curves, transmission electron microscopy (TEM) images, UV/Vis/NIR absorption and near-infrared fluorescence emission spectra. The XRD curves confirmed the amorphous structural nature of the synthesized glasses, the Raman spectra identified the presence of different vibrational groups, the DSC curves verified the good thermal stability, and the TEM images revealed the nucleated silver NPs with average diameter about 10 nm dispersed in the glass matrix and its surface Plasmon resonance (SPR) absorption band was located at around 510 nm. Besides, Judd-Ofelt intensity parameters Ωt (t = 2, 4, 6) and other important spectroscopic parameters like transition probability, radiative lifetime, branching ratio were calculated to evaluate the radiative properties of Pr3+ levels from the measured optical absorption spectra. It was found that Pr3+-doped tellurite glasses could emit an ultra-broadband fluorescence extending from 1250 to 1650 nm under the 488 nm excitation, and this fluorescence emission increased further with the introduction of silver NPs. The enhanced fluorescence was mainly attributed to the increased local electric field around Pr3+ induced by silver NPs. The present results demonstrate that Pr3+-Ag codoped tellurite glass is a promising candidate for the near-infrared band ultra-broadband fiber amplifiers covering the expanded low-loss communication window.
NASA Astrophysics Data System (ADS)
Chen, Qiuling; Su, Kai; Li, Yantao; Zhao, Zhiwei
2018-06-01
Faraday rotation diamagnetic glass has attracted research attentions in photonics, sensing and magneto optical devices due to their high refractive index, wide transmittance in UV and Fourier transform infrared (FT-IR) range and temperature independent Faraday rotation. Selenite modified heavy metal oxides glasses with composition of xSeO2-(10-x) B2O3-45PbO-45Bi2O3 (x = 0, 1, 5 and 10mol%) and 15%SeO2-40%PbO-45%Bi2O3 have been fabricated by melt-quenching method in present study. The influence of SeO2 on glass forming ability, thermal, mechanical properties and Faraday rotation were evaluated through X-ray Diffraction (XRD), Fourier transforms infrared spectra (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), Vicker's hardness and Verdet constant measurements. XRD spectra reveal that the good vitrification was achieved for glass with SeO2 amounts ≤10% even without B2O3. FT-IR, Raman and XPS spectra ascertain the existence of characteristic vibration of SeO4, SeO3, PbO4, BiO3 and BO3 units. The incorporation of SeO2 increases the connectivity of glassy network by increasing the Tg, thermal stability and mechanical hardness. The small band gap, high polarizable Se4+ ions and isolated SeO3 units contribute to Faraday rotation improvement.
NASA Astrophysics Data System (ADS)
Birch, J.; Severin, M.; Wahlström, U.; Yamamoto, Y.; Radnoczi, G.; Riklund, R.; Sundgren, J.-E.; Wallenberg, L. R.
1990-05-01
A class of quasiperiodic superlattice structures, which can be generated by the concurrent inflation rule A-->AmB and B-->A (where m=positive integer), has been studied both theoretically and experimentally. Given that the ratios between the thicknesses of the two superlattice building blocks, A and B, are chosen to be γ(m)=[m+(m2+4)1/2]/2 (known as the ``precious means''), then the x-ray- and electron-diffraction peak positions are analytically found to be located at the wave vectors q=2πΛ-1r[γ(m)]k, where r and k are integers and Λ is an average superlattice wavelength. The analytically obtained results have been compared to experimental results from single-crystalline Mo/V superlattice structures, generated with m=1, 2, and 3. The superlattices were grown by dual-target dc-magnetron sputtering on MgO(001) substrates kept at 700 °C. X-ray diffraction (XRD) and selected-area electron diffraction (SAED) showed that the analytical model mentioned above predicts the peak positions of the experimental XRD and SAED spectra with a very high accuracy. Furthermore, numerical calculations of the diffraction intensities based on a kinematical model of diffraction showed good agreement with the experimental data for all three cases. In addition to a direct verification of the quasiperiodic modulation, both conventional and high-resolution cross-sectional transmission electron microscopy (XTEM) showed that the superlattices are of high crystalline quality with sharp interfaces. Based on lattice resolution images, the width of the interfaces was determined to be less than two (002) lattice-plane spacings (~=0.31 nm).
NASA Astrophysics Data System (ADS)
Aikawa, Masaki; Onuki, Yuya; Hayasaka, Natsuki; Nishiyama, Tetsuo; Kamada, Naoki; Han, Xu; Kallarasan Periyanayagam, Gandhi; Uchida, Kazuki; Sugiyama, Hirokazu; Shimomura, Kazuhiko
2018-02-01
The bonding-temperature-dependent lasing characteristics of 1.5 a µm GaInAsP laser diode (LD) grown on a directly bonded InP/Si substrate were successfully obtained. We have fabricated the InP/Si substrate using a direct hydrophilic wafer bonding technique at bonding temperatures of 350, 400, and 450 °C, and deposited GaInAsP/InP double heterostructure layers on this InP/Si substrate. The surface conditions, X-ray diffraction (XRD) analysis, photoluminescence (PL) spectra, and electrical characteristics after the growth were compared at these bonding temperatures. No significant differences were confirmed in X-ray diffraction analysis and PL spectra at these bonding temperatures. We realized the room-temperature lasing of the GaInAsP LD on the InP/Si substrate bonded at 350 and 400 °C. The threshold current densities were 4.65 kA/cm2 at 350 °C and 4.38 kA/cm2 at 400 °C. The electrical resistance was found to increase with annealing temperature.
Poly (N-ethyl aniline)/Ag Nanocomposite as Humidity Sensor
NASA Astrophysics Data System (ADS)
Pande, Nishigandh S.; Jaspal, Dipika; Ambekar, Jalindar
Poly (N-ethyl aniline)/Ag organic-inorganic composite has been synthesized by a single step in situ chemical oxidative polymerization method. The synthesis of Poly (N-ethyl aniline)/Ag nanocomposite has been confirmed by X-ray diffraction (XRD), Ultraviolet-Vis Spectroscopy (UV-visible), Fourier transform infrared analysis (FTIR) and FE-SEM investigations. XRD spectral study exhibited major diffraction in the range 20-80∘ (2θ) and indicated the semicrystalline nature of poly (N-ethyl aniline)/Ag nanocomposite. Characteristic peaks in UV-visible and FTIR spectra of poly (N-ethyl aniline) switched to higher wave numbers in poly (N-ethyl aniline)/Ag nanocomposite. Peaks at 1789cm-1, 1595cm-1, 667cm-1 and 501cm-1 in FTIR spectrum confirmed the formation of poly (N-ethyl aniline)/Ag nanocomposite. FE-SEM photographs reported agglomerated granular particulate nature of poly (N-ethyl aniline)/Ag nanocomposite. Synthesized poly (N-ethyl aniline)/Ag nanocomposite exhibited a high response to humidity, good reproducibility and stability at room temperature. An appreciable response was shown in the presence of 40% humid atmosphere for up to successive four cycles. Composite sensitivity has been found to increase with the increasing concentration of humidity, at room temperature.
Rare earth substitution on structural and optical behaviour of CdSe thin films
NASA Astrophysics Data System (ADS)
Singh, Sarika; Shrivastava, A. K.; Tapdiya, Swati
2018-05-01
A series of Sm2+,Gd2+ doped with Cadmium selenide CdSe (x =0.01) has been prepared by using Chemical bath deposition technique. Structural, Optical and Morphological studies were performed using X-ray diffraction (XRD), UV-Visible spectrometer, Raman Studies and Scanning Electron Microscopy (SEM). XRD patterns confirm the samples with Sm,Gd ions, some diffraction peaks appeared which belongs to the cubic phase structure. The values of lattice parameter (a) decreased and particle size decrease on doping. Morphology of the grown films reveals that surface are homogeneous and uniformly spread on the substrates. The elemental analysis of CdSe doped Sm and Gd (1%) different composition was analyzed by Energy Dispersive X-Rays (EDX). The optical values of some important parameters of the studied films were calculated by UVstudy are determined from transmission spectra at wavelength 200 to 900nm. Optical band gap Eg was calculated by tauc relation. Energy band gap of CdSe doped with Sm and Gd varies at 1.8eV and 1.9eV respectively. Bandgap In Raman analysis, a prominent peak shows that confirmation of nano crystalline phase. And intensity of peaks was decreasing after doping.
USDA-ARS?s Scientific Manuscript database
Despite considerable efforts in developing the curve-fitting protocol to evaluate the crystallinity index (CI) from the X-ray diffraction (XRD) measurement, in its present state XRD procedure can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous po...
Sodium Hydroxide Activated Nanoporous Carbons Based on Lapsi Seed Stone.
Joshi, Sahira; Shrestha, Lok Kumar; Kamachi, Yuichiro; Yamauchi, Yusuke; Pradhananga, Mandira Adhikari; Pokhrel, Bhadra Prasad; Ariga, Katsuhiko; Pradhananga, Raja Ram
2015-02-01
Nanoporous activated carbons (ACs) were prepared from Lapsi (Choerospondias axillaris) seed powder by chemical activation with sodium hydroxide (NaOH) at different NaOH impregnation ratios. The prepared ACs were characterized by Fourier transform-infrared (FTIR) spectroscopy, Raman scattering, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Semi-quantitative information on the surface properties was obtained by estimating iodine number. FTIR spectra showed the presence of oxygenated functional groups such as hydroxyl, carbonyl, and carboxyl in the prepared ACs. Raman scattering showed clear D and G bands in the spectra. The intensity ratio of G and D band peak intensity was ca. 1.39 at lowest NaOH and Lapsi seed powder ratio 0.25:1 showing high graphitic degree. This ratio decreased with increase in the NaOH impregnation ratio and reached minimum ca. 0.94 (comparable with commercial AC) at NaOH and Lapsi seed powder ratio 1:1 demonstrating that higher NaOH impregnation reduces the graphitic structure of the carbon. XRD patterns showed two broad peaks at diffraction angles of approximately 25 and 43 degrees indicating the amorphous structure. Surface properties of the ACs (BET surface area, pore volume, and pore size distributions) were evaluated by nitrogen adsorption-desorption isotherm. Our ACs showed strong methylene blue adsorption property (maximum methylene blue is ca. 200 mg/g). Judging from the iodine number and methylene blue values, structure, and surface areas, it can be concluded that NaOH impregnation ratio is one of the key parameters to tune the surface properties of Lapsi seed stone-based activated carbons.
Kadam, R M; Rajeswari, B; Sengupta, Arijit; Achary, S N; Kshirsagar, R J; Natarajan, V
2015-02-25
A titania mineral (obtained from East coast, Orissa, India) was investigated by X-ray diffraction (XRD), photoacoustic spectroscopy (PAS), Raman and Electron Paramagnetic Resonance (EPR) studies. XRD studies indicated the presence of rutile (91%) and anatase (9%) phases in the mineral. Raman investigation supported this information. Both rutile and anatase phases have tetragonal structure (rutile: space group P4(2)/mnm, a=4.5946(1) Å, c=2.9597(1) Å, V=62.48(1) (Å)(3), Z=2; anatase: space group I4(1)/amd, 3.7848(2) Å, 9.5098(11) Å, V=136.22(2) (Å)(3), Z=4). The deconvoluted PAS spectrum showed nine peaks around 335, 370, 415,485, 555, 605, 659, 690,730 and 785 nm and according to the ligand field theory, these peaks were attributed to the presence of V(4+), Cr(3+), Mn(4+) and Fe(3+) species. EPR studies revealed the presence of transition metal ions V(4+)(d(1)), Cr(3+)(d(3)), Mn(4+)(d(3)) and Fe(3+)(d(5)) at Ti(4+) sites. The EPR spectra are characterized by very large crystal filed splitting (D term) and orthorhombic distortion term (E term) for multiple electron system (s>1) suggesting that the transition metal ions substitute the Ti(4+) in the lattice which is situated in distorted octahedral coordination of oxygen. The possible reasons for observation of unusually large D and E term in the EPR spectra of transition metal ions (S=3/2 and 5/2) are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathak, A. A., E-mail: anuapathak@yahoo.com; Yadav, P. J.; Talewar, R. A.
Blue-emitting phosphor LaMgAl{sub 11}O{sub 19}:Eu{sup 2+} has been synthesized successfully at 500 °C by one step combustion synthesis method. The as-synthesized materials were characterized by powder x-ray diffraction (XRD) and photoluminescence (PL) techniques. Upon 365 nm excitation, emission spectra of the LaMgAl{sub 11}O{sub 19}:Eu{sup 2+} phosphors show a blue band at 450 nm. The excitation spectra corresponding to 4f{sup 7}-4f{sup 6}5d transition of Eu{sup 2+} cover the spectral range of 280–430 nm. The concentration quenching of Eu{sup 2+} in the LaMgAl{sub 11}O{sub 19} host was determined to be 3 mol%. The CIE chromaticity of LAM: Eu{sup 2+} phosphors was compared with the commercial BAM.
Depositing of CuS nanocrystals upon the graphene scaffold and their photocatalytic activities
NASA Astrophysics Data System (ADS)
Wang, Yongbin; Zhang, Lixin; Jiu, Hongfang; Li, Na; Sun, Yixin
2014-06-01
A series of copper sulfide nanocrystals/graphene nanocomposites (CuS/GR) with different weight ratios of GR were fabricated via a one-step hydrothermal approach by using dimethylsulfoxide (DMSO) as the source of sulfur and solvent. The as-prepared samples were studied by X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (DRS), transmission scanning electron microscopy (TEM) and photoluminescence spectra (PL) are employed to determine the properties of the samples. The results show that the CuS nanocrystals with an average size of 16 nm almost overspread on the GR graphene scaffold. The samples exhibit excellent photocatalytic activities in degrading the methylene blue (MB) compared with pure CuS. This work shows that CuS/GR nanocomposites would be promising in dye wastewater treatment as Fenton-like reagents.
In-SITU Raman Spectroscopy of Single Microparticle Li-Intercalation Electrodes
NASA Technical Reports Server (NTRS)
Dokko, Kaoru; Shi, Qing-Fang; Stefan, Ionel C.; Scherson, Daniel A.
2003-01-01
Modifications in the vibrational properties of a single microparticle of LiMn2O4 induced by extraction and subsequent injection of Li(+) into the lattice have been monitored in situ via simultaneous acquisition of Raman scattering spectra and cyclic voltammetry data in 1M LiC1O4 solutions in ethylene carbonate (EC):diethyl carbonate (DEC) mixtures (1:1 by volume). Statistical analyses of the spectra in the range 15 < SOD < 45%, where SOD represents the state of discharge (in percent) of the nominally fully charged material, i.e. lambda-MnO2, were found to be consistent with the coexistence of two distinct phases of lithiated metal oxide in agreement with information derived from in situ X-ray diffraction (XRD) measurements involving more conventional battery-type electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Hui; Zou Kang; Guo Shaohuan
A nanostructural drug-inorganic clay composite involving a pharmaceutically active compound captopril (Cpl) intercalated Mg-Al-layered double hydroxides (Cpl-LDHs) with Mg/Al molar ratio of 2.06 has been assembled by coprecipitation method. Powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR) and Raman spectra analysis indicate a successful intercalation of Cpl between the layers with a vertical orientation of Cpl disulphide-containing S-S linkage. SEM photo indicates that as-synthesized Cpl-LDHs possess compact and non-porous structure with approximately and linked elliptical shape particles of ca. 50 nm. TG-DTA analyses suggest that the thermal stability of intercalated organic species is largely enhanced due to host-guest interactionmore » involving the hydrogen bond compared to pure form before intercalation. The in vitro release studies show that both the release rate and release percentages markedly decrease with increasing pH from 4.60 to 7.45 due to possible change of release mechanism during the release process. The kinetic simulation for the release data, and XRD and FT-IR analyses for samples recovered from release media indicate that the dissolution mechanism is mainly responsible for the release behaviour of Cpl-LDHs at pH 4.60, while the ion-exchange one is responsible for that at pH 7.45. - Graphical abstract: Based on XRD, FT-IR and Raman spectra analyses, it is suggested that captopril (Cpl) exists as its disulphide metabolites in the interlayer of Mg-Al-LDHs via hydrogen bonding between guest carboxylate function and hydroxyl group of the host layers. A schematic supramolecular structure of Cpl intercalates involving a vertical orientation of Cpl disulphide-containing S-S bond between the layers with carboxylate anions pointing to both hydroxide layers is presented.« less
Gas-Phase Combustion Synthesis of Aluminum Nitride Powder
NASA Technical Reports Server (NTRS)
Axelbaum, R. L.; Lottes, C. R.; Huertas, J. I.; Rosen, L. J.
1996-01-01
Due to its combined properties of high electrical resistivity and high thermal conductivity aluminum nitride (AlN) is a highly desirable material for electronics applications. Methods are being sought for synthesis of unagglomerated, nanometer-sized powders of this material, prepared in such a way that they can be consolidated into solid compacts having minimal oxygen content. A procedure for synthesizing these powders through gas-phase combustion is described. This novel approach involves reacting AlCl3, NH3, and Na vapors. Equilibrium thermodynamic calculations show that 100% yields can be obtained for these reactants with the products being AlN, NaCl, and H2. The NaCl by-product is used to coat the AlN particles in situ. The coating allows for control of AlN agglomeration and protects the powders from hydrolysis during post-flame handling. On the basis of thermodynamic and kinetic considerations, two different approaches were employed to produce the powder, in co-flow diffusion flame configurations. In the first approach, the three reactants were supplied in separate streams. In the second, the AlCl3 and NH3 were premixed with HCl and then reacted with Na vapor. X-ray diffraction (XRD) spectra of as-produced powders show only NaCl for the first case and NaCl and AlN for the second. After annealing at 775 C tinder dynamic vacuum, the salt was removed and XRD spectra of powders from both approaches show only AlN. Aluminum metal was also produced in the co-flow flame by reacting AlCl3 with Na. XRD spectra of as-produced powders show the products to be only NaCl and elemental aluminum.
Simulation study of an X-ray diffraction system for breast tumor detection
NASA Astrophysics Data System (ADS)
Marticke, F.; Montémont, G.; Paulus, C.; Michel, O.; Mars, J. I.; Verger, L.
2017-09-01
X-ray diffraction (XRD) is a powerful technique used to determine the molecular structure of biological tissues. In breast tissues for example, the scattering signatures of dense fibroglandular tissue and carcinoma have been shown to be significantly different. In this study, XRD was used as a second control level when conventional mammography results were unclear, for instance because of overly high breast density. A system optimized for this issue, called multifocal XRD, was developed combining energy dispersive spectral information at different scattering angles. This system allows depth-imaging in one go but needs an x,y-direction scan to image the region conventional mammography identified as suspect. The scan-time for about 10 cm3 with an incident flux of about 4 . 8 ṡ 107 photons per second would be around 2 s. For this study, breast phantoms with and without cancerous nodule were simulated to assess the separation power of the method and to determine the radiation dose required to obtain nearly ideal separation. For tumors situated in the center of the breast, the required dose was only about 0.3 mGy, even for breasts with high density. The tumor position was shown to have a low impact on detectability provided it remained in a zone where the system was sufficiently sensitive. The influence of incident spectrum maximum energy was also studied. The required dose remained very low with any of the incident spectra tested. Finally, an image slice was reconstructed in the x-direction and showed that the system can detect the presence of a small tumor (4 mm). Hence, XRD is a very promising tool to reduce the number of unnecessary invasive breast biopsies.
NASA Astrophysics Data System (ADS)
Kuzmann, E.; Stichleutner, S.; Doyle, O.; Chisholm, C. U.; El-Sharif, M.; Homonnay, Z.; Vértes, A.
2005-04-01
Constant current technique was applied to electrodeposit tin-containing coatings such as tin-cobalt (Sn-Co), tin-iron (Sn-Fe) and a novel tin-cobalt-iron (Sn-Co-Fe) from a gluconate bath. The effect of plating parameters (current density, deposition time at an electrolyte temperature of 60°C and pH=7.0) on phase composition, crystal structure and magnetic anisotropy of alloy deposits has been investigated mainly by 57Fe CEMS, 119Sn CEMS and transmission Mössbauer Spectroscopy as well as XRD. 57Fe and 119Sn CEM spectra and XRD reflect that the dominant phases of the deposits are orthorhombic Co3Sn2, tetragonal FeSn2 or amorphous Fe-Sn and amorphous Sn-Co-Fe in Sn-Co, Sn-Fe and Sn-Co-Fe coatings, respectively. Furthermore, the relative area of the 2nd and 5th lines of the sextets representing the magnetic iron containing phases decreases continuously with increasing current density in all Fe-containing deposits. At the same time, no essential change in the magnetic anisotropy can be found with the plating time. 119Sn spectra reveal the presence of small amount of β-Sn besides the main phases in Sn-Fe and in the Sn-Co coatings. Magnetically split 119Sn spectra reflecting transferred hyperfine field were observed in the case of Co-Sn-Fe coatings.
NASA Astrophysics Data System (ADS)
Zhang, Lu; Yi, Shuangping; Hu, Xiaoxue; Liang, Boxin; Zhao, Weiren; Wang, Yinhai
2017-03-01
A color-tunable phosphor based on Tb3+/Eu3+ co-doped GdNbO4 were synthesized by a traditional solid-state reaction method. X-ray powder diffraction (XRD), diffuse reflectance spectra, photoluminescence spectra and decay curves were utilized to characterize the as-prepared phosphors. XRD result indicated that various concentrations Tb3+/Eu3+ single-doped and co-doped phosphors were well indexed to the pure GdNbO4 phase. The GdNbO4 host was proved to be a self-activated phosphor with broad absorption range from 200 nm to 325 nm. When Tb3+ ions were added into the host lattice, the energy transferring from host to Tb3+ was identified. And the broad absorption in the UV region was changed and enhanced. Therefore, we selected Tb3+ as the sensitizer ion, and adjusted red component from Eu3+ to control the emission color. The energy transfer from Tb3+ to Eu3+ was confirmed based on the luminescence spectra and decay curves. Furthermore, the energy transmission mechanism was deduced to be the dipole-quadrupole interaction. On the whole, the obtained GdNbO4, GdNbO4:Tb3+, and GdNbO4:Tb3+, Eu3+ phosphors may have potential application in the UV white-light-emitting diodes (w-LEDs) and display devices.
Data on Molluscan Shells in parts of Nellore Coast, southeast coast of India.
Lakshmanna, B; Jayaraju, N; Prasad, T Lakshmi; Sreenivasulu, G; Nagalakshmi, K; Kumar, M Pramod; Madakka, M
2018-02-01
X-ray diffraction (XRD), Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM-EDS), and Fourier Transform Infrared Spectroscopy (FT-IR), were applied to analyze the organic matrix of two Molluscan shells . The Mollusca shells are mineral structure and calcium carbonate crystallized as aragonite. The FT-IR spectra showed Alkyl Halide, Alkanes, Alcohols, Amides, Aromatic, and Hydroxyl groups in the organic matrix of the whole (organic and mineral) Molluscan shells. SEM images of particles of the two Molluscan shells at different magnifications were taken. The morphologies of the samples show a flake like structures with irregular grains, their sizes are at micrometric scale and the chemical analysis of EDS indicated that the major elements of Cardita and Gastropoda were C, O, and Ca, consistent with the results of XRD analysis. The results of the analysis of the EDS spectra of the shells showed that the content of most of the powder composition of shells is the element carbon, calcium oxygen, aluminium, and lead peaks that appear on the Cardita and Gastropoda and shells powders tap EDS spectra. The present work examined organic matrix of the selected shells of the heavily polluted and light polluted sites, along Nellore Coast, South East Coast of India. The heavily polluted sites have significantly thickened shells. The data demonstrated the sensitivity of this abundant and widely distributed intertidal fragile environment.
Synthesis and influence of ultrasonic treatment on luminescence of Mn incorporated ZnS nanoparticles
NASA Astrophysics Data System (ADS)
Cadis, A.-I.; Muresan, L. E.; Perhaita, I.; Munteanu, V.; Karabulut, Y.; Garcia Guinea, J.; Canimoglu, A.; Ayvacikli, M.; Can, N.
2017-10-01
Manganese (Mn) doping of ZnS phosphors was achieved by precipitation method using different ultrasound (US) maturation times. The structural and luminescence properties of the samples were carried out by means of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), photoluminescence (PL), and cathodoluminescence (CL). The real amount of manganese incorporated in ZnS lattice was calculated based on ICP-OES results. According with XRD patterns, the phase structure of ZnS:Mn samples is cubic. EDS spectra reveal deviations of the Mn dopant concentration from the target composition. Both 300 K PL and CL emission spectra of the Mn doped ZnS phosphors display intense orange emission at 590 and 600 nm, respectively, which is characteristic emission of Mn ion corresponding to a 4T1→6A1 transition. Both PL and CL spectra confirmed manganese is substitutionally incorporated into the ZnS host as Mn2+. However, it is suggested that the origin of broad blue emission around 400 nm appeared in CL is due to the radiative recombination at deep level defect states in the ZnS. The ultrasound treatment at first enhances the luminescent intensity by ∼3 times in comparison with samples prepared by classical way. This study gives rise to an optimization guideline, which is extremely demanded for the development of new luminescent materials.
Compositional ratio effect on the surface characteristics of CuZn thin films
NASA Astrophysics Data System (ADS)
Choi, Ahrom; Park, Juyun; Kang, Yujin; Lee, Seokhee; Kang, Yong-Cheol
2018-05-01
CuZn thin films were fabricated by RF co-sputtering method on p-type Si(100) wafer with various RF powers applied on metallic Cu and Zn targets. This paper aimed to determine the morphological, chemical, and electrical properties of the deposited CuZn thin films by utilizing a surface profiler, atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), UV photoelectron spectroscopy (UPS), and a 4-point probe. The thickness of the thin films was fixed at 200 ± 8 nm and the roughness of the thin films containing Cu was smaller than pure Zn thin films. XRD studies confirmed that the preferred phase changed, and this tendency is dependent on the ratio of Cu to Zn. AES spectra indicate that the obtained thin films consisted of Cu and Zn. The high resolution XPS spectra indicate that as the content of Cu increased, the intensities of Zn2+ decreased. The work function of CuZn thin films increased from 4.87 to 5.36 eV. The conductivity of CuZn alloy thin films was higher than pure metallic thin films.
Elilarassi, R; Chandrasekaran, G
2017-11-05
In the present investigation, diluted magnetic semiconductor (Zn 1-x Fe x O) nanoparticles with different doping concentrations (x=0, 0.02, 0.04, 0.06, and 0.08) were successfully synthesized by sol-gel auto-combustion method. The crystal structure, morphology, optical, electrical and magnetic properties of the prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis using x-rays (EDAX), ultraviolet-visible spectrophotometer, fluorescence spectroscope (FS), vibrating sample magnetometer (VSM) and broad band dielectric spectrometer (BDS). XRD results reveal that all the samples possess hexagonal wurtzite crystal structure with good crystalline quality. The absence of impurity phases divulge that Fe ions are well incorporated into the ZnO crystal lattice. The substitutional incorporation of Fe 3+ at Zn sites is reflected in optical absorption spectra of the samples. Flouorescence spectra of the samples show a strong near-band edge related UV emission as well as defect related visible emissions. The semiconducting behavior of the samples has been confirmed through electrical conductivity measurements. Magnetic measurements indicated that all the samples possess ferromagnetism at room temperature. Copyright © 2017 Elsevier B.V. All rights reserved.
Ajibade, Peter A.; Botha, Nandipha L.
2017-01-01
We report the synthesis and structural studies of copper sulfide nanocrystals from copper (II) dithiocarbamate single molecule precursors. The precursors were thermolysed in hexadecylamine (HDA) to prepare HDA-capped CuS nanocrystals. The optical properties of the nanocrystals studied using UV–visible and photoluminescence spectroscopy showed absorption band edges at 287 nm that are blue shifted, and the photoluminescence spectra show emission curves that are red-shifted with respect to the absorption band edges. These shifts are as a result of the small crystallite sizes of the nanoparticles leading to quantum size effects. The structural studies were carried out using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy. The XRD patterns indicates that the CuS nanocrystals are in hexagonal covellite crystalline phases with estimated particles sizes of 17.3–18.6 nm. The TEM images showed particles with almost spherical or rod shapes, with average crystallite sizes of 3–9.8 nm. SEM images showed morphology with ball-like microspheres on the surfaces, and EDS spectra confirmed the presence of CuS nanoparticles. PMID:28336865
NASA Astrophysics Data System (ADS)
Djouadi, D.; Slimi, O.; Hammiche, L.; Chelouche, A.; Touam, T.
2018-03-01
Undoped, Ce-doped, Cu-doped and (Ce,Cu ) co-doped ZnO aerogels were synthesized by sol-gel process in supercritical conditions of ethanol. [Cu]/[Zn] and [Ce]/[Zn] atomic ratios were fixed at 0.02 (2%). The aerogels were investigated without any additional treatments by using X-ray diffraction (XRD), UV–visible spectrophotometry, scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), Fourier transforms infrared spectroscopy (FTIR) and photoluminescence spectroscopy (PL). XRD results revealed that all the samples are well crystallized in hexagonal wurtzite structure. EDS measurements showed that highly pure aerogels are prepared. SEM analysis indicated that the morphology of the samples is dependent on Cu and Ce dopants. From UV-visible spectroscopy analyses, it was shown that the absorption and the band gap of the aerogels are strongly affected by Ce and Cu dopants. FTIR spectra demonstrated that co-doping induces a shift of Zn-O bond vibration band toward low wavenumbers. The room temperature photoluminescence spectra put into evidence that the visible emission intensity is influenced by Ce and Cu doping. In particular, the co-doping leads to the appearance of a blue emission band at 443 nm.
NASA Astrophysics Data System (ADS)
Kafashan, Hosein; Azizieh, Mahdi; Balak, Zohre
2017-07-01
SnS1-xSex nanostructures with different Se-dopant concentrations were deposited on fluorine doped tin oxide (FTO) substrate through cathodic electrodeposition technique. The pH, temperature, applied potential (E), and deposition time remained were 2.1, 60 °C, -1 V, and 30 min, respectively. SnS1-xSex nanostructures were characterized using X-ray diffraction (XRD), field emission scanning electron microcopy (FESEM), energy dispersive X-ray spectroscopy (EDX), room temperature photoluminescence (PL), and UV-vis spectroscopy. The XRD patterns revealed that the SnS1-xSex nanostructures were polycrystalline with orthorhombic structure. FESEM showed various kinds of morphologies in SnS1-xSex nanostructures due to Se-doping. PL and UV-vis spectroscopy were used to evaluate the optical properties of SnS1-xSex thin films. The PL spectra of SnS1-xSex nanostructures displayed four emission peaks, those are a blue, a green, an orange, and a red emission. UV-vis spectra showed that the optical band gap energy (Eg) of SnS1-xSex nanostructures varied between 1.22-1.65 eV, due to Se-doping.
Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea; Ramebäck, Henrik; Marie, Olivier; Ravat, Brice; Delaunay, François; Young, Emma; Blagojevic, Ned; Hester, James R; Thorogood, Gordon; Nelwamondo, Aubrey N; Ntsoane, Tshepo P; Roberts, Sarah K; Holliday, Kiel S
2018-01-01
This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2 , U 3 O 8 and an intermediate species U 3 O 7 in the third material.
NASA Astrophysics Data System (ADS)
Deng, Gaoqiang; Zhang, Yuantao; Yu, Ye; Yan, Long; Li, Pengchong; Han, Xu; Chen, Liang; Zhao, Degang; Du, Guotong
2018-04-01
In this paper, GaN-based yellow light-emitting diodes (LEDs) were homoepitaxially grown on free-standing (0001) GaN substrates by metal-organic chemical vapor deposition. X-ray diffraction (XRD), photoluminescence (PL), and electroluminescence (EL) measurements were conducted to investigate the structural, optical, and electrical properties of the yellow LED. The XRD measurement results showed that the InGaN/GaN multiple quantum wells (MQWs) in the LED structure have good periodicity because the distinct MQWs related higher order satellite peaks can be clearly observed from the profile of 2θ-ω XRD scan. The low temperature (10 K) and room temperature PL measurement results yield an internal quantum efficiency of 16% for the yellow LED. The EL spectra of the yellow LED present well Gaussian distribution with relatively low linewidth (47-55 nm), indicating the homogeneous In-content in the InGaN quantum well layers in the yellow LED structure. It is believed that this work will aid in the future development of GaN on GaN LEDs with long emission wavelength.
NASA Astrophysics Data System (ADS)
Sudakshina, B.; Arun, B.; Chandrasekhar, K. Devi; Yang, H. D.; Vasundhara, M.
2018-06-01
We have investigated the structural and magnetic properties of Nd0.67Ba0.33MnO3 manganite and partial replacement of Mn with Fe and Cu compounds followed by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS) and vibrating sample magnetometer (VSM). The Rietveld refinement of XRD indicates orthorhombic crystal structure with I-mma space group for all the compounds and thus obtained lattice parameters confirm the presence of co-operative Jahn-Teller effect. XRD and XAS spectra results suggests the existence of Fe3+ in Fe-substituted compound where as a mixed state of Cu2+ and Cu3+ ions in the Cu-substituted compound. The ferromagnetic (FM) to paramagnetic (PM) transition and magnetic moment is found to decrease upon the substitution of Fe and Cu atoms because of the suppression of double exchange interaction. The theoretically obtained and experimentally determined values of effective PM moment and saturation magnetic moment confirms the presence of inhomogeneous magnetic states containing FM and antiferromagnetic clusters in all the studied compounds.
Synthesis and Characterization of Titanium Dioxide Thin Film for Sensor Applications
NASA Astrophysics Data System (ADS)
Latha, H. K. E.; Lalithamba, H. S.
2018-03-01
Titanium oxide (TiO2) nanoparticles (metal oxide semiconductor) are successfully synthesized using hydrothermal method for sensor application. Titanium dioxide and Sodium hydroxide are used as precursors. These reactants are mixed and calcinated at 400 °C to produce TiO2 nanoparticles. The crystalline structure, morphology of synthesized TiO2 nanoparticles are studied using x-ray diffraction (XRD), Fourier Transform Infrared (FTIR) analysis and scanning electron microscopy (SEM). XRD results revealed that the prepared TiO2 sample is highly crystalline, having Anatase crystal structure. FT-IR spectra peak at 475 cm‑1 indicated characteristic absorption bands of TiO2 nanoparticles. The XRD and FTIR result confirmed the formation of high purity of TiO2 nanoparticles. The SEM image shows that TiO2 nanoparticles prepared in this study are spherical in shape. Synthesized TiO2 nanoparticles are deposited on glass substrate at room temperature using E beam evaporation method to determine gauge factor and found to be 4.7. The deposited TiO2 thin films offer tremendous potential in the applications of electronic and magneto–electric devices.
Rietveld Refinement on X-Ray Diffraction Patterns of Bioapatite in Human Fetal Bones
Meneghini, Carlo; Dalconi, Maria Chiara; Nuzzo, Stefania; Mobilio, Settimio; Wenk, Rudy H.
2003-01-01
Bioapatite, the main constituent of mineralized tissue in mammalian bones, is a calcium-phosphate-based mineral that is similar in structure and composition to hydroxyapatite. In this work, the crystallographic structure of bioapatite in human fetuses was investigated by synchrotron radiation x-ray diffraction (XRD) and microdiffraction (μ-XRD) techniques. Rietveld refinement analyses of XRD and μ-XRD data allow for quantitative probing of the structural modifications of bioapatite as functions of the mineralization process and gestational age. PMID:12609904
NASA Astrophysics Data System (ADS)
Gu, Yanhong; Chen, Cheng-fu; Bandopadhyay, Sukumar; Ning, Chengyun; Zhang, Yongjun; Guo, Yuanjun
2012-06-01
This paper addresses the effect of pulse frequency on the corrosion behavior of microarc oxidation (MAO) coatings on AZ31 Mg alloys in simulated body fluid (SBF). The MAO coatings were deposited by a pulsed DC mode at four different pulse frequencies of 300 Hz, 500 Hz, 1000 Hz and 3000 Hz with a constant pulse ratio. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used for corrosion rate and electrochemical impedance evaluation. The corroded surfaces were examined by X-ray diffraction (XRD), X-ray fluorescence (XRF) and optical microscopy. All the results exhibited that the corrosion resistance of MAO coating produced at 3000 Hz is superior among the four frequencies used. The XRD spectra showed that the corrosion products contain hydroxyapatite, brucite and quintinite. A model for corrosion mechanism and corrosion process of the MAO coating on AZ31 Mg alloy in the SBF is proposed.
Effect of aluminum and yttrium doping on zinc sulphide nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Swati, E-mail: sharma.swati1507@gmail.com; Kashyap, Jyoti; Kapoor, A.
2016-05-06
In this work, pristine and doped Zinc Sulphide (ZnS) nanoparticles have been synthesized via chemical co-precipitation method. ZnS nanoparticles have been doped with Aluminium (Al) and Yttrium (Y) with doping concentration of 5wt% each. The structural and optical properties of the as prepared nanoparticles have been studied using X-Ray diffraction (XRD) technique and Photoluminescence spectroscopy. Average grain size of 2-3nm is observed through the XRD analysis. Effect of doping on stress, strain and lattice constant of the nanoparticles has also been analyzed. Photoluminescence spectra of the as prepared nanoparticles is enhanced due to Al doping and quenched due to Ymore » doping. EDAX studies confirm the relative doping percentage to be 3.47 % and 3.94% by wt. for Al and Y doped nanoparticles respectively. Morphology of the nanoparticles studied using TEM and SEM indicates uniform distribution of spherical nanoparticles.« less
Jawaher, K Rackesh; Indirajith, R; Krishnan, S; Robert, R; Pasha, S K Khadheer; Deshmukh, Kalim; Sastikumar, D; Das, S Jerome
2018-08-01
Cr2O3-SnO2 heterojunction nanocomposites were prepared via chemical precipitation method. The prepared samples were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectra and Field Emission Electron Microscopy (FESEM). The XRD spectrum confirms the presence of both tetragonal rutile SnO2 and rhombohedral corundum Cr2O3 structure. Further investigation into the gas sensing performances of the prepared Cr2O3-SnO2 nanocomposites exhibited an enhanced sensitivity towards VOPs such as isopropanol, acetone, ethanol and formaldehyde. Especially, isopropanol vapor sensor shows excellent sensitivity at an operating temperature of 100 °C. The highest sensitivity for Cr2O3-SnO2 heterojunction nanocomposites indicate that these materials can be a good candidate for the production of high-performance isopropanol sensors.
NASA Astrophysics Data System (ADS)
Philip, Daizy; Unni, C.
2011-05-01
Aqueous extract of Ocimum sanctum leaf is used as reducing agent for the environmentally friendly synthesis of gold and silver nanoparticles. The nanoparticles were characterized using UV-vis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. These methods allow the synthesis of hexagonal gold nanoparticles having size ∼30 nm showing two surface plasmon resonance (SPR) bands by changing the relative concentration of HAuCl 4 and the extract. Broadening of SPR is observed at larger quantities of the extract possibly due to biosorption of gold ions. Silver nanoparticles with size in the range 10-20 nm having symmetric SPR band centered around 409 nm are obtained for the colloid synthesized at room temperature at a pH of 8. Crystallinity of the nanoparticles is confirmed from the XRD pattern. Biomolecules responsible for capping are different in gold and silver nanoparticles as evidenced by the FTIR spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yerci, S.; Serincan, U.; Dogan, I.
2006-10-01
Silicon nanocrystals, average sizes ranging between 3 and 7 nm, were formed in sapphire matrix by ion implantation and subsequent annealing. Evolution of the nanocrystals was detected by Raman spectroscopy and x-ray diffraction (XRD). Raman spectra display that clusters in the matrix start to form nanocrystalline structures at annealing temperatures as low as 800 deg. C in samples with high dose Si implantation. The onset temperature of crystallization increases with decreasing dose. Raman spectroscopy and XRD reveal gradual transformation of Si clusters into crystalline form. Visible photoluminescence band appears following implantation and its intensity increases with subsequent annealing process. Whilemore » the center of the peak does not shift, the intensity of the peak decreases with increasing dose. The origin of the observed photoluminescence is discussed in terms of radiation induced defects in the sapphire matrix.« less
Synthesis and characterization of Chitosan-CuO-MgO polymer nanocomposites
NASA Astrophysics Data System (ADS)
Praffulla, S. R.; Bubbly, S. G.
2018-05-01
In the present work, we have synthesized Chitosan-CuO-MgO nanocomposites by incorporating CuO and MgO nanoparticles in chitosan matrix. Copper oxide and magnesium oxide nanoparticles synthesized by precipitation method were characterized by X-ray diffraction and the diffraction patterns confirmed the monoclinic and cubic crystalline structures of CuO and MgO nanoparticles respectively. Chitosan-CuO-MgO composite films were prepared using solution- cast method with different concentrations of CuO and MgO nanoparticles (15 - 50 wt % with respect to chitosan) and characterized by XRD, FTIR and UV-Vis spectroscopy. The X-ray diffraction pattern shows that the crystallinity of the chitosan composite increases with increase in nanoparticle concentration. FTIR spectra confirm the chemical interaction between chitosan and metal oxide nanoparticles (CuO and MgO). UV absorbance of chitosan nanocomposites were up to 17% better than pure chitosan, thus confirming its UV shielding properties. The mechanical and electrical properties of the prepared composites are in progress.
Luminescent properties under X-ray excitation of Ba(1-x)PbxWO4 disordered solid solution
NASA Astrophysics Data System (ADS)
Bakiz, B.; Hallaoui, A.; Taoufyq, A.; Benlhachemi, A.; Guinneton, F.; Villain, S.; Ezahri, M.; Valmalette, J.-C.; Arab, M.; Gavarri, J.-R.
2018-02-01
A series of polycrystalline barium-lead tungstate Ba1-xPbxWO4 with 0 ≤ x ≤ 1 was synthesized using a classical solid-state method with thermal treatment at 1000 °C. These materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Raman (FT-Raman) spectroscopy. X-ray diffraction profile analyses were performed using Rietveld method. These materials crystallized in the scheelite tetragonal structure and behaved as quasi ideal solid solution. Raman spectroscopy confirmed the formation of the solid solution. Structural distortions were evidenced in X-ray diffraction profiles and in vibration Raman spectra. The scanning electron microscopy experiments showed large and rounded irregular grains. Luminescence experiments were performed under X-ray excitation. The luminescence emission profiles have been interpreted in terms of four Gaussian components, with a major contribution of blue emission. The integrated intensity of luminescence reached a maximum value in the composition range x = 0.3-0.6, in relation with distortions of crystal lattice.
Preparation, characterization and properties of ZnO nanomaterials
NASA Astrophysics Data System (ADS)
Luo, Jiaolian; Zhang, Xiaoming; Chen, Ruxue; Wang, Xiaohui; Zhu, Ji; Wang, Xiaomin
2017-06-01
In this paper, using the hydrothermal synthesis method, NaOH, Zn(NO3)2, anhydrous ethanol, deionized water as raw material to prepare ZnO nanomaterial, and by X ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL) on the synthesis of nano materials, surface morphology and phase luminescence characterization. The results show that the nano materials synthesized for single-phase ZnO, belonging to the six wurtzite structure; material surface shaped, arranged evenly distributed, and were the top six party structure; ZnO nano materials synthesized with strong emission spectra, emission peak is located at 394nm.
Annealing effect and photovoltaic properties of nano-ZnS/textured p-Si heterojunction.
Ji, Liang-Wen; Hsiao, Yu-Jen; Tang, I-Tseng; Meen, Teen-Hang; Liu, Chien-Hung; Tsai, Jenn-Kai; Wu, Tien-Chuan; Wu, Yue-Sian
2013-11-09
The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si heterojunction solar cell with an annealing temperature of 250°C was η = 3.66%.
Annealing effect and photovoltaic properties of nano-ZnS/textured p-Si heterojunction
2013-01-01
The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si heterojunction solar cell with an annealing temperature of 250°C was η = 3.66%. PMID:24206942
Annealing effect and photovoltaic properties of nano-ZnS/textured p-Si heterojunction
NASA Astrophysics Data System (ADS)
Ji, Liang-Wen; Hsiao, Yu-Jen; Tang, I.-Tseng; Meen, Teen-Hang; Liu, Chien-Hung; Tsai, Jenn-Kai; Wu, Tien-Chuan; Wu, Yue-Sian
2013-11-01
The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si heterojunction solar cell with an annealing temperature of 250°C was η = 3.66%.
[The spectrum studies of structure characteristics in magma contact metamorphic coal].
Wu, Dun; Sun, Ruo-Yu; Liu, Gui-Jian; Yuan, Zi-Jiao
2013-10-01
The structural parameters evolution of coal due to the influence of intrusions of hot magma was investigated and analyzed. X-ray diffraction and laser confocal microscope Raman spectroscopy were used to test and analyze 4 coal samples undergoing varying contact-metamorphism by igneous magmas in borehole No. 13-4 of Zhuji coal mine, Huainan coalfield. The result showed that coal XRD spectrum showed higher background intensity, with the 26 degrees and 42 degrees nearby apparent graphite diffraction peak. Two significant vibration peaks of coal Raman spectra were observed in the 1 000-2 000 cm(-1) frequency range: broad "D" peak at 1 328-1 369 cm(-1) and sharp "G" peak at 1 564-1 599 cm(-1). With the influence of magma intrusion, the relationship between coal structural parameters and coal ranks was excellent.
NASA Astrophysics Data System (ADS)
de Araujo, T. S.; de Souza, S. O.; de Sousa, E. M. B.
2010-11-01
Biocompatible phosphate materials are used in different applications like bone and dental implants, drug delivery systems and others, but could also be applied in inorganic sunscreens. Using sunscreens is extremely necessary, because long time exposure to sun can cause skin cancer. In this work chemical precipitation method has been used to produce hydroxyapatite. Cr3+, Zn2+ and Fe3+ doped samples were characterized using powder X-Ray Diffraction (XRD) and Optical Absorption techniques. X-ray diffraction measurements confirmed the materials were in the expected crystalline structures. The crystallite size as measured from the X-ray pattern was 23-27 nm (±1). The absorption spectra in the ultraviolet and visible ranges indicate that appropriately doped and sized hydroxyapatite particles may have potential applications as active constituents of sunscreens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea
This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2, U 3O 8 and an intermediate species U 3Omore » 7 in the third material.« less
Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea; ...
2018-01-24
This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2, U 3O 8 and an intermediate species U 3Omore » 7 in the third material.« less
NASA Astrophysics Data System (ADS)
Li, Jing; Liu, Wenlong; Xiao, Dan; Wang, Xinhui
2017-09-01
Oxygen-rich hierarchical porous carbon has been fabricated using pomelo peel fiber as a carbon source via an improved KOH activation method. The morphology and chemical composition of the obtained carbon materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), electron microscopy (EM), Raman spectra and elemental analysis. The unique porous structure with abundant oxygen functional groups is favorable to capacitive behavior, and the as-prepared carbon material exhibits high specific capacitance of 222.6 F g-1 at 0.5 A g-1 in 6 M KOH and superior stability over 5000 cycles. This work not only describes a simple way to prepare high-performance carbon material from the discarded pomelo peel, but also provides a strategy for its disposal issue and contributes to the environmental improvement.
NASA Astrophysics Data System (ADS)
Yang, Dan; Qiu, Wenmei; Xu, Jingcai; Han, Yanbing; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Hong, Bo; Li, Ji; Ge, Hongliang; Wang, Xinqing
2015-12-01
Modifications with different acids (HNO3, H2SO4, HCl and HF, respectively) were introduced to treat the activated carbons (ACs) surface. The microstructures and surface chemical properties were discussed by X-ray diffraction (XRD), thermogravimetric analysis (TGA), ASAP, Raman spectra and Fourier transform infrared (FTIR) spectra. The ACs electrode-based supercapacitors were assembled with 6 mol ṡ L-1 KOH electrolyte. The electrochemical properties were studied by galvanostatic charge-discharge and cyclic voltammetry. The results indicated that although the BET surface area of modified ACs decreased, the functional groups were introduced and the ash contents were reduced on the surface of ACs, receiving larger specific capacitance to initial AC. The specific capacitance of ACs modified with HCl, H2SO4, HF and HNO3 increased by 31.4%, 23%, 21% and 11.6%, respectively.
Synthesis of formamidinium lead iodide perovskite bulk single crystal and its optical properties
NASA Astrophysics Data System (ADS)
Zheng, Hongge; Duan, Junjie; Dai, Jun
2017-07-01
Formamidinium lead iodide (FAPbI3) is a promising hybrid perovskite material for optoelectronic devices. We synthesized bulk single crystal FAPbI3 by a rapid solution crystallization method. X-ray diffraction (XRD) was performed to characterize the crystal structure. Temperature-dependent photoluminescence (PL) spectra of the bulk single crystal FAPbI3 were measured from 10 to 300 K to explain PL recombination mechanism. It shows that near band edge emission blueshifts with the temperature increasing from 10 to 120 K and from 140 K to room temperature, a sudden emission band redshift demonstrates near 140 K because of the phase transition from orthorhombic phase to cubic phase. From the temperature-dependent PL spectra, the temperature coefficients of the bandgap and thermal activation energies of FAPbI3 perovskite are fitted.
Luminescence properties of rare earth doped metal oxide nanostructures: A case of Eu-ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahu, D.; Acharya, B. S.; Panda, N. R., E-mail: nihar@iitbbs.ac.in
2016-05-06
The present study reports the growth and luminescence properties of Eu doped ZnO nanostructures. The experiment has been carried out by synthesizing the materials by simple wet-chemical method. X-ray diffraction (XRD) studies show expansion of ZnO lattice with the incorporation of Eu ions which has been confirmed from the appearance of Eu{sub 2}O{sub 3} as a minor phase in the XRD pattern. The estimation of crystallite size from XRD results matches closely with the results obtained from transmission electron microscopy. Further, these results show the formation of nanosized Eu-ZnO particles of average size around 60 nm stacked on each other. FTIRmore » studies show the presence of both Zn-O and Eu-O modes in the spectra supporting the results obtained from XRD. The interesting results obtained from photoluminescence (PL) measurements show the presence of both band edge emission in UV region and the defect emissions in violet, blue and green region. The appearance of {sup 5}D{sub 0}→{sup 7}F{sub J} transitions of Eu{sup 3+} ions in red region clearly suggests the possible occurrence of energy transfer between the energy states of ZnO host and Eu{sup 3+} ions.« less
NASA Astrophysics Data System (ADS)
Zhang, Xiaoming; Quan, Zewei; Yang, Jun; Yang, Piaoping; Lian, Hongzhou; Lin, Jun
2008-02-01
MF2 (M = Ca,Sr,Ba) nanocrystals (NCs) were synthesized via a solvothermal process in the presence of oleic acid and characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectra, UV/vis absorption spectra, photoluminescence (PL) excitation and emission spectra, and lifetimes, respectively. In the synthetic process, oleic acid as a surfactant played a crucial role in confining the growth and solubility of the MF2 NCs. The as-prepared CaF2, SrF2 and BaF2 NCs present morphologies of truncated octahedron, cube and sheet in a narrow distribution, respectively. Possible growth mechanisms were proposed to explain these results. The as-prepared NCs are highly crystalline and can be well dispersed in cyclohexane to form stable and clear colloidal solutions, which demonstrate strong emission bands centred at 400 nm in photoluminescence (PL) spectra compared with the cyclohexane solvent. The PL properties of the colloidal solutions of the as-prepared NCs can be ascribed to the trap states of surface defects.
Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation
Zhang, Hongjia; Sui, Tan; Daisenberger, Dominik; Fong, Kai Soon
2018-01-01
High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning) or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short). As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated using multiple direction strain data, leading to full in-plane strain evaluation. It is therefore concluded that XRD-DIC provides a reliable and robust method for strain evaluation from 2D powder diffraction data. The XRD-DIC approach simplifies the analysis process by skipping 2D to 1D conversion, and opens new possibilities for robust 2D powder diffraction data analysis for full in-plane strain evaluation. PMID:29543728
NASA Astrophysics Data System (ADS)
Lafuente, B.; Bishop, J. L.; Fenton, L. K.; King, S. J.; Blake, D.; Sarrazin, P.; Downs, R.; Horgan, B. H.
2013-12-01
A field portable X-ray Diffraction (XRD) instrument was used at White Sands National Monument to perform in-situ measurements followed by laboratory analyses of the gypsum-rich dunes and to determine its modal mineralogy. The field instrument is a Terra XRD (Olympus NDT) based on the technology of the CheMin (Chemistry and Mineralogy) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity which is providing the mineralogical and chemical composition of scooped soil samples and drilled rock powders collected at Gale Crater [1]. Using Terra at White Sands will contribute to 'ground truth' for gypsum-bearing environments on Mars. Together with data provided by VNIR spectra [2], this study clarifies our understanding of the origin and history of gypsum-rich sand dunes discovered near the northern polar region of Mars [3]. The results obtained from the field analyses performed by XRD and VNIR spectroscopy in four dunes at White Sands revealed the presence of quartz and dolomite. Their relative abundance has been estimated using the Reference Intensity Ratio (RIR) method. For this study, particulate samples of pure natural gypsum, quartz and dolomite were used to prepare calibration mixtures of gypsum-quartz and gypsum-dolomite with the 90-150μm size fractions. All single phases and mixtures were analyzed by XRD and RIR factors were calculated. Using this method, the relative abundance of quartz and dolomite has been estimated from the data collected in the field. Quartz appears to be present in low amounts (2-5 wt.%) while dolomite is present at percentages up to 80 wt.%. Samples from four dunes were collected and prepared for subsequent XRD analysis in the lab to estimate their composition and illustrate the changes in mineralogy with respect to location and grain size. Gypsum-dolomite mixtures: The dolomite XRD pattern is dominated by an intense diffraction peak at 2θ≈36 deg. which overlaps a peak of gypsum, This makes low concentrations of dolomite difficult to quantify in mixtures with high concentration of gypsum. Dolomite has been detected in some locations at dune 3 as high as 80 wt.%. Gypsum-quartz mixtures: The intensity of the main diffraction peak of quartz at 2θ≈31 deg. decreases progressively with the decrease of the amount of quartz in the mixtures. Samples from dune 1 and 2 show quartz abundance at 5.6 and 2.6 wt.% respectively . [1] Blake et al. Space Sci. Rev. (2012). doi:10.1007/s11214-012-9905-1. [2] King et al. (2013) AGU, submitted. [3] Langevin et al. (2005). Science 307, 1584-1586.
Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst
NASA Astrophysics Data System (ADS)
Han, Lei; Wang, Ping; Zhu, Chengzhou; Zhai, Yueming; Dong, Shaojun
2011-07-01
In this paper, a stable and highly efficient plasmonic photocatalyst, Ag@AgCl, with cube-like morphology, has been successfully prepared via a simple hydrothermal method. Using methylene dichloride as chlorine source in the synthesis can efficiently control the morphology of Ag@AgCl, due to the low release rate of chloride ions. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectra were used to characterize the obtained product. The photocatalytic activity of the obtained product was evaluated by the photodegradation of methyl orange (MO) under visible light irradiation, and it was found, interestingly, that Ag@AgCl exhibits high visible light photocatalytic activity and good stability.In this paper, a stable and highly efficient plasmonic photocatalyst, Ag@AgCl, with cube-like morphology, has been successfully prepared via a simple hydrothermal method. Using methylene dichloride as chlorine source in the synthesis can efficiently control the morphology of Ag@AgCl, due to the low release rate of chloride ions. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectra were used to characterize the obtained product. The photocatalytic activity of the obtained product was evaluated by the photodegradation of methyl orange (MO) under visible light irradiation, and it was found, interestingly, that Ag@AgCl exhibits high visible light photocatalytic activity and good stability. Electronic supplementary information (ESI) available: SEM images of the AgCl samples synthesized by changing the addition amount of PVP and AgNO3. See DOI: 10.1039/c1nr10247h
NASA Astrophysics Data System (ADS)
Krutyakov, Yurii A.; Zherebin, Pavel M.; Kudrinskiy, Alexey A.; Zubavichus, Yan V.; Presniakov, Mikhail Yu; Yapryntsev, Alexey D.; Karabtseva, Anastasia V.; Mikhaylov, Dmitry M.; Lisichkin, Georgii V.
2016-09-01
A simple synthetic procedure for high-stable dispersions of porous composite Ag/AgCl nanoparticles stabilized with amphoteric surfactant sodium tallow amphopolycarboxyglycinate has been proposed for the first time. The prepared samples were characterized by UV-vis spectroscopy, x-ray powder diffraction (XRD), x-ray photoelectron spectroscopy, small area electron diffraction (SAED), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electron probe micro-analysis. In addition, measurements (carried out at the Kurchatov synchrotron radiation source stations) of the Ag K-edge extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) spectra and XRD of the prepared nanoparticles have been performed. The obtained results suggest that small-sized Ag clusters are homogeneously distributed in the mass of the AgCl nanoparticle (~80 nm) formed during the synthesis. The Ag/AgCl dispersion demonstrates photocatalytic activity (with respect to methyl orange) and high bactericidal activity against E. coli. This activity is superior to the activity of both Ag and AgCl nanoparticles stabilized by the same surfactant. Thus, porous composite Ag/AgCl nanoparticles can be used as a multifunctional agent that is able to remove both pollutants and bacterium from water.
NASA Astrophysics Data System (ADS)
Larbi, T.; Ouni, B.; Gantassi, A.; Doll, K.; Amlouk, M.; Manoubi, T.
2017-12-01
Chromium oxide (Cr2O3) thin films have been synthesized on glass substrates by the spray pyrolysis technique. The structural, morphological and optical properties of the sample have been studied by X-ray diffraction (XRD), Raman spectroscopy, FTIR spectroscopy, scanning probe microscopy and UV-vis spectroscopy respectively. X-ray diffraction results reveal that as deposited film is polycrystalline with a rhombohedral corundum structure and a preferential orientation of the crystallites along the (1 0 4) direction. IR and Raman spectra were recorded in the 100-900 cm-1 range and the observed modes were analysed and assigned to different normal modes of vibration. The direct optical band gap energy value calculated from the transmittance spectra of as-deposited thin film is about 3.38 eV. We employ first principles calculations based on density functional theory (DFT) with the B3LYP hybrid functional and a coupled perturbed Hartree-Fock/Kohn-Sham approach (CPHF/KS). We study the electronic structure, optimum geometry, and IR and Raman spectra of ferromagnetically and antiferromagnetically ordered Cr2O3. The computed results are consistent with the experimental measurements, and provide complete vibrational assignment, for the characterization of Cr2O3 thin film materials which can be used in photocatalysis and gas sensors.
Ajitha, B; Reddy, Y Ashok Kumar; Reddy, P Sreedhara
2015-05-01
Silver nanoparticles (AgNPs) were prepared through green route with the aid of Momordica charantia leaf extract as both reductant and stabilizer. X-ray diffraction pattern (XRD) and selected area electron diffraction (SAED) fringes revealed the structure of AgNPs as face centered cubic (fcc). Morphological studies elucidate the nearly spherical AgNPs formation with particle size in nanoscale. Biosynthesized AgNPs were found to be photoluminescent and UV-Vis absorption spectra showed one surface plasmon resonance peak (SPR) at 424nm attesting the spherical nanoparticles formation. XPS study provides the surface chemical nature and oxidation state of the synthesized nanoparticles. FTIR spectra ascertain the reduction and capping nature of phytoconstituents of leaf extract in AgNPs synthesis. Further, these AgNPs showed effective antimicrobial activity against tested pathogens and thus applicable as potent antimicrobial agent. In addition, the synthesized AgNPs were observed to have an excellent catalytic activity on the reduction of methylene blue by M. charantia which was confirmed by the decrement in maximum absorbance values of methylene blue with respect to time and is ascribed to electron relay effect. Copyright © 2015 Elsevier B.V. All rights reserved.
Structural and optical properties of lithium sodium borate glasses doped with Sm3+ ions
NASA Astrophysics Data System (ADS)
Dawaud, R. S. E. S.; Hashim, S.; Alajerami, Y. S. M.; Mhareb, M. H. A.; Maqableh, M. M.; Tamchek, N.
2014-07-01
Absorption and emission spectra of Sm3+ doped lithium sodium borate (LNB) have been reported. The samples were prepared by the melt-quenching technique and characterized by X-ray diffraction (XRD), diffraction thermal analysis (DTA), Fourier transforms infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FESEM). From the thermo-grams spectrum, glass transition (Tg), crystallization (Tc) and melting temperatures (Tm) have been evaluated. Direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. These glasses have shown strong nine absorption bands with hypersensitive transition at 1221 nm (6H5/2→4H3/2) and five emission bands for the transition at 4I7/2→6H13/2 (green color), 4I7/2→6H7/2 (orange color), 4I7/2→6H9/2 (orange color), 4I7/2→6H11/2 (red color) and 4I7/2→6H13/2 (red color) with performing an excitation of 400 nm. The oscillator strengths, refractive index, ions concentration, polaron radius and other parameters have been calculated for each dopant.
Grzelak, Adam; Gawraczyński, Jakub; Jaroń, Tomasz; Somayazulu, Maddury; Derzsi, Mariana; Struzhkin, Viktor; Grochala, Wojciech
2017-05-15
The X-ray diffraction data collected up to ca. 56 GPa and the Raman spectra measured up to 74.8 GPa for AgO, or Ag I Ag III O 2 , which is a prototypical mixed valence (disproportionated) oxide, indicate that two consecutive phase transitions occur: the first-order phase transition occurs between 16.1 GPa and 19.7 GPa, and a second-order phase transition occurs at ca. 40 GPa. All polymorphic forms host the square planar [Ag III O 4 ] units typical of low-spin Ag III . The disproportionated Imma form persists at least up to 74.8 GPa, as indicated by Raman spectra. Theoretical hybrid density functional theory (DFT) calculations show that the first-order transition is phonon-driven. AgO stubbornly remains disproportionated up to at least 100 GPa-in striking contrast to its copper analogue-and the fundamental band gap of AgO is ∼0.3 eV at this pressure and is weakly pressure-dependent. Metallization of AgO is yet to be achieved.
Van Viet, Pham; Sang, Truong Tan; Bich, Nguyen Ho Ngoc; Thi, Cao Minh
2018-05-01
Silver nanoparticles (Ag NPs) were synthesized by an improved green synthesis method via a photo-reduction process using low-power UV light in the presence of poly (vinyl pyrrolidone) (PVP) as the surface stabilizer. The effective synthesis process was achieved by optimized synthesis parameters such as C 2 H 5 OH: H 2 O ratio, AgNO 3 : PVP ratio, pH value, and reducing time. The formation of Ag NPs was identified by Ultraviolet-visible (UV-vis) absorption spectra, X-ray diffraction pattern (XRD) and Fourier transform infrared spectroscopy (FTIR) spectra. Ag NPs were crystallized according to (111), (200), and (220) planes of the face-centered cubic. The transmission electron microscopy (TEM) image showed that the morphology of Ag NPs was uniform spherical with the average particle size of 16 ± 2 nm. The results of XRD pattern, TEM image, and dynamic light scattering (DLS) analysis proved that Ag crystals with uniform size were formed after the reduction process. The mechanism of the formation of Ag NPs was proposed and confirmed by FTIR spectra. The antibacterial activity of Ag NPs against Escherichia coli (E. coli) was tested and approximately 100% of E. coli was eliminated by Ag NPs 35 ppm. In the future, this study can become a new process for the application of Ag NPs as an antibiotic in the industrial scale. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tahir, Dahlang, E-mail: dtahir@fmipa.unhas.ac.id; Bakri, Fahrul; Liong, Syarifuddin
We have studied the molecular properties, structural properties, and chemical composition of composites by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and X-ray fluorescence (XRF) spectroscopy, respectively. FTIR spectra shows absorption band of hydroxyl group (-OH), methyl group (-CH{sub 3}) and aromatic group (C-C). The absorption band for aromatic group (C-C) shows the formation of carbonaceous in composites. XRF shows chemical composition of composites, which the main chemicals are SO{sub 3}, Cl, and ZnO. The loss on ignition value (LOI) of activated charcoal indicates high carbonaceous matter. The crystallite size for diffraction pattern from hydrogel polymer is aboutmore » 17 nm and for activated charcoal are about 19 nm. The crystallite size of the polymer is lower than that of activated charcoal, which make possible of the particle from filler in contact with each other to form continuous conducting polymer through polymer matrix.« less
NASA Astrophysics Data System (ADS)
Tripathi, R. M.; Gupta, Rohit Kumar; Shrivastav, Archana; Singh, M. P.; Shrivastav, B. R.; Singh, Priti
2013-09-01
The present study demonstrates the biosynthesis of silver nanoparticles using Trichoderma koningii and evaluation of their antibacterial activity. Trichoderma koningii secretes proteins and enzymes that act as reducing and capping agent. The biosynthesized silver nanoparticles (AgNPs) were characterized by UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM) and x-ray diffraction (XRD). UV-Vis spectra showed absorbance peak at 413 nm corresponding to the surface plasmon resonance of silver nanoparticles. DLS was used to find out the size distribution profile. The size and morphology of the AgNPs was determined by TEM, which shows the formation of spherical nanoparticles in the size range of 8-24 nm. X-ray diffraction showed intense peaks corresponding to the crystalline silver. The antibacterial activity of biosynthesized AgNPs was evaluated by growth curve and inhibition zone and it was found that the AgNPs show potential effective antibacterial activity.
NASA Astrophysics Data System (ADS)
Chavan, Apparao R.; Chilwar, R. R.; Shisode, M. V.; Hivrekar, Mahesh M.; Mande, V. K.; Jadhav, K. M.
2018-05-01
The nanocrystalline NiFe2O4 thin film has been prepared using a spray pyrolysis technique on glass substrate. The prepared thin film was characterized by using X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR), and Field Emission-Scanning Electron Microscopy (FE-SEM) characterization techniques for the structural and microstructural analysis. The magnetic property was measured using vibrating sample magnetometer (VSM) at room temperature. X-ray diffraction studies show the formation of single phase spinel structure of the thin film. The octahedral and tetrahedral vibration in the sample was studied by Fourier transform infrared (FT-IR) spectra. Magnetic hysteresis loop was recorded for thin film at room temperature. At 15 kOe, saturation magnetization (Ms) was found to increase while coercivity (Hc) decreases with thickness of the NiFe2O4 thin film.
NASA Astrophysics Data System (ADS)
Ruddyard, A. A.; Soejoko, D. S.; Nurlely
2017-07-01
Carbonated hydroxyapatite is a biomaterial with high biocompatibility with human bone, moreso than regular hydroxyapatite, making it an acceptable synthetic bone graft material. The purpose of this research is to study the effect of sintering temperature and time on carbonated hydroxyapatite samples synthesized using a hydrothermal method with CaCO3 as one of its components. The samples are then characterized using Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Scanning Electron Microscope. Infrared (IR) spectra showed that the CO3 content in each sample is proportional to the amount of CaCO3 used during synthesis. X-Ray Diffraction (XRD) patterns showed an increase in apatite content and a decrease in calcite content as sintering temperature and time increases, with temperature increases having a stronger effect on the samples than time increases. Calcite disappears completely after sintering at 900 °C for 2 hours.
Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M
2014-04-01
X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.
Mineralogy by X-ray Diffraction on Mars: The Chemin Instrument on Mars Science Laboratory
NASA Technical Reports Server (NTRS)
Vaniman, D. T.; Bristow, T. F.; Bish, D. L.; Ming, D. W.; Blake, D. F.; Morris, R. V.; Rampe, E. B.; Chipera, S. J.; Treiman, A. H.; Morrison, S. M.;
2014-01-01
To obtain detailed mineralogy information, the Mars Science Laboratory rover Curiosity carries CheMin, the first X-ray diffraction (XRD) instrument used on a planet other than Earth. CheMin has provided the first in situ XRD analyses of full phase assemblages on another planet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cummins, Dustin Ray; Vogel, Sven C.; Hollis, Kendall Jon
2016-10-18
This report uses neutron diffraction to investigate the crystal phase composition of uranium-molybdenum alloy foils (U-10Mo) for the CONVERT MP-1 Reactor Conversion Project, and determines the effect on alpha-uranium contamination following the deposition of a Zr metal diffusion layer by various methods: plasma spray deposition of Zr powders at LANL and hot co-rolling with Zr foils at BWXT. In summary, there is minimal decomposition of the gamma phase U-10Mo foil to alpha phase contamination following both plasma spraying and hot co-rolling. The average unit cell volume, i.e. lattice spacing, of the Zr layer can be mathematically extracted from the diffractionmore » data; co-rolled Zr matches well with literature values of bulk Zr, while plasma sprayed Zr shows a slight increase in the lattice spacing, indicative of interstitial oxygen in the lattice. Neutron diffraction is a beneficial alternative to conventional methods of phase composition, i.e. x ray diffraction (XRD) and destructive metallography. XRD has minimal penetration depth in high atomic number materials, particularly uranium, and can only probe the first few microns of the fuel plate; neutrons pass completely through the foil, allowing for bulk analysis of the foil composition and no issues with addition of cladding layers, as in the final, aluminum-clad reactor fuel plates. Destructive metallography requires skilled technicians, cutting of the foil into small sections, hazardous etching conditions, long polishing and microscopy times, etc.; the neutron diffraction system has an automated sample loader and can fit larger foils, so there is minimal analysis preparation; the total spectrum acquisition time is ~ 1 hour per sample. The neutron diffraction results are limited by spectra refinement/calculation times and the availability of the neutron beam source. In the case of LANSCE at Los Alamos, the beam operates ~50% of the year. Following the lessons learned from these preliminary results, optimizations to the process and analysis can be made, and neutron diffraction can become a viable and efficient technique for gamma/alpha phase composition determination for nuclear fuels.« less
Mineral and Lithology Mapping of Drill Core Pulps Using Visible and Infrared Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, G. R., E-mail: G.Taylor@unsw.edu.au
2000-12-15
A novel approach for using field spectrometry for determining both the mineralogy and the lithology of drill core pulps (powders) is developed and evaluated. The methodology is developed using material from a single drillhole through a mineralized sequence of rocks from central New South Wales. Mineral library spectra are used in linear unmixing routines to determine the mineral abundances in drill core pulps that represent between 1 m and 3 m of core. Comparison with X-Ray Diffraction (XRD) analyses shows that for most major constituents, spectrometry provides an estimate of quantitative mineralogy that is as reliable as that provided bymore » XRD. Confusion between the absorption features of calcite and those of chlorite causes the calcite contents determined by spectrometry to be unreliable. Convex geometry is used to recognize the spectra of those samples that are extreme and are representative of unique lithologies. Linear unmixing is used to determine the abundance of these lithologies in each drillhole sample and these abundances are used to interpret the geology of the drillhole. The interpreted geology agrees well with conventional drillhole logs of the visible geology and photographs of the split core. The methods developed provide a quick and cost-effective way of determining the lithology and alteration mineralogy of drill core pulps.« less
Synthesis of Hierarchical Self-Assembled CuO and Their Structure-Enhanced Photocatalytic Performance
NASA Astrophysics Data System (ADS)
Wang, Dagui; Yan, Bing; Song, Caixiong; Ye, Ting; Wang, Yongqian
2018-01-01
Hierarchical self-assembled CuO hollow microspheres with superior photocatalytic performance are synthesized via a simple hydrothermal process in the presence of cationic surfactants (cetyltrimethylammonium bromide, CTAB). The structure, morphology, and optical absorption performance of CuO samples prepared with different surfactants including CTAB, nonionic surfactant (polyvinylpyrrolidone, PVP) and anionic surfactant (sodium dodecyl sulfate, SDS) are characterized by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible (UV-vis) absorption spectra. Moreover, the photocatalytic performances of the CuO samples are evaluated by the photo-degradation of a simulative contaminant methylene blue. The XRD patterns and FESEM images demonstrate that the category of surfactants have effects on the phase structure and morphology of CuO. Compared with bulk CuO (1.20 eV at room temperature), the band gap of CuO microspheres prepared with different surfactants including CTAB, PVP and SDS are measured at 2.16 eV, 2.29 eV, 2.44 eV, respectively, which exhibits a blue shift in the UV-vis spectra. The synthesized hierarchical self-assembled CuO hollow microspheres reveal commendable photocatalytic activity, in which the photo-degradation rate could rise to 94.1%. Additionally, a reasonable growth mechanism of CuO microspheres synthesized with different surfactants is discussed in detail.
Synthesis and characterization of PVK/AgNPs nanocomposites prepared by laser ablation.
Abd El-Kader, F H; Hakeem, N A; Elashmawi, I S; Menazea, A A
2015-03-05
Nanocomposites of Poly (n-vinylcarbazole) PVK/Ag nanoparticles were prepared by laser ablation of a silver plate in aqueous solution of chlorobenzene. The influences of laser parameters such as; time of irradiation, source power and wavelength (photon energy) on structural, morphological and optical properties have been investigated using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Ultraviolet-visible (UV-Vis) and Photoluminescence (PL). A correlation between the investigated properties has been discussed. XRD, TEM and PL indicated that the complexation between AgNPs and PVK in the composite system is possible. Only the reflection peak at 2θ=38° of AgNPs appeared in the composite nanoparticles while the other reflection peaks were destroyed. The nanoparticles shape and size distribution were evaluated from TEM images. TEM analysis revealed a lower average particle size at long laser irradiation time 40min and short laser wavelength 532nm together with high laser power 570mW. From UV-Visible spectra the values of absorption coefficient, absorption edge and energy tail were calculated. The reduction of band tail value with increasing the laser ablation parameters confirms the decrease of the disorder in such composite system. The PL and UV-Vis. spectra confirm that nanocomposite samples showed quantum confinement effect. Copyright © 2014 Elsevier B.V. All rights reserved.
Optical and dielectric properties of NiFe2O4 nanoparticles under different synthesized temperature
NASA Astrophysics Data System (ADS)
Parishani, Marziye; Nadafan, Marzieh; Dehghani, Zahra; Malekfar, Rasoul; Khorrami, G. H. H.
In this research, NiFe2O4 nanoparticles was prepared via the simple sol-gel route, using different sintering temperature. This nanoparticle was characterized via X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM), and FTIR spectra. The XRD patterns show by increasing the synthesized temperature, the intensity, and broadening of peaks are decreased so the results are more crystallization and raising the size of nanoparticles. The size distribution in the histogram of the NiFe2O4 nanoparticles is 42, 96, and 315 nm at 750 °C, 850 °C, and 950 °C, respectively. The FTIR spectra were evaluated using Kramers-Kronig method. Results approved the existing of certain relations between sintering temperatures and grain size of nanoparticles. By raising the temperature from 750 °C to 950 °C, the grain size was increased from 70 nm to 300 nm and the optical constants of nanoparticles were strongly related to synthesizing temperature as well. Since by increasing temperature, both real/imaginary parts of the refractive index and dielectric function were decreased. Consequently, the transversal (TO) and longitudinal (LO) phonon frequencies are detected. The TO and LO frequencies have shifted to red frequencies by increasing reaction temperature.
Optical and structural investigation of Dy3+-Nd3+ co-doped in magnesium lead borosilicate glasses.
Rao, T G V M; Rupesh Kumar, A; Neeraja, K; Veeraiah, N; Rami Reddy, M
2014-01-24
MgO-PbO-B2O3-SiO2-Nd2O3-Dy2O3 glasses are prepared by melt-quenching technique. The samples are characterized by X-ray diffraction (XRD), optical absorption, luminescence and Fourier transform infrared (FT-IR) spectral studied. XRD analysis evidently indicates that the prepared samples are fully amorphous nature. From the optical absorption spectra, the bonding environment surrounding the Dy(3+) and their energy level scheme in glass network is analyzed. Enhancement of Dy(3+) emission by non-radiative energy transfers from Nd(3+) has been observed here. The samples emits intensive bluish yellow color from the (4)F9/2→(6)H15/2, (6)H13/2 transition of Dy(3+) ions in these glasses which are nearer to white light and it is also supported by the chromaticity color coordinates. The FT-IR spectra reveal that network connectivity is increased with replacement of bonds B-O-B, Si-O-Si by more resistant B-O-Si bonds with gradually increasing the content of Dy(3+) ions in the glass network. Along with spectroscopic parameters some physical parameters like density, refractive index etc. are measured for the glasses. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sharma, Akash; Sahoo, Pooja; Thangavel, R.
2018-05-01
In this work, ZnO nanorods (NRs) were fabricated, on cleaned ITO substrates by using sol-gel spin coating followed by hydrothermal technique. In order to coat zinc sulphide (ZnS) layers on the earlier prepared NRs a facile ion-exchange approach was adopted. The ZnO@ZnS nanostructures so prepared were characterised by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV-visible spectroscopy and photoelectrochemical study. XRD spectra confirmed the hexagonal wurtzite structure of all the samples along with preferential c-axis orientation. Further it was also observed from the FESEM images that sulfidation process doesn't affect the structure of ZnO NRs arrays. From the absorption spectra it can be clearly observed that the light absorbing property has increased in within the visible range due to the formation of ZnS layer on the ZnO nanostructures, which is not possible for either of the material individually. The cyclic voltammetry results indicates the enhancement in photocurrent density after illumination for the synthesized nanostructures. The electrocatalytic behaviour of ZnO@ZnS electrodes have been studied using a 3-electrode system in presence of 0.1M NaOH electrolyte solution with respect to an Ag/AgCl reference electrode.
NASA Astrophysics Data System (ADS)
Shin, Eunhye; Jin, Saera; Kim, Jiyoon; Chang, Sung-Jin; Jun, Byung-Hyuk; Park, Kwang-Won; Hong, Jongin
2016-08-01
K-doped TiO2 nanowire networks were prepared by the corrosion reaction of Ti nanoparticles in an alkaline (potassium hydroxide: KOH) solution. The prepared nanostructures were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD) and photoluminescence (PL) spectra. Their sunlight-driven photocatalytic activity was also investigated with differently charged dye molecules, such as methylene blue, rhodamine B and methyl orange. The adsorption of the dye molecules on the photocatalyst surface would play a critical role in their selective photodegradation under sunlight illumination.
Influence of Ag substitution on structural and dielectric properties of TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
Ali, T.; Ahmed, Ateeq; Siddique, M. Naseem; Aftab, Tabish; Tripathi, P.
2018-04-01
In this paper, we report the structural, electrical and dielectric properties of Ag-substituted TiO2 nanoparticles synthesized by sol-gel method. The X-ray diffraction (XRD) spectra revealed that the synthesized nanoparticles are pure and crystalline in nature and showing tetragonal anatase phase of TiO2. TEM micrograph shows that shapes of the nanoparticles are non-spherical. We have also studied the dielectric properties and in relation to it the dielectric constants, dielectric loss and A.C. conductivity have been studied as the function of frequency and composition of iron. The above theory may be explained by `Maxwell Wagner Model'.
New polyurethane nanocomposites based on soya oil.
Mohammed, Issam Ahmed; Abd Khadir, Nurul Khizrien; Jaffar Al-Mulla, Emad Abbas
2014-01-01
New polyurethane (PU) nanocomposites were prepared from a dispersion of 0 - 5% montmorillonite (MMT) clay with isocyanate and soya oil polyol that was synthesized via transesterification of triglycerides to reduce petroleum dependence. FT-IR spectra indicate the presence of hydrogen bonding between nanoclay and the polymer matrix, whereas the exfoliated structure of clay layers was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Optical microscopy, mechanical and thermal analyses were done to investigate significant improvement of the nanocomposites. The results showed PU-3% nanoclay (NC) showed optimum results in mechanical properties such as tensile and flexural strength but the lowest in impact strength.
NASA Astrophysics Data System (ADS)
Li, Jianzhu; Xing, Chao; Qiao, Hengyang; Chen, Huiling; Yang, Jun; Dong, Helei; Shi, Feng
2017-07-01
Zn-Rich non-stoichiometric Ba(Zn1/3Nb2/3)1-x Zn x O3 (BZNZ) (x = 0.01, 0.02, 0.03, 0.04) ceramics were prepared by the solid-state reaction method at 1500 °C for 2 h. The crystal structures and morphologies were analyzed by x-ray diffraction (XRD) and scanning electron microscopy. The vibration modes were obtained by Raman scattering spectroscopy and Fourier transform far-infrared (FTIR) reflectance spectroscopy. Rietveld refinement was performed for the XRD data. The relationship between crystal structures, dielectric properties, and phonon modes was analyzed in detail. XRD results show that the main phase is Ba(Zn1/3Nb2/3)O3. The Raman results displayed that the ordering structure of BZNZ transformed from 1:2 to 1:1 when x changed from 0.02 to 0.04, and the dielectric losses have a positive correlation with the full width at half maximum values of the A 1g(O) and E g(O) modes. The FTIR spectra were analyzed by the Kramers-Krönig method to obtain the real parts (ɛ‧) and the imaginary parts (ɛ″) of the dielectric constant. When x = 0.02, the sample possesses uniform grains with clear boundaries and the lowest dielectric loss value (tanδ = 5.5 × 10‒4) due to the largest packing fraction.
Habibi, Mohammad Hossein; Parhizkar, Janan
2015-11-05
Cobalt ferrite nano-composite was prepared by hydrothermal route using cobalt nitrate, iron nitrate and ethylene glycol as chelating agent. The nano-composite was coated on glass by Doctor Blade method and annealed at 300 °C. The structural, optical, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy (UV-Vis DRS). Powder XRD analysis confirmed formation of CoFe2O4 spinel phase. The estimated particle size from FESEM data was 50 nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra was 1.3 eV. Photocatalytic degradation of Reactive Red 4 as an azo textile was investigated in aqueous solution under irradiation showed 68.0% degradation of the dye within 100 min. The experimental enhanced activity compare to pure Fe2O3 can be ascribed to the formation of composite, which was mainly attributable to the transfer of electron and hole to the surface of composite and hinder the electron hole recombination. Copyright © 2015 Elsevier B.V. All rights reserved.
CoO doping effects on the ZnO films through EBPDV technique
NASA Astrophysics Data System (ADS)
Inês Basso Bernardi, Maria; Queiroz Maia, Lauro June; Antonelli, Eduardo; Mesquita, Alexandre; Li, Maximo Siu; Gama, Lucianna
2014-03-01
Nanometric Zn1-xCo xO (x = 0.020, 0.025 and 0.030 in mol.%) nanopowders were obtained from low temperature calcination of a resin prepared using the Pechini's method. Firing the Zn1-xCoxO resin at 400 °C/2 h a powder with hexagonal structure was obtained as measured by X-ray diffraction (XRD). The powder presented average particle size of 40 nm observed by field emission scanning electronic microscopy (FE-SEM) micrographs and average crystallite size of 10 nm calculated from the XRD using Scherrer's equation. Nanocrystalline Zn1-xCo xO films with good homogeneity and optical quality were obtained with 280-980 nm thicknesses by electron beam physical vapour deposition (EBPVD) under vacuum onto silica substrate at 25 °C. Scanning electron microscopy with field emission gun showed that the film microstructure is composed by spherical grains and some needles. In these conditions of deposition the films presented only hexagonal phase observed by XRD. The UV-visible-NIR and diffuse reflectance properties of the films were measured and the electric properties were calculated using the reflectance and transmittance spectra.
Structural, magnetic and electronic structural properties of Mn doped CeO2 nanoparticles
NASA Astrophysics Data System (ADS)
Kumari, Kavita; Vij, Ankush; Hashim, Mohd.; Chae, K. H.; Kumar, Shalendra
2018-05-01
Nanoparticles of Ce1-xMnxO2, (x=0.0, 0.01, and 0.05) have been synthesized by using co-precipitation method, and then characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), near edge x-ray absorption fine structure (NEXAFS) spectroscopy and dc magnetization measurements. XRD results clearly showed that the all the samples have single phase nature and exclude the presence of any secondary phase. The average particle size calculated using XRD TEM measurements found to decrease with increase in Mn doping in the range of 4.0 - 9.0 nm. The structural parameters such as strain, interplaner distance and lattice parameter is observed to decrease with increase in doping. The morphology of Ce1-xMnxO2 nanoparticles measured using TEM micrographs indicate that nanoparticle have spherical shape morphology. Magnetic hysteresis curve for Ce1-xMnxO2, (x = 0.0, 0.01, and 0.05) confirms the ferromagnetic ordering room temperature. The value of saturation magnetization is observed to decrease with increase in temperature from 10 K to 300 K. The NEXAFS spectra measured at Ce M4,5 edge reveals that Ce-ions are in +4 valance state.
NASA Astrophysics Data System (ADS)
Santoshkumar, B.; Biswas, Amrita; Kalyanaraman, S.; Thangavel, R.; Udayabhanu, G.; Annadurai, G.; Velumani, S.
2017-06-01
Magnesium doped zinc oxide nanorod arrays on zinc oxide seed layers were grown by hydrothermal method. X-ray diffraction (XRD) patterns revealed the growth orientation along the preferential (002) direction. The hexagonal morphology was revealed from the field emission scanning electron microscope (FESEM) images. The elemental composition of the samples was confirmed by energy dispersive x-ray analysis spectra (EDS) and mapping dots. Carrier concentration, resistivity and mobility of the samples were obtained by Hall measurements. I-V characteristic curve confirmed the increase in resistivity upon doping. Photoluminescence (PL) spectra exposed the characteristic of UV emission along with defect mediated visible emission in the samples. Electrochemical impedance spectroscopy and cyclic voltammetry were undertaken to study the charge transport property. Owing to the change in the structural parameters and defect concentration the electrical properties of the doped samples were altered.
NASA Astrophysics Data System (ADS)
Shojaee, S. A.; Harriman, T. A.; Han, G. S.; Lee, J.-K.; Lucca, D. A.
2017-07-01
We examine the effects of substrates on the low temperature photoluminescence (PL) spectra and phase transition in methylammonium lead iodide hybrid perovskite (CH3NH3PbI3) thin films. Structural characterization at room temperature with X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy indicated that while the chemical structure of films deposited on glass and quartz was similar, the glass substrate induced strain in the perovskite films and suppressed the grain growth. The luminescence response and phase transition of the perovskite thin films were studied by PL spectroscopy. The induced strain was found to affect both the room temperature and low temperature PL spectra of the hybrid perovskite films. In addition, it was found that the effects of the glass substrate inhibited a tetragonal to orthorhombic phase transition such that it occurred at lower temperatures.
NASA Astrophysics Data System (ADS)
Ma, Zhijun; Ji, Huijiao; Tan, Dezhi; Dong, Guoping; Teng, Yu; Zhou, Jiajia; Guan, Miaojia; Qiu, Jianrong; Zhang, Ming
2011-07-01
In this paper, we report on a novel strategy for the preparation of silver nanoparticle-doped SiO2 microspheres (Ag-SMSs) with an interesting strawberry-like morphology using a simple and efficient electrospraying method. SEM (scanning electron microscopy), TEM (transmission electron microscopy), XRD (x-ray diffraction), EDS (energy-dispersive spectroscopy) and UV-vis spectra (ultraviolet-visible spectra) were applied to investigate the morphology, structure, composition and optical properties of the hybrid microspheres, and E. coli (Escherichia coli) was used as a model microbe to evaluate their antibacterial ability. The results showed that the Ag-SMSs were environmentally stable and washing resistant. The Ag-SMSs exhibited effective inhibition against proliferation of E. coli, and their antibacterial ability could be well preserved for a long time. The environmental stability, washing resistance, efficient antibacterial ability and simple but productive preparation method endowed the Ag-SMSs with great potential for practical biomedical applications.
Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability.
Qian, Wang; Wang, Haiqing; Chen, Jin; Kong, Yan
2015-04-14
Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was successfully synthesized via one-step hydrothermal method. The material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with spherical morphology, narrow pore size distribution and high specific surface area. Most of vanadium and iron atoms existing as tetrahedral V 4+ and Fe 3+ species were co-doped into the silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 exhibited improved hydrothermal stability compared with the pure MCM-48.
Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability
Qian, Wang; Wang, Haiqing; Chen, Jin; Kong, Yan
2015-01-01
Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was successfully synthesized via one-step hydrothermal method. The material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with spherical morphology, narrow pore size distribution and high specific surface area. Most of vanadium and iron atoms existing as tetrahedral V4+ and Fe3+ species were co-doped into the silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 exhibited improved hydrothermal stability compared with the pure MCM-48. PMID:28788030
Biogenic silver nanoparticles: efficient and effective antifungal agents
NASA Astrophysics Data System (ADS)
Netala, Vasudeva Reddy; Kotakadi, Venkata Subbaiah; Domdi, Latha; Gaddam, Susmila Aparna; Bobbu, Pushpalatha; Venkata, Sucharitha K.; Ghosh, Sukhendu Bikash; Tartte, Vijaya
2016-04-01
Biogenic synthesis of silver nanoparticles (AgNPs) by exploiting various plant materials is an emerging field and considered green nanotechnology as it involves simple, cost effective and ecofriendly procedure. In the present study AgNPs were successfully synthesized using aqueous callus extract of Gymnema sylvestre. The aqueous callus extract treated with 1nM silver nitrate solution resulted in the formation of AgNPs and the surface plasmon resonance (SPR) of the formed AgNPs showed a peak at 437 nm in the UV Visible spectrum. The synthesized AgNPs were characterized using Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and X-ray diffraction spectroscopy (XRD). FTIR spectra showed the peaks at 3333, 2928, 2361, 1600, 1357 and 1028 cm-1 which revealed the role of different functional groups possibly involved in the synthesis and stabilization of AgNPs. TEM micrograph clearly revealed the size of the AgNPs to be in the range of 3-30 nm with spherical shape and poly-dispersed nature; it is further confirmed by Particle size analysis that the stability of AgNPs is due its high negative Zeta potential (-36.1 mV). XRD pattern revealed the crystal nature of the AgNPs by showing the braggs peaks corresponding to (111), (200), (220) and (311) planes of face-centered cubic crystal phase of silver. Selected area electron diffraction pattern showed diffraction rings and confirmed the crystalline nature of synthesized AgNPs. The synthesized AgNPs exhibited effective antifungal activity against Candida albicans, Candida nonalbicans and Candida tropicalis.
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2009-01-01
A method provides X-ray diffraction (XRD) data suitable for integral detection of a twin defect in a strained or lattice-matched epitaxial material made from components having crystal structures having symme try belonging to different space groups. The material is mounted in a n X-ray diffraction (XRD) system. In one embodiment, the XRD system's goniometer angle Omega is set equal to (Theta(sub B)-Beta) where The ta(sub B) is a Bragg angle for a designated crystal plane of the allo y that is disposed at a non-perpendicular orientation with respect to the {111) crystal plane, and Beta is the angle between the designate d crystal plane and a { 111 } crystal plane of one of the epitaxial components. The XRD system's detector angle is set equal to (Theta(su b B)+Beta). The material can be rotated through an angle of azimuthal rotation Phi about the axis aligned with the material. Using the det ector, the intensity of the X-ray diffraction is recorded at least at the angle at which the twin defect occurs.
Liu, Yongliang; Thibodeaux, Devron; Gamble, Gary; Bauer, Philip; VanDerveer, Don
2012-08-01
Despite considerable efforts in developing curve-fitting protocols to evaluate the crystallinity index (CI) from X-ray diffraction (XRD) measurements, in its present state XRD can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous fraction in a sample. The greatest barrier to establishing quantitative XRD is the lack of appropriate cellulose standards, which are needed to calibrate the XRD measurements. In practice, samples with known CI are very difficult to prepare or determine. In a previous study, we reported the development of a simple algorithm for determining fiber crystallinity information from Fourier transform infrared (FT-IR) spectroscopy. Hence, in this study we not only compared the fiber crystallinity information between FT-IR and XRD measurements, by developing a simple XRD algorithm in place of a time-consuming and subjective curve-fitting process, but we also suggested a direct way of determining cotton cellulose CI by calibrating XRD with the use of CI(IR) as references.
Remote X-Ray Diffraction and X-Ray Fluorescence Analysis on Planetary Surfaces
NASA Technical Reports Server (NTRS)
Blake, David F.; DeVincenzi, D. (Technical Monitor)
1999-01-01
The legacy of planetary X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) began in 1960 when W. Parish proposed an XRD instrument for deployment on the moon. The instrument was built and flight qualified, but the Lunar XRD program was cancelled shortly before the first human landing in 1969. XRF chemical data have been collected in situ by surface landers on Mars (Viking 1 & 2, Pathfinder) and Venus (Venera 13 & 14). These highly successful experiments provide critical constraints on our current understanding of surface processes and planetary evolution. However, the mineralogy, which is more critical to planetary surface science than simple chemical analysis, will remain unknown or will at best be imprecisely constrained until X-ray diffraction (XRD) data are collected. Recent progress in X-ray detector technology allows the consideration of simultaneous XRD (mineralogic analysis) and high-precision XRF (elemental analysis) in systems miniaturized to the point where they can be mounted on fixed landers or small robotic rovers. There is a variety of potential targets for XRD/XRF equipped landers within the solar system, the most compelling of which are the poles of the moon, the southern highlands of Mars and Europa.
Facile synthesis of one dimensional ZnO nanostructures for DSSC applications
NASA Astrophysics Data System (ADS)
Marimuthu, T.; Anandhan, N.
2016-05-01
Development of zinc oxide (ZnO) nanostructure based third generation dye sensitized solar cell is interesting compared to conventional silicon solar cells. ZnO nanostructured thin films were electrochemically deposited onto fluorine doped tin oxide (FTO) glass substrate. The effect of ethylene-diamine-tetra-acetic acid (EDTA) on structural, morphological and optical properties is investigated using X-ray diffraction (XRD) meter, field emission scanning electron microscope (FE-SEM) and micro Raman spectroscopy. XRD patterns reveal that the prepared nanostructures are hexagonal wutrzite structures with (101) plane orientation, the nanostructure prepared using EDTA exhibits better crystallinity. FE-SEM images illustrate that the morphological changes are observed from nanorod structure to cauliflower like structure as EDTA is added. Micro Raman spectra predict that cauliflower like structure possesses a higher crystalline nature with less atomic defects compared to nanorod structures. Dye sensitized solar cell (DSSC) is constructed for the optimized cauliflower structure, and open circuit voltage, short circuit density, fill factor and efficiency are estimated from the J-V curve.
Estimation of lattice strain in nanocrystalline RuO2 by Williamson-Hall and size-strain plot methods
NASA Astrophysics Data System (ADS)
Sivakami, R.; Dhanuskodi, S.; Karvembu, R.
2016-01-01
RuO2 nanoparticles (RuO2 NPs) have been successfully synthesized by the hydrothermal method. Structure and the particle size have been determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). UV-Vis spectra reveal that the optical band gap of RuO2 nanoparticles is red shifted from 3.95 to 3.55 eV. BET measurements show a high specific surface area (SSA) of 118-133 m2/g and pore diameter (10-25 nm) has been estimated by Barret-Joyner-Halenda (BJH) method. The crystallite size and lattice strain in the samples have been investigated by Williamson-Hall (W-H) analysis assuming uniform deformation, deformation stress and deformation energy density, and the size-strain plot method. All other relevant physical parameters including stress, strain and energy density have been calculated. The average crystallite size and the lattice strain evaluated from XRD measurements are in good agreement with the results of TEM.
da Costa, Kelen Jorge Rodrigues; Passos, Joel J; Gomes, Alinne D M; Sinisterra, Rubén D; Lanza, Célia R M; Cortés, Maria Esperanza
2012-11-01
In the current study, we characterized the polycaprolactone (PCL), poly(lactic acid-co-glycolic acid) (PLGA), and biphasic calcium phosphate (BCP) composites coated with testosterone propionate (T) using Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction (XRD). Osteoblastic cells were seeded with PCL/BCP, PCL/BCP/T, PLGA/PCL/BCP and PLGA/PCL/BCP/T scaffolds, and cell viability, proliferation, differentiation and adhesion were analyzed. The results of physic-chemical experiments showed no displacements or suppression of bands in the FTIR spectra of scaffolds. The XRD patterns of the scaffolds showed an amorphous profile. The osteoblastic cells viability and proliferation increased in the presence of composites with testosterone over 72 h, and were significantly greater when PLGA/PCL/BCP/T scaffold was tested against PCL/BCP/T. Furthermore alkaline phosphatase production was significantly greater in the same group. In conclusion, the PLGA/PCL/BCP scaffold with testosterone could be a promising option for bone tissue applications due to its biocompatibility and its stimulatory effect on cell proliferation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusoff, Yusriha Mohd; Salimi, Midhat Nabil Ahmad; Anuar, Adilah
Many studies have been carried out in order to prepare hydroxyapatite (HAp) by various methods. In this study, we focused on the preparation of HAp nanoparticles by using sol-gel technique in which few parameters are optimized which were stirring rate, aging time and sintering temperature. HAp nanoparticles were prepared by using precursors of calcium nitrate tetrahydrate, Ca(NO{sub 3}){sub 2}.4H{sub 2}O and phosphorous pentoxide, P{sub 2}O{sub 5}. Both precursors are mixed in ethanol respectively before they were mixed together in which it formed a stable sol. Fourier transform infrared (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were used formore » its characterization in terms of functional group, phase composition, crystallite size and morphology of the nanoparticles produced. FTIR spectra showed that the functional groups that present in all five samples were corresponding to the formation of HAp. Besides, XRD shows that only one phase was formed which was hydroxyapatite. Meanwhile, SEM shows that the small particles combine together to form agglomeration.« less
Preparation of hydroxyapatite nanoparticles by sol-gel method with optimum processing parameters
NASA Astrophysics Data System (ADS)
Yusoff, Yusriha Mohd; Salimi, Midhat Nabil Ahmad; Anuar, Adilah
2015-05-01
Many studies have been carried out in order to prepare hydroxyapatite (HAp) by various methods. In this study, we focused on the preparation of HAp nanoparticles by using sol-gel technique in which few parameters are optimized which were stirring rate, aging time and sintering temperature. HAp nanoparticles were prepared by using precursors of calcium nitrate tetrahydrate, Ca(NO3)2.4H2O and phosphorous pentoxide, P2O5. Both precursors are mixed in ethanol respectively before they were mixed together in which it formed a stable sol. Fourier transform infrared (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were used for its characterization in terms of functional group, phase composition, crystallite size and morphology of the nanoparticles produced. FTIR spectra showed that the functional groups that present in all five samples were corresponding to the formation of HAp. Besides, XRD shows that only one phase was formed which was hydroxyapatite. Meanwhile, SEM shows that the small particles combine together to form agglomeration.
Annealing Temperature Dependent Structural and Optical Properties of RF Sputtered ZnO Thin Films.
Sharma, Shashikant; Varma, Tarun; Asokan, K; Periasamy, C; Boolchandani, Dharmendar
2017-01-01
This work investigates the effect of annealing temperature on structural and optical properties of ZnO thin films grown over Si 100 and glass substrates using RF sputtering technique. Annealing temperature has been varied from 300 °C to 600 °C in steps of 100, and different microstructural parameters such as grain size, dislocation density, lattice constant, stress and strain have been evaluated. The structural and surface morphological characterization has been done using X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). XRD analysis reveals that the peak intensity of 002 crystallographic orientation increases with increased annealing temperature. Optical characterization of deposited films have been done using UV-Vis-NIR spectroscopy and photoluminescence spectrometer. An increase in optical bandgap of deposited ZnO thin films with increasing annealing temperature has been observed. The average optical transmittance was found to be more than 85% for all deposited films. Photoluminiscense spectra (PL) suggest that the crystalline quality of deposited film has increased at higher annealing temperature.
NASA Astrophysics Data System (ADS)
C, Rajkumar; Srivastava, Rajneesh K.
2018-05-01
Zinc oxide (ZnO) nanoparticle has been synthesized by cost effective Co-precipitation method and studied its photo-response activity. The synthesized ZnO nanomaterial was characterized by using various analytical techniques such as x-ray diffraction (XRD), UV–visible spectroscopy, FTIR spectroscopy, photoluminescence (PL) spectroscopy, and Scanning Electron Microscopy (SEM). From the XRD results, it is confirmed that synthesized ZnO nanomaterial possess hexagonal wurtzite phase structure with an average crystallite size of ∼16–17 nm. The UV-Visible absorption spectrum shows that it has blue shift compared to their bulk counterparts. Photoluminescence spectra of ZnO nanoparticles have a strong violet band at 423 nm and three weak bands at 485 nm (blue), 506 nm (green), and 529 nm (green). The presence of hydroxyl group was confirmed by FTIR. The photo-response analysis was studied by the time-dependent rise and decay photocurrent of ZnO nanoparticle was tested in the air as well as vacuum medium.
Structural analysis and ferroelectric properties of Fe doped BaTiO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Ashutosh, E-mail: a.mansuri14@gmail.com, E-mail: amishra1960@yahoo.co.in; Mansuri, Amantulla, E-mail: a.mansuri14@gmail.com, E-mail: amishra1960@yahoo.co.in; Dwivedi, J. P.
2016-05-23
The polycrystalline samples of Fe doped BaTiO{sub 3} (BTO) with compositional formula BaTi{sub 1-x}Fe{sub x}O{sub 3} (x = 0, 0.03, 0.04 and 0.05) were prepared by solid-state reaction route. The influence of the Fe content on the structural, vibrational and electric properties of BaTiO{sub 3} was investigated using X-ray powder diffraction (XRD), Raman spectroscopy and Polarization techniques. XRD analysis indicates the formation of single-phase tetragonal structure for all the prepared samples. Tetragonal cubic structure with space group P4mm of all samples is further approved by Rietveld refinement. Room temperature Raman spectra of pure BaTiO{sub 3} show four active modes ofmore » vibration whose intensity decreases with increasing Fe doping. Small shift in Raman modes and increment in the line width has been observed with the doping ions. The hysteresis loop is very well performed with regular sharp characteristic of ferroelectric materials.« less
Structural, morphological and optical studies of ripple-structured ZnO thin films
NASA Astrophysics Data System (ADS)
Navin, Kumar; Kurchania, Rajnish
2015-11-01
Ripple-structured ZnO thin films were prepared on Si (100) substrate by sol-gel spin-coating method with different heating rates during preheating process and finally sintered at 500 °C for 2 h in ambient condition. The structural, morphological and photoluminescence (PL) properties of the nanostructured films were analyzed by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and PL spectroscopy. XRD analysis revealed that films have hexagonal wurtzite structure and texture coefficient increases along (002) plane with preheating rate. The faster heating rate produced higher crystallization and larger average crystallite size. The AFM and SEM images indicate that all the films have uniformly distributed ripple structure with skeletal branches. The number of ripples increases, while the rms roughness, amplitude and correlation length of the ripple structure decrease with preheating rates. The PL spectra show the presence of different defects in the structure. The ultraviolet emission improved with the heating rate which indicates its better crystallinity.
NASA Astrophysics Data System (ADS)
Dhanalakshmi, J.; Pathinettam Padiyan, D.
2017-09-01
TiO2 nanoparticles were prepared by a sol-gel method using titanium tetra isopropoxide as a precursor. The structural, optical, morphological and electrical properties were studied by x-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), a high resolution scanning electron microscope (HR-SEM), a transmission electron microscope (TEM), Raman analysis, Photoluminescence (PL) and impedance spectroscopy. The XRD and Raman spectra revealed that the synthesized samples are in pure anatase phase with an average crystallite size of 18 nm. Photocatalytic activity of the TiO2 nanoparticles was investigated for the degradation of 10 ppm methyl orange (MO) and bromophenol blue (BPB) dye using 10 mg of catalyst. Anatase TiO2 exhibited the removal of 67.12% and 85.51% of MO and BPB, respectively, within 240 min. The photocatalytic degradation process is explained using pseudo second order kinetics and fits well with the higher correlation coefficient.
The photocatalytic investigation of methylene blue dye with Cr doped zinc oxide nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, Rajeev; Kumar, Ashavani, E-mail: ashavani@yahoo.com
2015-08-28
The present work reports eco-friendly and cost effective sol-gel technique for synthesis of Chromium doped ZnO nanoparticles at room temperature. In this process Zinc nitrate, Chromium nitrate were used as precursor. Structural as well as optical properties of Cr induced ZnO samples were analysed by X-ray diffraction technique (XRD), SEM, PL and UV-Visible spectroscopy (UV-Vis) respectively. XRD analysis shows that the samples have hexagonal (wurtzite) structure with no additional peak which suggests that Cr ions fit into the regular Zn sites of ZnO crystal structure. By using Scherrer’s formula for pure and Cr doped ZnO samples the average grain sizemore » was found to be 32 nm. Further band gap of pure and doped ZnO samples have been calculated by using UV-Vis spectra. The photo-catalytic degradation of methyl blue dye under UV irradiation was examined for synthesized samples. The results show that the concentration plays an important role in photo-catalytic activity.« less
Structural and photoluminescence properties of Ce, Dy, Er-doped ZnO nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayachandraiah, C.; Kumar, K. Siva; Krishnaiah, G., E-mail: ginnerik@gmail.com
2015-06-24
Undoped ZnO and rare earth elements (Ce, Dy and Er with 2 at. %) doped nanoparticles were synthesized by wet chemical co-precipitation method at 90°C with Polyvinylpyrrolidone (PVP) as capping agent. The structural, morphological, compositional and photoluminescence studies were performed with X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energy dispersive spectroscopy (EDS), FTIR spectroscopy and Photoluminescence (PL) respectively. XRD results revealed hexagonal wurtzite structure with average particle size around 18 nm - 14 nm and are compatible with TEM results. EDS confirm the incorporation of Ce, Dy and Er elements into the host ZnO matrix and is validated by FTIR analysis. PLmore » studies showed a broad intensive emission peak at 558 nm in all the samples. The intensity for Er- doped ZnO found maximum with additional Er shoulder peaks at 516nm and 538 nm. No Ce, Dy emission centers were found in spectra.« less
Study of the optical properties of CuAlS2 thin films prepared by two methods
NASA Astrophysics Data System (ADS)
Ahmad, S. M.
2017-04-01
CuAlS2 thin films were successfully deposited on glass substrates using two methods: chemical spray pyrolysis (CSP) and chemical bath deposition (CBD). It was confirmed from the X-ray diffraction (XRD) analysis that CSP films exhibited a polycrystalline nature while amorphous nature was diagnosed for CBD films. Also XRD analysis was utilized to compute grain size, strain and dislocation density. Surface morphology was characterized using scanning electron microscope and photomicroscope images. The optical absorption measurement revealed that the direct allowed electronic transition with band gaps 2.8 eV and 3.0 eV for CBD and CSP methods, respectively. The optical constants, such as extinction coefficient ( k), refractive index ( n), real and imaginary dielectric constants ( ɛ 1, ɛ 2) were discussed. The photoluminescence (PL) spectra of CuAlS2 thin films appeared as a single peak for each of them, and this is attributed to band-to-band transition.
Highly Sensitive NiO Nanoparticle based Chlorine Gas Sensor
NASA Astrophysics Data System (ADS)
Arif, Mohd.; Sanger, Amit; Singh, Arun
2018-03-01
We have synthesized a chemiresistive sensor for chlorine (Cl2) gas in the range of 2-200 ppm based on nickel oxide (NiO) nanoparticles obtained by wet chemical synthesis. The nanoparticles were characterized by x-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and photoluminescence (PL) spectroscopy. XRD spectra of the sensing layer revealed the cubic phase of NiO nanoparticles. The NiO nanoparticle size was calculated to be ˜ 21 nm using a Williamson-Hall plot. The bandgap of the NiO nanoparticles was found to be 3.13 eV using Tauc plots of the absorbance curve. Fast response time (12 s) and optimum recovery time (˜ 27 s) were observed for 10 ppm Cl2 gas at moderate temperature of 200°C. These results demonstrate the potential application of NiO nanoparticles for fabrication of highly sensitive and selective sensors for Cl2 gas.
Optical, structural and thermal properties of bismuth nitrate doped polycarbonate composite
NASA Astrophysics Data System (ADS)
Mirji, Rajeshwari; Lobo, Blaise
2018-04-01
Bismuth nitrate (Bi(NO3)3) doped polycarbonate (PC) films were prepared by solution casting method, in the doping range varying from 0.1 wt% to 5 wt %. The prepared samples were characterized using UV-Visible spectroscopy, X-Ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). Optical band gap was calculated by analyzing the UV-Visible spectra of pure as well as doped PC. Optical band gap is found to decrease from 4.38 eV to 4.33 eV as the Bi(NO3)3 content within PC increases. XRD patterns showed an increase in the degree of crystallinity of Bi(NO3)3 doped PC, especially at 3.5 wt% and 5 wt%. DSC study showed an increase in the degradation temperature, as the doping level is increased from 0 wt% up to 0.3 wt%. A decrease in Tg is observed as the doping level of these samples increases from 0 wt% up to 5 wt%.
Synthesis of SrFe12O19 magnetic nanoparticles by EDTA complex method
NASA Astrophysics Data System (ADS)
Wang, Shifa; Li, Danming; Xiao, Yuhua; Dang, Wenqiang; Feng, Jie
2017-10-01
A modified polyacrylamide gel route was used to prepare SrFe12O19 magnetic nanoparticles; ethylenediaminetetraacetic acid (EDTA) was used as a carboxyl chelating agent. The phase purity, morphology and magnetic properties of as-prepared samples were analyzed via X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometery (VSM). XRD analysis indicates that high-purity SrFe12O19 magnetic nanoparticles can be synthesized at 700°C in air. The characteristic peaks of as-prepared sample at 210, 283, 321, 340, 381, 411, 432, 475, 532, 618, 686, and 726 cm-1 were observed in Raman spectra. SEM and TEM show that the synthesized SrFe12O19 magnetic nanoparticles are uniform with the mean particle size of 60 nm. VSM measurement shows that the maximum magnetic energy product (BH)max of sample prepared using EDTA as a chelating agent is higher than that of sample prepared using citric acid as a chelating agent.
Synthesis, structural and optical properties of PVP coated transition metal doped ZnS nanoparticles
NASA Astrophysics Data System (ADS)
Desai, N. V.; Shaikh, I. A.; Rawal, K. G.; Shah, D. V.
2018-05-01
The room temperature photoluminescence (PL) of transition metal doped ZnS nanoparticles is investigated in the present study. The PVP coated ZnS nanoparticles doped with transition metals are synthesized by facile wet chemical co-precipitation method with the concentration of impurity 1%. The UV-Vis absorbance spectra have a peak at 324nm which shifts slightly to 321nm upon introduction of the impurity. The incorporation of the transition metal as dopant is confirmed by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The particle size and the morphology are characterized by scanning electron microscopy (SEM), XRD and UV-Vis spectroscopy. The average size of synthesized nanoparticles is about 2.6nm. The room temperature photoluminescence (PL) of undoped and doped ZnS nanoparticles show a strong and sharp peak at 782nm and 781.6nm respectively. The intensity of the PL changes with the type of doping having maximum for manganese (Mn).
Immobilized copper(II) macrocyclic complex on MWCNTs with antibacterial activity
NASA Astrophysics Data System (ADS)
Tarlani, Aliakbar; Narimani, Khashayar; Mohammadipanah, Fatemeh; Hamedi, Javad; Tahermansouri, Hasan; Amini, Mostafa M.
2015-06-01
In a new approach, a copper(II) tetraaza macrocyclic complex (CuTAM) was covalently bonded on modified multi-walled carbon nanotubes (MWCNTs). To achieve this purpose, MWCNTs were converted to MWCNT-COCl and then reacted to NH groups of TAM ligand. The prepared material was characterized by Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), and FESEM (field emission scanning electron microscopy). FT-IR and TGA demonstrated the presence of the organic moieties, and XRD proved that the structure of MWCNTs remained intact during the three modification steps. An increase in the ID/IG ratio in Raman spectra confirmed the surface modifications. Finally, the samples were subjected to an antibacterial assessment to compare their biological activity. The antibacterial test showed that the grafted complex on the surface of the nanotube (MWCNT-CO-CuTAM) has higher antibacterial activity against Bacillus subtilis ATCC 6633 than the MWCNT-COOH and CuTAM with 1000 and 2000 μg/mL.
Effect of RE (Nd3+, Sm3+) oxide on structural, optical properties of Na2O-Li2O-ZnO-B2O3 glass system
NASA Astrophysics Data System (ADS)
Hivrekar, Mahesh M.; Bhoyar, D. N.; Mande, V. K.; Dhole, V. V.; Solunke, M. B.; Jadhav, K. M.
2018-05-01
Zinc borate glass activated with rare earth oxide (Nd2O3, Sm2O3) of Na2O-Li2O-ZnO-B2O3 quaternary system has been prepared successfully by melt quenching method. The nucleation and growth of RE oxide were controlled temperature range 950-1000° C and rapid cooling at room temperature. The physical, structural and optical properties were characterized by using X-ray diffraction (XRD), SEM, Ultraviolet-visible spectroscopy (UV-Vis). XRD and SEM studies confirmed the amorphous nature, surface morphology of prepared zinc borate glass. The physical parameters like density, molar volume, molar mass of Nd3+, Sm3+ doped borate glass are summarized in the present article. The optical absorption spectra along with tauc's plot are presented. The optical energy band gap increases due to the addition of rare earth oxide confirming the role of network modifier.
Švarcová, Silvie; Bezdička, Petr; Hradil, David; Hradilová, Janka; Žižak, Ivo
2011-01-01
Application of X-ray diffraction (XRD)-based techniques in the analysis of painted artworks is not only beneficial for indisputable identification of crystal constituents in colour layers, but it can also bring insight in material crystal structure, which can be affected by their geological formation, manufacturing procedure or secondary changes. This knowledge might be helpful for art historic evaluation of an artwork as well as for its conservation. By way of example of kaolinite, we show that classification of its crystal structure order based on XRD data is useful for estimation of its provenance. We found kaolinite in the preparation layer of a Gothic wall painting in a Czech church situated near Karlovy Vary, where there are important kaolin deposits. Comparing reference kaolin materials from eight various Czech deposits, we found that these can be differentiated just according to the kaolinite crystallinity. Within this study, we compared laboratory powder X-ray micro-diffraction (micro-XRD) with synchrotron radiation X-ray diffraction analysing the same real sample. We found that both techniques led to the same results.
Chen, Jyh-Ping; Chen, Shih-Hsien; Lai, Guo-Jyun
2012-03-06
In this study, we have successfully fabricated electrospun bead-free silk fibroin [SF]/chitosan [CS] composite nanofibers [NFs] covering the whole range of CS content (0%, 25%, 50%, 75%, and 100%). SF/CS spinning solutions were prepared in a mixed solvent system of trifluoroacetic acid [TFA] and dichloromethane. The morphology of the NFs was observed by scanning electron microscope, and the average fiber diameter ranges from 215 to 478 nm. Confocal laser scanning microscopy confirms the uniform distribution of SF and CS within the composite NFs. To increase biocompatibility and preserve nanostructure when seeded with cells in culture medium, NFs were treated with an ethanol/ammonia aqueous solution to remove residual TFA and to change SF protein conformation. After the chemical treatment, SF/CS NFs could maintain the original structure for up to 54 days in culture medium. Properties of pristine and chemically treated SF/CS NFs were investigated by Fourier transform infrared spectroscopy [FT-IR], X-ray diffraction [XRD], and thermogravimetry/differential scanning calorimetry [TG/DSC]. Shift of absorption peaks in FT-IR spectra confirms the conformation change of SF from random coil to β-sheet by the action of ethanol, which is also consistent with the SF crystalline diffraction patterns measured by XRD. From TG/DSC analysis, the decomposition temperature peaks due to salt formation from TFA and protonated amines disappeared after chemical treatment, indicating complete removal of TFA by binding with ammonium ions during the treatment. This was also confirmed with the disappearance of F1s peak in X-ray photoelectron spectroscopy spectra and disappearance of TFA salt peaks in FT-IR spectra. The composite NFs could support the growth and osteogenic differentiation of human fetal osteoblastic [hFOB] cells, but each component in the composite NF shows distinct effect on cell behavior. SF promotes hFOB proliferation while CS enhances hFOB differentiation. The composite SF/CS NFs will be suitable for bone tissue engineering applications by choosing a suitable blend composition.PACS: 87.85.jf; 87.85.Rs; 68.37.Hk.
Netala, Vasudeva Reddy; Kotakadi, Venkata Subbaiah; Bobbu, Pushpalatha; Gaddam, Susmila Aparna; Tartte, Vijaya
2016-12-01
The present study reports that the biosynthesis of AgNPs using an endophytic fungus isolated from the ethnomedicinal plant Centella asiatica. The endophytic fungus was identified as Aspergillus versicolor ENT7 based on 18S rRNA gene sequencing (NCBI Accession number KF493864). The AgNPs synthesized were characterized by UV-visible spectroscopy, Fourier transform infra-red spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), particle size analyzer, and zeta potential measurements. The UV-Vis absorption spectra showed the peak at 429 nm which confirmed the synthesis of AgNPs. TEM analysis revealed that the AgNPs were spherical in shape with 3-40 nm in size; similar results were also obtained by Horiba particle size analyzer with 5-40 nm in size. The synthesized AgNPs were highly stable due to their high negative zeta potential value of -38.2 mV. XRD studies showed (111), (200), (220), (311), and (222) planes of the face-centered cubic (FCC) lattice, indicating the crystalline nature of the AgNPs. Selected area electron diffraction (SAED) pattern of the AgNPs showed five circular fringes which were in accordance with XRD data and confirmed the formation of high crystalline nature of AgNPs. FTIR measurements indicated the peaks at 3273, 2925, 1629, 1320, and 1020 cm -1 corresponding to different functional groups possibly involved in the synthesis and stabilization of AgNPs. The synthesized AgNPs exhibited effective free radical scavenging activity with the IC50 value of 60.64 µg/ml. The synthesized AgNPs were found to be highly toxic against both gram-positive and gram-negative bacteria and also showed a very good antifungal activity.
Structural, compositional, optical and colorimetric characterization of TiN-nanoparticles
NASA Astrophysics Data System (ADS)
Reinholdt, A.; Pecenka, R.; Pinchuk, A.; Runte, S.; Stepanov, A. L.; Weirich, Th. E.; Kreibig, U.
2004-10-01
We present results of an investigation of TiN nanoparticles, which were produced by laser ablation/evaporation and adiabatic expansion with the nanoparticle beam apparatus LUCAS. Compositional and structural characterization, using secondary ion mass spectrometry (SIMS), electron energy loss spectroscopy (EELS), X-ray diffraction (XRD) and selected area electron diffraction (SAED), revealed that crystalline and almost stoichiometric particles were formed and that they are susceptible to oxidation. Furthermore, transmission electron microscopy (TEM) analysis showed that TiN nanoparticles exhibit cuboid shapes. The size distributions were obtained using the edge length as parameter. They are fairly broad and the mean particle diameter depends on the seeding gas flow (the pressure) that is applied to the ablation chamber during production. In situ optical transmission spectra of the TiN nanoparticles deposited on a quartz substrate indicate a pronounced single Mie resonance at around 1.7 eV and an absorption flank starting at approximately 3.0 eV. The experimental optical extinction spectra of different samples were fitted using Mie theory calculations. The dielectric function of bulk TiN was modified to account for size and interface damping of the Mie resonance. Due to the distinct absorption band, TiN may be used as a color pigment. The dependence of the color stimulus on the extinction cross-section as well as on the product of the particle concentration and the sample thickness were examined. Chromaticity coordinates were derived according to the CIE 1976 (L^*a^*b^*) color space from the in situ optical transmission spectra.
Ultrahigh vacuum dc magnetron sputter-deposition of epitaxial Pd(111)/Al2O3(0001) thin films.
Aleman, Angel; Li, Chao; Zaid, Hicham; Kindlund, Hanna; Fankhauser, Joshua; Prikhodko, Sergey V; Goorsky, Mark S; Kodambaka, Suneel
2018-05-01
Pd(111) thin films, ∼245 nm thick, are deposited on Al 2 O 3 (0001) substrates at ≈0.5 T m , where T m is the Pd melting point, by ultrahigh vacuum dc magnetron sputtering of Pd target in pure Ar discharges. Auger electron spectra and low-energy electron diffraction patterns acquired in situ from the as-deposited samples reveal that the surfaces are compositionally pure 111-oriented Pd. Double-axis x-ray diffraction (XRD) ω-2θ scans show only the set of Pd 111 peaks from the film. In triple-axis high-resolution XRD, the full width at half maximum intensity Γ ω of the Pd 111 ω-rocking curve is 630 arc sec. XRD 111 pole figure obtained from the sample revealed six peaks 60°-apart at a tilt angles corresponding to Pd 111 reflections. XRD ϕ scans show six 60°-rotated 111 peaks of Pd at the same ϕ angles for 11[Formula: see text]3 of Al 2 O 3 based on which the epitaxial crystallographic relationships between the film and the substrate are determined as [Formula: see text]ǁ[Formula: see text] with two in-plane orientations of [Formula: see text]ǁ[Formula: see text] and [Formula: see text]ǁ[Formula: see text]. Using triple axis symmetric and asymmetric reciprocal space maps, interplanar spacings of out-of-plane (111) and in-plane (11[Formula: see text]) are found to be 0.2242 ± 0.0003 and 0.1591 ± 0.0003 nm, respectively. These values are 0.18% lower than 0.2246 nm for (111) and the same, within the measurement uncertainties, as 0.1588 nm for (11[Formula: see text]) calculated from the bulk Pd lattice parameter, suggesting a small out-of-plane compressive strain and an in-plane tensile strain related to the thermal strain upon cooling the sample from the deposition temperature to room temperature. High-resolution cross-sectional transmission electron microscopy coupled with energy dispersive x-ray spectra obtained from the Pd(111)/Al 2 O 3 (0001) samples indicate that the Pd-Al 2 O 3 interfaces are essentially atomically abrupt and dislocation-free. These results demonstrate the growth of epitaxial Pd thin films with (111) out-of-plane orientation with low mosaicity on Al 2 O 3 (0001).
NASA Astrophysics Data System (ADS)
Hirakawa, Satoru; Morimoto, Yoshiaki; Honda, Hisashi
2015-04-01
Electrical conductivity ( σ), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) measurements of n-C x H (2 x+1) OSO 3Li ( x= 12, 14, 16, 18, and 20) crystals were performed as a function of temperature. In addition, σ, DSC, and XRD observations of n-C x H (2 x+1) OSO 3Na and n-C x H (2 x+1) OSO 3K ( x= 12, 14, 16, 18, and 20) crystals were carried out for comparison. DSC results of the salts revealed several solid-solid phase transitions with large entropy changes (Δ S). For n-C 18 H 37 OSO 3Li and n-C 20 H 41 OSO 3Li salts, each melting point produced a small Δ S mp value compared with the total entropy change in the solid phases (Δ S tr1+Δ S tr2). Additionally, Li + ion diffusion was detected in the highest temperature solid phases. For K salts, larger σ values were detected for potassium alkylsulfates compared with those reported for alkyl carboxylate. 7Li NMR spectra of n-C 18 H 37 OSO 3Li crystals recorded in the low-temperature phase showed large asymmetry parameters, suggesting the Li + ions are localized at asymmetric sites in the crystals.
Structure and photoluminescence properties of ZnS films grown on porous Si substrates
NASA Astrophysics Data System (ADS)
Wang, Cai-feng; Hu, Bo; Yi, Hou-hui; Li, Wei-bing
2011-11-01
ZnS films were deposited on porous silicon (PS) substrates with different porosities. With the increase of PS substrate porosity, the XRD diffraction peak intensity decreases and the surface morphology of the ZnS films becomes rougher. Voids appear in the films, due to the increased roughness of PS structure. The photoluminescence (PL) spectra of the samples before and after deposition of ZnS were measured to study the effect of substrate porosity on the luminescence properties of ZnS/PS composites. As-prepared PS substrates emit strong red light. The red PL peak of PS after deposition of ZnS shows an obvious blueshift. As PS substrate porosity increases, the trend of blueshift increases. A green emission at about 550 nm was also observed when the porosity of PS increased, which is ascribed to the defect-center luminescence of ZnS. The effect of annealing time on the structural and luminescence properties of ZnS/PS composites were also studied. With the increase of annealing time, the XRD diffraction peak intensity and the self-activated luminescence intensity of ZnS increase, and, the surface morphology of the ZnS films becomes smooth and compact. However, the red emission intensity of PS decreases, which was associated with a redshift. White light emission was obtained by combining the luminescence of ZnS with the luminescence of PS.
NASA Astrophysics Data System (ADS)
Luo, W. B.; Zhu, J.; Li, Y. R.; Wang, X. P.; Zhang, Y.
2009-05-01
Hf-doped Bi4Ti3O12 (BTH) ferroelectric films with excellent electrical properties were epitaxially integrated with GaN semiconductor using (111) SrTiO3 (STO)/rutile (200) TiO2 as buffer layer. The STO/TiO2 buffer layer was deposited by laser molecular beam epitaxy. The structural characteristics of the buffer layer were in situ and ex situ characterized by reflective high energy electron diffraction, x-ray diffraction (XRD), and high resolution transmission microscopy. The overlaying SrRuO3 (SRO) and BTH films were then deposited by pulsed laser deposition. XRD spectra, including θ-2θ and Φ scans, show that the (208) BTH films were epitaxially grown on GaN, and the BTH films inherit the in-plane twin-domain of STO buffer layer. Electrical measurements demonstrate that the non-c axis BTH films possess a large remnant polarization (2Pr=45 μC/cm2), excellent fatigue endurance (10.2% degradation after 1.1×1010 switching cycles), and a low leakage current density (1.94×10-7 A/cm2 at an electric field of 200 kV/cm). These results reveal that the (208) BTH films with favorable electrical performance could be epitaxially grown on GaN template using STO/TiO2 buffer layer.
Synthesis of novel CeO2-BiVO4/FAC composites with enhanced visible-light photocatalytic properties.
Zhang, Jin; Wang, Bing; Li, Chuang; Cui, Hao; Zhai, Jianping; Li, Qin
2014-09-01
To utilize visible light more effectively in photocatalytic reactions, a fly ash cenosphere (FAC)-supported CeO2-BiVO4 (CeO2-BiVO4/FAC) composite photocatalyst was prepared by modified metalorganic decomposition and impregnation methods. The physical and photophysical properties of the composite have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and UV-Visible diffuse reflectance spectra. The XRD patterns exhibited characteristic diffraction peaks of both BiVO4 and CeO2 crystalline phases. The XPS results showed that Ce was present as both Ce(4+) and Ce(3+) oxidation states in CeO2 and dispersed on the surface of BiVO4 to constitute a p-n heterojunction composite. The absorption threshold of the CeO2-BiVO4/FAC composite shifted to a longer wavelength in the UV-Vis absorption spectrum compared to the pure CeO2 and pure BiVO4. The composites exhibited enhanced photocatalytic activity for Methylene Blue (MB) degradation under visible light irradiation. It was found that the 7.5wt.% CeO2-BiVO4/FAC composite showed the highest photocatalytic activity for MB dye wastewater treatment. Copyright © 2014. Published by Elsevier B.V.
THz spectra and corresponding vibrational modes of DNA base pair cocrystals and polynucleotides
NASA Astrophysics Data System (ADS)
Wang, Fang; Zhao, Dongbo; Dong, Hao; Jiang, Ling; Huang, Lin; Liu, Yunfei; Li, Shuhua
2018-07-01
The generalized energy-based fragmentation (GEBF) approach has been applied to study the THz spectra and vibrational modes of base pair cocrystals under periodic boundary conditions (denoted as PBC-GEBF). Results of vibrational mode reveal that hydrogen bonds play a pivotal role in the pairing process of base crystals, where most Nsbnd H and Csbnd H bonds stretch to some extent. We also found that hydrogen bonds of a self-made A:T cocrystal completely break in a transition from liquid to the solid state, while self-made C:G cocrystal is different and easier to form a cocrystal, as confirmed by X-ray diffraction (XRD) and terahertz (THz) spectra. Furthermore, we have studied DNA polynucleotides (in both A and B forms) found that the vibrational modes changed a lot during the process of their forming double strand. Despite the key role played by hydrogen bonds, the key contribution originates from collective motions of the main skeleton. A comparative study of the spectra of some stranded fragments suggests that different sequences or forms have similar spectra in THz band. They distinguish from each other mainly in the low-frequency regions, especially below 1 THz. This study would make great contributions to the molecular dynamics model based DNA long-chain structure simulation in the future study.
NASA Astrophysics Data System (ADS)
Hong, Jian-He; Cong, Chang-Jie; Zhang, Zhi-Guo; Zhang, Ke-Li
2007-07-01
This work reports a new photoluminescence (PL) emission peak at about 402 nm from amorphous ZnO nanoparticles in a silica matrix, and the energy transfer from it to Eu3+ ions. The amorphous ZnO SiO2 nanocomposites were prepared by the sol gel method, which is verified by X-ray diffraction (XRD) profiles and FT IR spectra. The luminescence emission spectra are fitted by four Gauss profiles, two of which at longer wavelength are due to the defects of the material and the others to amorphous ZnO nanoparticles and the Zn O Si interface state. With the reduction of Zn/Si ratio and diethanolamine, the relative intensities of visible emission decrease. The weak visible emission is due to the reduction of defects after calcined at high temperature. The new energy state at the Zn O Si interface results in strong emission at about 402 nm. When Eu3+ ions are co-doped, weak energy transfer from ZnO SiO2 nanocomposites to Eu3+ emission are observed in the excitation spectra.
Photoluminescence varied by selective excitation in BiGdWO6:Eu3+ phosphor
NASA Astrophysics Data System (ADS)
Pavani, K.; Graça, M. P. F.; Kumar, J. Suresh; Neves, A. J.
2017-12-01
Eu3+ doped bismuth gadolinium tungstate (BGW), a simplest member of Aurivillius family of layered perovskites, was synthesized by solid-state reaction method. Structural characterisation has been performed by X-Ray diffraction (XRD), Raman spectroscopy, Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Band gap of the host matrix has been calculated using reflectance and absorption spectra. Three different mechanisms were found to explain the excitation of Eu3+ ions and are described in detail. Photoluminescence (PL) spectra of the BGW phosphor doped with Eu3+ ions consist of major emission lines associated with 5D0 → 7FJ (J = 0, 1, 2, 3 and 4) of Eu3+ ion. Site selective PL excitation and emission indicates that Eu3+ ions doped in BiGdWO6 are sensitive to the excitation wavelength without change in the structure. Change in emission spectra were observed when the excitation wavelength was changed. Judd-Ofelt (J-O) parameters were determined from the indirect method to interpret the interactions between the host and dopant ions along with detailed analysis of lifetime measurements.
Reddy, Kakarla Raghava; Lee, Kwang-Pill; Kim, Ju Young; Lee, Youngil
2008-11-01
This study describes the synthesis of monodispersed core-shell composites of silica-modified magnetic nanoparticles and conducting polyaniline by self-assembly and graft polymerization. Magnetic ferrite nanoparticles (Fe3O4) were prepared by coprecipitation of Fe+2 and Fe+3 ions in alkaline solution, and then silananized. The silanation of magnetic particles (Fe3O4@SiO2) was carried out using 3-bromopropyltrichlorosilane (BPTS) as the coupling agent. FT-IR spectra indicated the presence of Fe--O--Si chemical bonds in Fe3O4@SiO2. Core-shell type nanocomposites (Fe3O4@SiO2/PANI) were prepared by grafting polyaniline (PANI) on the surface of silanized magnetic particles through surface initiated in-situ chemical oxidative graft polymerization. The nanocomposites were characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Fourier transform infrared (FTIR) spectra, UV-visible spectroscopy, photoluminescence (PL) spectra, electrical conductivity and magnetic characteristics. HRTEM images of the nanocomposites revealed that the silica-modified magnetic particles made up the core while PANI made up the shell. The XPS spectrum revealed the presence of silica in the composites, and the XRD results showed that the composites were more crystalline than pure PANI. PL spectra show that composites exhibit photoluminescent property. Conductivity of the composites (6.2 to 9.4 x 10(-2) S/cm) was higher than that of pristine PANI (3.7 x 10(-3) S/cm). The nanocomposites exhibited superparamagnetism. Formation mechanism of the core-shell structured nanocomposites and the effect of modified magnetic nanoparticles on the electro-magnetic properties of the Fe3O4@SiO2/PANI nanocomposites are also investigated. This method provides a new strategy for the generation of multi-functional nanocomposites that composed of other conducting polymers and metal nanoparticles.
Onwudiwe, Damian C; Ajibade, Peter A
2011-01-01
The synthesis of II-VI semiconductor nanoparticles obtained by the thermolysis of certain group 12 metal complexes as precursors is reported. Thermogravimetric analysis of the single source precursors showed sharp decomposition leading to their respective metal sulfides. The structural and optical properties of the prepared nanoparticles were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) UV-Vis and photoluminescence spectroscopy. The X-ray diffraction pattern showed that the prepared ZnS nanoparticles have a cubic sphalerite structure; the CdS indicates a hexagonal phase and the HgS show the presence of metacinnabar phase. The TEM image demonstrates that the ZnS nanoparticles are dot-shaped, the CdS and the HgS clearly showed a rice and spherical morphology respectively. The UV-Vis spectra exhibited a blue-shift with respect to that of the bulk samples which is attributed to the quantum size effect. The band gap of the samples have been calculated from absorption spectra and werefound to be about 4.33 eV (286 nm), 2.91 eV (426 nm) and 4.27 eV (290 nm) for the ZnS, CdS and HgS samples respectively.
Onwudiwe, Damian C.; Ajibade, Peter A.
2011-01-01
The synthesis of II-VI semiconductor nanoparticles obtained by the thermolysis of certain group 12 metal complexes as precursors is reported. Thermogravimetric analysis of the single source precursors showed sharp decomposition leading to their respective metal sulfides. The structural and optical properties of the prepared nanoparticles were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) UV-Vis and photoluminescence spectroscopy. The X-ray diffraction pattern showed that the prepared ZnS nanoparticles have a cubic sphalerite structure; the CdS indicates a hexagonal phase and the HgS show the presence of metacinnabar phase. The TEM image demonstrates that the ZnS nanoparticles are dot-shaped, the CdS and the HgS clearly showed a rice and spherical morphology respectively. The UV-Vis spectra exhibited a blue-shift with respect to that of the bulk samples which is attributed to the quantum size effect. The band gap of the samples have been calculated from absorption spectra and werefound to be about 4.33 eV (286 nm), 2.91 eV (426 nm) and 4.27 eV (290 nm) for the ZnS, CdS and HgS samples respectively. PMID:22016607
Preparation of long alumina fibers by sol-gel method using tartaric acid
NASA Astrophysics Data System (ADS)
Tan, Hong-Bin
2011-12-01
Long alumina fibers were prepared by sol-gel method. The spinning sol was obtained by mixing aluminum nitrate, tartaric acid, and polyvinylpyrrolidone with a mass ratio of 10:3:1.5. Thermogravimetry-differential scanning calorimetry (TG-DSC), Fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to characterize the properties of the gel and ceramic fibers. A little of α-Al2O3 phase is observed in the alumina precursor gel fibers sintered at 1273 K. The fibers with a uniform diameter can be obtained when sintered at 1473 K, and its main phase is also indentified as α-Al2O3.
NASA Astrophysics Data System (ADS)
Peng, Fei; Qin, Shuang-Jiao; Hu, Li-Feng; Wang, Juan-Ye; Yang, Jia-Mei; Chen, Xue-Qing; Pan, Ge-Bo
2016-05-01
A new hybrid heterostructure of p-type copper phthalocyanine (CuPc) and n-type porous GaN (PGaN) has been fabricated by electrophoretic deposition. The influence of CuPc concentration, electric field intensity, and deposition time on the growth of CuPc film has been explored. The as-prepared CuPc films are made of numerous nanorods. The X-ray diffraction (XRD) spectra revealed that the CuPc films are the β phase and amorphous type on pristine and porous GaN, respectively. Moreover, the prototype devices were fabricated on the basis of the CuPc/PGaN heterostructures. The devices exhibited excellent photodetector performance under ultraviolet (UV) light illumination.
Synthesis and photocatalytic activity of N-doped TiO2 produced in a solid phase reaction
NASA Astrophysics Data System (ADS)
Xin, Gang; Pan, Hongfei; Chen, Dan; Zhang, Zhihua; Wen, Bin
2013-02-01
N-doped TiO2 was synthesized by calcining a mixture of titanic acid and graphitic carbon nitride (g-C3N4) at temperatures above 500 °C. The final samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and UV-vis diffuse reflectance spectra. The photocatalytic activity of N-doped TiO2 was studied by assessing the degradation of methylene blue in an aqueous solution, under visible light and UV light irradiation. It was found that the N-doped TiO2 displayed higher photocatalytic activity than pure TiO2, under both visible and UV light.
Synthesis and Photoluminescence Characteristics of Eu(3+)-Doped Molybdates Nanocrystals.
Li, Fuhai; Yu, Lixin; Wei, Shuilin; Sun, Jiaju; Chen, Weiqing; Sun, Wei
2015-12-01
In this paper, the Eu(3+)-doped molybdate (CaMoO4, ZnMoO4 and BaMoO4) phosphors have been prepared by a hydrothermal method through modulating the pH value of the precursor solution (pH = 8, 10, and 12, respectively). The crystalline phase, morphology, photoluminescent properties of the prepared samples were systematically characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and photoluminescence (PL) spectra. The results indicate that the photoluminescence and morphology can be affected by the precursor solution. And the growth of the ZnMoO4 crystals also can be affected by the pH value of the precursor solution.
Synthesis and study of the synthetic hydroxyapatite doped with aluminum
NASA Astrophysics Data System (ADS)
Goldberg, M.; Smirnov, V.; Antonova, O.; Konovalov, A.; Fomina, A.; Komlev, V. S.; Barinov, S.; Rodionov, A.; Gafurov, M.; Orlinskii, S.
2018-05-01
Powders of synthetic hydroxyapatite doped with aluminium (Al) ions in concentrations 0 and 20 mol. % were synthesized by the precipitation method from the nitrate solutions and investigated by atomic emission spectrometry with inductively coupled plasma (AES-ICP), X-ray diffraction (XRD), scanning electron microscopy (SEM), gas absorption and conventional electron paramagnetic resonance (EPR). It is shown that for the chosen synthesis route an introduction of Al provokes formation of highly anisotropic phase, leads to the decrease in the crystallinity while no significant changes in the EPR spectra of the radiation-induced defects is observed. The results could be used for understanding the structural transformations with Al doping of the mineralized materials for geological and biomedical applications.
Crystalline phase transformation of colloidal cadmium sulfide nanocrystals
NASA Astrophysics Data System (ADS)
Ghali, M.; Eissa, A. M.; Mosaad, M. M.
2017-03-01
In this paper, we give a microscopic view concerning influence of the growth conditions on the physical properties of nanocrystals (NCs) thin films made of CdS, prepared using chemical bath deposition CBD technique. We show a crystalline phase transformation of CdS NCs from hexagonal wurtzite (W) structure to cubic zincblende (ZB) when the growth conditions change, particularly the solution pH values. This effect was confirmed using X-ray diffraction (XRD), transmission electron microscopy (TEM), optical absorption and photoluminescence (PL) measurements. The optical absorption spectra allow calculation of the bandgap value, Eg, where significant increase ˜200 meV in the CdS bandgap when transforming from Hexagonal to Cubic phase was found.
Preparation of hydroxyapatite from animal bones.
Sobczak, Agnieszka; Kowalski, Zygmunt; Wzorek, Zbigniew
2009-01-01
This paper presents the method of obtaining hydroxyapatite from animal bones. Bone sludge and calcined products were characterized by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Calcium concentration was determined with titration, and phosphorus--spectrophotometrically. Making use of the AAS and ICP methods the content of microelements was determined. In all the products, hydroxyapatite was the only crystalline phase indicated. The FT-IR spectra confirmed that calcination removed the total of organic substances. Calcium and phosphorus contents were 38% and 18%, respectively, which corresponded to the Ca/P molar ratio of nonstoichiometric hydroxyapatite. The specific surfaces of products were measured by BET method. The volume of micro- and mesopores was determined.
Remote In-Situ Quantitative Mineralogical Analysis Using XRD/XRF
NASA Technical Reports Server (NTRS)
Blake, D. F.; Bish, D.; Vaniman, D.; Chipera, S.; Sarrazin, P.; Collins, S. A.; Elliott, S. T.
2001-01-01
X-Ray Diffraction (XRD) is the most direct and accurate method for determining mineralogy. The CHEMIN XRD/XRF instrument has shown promising results on a variety of mineral and rock samples. Additional information is contained in the original extended abstract.
Structural and Magnetic Properties of {Eu}(3+) Eu 3 + -Doped {CdNb}_{2} {O}_{6} CdNb 2 O 6 Powders
NASA Astrophysics Data System (ADS)
Topkaya, Ramazan; Boyraz, Cihat; Ekmekçi, Mete Kaan
2018-03-01
Europium-doped CdNb2O6 powders with the molar concentration of Eu^{3+} (0.5, 3 and 6 mol%) were successfully prepared at 900°C by using molten salt synthesis method. The effect of europium (Eu) molar concentration on the structural and temperature-dependent magnetic properties of CdNb2O6 powders has been investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), vibrating sample magnetometer (VSM) and ferromagnetic resonance (FMR) techniques in the temperature range of 10-300 K. XRD results confirm that all the powders have orthorhombic crystal structure. It has been confirmed from VSM and FMR measurements that Eu^{3+}-doped CdNb2O6 powders have ferromagnetic behaviour for each Eu^{3+} molar concentration between 10 and 300 K. XRD and EDX analyses indicate that there is no magnetic impurity in Eu^{3+}-doped CdNb_2O_6 powders, supporting that the ferromagnetic behaviour of the powders arises from Eu^{3+} ions. The observed ferromagnetism was elucidated with the intrinsic exchange interactions between the magnetic moments associated with the unpaired 4 f electrons in Eu^{3+} ions. The saturation magnetization decreases with increasing Eu^{3+} molar concentration. The temperature-dependent magnetization behaviour was observed not to agree with Curie-Weiss law because europium obeys Van Vleck paramagnetism. Broad FMR spectra and a g-value higher than 2 were observed from FMR measurements, indicating the ferromagnetic behaviour of the powders. It was found that while the resonance field of FMR spectra decreases, the linewidth increases as a function of Eu^{3+} molar concentration.
Mechanisms of siderophore sorption to smectite and siderophore-enhanced release of structural Fe 3+
NASA Astrophysics Data System (ADS)
Haack, Elizabeth A.; Johnston, Cliff T.; Maurice, Patricia A.
2008-07-01
Sorption of the trihydroxamate siderophores desferrioxamine-B and -D (DFOB and DFOD, respectively) and of the monohydroxamate ligand acetohydroxamic acid (aHA) to smectite were examined in batch sorption studies (pH 5.5, 0.1 M ionic strength) coupled with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Both DFOB and DFOD, which have similar molecular structures but different charge properties (cationic versus neutral, respectively) showed a high affinity for smectite. In contrast, the smaller aHA molecule did not sorb appreciably. XRD analysis indicated that DFOB and DFOD each absorbed in the interlamellar region of the clay to give d-spacings of 13.4-13.7 Å at equilibrium solution concentrations <250 μM. FTIR spectra of sorbed DFOB and DFOD indicated that the conformation of each species was distinct from its conformation in the crystalline or dissolved states. At elevated initial solution concentrations of 500-1500 μM, DFOB formed a bilayer in the clay interlayer. Changes in the FTIR spectra of the DFOB-loaded clay samples at these higher surface loadings were consistent with the presence of a metal-siderophore complex in the interlayer. DFOB and DFOD both enhanced Fe and Al release from smectite, but aHA did not. Possible dissolution mechanisms are discussed in light of the FTIR and batch dissolution results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sung Uk; Hong, Byungyou; Choi, Won Seok
2009-07-15
Antimony-doped tin oxide (ATO) films were prepared on 7059 Corning glass substrate by the radio frequency (rf) magnetron sputtering method using SnO{sub 2} target mixed with Sb of 6 wt % at room temperature. The working pressure was varied from 0.67 to 2 Pa in steps of 0.67 Pa, and the rf power was varied from 100 to 175 W in steps of 25 W at room temperature. The thickness of the deposited ATO films was about 150 nm. X-ray diffraction (XRD) measurements showed the ATO films to be crystallized with a strong (101) preferred orientation as the rf powermore » is increased. The spectra revealed that the deposited films were polycrystalline, retaining the tetragonal structure. The grain size was estimated from the XRD spectra using the Scherrer equation and found to decrease with a decrease in the working pressure and an increase in the rf power, while the surface roughness was observed to be smoothened. The ATO film that was deposited at a working pressure of 0.67 Pa with rf power of 175 W showed the lowest resistivity of 8.6x10{sup -3} {Omega} cm, and the optical transmittance was 86.5% in the visible wavelength range from 400 to 800 nm.« less
Li, G Z; Liu, F H; Chu, Z S; Wu, D M; Yang, L B; Li, J L; Wang, M N; Wang, Z L
2016-04-01
SiO2@Y2MoO6:Eu3+ core-shell phosphors were prepared by the sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays were used to characterize the resulting SiO2@Y2MoO6:Eu3+ core-shell phosphors. The XRD results demonstrated that the Y2MoO6:Eu3+ layers on the SiO2 spheres crystallized after being annealed at 700 °C and the crystallinity increased with raising the annealing temperature. The obtained core-shell phosphors have spherical shape with narrow size distribution (average size ca. 640 nm), non-agglomeration, and smooth surface. The thickness of the Y2MoO6:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (70 nm for four deposition cycles). The Eul+ shows a strong PL emission (dominated by 5D0-7F2 red emission at 614 nm) under the excitation of 347 nm UV light. The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.
Optical absorption and photoluminescence study of nanocrystalline Zn0.92M0.08O (M: Li & Gd)
NASA Astrophysics Data System (ADS)
Punia, Khushboo; Lal, Ganesh; Kumar, Sudhish
2018-05-01
Nanocrystalline samples of Zn0.92Li0.08O and Zn0.92Gd0.08O have been synthesized using citrate sol-gel route without post synthesis annealing and characterized using powder X-ray diffraction (XRD), UV-Vis-NIR and Photoluminescence spectroscopic measurements. Analysis of XRD pattern and PL spectra revealed single phase formation of the nanocrystalline Zn0.92Li0.08O and Zn0.92Gd0.08O in the wurtzite type hexagonal structure with intrinsic crystal and surface defects. UV-Vis-NIR optical absorption measurements show that the maximum photo absorption occurs below 600nm in the UV& visible band. The estimated values of band gap energy were found to be 2.53eV and 2.73eV for Zn0.92Li0.08O and Zn0.92Gd0.08O respectively. The photoluminescence spectra excited at the wavelength 325nm displays two broad peaks in the UV and visible bands centered at ˜416 nm & ˜602 nm for Zn0.92Gd0.08O and ˜406nm & ˜598nm for Zn0.92Li0.08O. Both Gd and Li doping in ZnO leads to considerable decrease in the optical band gap energy and red shifting of the UV emission band towards the visible band.
Long- and Short-Range Structure of Ferrimagnetic Iron-Chromium Maghemites.
García-Guaderrama, Marco; Montero-Cabrera, María E; Morán, Emilio; Alario-Franco, Miguel A; Fuentes-Cobas, Luis E; Macías-Ríos, Edgar; Esparza-Ponce, Hilda E; Fuentes-Montero, María E
2015-12-07
Maghemite-like materials containing Fe(3+) and Cr(3+) in comparable amounts have been prepared by solution-combustion synthesis. The conditions of synthesis and the magnetic properties are described. These materials are ferrimagnetic and are much more stable than pure iron maghemite since their maghemite-hematite transformation takes place at about ∼ 700 °C instead of ∼ 300 °C, as usually reported. These materials were studied by synchrotron radiation X-ray diffraction (XRD) and by X-ray absorption fine structure (XAFS) of the K-absorption edge of two elements. High-resolution XRD patterns were processed by means of the Rietveld method. Thus, maghemites were studied by XAFS in both Fe and Cr K-edges to clarify the short-range structure of the investigated systems. Pre-edge decomposition and theoretical modeling of X-ray absorption near edge structure transitions were performed. The extended X-ray absorption fine structure (EXAFS) spectra were fitted considering the facts that the central atom of Fe is able to occupy octahedral and tetrahedral sites, each with a weight adjustment, while Cr occupies only octahedral sites. Interatomic distances were determined for x = 1, by fitting simultaneously both Fe and Cr K-edges average EXAFS spectra. The results showed that the cation vacancies tend to follow a regular pattern within the structure of the iron-chromium maghemite (FeCrO3).
Dehydration and dehydroxylation of C-S-H phases synthesized on silicon wafers
NASA Astrophysics Data System (ADS)
Giraudo, Nicolas; Bergdolt, Samuel; Laye, Fabrice; Krolla, Peter; Lahann, Joerg; Thissen, Peter
2018-03-01
In this work, the synthesis of specific ultrathin Calcium-Silicate-Hydrate (C-S-H) phases on silicon wafers and their transformation into C-S phases is achieved. Specific mineral phases are identified, and the synthesis is successful controlled. Samples are investigated by means of Fourier Transform Infrared (FTIR) spectroscopy and X-ray Diffraction (XRD) and the results are analyzed based on first-principles calculations. When C-S-H phases are transformed into C-S phases, only a few reflexes are detected on XRD, and the coherent scattering domains decrease with the increment of the temperature and time of exposure. This behavior is explained by the Ca/Si changes, which are identified by changes in the FTIR spectra. A thermodynamic analysis is performed with the help of first-principles calculations to underline the influence of the calcium-to-silicon (Ca/Si) ratio in the process of dehydroxylation. To increase the Ca/Si ratio water is partially substituted by methanol at the synthesis. This is observed in the FTIR spectra and is confirmed by lower temperatures of dehydroxylation. The catalytic nature of calcium towards the dehydroxylation is confirmed. The core of this work lies in the preparation of a model, which perfection makes possible to model reactivity, stability and mechanical properties using first-principles calculations, and is the starting point for the synthesis of many others.
A Fourier-Transform Infrared Study of Biochar Aging in Soils
Singh, B.; Fang, Y.; Johnston, C.T.
2018-01-01
We used diffuse reflectance Fourier-transform infrared (DR-FTIR) spectroscopy, X-ray diffraction (XRD), and chemical and isotopic analyses to characterize the light fraction of four contrasting soils (control and biocharamended soils) to determine changes in biochar properties after aging. Two Eucalyptus saligna Sm. wood biochars, produced at 450°C (B450) and 550°C (B550), were incubated separately in each of the four soils for up to 12 mo at 20, 40, and 60°C. Total C and isotopic (δ13C) methods were used to quantify the amounts of biochar C and native C mineralized during incubation. The DR-FTIR spectra of the light fraction showed distinct absorption bands representing native soil organic C, biochar C, and mineral constituents present in the soils; the mineral bands were consistent with XRD data of the clay fraction of the four soils. Analysis of the DR-FTIR spectra in the ν(C–H) bands showed that the ratio of the aromatic ν(C–H) bands systematically increased relative to the aliphatic ν(C–H) bands with increasing mineralization of biochar C in the B550 amended soils, and this relationship was unique for each soil type. In contrast, this relationship was not observed for the B450 amended soils that contained a relatively smaller proportion of aromatic C. PMID:29657354
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Weihuan; Zhang, Yuepin, E-mail: zhangyuepin@nbu.edu.cn; Ouyang, Shaoye
2015-01-14
Eu{sup 2+} doped transparent oxyfluoride glass ceramics containing BaGdF{sub 5} nanocrystals were successfully fabricated by melt-quenching technique under a reductive atmosphere. The structure of the glass and glass ceramics were investigated by differential scanning calorimetry, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The luminescent properties were investigated by transmission, excitation, and emission spectra. The decay time of the Gd{sup 3+} ions at 312 nm excited with 275 nm were also investigated. The results of XRD and TEM indicated the existence of BaGdF5 nanocrystals in the transparent glass ceramics. The excitation spectra of Eu{sup 2+} doped glass ceramics showed an excellent overlapmore » with the main emission region of an ultraviolet light-emitting diode (UV-LED). Compared with the as-made glass, the emission of glass ceramics is much stronger by a factor of increasing energy transfer efficiency from Gd{sup 3+} to Eu{sup 2+} ions, the energy transfer efficiency from Gd{sup 3+} to Eu{sup 2+} ions was discussed. In addition, the chromaticity coordinates of glass and glass ceramics specimens were also discussed, which indicated that the Eu{sup 2+} doped BaGdF{sub 5} glass ceramics may be used as a potential blue-emitting phosphor for UV-LED.« less
NASA Astrophysics Data System (ADS)
Sharma, Vishal; Das, Amrita; Kumar, Vijay; Kumar, Vinay; Verma, Kartikey; Swart, H. C.
2018-04-01
This work investigates the structural, optical and photometric characterization of a Eu2+/Dy3+ doped calcium aluminates phosphor (CaAl2O4: Eu2+/Dy3+) for finger and lip print detections. Synthesis of CaAl2O4: Eu2+/Dy3+ (CAED) phosphors were carried out via a combustion synthesis method with urea as a fuel. Eu2+/Dy3+ doped CaAl2O4 phosphors have been studied with X-ray diffraction (XRD, Energy Dispersive X-Ray Spectroscopy Selected Area Diffraction (SAED) and High resolution Transmission Electron Microscope (HR-TEM). The XRD pattern shows that the synthesized Eu2+/Dy3+ doped CaAl2O4 phosphor have a single monoclinic structure and show that the addition of the dopant/co-dopants didn't change the crystal structure. The formation of monoclinic phase was confirmed by the selected area diffraction pattern. The TEM micrograph displays the morphology of the synthesized Eu2+/Dy3+ doped CaAl2O4 phosphors as spherical particles with an average particle size of 33 nm. The optical band gap was calculated using the diffuse reflectance for the synthesized nanophosphor powders. The photoluminescence emission spectra was recorded for the synthesized powder, with an excitation wavelength of 326 nm and the major bands was recorded at 447 nm corresponding to the blue color and two minor bands were recorded at 577 nm and 616 nm. To the best of our knowledge, this work is the first to show the use of CaAl2O4: Eu2+/Dy3+ nanophosphor in developing latent fingerprint and lip print effectively.
Roosevelt Hot Springs, Utah FORGE X-Ray Diffraction Data
Nash, Greg; Jones, Clay
2018-02-07
This dataset contains X-ray diffraction (XRD) data taken from wells and outcrops as part of the DOE GTO supported Utah FORGE project located near Roosevelt Hot Springs. It contains an Excel spreadsheet with the XRD data, a text file with sample site names, types, and locations in UTM, Zone 12, NAD83 coordinates, and a GIS shapefile of the sample locations with attributes.
Habibi, Mohammad Hossein; Mardani, Maryam
2015-02-25
Binary zinc tin oxide nano-composite was synthesized by a facile sol-gel method using simple precursors from the solutions consisting of zinc acetate, tin(IV) chloride and ethanol. Effect of annealing temperature on optical and structural properties was investigated using X-ray diffraction (XRD), diffuse reflectance spectra (DRS), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). XRD results revealed the existence of the ZnO and SnO2 phases. FESEM results showed that binary zinc tin oxide nano-composites ranges from 56 to 60 nm in diameter at 400°C and 500°C annealing temperatures respectively. The optical band gap was increased from 2.72 eV to 3.11 eV with the increasing of the annealing temperature. FTIR results confirmed the presence of zinc oxide and tin oxide and the broad absorption peaks at 3426 and 1602 cm(-1) can be ascribed to the vibration of absorptive water, and the absorption peaks at 546, 1038 and 1410 cm(-1) are due to the vibration of Zn-O or Sn-O groups in binary zinc tin oxide. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, D. G.; Tang, X. G.; Wu, J. B.; Zhang, W.; Liu, Q. X.; Jiang, Y. P.
2011-06-01
Ni 0.5Zn 0.5Fe 2O 4 (NZFO) spinel-type nanoparticles were directly fabricated by the chemical co-precipitation process using metal nitrate and acetate as precursors since nitrogen and carbon would be taken away in the forms of oxynitride and oxycarbide, respectively, after the precursors were annealed and then investigated in detail by employing X-ray diffraction (XRD), magnetic measurement and Raman spectroscopy. XRD analysis indicates that the as-prepared nanocrystals are all of a pure cubic spinel structure with their sizes ranging from 20.8 to 53.3 nm, as well as peaks of some samples shifting to lower angles due to lattice expansion. Calculations from the derived XRD data indicate that the activation energy is 30.83 kJ/mol. The magnetic measurements show that these samples are superparamagnetic. The saturation magnetization increases with annealing temperature, which may be explained by super-exchange interactions of Fe ions occurring at A- and B-sites. The variation of coercivity with particle size is interpreted on the basis of domain structure and crystal anisotropy. Furthermore, these nanoparticles exhibit a redshift phenomenon at lower temperatures seen in the Raman spectra, which could be related to ionic substitution.
Effects of copper on the preparation and characterization of Na-Ca-P borate glasses.
Shailajha, S; Geetha, K; Vasantharani, P; Sheik Abdul Kadhar, S P
2015-03-05
Glasses in the system Na2O-CaO-B2O3-P2O5: CuO have been prepared by melt quenching at 1200°C and rapidly cooling at room temperature. The structural, optical and thermal properties have been investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectroscopy, thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform infrared (FTIR) spectroscopy, high resolution scanning electron microscopy (HRSEM) with energy dispersive X-ray (EDX) spectroscopy and high resolution transmission electron microscope (HRTEM) with energy dispersive X-ray (EDAX). The amorphous and crystalline nature of these samples was verified by XRD. Glass transition, crystallization and thermal stability were determined by TG-DTA investigations. Direct optical energy band gaps before and after doping with different percents of copper oxide were evaluated from 4.81eV to 2.99eV indicated the role of copper in the glassy matrix by UV spectra. FTIR spectrum reveals characteristic absorption bands due to various groups of triangular and tetrahedral borate network. Due to the amorphous nature, the particles like agglomerates on the glass surface were investigated by the HRSEM analysis. The crystalline nature of the samples in XRD is confirmed by SAED pattern using HRTEM. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yahui; Zhang, Huayu; Wu, Bowen; Guo, Zhuo
2017-12-01
A kind of coating nanostructure, Ag nanoparticles coated with multilayered reduced graphene oxide (RGO), is fabricated by employing a three-step reduction method in an orderly manner, which is significantly different from the conventional structures that are simply depositing or doping with Ag nanoparticles on RGO via chemical reduction. The as-prepared nanostructure is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electronic diffraction (SEAD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results show that the obtained Ag/RGO nanostructure is observed to be a perfect coating structure with well dispersed Ag particles, which is responsible for the remarkable oxidation resistance. The results of XPS spectra indicate the content of metallic Ag is far greater than that of Ag oxides despite of prolonged exposure to the air, which fully demonstrate the excellent stability of thus coating nanostructure.
de la Parra-Arciniega, Salomé M; Garcia-Gomez, Nora A; Garza-Tovar, Lorena L; García-Gutiérrez, Domingo I; Sánchez, Eduardo M
2017-05-01
In this work, an easy, fast and environmentally friendly method to obtain Bi 2 S 3 nanostructures with sphere-like morphology is introduced. The promising material was successfully synthesized by a sonochemical route in 20% 1-ethyl-3-methylimidazolium ethyl sulfate [EMIM][EtSO 4 ] ionic liquid solution (IL). Morphological studies by electron microscopy (SEM and TEM) show that the use of IL in the synthesis of Bi 2 S 3 favors the formation of nanocrystals non-agglomerated. Micro Raman and energy dispersive X-ray spectroscopy (EDXS) were used to determine the composition and purity of the synthesized material. X-ray powder diffraction (XRD) and selective area electron diffraction (SAED) revealed that ultrasonic radiation accelerated the crystallization of Bi 2 S 3 into orthorhombic bismuthinite structure. The band gap calculated from the diffuse reflectance spectra (DRS) was found to be 1.5eV. Copyright © 2016 Elsevier B.V. All rights reserved.
Teng, Fei; Yao, Wenqing; Zheng, Youfei; Ma, Yutao; Xu, Tongguang; Gao, Guizhi; Liang, Shuhui; Teng, Yang; Zhu, Yongfa
2008-09-15
The hollow Co(3)O(4) microspheres (HCMs) were prepared by the carbonaceous templates, which did not need the surface pretreatment. The chemiluminescence (CL) and catalytic properties for CO oxidation over these hollow samples were evaluated. The samples were characterized by scanning electron microscopy (SEM), energy disperse spectra (EDS), transmission electron microscopy (TEM), selected area electron diffraction (ED), X-ray diffraction (XRD), temperature-programmed desorption (TPD) and N(2) adsorption. The influences of filter' band length, flow rate of gas, test temperature, and particle structure on CL intensities were mainly investigated. It was found that compared with the solid Co(3)O(4) particles (SCPs), HCMs had a stronger CL intensity, which was ascribed to its hollow structure; and that CL properties of the catalysts were well correlated with their reaction activities. Moreover, HCMs were used to fabricate a highly sensitive gas detector, which is a rapid and effective method for the selection of catalysts or the detection of environmental deleterious gases.
NASA Astrophysics Data System (ADS)
Huaqin, Wang; Shiyuan, Zhang; Tongzheng, Jin; Shiying, Han; Dirong, Qiu; Hao, Wang; Ningsheng, Zhou
In this paper the differences in diffraction intensities from some crystal planes in the X-ray diffraction patterns of high Tc Y-Ba-Cu-O system superconductors prepared by different processing conditions and the difference among various structure cells in references are interpreted using computer fitting. The results suggest that there exists two structure cells in the single phase YBa2Cu3O7-x samples. Both structure cells have the same crystal symmetry and almost the same lattice parameters, a=3.821Å, b=3.892Å and c=11.676Å, but the different distortion degree of Cu2-O plane. According to EPR spectra measured on the same samples, it is considered that the improvement of superconductivity for the samples prepared by two-step annealing in flowing oxygen may be related to concentration of the structure cell with more serious distortion on the Cu2-O plane.
NASA Technical Reports Server (NTRS)
Morris, R. V.; Rampe, E. B.; Graff, T. G.; Archer, P. D., Jr.; Le, L.; Ming, D. W.; Sutter, B.
2015-01-01
The Mars Science Laboratory (MSL) CheMin instrument on the Curiosity rover is a transmission X-ray diffractometer (Co-Kalpha radiation source and a approx.5deg to approx.52deg 2theta range) where the analyzed powder samples are constrained to have discrete particle diameters <150 microns by a sieve. To date, diffraction patterns have been obtained for one basaltic soil (Rocknest (RN)) and four drill fines of coherent rock (John Klein (JK), Cumberland (CB), Windjana (WJ), and Confidence Hills (CH)). The CheMin instrument has detected and quantified the abundance of both primary igneous (e.g., feldspar, olivine, and pyroxene) and secondary (e.g., Ca-sulfates, hematite, akaganeite, and Fe-saponite) minerals. The diffraction patterns of all CheMin samples are also characterized by a broad diffraction band centered near 30deg 2theta and by increasing diffraction intensity (scattering continuum) from approx.15deg to approx.5deg, the 2theta minimum. Both the broad band and the scattering continuum are attributed to the presence of an XRD amorphous component. Estimates of amorphous component abundance, based on the XRD data itself and on mass-balance calculations using APXS data crystalline component chemistry derived from XRD data, martian meteorites, and/or stoichiometry [e.g., 6-9], range from approx.20 wt.% to approx.50 wt.% of bulk sample. The APXSbased calculations show that the amorphous component is rich in volatile elements (esp. SO3) and is not simply primary basaltic glass, which was used as a surrogate to model the broad band in the RN CheMin pattern. For RN, the entire volatile inventory (except minor anhydrite) is assigned to the amorphous component because no volatile-bearing crystalline phases were reported within detection limits [2]. For JK and CB, Fesaponite, basanite, and akaganeite are volatile-bearing crystalline components. Here we report transmission XRD patterns for sulfate and silicate phases relevant to interpretation of MSL-CheMin XRD amorphous components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Cheng-Jun, E-mail: cjsun@aps.anl.gov; Brewe, Dale L.; Heald, Steve M.
X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorptionmore » near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.« less
Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.
Kempgens, Pierre; Britton, Jonathan
2016-05-01
Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr = 2 kHz for TiN, ZrN, and GaN; νr = 1 kHz for InN) and 'high speed' (νr = 15 kHz for TiN; νr = 5 kHz for ZrN; νr = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied. Copyright © 2015 John Wiley & Sons, Ltd.
Moseke, Claus; Gelinsky, Michael; Groll, Jürgen; Gbureck, Uwe
2013-04-01
A model system for the precipitation of hydroxyapatite (HA) from saturated solutions at basic pH was utilized to investigate the effects of V, Co, and Cu ions on crystallography and stoichiometry of the produced apatites. X-ray diffraction (XRD) was applied to analyze phase composition and crystallinity of powders obtained with different metal ion concentrations and annealed at different sintering temperatures. This procedure used the temperature-dependent phase transitions and decompositions of calcium phosphates to analyze the particular influences of the metal ions on apatite mineralization. Comparative XRD measurements showed that all metal ion species reduced crystallinity and crystallite size of the produced apatites. Furthermore the transformation of amorphous calcium phosphate (ACP) to HA was partially inhibited, as was deduced from the formation of α-tricalcium phosphate (α-TCP) peaks in XRD patterns of the heated powders as well as from the reduced intensity of the OH stretch vibration in FTIR spectra. The thermally induced formation of β-TCP indicated a significantly reduced Ca/P ratio as compared to stoichiometric HA. This effect was more pronounced with rising metal ion content. In addition, the appearance of metal oxides in the XRD patterns of samples heated to higher temperatures indicated the incorporation of metal ions in the precipitated apatites. Peak shifts showed that both the apatitic as well as the β-TCP phase apparently had incorporated metal ions. Copyright © 2012 Elsevier B.V. All rights reserved.
1991-06-01
GROUP SUBGROUP X-ray Diffraction, XRD, TiAI, titanium , aluminum, bonding characteristics, titanium aluminides , Debye-Waller temperature factor...XRD Powder Particles (575X) .............. 47 viii I. INTRODUCTION Titanium aluminides are recognized for their high specific strength, particularly at...bonding characteristics of binary titanium aluminides . Upon the introduction of a third element to the system, a rearrangement of the valence
Real time neutron diffraction and NMR of the Empress II glass-ceramic system.
O'Donnell, M D; Hill, R G; Karpukhina, N; Law, R V
2011-10-01
This study reports real time neutron diffraction on the Empress II glass-ceramic system. The commercial glass-ceramics was characterized by real time neutron diffraction, ³¹P and ²⁹Si solid-state MAS-NMR, DSC and XRD. On heating, the as-received glass ceramic contained lithium disilicate (Li₂Si₂O₅), which melted with increasing temperature. This was revealed by neutron diffraction which showed the Bragg peaks for this phase had disappeared by 958°C in agreement with thermal analysis. On cooling lithium metasilicate (Li₂SiO₃) started to form at around 916°C and a minor phase of cristobalite at around 852°C. The unit cell volume of both Li-silicate phases increased linearly with temperature at a rate of +17×10⁻³ ų.°C⁻¹. Room temperature powder X-ray diffraction (XRD) of the material after cooling confirms presence of the lithium metasilicate and cristobalite as the main phases and shows, in addition, small amount of lithium disilicate and orthophosphate. ³¹P MAS-NMR reveals presence of the lithiorthophosphate (Li₃PO₄) before and after heat treatment. The melting of lithium disilicate on heating and crystallisation of lithium metasilicate on cooling agree with endothermic and exotermic features respectively observed by DSC. ²⁹Si MAS-NMR shows presence of lithium disilicate phase in the as-received glass-ceramic, though not in the major proportion, and lithium metasilicate in the material after heat treatment. Both phases have significantly long T₁ relaxation time, especially the lithium metasilicate, therefore, a quantitative analysis of the ²⁹Si MAS-NMR spectra was not attempted. Significance. The findings of the present work demonstrate importance of the commercially designed processing parameters in order to preserve desired characteristics of the material. Processing the Empress II at a rate slower than recommended 60°C min⁻¹ or long isothermal hold at the maximal processing temperature 920°C can cause crystallization of lithium metasilicate and cristobalite instead of lithium disilicate as major phase. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Synthesis of Mn-doped ZnS architectures in ternary solution and their optical properties
NASA Astrophysics Data System (ADS)
Wang, Xinjuan; Zhang, Qinglin; Zou, Bingsuo; Lei, Aihua; Ren, Pinyun
2011-10-01
Mn-doped ZnS sea urchin-like architectures were fabricated by a one-pot solvothermal route in a ternary solution made of ethylenediamine, ethanolamine and distilled water. The as-prepared products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and photoluminescence spectra (PL). It was demonstrated that the as-prepared sea urchin-like architectures with diameter of 0.5-1.5 μm were composed of nanorods, possessing a wurtzite structures. The preferred growth orientation of nanorods was found to be the [0 0 2] direction. The PL spectra of the Mn-doped ZnS sea urchin-like architectures show a strong orange emission at 587 nm, indicating the successful doping of Mn 2+ ions into ZnS host. Ethanolamine played the role of oriented-assembly agent in the formation of sea urchin-like architectures. A possible growth mechanism was proposed to explain the formation of sea urchin-like architectures.
SrAl2O4:Eu2+ (1%) luminescence under UV, VUV and electron beam excitation
NASA Astrophysics Data System (ADS)
Nazarov, M.; Mammadova, S.; Spassky, D.; Vielhauer, S.; Abdullayeva, S.; Huseynov, A.; Jabbarov, R.
2018-01-01
This paper reports the luminescence properties of nanosized SrAl2O4:Eu2+ (1%) phosphors. The samples were prepared by combustion method at 600 °C, followed by annealing of the resultant combustion ash at 1000 °C in a reductive (Ar + H2) atmosphere. X-ray diffraction (XRD), photo luminescence (PL) and cathodoluminescence (CL) analysis and thermal stimulated luminescence (TSL) method were applied to characterize the phosphor. For the first time a peak at 375 nm was observed in CL spectra of SrAl2O4:Eu2+ (1%) nanophosphors. Luminescence excitation spectra analysis have shown that this peak is related to crystal defects. Also in TSL curve one strong peak was observed in the region above room temperature (T = 325 K), which is attributed to lattice defects, namely oxygen vacancies. A green LED was fabricated by the combination of the SrAl2O4:Eu2+ (1%) nanosized phosphor and a 365 nm UV InGaN chip.
Warren, Frederick J; Gidley, Michael J; Flanagan, Bernadine M
2016-03-30
Starch has a heterogeneous, semi-crystalline granular structure and the degree of ordered structure can affect its behaviour in foods and bioplastics. A range of methodologies are employed to study starch structure; differential scanning calorimetry, (13)C nuclear magnetic resonance, X-ray diffraction and Fourier transform infrared spectroscopy (FTIR). Despite the appeal of FTIR as a rapid, non-destructive methodology, there is currently no systematically defined quantitative relationship between FTIR spectral features and other starch structural measures. Here, we subject 61 starch samples to structural analysis, and systematically correlate FTIR spectra with other measures of starch structure. A hydration dependent peak position shift in the FTIR spectra of starch is observed, resulting from increased molecular order, but with complex, non-linear behaviour. We demonstrate that FTIR is a tool that can quantitatively probe short range interactions in starch structure. However, the assumptions of linear relationships between starch ordered structure and peak ratios are overly simplistic. Copyright © 2015 Elsevier Ltd. All rights reserved.
Synthesis and Luminescence Properties of Core/Shell ZnS:Mn/ZnO Nanoparticles.
Jiang, Daixun; Cao, Lixin; Liu, Wei; Su, Ge; Qu, Hua; Sun, Yuanguang; Dong, Bohua
2009-01-01
In this paper the influence of ZnO shell thickness on the luminescence properties of Mn-doped ZnS nanoparticles is studied. Transmission electron microscopy (TEM) images showed that the average diameter of ZnS:Mn nanoparticles is around 14 nm. The formation of ZnO shells on the surface of ZnS:Mn nanoparticles was confirmed by X-ray diffraction (XRD) patterns, high-resolution TEM (HRTEM) images, and X-ray photoelectron spectroscopy (XPS) measurements. A strong increase followed by a gradual decline was observed in the room temperature photoluminescence (PL) spectra with the thickening of the ZnO shell. The photoluminescence excitation (PLE) spectra exhibited a blue shift in ZnO-coated ZnS:Mn nanoparticles compared with the uncoated ones. It is shown that the PL enhancement and the blue shift of optimum excitation wavelength are led by the ZnO-induced surface passivation and compressive stress on the ZnS:Mn cores.
Synthesis and Photoluminescence of Single-Crystalline Fe(III)-Doped CdS Nanobelts.
Kamran, Muhammad Arshad; Zou, Bingsuo; Majid, A; Alharbil, Thamer; Saeed, M A; Abdullah, Ali; Javed, Qurat-ul-ain
2016-04-01
In this paper, we report the synthesis and optical properties of Fe(III) doped CdS nanobelts (NBs) via simple Chemical Vapor Deposition (CVD) technique to explore their potential in nano-optics. The energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis manifested the presence of Fe(III) ions in the NBs subsequently confirmed by the peak shifting to lower phonon energies as recorded by Raman spectra and shorter lifetime in ns. Photoluminescence (PL) spectrum investigations of the single Fe(III)-doped CdS NBs depicted an additional PL peak centered at 573 nm (orange emission) in addition to the bandedge(BE) emission. The redshift and decrease in the BE intensity of the PL peaks, as compared to the bulk CdS, confirmed the quenching of spectra upon Fe doping. The synthesis and orange emission for Fe-doped CdS NBs have been observed for the first time and point out their potential in nanoscale devices.
Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping
2017-03-07
Transparent Er 3+ -doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH - ) content. Enhanced 2.7 μm emission was achieved from Er 3+ -doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO 2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er 3+ -doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10 -20 cm 2 ). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers.
Zhou, Xianju; Zhao, Xiaoqi; Wang, Yongjie; Wu, Bing; Shen, Jun; Li, Li; Li, Qingxu
2014-12-01
Two new lanthanide complexes with general formula [Ln2(carprofen)6(DMF)2] (Ln = Eu (1), Tb (2), DMF = N,N-dimethylformamide, carprofen = 6-chloro-α-methylcarbazole-2-acetic acid) have been synthesized by a hydrothermal method. Complex 1 was characterized by single-crystal X-ray diffraction (XRD), and it was found to crystallize in the monoclinic space group C2/c. The coordination of the ligand to the lanthanide ion has been investigated by Fourier-transform infrared (FTIR) spectra and ultraviolet-visible (UV-vis) absorption spectra. Complex 1 emits red light, but the antenna effect of the ligand is not effective, whereas complex 2 presents intense green emission with effective energy transfer from the ligand. The different performance of the two complexes is related to the energy matching between the excited states of the lanthanide ion and the triplet state of the ligand. The intramolecular energy transfer mechanisms are also discussed.
Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping
2017-01-01
Transparent Er3+-doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH−) content. Enhanced 2.7 μm emission was achieved from Er3+-doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er3+-doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10−20 cm2). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers. PMID:28266570
Antibacterial studies of novel Cu2WS4 ternary chalcogenide synthesized by hydrothermal process
NASA Astrophysics Data System (ADS)
Kannan, Selvaraj; Vinitha, Perumal; Mohanraj, Kannusamy; Sivakumar, Ganesan
2018-02-01
This is the first report for the synthesis of L-cysteine mediated Cu2WS4 nanoparticles for different temperatures by an inexpensive and less pollutive hydrothermal method. The as-synthesized particles were characterized by XRD, FTIR, FESEM, UV-vis diffuse reflectance and PL spectra technique respectively. The phase purity and structural confirmation were studied by X-ray powder diffraction technique. It is observed that the synthesis temperature affecting the crystalline size. The optical analysis of the Cu2WS4 nanoparticles showed direct band gap in the range of 2.1-2.3 eV. The intensity of the PL emission spectra decreases with increase of reaction temperature. The antibacterial performance of Cu2WS4 nanoparticles were investigated by agar well diffusion method and the results confirm that the antibacterial activity of Cu2WS4 against Gram-positive (B. subtilis, M. luteus) and Gram-negative (E. coli, P. aeruginosa and K. pneumoniae) bacteria.
Thanh, Dinh Thi Mai; Nam, Pham Thi; Phuong, Nguyen Thu; Que, Le Xuan; Anh, Nguyen Van; Hoang, Thai; Lam, Tran Dai
2013-05-01
Hydroxyapatite (HAp) coatings were prepared on 316L stainless steel (316LSS) substrates by electrochemical deposition in the solutions containing Ca(NO3)2·4H2O and NH4H2PO4 at different electrolyte concentrations. Along with the effect of precursor concentration, the influence of temperature and H2O2 content on the morphology, structure and composition of the coating was thoroughly discussed with the help of X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectra. The in vitro tests in simulated body fluids (SBF) were carried out and then the morphological and structural changes were estimated by SEM and electrochemical techniques (open circuit potential, polarization curves, Nyquist and Bode spectra measurements). Being simple and cost-effective, this method is advantageous for producing HAp implant materials with good properties/characteristics, aiming towards in vivo biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.
The New Peruvian Meteorite Carancas: Mössbauer Spectroscopy and X-Ray Diffraction Studies
NASA Astrophysics Data System (ADS)
Munayco, P.; Munayco, J.; Varela, M. E.; Scorzelli, R. B.
2013-02-01
The Carancas meteorite fell on 15 September 2007 approximately 10 km south of Desaguadero, near Lake Titicaca, Peru, producing bright lights, clouds of dust in the sky and intense detonations. The Carancas meteorite is classified as a H4-5 ordinary chondrite with shock stage S3 and a degree of weathering W0. The Carancas meteorite is characterized by well defined chondrules composed either of olivine or pyroxene. The Mössbauer spectra show an overlapping of paramagnetic and magnetic phases. The spectra show two quadrupole doublets associated to olivine and pyroxene; and two magnetic sextets, associated with the primary phases kamacite/taenite and Troilite (Fe2+). Metal particles were extracted from the bulk powdered samples exhibit only kamacite and small amounts of the intergrowth tetrataenite/antitaenite. X-Ray diffractogram shows the primary phases olivine, pyroxene, troilite, kamacite, diopside and albite. Iron oxides has not been detected by Mössbauer spectroscopy or XRD as can be expected for a meteorite immediately recovered after its fall.
In situ X-ray diffraction analysis of (CF x) n batteries: signal extraction by multivariate analysis
Rodriguez, Mark A.; Keenan, Michael R.; Nagasubramanian, Ganesan
2007-11-10
In this study, (CF x) n cathode reaction during discharge has been investigated using in situ X-ray diffraction (XRD). Mathematical treatment of the in situ XRD data set was performed using multivariate curve resolution with alternating least squares (MCR–ALS), a technique of multivariate analysis. MCR–ALS analysis successfully separated the relatively weak XRD signal intensity due to the chemical reaction from the other inert cell component signals. The resulting dynamic reaction component revealed the loss of (CF x) n cathode signal together with the simultaneous appearance of LiF by-product intensity. Careful examination of the XRD data set revealed an additional dynamicmore » component which may be associated with the formation of an intermediate compound during the discharge process.« less
Optical characteristics of butyl rubber loaded with general purpose furnace (GPF) carbon black
NASA Astrophysics Data System (ADS)
Alfaramawi, K.
2018-06-01
Optical characteristics of butyl rubber/GPF carbon black (BR/GPFCB) composites with carbon black (CB) concentrations 40, 60, 80 and 100 phr (part per hundred part of rubber) were investigated. The structure of the BR/GPFCB composites was analyzed by x-ray diffraction (XRD). All samples with various CB showed diffraction peaks around 2θ = 14°, 25° and 44° which correspond to interlayer spacing of 6.23 Å, 3.62 Å and 2.10 Å respectively. The peaks were shifted toward larger 2θ angles with increasing CB concentration, indicating a decrease in layer spacing. Ultraviolet and visible (UV–vis) absorbance spectra in the range from 200 nm to 800 nm of the BR/GPFCB composites were studied. In the UV range of the spectra, an absorption edge was recorded. Direct and indirect optical band gaps for the composites were evaluated. The direct band gap values were found-as shown to be slightly greater than that of the indirect ones. The reflectance spectra in the UV optical range were demonstrated. Most of the incident UV light was absorbed inside the composites while a very small fraction was reflected and transmitted. This was attributed to the high UV absorption property of the CB filler. The refractive index of the composite was calculated from the reflectance data. The dependence of the real and imaginary parts of the complex dielectric constant on the incident light energy was characterized. The dielectric loss factor was found to decrease with increasing incident photon energy until approximately 5.5 eV (around the absorption edge) and then it increased rapidly.
Guo, Yujiao; Cui, Kuixin; Hu, Mingyi; Jin, Shengming
2017-08-01
The wire-like Fe 3+ -doped (BiO) 2 CO 3 photocatalyst was synthesized by a hydrothermal method. The photocatalytic property of Fe 3+ -doped (BiO) 2 CO 3 nanowires was evaluated through degradation of sodium isopropyl xanthate under UV-visible light irradiation. The as-prepared Fe 3+ -doped (BiO) 2 CO 3 nanowires were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) in detail. The results of XRD showed that the crystallinity of (BiO) 2 CO 3 nanowires decreased when Fe 3+ ions were introduced into the solution system. XPS results illustrated that xanthate could be absorbed on the surface of Fe 3+ -doped (BiO) 2 CO 3 nanowires to produce BiS bond at the beginning of the reaction, which could broaden the visible light absorption. FTIR spectra confirmed the formation of SO 4 2- after photocatalytic decomposition of xanthate solution. The Fe 3+ -doped (BiO) 2 CO 3 nanowires showed an enhanced photocatalytic activity for decomposition of xanthate due to the narrower band gap and larger BET surface area, comparing with pure (BiO) 2 CO 3 nanowires. By the results of UV-vis spectra of the solution and FTIR spectra of recycled Fe 3+ -doped (BiO) 2 CO 3 , the xanthate was oxidized completely into CO 2 and SO 4 2- . The photocatalytic degradation process of xanthate followed a pseudo-second-order kinetics model. The mechanism of enhanced photocatalytic activity was proposed as well. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaky, Kawa M.; Lakshminarayana, G.; Baki, S. O.; Kityk, I. V.; Taufiq-Yap, Y. H.; Mahdi, M. A.
In order to improve tellurite glass stability to be applicable for optical fiber amplifier applications, glasses with the composition of (70 - x)TeO2. (10)ZnO. (10)WO3. (5)Na2O. (5)TiO2. (x)Bi2O3 (x = 1, 2, 3, 4, and 5 mol%) have been produced and characterized using the related methods. Structural properties were investigated using X-ray diffraction (XRD) which confirms the non-crystalline structure and scanning electron microscopy (SEM) micrographs also confirm the XRD results. The energy dispersive X-ray (EDX) analysis profiles show that all the mentioned elements are present in the prepared glasses. Following the IR spectra, all the tellurium bonds such as stretching vibrations of TeO4 tbp and TeO3/TeO3+1 unit are revealed. Raman spectra confirm the presence of different functional groups, actually, it shows bands mainly in four spectral regions: R1 (65-150) cm-1, R2 (280-550) cm-1, R3 (880-950) cm-1 and R4 (916-926) cm-1 and the identified bands are assigned to respective molecular groups. The thermal study was carried out using Differential scanning calorimetry (DSC) which indicates good thermal stability of the synthesized glasses with increasing Bi concentration. From the optical absorption spectra, we evaluated cut-off edge wavelengths and found increasing cutoff wavelength with an increase in Bi2O3 concentration. In the UV-Visible region, optical band gap energy and allowed transitions were investigated using three methods; direct, indirect, and absorption spectrum fitting (ASF), and band gaps from indirect and ASF were matched.
NASA Astrophysics Data System (ADS)
Sreelekha, N.; Subramanyam, K.; Amaranatha Reddy, D.; Murali, G.; Rahul Varma, K.; Vijayalakshmi, R. P.
2016-12-01
The present work is planned for a simple, inexpensive and efficient approach for the synthesis of Cu1-xFexS (x = 0.00, 0.01, 0.03, 0.05 and 0.07) nanoparticles via simplistic chemical co-precipitation route by using ethylene diamine tetra acetic acid (EDTA) as a capping molecules. As synthesized nanoparticles were used as competent catalysts for degradation of rhodamine-B organic dye pollutant. The properties of prepared samples were analyzed with energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible optical absorption spectroscopy, Fourier transform infrared (FTIR) spectra, Raman spectra and vibrating sample magnetometer (VSM). EDAX spectra corroborated the existence of Fe in prepared nanoparticles within close proximity to stoichiometric ratio. XRD, FTIR and Raman patterns affirmed that configuration of single phase hexagonal crystal structure as that of (P63/mmc) CuS, without impurity crystals. The average particle size estimated by TEM scrutiny is in the assortment of 5-10 nm. UV-visible optical absorption measurements showed that band gap narrowing with increasing the Fe doping concentration. VSM measurements revealed that 3% Fe doped CuS nanoparticles exhibited strong ferromagnetism at room temperature and changeover of magnetic signs from ferromagnetic to the paramagnetic nature with increasing the Fe doping concentration in CuS host lattice. Among all Fe doped CuS nanoparticles, 3% Fe inclusion CuS sample shows better photocatalytic performance in decomposition of RhB compared with the pristine CuS. Thus as synthesized Cu0·97Fe0·03S nanocatalysts are tremendously realistic compounds for photocatalytic fictionalization in the direction of organic dye degradation under visible light.
Using Spectroscopy to Infer the Eruption Style and Volatile History of Volcanic Tephras
NASA Astrophysics Data System (ADS)
McBride, M. J.; Horgan, B. H. N.; Rowe, M. C.; Wall, K. T.; Oxley, B. M.
2017-12-01
The interaction between volatiles and magma strongly influences volcanic eruption styles, and results in an increase in the glass component of volcanic tephra. On Earth, both phreatomagmatic and magmatic explosive eruptions create glassy tephras. Phreatomagmatic eruptions form abundant glass by quickly quenching lava through interaction with meteoric water while magmatic eruptions create less glass through slower cooling within larger pyroclasts or eruption columns. Wall et al. (2014) used X-ray diffraction (XRD) of diverse tephra samples to show that glass content correlates with eruption style, as magmatic samples contain less glass than phreatomagmatic samples. While use of XRD is limited to Earth and the Curiosity rover on Mars, orbital spectroscopy is much a more common technique in the exploration of terrestrial bodies. In this study, we evaluate whether or not spectroscopy can be used to infer eruption style and thus volatile history. Visible/near-infrared (VNIR) and thermal-infrared (TIR) spectra were collected of the Wall et al. (2014) tephra samples, and were analyzed for trends related to glass content and thus eruption style. VNIR spectra can detect glass at high abundances as well as hydrothermal alteration minerals produced during interactions with meteoric water. Using TIR, glass abundances can be derived by deconvolving the spectra with a standard spectral library; however, due to the non-unique spectral shape of glass, intermediate to high glass abundances in tephras are difficult to differentiate using TIR alone. Synthetic mixtures of glass and crystalline minerals verify these results. Therefore, the most effective method for determining glass abundance and thus eruption style from volcanic deposits is a combination of VNIR and TIR spectral analysis. Using standard planetary remote sensing instrumentation to infer eruption styles will provide a new window into the volcanic and volatile histories of terrestrial bodies.
NASA Astrophysics Data System (ADS)
Amonpattaratkit, P.; Jantaratana, P.; Ananta, S.
2015-09-01
In this work, the investigation of phase formation, crystal structure, microstructure, microchemical composition and magnetic properties of perovskite (1-x)PFN-xPZT (x=0.1-0.5) multiferroic ceramics derived from a combination of perovskite stabilizer PZT and a wolframite-type FeNbO4 B-site precursor was carried out by using a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analyzer and vibrating sample magnetometer (VSM) techniques. The addition of PZT phase and its concentration have been found to have pronounced effects on the perovskite phase formation, densification, grain growth and magnetic properties of the sintered ceramics. XRD spectra from these ceramics reveal transformation of the (pseudo) cubic into the tetragonal perovskite structure. When increasing PZT content, the degree of perovskite phase formation and the tetragonality value of the ceramics increase gradually accompanied with the variation of cell volume, the M-H hysteresis loops, however, become narrower accompanied by the decrease of maximum magnetization (Mmax), remanent polarization (Mr), and coercive field (HC).
NASA Astrophysics Data System (ADS)
Jeyasingh, T.; Saji, S. K.; Wariar, P. R. S.
2017-07-01
Nanosized pyrochlore material Gadolinium Titanate (Gd2Ti2O7) powder was prepared by modified single step auto-ignition combustion process. The phase formation has been investigated using X-Ray diffraction analysis (XRD). The crystalline pyrochlore phase is further confirmed by the presence of metal-oxygen bonds in the FT-IR spectra. XRD analysis revealed that Gd2Ti2O7 has a cubic structure with Fd3m space group. The combustion powder was sintered to high density (97% of theoretical density) at ˜13000 C for 4h and the surface morphology was examined by Scanning Electron Microscopy (SEM). The optical band gap of Gd2Ti2O7 determined from the absorption spectrum is found to be 4.2 eV, which corresponds to direct allowed transitions. The dielectric measurements were carried out using LCR meter in the radio frequency region at room temperature. The sintered Gd2Ti2O7 has a dielectric constant (Ɛr) = 40 and dielectric loss (tan δ) = 0.01 at 1MHz.
Synthesis and characterization of FeSe1-xTex (x=0, 0.5, 1) superconductors
NASA Astrophysics Data System (ADS)
Zargar, Rayees A.; Hafiz, A. K.; Awana, V. P. S.
2015-08-01
In this study, FeTe1-xSex (x=0,0.5,1) samples were prepared by conventional solid state reaction method and investigated by powder XRD, SEM, Raman and resistivity measurement techniques to reveal the effect of tellurium (Te) substitution in FeSe matrix. Rietveld analysis was performed on room temperature recorded, X-ray diffraction (XRD) patterns of pure FeSe, FeTe and FeSe0.5Te0.5 which shows that all the compounds are crystallized in a tetragonal structure. SEM images show the dense surface morphology. Raman spectra recorded in the range from 100 to 700 cm-1 at ambient temperature has been interpreted by P4/nmm space group of the lattice. The variation in intensity and shift in peak positions of some phonon modes has been discussed on the basis of variation in crystalline field effect by substituting Te in FeSe lattice. The resistivity versus temperature curves reveals that FeSe becomes superconductor at 7 K and FeSe0.5Te0.5 shows superconductivity below 14 K while FeTe is non-superconducting compound.
NASA Astrophysics Data System (ADS)
Hutamaningtyas, Evangelin; Utari; Suharyana; Purnama, Budi; Wijayanta, Agung Tri
2016-08-01
The effects of the synthesis temperature on the crystalline structure and the magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared via coprecipitation are discussed. The synthesis was conducted at temperatures of 75 °C, 85 °C and 95 °C. Fourier transform infrared spectroscopy characterization related to a stretching vibration at a wavenumber of 590 cm-1 indicated the formation of a CoFe2O4 metal oxide. In addition, powder X ray diffraction (XRD) characterization proved that the metal oxide was CoFe2O4. Crystallite sizes calculated using the Scherer formula at the strongest peak of the XRD spectra of the samples synthesized at 75 °C, 85 °C and 95 °C were 32 nm, 43 nm and 50.4 nm, respectively. Finally, the results of the vibrating sample magnetometer characterization showed that the saturation magnetization decreased with increasing synthesis temperature, which is related to the dominant preference of Co2+ over Fe3+ cations at the octahedral sites.
Lin, Tiegui; Wang, Jian; Liu, Gang; Wang, Langping; Wang, Xiaofeng; Zhang, Yufen
2017-01-01
To fabricate high-quality polycrystalline VO2 thin film with a metal–insulator transition (MIT) temperature less than 50 °C, high-power impulse magnetron sputtering with different discharge currents was employed in this study. The as-deposited VO2 films were characterized by a four-point probe resistivity measurement system, visible-near infrared (IR) transmittance spectra, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. The resistivity results revealed that all the as-deposited films had a high resistance change in the phase transition process, and the MIT temperature decreased with the increased discharge current, where little deterioration in the phase transition properties, such as the resistance and transmittance changes, could be found. Additionally, XRD patterns at various temperatures exhibited that some reverse deformations that existed in the MIT process of the VO2 film, with a large amount of preferred crystalline orientations. The decrease of the MIT temperature with little deterioration on phase transition properties could be attributed to the reduction of the preferred grain orientations. PMID:28772990
NASA Astrophysics Data System (ADS)
Hridya, S.; Kavitha, V. S.; Chalana, S. R.; Reshmi Krishnan, R.; Sreeja Sreedharan, R.; Suresh, S.; Nampoori, V. P. N.; Sankararaman, S.; Prabhu, Radhakrishna; Mahadevan Pillai, V. P.
2017-11-01
Barium tungstate films with different Dy3+ doping concentrations, namely 0 wt.%, 1 wt.%, 3 wt.% and 5 wt.%, are deposited on cleaned quartz substrate by radio frequency magnetron sputtering technique and the prepared films are annealed at a temperature of 700°C. The structural, morphological and optical properties of the annealed films are studied using techniques such as x-ray diffraction (XRD), micro-Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and photoluminescence spectroscopy. XRD analysis shows that all the films are well-crystallized in nature with a monoclinic barium tungstate phase. The presence of characteristic modes of the tungstate group in the Raman spectra supports the formation of the barium tungstate phase in the films. Scanning electron microscopic images of the films present a uniform dense distribution of well-defined grains with different sizes. All the doped films present a broad emission in the 390-500 nm region and its intensity increases up to 3 wt.% and thereafter decreases due to usual concentration quenching.
Xing, Mingyang; Li, Xiao; Zhang, Jinlong
2014-01-01
TiO2/graphene (TiO2-x/GR) composites, which are Ti3+ self-doped TiO2 nanorods decorated on boron doped graphene sheets, were synthesized via a simple one-step hydrothermal method using low-cost NaBH4 as both a reducing agent and a boron dopant on graphene. The resulting TiO2 nanorods were about 200 nm in length with exposed (100) and (010) facets. The samples were characterized by X-ray diffraction (XRD), UV-visible diffuse reflectance spectroscopy, X-band electron paramagnetic resonance (EPR), X-ray photoelectron spectra (XPS), transmission electron microscope (TEM), Raman, and Fourier-transform infrared spectroscopy (FTIR). The XRD results suggest that the prepared samples have an anatase crystalline structure. All of the composites tested exhibited improved photocatalytic activities as measured by the degradation of methylene blue and phenol under visible light irradiation. This improvement was attributed to the synergistic effect of Ti3+ self-doping on TiO2 nanorods and boron doping on graphene. PMID:24974890
Nano-sized, quaternary titanium(IV) metal-organic frameworks with multidentate ligands.
Baranwal, Balram Prasad; Singh, Alok Kumar
2010-12-01
Some mononuclear nano-sized, quaternary titanium(IV) complexes having the general formula [Ti(acac)(OOCR)2(SB)] (where Hacac=acetylacetone, R=C15H31 or C17H35, HSB=Schiff bases) have been synthesized using different multidentate ligands. These were characterized by elemental analyses, molecular weight determinations and spectral (FTIR, 1H NMR and powder XRD) studies. Conductance measurement indicated their non-conducting nature which may behave like insulators. Structural parameters like the values of limiting indices h, k, l, cell constants a, b, c, angles α, β, γ and particle size are calculated from powder XRD data for complex 1 which indicated nano-sized triclinic system in them. Bidentate chelating nature of acetylacetone, carboxylate and Schiff base anions in the complexes was established by their infrared spectra. Molecular weight determinations confirmed mononuclear nature of the complexes. On the basis of physico-chemical studies, coordination number 8 was assigned for titanium(IV) in the complexes. Transmission electron microscopy (TEM) and the selected area electron diffraction (SAED) studies indicated spherical particles with poor crystallinity. Copyright © 2010 Elsevier B.V. All rights reserved.
One pot synthesis of pure micro/nano photoactive α-PbO crystals
NASA Astrophysics Data System (ADS)
Bhagat, Dharini; Waldiya, Manmohansingh; Vanpariya, Anjali; Mukhopadhyay, Indrajit
2018-05-01
The present study reports a simple, fast and cost effective precipitation technique for synthesis of pure α-PbO powder. Lead monoxide powder with tetragonal structure was synthesized chemically at an elevated temperature using lead acetate and sodium hydroxide solution bath. XRD powder diffraction was used to find the structural properties as well as phase transition from alpha to beta. Study revealed that synthesized PbO powder was crystalline with tetragonal symmetry, having an average crystallite size of 70 nm and lattice constants; a=3.97Å, b=3.97Å, and c=5.02Å. Phase transition from tetragonal to orthorhombic structure was studied by comparing the XRD data of the annealed samples in the temperature range from 200 °C to 600 °C. UV-Visible spectroscopy was used to find out the optical properties of prepared PbO powder. Diffuse reflectance and absorbance spectra confirmed the formation of α-PbO with obtained direct band gap of 1.9 eV. Synthesized lead monoxide (α-PbO) powder has promising application in energy conversion as well as energy storage applications.
The new 3-(tert-butyl)-1-(2-nitrophenyl)-1H-pyrazol-5-amine: Experimental and computational studies
NASA Astrophysics Data System (ADS)
Cuenú, Fernando; Muñoz-Patiño, Natalia; Torres, John Eduard; Abonia, Rodrigo; Toscano, Rubén A.; Cobo, J.
2017-11-01
The molecular and supramolecular structure of the title compound, 3-(tertbutyl)-1-(2-nitrophenyl)-1H-pyrazol-5-amine (2NPz) from the single crystal X-ray diffraction (SC-XRD) and spectroscopic data analysis is reported. The computational analysis of the structure, geometry optimization, vibrational frequencies, nuclear magnetic resonance and UV-Vis is also described and compared with experimental data. Satisfactory theoretical aspects were made for the molecule using density functional theory (DFT), with B3LYP and B3PW91 functionals, and Hartree-Fock (HF), with 6-311++G(d,p) basis set, using GAUSSIAN 09 program package without any constraint on the geometry. With VEDA 4 software, vibrational frequencies were assigned in terms of the potential energy distribution while, with the GaussSum software, the percentage contribution of the frontier orbitals at each transition of the electronic absorption spectrum was established. The obtained results indicated that optimized geometry could well reflect the molecular structural parameters from SC-XRD. Theoretical data obtained for the vibrational analysis and NMR spectra are consistent with experimental data.
Fontes, Gizele Cardoso; Calado, Verônica Maria Araújo; Rossi, Alexandre Malta; da Rocha-Leão, Maria Helena Miguez
2013-01-01
The aim of this study was to characterize the penicillin-loaded microbeads composed of alginate and octenyl succinic anhydride (OSA) starch prepared by ionotropic pregelation with calcium chloride and to evaluate their in vitro drug delivery profile. The beads were characterized by size, scanning electron microscopy (SEM), zeta potential, swelling behavior, and degree of erosion. Also, the possible interaction between penicillin and biopolymers was investigated by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. The SEM micrograph results indicated a homogeneous drug distribution in the matrix. Also, based on thermal analyses (TGA/DSC), interactions were detected between microbead components. Although FTIR spectra of penicillin-loaded microbeads did not reveal the formation of new chemical entities, they confirmed the chemical drug stability. XRD patterns showed that the incorporated crystalline structure of penicillin did not significantly alter the primarily amorphous polymeric network. In addition, the results confirmed a prolonged penicillin delivery system profile. These results imply that alginate and OSA starch beads can be used as a suitable controlled-release carrier for penicillin. PMID:23862146
Sivakami, R; Dhanuskodi, S; Karvembu, R
2016-01-05
RuO2 nanoparticles (RuO2 NPs) have been successfully synthesized by the hydrothermal method. Structure and the particle size have been determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). UV-Vis spectra reveal that the optical band gap of RuO2 nanoparticles is red shifted from 3.95 to 3.55eV. BET measurements show a high specific surface area (SSA) of 118-133m(2)/g and pore diameter (10-25nm) has been estimated by Barret-Joyner-Halenda (BJH) method. The crystallite size and lattice strain in the samples have been investigated by Williamson-Hall (W-H) analysis assuming uniform deformation, deformation stress and deformation energy density, and the size-strain plot method. All other relevant physical parameters including stress, strain and energy density have been calculated. The average crystallite size and the lattice strain evaluated from XRD measurements are in good agreement with the results of TEM. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mogaddam, N. A. P.; Turan, R.; Alagoz, A. S.
2008-12-15
SiGe nanocrystals have been formed in SiO{sub 2} matrix by cosputtering Si, Ge, and SiO{sub 2} independently on Si substrate. Effects of the annealing time and temperature on structural and compositional properties are studied by transmission electron microscopy, x-ray diffraction (XRD), and Raman spectroscopy measurements. It is observed that Ge-rich Si{sub (1-x)}Ge{sub x} nanocrystals do not hold their compositional uniformity when annealed at high temperatures for enough long time. A segregation process leading to separation of Ge and Si atoms from each other takes place. This process has been evidenced by a double peak formation in the XRD and Ramanmore » spectra. We attributed this phase separation to the differences in atomic size, surface energy, and surface diffusion disparity between Si and Ge atoms leading to the formation of nonhomogenous structure consist of a Si-rich SiGe core covered by a Ge-rich SiGe shell. This experimental observation is consistent with the result of reported theoretical and simulation methods.« less
Graphite to Graphene via Graphene Oxide: An Overview on Synthesis, Properties, and Applications
NASA Astrophysics Data System (ADS)
Hansora, D. P.; Shimpi, N. G.; Mishra, S.
2015-12-01
This work represents a state-of-the-art technique developed for the preparation of graphene from graphite-metal electrodes by the arc-discharge method carried out in a continuous flow of water. Because of continuous arcing of graphite-metal electrodes, the graphene sheets were observed in water with uniformity and little damage. These nanosheets were subjected to various purification steps such as acid treatment, oxidation, water washing, centrifugation, and drying. The pure graphene sheets were analyzed using Raman spectrophotometry, x-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and tunneling electron microscopy (TEM). Peaks of Raman spectra were recorded at (1300-1400 cm-1) and (1500-1600 cm-1) for weak D-band and strong G-band, respectively. The XRD pattern showed 85.6% crystallinity of pure graphite, whereas pure graphene was 66.4% crystalline. TEM and FE-SEM micrographs revealed that graphene sheets were overlapped to each other and layer-by-layer formation was also observed. Beside this research work, we also reviewed recent developments of graphene and related nanomaterials along with their preparations, properties, functionalizations, and potential applications.
Plasma nanocoating of thiophene onto MoS2 nanotubes
NASA Astrophysics Data System (ADS)
Türkaslan, Banu Esencan; Dikmen, Sibel; Öksüz, Lütfi; Öksüz, Aysegul Uygun
2015-12-01
MoS2 nanotubes were coated with conductive polymer thiophene by atmospheric pressure radio-frequency (RF) glow discharge. MoS2 nanotubes were prepared by thermal decomposition of hexadecylamine (HDA) intercalated laminar MoS2 precursor on anodized aluminum oxide template and the thiophene was polymerized directly on surface of these nanotubes as in situ by plasma method. The effect of plasma power on PTh/MoS2 nanocomposite properties has been investigated by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM and EDX), and X-ray diffraction spectroscopy (XRD). The presence of PTh bands in the FTIR spectra of PTh/MoS2 nanotube nanocomposites corresponding XRD results indicates that the polythiophene coating onto MoS2 nanotube. The chemical structure of PTh is not changed when the plasma power of discharge differ from 117 to 360 W. SEM images of nanocomposites show that when the discharge power is increased between 117 and 360 W the average diameter of PTh/MoS2 nanotube nanocomposites are changed and the structure become more uniformly.
NASA Astrophysics Data System (ADS)
Shubha, L. N.; Madhusudana Rao, P.
2016-06-01
The polyaniline/copper oxide (PANI/CuO) nanocomposite was prepared by mixing solutions of polyaniline and copper oxide nanoparticles in dimethyl sulfoxide (DMSO). The synthesized polymer nanocomposites were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and UV-visible spectroscopy. The characteristic peaks in XRD and UV-visible spectra confirmed the presence of CuO in the polymer structure. SEM images indicated morphological changes in the composite matrix as compared to the pristine PANI. The DC conductivity measurements were performed using two-probe method for various temperatures. AC conductivity and dielectric response of the composites were investigated in the frequency range of 102-106Hz using LCR meter. Dielectric permittivity ɛ‧(w) and dielectric loss factor ɛ‧‧(w) were investigated. It was observed that ɛ‧(w) and ɛ‧‧(w) decrease with increase in frequency at all temperatures. At a particular frequency it is observed that both ɛ‧(w) and ɛ‧‧(w) increase with increase in temperature. It was also observed that AC conductivity increased with increase in frequency and temperature.
Effects of structural distortion induced by Sc substitution in LuFe2O4
NASA Astrophysics Data System (ADS)
Jeong, Jinwon; Noh, Han-Jin; Kim, Sung Baek
2014-06-01
We have studied the correlation between the structural distortion and the electronic/magnetic properties in single-crystalline (Lu,Sc)Fe2O4 (Sc = 0.05 and 0.3) by using X-ray diffraction (XRD), magnetic susceptibility, and X-ray absorption spectroscopy (XAS)/X-ray magnetic circular dichroism (XMCD) measurements. The Rietveld structure analysis of the XRD patterns revealed that the Sc substitution induced an elongation of the FeO5 bipyramidal cages in LuFe2O4 and increased the Fe2O4 bilayer thickness. A non-negligible decrease in the ferrimagnetic transition temperature T C is observed in the magnetic susceptibility curve of the Sc = 0.3 sample, but the XAS/XMCD spectra do not show any difference except for a small reduction of dichroism signals at the Fe3+absorption edge. We interpret this suppression of TC to be the result of a decreased spin-orbit coupling effect in the Fe2+ e 1 g doublet under D 3 h symmetry, which is induced by the weakened structural asymmetry of the FeO5 bipyramids.
THz spectra and corresponding vibrational modes of DNA base pair cocrystals and polynucleotides.
Wang, Fang; Zhao, Dongbo; Dong, Hao; Jiang, Ling; Huang, Lin; Liu, Yunfei; Li, Shuhua
2018-07-05
The generalized energy-based fragmentation (GEBF) approach has been applied to study the THz spectra and vibrational modes of base pair cocrystals under periodic boundary conditions (denoted as PBC-GEBF). Results of vibrational mode reveal that hydrogen bonds play a pivotal role in the pairing process of base crystals, where most NH and CH bonds stretch to some extent. We also found that hydrogen bonds of a self-made A:T cocrystal completely break in a transition from liquid to the solid state, while self-made C:G cocrystal is different and easier to form a cocrystal, as confirmed by X-ray diffraction (XRD) and terahertz (THz) spectra. Furthermore, we have studied DNA polynucleotides (in both A and B forms) found that the vibrational modes changed a lot during the process of their forming double strand. Despite the key role played by hydrogen bonds, the key contribution originates from collective motions of the main skeleton. A comparative study of the spectra of some stranded fragments suggests that different sequences or forms have similar spectra in THz band. They distinguish from each other mainly in the low-frequency regions, especially below 1 THz. This study would make great contributions to the molecular dynamics model based DNA long-chain structure simulation in the future study. Copyright © 2018 Elsevier B.V. All rights reserved.
High-energy ball milling technique for ZnO nanoparticles as antibacterial material
Salah, Numan; Habib, Sami S; Khan, Zishan H; Memic, Adnan; Azam, Ameer; Alarfaj, Esam; Zahed, Nabeel; Al-Hamedi, Salim
2011-01-01
Nanoparticles of zinc oxide (ZnO) are increasingly recognized for their utility in biological applications. In this study, the high-energy ball milling (HEBM) technique was used to produce nanoparticles of ZnO from its microcrystalline powder. Four samples were ball milled for 2, 10, 20, and 50 hours, respectively. The structural and optical modifications induced in the ‘as synthesized’ nanomaterials were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), and photoluminescence emission spectra (PL). SEM and TEM results show a gradual decrease in particle size from around 600 to ∼30 nm, with increased milling time. The initial microstructures had random shapes, while the final shape became quite spherical. XRD analysis showed ZnO in a hexagonal structure, broadening in the diffracted peaks and going from larger to smaller particles along with a relaxation in the lattice constant c. The value of c was found to increase from 5.204 to 5.217 Å with a decrease in particle size (600 to ∼30 nm). PL result showed a new band at around 365 nm, whose intensity is found to increase as the particles size decreases. These remarkable structural and optical modifications induced in ZnO nanoparticles might prove useful for various applications. The increase in c value is an important factor for increasing the antibacterial effects of ZnO, suggesting that the HEBM technique is quite suitable for producing these nanoparticles for this purpose. PMID:21720499
Indium doped ZnO nano-powders prepared by RF thermal plasma treatment of In2O3 and ZnO
NASA Astrophysics Data System (ADS)
Lee, Mi-Yeon; Song, Min-Kyung; Seo, Jun-Ho; Kim, Min-Ho
2015-06-01
Indium doped ZnO nano-powders were synthesized by the RF thermal plasma treatment of In2O3 and ZnO. For this purpose, micron-sized ZnO powder was mixed with In2O3 powder at the In/Zn ratios of 0.0, 1.2, and 2.4 at. % by ball milling for 1 h, after which the mixtures were injected into RF thermal plasma generated at the plate power level of ˜140 kV A. As observed from the field emission scanning electron microscopy (FE-SEM) images of the RF plasma-treated powders, hexagonal prism-shaped nano-crystals were mainly obtained along with multi-pod type nano-particles, where the number of multi-pods decreased with increasing In/Zn ratios. In addition, the X-ray diffraction (XRD) data for the as-treated nano-powders showed the diffraction peaks for the In2O3 present in the precursor mixture to disappear, while the crystalline peaks for the single phase of ZnO structure shifted toward lower Bragg angles. In the UV-vis absorption spectra of the as-treated powders, redshifts were also observed with increases of the In/Zn ratios. Together with the FE-SEM images and the XRD data, the redshifts were indicative of the doping process of ZnO with indium, which took place during the RF thermal plasma treatment of In2O3 and ZnO.
TiO2 as conductivity enhancer in PVdF-HFP polymer electrolyte system
NASA Astrophysics Data System (ADS)
Bhattacharya, Shreya; Manojkumar Ubarhande, Radha; Usha Rani, M.; Shanker Babu, Ravi; Arunkumar, R.
2017-11-01
Composite polymer electrolytes were prepared by incorporating inorganic filler TiO2 into PVdF-HFP-PMMA-EC-LiClO4 system. The electrolyte films were prepared by solvent casting technique. The effect of inorganic filler on the conductivity of the blended polymer electrolyte was studied and it is found that there is a considerable increase in ionic conductivity 1.296 × 10-3 S/cm-1 on the addition of TiO2. X-ray diffraction (XRD) study elucidate the increase in amorphous nature of the polymer electrolyte. This tendency of the polymer electrolyte could be the reason behind the increase in ionic conductivity. Fourier transform infrared spectroscopy (FTIR) spectra show the occurrence of complexation and interaction among the components.
White Light Emitting MZr4(PO4)6:Dy3+ (M = Ca, Sr, Ba) Phosphors for WLEDs.
Nair, Govind B; Dhoble, S J
2017-03-01
A series of MZr 4 (PO 4 ) 6 :Dy 3+ (M = Ca, Sr, Ba) phosphors were prepared by the solid state diffusion method. Confirmation of the phase formation and morphological studies were performed by X-ray powder diffraction (XRD) measurements and scanning electron microscopy, respectively. Photoluminescence (PL) properties of these phosphors were thoroughly analyzed and the characteristic emissions of Dy 3+ ions were found to arise from them at an excitation wavelength of 351 nm. The PL emission spectra of the three phosphors were analyzed and compared. The CIE chromaticity coordinates assured that the phosphors produced cool white-light emission and hence, they are potential candidates for UV excited white-LEDs (WLEDs). Graphical Abstract ᅟ.
Influence of Mn doping on structural, dielectric and optical properties of neodymium orthoferrite
NASA Astrophysics Data System (ADS)
Somvanshi, Anand; Manzoor, Samiya; Husain, Shahid
2018-05-01
We report the study of structural, dielectric and optical properties of nanocrystalline samples of NdFe1-xMnxO3 (x=0, 0.1 and 0.2) synthesized using solid state reaction route. X-ray diffraction (XRD) patterns are recorded to confirm phase purity. These samples conform in orthorhombic crystal symmetry with Pbnm space group. The lattice parameters are determined using Rietveld refinement. The crystallite size is calculated using Scherrer formula and that is found to lie in the range of 40-50 nm. The dielectric constant (ɛ') decreases with the increase in frequency as well as Mn doping concentration. Energy bandgap (Eg) as determined using UV-Vis. absorption spectra, is found to decrease with the increase in Mn doping.
Preparation of silver nanoparticles loaded graphene oxide nanosheets for antibacterial activity
NASA Astrophysics Data System (ADS)
T, T. T., Vi; Lue, S. J.
2016-11-01
A simple, facile method to fabricate successfully silver nanoparticle (AgNPs) decorated on graphene oxide (GO) layers via grafted thiol groups. Samples were prepared with different concentrations of AgNO3. Resulting AgNPs were quasi-spherical in shape and attached on the layers of GO. Physical properties were confirmed by X-ray diffraction (XRD), zeta potential, dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectra, thermogravimetric analyzer (TGA), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM). Antimicrobial test was effectively showed using MRSA (Staphylococcus areus). The GO-Ag NPs with appropriate Ag NPs content of 0.2 M AgNO3 exhibited the strongest antibacterial activity at 48.77% inhibition after 4 hours incubation.
Role of Ni doping on transport properties of ZnO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dar, Tanveer Ahmad, E-mail: tanveerphysics@gmail.com; Agrawal, Arpana; Sen, Pratima
2015-06-24
Nickel doped (Ni=0.05) and undoped Zinc Oxide (ZnO) thin films have been prepared by Pulsed laser deposition (PLD) technique. The structural analysis of the films was done by X-ray diffraction (XRD) studies which reveal absence of any secondary phase in the prepared samples. UV transmission spectra show that Ni doping reduces the transparency of the films. X-ray Photoelectron spectroscopy (XPS) also shows the presence of metallic Ni along with +2 oxidation state in the sample. Low temperature magneto transport properties of the ZnO and NiZnO films are also discussed in view of Khosla fisher model. Ni doping in ZnO resultsmore » in decrease in magnitude of negative MR.« less
Scintillation properties of Li6Y0.5Gd0.5(BO3)3: Ce3+ single crystal
NASA Astrophysics Data System (ADS)
Fawad, U.; Rooh, Gul; Kim, H. J.; Park, H.; Kim, Sunghwan; Khan, Sajid
2015-01-01
The Ce3+ doped mixed crystals of Li6Y(BO3)3 and Li6Gd(BO3)3 are grown by Czochralski technique with equal mole ratios of both Yttrium and Gadolinium i.e. Li6Y0.5Gd0.5(BO3)3. The grown crystals have the dimensions of ∅10×30 mm2. Powder X-ray diffraction (XRD) analysis confirmed single phase of the grown crystals. X-ray and laser induced luminescence spectra are presented. Scintillation properties such as energy resolution, light yield, decay time and α/β ratio under the excitation of 137Cs γ-ray photons and 241Am α-particles are also reported in this article.
Structural, morphological and electronic properties of pulsed laser grown Eu2O3 thin films
NASA Astrophysics Data System (ADS)
Kumar, Sandeep; Prakash, Ram; Choudhary, R. J.; Phase, D. M.
2018-05-01
Herein, we report the growth, structural, morphological and electronic properties of Europium sesquioxide (Eu2O3) thin films on Si [1 0 0] substrate using pulsed laser deposition technique. The films were deposited at ˜750 °C substrate temperature while the oxygen partial pressure (OPP) was varied (vacuum,˜1 mTorr, ˜10 mTorr and ˜300 mTorr). X-ray diffraction results confirm the single phase cubic structure of the film grown at ˜300 mTorr. The XRD results are also supported by the Raman's spectroscopy results. Eu-3d XPS core level spectra confirms the dominant contributions from the "3+" states of Eu in the film.
NASA Astrophysics Data System (ADS)
Gayathri, S.; Jayabal, P.; Ramakrishnan, V.
2015-06-01
Titanium dioxide (TiO2) - Zinc oxide (ZnO) - Graphene (G) nanocomposite was successfully synthesized through facile hydrothermal method. The X-ray diffraction (XRD) pattern and the micro-Raman spectroscopic technique revealed the formation of TiO2-ZnO-Graphene (TZG) nanocomposite. The ZnO and TiO2 nanoparticles decorated graphene sheets were clearly noticeable in the Field Emission Scanning Electron Micrograph (FE-SEM). The UV-Visible absorption spectra clearly indicated that the formation of TZG nanocomposite enriched the absorption in the visible region. Hence, the prepared nanocomposite can be used as photocatalyst to remove organic dyes from water and as photoanode in the fabrication of dye sensitized solar cells (DSSCs).
Effect of PbO on optical properties of tellurite glass
NASA Astrophysics Data System (ADS)
Elazoumi, S. H.; Sidek, H. A. A.; Rammah, Y. S.; El-Mallawany, R.; Halimah, M. K.; Matori, K. A.; Zaid, M. H. M.
2018-03-01
Binary (1 - x)(TeO2) - x(PbO), x = 0, 0.10, 0.15, 0.20, 0.25, 0.30 mol% glass system was fabricated using melt quenching method. X-ray diffraction (XRD) technique was employed to confirm the amorphous nature. The microanalysis of the major components was performed using energy dispersive EDX and X-ray spectrometry. Both the molar volume and the density were measured. FTIR and UV spectra were recorded at 400-4000 cm-1 and 220-800 nm, respectively. The optical band gap (Eopt), Urbach's energy (Eu), index of refraction (n) were calculated using absorption spectrum fitting (ASF) and derivation of absorption spectrum fitting (DASF) methods. Molar refraction Rm and molecular polarizability αm have been calculated according to (ASF) method.
Colloidal synthesis of monodispersed ZnS and CdS nanocrystals from novel zinc and cadmium complexes
NASA Astrophysics Data System (ADS)
Onwudiwe, Damian C.; Mohammed, Aliyu D.; Strydom, Christien A.; Young, Desmond A.; Jordaan, Anine
2014-06-01
Monodispersed spherical and hexagonal shaped ZnS and CdS nanocrystals respectively, have been synthesized using novel heteroleptic complexes of xanthate (S2CObu) and dithiocarbamate (S2CNMePh). The nanocrystals were prepared via colloidal route and stabilized in hexadecylamine (HDA). The morphology of the as-prepared nanocrystals was characterized using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and powdered X-ray diffraction (p-XRD) analysis. An average diameter of 7.2 nm and 8.6 nm were obtained for the ZnS and CdS respectively. The optical properties of the nanoparticles studied by UV-vis and photoluminescence (PL) spectroscopy showed a blue shift in the absorption spectra, and band edge emission respectively.
NASA Astrophysics Data System (ADS)
Faghihi, Khalil; Samiei, Mojtaba; Hajibeygi, Mohsen
2012-06-01
Two new samples of reinforce polyamidemontmorillonite nanocomposites were synthesized by a convenient solution intercalation technique. Polyamide (PA) 3 as a source of polymer matrix was synthesized by the direct polycondensation reaction of pyrazine 2,3-dicarboxylic acid 1 with 4,4'-diamino diphenyl ether 2 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). The resulting nanocomposite films were characterized by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The results showed that organo-modified clay was dispersed homogeneously in PA matrix. TGA indicated an enhancement of thermal stability of new nanocomposites compared with the pure polymer.
Deutsch, Maxime; Claiser, Nicolas; Pillet, Sébastien; Chumakov, Yurii; Becker, Pierre; Gillet, Jean Michel; Gillon, Béatrice; Lecomte, Claude; Souhassou, Mohamed
2012-11-01
New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.
Structural and spectral properties of undoped and tungsten doped Zn3(PO4)2ZnO nanopowders
NASA Astrophysics Data System (ADS)
Satyavathi, K.; Subba Rao, M.; Nagabhaskararao, Y.; Cole, Sandhya
2018-01-01
Pure and tungsten doped Zn3(PO4)2ZnO nanopowders (NPs) are prepared using sol-gel method. It has the longest track record of used in dentistry. It is used for cementation of inlays, crowns and orthodontic appliances. The systematic investigations like X-ray Diffraction (XRD), Scanning electron microscope (SEM) with energy dispersive X-ray (EDX) spectroscope, Transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy, Optical absorption, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) spectroscopic techniques are carried out for the prepared NPs. XRD pattern reveals that the prepared samples are in crystalline nature in which Zn3(PO4)2 corresponding to monoclinic phase and ZnO corresponding to hexagonal wurtzite phase, the average crystallite size of prepared nanopowders is in the range of 20-30 nm. The lattice strain, lattice cell parameters, unit cell volume and dislocation density of the prepared NPs are also calculated. The morphology of the prepared NPs is analyzed with SEM and TEM images. The distribution of Zn, P, O and W species in the prepared samples are identified by the chemical composition mapping through EDX. IR spectra of prepared samples exhibit the characteristic sharp absorption band peaks. The sharp absorption bands observed in the region 1200-900 cm-1 are due to complex stretching of characteristic PO43- groups. The absorption spectra exhibit a broad band around 696 nm is recognized due to 2B2g → 2B1g (dxy → dx2- y2) transition of tungsten ions. The PL spectra exhibit four emission peaks in the visible region indicating the quantum-confinement-induced photoluminescence. The CIE chromaticity diagram suggests that the prepared NPs have good color purity. The EPR spectra indicate that the W5+ ions occupy octahedral site symmetry in the host lattice.
X-Ray Diffraction and Fluorescence Measurements for In Situ Planetary Instruments
NASA Astrophysics Data System (ADS)
Hansford, G.; Hill, K. S.; Talboys, D.; Vernon, D.; Ambrosi, R.; Bridges, J.; Hutchinson, I.; Marinangeli, L.
2011-12-01
The ESA/NASA ExoMars mission, due for launch in 2018, has a combined X-ray fluorescence/diffraction instrument, Mars-XRD, as part of the onboard analytical laboratory. The results of some XRF (X-ray fluorescence) and XRD (X-ray diffraction) tests using a laboratory chamber with representative performance are reported. A range of standard geological reference materials and analogues were used in these tests. The XRD instruments are core components of the forthcoming NASA Mars Science Laboratory (MSL) and ESA/NASA ExoMars missions and will provide the first demonstrations of the capabilities of combined XRD/XRF instrumentation in situ on an extraterrestrial planetary surface. The University of Leicester team is part of the Italy-UK collaboration that is responsible for building the ExoMars X-ray diffraction instrument, Mars-XRD [1,2]. Mars-XRD incorporates an Fe-55 radioisotope source and three fixed-position charge-coupled devices (CCDs) to simultaneously acquire an X-ray fluorescence spectrum and a diffraction pattern providing a measurement of both elemental and mineralogical composition. The CCDs cover an angular range of 2θ = 6° to 73° enabling the analysis of a wide range of geologically important minerals including phyllosilicates, feldspars, oxides, carbonates and evaporites. The identification of hydrous minerals may help identify past Martian hydrothermal systems capable of preserving traces of life. Here we present some initial findings from XRF and XRD tests carried out at the University of Leicester using an Fe-55 source and X-ray sensitive CCD. The XRF/XRD test system consists of a single CCD on a motorised arm, an Fe-55 X-ray source, a collimator and a sample table which approximately replicate the reflection geometry of the Mars-XRD instrument. It was used to test geological reference standard materials and Martian analogues. This work was funded by the Science and Technology Facilities Council, UK. References [1] Marinangeli, L., Hutchinson, I., Baliva, A., Stevoli, A., Ambrosi, R., Critani, F., Delhez, R., Scandelli, L., Holland, A., Nelms, N. & the Mars-XRD Team, Proceedings of the 38th Lunar and Planetary Science Conference, 12 - 16 March 2007, League City, Texas, USA. [2] L. Marinangeli, I. B. Hutchinson, A. Stevoli, G. Adami, R. Ambrosi, R. Amils, V. Assis Fernandes, A. Baliva, A. T. Basilevsky, G. Benedix, P. Bland, A. J. Böttger, J. Bridges, G. Caprarelli, G. Cressey, F. Critani, N. d'Alessandro, R. Delhez, C. Domeneghetti, D. Fernandez-Remolar, R. Filippone, A. M. Fioretti, J. M. Garcia Ruiz, M. Gilmore, G. M. Hansford, G. Iezzi, R. Ingley, M. Ivanov, G. Marseguerra, L. Moroz, C. Pelliciari, P. Petrinca, E. Piluso, L. Pompilio, J. Sykes, F. Westall and the MARS-XRD Team, EPSC-DPS Joint Meeting 2011, 3 - 7 October 2011, La Cité Internationale des Congrès Nantes Métropole, Nantes, France.
Sun, Chong; Zou, Ye; Wang, Daoying; Geng, Zhiming; Xu, Weimin; Liu, Fang; Cao, Jinxuan
2018-06-07
This work reports a study on the development of a sensitive immunosensor for the assay of actin, which is fabricated using sensing material chitosan-Zn nanoparticles (NPs) and anti-actin modified on glassy carbon electrode respectively. The prepared materials were characterized using transmission electron microscope (TEM), fourier transform infrared spectra (FTIR), X-ray diffraction (XRD) spectra, and circular dichroism (CD) techniques. Meanwhile, the electrochemical properties were studied by linear sweep voltammetric (LSV), electrochemical impedance spectra (EIS), and differential pulse voltammetry (DPV). According to the experiments, under the optimum conditions, the linear fitting equation was I (μA) = -17.31 + 78.97c (R² = 0.9948). The linear range was from 0.0001 to 0.1 mg/mL and the detection limit (LOD, S/N = 3) was 21.52 ng/mL. The interference studies were also performed for checking the sensors' selectivity to actin. With better properties of the chitosan-Zn NPs, the modified electrode is considered as a better candidate than Western blot or immunohistochemical method for real-time usability. The detection limit reported is the lowest till date and this method provides a new approach for quality evaluation.
Fabrication and characterization of Au/n-CdTe Schottky barrier under illumination and dark
NASA Astrophysics Data System (ADS)
Bera, Swades Ranjan; Saha, Satyajit
2018-04-01
CdTe nanoparticles have been grown by chemical reduction method using EDA as capping agent. These are used to fabricate Schottky barrier in a simple cost-effective way at room temperature. The grown nanoparticles are structurally characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM). The optical properties of nano CdTe is characterized by UV-Vis absorption spectra, PL spectra. The band gap of the CdTe nanoparticles is increased as compared to CdTe bulk form indicating there is blue shift. The increase of band gap is due to quantum confinement. Photoluminescence spectra shows peak which corresponds to emission from surface state. CdTe nanofilm is grown on ITO coated glass substrate by dipping it on toluene containing dispersed CdTe nanoparticles. Schottky barrier of Au/n-CdTe is fabricated on ITO coated glass by vacuum deposition of gold. I- V and C- V characteristics of Au/n-CdTe Schottky barrier junction have been studied under dark and light condition. It is found that these characteristics are influenced by surface or interface traps. The values of barrier height, ideality factor, donor concentration and series resistance are obtained from the reverse bias capacitance-voltage measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Police Anil Kumar; Srinivas, Basavaraju; Kala, Pruthu
Highlights: {yields} Visible active Bi-TiO{sub 2} photocatalyst preparation and thorough charaterization. {yields} Bi-TiO{sub 2} shows high activity for isoproturon degradation under solar light irradiation. {yields} The spectral response of TiO{sub 2} shifts from UV to visible light region by Bi doping. {yields} Bi{sup 3+{delta}+} species are playing a vital role in minimizing e{sup -}/h{sup +} recombination. -- Abstract: Bi-doped TiO{sub 2} catalyst was prepared by sol-gel method and was characterized by thermo gravimetric analysis (TGA), X-ray diffraction spectra (XRD), X-ray photo electronic spectroscopy (XPS), UV-Vis diffused reflectance spectra (DRS), photoluminescence spectra (PLS), transmission electron microscopy (TEM), energy dispersive analysis ofmore » X-rays (EDAX) and BET surface area. The photocatalytic activity of the catalysts were evaluated for the degradation of isoproturon herbicide under solar light irradiation. The UV-Visible DRS of Bi-doped TiO{sub 2} showed red shift in optical absorption. The presence of Bi{sup 3+{delta}+} species are playing a vital role in minimizing the electron hole recombination resulting higher activity compared to bare TiO{sub 2}.« less
Growth, Faraday and inverse Faraday characteristics of Tb2Ti2O7 crystal.
Guo, Feiyun; Sun, Yilin; Yang, Xiongsheng; Chen, Xin; Zhao, Bin; Zhuang, Naifeng; Chen, Jianzhong
2016-03-21
Tb2Ti2O7 (TTO) single crystal with dimensions of 20 × 20 × 16 mm3 was grown by the Czochralski method. Rietveld structure refinement of X-ray diffraction (XRD) data confirms that the compound crystallizes in the cubic system with pyrochlore structure. Transmission spectra, Magnetic circular dichroism (MCD) spectra, Faraday and inverse Faraday characteristics of TTO crystal have been measured and analyzed in detail. The results demonstrate that TTO crystal has high transmittance at 700-1400 nm waveband and a larger Verdat constant than that of TGG reported. Magnetic circular dichroism (MCD) spectra showed that the 4f→4f transitions of Tb3+ have significant contributions to the magneto-optical activity (MOA). In the time-resolved pump-probe spectroscopy, the rotation signals of the probe beam based on the inverse Faraday effect in magneto-optical crystal were observed at zero time delay, the full width at half maximum of the rotation and ellipticity signals can be as fast as ~500 fs, which indicates that TTO crystal can be a promising material for ultrafast all-optical magnetic switching.
NASA Astrophysics Data System (ADS)
Cunha, L.; Apreutesei, M.; Moura, C.; Alves, E.; Barradas, N. P.; Cristea, D.
2018-04-01
The purpose of this work is to discuss the main structural characteristics of a group of tantalum oxynitride (TaNxOy) thin films, with different compositions, prepared by magnetron sputtering, and to interpret and compare the structural changes, by X-ray diffraction (XRD), when the samples are vacuum annealed under two different conditions: i) annealing, followed by ex-situ XRD: one sample of each deposition run was annealed at a different temperature, until a maximum of 800 °C, and the XRD patterns were obtained, at room temperature, after each annealing process; ii) annealing with in-situ XRD: the diffraction patterns are obtained, at certain temperatures, during the annealing process, using always the same sample. In-situ XRD annealing could be an interesting process to perform annealing, and analysing the evolution of the structure with the temperature, when compared to the classical process. A higher structural stability was observed in some of the samples, particularly on those with highest oxygen content, but also on the sample with non-metal (O + N) to metal (Ta) ratio around 0.5.
Olivares, M; Larrañaga, A; Irazola, M; Sarmiento, A; Murelaga, X; Etxebarria, N
2012-08-30
The determination of crystal size of chert samples can provide suitable information about the raw material used for the manufacture of archeological items. X-ray diffraction (XRD) has been widely used for this purpose in several scientific areas. However, the historical value of archeological pieces makes this procedure sometimes unfeasible and thus, non-invasive new analytical approaches are required. In this sense, a new method was developed relating the crystal size obtained by means of XRD and infrared spectroscopy (IR) using partial least squares regression. The IR spectra collected from a large amount of different geological chert samples of archeological use were pre-processed following different treatments (i.e., derivatization or sample-wise normalization) to obtain the best regression model. The full cross-validation was satisfactorily validated using real samples and the experimental root mean standard error of precision value was 165 Å whereas the average precision of the estimated size value was 3%. The features of infrared bands were also evaluated in order to know the background of the prediction ability. In the studied case, the variance in the model was associated to the differences in the characteristic stretching and bending infrared bands of SiO(2). Based on this fact, it would be feasible to estimate the crystal size if it is built beforehand a chemometric model relating the size measured by standard methods and the IR spectra. Copyright © 2012 Elsevier B.V. All rights reserved.
Synthesis, characterization and biological studies of copper oxide nanostructures
NASA Astrophysics Data System (ADS)
Jillani, Saquf; Jelani, Mohsan; Hassan, Najam Ul; Ahmad, Shahbaz; Hafeez, Muhammad
2018-04-01
The development of synthetic methods has been broadly accepted as an area of fundamental importance to the understanding and application of nanoscale materials. It allows the individual to modulate basic parameters such as morphology, particle size, size distributions, and composition. Several methods have been developed to synthesize CuO nanostructures with diverse morphologies, sizes, and dimensions using different chemical and physical based approaches. In this work, CuO nanostructures have been synthesized by aqueous precipitation method and simple chemical deposition method. The characterization of these products has been carried out by the x-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) and UV–vis spectroscopy. Biological activity such as antibacterial nature of synthesized CuO is also explored. XRD peaks analysis revealed the monoclinic crystalline phase of copper oxide nanostructures. While the rod-like and particle-like morphologies have been observed in SEM results. FTIR spectra have confirmed the formation of CuO nanoparticles by exhibiting its characteristic peaks corresponding to 494 cm‑1 and 604 cm‑1. The energy band gap of the as-prepared CuO nanostructures determined from UV–vis spectra is found to be 2.18 eV and 2.0 eV for precipitation and chemically deposited samples respectively. The antibacterial activity results described that the synthesized CuO nanoparticles showed better activity against Staphylococcus aureus. The investigated results suggested the synthesis of highly stable CuO nanoparticles with significant antibacterial activities.
Frolova, L A; Derhachov, M P
2017-08-23
Nano-sized manganese ferrites Mn х Fe 3 - х О 4 (х = 0-1.3) were prepared using contact non-equilibrium plasma (CNP) in two different pH (11.5 and 12.5). The influence of synthesis conditions (e.g., cation ratio and initial pH) on phase composition, crystallite size, and magnetic properties were investigated employing X-ray diffraction (XRD), differential thermal analysis (DTA), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and magnetic measurement techniques. The formation of monodispersed faceted ferrite particles at х = 0-0.8 was shown. The FTIR spectra revealed reflection in region 1200-1700 cm -1 caused by the presence of water adsorbed on the surface of Fe 3 - x Mn x O 4 micro-granules or embedded into their crystal lattice. The most sensitivity of reflection spectra to the composition changes takes place within a 400-1200 cm -1 range, typical to the stretching vibrations of Fe(Mn)-O (up to 700 cm -1 ), Fe(Mn)-OH, and Fe(Mn)-OH 2 bonds (over 700 cm -1 ). The XRD results showed that the nanocrystalline Mn х Fe 3 - х О 4 (0 < x < 1.0) had cubic spinel crystal structure with average crystallite size 48-49 A. The decrease of crystalline size with the x increase was also observed.
Peng, Guotao; Fan, Zhengqiu; Wang, Xiangrong; Sui, Xin; Chen, Chen
2015-01-01
Microcystins (MCs) are a group of monocyclic heptapeptide toxins produced by species of cyanobacteria. Since MCs exhibit acute and chronic effects on humans and wildlife by damaging the liver, they are of increasing concern worldwide. In this study, we investigated the ability of the phthalocyanine compound (ZnPc-TiO2-SiO2) to degrade microcystin-LR (MC-LR) in the presence of visible light. X-ray diffraction (XRD) and UV-Visible diffuse reflectance spectra (UV-Vis DRS) were utilized to characterize the crystalline phase and the absorption behavior of this catalyst. According to the results, XRD spectra of ZnPc-TiO2-SiO2 powders taken in the 2θ configuration exhibited the peaks characteristic of the anatase phase. UV-Vis DRS showed that the absorption band wavelength shifted to the visible range when ZnPc was supported on the surface of TiO2-SiO2. Subsequently, several parameters including catalyst dose, MC-LR concentrations and pH were investigated. The MC-LR was quantified in each sample through high-performance liquid chromatography (HPLC). The maximum MC-LR degradation rate of 80.2% can be obtained within 300 minutes under the following conditions: catalyst dose of 7.50 g/L, initial MC-LR concentration of 17.35 mg/L, pH 6.76 and the first cycling run of the photocatalytic reaction. Moreover, the degradation process fitted well with the pseudo-first-order kinetic model.
NASA Astrophysics Data System (ADS)
Pathan, Idris G.; Suryawanshi, Dinesh N.; Bari, Anil R.; Patil, Lalchand A.
2018-05-01
This work presents the effect of iron doping having different volume ratios (1 ml, 2.5 ml and 5 ml) on the structural, microstructural and electrical properties of zinc stannate thin films, prepared by spray pyrolysis method. These properties were characterized with X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). In our study, XRD pattern indicates that ZnSnO3 has a perovskite phase with face exposed hexahedron structure. The electron diffraction fringes observed are in consistent with the peak observed in XRD patterns. Moreover the sensor reported in our study is cost-effective, user friendly and easy to fabricate.
Effect of lattice strain on structural and magnetic properties of Ca substituted barium hexaferrite
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Supriya, Sweety; Pandey, Rabichandra; Pradhan, Lagen Kumar; Singh, Rakesh Kumar; Kar, Manoranjan
2018-07-01
The calcium (Ca2+) substituted M-type barium hexaferrite (Ba1-xCaxFe12O19) for Ca2+ (x = 0.00, 0.025, 0.050, 0.075, 0.100, 0.150, and 0.200) have been synthesized by the citrate sol-gel method. The X-ray diffraction (XRD) patterns with Rietveld refinement reveal the formation of hexagonal crystal structure with P63/mmc space group. The lattice parameters a = b and c decrease, whereas lattice strain found to increase with the increase in Ca concentration in the samples. The analysis of Raman spectra well supports the XRD patterns analysis. The average particle size is obtained from the FE-SEM (Field Emission Scanning Electron Microscopy) micrographs and these are similar to that of crystallite size obtained from the XRD pattern analysis. The saturation magnetization and magnetocrystalline anisotropy have been obtained by employing the "Law of Approach (LA) to Saturation magnetization" technique at room temperature. The saturation magnetization and magnetocrystalline anisotropy constant are maximum for 5% Ca substitution in barium hexaferrite. It could be due to lattice strain mediated magnetism. However, these magnetic properties decrease for more than the 5% Ca substitution in barium hexaferrite. It could be due to decrease of magnetic exchange interaction (Fe-O-Fe) in the sample. A correlation between magnetic interaction and lattice strain has been observed in Ca2+ substituted M-type barium hexaferrite.
NASA Astrophysics Data System (ADS)
Shoushtari, Morteza Zargar; Emami, Akram; Ghahfarokhi, Seyed Ebrahim Mosavi
2016-12-01
In this study, we examine the bismuth doping effect on the structural, magnetic and microstructural properties of zinc-ferrite nanoparticles (ZnFe2-xBixO4 with x=0.0, 0.02, 0.04, 0.06, 0.1, 0.15) which have been prepared by a microwave combustion method. The structural, morphological and electromagnetic properties and also Curie temperature of the samples were examined by x-ray powder diffraction (XRD), field emission scanning electron microscope (FESEM), vibrating sample magnetometer (VSM), and LCR meter, respectively. In order to measure the energy band gap, the FTIR spectra of the samples were also considered. The XRD patterns of the samples revealed that all of them are ZnFe2O4 structure and no additional peak was observed in their patterns. This implied that the samples were single-phase up to bismuth solubility of 0.15 in Zinc-Ferrite. The results of XRD patterns also showed that the value lattice parameter increases with increasing the bismuth doping. The FESEM results revealed an ascending trend in the size of the nanoparticles. Also considering the VSM results characterized that an increasing the bismuth doping leads to lower the saturation magnetization. The Curie temperatures of the samples were reduced as a result of increasing the amount of bismuth.
Synthesis of Gd2O3:Eu nanoplatelets for MRI and fluorescence imaging
NASA Astrophysics Data System (ADS)
Maalej, Nabil M.; Qurashi, Ahsanulhaq; Assadi, Achraf Amir; Maalej, Ramzi; Shaikh, Mohammed Nasiruzzaman; Ilyas, Muhammad; Gondal, Mohammad A.
2015-05-01
We synthesized Gd2O3 and Gd2O3 doped by europium (Eu) (2% to 10%) nanoplatelets using the polyol chemical method. The synthesized nanoplatelets were characterized by X-ray diffraction (XRD), FESEM, TEM, and EDX techniques. The optical properties of the synthesized nanoplatelets were investigated by photoluminescence spectroscopy. We also studied the magnetic resonance imaging (MRI) contrast enhancement of T1 relaxivity using 3 T MRI. The XRD for Gd2O3 revealed a cubic crystalline structure. The XRD of Gd2O3:Eu3+ nanoplatelets were highly consistent with Gd2O3 indicating the total incorporation of the Eu3+ ions in the Gd2O3 matrix. The Eu doping of Gd2O3 produced red luminescence around 612 nm corresponding to the radiative transitions from the Eu-excited state 5D0 to the 7F2. The photoluminescence was maximal at 5% Eu doping concentration. The stimulated CIE chromaticity coordinates were also calculated. Judd-Ofelt analysis was used to obtain the radiative properties of the sample from the emission spectra. The MRI contrast enhancement due to Gd2O3 was compared to DOTAREM commercial contrast agent at similar concentration of gadolinium oxide and provided similar contrast enhancement. The incorporation of Eu, however, decreased the MRI contrast due to replacement of gadolinium by Eu.
Carvajal Nuñez, U; Martel, L; Prieur, D; Lopez Honorato, E; Eloirdi, R; Farnan, I; Vitova, T; Somers, J
2013-10-07
A series of uranium carbide samples, prepared by arc melting with a C/U ratio ranging from 0.96 to 1.04, has been studied by X-ray diffraction (XRD), (13)C nuclear magnetic resonance (NMR), and extended X-ray absorption fine structure (EXAFS). XRD determines phase uniqueness and the increase of the lattice parameter versus the carbon content. In contrast, (13)C NMR detects the different carbon environments in the lattice and in this study, clearly identifies the presence of discrete peaks for carbon in the octahedral lattice site in UC and an additional peak associated with excess carbon in hyperstoichiometric samples. Two peaks associated with different levels of carbon deficiency are detected for all hypostoichiometric compositions. More than one carbon environment is always detected by (13)C NMR. This exemplifies the difficulty in obtaining a perfect stoichiometric uranium monocarbide UC(1.00). The (13)C MAS spectra of uranium carbides exhibit the effects resulting from the carbon content on both the broadening of the peaks and on the Knight shift. An abrupt spectral change occurs between hypo- and hyperstoichiometric samples. The results obtained by EXAFS highlight subtle differences between the different stoichiometries, and in the hyperstoichiometric samples, the EXAFS results are consistent with the excess carbon atoms being in the tetrahedral interstitial position.
Synthesis of Gd2O3:Eu nanoplatelets for MRI and fluorescence imaging.
Maalej, Nabil M; Qurashi, Ahsanulhaq; Assadi, Achraf Amir; Maalej, Ramzi; Shaikh, Mohammed Nasiruzzaman; Ilyas, Muhammad; Gondal, Mohammad A
2015-01-01
We synthesized Gd2O3 and Gd2O3 doped by europium (Eu) (2% to 10%) nanoplatelets using the polyol chemical method. The synthesized nanoplatelets were characterized by X-ray diffraction (XRD), FESEM, TEM, and EDX techniques. The optical properties of the synthesized nanoplatelets were investigated by photoluminescence spectroscopy. We also studied the magnetic resonance imaging (MRI) contrast enhancement of T1 relaxivity using 3 T MRI. The XRD for Gd2O3 revealed a cubic crystalline structure. The XRD of Gd2O3:Eu(3+) nanoplatelets were highly consistent with Gd2O3 indicating the total incorporation of the Eu(3+) ions in the Gd2O3 matrix. The Eu doping of Gd2O3 produced red luminescence around 612 nm corresponding to the radiative transitions from the Eu-excited state (5)D0 to the (7)F2. The photoluminescence was maximal at 5% Eu doping concentration. The stimulated CIE chromaticity coordinates were also calculated. Judd-Ofelt analysis was used to obtain the radiative properties of the sample from the emission spectra. The MRI contrast enhancement due to Gd2O3 was compared to DOTAREM commercial contrast agent at similar concentration of gadolinium oxide and provided similar contrast enhancement. The incorporation of Eu, however, decreased the MRI contrast due to replacement of gadolinium by Eu.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Benthem, Mark H.
2016-05-04
This software is employed for 3D visualization of X-ray diffraction (XRD) data with functionality for slicing, reorienting, isolating and plotting of 2D color contour maps and 3D renderings of large datasets. The program makes use of the multidimensionality of textured XRD data where diffracted intensity is not constant over a given set of angular positions (as dictated by the three defined dimensional angles of phi, chi, and two-theta). Datasets are rendered in 3D with intensity as a scaler which is represented as a rainbow color scale. A GUI interface and scrolling tools along with interactive function via the mouse allowmore » for fast manipulation of these large datasets so as to perform detailed analysis of diffraction results with full dimensionality of the diffraction space.« less
NASA Astrophysics Data System (ADS)
Miyajima, Kensuke; Akatsu, Tatsuro; Itoh, Ken
2018-05-01
We evaluated the crystal size, shape, and alignment of the lattice planes of CuCl quantum dots (QDs) embedded in NaCl single crystals by optical measurements, X-ray diffraction (XRD) patterns, and transmission electron microscopy (TEM). We obtained, for the first time, an XRD pattern and TEM images for CuCl QDs in NaCl crystals. The XRD pattern showed that the lattice planes of the CuCl QDs were parallel to those of the NaCl crystals. In addition, the size of the QDs was estimated from the diffraction width. It was apparent from the TEM images that almost all CuCl QDs were polygonal, although some cubic QDs were present. The mean size and size distribution of the QDs were also obtained. The dot size obtained from optical measurements, XRD, and TEM image were almost consistent. Our new findings can help to reveal the growth mechanism of semiconductor QDs embedded in a crystallite matrix. In addition, this work will play an important role in progressing the study of optical phenomena originating from assembled semiconductor QDs.
NASA Technical Reports Server (NTRS)
Bish, D. L.; Blake, D. F.; Vaniman, D. T.; Chipera, S. J.; Sarrazin, P.; Morris, R. V.; Ming, D. W.; Treiman, A. H.; Downs, R. T.; Morrison, S. M.;
2013-01-01
Numerous orbital and landed observations of the martian surface suggest a reasonably uniform martian soil composition, likely as a result of global aeolian mixing [1, 2]. Chemical data for martian soils are abundant [e.g., 2, 3], and phase information has been provided by lander thermal emission and Moessbauer spectroscopic measurements [3, 4, 5, 6]. However, until now no X-ray diffraction (XRD) data were available for martian soil nor has XRD ever been used on another body apart from Earth. XRD is generally considered the most definitive method for determining the crystalline phases in solid samples, and it is the method of choice for determining mineralogy. CheMin s first XRD analysis on Mars coincided with the 100th anniversary of the discovery of X-ray diffraction by von Laue. Curiosity delivered scooped samples of loose, unconsolidated material ("soil") acquired from an aeolian bedform at the Rocknest locality to instruments in the body of the rover (the laboratory). Imaging shows that the soil has a range of particle sizes, of 1-2 mm and smaller, presumably representing contributions from global, regional, and local sources.
Synchrotron-based XRD from rat bone of different age groups.
Rao, D V; Gigante, G E; Cesareo, R; Brunetti, A; Schiavon, N; Akatsuka, T; Yuasa, T; Takeda, T
2017-05-01
Synchrotron-based XRD spectra from rat bone of different age groups (w, 56 w and 78w), lumber vertebra at early stages of bone formation, Calcium hydroxyapatite (HAp) [Ca 10 (PO 4 ) 6 (OH) 2 ] bone fill with varying composition (60% and 70%) and bone cream (35-48%), has been acquired with 15keV synchrotron X-rays. Experiments were performed at Desy, Hamburg, Germany, utilizing the Resonant and Diffraction beamline (P9), with 15keV X-rays (λ=0.82666 A 0 ). Diffraction data were quantitatively analyzed using the Rietveld refinement approach, which allowed us to characterize the structure of these samples in their early stages. Hydroxyapatite, received considerable attention in medical and materials sciences, since these materials are the hard tissues, such as bone and teeth. Higher bioactivity of these samples gained reasonable interest for biological application and for bone tissue repair in oral surgery and orthopedics. The results obtained from these samples, such as phase data, crystalline size of the phases, as well as the degree of crystallinity, confirm the apatite family crystallizing in a hexagonal system, space group P6 3 /m with the lattice parameters of a=9.4328Å and c=6.8842Å (JCPDS card #09-0432). Synchrotron-based XRD patterns are relatively sharp and well resolved and can be attributed to the hexagonal crystal form of hydroxyapatite. All the samples were examined with scanning electron microscope at an accelerating voltage of 15kV. The presence of large globules of different sizes is observed, in small age groups of the rat bone (8w) and lumber vertebra (LV), as distinguished from, large age groups (56 and 78w) in all samples with different magnification, reflects an amorphous phase without significant traces of crystalline phases. Scanning electron microscopy (SEM) was used to characterize the morphology and crystalline properties of Hap, for all the samples, from 2 to 100μm resolution. Copyright © 2017 Elsevier B.V. All rights reserved.
2016-07-11
composites with x - ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Rutherford backscattering spectroscopy...RBS), particle-induced x - ray emission (PIXE), and energy dispersive x - ray spectroscopy (EDX). This work complements earlier works on CdSe...sample shows only In2Se3 and CdIn2Se4 XRD peaks (Figure 1.4e), it is stoichiometrically Figure 1.4. X - ray diffraction patterns of (a) γ-In2Se3
FT-IR and Zeta potential measurements on TiO nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Jaiveer; Rathore, Ravi; Kaurav, Netram, E-mail: netramkaurav@yahoo.co.uk
2016-05-23
In the present investigation, ultrafine TiO particles have been synthesized successfully by thermal decomposition method. The sample was characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. As-synthesized TiO nanoparticles have a cubic structure as characterized by power X-ray diffraction (XRD), which shows that TiO nanoparticles have narrow size distribution with particle size 11.5 nm. FTIR data shows a strong peak at 1300 cm{sup −1}, assignable to the Ti-O stretching vibrations mode.
Definitive Mineralogical Analysis of Mars Analog Rocks Using the CheMin XRD/XRF Instrument
NASA Technical Reports Server (NTRS)
Blake, D. F.; Sarrazin, P.; Bish, D. L.; Feldman, S.; Chipera, S. J.; Vaniman, D. T.; Collins, S.
2004-01-01
Mineral identification is a critical component of Mars Astrobiological missions. Chemical or elemental data alone are not definitive because a single elemental or chemical composition or even a single bonding type can represent a range of substances or mineral assemblages. Minerals are defined as unique structural and compositional phases that occur naturally. There are about 15,000 minerals that have been described on Earth, all uniquely identifiable via diffraction methods. There are likely many minerals yet undiscovered on Earth, and likewise on Mars. If an unknown phase is identified on Mars, it can be fully characterized by structural (X-ray Diffraction, XRD) and elemental analysis (X-ray Fluorescence, XRF) without recourse to other data because XRD relies on the principles of atomic arrangement for its determinations. XRD is the principal means of identification and characterization of minerals on Earth.
Study of defects and vacancies in structural properties of Mn, co-doped oxides: ZnO
NASA Astrophysics Data System (ADS)
Kumar, Harish; Kaushik, A.; Alvi, P. A.; Dalela, B.; Dalela, S.
2018-05-01
The paper deals with the Structural properties on Mn, Co doped oxides ZnO samples using XRD, Positron Annihilation Lifetime (PAL) Spectra and Raman Spectra. The Mn, Co doped ZnO samples crystallize in a wurtzite structure without any impurity phases in XRD Spectra. The defect state of these samples has been investigated by using positron annihilation lifetime (PAL) spectroscopy technique in which all the relevant lifetime parameters are measured for all the spectra. The results are explained in the direction of doping concentration in these samples in terms of defects structure on Zn lattice site VZn and oxygen defects Vo.
X-Ray Diffraction for In-Situ Mineralogical Analysis of Planetesimals.
NASA Astrophysics Data System (ADS)
Sarrazin, P.; Blake, D. F.; Dera, P.; Downs, R. T.; Taylor, J.
2017-12-01
X-ray diffraction (XRD) is a general purpose technique for definitive, quantitative mineralogical analysis. When combined with XRF data for sample chemistry, XRD analyses yield as complete a characterization as is possible by any spacecraft-capable techniques. The MSL CheMin instrument, the first XRD instrument flown in space, has been used to establish the quantitative mineralogy of the Mars global soil, to discover the first habitable environment on another planet, and to provide the first in-situ evidence of silicic volcanism on Mars. CheMin is now used to characterize the depositional and diagenetic environments associated with the mudstone sediments of lower strata of Mt. Sharp. Conventional powder XRD requires samples comprised of small grains presented in random orientations. In CheMin, sample cells are vibrated to cause loose powder to flow within the cell, driven by granular convection, which relaxes the requirement for fine grained samples. Nevertheless, CheMin still requires mechanisms to collect, crush, sieve and deliver samples before analysis. XTRA (Extraterrestrial Regolith Analyzer) is an evolution of CheMin intended to analyze fines in as-delivered surface regolith, without sample preparation. Fine-grained regolith coats the surfaces of most airless bodies in the solar system, and because this fraction is typically comminuted from the rocky regolith, it can often be used as a proxy for the surface as a whole. HXRD (Hybrid-XRD) is concept under development to analyze rocks or soils without sample preparation. Like in CheMin, the diffracted signal is collected with direct illumination CCD's. If the material is sufficiently fine-grained, a powder XRD pattern of the characteristic X-ray tube emission is obtained, similar to CheMin or XTRA. With coarse grained crystals, the white bremsstrahlung radiation of the tube is diffracted into Laue patterns. Unlike typical Laue applications, HXRD uses the CCD's capability to distinguish energy and analyze the "colors" of each Laue spot, which enable phase identification. The concept was demonstrated with prototypes and dedicated crystallographic software was developed for identification the minerals responsible for the Laue patterns. High TRL subsystems are under development for future deployment opportunities of these new XRD instruments.
NASA Astrophysics Data System (ADS)
Xia, Weiren; Wu, Heng; Xue, Piaojie; Zhu, Xinhua
2018-05-01
We report on microstructural, magnetic, and optical properties of Pr-doped perovskite manganite (La1 - xPrx)0.67Ca0.33MnO3 (LPCMO, x = 0.0-0.5) nanoparticles synthesized via sol-gel process. Structural characterizations (X-ray and electron diffraction patterns, (high resolution) TEM images) provide information regarding the phase formation and the single-crystalline nature of the LPCMO systems. X-ray and electron diffraction patterns reveal that all the LPCMO samples crystallize in perovskite crystallography with an orthorhombic structure ( Pnma space group), where the MnO6 octahedron is elongated along the b axis due to the Jahn-Teller effect. That is confirmed by Raman spectra. Crystallite sizes and grain sizes were calculated from XRD and TEM respectively, and the lattice fringes resolved in the high-resolution TEM images of individual LPCMO nanoparticle confirmed its single-crystalline nature. FTIR spectra identify the characteristic Mn-O bond stretching vibration mode near 600 cm- 1, which shifts towards high wavenumbers with increasing post-annealing temperature or Pr-doping concentration, resulting in further distortion of the MnO6 octahedron. XPS revealed dual oxidation states of Mn3+ and Mn4+ in the LPCMO nanoparticles. UV-vis absorption spectra confirm the semiconducting nature of the LPCMO nanoparticles with optical bandgaps of 2.55-2.71 eV. Magnetic measurements as a function of temperature and magnetic field at field cooling and zero-field cooling modes, provided a Curie temperature around 230 K, saturation magnetization of about 81 emu/g, and coercive field of 390 Oe at 10 K. Such magnetic properties and the semiconducting nature of the LPCMO nanoparticles will make them as suitable candidate for magnetic semiconductor spintronics.
Ca2 Al2 SiO7 :Ce3+ phosphors for mechanoluminescence dosimetry.
Tiwari, Geetanjali; Brahme, Nameeta; Sharma, Ravi; Bisen, D P; Sao, Sanjay Kumar; Sahu, Ishwar Prasad
2016-12-01
A series of Ce 3+ ion single-doped Ca 2 Al 2 SiO 7 phosphors was synthesized by a combustion-assisted method at an initiating temperature of 600 °C. The samples were annealed at 1100 °C for 3 h and their X-ray diffraction patterns confirmed a tetragonal structure. The phase structure, particle size, surface morphology and elemental analysis were analyzed using X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy techniques. Thermoluminescence (TL) intensity increased with increase in ultraviolet (UV) light exposure time up to 15 min. With further increase in the UV irradiation time the TL intensity decreases. The increase in TL intensity indicates that trap concentration increased with UV exposure time. A broad peak at 121 °C suggested the existence of a trapping level. The peak of mechanoluminescence (ML) intensity versus time curve increased linearly with increasing impact velocity of the moving piston. Mechanoluminescence intensity increased with increase in UV irradiation time up to 15 min. Under UV-irradiation excitation, the TL and ML emission spectra of Ca 2 Al 2 SiO 7 :Ce 3+ phosphor showed the characteristic emission of Ce 3+ peaking at 400 nm (UV-violet) and originating from the Ce 3+ transitions of 5d-4f ( 2 F 5/2 and 2 F 7/2 ). The photoluminescence (PL) emission spectra for Ca 2 Al 2 SiO 7 :Ce 3+ were similar to the ML/TL emission spectra. The mechanism of ML excitation and the suitability of the Ca 2 Al 2 SiO 7 :Ce 3+ phosphor for radiation dosimetry are discussed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Manju, Sivalingam; Malaikozhundan, Balasubramanian; Vijayakumar, Sekar; Shanthi, Sathappan; Jaishabanu, Ameeramja; Ekambaram, Perumal; Vaseeharan, Baskaralingam
2016-02-01
This study reports the biological synthesis of gold nanoparticles using essential oil of Nigella sativa (NsEO-AuNPs). The synthesized NsEO-AuNPs were characterized by UV-visible spectra, X-ray diffraction (XRD), FTIR and Transmission electron microscopy (TEM). UV-vis spectra of NsEO-AuNPs showed strong absorption peak at 540 nm. The X-ray diffraction analysis revealed crystalline nature of nanoparticle with distinctive facets (111, 200, 220 and 311 planes) of NsEO-AuNPs. The FTIR spectra recorded peaks at 3388, 2842, 1685, 1607, 1391 and 1018 cm(-1). TEM studies showed the spherical shape of nanoparticles and the particle size ranges between 15.6 and 28.4 nm. The antibacterial activity of NsEO-AuNPs was greater against Gram positive Staphylococcus aureus MTCC 9542 (16 mm) than Gram negative Vibrio harveyi MTCC 7771 (5 mm) at the concentration of 10 μg ml(-1). NsEO-AuNPs effectively inhibited the biofilm formation of S. aureus and V. harveyi by decreasing the hydrophobicity index (78% and 46% respectively). The in-vitro anti-lung cancer activity confirmed by MTT assay on the cell line of A549 carcinoma cells showed IC50 values of bulk Au at 87.2 μg ml(-1), N. sativa essential oil at 64.15 μg ml(-1) and NsEO-AuNPs at 28.37 μg ml(-1). The IC50 value showed that NsEO-AuNPs was highly effective in inhibiting the A549 lung cancer cells compared to bulk Au and N. sativa essential oil. Copyright © 2015 Elsevier Ltd. All rights reserved.
ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction
NASA Astrophysics Data System (ADS)
Deshmukh, S. G.; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Panchal, A. K.; Kheraj, Vipul
2016-04-01
ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl2 and Na2S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm-1 and 1094 cm-1. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.
High Resolution Transmission Electron Microscopy (HRTEM) of nanophase ferric oxides
NASA Technical Reports Server (NTRS)
Golden, D. C.; Morris, R. V.; Ming, D. W.; Lauer, H. V., Jr.
1994-01-01
Iron oxide minerals are the prime candidates for Fe(III) signatures in remotely sensed Martian surface spectra. Magnetic, Mossbauer, and reflectance spectroscopy have been carried out in the laboratory in order to understand the mineralogical nature of Martian analog ferric oxide minerals of submicron or nanometer size range. Out of the iron oxide minerals studied, nanometer sized ferric oxides are promising candidates for possible Martian spectral analogs. 'Nanophase ferric oxide (np-Ox)' is a generic term for ferric oxide/oxihydroxide particles having nanoscale (less than 10 nm) particle dimensions. Ferrihydrite, superparamagnetic particles of hematite, maghemite and goethite, and nanometer sized particles of inherently paramagnetic lepidocrocite are all examples of nanophase ferric oxides. np-Ox particles in general do not give X-ray diffraction (XRD) patterns with well defined peaks and would often be classified as X-ray amorphous. Therefore, different np-Oxs preparations should be characterized using a more sensitive technique e.g., high resolution transmission electron microscopy (HRTEM). The purpose of this study is to report the particle size, morphology and crystalline order, of five np-Ox samples by HRTEM imaging and electron diffraction (ED).
NASA Technical Reports Server (NTRS)
Raikar, Genesh N.; Gregory, John C.; Christl, Ligia C.; Peters, Palmer N.
1992-01-01
The University of Alabama in Huntsville (UAH) experiment A-0114 was designed primarily to study degradation of material surfaces due to low earth orbital (LEO) atmospheric oxygen. The experiment contained 128 one inch circular samples: metals, polymers, carbons, and semiconductors. Among metal samples, copper has shown some interesting new results. Two types of copper samples, a film sputter coated on fused silica and a bulk piece of OFHC copper, were characterized employing a variety of techniques such as X-ray and Auger electron spectroscopies, X-ray diffraction, and high resolution profilometry. Cu 2p core level spectra were used to characterize the presence of Cu2O and CuO in addition to Cu Auger LMM lines. These results are supported by our recent X-ray diffraction studies which clearly establish the presence of Cu oxides which we were unable to prove in our earlier work. Profilometry showed an increase in thickness of the film sample where exposed to 106.7 +/- 0.5 nm from an initial thickness of 74.2 +/- 1.1 nm. Further studies with SEM and ellipsometry are underway.
Green synthesis of soya bean sprouts-mediated superparamagnetic Fe 3O 4 nanoparticles
NASA Astrophysics Data System (ADS)
Cai, Yan; Shen, Yuhua; Xie, Anjian; Li, Shikuo; Wang, Xiufang
2010-10-01
Superparamagnetic Fe 3O 4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe 3O 4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe 3O 4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe 3O 4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature ( TB) of 150 K and saturation magnetization of 37.1 emu/g.
Synthesis and structural characterization of CdS nanoparticles
NASA Astrophysics Data System (ADS)
Kotkata, M. F.; Masoud, A. E.; Mohamed, M. B.; Mahmoud, E. A.
2009-08-01
Amorphous CdS nanoparticles capped with cetyltrimethyl ammonium bromide (CTAB) were synthesised under various conditions using a coprecipitation method. A blue shift in the band gap was observed in the UV-visible absorption spectra indicating the formation of nanoparticles of an approximate size of 8 nm. The recorded transmission electron micrographs confirmed this result. The phase-nature, phase transformation as well as the structure of the synthesised CdS nanoparticles have been extensively characterized using X-ray diffraction (XRD), radial distribution function (RDF), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR), Raman scattering (RS) and/or heat stage X-ray diffraction (HSXRD). Analysis of the obtained results revealed that the synthesised amorphous CdS nanoparticles could be transformed into CdS nanocrystals having a zinc blende or a wurtzite structure, relying on the applied heat treatment scheme. The rate of nanocrystal growth depends on the aging period, prior filtering the reacted materials, and its relation to the quality of the capping process. Five days aging period tends to enhance the stability of the grown phase with a remarkable surface stability.
Structural and optical properties of CuS thin films deposited by Thermal co-evaporation
NASA Astrophysics Data System (ADS)
Sahoo, A. K.; Mohanta, P.; Bhattacharyya, A. S.
2015-02-01
Copper sulfide (CuS) thin films with thickness 100, 150 and 200 nm have been deposited on glass substrates by thermal co-evaporation of Copper and Sulphur. The effect of CuS film thickness on the structural and optical properties have investigated and discussed. Structural and optical investigations of the films were carried out by X-ray diffraction, atomic force microscopy, high-resolution transmission electron microscopy and UV spectroscopy. XRD and selected area electron diffraction conforms that polycrystalline in nature with hexagonal crystal structure. AFM studies revealed a smooth surface morphology with root mean-square roughness values increases from 24 nm to 42 nm as the film thickness increase from 100 nm to 200 nm. AFM image showed that grain size increases with thickness of film increases and good agreement with the calculated from full width half maximum of the X-ray diffraction peak using Scherrer's formula and Williamson-Hall plot. The absorbance of the thin films were absorbed decreases with wavelength through UV-visible regions but showed a increasing in the near-infrared regions. The reflectance spectra also showed lower reflectance peak (25% to 32%) in visible region and high reflectance peak (49 % to 54 %) in near-infrared region. These high absorbance films made them for photo-thermal conversion of solar energy.
NASA Astrophysics Data System (ADS)
Zykova, A.; Safonov, V.; Dudin, S.; Yakovin, S.; Donkov, N.; Ghaemi, M. H.; Szkodo, M.; Antoszkiewicz, M.; Szyfelbain, M.; Czaban, A.
2018-03-01
The ion-beam assisted deposition (IBAD) is an advanced method capable of producing crystalline coatings at low temperatures. We determined the characteristics of hydroxyapatite Ca10(PO4)6(OH)2 target and coatings formed by IBAD using X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX). The composition of the coatings’ cross-section and surface was close to those of the target. The XPS spectra showed that the binding energy values of Ca (2p1/2, 2p3/2), P (2p3/2), and O 1s levels are related to the hydroxyapatite phase. The coatings demonstrate an optimal H/E ratio, and a good resistance to scratch tests.
Growth and characterization of V2O5 nanorods deposited by spray pyrolysis at low temperatures
NASA Astrophysics Data System (ADS)
Abd-Alghafour, N. M.; Ahmed, Naser M.; Hassan, Zai.; Mohammad, Sabah M.; Bououdina, M.
2016-07-01
Vanadium pentoxide (V2O5) nanorods were deposited by spray pyrolysis on preheated glass substrates at low temperatures. The influence of substrate temperature on the crystallization of V2O5 has been investigated. X-ray diffraction analysis (XRD) revealed that the films deposited at Tsub = 300°C were orthorhombic structures with preferential along (001) direction. Formation of nanorods from substrate surface which led to the formation of films with small-sized and rod-shaped nanostructure is observed by field scanning electron microscopy. Optical transmittance in the visible range increases to reach a maximum value of about 80% for a substrate temperature of 350°C. PL spectra reveal one main broad peak centered around 540 nm with high intensity.
Synthesis and photocatalytic properties of TiO{sub 2} nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, X.H.; Liang, Y.; Wang, Z.
2008-08-04
TiO{sub 2} particles, rods, flowers and sheets were prepared by hydrothermal method via adjusting the temperature, the pressure and the concentration of TiCl{sub 4}. The as-prepared TiO{sub 2} powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra and N{sub 2} adsorption-desorption measurements. It was found that pressure is the most important factor influencing the morphology of TiO{sub 2}. The photocatalytic activity of the products was evaluated by the photodegradation of aqueous brilliant red X-3B solution under UV light. Among the as-prepared nanostructures, the flower-like TiO{sub 2}more » exhibited the highest photocatalytic activity.« less
NASA Astrophysics Data System (ADS)
Parveen, Azra; Agrawal, Shraddha; Azam, Ameer
2018-05-01
The nanoparticles of 5% Co doped NiO were synthesized by auto-combustion method in aqueous medium using NaOH as a fuel. The obtained particles were characterized using X-ray diffraction studies XRD. The results of structural characterization shows the formation of Co doped Nickel oxide nanoparticles in single phase without any impurity. The optical absorption spectra of Co doped NiO sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The variation of dielectric constant and dielectric loss has been studied as function of frequency. Co doping affects the optical properties and band gap. NiO can potentially be used in optical, electronic, catalytic materials, antimicrobial agent and super-paramagnetic devices.
Tunable upconversion luminescence of monodisperse Y2O3: Er3+/Yb3+/Tm3+ nanoparticles
NASA Astrophysics Data System (ADS)
Wu, Qibai; Lin, Shaoteng; Xie, Zhongxiang; Zhang, Liqing; Qian, Yannan; Wang, Yaodong; Zhang, Haiyan
2017-12-01
Monodisperse Y2O3: Er3+/Yb3+/Tm3+ nanoparticles with various dopant concentrations have been synthesized successfully by a homogeneous precipitation method. Their phase structures and surface morphologies have been characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The diversities of upconversion luminescence spectra and CIE coordinates of prepared samples are investigated in detail at room temperature under 980 nm excitation. Through adjusting the concentrations of Yb3+, Tm3+ and Er3+ ions, three upconversion emission bands in red, green and blue region could be tunable to achieve the color of interest and near white light emission can be obtained in the tri-doped Y2O3 nanoparticles for a variety of application.
Simultaneous Surface Modification and Chemical Reduction of Graphene Oxide Using Glucose.
Pan, Hui; Liu, Ruiqi; Li, Guanglong; Wang, Xiaodong; Ding, Tao
2018-05-01
In this paper, we develop a simple and facile approach to prepare graphene nanosheets through chemical reduction with glucose as reducing agent and modification agent. The reduced and modified graphene by glucose (denoted as g-rGO) was characterized with techniques of Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectra, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), etc. It is found that, besides the desired reduction capability to graphene oxide (denoted as GO), glucose plays an important role as a modifying reagent in stabilizing the as-prepared graphene nanosheets simultaneously and the g-rGO exhibits good dispersibility and stability in water and waterborne polyurethane matrix (denoted as WPU). Moreover, the g-rGO can improve evidently the mechanical properties, weather ability and water resistance of WPU.
The role of annealing temperature variation on ZnO nanorods array deposited on TiO2 seed layer
NASA Astrophysics Data System (ADS)
Asib, N. A. M.; Aadila, A.; Afaah, A. N.; Rusop, M.; Khusaimi, Z.
2018-05-01
Seed layer of Titanium dioxide (TiO2) by sol-gel spin coating technique were coated on glass substrate to grow Zinc oxide nanorods (ZNR) by solution-immersion method. The fabricated ZNR were annealed at various temperatures ranged from 400 to 600° C. FESEM images revealed that smaller ZNR were densely grown at optimum temperature of 450 and 500°C. Meanwhile, for all samples a dominant (0 0 2) diffraction peak of ZNR recorded by XRD patterns was at 34.4° which corresponding to hexagonal ZNR with a wurtzite structure. UV-Vis absorbance spectra showed the maximum absorption properties at UV region were detected at 450 and 500°C. The samples also showed high absorbance values at visible region.
Structural and optical properties of hydrazine hydrate capped cadmium sulphide nanoparticles
NASA Astrophysics Data System (ADS)
Solanki, Rekha Garg; Rajaram, P.
2018-05-01
Semiconductor nanoparticles have received considerable interest due to their size-dependent optical properties. CdS is an important semiconductor material widely used in low cost photovoltaic devices, light-emitting diodes and biological imaging. The nanoparticles of CdS were prepared by a simple chemical precipitation method in aqueous medium. The reaction was carried out at room temperature. The cadmium sulphide nanoparticles were characterized using X-ray powder diffraction (XRD) and UV-visible spectroscopy. The lattice strain, crystallite size and dislocation density were calculated using the Williamson-Hall (W-H) method. The band gap was obtained from the UV-Visible spectra of CdS nanoparticles. The band gap of CdS nanoparticles is around 2.68 eV and the crystallite size is around 5.8 nm.
Preparation, characterization and photocatalytic activities of TiO2-SrTiO3 composites
NASA Astrophysics Data System (ADS)
Wang, Yan; Zhu, Lianjie; Gao, Fubo; Xie, Hanjie
2017-01-01
Series of TiO2-SrTiO3 composites were synthesized by hydrothermal method, using TiO2 nanotube array as a precursor and Sr(OH)2 as a Sr source material. TiO2-SrTiO3 products with various composition were obtained by simply changing the reaction time. The as-synthesized products were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The optical properties were studied by means of UV-Vis absorption spectroscopy and photoluminescence (PL) spectra. Their photocatalytic activities were assessed by photodegradation of rhodamine B (RhB) solution and the photocatalytic reaction mechanism was discussed. The TiO2-SrTiO3 composites obtained at 2 h exhibits the highest activity for photodegradation of RhB.
NASA Astrophysics Data System (ADS)
Shivaramu, N. J.; Lakshminarasappa, B. N.; Nagabhushana, K. R.; Coetsee, E.; Swart, H. C.
2018-04-01
Lanthanum aluminate (LaAlO3) is synthesized by solution combustion method and the resultant powder is annealed at 900°C for 2 hours. X-ray diffraction (XRD) pattern confirms the rhombohedral structure LaAlO3 with space group R3 ¯c. γ-irradiated nanocrystalline lanthanum aluminate gives two prominent TL glow with peaks at 399 and 639 K and weak one at 547 K. TL intensity at 399 K increases up to 9.0 kGy and then decreases with increasing γ-dose. TL emission shows at 650 nm and 736 nm is attributed to the charge transfer from oxygen to metal ions. The glow curves are analyzed and the trap parameters are calculated by glow curve deconvoluted technique.
Optical properties of Dy3+ doped YBO3 phosphor
NASA Astrophysics Data System (ADS)
Nair, Ramya G.; Nigam, Sandeep; Sudarsan, V.; Vatsa, R. K.
2018-04-01
Dysprosium doped YBO3 luminescent particleis synthesized via poly-ol method and by subsequent annealing at 800°C. The synthesized material has been characterized for structure properties using powder X-ray diffraction (XRD) and Fourier transform infrared (FTIR)spectroscopy. Photoluminescence properties of these samples are studiedby means of steady state measurements and decay curve. The phosphor shows characteristic transitions of Dy3+ in the excitation and emission spectra. Colour purity is determined in terms of yellow/blue ratio, which is found to be 1.8. The higher ratio of yellow/blue indicates that Dy3+ preferentially occupies the asymmetric site in host lattice. The average lifetime is found to be 1.1ms. The chromatic properties of the phosphor have been found to have chromaticity coordinates x = 0.245, y = 0.274.
Rigid palm oil-based polyurethane foam reinforced with diamine-modified montmorillonite nanoclay
NASA Astrophysics Data System (ADS)
Haziq Dzulkifli, Mohd; Yazid Yahya, Mohd; Majid, Rohah A.
2017-05-01
This paper presents work on organically-modified montmorillonite (MMT) nanoclay embedded in rigid palm oil-based polyurethane (PU) foam. MMT was modified with organic surfactant diamino propane (DAP). PU foam was fabricated in closed mold, and the amount of DAP-MMT was varied in each foam formulation. The obtained foam was tested for its microstructure and morphology. Appearance of peaks from infra-red spectra corresponding to N-H, C=O, and C-N confirms the formation of PU networks. Scanning electron microscopy (SEM) revealed fine, closed-cellular structure at low clay loading; increasing DAP-MMT content induced larger cell sizes with blowholes. X-ray diffraction (XRD) indicates fully-exfoliated clays at 1 wt. % and partial-exfoliation at 3 wt. % clay loading, suggesting clumping of clays as DAP-MMT content increased.
Subhan, Md Abdus; Ahmed, Tanzir; Awal, M R; Kim, B Moon
2015-01-25
A novel mixed metal oxide, CeO2·CuAlO2 was fabricated by co-precipitation method in aqueous medium. CeO2·CuAlO2 was characterized by XRD, SEM, EDS, TEM, FTIR and PL spectra. The optical properties of the nanoparticles were studied by photoluminescence (PL) spectra. PL spectra at different excitations were recorded. The composite showed emission in UV, visible and NIR region depending on the excitation wavelength. The special spectral feature observed for this composite is that it showed six emission bands at 364, 409, 434, 448, 465 and 481 nm when excited at 298 nm. The green and red emissions observed at 512 and 669 nm are originated from cubic CeO2 phase when excited at 450 nm. The PL spectra were found to be dependent on excitation wavelength violating Kasha's rule. The X-ray diffraction reveals a cubic CeO2 phase and hexagonal CuAlO2 phase. EDS spectra revealed the presence of cerium (Ce), copper (Cu), aluminum (Al) and oxygen (O) elements. The particle size of the CeO2·CuAlO2 mixed oxide was estimated using Scherrer's formula, which was found to be in the range of 17.2-34.2 nm. The TEM image showed particles are almost uniform size of approximately 15-50 nm with spherical morphology. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Subhan, Md Abdus; Ahmed, Tanzir; Awal, M. R.; Kim, B. Moon
2015-01-01
A novel mixed metal oxide, CeO2·CuAlO2 was fabricated by co-precipitation method in aqueous medium. CeO2·CuAlO2 was characterized by XRD, SEM, EDS, TEM, FTIR and PL spectra. The optical properties of the nanoparticles were studied by photoluminescence (PL) spectra. PL spectra at different excitations were recorded. The composite showed emission in UV, visible and NIR region depending on the excitation wavelength. The special spectral feature observed for this composite is that it showed six emission bands at 364, 409, 434, 448, 465 and 481 nm when excited at 298 nm. The green and red emissions observed at 512 and 669 nm are originated from cubic CeO2 phase when excited at 450 nm. The PL spectra were found to be dependent on excitation wavelength violating Kasha's rule. The X-ray diffraction reveals a cubic CeO2 phase and hexagonal CuAlO2 phase. EDS spectra revealed the presence of cerium (Ce), copper (Cu), aluminum (Al) and oxygen (O) elements. The particle size of the CeO2·CuAlO2 mixed oxide was estimated using Scherrer's formula, which was found to be in the range of 17.2-34.2 nm. The TEM image showed particles are almost uniform size of approximately 15-50 nm with spherical morphology.
A top-down method to fabricate SrAl2O4:Eu2+,Dy3+ nanosheets from commercial blocky phosphors
NASA Astrophysics Data System (ADS)
Zhang, Haoran; Xue, Zhiping; Lei, Bingfu; Dong, Hanwu; Zhang, Haiming; Deng, Suqing; Zheng, Mingtao; Liu, Yingliang; Xiao, Yong
2014-09-01
By using commercial SrAl2O4:Eu2+,Dy3+ phosphor as raw material, we have developed a novel and simple top-down method to fabricate SrAl2O4:Eu2+,Dy3+ nanosheets that are useful for potential practical applications, especially as fluorescent labels for biomolecules and mechano-optical nano-devices. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) results demonstrate that the treated samples are still pure-phase of SrAl2O4:Eu2+,Dy3+. The field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) results indicate that the treated SrAl2O4:Eu2+,Dy3+ phosphors are built up by nanosheets bundles. Excitation and emission spectra, afterglow emission spectra and decay curves are used to analyze the luminescence properties of SrAl2O4:Eu2+,Dy3+ nanosheets, and the results show that, compared with commercial samples, the treated samples show similar spectra characteristic including the spectra shapes and the band position. Furthermore, the fluorescence and afterglow intensity of SrAl2O4:Eu2+,Dy3+ nanosheets can be tuned linearly by changing the circumstance temperatures, which further indicates its potential applications in fiber-optical thermometer materials.
Effect of preparation methods and doping on the structural and tunable emissions of CdS
NASA Astrophysics Data System (ADS)
Mohamed, Mohamed Bakr; Abdel-Kader, M. H.; Alhazime, Ali A.; Almarashi, Jamal Q. M.
2018-03-01
Fe, Mn and Mg doped CdS samples were prepared by thermolysis method in air and under flow of nitrogen. Structural, compositional and optical properties of the prepared samples were investigated using x-ray powder diffraction (XRD), scanning electron microscope (SEM/EDS mapping), Fourier transform infrared red (FTIR), UV-vis absorption and photoluminescence (PL) spectroscopes. Rietveld refinement of x-ray data showed that all the undoped and doped CdS samples prepared in air and under flow of nitrogen have both cubic and hexagonal structures. The percentages of hexagonal and cubic phases for all prepared samples were determined. The crystallite size increased for CdS prepared under flow of N2 compared with the sample prepared in air. The energy gap of all the samples was calculated using UV data. The intensity of PL emission changed according to the method of preparation and the kind of doping elements. PL emission revealed a blue shift for CdS prepared in air compared with CdS prepared under flow of nitrogen; also all doped samples showed a red shift of PL spectra compared with undoped samples. Undoped and doped CdS with Fe and Mg samples emitted violet and blue sub-spectra. Mn doped CdS prepared in air revealed violet, blue and yellow sub-spectra, while the sample prepared under flow of N2 emitted violet, blue and green sub-spectra.
Red light emission from europium doped zinc sodium bismuth borate glasses
NASA Astrophysics Data System (ADS)
Hegde, Vinod; Viswanath, C. S. Dwaraka; Upadhyaya, Vyasa; Mahato, K. K.; Kamath, Sudha D.
2017-12-01
Zinc sodium bismuth borate (ZNBB) glasses doped with different concentrations of europium were prepared by conventional melt quenching method and characterized through the measurements of density, refractive index, X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectra, optical absorption, luminescence and radiative lifetimes. FTIR spectra showed seven characteristic peaks of bismuth and borate functional groups in the range of 400-1600 cm-1. The optical band gap and bonding parameters have been calculated from absorption spectra. Photoluminescence spectra recorded in the visible region with 394 nm excitation are used to calculate the Judd-Ofelt (JO) intensity parameters (Ω2 and Ω4). The JO intensity parameters have been used to calculate the radiative parameters such as branching ratio (β), stimulated emission cross-section (σse), transition probability (A) for the fluorescent level of 5D0→7F2. Decay rates through single exponential are used to calculate the lifetime (τm) of the meta-stable state 5D0 of (Eu3+ ion) these glasses. The radiative parameters measured for all these glasses show 0.7 mol% europium doped zinc sodium bismuth borate glass 5D0→7F2 transition has the potential for red laser applications. The quality of the colour emitted by the present glasses are estimated quantitatively by CIE chromaticity coordinates, which confirms the suitability of these glasses as a red emitting material for field emission technologies and LEDs.
NASA Astrophysics Data System (ADS)
Abu Darim, R.; Azizan, A.; Salihon, J.
2018-05-01
The objective of this preliminary study is to identify the Crystalinity Index (CrI) of Oil Palm Frond (OPF) pretreated with 40% concentration of 1-ethyl-3-methylimidazolium acetate ionic liquid ([EMIM][OAc]) in a closed system. The morphology and structural changes of the pretreated OPF were examined by using Fourier Transform Infrared Spectrometer (FTIR) and X-Ray Diffraction (XRD). The pretreatment process was carried out in triplicates by loading 40% of [EMIM][OAc] concentration with 10 wt% of OPF loading in the Bio-ionic liquid-reactor. The pretreatment process was conducted for 3 hours with working volume of 70 mL and temperature of 110°C. A Bio-ionic liquid reactor was purposely designed for the lignocellulosic pretreatment by using aqueous ionic liquid at high temperature (higher than boiling point of water). The CrI of OPF pretreated with 40% concentration of [EMM][OAc] in a closed system observed was 9% lower from the untreated OPF and the result showed significant difference with 95% confidence level. Further examination of the untreated and pretreated OPF by using XRD showed that the diffraction pattern of the pretreated OPF samples was decreasing compared to the untreated OPF. The characteristic of the FTIR spectra of the pretreated OPF showed the presence of the cellulose I and occurrence of amorphous cellulosic in the samples. The findings from this study are expected to improve knowledge on pretreatment of OPF by using aqueous [EMIM][OAc] as a green economically viable process for future renewable energy.
Deposition of GdVO4:Eu3+ nanoparticles on silica nanospheres by a simple sol gel method
NASA Astrophysics Data System (ADS)
Liu, Guixia; Hong, Guangyan; Wang, Jinxian; Dong, Xiangting
2006-07-01
The deposition and coating of GdVO4:Eu3+ nanoparticles on spherical silica was carried out using a simple sol-gel method at low temperature. The GdVO4:Eu3+-coated silica composites obtained were characterized by differential thermal analysis (DTA), thermogravimetric (TG) analysis, x-ray diffraction (XRD), Fourier-transform IR spectroscopy (FT-IR), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), photoluminescence spectra, and kinetic decay. It is found that the ~5 nm GdVO4:Eu3+ nanoparticles coating the silica spheres are crystal in the as-prepared samples and the crystallinity increases with increasing annealing temperature. The composites obtained are spherical in shape with an average size of 100 nm. The GdVO4:Eu3+ nanoparticles are linked with silica cores by a chemical bond. The photoluminescence spectra of the obtained GdVO4:Eu3+-coated silica composites are similar to those of the bulk GdVO4:Eu3+ phosphors. The strongest peak is near 617 nm, which indicates that Eu3+ is located in the low symmetry site with non-inversion centre.
NASA Astrophysics Data System (ADS)
Yao, Wei; Zhou, Hui; Lu, Yun
2013-11-01
Novel MnO2@polypyrrole (PPy) coaxial nanotubes have been prepared via a simple and green approach without any surfactant and additional oxidant. Under the acidic condition, MnO2 nanotubes act as both template and oxidant to initiate the polymerization of pyrrole monomers on its fresh-activated surface. Fourier transform infrared spectra (FT-IR), X-ray diffraction patterns (XRD), thermo-gravimetric analysis data (TG) and X-ray photoelectron spectra (XPS) suggest the formation of composite structure of MnO2@PPy. Also, FESEM and TEM images intuitively confirm that the PPy shell is coated uniformly on the surface of MnO2 nanotubes. Adjusting the concentrations of sulfuric acid or adding oxidant can modulate the morphology of the products accordingly. Due to the synergic effect between MnO2 core and PPy shell, the MnO2@PPy coaxial nanotubes possess better rate capability, larger specific capacitance of 380 F g-1, doubling the specific capacitance of MnO2 nanotubes, and good capacitance retention of 90% for its initial capacitance after 1000 cycles.
NASA Astrophysics Data System (ADS)
Omri, K.; Alyamani, A.; Mir, L. El
2018-02-01
Mn2+-doped Zn2SiO4 (ZSM2+) was synthesized by a facile sol-gel technique. The obtained samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL) and cathodoluminescence (CL) techniques. Under UV excitation, spectra showed that the α-ZSM2+ phosphor exhibited a strong green emission around 525 nm and reached the highest luminescence intensity with the Mn doping concentration of 5 at.%. However, for the β-ZSM2+ phase, an interesting yellow emission band centered at 575 nm of Mn2+ at the Zn2+ tetrahedral sites was observed. In addition, an unusual red shift with increasing Mn2+ content was also found and attributed to an exchange interaction between Mn2+. Both PL and CL spectra exhibit an intense green and yellow emission centered at 525 and 573 nm, respectively, due to the 4T1 (4G)-6A1 (6S) transition of Mn2+. Furthermore, these results indicated that the Mn2+-doped zinc silicate phosphors may have potential applications in green and yellow emissions displays like field emission displays (FEDs).
Surface enhanced Raman spectral studies of 2-bromo-1,4-naphthoquinone.
Geetha, K; Umadevi, M; Sathe, G V; Vanelle, P; Terme, T; Khoumeri, O
2015-03-05
Silver nanoparticles have been synthesized by a simple and inexpensive solution combustion method with urea as fuel. The structural and morphology of the silver nanoparticles were investigated through X-ray powder diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersion Spectra (EDS) techniques. Structural and morphological results confirmed the nanocrystalline nature of the silver nanoparticles. Density Functional Theory (DFT) calculations were also performed to study the ground and excited state behavior of 2-bromo-1,4-naphthoquinone (2-BrNQ) and 2-BrNQ on silver nanoparticles. Surface-Enhanced Raman Scattering (SERS) spectra of 2-BrNQ adsorbed on silver nanoparticles were investigated. The CO, CH in-plane bending and CBr stretching modes were enhanced in SERS spectrum with respect to normal Raman spectrum. The spectral analysis reveals that the 2-BrNQ adsorbed 'stand-on' orientation on the silver surface. Density Functional Theory (DFT) calculations are also performed to study the vibrational features of 2-BrNQ molecule and 2-BrNQ molecule on silver surface. Copyright © 2014 Elsevier B.V. All rights reserved.
Synthesis and luminescence properties of Eu3+-doped KLa(MoO4)2 red-emitting phosphor
NASA Astrophysics Data System (ADS)
Zuo, Haoqiang; Liu, Yun; Li, Jinyang; Shi, Xiaolei; Gao, Weiping
2015-09-01
Eu3+-doped KLa(MoO4)2 phosphors were synthesized by a simple hydrothermal method. X-ray diffraction (XRD) analysis demonstrated that the as-prepared products were pure monoclinic phase of KLa(MoO4)2. Field emission scanning electron microscopy (FE-SEM) images indicated that the morphology of the prepared phosphors evolved from uniform spherical-like to irregular elliposid-like with increase of the concentration. The photoluminescence (PL) spectra displayed that the phosphors show strong red light around 618 nm, attributed to 5D0 → 7F2 transition of Eu3+ ion under 465 nm excitation, and the optimal Eu3+ doping concentration was about 15 mol.% based on the concentration dependent emission spectra. According to Dexter's theory the electric dipole-dipole interaction (D-D) is the main mechanism for energy transfer between Eu3+ and Eu3+ ions. The CIE chromaticity (x, y) of the phosphors were about (0.65, 0.35) and it is close to the standard red chromaticity of NTSC. Therefore, the phosphors could be used as red phosphors for white light-emitting diodes.
Karthikeyan, C; Haja Hameed, A S; Sagaya Agnes Nisha, J; Ravi, G
2013-11-01
4-N,N'-dimethylamino-N-methyl-4-stilbazolium toyslate (DAST) and diethanolamine (DEA) added DAST crystals are grown by slow cooling method. The corresponding powder samples are examined by characterization studies such as XRD, FT-IR, FT-Raman, UV-Vis-NIR and photoluminescence studies. From the powder X-ray diffraction, their lattice parameter values are found out. Since the vibrational spectra of the molecules are considerably contributed to their linear and nonlinear optical effects, Infrared and Raman spectroscopic studies are carried out for the samples. The UV-Vis-NIR absorption spectra of the samples are used to find the nature of transitions occurred in the samples. Using the density functional theory, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) analyses are done in order to explain the transition and density of states (DOS). The first order hyperpolarizability is calculated by HF and B3LYP/6-311 G(d,p) basis sets for the DAST molecule. From the photoluminescence (PL) spectral studies, the strong excitation emissions are observed. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Shibu; Wei, Wei; Chen, Xiangnan; Jiang, Man; Zhou, Zuowan
2012-06-01
Polyaniline (PANI) hybridized ZnO photoanode for dye-sensitized solar cell (DSSC) was primarily prepared via a two-step process which involved hydrothermal growth of ZnO nanograss on the fluorine-doped tin oxide (FTO) substrate and subsequently chemisorption of PANI on the surfaces of the ZnO nanorods. The PANI hybridized ZnO nanograss films were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), and the results indicated that there were chemical interactions between PANI and ZnO. Both pure ZnO nanograss and PANI hybridized ZnO nanograss were applied to DSSC. The results of photoelectrochemical measurement showed that the photocurrent density of PANI (100 mg/L) hybridized ZnO nanograss photoanode was significantly enhanced, and the overall light-conversion efficiency increased by 60%. The electrochemical impedance spectra (EIS) displayed that the electron densities in photoanodes of PANI hybridized ZnO nanograss were larger than that in pure ZnO nanograss. This is ascribed to more effective charge separation and faster interfacial charge transferring occurred in the hybrid photoanode.
Solar photocatalytic degradation of isoproturon over TiO2/H-MOR composite systems.
Sharma, Mangalampalli V Phanikrishna; Durgakumari, Valluri; Subrahmanyam, Machiraju
2008-12-30
The photocatalytic degradation and mineralization of isoproturon herbicide was investigated in aqueous solution containing TiO2 over H-mordenite (H-MOR) photocatalysts under solar light. The catalysts are characterized by X-ray diffraction (XRD), UV-Vis diffused reflectance spectra (UV-Vis DRS), Fourier transform-infra red spectra (FT-IR) and scanning electron microscopy (SEM) techniques. The effect of TiO2, H-MOR support and different wt% of TiO2 over the support on the photocatalytic degradation and influence of parameters such as TiO2 loading, catalyst amount, pH and initial concentration of isoproturon on degradation are evaluated. 15wt% TiO2/H-MOR composite is found to be optimum. The degradation reaction follows pseudo-first order kinetics and is discussed in terms of Langmuir-Hinshelwood (L-H) kinetic model. The extent of isoproturon mineralization studied with chemical oxygen demand (COD) and total organic carbon (TOC) measurements and approximately 80% mineralization occurred in 5h. A plausible mechanism is proposed based on the intermediates identified by liquid chromatography-mass spectroscopy (LC-MS).
Synthesis and characterization of photo-crosslinkable 4-styryl-pyridine modified alginate.
Elsayed, Nadia H; Monier, M; Alatawi, Raedah A S
2016-07-10
In this article photo-crosslinkablestyryl-pyridine modified alginate (ASP-Alg) was prepared and entirely investigated utilizing different instrumental techniques such as Elemental analysis, Fourier transform infrared (FTIR),(13)C and (1)H nuclear magnetic resonance (NMR), ultraviolet-visible light (UV-vis), X-ray diffraction (XRD) spectra and scanning electron microscope (SEM). Upon irradiation in the UV region, the casted ASP-Alg membranes were cross-linked through the [2π+2π] cycloaddition reaction of the inserted photo-active styryl pyridine moieties. Both cross-linking density and kinetics were monitored by examining the UV-vis light spectra of the irradiated membrane at predetermined time intervals and the obtained results were found to fit with the second order mathematical kinetic model, revealing the performance of the cross-linking via bimolecular [2π+2π] cycloaddition reaction. Also, the swelling behaviors along with biodegradability were also studied, and the results indicated the decrease of the swelling ratio and degradation rate by increasing the cross-linking density. Moreover, the mechanical properties were also examined under both wet and dry conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Post-annealing effect on optical absorbance of hydrothermally grown zinc oxide nanorods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohar, Rahmat Setiawan; Djuhana, Dede; Imawan, Cuk
In this study, the optical absorbance of zinc oxide (ZnO) nanorods was investigated. The ZnO thin film were deposited on indium tin oxide (ITO) layers using ultrasonic spray pyrolysis (USP) method and then grown by hydrothermal method. In order to improve the optical absorbance, the ZnO nanorods were then post-annealed for one hour at three different of temperatures, namely 250, 400, and 500 °C. The X-ray diffraction (XRD) spectra and FESEM images show that the ZnO nanorods have the hexagonal wurtzite crystal structure and the increasing of post-annealing temperature resulted in the increasing of crystallite size from 38.2 nm to 48.4 nm.more » The UV-vis spectra shows that all samples of ZnO nanorods exhibited the identical sharp absorption edge at 390 nm indicating that all samples have the same bandgap. The post-annealing process seemed to decrease the optical absorbance in the region of 300-550 nm and increase the optical absorbance in the region of 550-700 nm..« less
Rotary target method to prepare thin films of CdS/SiO 2 by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Wang, H.; Zhu, Y.; Ong, P. P.
2000-12-01
Thin films of CdS-doped SiO 2 glass were prepared by using the conventional pulsed laser deposition (PLD) technique. The laser target consisted of a specially constructed rotary wheel which provided easy control of the exposure-area ratio to expose alternately the two materials to the laser beam. The physical target assembly avoided the potential complications inherent in chemically mixed targets such as in the sol-gel method. Time-of-flight (TOF) spectra confirmed the existence of the SiO 2 and CdS components in the thin-film samples so produced. X-ray diffraction (XRD) and atomic force microscopy(AFM) results showed the different sizes and structures of the as-deposited and annealed films. The wurtzite phase of CdS was found in the 600 oC-annealed sample, while the as-deposited film showed a cubic-hexagonal mixed structure. In the corresponding PL (photoluminescence) spectra, a red shift of the CdS band edge emission was found, which may be a result of the interaction between the CdS nanocrystallite and SiO 2 at their interface.
Palmer, Sara J; Frost, Ray L
2011-05-01
Near infrared (NIR), X-ray diffraction (XRD) and infrared (IR) spectroscopy have been applied to halotrichites of the formula MgAl(2)(SO(4))(4)·22H(2)O, MnAl(2)(SO(4))(4)·22H(2)O and ZnAl(2)(SO(4))(4)·22H(2)O. Comparison of the halotrichites in different spectral regions has shown that the incorporation of a divalent transition metal into the halotrichite structure causes a shift in OH stretching band positions to lower wavenumbers. Therefore, an increase of the hydrogen bond strength of the bonded water is observed for divalent cations with a larger molecular mass. XRD has confirmed the formation of halotrichite for all three samples and characteristic peaks of halotrichite have been identified for each halotrichite-type compound. It has been observed that Mg-Al and Mn-Al halotrichite are very similar in structure, while Zn-Al showed several differences particularly in the NIR spectra. This work has shown that compounds with halotrichite structures can be synthesised and characterised by infrared and NIR spectroscopy. Copyright © 2011 Elsevier B.V. All rights reserved.
A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste.
Siva Rama Krishna, D; Siddharthan, A; Seshadri, S K; Sampath Kumar, T S
2007-09-01
The eggshell waste has been value engineered to a nanocrystalline hydroxyapatite (HA) by microwave processing. To highlight the advantages of eggshell as calcium precursor in the synthesis of HA (OHA), synthetic calcium hydroxide was also used to form HA (SHA) following similar procedure and were compared with a commercially available pure HA (CHA). All the HAs were characterized by X-ray powder diffraction (XRD) method, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and specific surface area measurements. Nanocrystalline nature of OHA is revealed through characteristic broad peaks in XRD patterns, platelets of length 33-50 nm and width 8-14 nm in TEM micrograph and size calculations from specific surface area measurements. FT-IR spectra showed characteristic bands of HA and additionally peaks of carbonate ions. The cell parameter calculations suggest the formation of carbonated HA of B-type. The OHA exhibits superior sinterability in terms of hardness and density than both SHA and CHA may be due to larger surface area of its spherulite structure. The in vitro dissolution study shows longer stability in phosphate buffer and cell culture test using osteoblast cells establishes biocompatibility of OHA.
NASA Astrophysics Data System (ADS)
Verma, Akta; Sharma, S. K.
2018-05-01
In the present work, we have synthesized a CaMoO4:(1%)Er3+,(1%)Yb3+ down-converting phosphor by hydrothermal method. The primary goal of studying down-conversion is to enhance the conversion efficiency of Si-solar cell by converting one high energy (UV) photon into two low energy (NIR) photons. The various characterization such as XRD, FESEM and Photoluminescence (PL) were carried out. The X-ray diffraction (XRD) pattern exhibit tetragonal crystal structure and has a space group of I41a (88). The FESEM microphotograph shows surface morphology having a abundance of particles in spherical shape. The PL emission spectra were recorded both in Visible and NIR regions. There is hypertensive emission peak at 555 nm in the visible region due to 4S3/2 → 4I15/2 transition of Er3+ ions and an emission at 980 nm (2F5/2 → 2F7/2) due to Yb3+ ions. The result shows a demand of this down-converting material in the field of solar energy to improve the efficiency of Si-solar-cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Virender Singh; Tanwar, Amit; Singh, Davender, E-mail: Davender-kadian@rediffmail.com
The pure and Ag-doped TiO{sub 2} nanoparticles were prepared by using Titanium isoproxide (TTIP), silver nitrate sodium hydroxide and sodium hydroxide. The calcined nanoparticles at 400°C were characterized by means of X-ray diffraction (XRD). XRD analyses reveal that the nanoparticles of various doping concentration were having anatase phase. The particle size was calculated by Scherrer formula and was found 11.08 nm for pure TiO{sub 2} and 8.86 nm for 6 mol % Ag doped TiO{sub 2}. The morphology and nature of nanoparticles was analyzed by using scanning electron microscope (SEM), the optical absorption spectra of pure TiO{sub 2} and Ag-doped TiO{sub 2} nanoparticlesmore » showed that absorption edge increases towards longer wavelength from 390 nm (pure) to 450 nm (doped), also band gap energy calculated from Tauc’s plot decrease from 3.20eV to 2.92eV with increase in doing. The measurement of photocatalytic properties of pure TiO{sub 2} and Ag-doped TiO{sub 2} nanoparticles showed that Ag-doped TiO{sub 2} degrades MB dye more efficiently than pure TiO{sub 2}.« less
Paulkumar, Kanniah; Gnanajobitha, Gnanadhas; Vanaja, Mahendran; Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Pandian, Kannaiyan; Annadurai, Gurusamy
2014-01-01
Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray analysis (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7-50 nm and 9-30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology.
NASA Astrophysics Data System (ADS)
Indirajith, R.; Rajalakshmi, M.; Gopalakrishnan, R.; Ramamurthi, K.
2016-03-01
Bismuth selenide (Bi2Se3) was synthesized by hydrothermal method at 200 °C and confirmed by powder X-ray diffraction (XRD) studies. The synthesized material was utilized to deposit bismuth selenide thin films at various substrate temperatures (Room Temperature-RT, 150 °C, 250 °C, 350 °C and 450 °C) by electron beam evaporation technique. XRD study confirmed the polycrystalline nature of the deposited Bi2Se3films. Optical transmittance spectra showed that the deposited (at RT) films acquire relatively high average transmittance of 60%in near infrared region (1500-2500 nm). An indirect allowed optical band gap calculated from the absorption edge for the deposited films is ranging from 0.62 to 0.8 eV. Scanning electron and atomic force microscopy analyses reveal the formation of nano-scale sized particles on the surface and that the nature of surface microstructures is influenced by the substrate temperature. Hall measurements showed improved electrical properties, for the films deposited at 350 °C which possess 2.8 times the mobility and 0.9 times the resistivity of the films deposited at RT.
NASA Astrophysics Data System (ADS)
Li, Huijie; Meng, Fanming; Gong, Jinfeng; Fan, Zhenghua; Qin, Rui
2018-03-01
CeO2 nanospheres with the core-shell nanostructure have been successfully synthesized by a template-free hydrothermal method. The structures, morphologies and optical properties of core-shell CeO2 nanospheres were analyzed by X-ray diffraction (XRD), TG, Fourier transform infrared spectroscopy, XRD, EDS, SAED, scanning electron microscopy and transmission electron microscopy, UV-Vis diffuse reflectance spectra, Raman analyses. The degradation efficiencies of core-shell CeO2 nanospheres for methyl orange were as high as 93.49, 95.67 and 98.28% within 160 min, and the rates of photo degradation of methyl orange by core-shell CeO2 nanospheres under UV-light were 0.01693, 0.01782 and 0.02375 min-1. Methyl orange was degraded in photocatalytic oxidation processes, which mainly gave the credit to a large number of reactive species including h+, surface superoxide species ·O2 -, and ·OH radicals. The core-shell structure, small crystallite size and the conversion between Ce3+ and Ce4+ of CeO2 nanospheres were of importance for its catalytic activity. These results demonstrated the possibility of improving the efficient catalysts of the earth abundant CeO2 catalysts.
Nanostructured CdO-NiO composite for multifunctional applications
NASA Astrophysics Data System (ADS)
Karthik, K.; Dhanuskodi, S.; Gobinath, C.; Prabukumar, S.; Sivaramakrishnan, S.
2018-01-01
In this study, CdO, NiO, and CdO-NiO nanocomposites (NCs) were synthesized and investigated by X-ray diffraction (XRD), scanning electron microscopy, and Fourier transform-infrared spectroscopy. XRD detected cubic structures with average crystallite sizes of 45 nm for CdO, 25 nm for NiO, and 30 nm for CdO-NiO. The band gap was estimated based on the ultraviolet-visible spectra. The near band edge emission was determined according to the luminescence spectrum. The antibacterial activities were tested against seven foodborne pathogens and the zones of inhibition with the Gram-negative bacterium Bacillus subtilis measured as 30 mm with CdO, 20 mm NiO, and 27 mm with CdO-NiO. The death of the bacterial cells was confirmed by confocal laser scanning microscope analysis. Cytotoxicity assays indicated the non-toxic effects of the NCs on normal healthy red blood cells. Furthermore, the in vitro cytotoxic effects of the CdO, NiO, and CdO-NiO NCs were examined using the human MCF-7 breast cancer cell line based on 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyltetrazolium bromide assays with normal mouse embryonic fibroblasts (NH3T3) under identical conditions.
Synthesis and photocatalytic activity of ytterbium-doped titania/diatomite composite photocatalysts
NASA Astrophysics Data System (ADS)
Tang, Wenjian; Qiu, Kehui; Zhang, Peicong; Yuan, Xiqiang
2016-01-01
Ytterbium-doped titanium dioxide (Yb-TiO2)/diatomite composite materials with different Yb concentrations were prepared by sol-gel method. The phase structure, morphology, and chemical composition of the as-prepared composites were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and ultraviolet-visible (UV-vis) diffuse reflection spectroscopy. The XRD and Raman spectroscopy analysis indicated that the TiO2 existed in the form of pure anatase in the composites. The SEM images exhibited the well deposition and dispersion of TiO2 nanoparticles with little agglomeration on the surfaces of diatoms. The UV-vis diffuse reflection spectra showed that the band gap of TiO2 could be narrowed by the introduction of Yb species, which was further affected by doping concentration of Yb. The photocatalytic activity of synthesized samples was investigated by the degradation of methylene blue (MB) under UV light irradiation. It was observed that the photocatalytic degradation followed a pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. Compared to TiO2 and TiO2/diatomite, the Yb-TiO2/diatomite composites exhibited higher photocatalytic activity toward degradation of MB using UV light irradiation.
NASA Astrophysics Data System (ADS)
Mirzaee, Majid; Dolati, Abolghasem
2015-03-01
We report on the preparation and characterization of high-purity chromium (0.5-2.5 at.%)-doped indium tin oxide (ITO, In:Sn = 90:10) films deposited by sol-gel-mediated dip coating. The effects of different Cr-doping contents on structural, morphological, optical and electrical properties of the films were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), UV-Vis spectroscopy and four-point probe methods. XRD showed high phase purity cubic In2O3 and indicated a contraction of the lattice with Cr doping. FESEM micrographs show that grain size decreased with increasing the Cr-doping content. A method to determine chromium species in the sample was developed through the decomposition of the Cr 2 p XPS spectrum in Cr6+ and Cr3+ standard spectra. Optical and electrical studies revealed that optimum opto-electronic properties, including minimum sheet resistance of 4,300 Ω/Sq and an average optical transmittance of 85 % in the visible region with a band gap of 3.421 eV, were achieved for the films doped with Cr-doping content of 2 at.%.
NASA Astrophysics Data System (ADS)
Peng, Tiefeng; Liu, Bin; Gao, Xuechao; Luo, Liqun; Sun, Hongjuan
2018-06-01
Expandable graphite is widely used as a new functional carbon material, especially as fire-retardant; however, its practical application is limited due to the high expansion temperature. In this work, preparation process of low temperature and highly expandable graphite was studied, using natural flake graphite as raw material and KMnO4/HClO4/NH4NO3 as oxidative intercalations. The structure, morphology, functional groups and thermal properties were characterized during expanding process by Fourier transform infrared spectroscopy (FTIR), Raman spectra, thermo-gravimetry differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM). The analysis showed that by oxidation intercalation, some oxygen-containing groups were grafted on the edge and within the graphite layer. The intercalation reagent entered the graphite layer to increase the interlayer spacing. After expansion, the original flaky expandable graphite was completely transformed into worm-like expanded graphite. The order of graphite intercalation compounds (GICs) was proposed and determined to be 3 for the prepared expandable graphite, based on quantitative XRD peak analysis. Meanwhile, the detailed intercalation mechanisms were also proposed. The comprehensive investigation paved a benchmark for the industrial application of such sulfur-free expanded graphite.
Optical, structural, and nuclear scientific studies of AlGaN with high Al composition
NASA Astrophysics Data System (ADS)
Lin, Tse Yang; Chung, Yee Ling; Li, Lin; Yao, Shude; Lee, Y. C.; Feng, Zhe Chuan; Ferguson, Ian T.; Lu, Weijie
2010-08-01
AlGaN epilayers with higher Al-compositions were grown by Metalorganic Chemical Vapor Deposition (MOCVD) on (0001) sapphire. Trimethylgallium (TMGa), trimethylaluminium (TMAl) and NH3 were used as the source precursors for Ga, Al, and N, respectively. A 25 nm AlN nucleation layer was first grown at low-temperature of 590 °C at 300 Torr. Followed, AlxGa1-xN layers were grown at 1080 °C on low-temperature AlN nucleation layers. The heterostructures were characterized by a series of techniques, including x-ray diffraction (XRD), Rutherford backscattering (RBS), photoluminescence (PL), scanning electron microscopy (SEM) and Raman scattering. Precise Al compositions were determined through XRD, RBS, and SEM combined measurements. Room Temperature Raman Scattering spectra shows three major bands from AlGaN alloys, which are AlN-like, A1 longitudinal optical (LO) phonon modes, and E2 transverse optical (TO) band, respectively, plus several peak comes from the substrate. Raman spectral line shape analysis lead to an optical determination of the electrical property free carrier concentration of AlGaN. The optical properties of AlGaN with high Al composition were presented here.
NASA Astrophysics Data System (ADS)
Kerour, A.; Boudjadar, S.; Bourzami, R.; Allouche, B.
2018-07-01
In this work, we have synthesized cuprous oxide (Cu2O) nanoparticles with octahedral and spherical like shapes by an ecofriendly, simple and coast effective method, by using the aqueous extract of Aloe vera and copper sulfate as solvent and precursor respectively. The effect of Aloe vera aqueous extract concentration on the morphological, structural and optical properties of as synthesized nanoparticles was studied by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform (FT-IR) spectroscopy and UV-visible diffuse reflectance. The SEM images showing octahedral and spherical agglomeration of nanoparticles. The cubic structure of Cu2O was confirmed by XRD analysis, the crystallites size depends to the concentration of Aloe vera aqueous extract with an average size ranged between 24 and 61 nm. The FT-IR vibration measurements valid the presence of pure Cu2O in the samples. The UV-visible spectra show that the prepared cuprous oxide (Cu2O) has a gap energy estimated from 2.5 to 2.62 eV. The photocatalytic activities of the as-prepared material were highly improvement by the fast degradation of methylene blue in aqueous solution at room temperature under solar simulator irradiation.
Chemical bath deposition of Cu{sub 3}BiS{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshmukh, S.G., E-mail: deshmukhpradyumn@gmail.com; Vipul, Kheraj, E-mail: vipulkheraj@gmail.com; Panchal, A.K.
2016-05-06
First time, copper bismuth sulfide (Cu{sub 3}BiS{sub 3}) thin films were synthesized on the glass substrate using simple, low-cost chemical bath deposition (CBD) technique. The synthesized parameters such as temperature of bath, pH and concentration of precursors were optimized for the deposition of uniform, well adherent Cu{sub 3}BiS{sub 3} thin films. The optical, surface morphology and structural properties of the Cu{sub 3}BiS{sub 3} thin films were studied using UV-VIS-NIR spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The as- synthesized Cu{sub 3}BiS{sub 3} film exhibits a direct band gap 1.56 to 1.58 eV having absorption coefficient of the ordermore » of 10{sup 5} cm{sup −1}. The XRD declares the amorphous nature of the films. SEM images shows films were composed of close-packed fine spherical nanoparticles of 70-80 nm in diameter. The chemical composition of the film was almost stoichiometric. The optical study indicates that the Cu{sub 3}BiS{sub 3} films can be applied as an absorber layer for thin film solar cells.« less
NASA Astrophysics Data System (ADS)
Cakić, Milorad; Glišić, Slobodan; Nikolić, Goran; Nikolić, Goran M.; Cakić, Katarina; Cvetinov, Miroslav
2016-04-01
Dextran sulphate stabilized silver nanoparticles (AgNPs - DS) were synthesized from aqueous solution of silver nitrate (AgNO3) and dextran sulphate sodium salt (DS). The characterization of AgNPs - DS was performed by ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and antimicrobial activity. The formation of AgNPs - DS was monitored by colour changes of the reaction mixture from yellowish to brown and by measuring the surface plasmon resonance absorption peak in UV-VIS spectra at 420 nm. The SEM analysis was used for size and shape determination of AgNPs - DS. The presence of elemental silver and its crystalline structure in AgNPs - DS were confirmed by EDX and XRD analyses. The possible functional groups of DS responsible for the reduction and stabilization of AgNPs were determinated by FTIR spectroscopy. The AgNPs - DS showed strong antibacterial activity against Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 11778, Bacillus luteus in haus strain, Bacillus subtilis ATTC 6633, Listeria monocytogenes ATCC 15313, Escherichia coli ATTC 25922, Pseudomonas aeruginosa ATTC 27853, Klebsiella pneumoniae ATTC 700603, Proteus vulgaris ATTC 8427, and antifungal activity against Candida albicans ATTC 2091.
Effect of Zn doping on structural, optical and thermal properties of CeO2 nanoparticles
NASA Astrophysics Data System (ADS)
Ramasamy, V.; Vijayalakshmi, G.
2015-09-01
The undoped and Zn doped CeO2 nanoparticles were synthesized by chemical precipitation method at room temperature. The undoped and Zn doped CeO2 nanoparticles have been characterized by X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), ultraviolet visible and photoluminescence (PL) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and thermogravimetry and differential thermal analysis (TG-DTA). The cubic fluorite structures of the CeO2 nanoparticles were determined by XRD. The influence of particle size on structural parameters such as lattice parameter (a), inter planar distance (d), dislocation density (δ), microstrain (ε), lattice strain (η) and texture co-efficient (TC) were also determined. The lattice strains were determined by Williamson-Hall plot method. The effect of Zn doping with shifting of the bands were observed by UV-Vis spectroscopy and also their optical band gap were determined. The emission spectra and energy band diagram of the undoped and Zn doped samples were derived from PL spectroscopy. The structural bond vibrations of undoped and Zn doped CeO2 nanoparticles were analyzed by FTIR spectroscopy. The thermal property (weight loss and decomposition) of the sample is observed by TG-DTA curve.
Novel Sample-handling Approach for XRD Analysis with Minimal Sample Preparation
NASA Technical Reports Server (NTRS)
Sarrazin, P.; Chipera, S.; Bish, D.; Blake, D.; Feldman, S.; Vaniman, D.; Bryson, C.
2004-01-01
Sample preparation and sample handling are among the most critical operations associated with X-ray diffraction (XRD) analysis. These operations require attention in a laboratory environment, but they become a major constraint in the deployment of XRD instruments for robotic planetary exploration. We are developing a novel sample handling system that dramatically relaxes the constraints on sample preparation by allowing characterization of coarse-grained material that would normally be impossible to analyze with conventional powder-XRD techniques.
Time dependence of carbon film deposition on SnO{sub 2}/Si using DC unbalanced magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfiadi, H., E-mail: yudi@fi.itb.ac.id; Aji, A. S., E-mail: yudi@fi.itb.ac.id; Darma, Y., E-mail: yudi@fi.itb.ac.id
Carbon deposition on SnO{sub 2} layer has been demonstrated at low temperature using DC unbalanced magnetron-sputtering technique for various time depositions. Before carbon sputtering process, SnO{sub 2} thin layer is grown on silicon substrate by thermal evaporation method using high purity Sn wire and then fully oxidizes by dry O{sub 2} at 225°C. Carbon sputtering process was carried out at pressure of 4.6×10{sup −2} Torr by keeping the substrate temperature of 300 °C for sputtering deposition time of 1 to 4 hours. The properties of SnO{sub 2}/Si structure and carbon thin film on SnO{sub 2} is characterized using SEM, EDAX,more » XRD, FTIR, and Raman Spectra. SEM images and XRD spectra show that SnO2 thin film has uniformly growth on Si substrate and affected by annealing temperature. Raman and FTIR results confirm the formation of carbon-rich thin film on SnO{sub 2}. In addition, XRD spectra indicate that some structural change occur by increasing sputtering deposition time. Furthermore, the change of atomic structure due to the thermal annealing is analized by XRD spectra and Raman spectroscopy.« less
Synthesis of Cu/CuO nanoparticles in mesoporous material by solid state reaction
NASA Astrophysics Data System (ADS)
Sohrabnezhad, Sh.; Valipour, A.
2013-10-01
The Mobil Composition of Matter No. 41 (MCM-41) containing 1.0 and 5.0 wt.% of Cu was synthesized under solid state reaction. The calcinations of samples were done at two different temperatures, 500 and 300 °C. X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) were used for samples characterization. Powder X-ray diffraction showed that when Cu(CH3COO)2 content is about 1.0 wt.% in Cu/MCM-41, the guest CuO-NPs and copper ions is formed on the silica channel wall, and more exists in the crystalline state. When Cu(CH3COO)2 content exceeds this value (5.0 wt.%), CuO nanoparticles and Cu2+ ions can be observed in low crystalline state. From the diffuse reflectance spectra it was confirmed that 5 wt.% Cu/MCM-41 sample calcined at 500 °C show plasmon resonance band due to Cu nanoparticles in the range between 500 and 600 nm and small copper clusters Cun in 450 nm. It also shows that some of the Cu2+ ions are present octahedrally in extraframework position in all samples. Both fourier transform infrared and diffuse reflectance spectra indicate that some of Cu2+ ions are tetrahedrally within the framework position in 1 wt.% Cu/MCM-41 samples. TEM images indicated that nanoparticles size of CuO is in range of 30-40 nm.
Diamagnetism to ferromagnetism in Sr-substituted epitaxial BaTiO{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu; Prater, John T.; Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
2016-04-04
We report on the ferromagnetic-like behavior in otherwise diamagnetic BaTiO{sub 3} (BTO) thin films upon doping with non-magnetic element Sr having the composition Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} (BST). The epitaxial integration of BST (∼800 nm) thick films on Si (100) substrate was achieved using MgO (40 nm) and TiN (20 nm) as buffer layers to prepare BST/MgO/TiN/Si (100) heterostructure by pulsed laser deposition. The c-axis oriented and cube-on-cube epitaxial BST is formed on Si (100) as evidenced by the in-plane and out-of-plane X-ray diffraction. All the deposited films are relaxed through domain matching epitaxy paradigm as observed from X-ray diffraction pattern and A{submore » 1}TO{sub 3} mode (at 521.27 cm{sup −1}) of Raman spectra. As-deposited BST thin films reveal ferromagnetic-like properties, which persist up to 400 K. The magnetization decreases two-fold upon oxygen annealing. In contrast, as-deposited un-doped BTO films show diamagnetism. Electron spin resonance measurements reveal no evidence of external magnetic impurities. XRD and X-ray photoelectron spectroscopy spectra show significant changes influenced by Sr doping in BTO. The ferromagnetic-like behavior in BST could be due to the trapped electron donors from oxygen vacancies resulting from Sr-doping.« less
Final Report for X-ray Diffraction Sample Preparation Method Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ely, T. M.; Meznarich, H. K.; Valero, T.
WRPS-1500790, “X-ray Diffraction Saltcake Sample Preparation Method Development Plan/Procedure,” was originally prepared with the intent of improving the specimen preparation methodology used to generate saltcake specimens suitable for XRD-based solid phase characterization. At the time that this test plan document was originally developed, packed powder in cavity supports with collodion binder was the established XRD specimen preparation method. An alternate specimen preparation method less vulnerable, if not completely invulnerable to preferred orientation effects, was desired as a replacement for the method.
Metastable and equilibrium phase formation in sputter-deposited Ti/Al multilayer thin films
NASA Astrophysics Data System (ADS)
Lucadamo, G.; Barmak, K.; Lavoie, C.; Cabral, C., Jr.; Michaelsen, C.
2002-06-01
The sequence and kinetics of metastable and equilibrium phase formation in sputter deposited multilayer thin films was investigated by combining in situ synchrotron x-ray diffraction (XRD) with ex situ electron diffraction and differential scanning calorimetry (DSC). The sequence included both cubic and tetragonal modifications of the equilibrium TiAl3 crystal structure. Values for the formation activation energies of the various phases in the sequence were determined using the XRD and DSC data obtained here, as well as activation energy data reported in the literature.
An X-ray diffraction method for semiquantitative mineralogical analysis of Chilean nitrate ore
Jackson, J.C.; Ericksent, G.E.
1997-01-01
Computer analysis of X-ray diffraction (XRD) data provides a simple method for determining the semiquantitative mineralogical composition of naturally occurring mixtures of saline minerals. The method herein described was adapted from a computer program for the study of mixtures of naturally occurring clay minerals. The program evaluates the relative intensities of selected diagnostic peaks for the minerals in a given mixture, and then calculates the relative concentrations of these minerals. The method requires precise calibration of XRD data for the minerals to be studied and selection of diffraction peaks that minimize inter-compound interferences. The calculated relative abundances are sufficiently accurate for direct comparison with bulk chemical analyses of naturally occurring saline mineral assemblages.
An x-ray diffraction method for semiquantitative mineralogical analysis of chilean nitrate ore
John, C.; George, J.; Ericksen, E.
1997-01-01
Computer analysis of X-ray diffraction (XRD) data provides a simple method for determining the semiquantitative mineralogical composition of naturally occurring mixtures of saline minerals. The method herein described was adapted from a computer program for the study of mixtures of naturally occurring clay minerals. The program evaluates the relative intensities of selected diagnostic peaks for the minerals in a given mixture, and then calculates the relative concentrations of these minerals. The method requires precise calibration of XRD data for the minerals to be studied and selection of diffraction peaks that minimize inter-compound interferences. The calculated relative abundances are sufficiently accurate for direct comparison with bulk chemical analyses of naturally occurring saline mineral assemblages.
Microalga Scenedesmus sp.: A potential low-cost green machine for silver nanoparticle synthesis.
Jena, Jayashree; Pradhan, Nilotpala; Nayak, Rati Ranjan; Dash, Bishnu P; Sukla, Lala Behari; Panda, Prasanna K; Mishra, Barada K
2014-04-01
Bionanotechnology has revolutionized nanomaterial synthesis by providing a green synthetic platform using biological systems. Among such biological systems, microalgae have tremendous potential to take up metal ions and produce nanoparticles by a detoxification process. The present study explores the intracellular and extracellular biogenic syntheses of silver nanoparticles (SNPs) using the unicellular green microalga Scenedesmus sp. Biosynthesized SNPs were characterized by AAS, UV-Vis spectroscopy, TEM, XRD, FTIR, DLS, and TGA studies and finally checked for antibacterial activity. Intracellular nanoparticle biosynthesis was initiated by a high rate of Ag(+) ion accumulation in the microalgal biomass and subsequent formation of spherical crystalline SNPs (average size, 15-20 nm) due to the biochemical reduction of Ag(+) ions. The synthesized nanoparticles were intracellular, as confirmed by the UV-Vis spectra of the outside medium. Furthermore, extracellular synthesis using boiled extract showed the formation of well scattered, highly stable, spherical SNPs with an average size of 5-10 nm. The size and morphology of the nanoparticles were confirmed by TEM. The crystalline nature of the SNPs was evident from the diffraction peaks of XRD and bright circular ring pattern of SAED. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilization of SNPs. Furthermore, the synthesized nanoparticles exhibited high antimicrobial activity against pathogenic gram-negative and gram-positive bacteria. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials in a large-scale system that could be of great use in biomedical applications.
NASA Astrophysics Data System (ADS)
Singh, Baljinder; Singh, Janpreet; Kaur, Jagdish; Moudgil, R. K.; Tripathi, S. K.
2016-06-01
Nanocrystalline Cadmium Sulfide (nc-CdS) thin films have been prepared on well-cleaned glass substrate at room temperature (300 K) by thermal evaporation technique using inert gas condensation (IGC) method. X-ray diffraction (XRD) analysis reveals that the films crystallize in hexagonal structure with preferred orientation along [002] direction. Scanning electron microscope (SEM) and Transmission electron microscope (TEM) studies reveal that grains are spherical in shape and uniformly distributed over the glass substrates. The optical band gap of the film is estimated from the transmittance spectra. Electrical parameters such as Hall coefficient, carrier type, carrier concentration, resistivity and mobility are determined using Hall measurements at 300 K. Transit time and mobility are estimated from Time of Flight (TOF) transient photocurrent technique in gap cell configuration. The measured values of electron drift mobility from TOF and Hall measurements are of the same order. Constant Photocurrent Method in ac-mode (ac-CPM) is used to measure the absorption spectra in low absorption region. By applying derivative method, we have converted the measured absorption data into a density of states (DOS) distribution in the lower part of the energy gap. The value of Urbach energy, steepness parameter and density of defect states have been calculated from the absorption and DOS spectra.
Wu, Zhongbiao; Sheng, Zhongyi; Liu, Yue; Wang, Haiqiang; Tang, Nian; Wang, Jie
2009-05-30
Pd-modified TiO(2) prepared by thermal impregnation method was used in this study for photocatalytic oxidation of NO in gas phase. The physico-chemical properties of Pd/TiO(2) catalysts were characterized by X-ray diffraction analysis (XRD), Brunauer-Emmett-Teller measurements (BET), X-ray photoelectron spectrum analysis (XPS), transmission electron microscopy (TEM), high resolution-transmission electron microscopy (HR-TEM), UV-vis diffuse reflectance spectra (UV-vis DRS) and photoluminescence spectra (PL). It was found that Pd dopant existed as PdO particles in as-prepared photocatalysts. The results of PL spectra indicated that the photogenerated electrons and holes were efficiently separated after Pd doping. During in situ XPS study, it was found that the content of hydroxyl groups on the surface of Pd/TiO(2) increased when the catalyst was irradiated by UV light, which could result in the improvement of photocatalytic activity. The activity test showed that the optimum Pd dopant content was 0.05 wt.%. And the maximum conversion of NO was about 72% higher than that of P25 when the initial concentration of NO was 200 ppm, which showed that Pd/TiO(2) photocatalysts could be potentially applied to oxidize higher concentration of NO.
Ostwald ripening and interparticle-diffraction effects for illite crystals
Eberl, D.D.; Srodon, J.
1988-01-01
The Warren-Averbach method, an X-ray diffraction (XRD) method used to measure mean particle thickness and particle-thickness distribution, is used to restudy sericite from the Silverton caldera. Apparent particle-thickness distributions indicate that the clays may have undergone Ostwald ripening and that this process has modified the K-Ar ages of the samples. The mechanism of Ostwald ripening can account for many of the features found for the hydrothermal alteration of illite. Expandabilities measured by the XRD peak-position method for illite/smectites (I/S) from various locations are smaller than expandabilities measured by transmission electron microscopy (TEM) and by the Warren-Averbach (W-A) method. This disparity is interpreted as being related to the presence of nonswelling basal surfaces that form the ends of stacks of illite particles (short-stack effect), stacks that, according to the theory of interparticle diffraction, diffract as coherent X-ray scattering domains. -from Authors
NASA Astrophysics Data System (ADS)
Gullu, Bahattin; Kadioglu, Yusuf Kagan
2017-08-01
Tourmaline defines a group of complex borosilicate forms as accessory mineral in igneous and metamorphic rocks and they act an important role in the interpretation of the chemical composition changes of the composition of the host fluid of the magma. The variety of tourmaline can be identified by using optical microscopy, X-Ray Diffraction (XRD) and by determining its chemical composition through Polarized Energy Dispersive X-Ray Fluorescence (PED-XRF) methods. However, microscopic investigations and XRD analyses are not quite adequate for detailed determination of tourmaline sub-groups. In addition, the use of chemical composition of tourmaline as a strict indicator of geochemical processes might be a misleading method. In this study, variable tourmaline crystals were collected from three different pegmatitic occurrences in Behrekdag, Yozgat and Karakaya granitic bodies of Central Anatolia to identify their chemical properties through Confocal Raman Spectroscopy (CRS), PED-XRF and XRD analyses. The confocal Raman spectrometry of collected tourmalines from the Behrekdag, Yozgat and Karakaya granites are in the compositions of schorl, schorl and elbaite respectively. The dominant compositional groups of these tourmalines are in the form of schorl. Raman shift values of tourmalines revealed four bands centered at almost 1050, 750, 400 and 300 cm- 1. The first group of the band arises from SiO stretching, the second from Bsbnd O stretching and the other two belong to bending modes of Osbnd Bsbnd O and Bsbnd Osbnd Al with symmetrical deformation of Sisbnd Osbnd Si. The strongest spectra near 360 cm- 1 should belong to the bonding of Alsbnd O. As a result, the confocal Raman studies are more sensitive for identification of tourmaline subgroup compositions and have a quite important in the explaining source of the magma.
Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation.
Cianconi, L; Palopoli, P; Campanella, V; Mancini, M
2016-12-01
The aim of this study was to determine the chemical composition and the phases' microstructure of Aureoseal Plus (OGNA, Italy) and ProRoot MTA (Dentsply Tulsa Dental, USA) and to compare their characteristics. Study Design: Comparing Aureoseal Plus and ProRoot MTA microstructure by means of several analyses type. The chemical analysis of the two cements was assessed following the UNI EN ISO 196-2 norm. X-Ray fluorescence (XRF) was used to determine the element composition. The crystalline structure was analysed quantitatively using x-ray diffraction (XRD). Powders morphology was evaluated using a scanning electron microscope (SEM) with backscattering detectors, and a field emission scanning electron microscope (FESEM). Elemental analysis was performed by energy dispersive x-ray analysis (EDS). The semi-quantitative XRF analysis showed the presence of heavy metal oxides in both cements. The XRD spectra of the two cements reported the presence of dicalcium silicate, tricalcium silicate, tricalcium aluminate, tetracalcium aluminoferrite, bismuth oxide and gypsum. SEM analysis showed that ProRoot MTA powder is less coarse and more homogeneous than Aureoseal. Both powders are formed by particles of different shapes: round, prismatic and oblong. The EDS analysis showed that some ProRoot MTA particles, differently from Aureoseal, contain Ca, Si, Al and Fe. Oblong particles in ProRoot and Aureoseal are rich of bismuth. The strong interest in developing new Portland cement-based endodontic sealers will create materials with increased handling characteristics and physicochemical properties. A thorough investigation on two cement powders was carried out by using XRF, XRD, SEM and EDS analysis. To date there was a lack of studies on Aureoseal Plus. This cement is similar in composition to ProRoot MTA. Despite that it has distinctive elements that could improve its characteristics, resulting in a good alternative to MTA.
Gullu, Bahattin; Kadioglu, Yusuf Kagan
2017-08-05
Tourmaline defines a group of complex borosilicate forms as accessory mineral in igneous and metamorphic rocks and they act an important role in the interpretation of the chemical composition changes of the composition of the host fluid of the magma. The variety of tourmaline can be identified by using optical microscopy, X-Ray Diffraction (XRD) and by determining its chemical composition through Polarized Energy Dispersive X-Ray Fluorescence (PED-XRF) methods. However, microscopic investigations and XRD analyses are not quite adequate for detailed determination of tourmaline sub-groups. In addition, the use of chemical composition of tourmaline as a strict indicator of geochemical processes might be a misleading method. In this study, variable tourmaline crystals were collected from three different pegmatitic occurrences in Behrekdag, Yozgat and Karakaya granitic bodies of Central Anatolia to identify their chemical properties through Confocal Raman Spectroscopy (CRS), PED-XRF and XRD analyses. The confocal Raman spectrometry of collected tourmalines from the Behrekdag, Yozgat and Karakaya granites are in the compositions of schorl, schorl and elbaite respectively. The dominant compositional groups of these tourmalines are in the form of schorl. Raman shift values of tourmalines revealed four bands centered at almost 1050, 750, 400 and 300cm -1 . The first group of the band arises from SiO stretching, the second from BO stretching and the other two belong to bending modes of OBO and BOAl with symmetrical deformation of SiOSi. The strongest spectra near 360cm -1 should belong to the bonding of AlO. As a result, the confocal Raman studies are more sensitive for identification of tourmaline subgroup compositions and have a quite important in the explaining source of the magma. Copyright © 2017 Elsevier B.V. All rights reserved.
Structural, optical and magnetic investigation of Gd implanted CeO2 nanocrystals
NASA Astrophysics Data System (ADS)
Kaviyarasu, K.; Murmu, P. P.; Kennedy, J.; Thema, F. T.; Letsholathebe, Douglas; Kotsedi, L.; Maaza, M.
2017-10-01
Gadolinium implanted cerium oxide (Gd-CeO2) nanocomposites is an important candidate which have unique hexagonal structure and high K- dielectric constant. Gd-CeO2 nanoparticles were synthesized using hydrothermal method. X-ray diffraction (XRD) results showed that the peaks are consistent with pure phase cubic structure the XRD pattern also confirmed crystallinity and phase purity of the sample. Nanocrystals sizes were found to be up to 25 nm as revealed by XRD and SEM. It is suggested that Gd gives an affirmative effect on the ion influence behavior of Gd-CeO2. XRD patterns showed formation of new phases and SEM micrographs revealed hexagonal structure. Photoluminescence measurement (PL) reveals the systematic shift of the emission band towards lower wavelength thereby ascertaining the quantum confinement effect (QCE). The PL spectrum has wider broad peak ranging from 390 nm to 770 nm and a sharp one centered on at 451.30 nm which is in tune with Gd ions. In the Raman spectra showed intense band observed between 460 cm-1 and 470 cm-1 which is attributed to oxygen ions into CeO2. Room temperature ferromagnetism was observed in un-doped and Gd implanted and annealed CeO2 nanocrystals. In the recent studies, ceria based materials have been considered as one of the most promising electrolytes for reduced temperature SOFC (solid oxide fuel cell) system due to their high ionic conductivities allowing its use in stainless steel supported fuel cells. CeO2 having an optical bandgap 3.3 eV and n-type carrier density which make it a promising candidate for various technological application such as buffer layer on silicon on insulator devices.
NASA Astrophysics Data System (ADS)
Brown, J. William; Ramesh, P. S.; Geetha, D.
2018-02-01
We report fabrication of mesoporous Fe doped CuS nanocomposites with uniform mesoporous spherical structures via a mild hydrothermal method employing copper nitrate trihydrate (Cu (NO3).3H2O), Thiourea (Tu,Sc(NH2)2 and Iron tri nitrate (Fe(No3)3) as initial materials with cationic surfactant cetyltrimethylamoniame bromide (CTAB) as stabilizer/size controller and Ethylene glycol as solvent at 130 °C temperature. The products were characterized by XRD, SEM/EDX, TEM, FTIR and UV analysis. X-ray diffraction (XRD) spectra confirmed the Fe doped CuS nanocomposites which are crystalline in nature. EDX and XRD pattern confirmed that the product is hexagonal CuS phase. Fe doped spherical structure of CuS with grain size of 21 nm was confirmed by XRD pattern. Fe doping was identified by energy dispersive spectrometry (EDS). The Fourier-transform infrared (FTIR) spectroscopy results revealed the occurrence of active functional groups required for the reduction of copper ions. Studies showed that after a definite time relining on the chosen copper source, the obtained Fe-CuS nanocomposite shows a tendency towards self-assembly and creating mesoporous like nano and submicro structures by TEM/SAED. The achievable mechanism of producing this nanocomposite was primarily discussed. The electrochemical study confirms the pseudocapacitive nature of the CuS and Fe-CuS electrodes. The CuS and Fe-CuS electrode shows a specific capacitance of about 328.26 and 516.39 Fg-1 at a scan rate of 5 mVs-1. As the electrode in a supercapacitor, the mesoporous nanostructured Fe-CuS shows excellent capacitance characteristics.
NASA Astrophysics Data System (ADS)
Turneaure, Stefan; Zdanowicz, E.; Sinclair, N.; Graber, T.; Gupta, Y. M.
2015-06-01
Structural changes in shock compressed silicon were observed directly using time-resolved x-ray diffraction (XRD) measurements at the Dynamic Compression Sector at the Advanced Photon Source. The silicon samples were impacted by polycarbonate impactors accelerated to velocities greater than 5 km/s using a two-stage light gas gun resulting in impact stresses of about 25 GPa. The 23.5 keV synchrotron x-ray beam passed through the polycarbonate impactor, the silicon sample, and an x-ray window (polycarbonate or LiF) at an angle of 30 degrees relative to the impact plane. Four XRD frames (~ 100 ps snapshots) were obtained with 153.4 ns between frames near the time of impact. The XRD measurements indicate that in the peak shocked state, the silicon samples completely transformed to a high-pressure phase. XRD results for both shocked polycrystalline silicon and single crystal silicon will be presented and compared. Work supported by DOE/NNSA.
Effect of intrinsic zinc oxide coating on the properties of Al-doped zinc oxide nanorod arrays
NASA Astrophysics Data System (ADS)
Saidi, S. A.; Mamat, M. H.; Ismail, A. S.; Malek, M. F.; Yusoff, M. M.; Sin, N. D. Md.; Zoolfakar, A. S.; Khusaimi, Z.; Rusop, M.
2018-05-01
The aim of this study was to explore the influence of intrinsic zinc oxide (ZnO) coating fabricated by a simple immersion method. X-ray powder diffraction (XRD) analysis indicated that the Al-doped ZnO nanorod arrays films had a hexagonal wurtzite structure, similar to that of an intrinsic ZnO coating. Structural properties of the samples were characterised using field emission scanning electron microscopy (FESEM; JEOL JSM-7600F) and optical properties using X-ray diffraction (XRD). The XRD results showed that all films were crystallized under hexagonal wurtzite structure and presented a preferential orientation along the c-axis (002) was obtained. The XRD results showed that the intrinsic ZnO coating material had a strong orientation, whereas the ZnO was randomly oriented. Overall these results indicate that intrinsic ZnO coating are pontetial for the creation of functional materials such as barrier protection, optoelectronic devices, humidity sensor and ultraviolet photoconductive sensor.
A study on micro-structural and optical parameters of InxSe1-x thin film
NASA Astrophysics Data System (ADS)
Patel, P. B.; Desai, H. N.; Dhimmar, J. M.; Modi, B. P.
2018-04-01
Thin film of Indium Selenide (InSe) has been deposited by thermal evaporation technique onto pre cleaned glass substrate under high vacuum condition. The micro-structural and optical properties of InxSe1-x (x = 0.6, 1-x = 0.4) thin film have been characterized by X-ray diffractrometer (XRD) and UV-Visible spectrophotometer. The XRD spectra showed that InSe thin film has single phase hexagonal structure with preferred orientation along (1 1 0) direction. The micro-structural parameters (crystallite size, lattice strain, dislocation density, domain population) for InSe thin film have been calculated using XRD spectra. The optical parameters (absorption, transmittance, reflectance, energy band gap, Urbach energy) of InSe thin film have been evaluated from absorption spectra. The direct energy band gap and Urbach energy of InSe thin film is found to be 1.90 eV and 235 meV respectively.
NASA Astrophysics Data System (ADS)
Singh, Ashwani Kumar; Singh, Pallavi; Verma, Rajiv Kumar; Yadav, Suresh; Singh, Kedar; Srivastava, Amit
2018-02-01
The present manuscript describes a simple, facile and effective solvothermal route to synthesize Fe3O4 nanoparticles (Fe3O4 NPs), reduced graphene oxide nanosheets (rGO NSs) and Fe3O4/reduced graphene oxide nanohybrid composite (Fe3O4/rGO nanohybrid composite) and subsequently examines their comparative biocompatibilities. The as-obtained Fe3O4 NPs, rGO NSs and Fe3O4/rGO nanohybrid composite have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The XRD studies and scanning electron microscope confirmed the proper phase formation and the surface morphology of the as-synthesized products, respectively. The Raman spectra of Fe3O4 NPs show the strongest peak at 673 cm-1 which can be assigned to A1g peak of bare Fe3O4 NPs and it complements the XRD studies. Furthermore, the increment in the I D/I G ratio in the Fe3O4/rGO nanohybrid composite suggests the creation of defects in graphene sheets due to strain caused by Fe3O4 NPs. The biocompatibility of these samples has been tested using Lung cancer cell line H1299 through MTT assay. The MTT assay reveals that the nanohybrid composite endows more biocompatible and effectiveness than rGO NSs and Fe3O4 NPs individually, as anti-proliferative agent for cancer treatment.
Synthesis and characterization of arsenic-doped cysteine-capped thoria-based nanoparticles
NASA Astrophysics Data System (ADS)
Pereira, F. J.; Díez, M. T.; Aller, A. J.
2013-09-01
Thoria materials have been largely used in the nuclear industry. Nonetheless, fluorescent thoria-based nanoparticles provide additional properties to be applied in other fields. Thoria-based nanoparticles, with and without arsenic and cysteine, were prepared in 1,2-ethanediol aqueous solutions by a simple precipitation procedure. The synthesized thoria-based nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (ED-XRS), Raman spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and fluorescence microscopy. The presence of arsenic and cysteine, as well as the use of a thermal treatment facilitated fluorescence emission of the thoria-based nanoparticles. Arsenic-doped and cysteine-capped thoria-based nanoparticles prepared in 2.5 M 1,2-ethanediol solutions and treated at 348 K showed small crystallite sizes and strong fluorescence. However, thoria nanoparticles subjected to a thermal treatment at 873 K also produced strong fluorescence with a very narrow size distribution and much smaller crystallite sizes, 5 nm being the average size as shown by XRD and TEM. The XRD data indicated that, even after doping of arsenic in the crystal lattice of ThO2, the samples treated at 873 K were phase pure with the fluorite cubic structure. The Raman and FT-IR spectra shown the most characteristics vibrational peaks of cysteine together with other peaks related to the bonds of this molecule to thoria and arsenic when present.
NASA Astrophysics Data System (ADS)
Koao, Lehlohonolo F.; Motloung, Setumo V.; Motaung, Tshwafo E.; Kebede, Mesfin A.
2018-04-01
LiMn2O4 (LMO) powders were prepared by modified chemical bath deposition (CBD) method by varying ammonium hydroxide solution (AHS). The volume of the AHS was varied from 5 to 120 mL in order to determine the optimum volume that is needed for preparation of LMO powders. The effect of AHS volume on the structure, morphology, and electrochemical properties of LMO powders was investigated. The X-ray diffraction (XRD) patterns of the LMO powders correspond to the cubic spinel LMO phase. It was found that the XRD peaks increased in intensity with increasing volume of the AHS up to 20 mL. The estimated average grain sizes calculated using the XRD patterns were found to be in the order of 66 ± 1 nm. It was observed that the estimated average grain sizes increased up to 20 mL of AHS. The scanning electron microscopy (SEM) results revealed that the AHS volume does not influence the surface morphology of the prepared nano-powders. Elemental energy dispersive (EDS) analysis mapping conducted on the samples revealed homogeneous distribution of Mn and O for the sample synthesized with 120 mL of AHS. The UV-Vis spectra showed a red shift with an increase in AHS up 20 mL. The cyclic voltammetry and galvanostatic charge/discharge cycle testing confirmed that 20 mL of AHS has superior lithium ion kinetics and electrochemical performance.
Unified Theory for Decoding the Signals from X-Ray Florescence and X-Ray Diffraction of Mixtures.
Chung, Frank H
2017-05-01
For research and development or for solving technical problems, we often need to know the chemical composition of an unknown mixture, which is coded and stored in the signals of its X-ray fluorescence (XRF) and X-ray diffraction (XRD). X-ray fluorescence gives chemical elements, whereas XRD gives chemical compounds. The major problem in XRF and XRD analyses is the complex matrix effect. The conventional technique to deal with the matrix effect is to construct empirical calibration lines with standards for each element or compound sought, which is tedious and time-consuming. A unified theory of quantitative XRF analysis is presented here. The idea is to cancel the matrix effect mathematically. It turns out that the decoding equation for quantitative XRF analysis is identical to that for quantitative XRD analysis although the physics of XRD and XRF are fundamentally different. The XRD work has been published and practiced worldwide. The unified theory derives a new intensity-concentration equation of XRF, which is free from the matrix effect and valid for a wide range of concentrations. The linear decoding equation establishes a constant slope for each element sought, hence eliminating the work on calibration lines. The simple linear decoding equation has been verified by 18 experiments.
A Curved Image-Plate Detector System for High-Resolution Synchrotron X-ray Diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarin, P.; Haggerty, R; Yoon, W
2009-01-01
The developed curved image plate (CIP) is a one-dimensional detector which simultaneously records high-resolution X-ray diffraction (XRD) patterns over a 38.7 2{theta} range. In addition, an on-site reader enables rapid extraction, transfer and storage of X-ray intensity information in {le}30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X-ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate,more » regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X-ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high-temperature XRD.« less
Impact of Nd3+ ions on physical and optical properties of Lithium Magnesium Borate glass
NASA Astrophysics Data System (ADS)
Mhareb, M. H. A.; Hashim, S.; Ghoshal, S. K.; Alajerami, Y. S. M.; Saleh, M. A.; Dawaud, R. S.; Razak, N. A. B.; Azizan, S. A. B.
2014-11-01
Enhancing the up-conversion efficiency of borate glass via optimized doping of rare earth ions is an ever-ending quest in lasing glass. Neodymium (Nd3+) doped Lithium Magnesium Borate (LMB) glasses are prepared using the melt-quenching method. X-ray diffraction (XRD), Fourier transformed infrared (FTIR), UV-Vis-NIR absorption and Photoluminescence (PL) spectroscopic characterizations are made to examine the influence of Nd3+ concentration on physical properties and optical properties. Nd3+ contents dependent density, molar volume, refractive index, ion concentration, Polaron radius, inter nuclear distance, field strength, energy band gap and oscillator strength are calculated. XRD patterns confirm the amorphous nature of all glasses and the FTIR spectra reveal the presence of BO3 and BO4 functional groups. UV-Vis-IR spectra exhibit ten prominent bands centered at 871, 799, 741, 677, 625, 580, 522, 468, 426, 349 nm corresponding to the transitions from the ground state to 4F3/2, (4F5/2 + 2H9/2), (4F7/2 + 4S3/2), 4F9/2, 2H11/2, (4G5/2 + 2G7/2), (2K13/2 + 4G7/2 + 4G9/2), (2G9/2 + 2D3/2 + 2P3/2), (2P1/2 + 2D5/2), (4D3/2 + 4D5/2) excited states, respectively. A hyper-sensitive transition related to (4G5/2 + 2G7/2) level is evidenced at 580 nm. The room temperature up-conversion emission spectra at 800 nm excitation displays three peaks centered at 660, 610 and 540 nm. Glass with 0.5 mol% of Nd3+ showing an emission enhancement by a factor to two is attributed to the energy transfer between Mg2+ and Nd3+ ions. Our results suggest that these glasses can be nominated for solid state lasers and other photonic devices.
Simple X-ray diffraction algorithm for direct determination of cotton crystallinity
USDA-ARS?s Scientific Manuscript database
Traditionally, XRD had been used to study the crystalline structure of cotton celluloses. Despite considerable efforts in developing the curve-fitting protocol to evaluate the crystallinity index (CI), in its present state, XRD measurement can only provide a qualitative or semi-quantitative assessme...
The enhancement in optical and magnetic properties of Na-doped LaFeO3
NASA Astrophysics Data System (ADS)
Devi, E.; Kalaiselvi, B. J.
2018-04-01
La1-xNaxFeO3(x=0.00 and 0.05) were synthesized by sol-gel auto-combustion method. No evidence of impurity phase and the peak (121) slightly shift towards lower angle is confirmed by X-ray diffraction analysis (XRD). The UV-visible spectra show strong absorption peak centered at approximately 231 nm and the calculated optical band gap are found to be 2.73eV, 2.36eV for x = 0.00 and 0.05, respectively. The M-H loop of pure sample is anti-ferromagnetic, whereas those of the Na doped sample shows enhanced ferromagnetic behavior. The remnant magnetization (Mr), saturation magnetization (Ms) and coercive field (Hc) of Na-doped sample are enhanced to 1.06emu/g, 5.39emu/g and 182.84kOe, respectively.
The MARTE VNIR imaging spectrometer experiment: design and analysis.
Brown, Adrian J; Sutter, Brad; Dunagan, Stephen
2008-10-01
We report on the design, operation, and data analysis methods employed on the VNIR imaging spectrometer instrument that was part of the Mars Astrobiology Research and Technology Experiment (MARTE). The imaging spectrometer is a hyperspectral scanning pushbroom device sensitive to VNIR wavelengths from 400-1000 nm. During the MARTE project, the spectrometer was deployed to the Río Tinto region of Spain. We analyzed subsets of three cores from Río Tinto using a new band modeling technique. We found most of the MARTE drill cores to contain predominantly goethite, though spatially coherent areas of hematite were identified in Core 23. We also distinguished non Fe-bearing minerals that were subsequently analyzed by X-ray diffraction (XRD) and found to be primarily muscovite. We present drill core maps that include spectra of goethite, hematite, and non Fe-bearing minerals.
The MARTE VNIR Imaging Spectrometer Experiment: Design and Analysis
NASA Astrophysics Data System (ADS)
Brown, Adrian J.; Sutter, Brad; Dunagan, Stephen
2008-10-01
We report on the design, operation, and data analysis methods employed on the VNIR imaging spectrometer instrument that was part of the Mars Astrobiology Research and Technology Experiment (MARTE). The imaging spectrometer is a hyperspectral scanning pushbroom device sensitive to VNIR wavelengths from 400-1000 nm. During the MARTE project, the spectrometer was deployed to the Río Tinto region of Spain. We analyzed subsets of three cores from Río Tinto using a new band modeling technique. We found most of the MARTE drill cores to contain predominantly goethite, though spatially coherent areas of hematite were identified in Core 23. We also distinguished non Fe-bearing minerals that were subsequently analyzed by X-ray diffraction (XRD) and found to be primarily muscovite. We present drill core maps that include spectra of goethite, hematite, and non Fe-bearing minerals.
NASA Astrophysics Data System (ADS)
Bai, Rekha; Chaudhary, Sujeet; Pandya, Dinesh K.
2018-05-01
Cadmium selenide (CdSe) nanostructured thin films have been grown on fluorine doped tin oxide (FTO) coated glass substrates by potentiostatic electrochemical deposition (ECD) technique for use in solar energy conversion devices. The effect of bath temperature on the structural, morphological and optical properties of prepared CdSe films has been explored. X-ray diffraction (XRD) and Raman spectroscopy clearly show that the CdSe films are polycrystalline and exhibit phase transformation from wurtzite to zincblende structure with increase in bath temperature. Optical spectra reveal that the nanostructured CdSe films have high absorbance in visible region and the films show a red shift in direct optical energy band gap from 1.90 to 1.65 eV with increase in bath temperature due to change in phase and bandgap tuning related to quantum confinement effect.
KF addition to Cu2SnS3 thin films prepared by sulfurization process
NASA Astrophysics Data System (ADS)
Nakashima, Mitsuki; Fujimoto, Junya; Yamaguchi, Toshiyuki; Sasano, Junji; Izaki, Masanobu
2017-04-01
Cu2SnS3 thin films were fabricated by sulfurization with KF addition and applied to photovoltaic devices. Two methods, two-stage annealing and the use of four-layer precursors, were employed, and the quantity of NaF and KF and the annealing temperature were changed. By electron probe microanalysis (EPMA), the Cu/Sn mole ratio was found to range from 0.81 to 1.51. The X-ray diffraction (XRD) patterns and Raman spectra indicated that the fabricated thin films had a monoclinic Cu2SnS3 structure. The Cu2SnS3 thin films fabricated by two-stage annealing had a close-packed structure and a pinhole-free surface morphology. The best solar cell in this study showed V oc of 293 mV, which surpassed the previously reported value.
NASA Technical Reports Server (NTRS)
Raikar, Ganesh N.; Gregory, John C.; Christl, Ligia C.; Peters, Palmer N.
1993-01-01
The University of Alabama in Huntsville (UAH) experiment A-0114 was designed to study the reaction of material surfaces with low earth orbits (LEO) atmospheric oxygen. The experiment contained 128 one-inch circular samples; metals, polymers, carbons, and semiconductors. Half of these samples were exposed on the front of the Long Duration Exposure Facility (LDEF) and remaining on the rear. Among metal samples, copper has shown some interesting new results. There were two forms of copper samples: a thin film sputter-coated on fused silica and a solid piece of OFHC copper. They were characterized by x-ray and Auger electron spectroscopies, x-ray diffraction, and high resolution profilometry. Cu 2p core level spectra were used to demonstrate the presence of Cu2O and CuO and to determine the oxidation states.
Shameli, Kamyar; Ahmad, Mansor Bin; Jazayeri, Seyed Davoud; Sedaghat, Sajjad; Shabanzadeh, Parvaneh; Jahangirian, Hossein; Mahdavi, Mahnaz; Abdollahi, Yadollah
2012-01-01
The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs) in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG), and β-D-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD), zeta potential measurements and Fourier transform infrared (FT-IR). The use of green chemistry reagents, such as glucose, provides green and economic features to this work.
NASA Astrophysics Data System (ADS)
Ren, Fuqiang; Chen, Donghua
2010-02-01
Using urea, boric acid and polyethylene glycol (PEG) as auxiliary reagents, the novel red-emitting phosphors Ca 19Zn 2 (PO 4) 14:Eu 3+ have been successfully synthesized by a modified solid-state reaction. Thermogravimetric (TG) analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) spectra were used to characterize the resulting phosphors. The dependence of the photoluminescence properties of Ca 19Zn 2 (PO 4) 14:Eu 3+ phosphors upon urea, boric acid and PEG concentration and the quadric-sintered temperature were investigated. Luminescent measurements showed that the phosphors can be efficiently excited by ultraviolet (UV) to visible region, emitting a red light with a peak wavelength of 616 nm. The material has potential application as a fluorescent material for ultraviolet light-emitting diodes (UV-LEDs).
NASA Astrophysics Data System (ADS)
Faghihi, Khalil; Shabanian, Meisam; Dadfar, Ehsan
2012-02-01
A series of Poly(amide-imide)/montmorillonite nanocomposites containing N-pyromellitimido-L-phenyl alanine moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 5 as a source of polymer matrix was synthesized by the direct polycondensation reaction of N-pyromellitimido-L-phenyl alanine 3 with 4,4'-diamino diphenyl ether 4 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). The resulting nanocomposite films were characterized by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The results showed that organo-modified clay was dispersed homogeneously in PAI matrix. TGA indicated an enhancement of thermal stability of new nanocomposites compared with the pure polymer.
NASA Astrophysics Data System (ADS)
Dumon, M.; Van Ranst, E.
2016-01-01
This paper presents a free and open-source program called PyXRD (short for Python X-ray diffraction) to improve the quantification of complex, poly-phasic mixed-layer phyllosilicate assemblages. The validity of the program was checked by comparing its output with Sybilla v2.2.2, which shares the same mathematical formalism. The novelty of this program is the ab initio incorporation of the multi-specimen method, making it possible to share phases and (a selection of) their parameters across multiple specimens. PyXRD thus allows for modelling multiple specimens side by side, and this approach speeds up the manual refinement process significantly. To check the hypothesis that this multi-specimen set-up - as it effectively reduces the number of parameters and increases the number of observations - can also improve automatic parameter refinements, we calculated X-ray diffraction patterns for four theoretical mineral assemblages. These patterns were then used as input for one refinement employing the multi-specimen set-up and one employing the single-pattern set-ups. For all of the assemblages, PyXRD was able to reproduce or approximate the input parameters with the multi-specimen approach. Diverging solutions only occurred in single-pattern set-ups, which do not contain enough information to discern all minerals present (e.g. patterns of heated samples). Assuming a correct qualitative interpretation was made and a single pattern exists in which all phases are sufficiently discernible, the obtained results indicate a good quantification can often be obtained with just that pattern. However, these results from theoretical experiments cannot automatically be extrapolated to all real-life experiments. In any case, PyXRD has proven to be useful when X-ray diffraction patterns are modelled for complex mineral assemblages containing mixed-layer phyllosilicates with a multi-specimen approach.
Eberl, D.D.; Nüesch, R.; Šucha, Vladimír; Tsipursky, S.
1998-01-01
The thicknesses of fundamental illite particles that compose mixed-layer illite-smectite (I-S) crystals can be measured by X-ray diffraction (XRD) peak broadening techniques (Bertaut-Warren-Averbach [BWA] method and integral peak-width method) if the effects of swelling and XRD background noise are eliminated from XRD patterns of the clays. Swelling is eliminated by intercalating Na-saturated I-S with polyvinylpyrrolidone having a molecular weight of 10,000 (PVP-10). Background is minimized by using polished metallic silicon wafers cut perpendicular to (100) as a substrate for XRD specimens, and by using a single-crystal monochromator. XRD measurements of PVP-intercalated diagenetic, hydrothermal and low-grade metamorphic I-S indicate that there are at least 2 types of crystallite thickness distribution shapes for illite fundamental particles, lognormal and asymptotic; that measurements of mean fundamental illite particle thicknesses made by various techniques (Bertant-Warren-Averbach, integral peak width, fixed cation content, and transmission electron microscopy [TEM]) give comparable results; and that strain (small differences in layer thicknesses) generally has a Gaussian distribution in the log-normal-type illites, but is often absent in the asymptotic-type illites.
Application of graphene oxide-poly (vinyl alcohol) polymer nanocomposite for memory devices
NASA Astrophysics Data System (ADS)
Kaushal, Jyoti; Kaur, Ravneet; Sharma, Jadab; Tripathi, S. K.
2018-05-01
Significant attention has been gained by polymer nanocomposites because of their possible demands in future electronic memory devices. In the present work, device based on Graphene Oxide (GO) and polyvinyl alcohol (PVA) has been made and examined for the memory device application. The prepared Graphene oxide (GO) and GO-PVA nanocomposite (NC) has been characterized by X-ray Diffraction (XRD). GO nanosheets show the diffraction peak at 2θ = 11.60° and the interlayer spacing of 0.761 nm. The XRD of GO-PVA NC shows the diffraction peak at 2θ =18.56°. The fabricated device shows bipolar switching behavior having ON/OFF current ratio ˜102. The Write-Read-Erase-Read (WRER) cycles test shows that the Al/GO-PVA/Ag device has good stability and repeatability.
Thermal behaviour and microanalysis of coal subbituminus
NASA Astrophysics Data System (ADS)
Heriyanti; Prendika, W.; Ashyar, R.; Sutrisno
2018-04-01
Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) is used to study the thermal behaviour of sub-bituminous coal. The DSC experiment was performed in air atmosphere up to 125 °C at a heating rate of 25 °C min1. The DSC curve showed that the distinct transitional stages in the coal samples studied. Thermal heating temperature intervals, peak and dissociation energy of the coal samples were also determined. The XRD analysis was used to evaluate the diffraction pattern and crystal structure of the compounds in the coal sample at various temperatures (25-350 °C). The XRD analysis of various temperatures obtained compounds from the coal sample, dominated by quartz (SiO2) and corundum (Al2O3). The increase in temperature of the thermal treatment showed a better crystal formation.
Growth model and structure evolution of Ag layers deposited on Ge films.
Ciesielski, Arkadiusz; Skowronski, Lukasz; Górecka, Ewa; Kierdaszuk, Jakub; Szoplik, Tomasz
2018-01-01
We investigated the crystallinity and optical parameters of silver layers of 10-35 nm thickness as a function 2-10 nm thick Ge wetting films deposited on SiO 2 substrates. X-ray reflectometry (XRR) and X-ray diffraction (XRD) measurements proved that segregation of germanium into the surface of the silver film is a result of the gradient growth of silver crystals. The free energy of Ge atoms is reduced by their migration from boundaries of larger grains at the Ag/SiO 2 interface to boundaries of smaller grains near the Ag surface. Annealing at different temperatures and various durations allowed for a controlled distribution of crystal dimensions, thus influencing the segregation rate. Furthermore, using ellipsometric and optical transmission measurements we determined the time-dependent evolution of the film structure. If stored under ambient conditions for the first week after deposition, the changes in the transmission spectra are smaller than the measurement accuracy. Over the course of the following three weeks, the segregation-induced effects result in considerably modified transmission spectra. Two months after deposition, the slope of the silver layer density profile derived from the XRR spectra was found to be inverted due to the completed segregation process, and the optical transmission spectra increased uniformly due to the roughened surfaces, corrosion of silver and ongoing recrystallization. The Raman spectra of the Ge wetted Ag films were measured immediately after deposition and ten days later and demonstrated that the Ge atoms at the Ag grain boundaries form clusters of a few atoms where the Ge-Ge bonds are still present.
Synthesis and structural characterization of polyaniline/cobalt chloride composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asha, E-mail: arana5752@gmail.com; Goyal, Sneh Lata; Kishore, Nawal
2016-05-23
Polyaniline (PANI) and PANI /cobalt chloride composites were synthesized by in situ chemical oxidative polymerization of aniline with CoCl{sub 2}.6H{sub 2}O using ammonium peroxidisulphate as an oxidant. These composites were characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The XRD study reveals that both PANI and composites are amorphous. The XRD and SEM results confirm the presence of cobalt chloride in the composites.
NASA Technical Reports Server (NTRS)
Achilles, C. N.; Ming, Douglas W.; Morris, R. V.; Blake, D. F.
2012-01-01
The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. CheMin has two different window materials used for sample cells -- Mylar and Kapton. Instrument details are provided elsewhere. Fe/Mg-smectite (e.g., nontronite) has been identified in Gale Crater, the MSL future landing site, by CRISM spectra. While large quantities of phyllosilicate minerals will be easily detected by CheMin, it is important to establish detection limits of such phases to understand capabilities and limitations of the instrument. A previous study indicated that the (001) peak of smectite at 15 Ang was detectable in a mixture of 1 wt.% smectite with olivine when Mylar is the window material for the sample cell. Complications arise when Kapton is the window material because Kapton itself also has a diffraction peak near 15 Ang (6.8 deg 2 Theta). This study presents results of mineral mixtures of smectite and olivine to determine smectite detection limits for Kapton sample cells. Because the intensity and position of the smectite (001) peak depends on the hydration state, we also analyzed mixtures with "hydrated" and "dehydrated"h smectite to examine the effects of hydration state on detection limits.
Application of Mythen detector: In-situ XRD study on the thermal expansion behavior of metal indium
NASA Astrophysics Data System (ADS)
Du, Rong; Chen, ZhongJun; Cai, Quan; Fu, JianLong; Gong, Yu; Wu, ZhongHua
2016-07-01
A Mythen detector has been equipped at the beamline 4B9A of Beijing Synchrotron Radiation Facility (BSRF), which is expected to enable BSRF to perform time-resolved measurement of X-ray diffraction (XRD) full-profiles. In this paper, the thermal expansion behavior of metal indium has been studied by using the in-situ XRD technique with the Mythen detector. The indium was heated from 303 to 433 K with a heating rate of 2 K/min. The in-situ XRD full-profiles were collected with a rate of one profile per 10 seconds. Rietveld refinement was used to extract the structural parameters. The results demonstrate that these collected quasi-real-time XRD profiles can be well used for structural analysis. The metal indium was found to have a nonlinear thermal expansion behavior from room temperature to the melting point (429.65 K). The a-axis of the tetragonal unit cell expands with a biquadratic dependency on temperature, while the c-axis contracts with a cubic dependency on temperature. By the time-resolved XRD measurements, it was observed that the [200] preferred orientation can maintain to about 403.15 K. While (110) is the last and detectable crystal plane just before melting of the polycrystalline indium foil. This study is not only beneficial to the application of metal indium, but also exhibits the capacity of in-situ time-resolved XRD measurements at the X-ray diffraction station of BSRF.
ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshmukh, S. G., E-mail: deshmukhpradyumn@gmail.com; Jariwala, Akshay; Agarwal, Anubha
ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl{sub 2} and Na{sub 2}S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grainmore » size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm{sup −1} and 1094 cm{sup −1}. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.« less
Temperature dependent x-ray diffraction and dielectric studies of multiferroic GaFeO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajeev; Mall, Ashish Kumar, E-mail: ashishm@iitk.ac.in; Gupta, Rajeev
2016-05-06
Polycrystalline GaFeO{sub 3} (GFO) samples were synthesized by sol-gel method. The structural and dielectric properties of GaFeO{sub 3} ceramic have been investigated by a combination of XRD and permittivity measurement. The X-ray diffraction spectra shows single phase orthorhombically distorted perovskite structure with Pc2{sub 1}n symmetry over a wide range of temperature 300 K to 600 K, with no evidence of any phase transition. Refined lattice parameters (a, b, c and V) increases with increasing temperature. Temperature dependent dielectric properties were investigated in the frequency range from 100Hz–5MHz. Impedance spectroscopy study on the sample showed that the dielectric constant and acmore » conductivity with frequency increases on increasing the temperature. Cole-Cole plots suggest that the response from grain is dominant at low temperature whereas grain boundary response overcomes as temperature increases. The relaxation activation energy (calculated from Cole-Cole plots) value is found to be 0.32 eV for the grain boundary. We believe that the oxygen ion vacancies play an important role in conduction processes at higher temperatures.« less
As-synthesis of nanostructure AgCl/Ag/MCM-41 composite
NASA Astrophysics Data System (ADS)
Sohrabnezhad, Sh.; Pourahmad, A.
2012-02-01
In this work, we present the simple synthetic route for silver chloride/silver nanoparticles (AgCl/Ag-NPs) using as-synthesis method. The structure, composition and optical properties of such material were investigated by transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), X-ray diffraction (XRD) and FTIR. Powder X-ray diffraction showed that when AgNO 3 content is below 0.1 wt.% in synthetic gel, the guest AgCl/Ag-NPs is formed on the silica channel wall, and lower exists in the crystalline state. When AgNO 3 content exceeds this value, AgCl/Ag nanoparticles can be observed in high crystalline state. The absorption at 327 nm ascribed to the characteristic absorption of the AgCl semiconductor. Ag nanoparticles have been shown to exist in the nanocomposite at 375 nm. When AgNO 3 content is above 0.1 wt.% in synthetic gel, spectra exhibited stronger absorption at 450-700 nm that was attributed to the surface plasmonic resonance of silver nanoparticles. The obtained AgCl/Ag/MCM-41 sample exhibit enhanced photocatalytic activity for the degradation of methylene blue under visible-light irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasankumar, T.; Jose, Sujin P., E-mail: sujamystica@yahoo.com; Ilangovan, R.
Nanostructured Mn/Ni mixed metal oxide was synthesized at ambient temperature by facile microwave irradiation technique. The crystal structure and surface morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. X-ray diffraction analysis confirmed the formation of Mn/Ni mixed oxide in rhombohedral phase and the grain size calculated was found to be 87 nm. The irregular spherical morphology of the prepared sample was exhibited by the SEM images. The characteristic peaks of FTIR at about 630 cm{sup −1} and 749 cm{sup −1} were attributed to the Mn-O and Ni-O stretching vibrations respectively. The presence of both Mn and Ni inmore » the prepared sample was validated by the EDS spectra which in turn confirmed the formation of mixed oxide. Cyclic voltammetry and galvanostatic chargedischarge measurements were employed to investigate the electrochemical performance of the mixed oxide. The cyclic voltammetry curves demonstrated good capacitive performance of the sample in the potential window −0.2V to 0.9V. The charge discharge study revealed the suitability of the prepared mixed oxide for the fabrication of supercapacitor electrode.« less
NASA Astrophysics Data System (ADS)
Szczepanik, Beata; Słomkiewicz, Piotr; Garnuszek, Magdalena; Czech, Kamil; Banaś, Dariusz; Kubala-Kukuś, Aldona; Stabrawa, Ilona
2015-03-01
The effect of chemical modification of halloysite from a Polish strip mine "Dunino" on the chemical composition and structure of this clay mineral was studied using infrared spectroscopy (ATR FT-IR), wavelength dispersive X-ray fluorescence (WDXRF), and X-ray powder diffraction (XRPD) methods. The results obtained by the WDXRF technique confirm that the content of silica and alumina was the highest for bleached halloysite samples and the lowest for acid-treated halloysite. A higher content of Fe2O3 in comparison to halloysite samples coming from other countries was observed for raw halloysite samples. XRPD diffraction pattern obtained for raw halloysite confirmed the presence of halloysite, kaolinite, hematite, and calcite minerals in the sample. Bleaching the halloysite removes (or significantly reduces) the content of other minerals present in the raw halloysite. The FT-IR spectra of the studied halloysite samples show in the 3700-3600 cm-1 region well-defined hydroxyl stretching bands characteristic for the kaolin-group minerals and bands associated with the vibrations of the aluminium-silicon skeleton in the 1400-1000 cm-1 region. Modifying halloysite with 4-chloro-aniline causes successive incorporation of amine into the BH sample.
NASA Astrophysics Data System (ADS)
Du, Bingzheng; Zhu, Jingping; Mao, Yuzheng; Wang, Kai; Chen, Huibing; Hou, Xun
2018-03-01
The effects of the tilted angle of facets on the diffraction orders, diffraction spectra, dispersion power, and the neighbor channel crosstalk of successive etching strips based Bragg concave diffraction grating (Bragg-CDG) are studied in this paper. The electric field distribution and diffraction spectra of four Bragg-CDGs with different tilted angles are calculated by numerical simulations. With the reflection condition of Bragg facets constant, the blazing order cannot change with the titled angle. As the tilted angle increases, the number of diffraction orders of Bragg-CDG will decrease, thereby concentrating more energy on the blazing order and improving the uniformity of diffraction spectra. In addition, the dispersion power of Bragg-CDG can be improved and the neighbor channel crosstalk of devices can be reduced by increasing the tilted angle. This work is beneficial to optimize the performance of Bragg-CDG.
The Effect of Compaction Force on the Transition to Hydrate of Anhydrous Aripiprazole.
Togo, Taichiro; Taniguchi, Toshiya; Nakata, Yoshitaka
2018-01-01
Aripiprazole (APZ) is used to treat schizophrenia and is administered as a tablet containing the anhydrous form of APZ. In this study, the effect of compaction force on the crystal form transition was investigated. The crystalline state was observed by X-ray diffraction (XRD). APZ Anhydrous Form II was compacted into tablets. The XRD intensity of anhydrous APZ became lower with higher compressive force. The degree of crystallinity decreased with the compaction force. The powder and the compacted tablets of anhydrous APZ were stored for one week under 60°C and 75% relative humidity. The powder showed no crystal form transition after storage. For the tablets, however, XRD peaks of APZ hydrate were observed after storage. The tablets compacted with higher force showed the higher XRD diffraction intensity of hydrate form. We concluded that the crystallinity reduction of APZ Anhydrous Form II by compaction caused and accelerated the transition to hydrate under high temperature and humidity conditions. In order to manufacture crystallographically stable tablets containing anhydrous APZ, it is important to prevent this crystallinity reduction during compaction.
NASA Astrophysics Data System (ADS)
Schmidt, C. M.; Bürgler, D. E.; Schaller, D. M.; Meisinger, F.; Güntherodt, H.-J.; Temst, K.
2001-01-01
A Cr(001)/Fe(001) superlattice with ten bilayers grown by molecular beam epitaxy on a Ag(001) substrate is studied by in situ scanning tunneling microscopy (STM) and ex situ x-ray diffraction (XRD). Layer-resolved roughness parameters determined from STM images taken in various stages of the superlattice fabrication are compared with average values reported in the literature or obtained from the fits of our XRD data. Good agreement is found for the rms roughnesses describing vertical roughness and for the lateral correlation lengths characterizing correlated as well as uncorrelated interface roughness if peculiarities of STM and XRD are taken into account. We discuss in detail (i) the possible differences between the STM topography of a free surface and the morphology of a subsequently formed interface, (ii) contributions due to chemical intermixing at the interfaces, (iii) the comparison of XRD parameters averaged over all interfaces versus layer-resolved STM parameters, and (iv) the question of the coherent field of view for the determination of rms values.
X-Ray Diffraction of different samples of Swarna Makshika Bhasma.
Gupta, Ramesh Kumar; Lakshmi, Vijay; Jha, Chandra Bhushan
2015-01-01
Shodhana and Marana are a series of complex procedures that identify the undesirable effects of heavy metals/minerals and convert them into absorbable and assimilable forms. Study on the analytical levels is essential to evaluate the structural and chemical changes that take place during and after following such procedures as described in major classical texts to understand the mystery behind these processes. X-Ray Diffraction (XRD) helps to identify and characterize minerals/metals and fix up the particular characteristics pattern of prepared Bhasma. To evaluate the chemical changes in Swarna Makshika Bhasma prepared by using different media and methods. In this study, raw Swarna Makshika, purified Swarna Makshika and four types of Swarna Makshika Bhasma prepared by using different media and methods were analyzed by XRD study. XRD study of different samples revealed strongest peaks of iron oxide in Bhasma. Other phases of Cu2O, FeS2, Cu2S, FeSO4, etc., were also identified in many of the samples. XRD study revealed that Swarna Makshika Bhasma prepared by Kupipakwa method is better, convenient, and can save time.
Synthesis of Lead Sulfide Nanoparticles by Chemical Precipitation Method
NASA Astrophysics Data System (ADS)
Chongad, L. S.; Sharma, A.; Banerjee, M.; Jain, A.
2016-10-01
Lead sulfide (PbS) nanoparticles were prepared by chemical precipitation method (CPM) with the assistance of H2S gas. The microstructure and morphology of the synthesized nanoparticles have been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the PbS nanoparticles reveal formation of cubic phase. To investigate the quality of prepared nanoparticles, the particles size, lattice constant, strain, dislocation density etc. have been determined using XRD. TEM images reveal formation of cubic nanoparticles and the particle size determined from TEM images agree well with those from XRD.
Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature
Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J.; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; Schafer, Donald W.; Messerschmidt, Marc; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Grosse-Kunstleve, Ralf W.; Zwart, Petrus H.; White, William E.; Glatzel, Pieter; Adams, Paul D.; Bogan, Michael J.; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K.; Yachandra, Vittal K.; Bergmann, Uwe; Yano, Junko
2013-01-01
Intense femtosecond X-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) of microcrystals of Photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD/XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies. PMID:23413188
Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature.
Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; Difiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; Schafer, Donald W; Messerschmidt, Marc; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Grosse-Kunstleve, Ralf W; Zwart, Petrus H; White, William E; Glatzel, Pieter; Adams, Paul D; Bogan, Michael J; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K; Yachandra, Vittal K; Bergmann, Uwe; Yano, Junko
2013-04-26
Intense femtosecond x-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous x-ray diffraction (XRD) and x-ray emission spectroscopy (XES) of microcrystals of photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD-XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation-sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies.
Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming
2015-06-01
This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.
NASA Astrophysics Data System (ADS)
Kumar, K. Deva Arun; Valanarasu, S.; Ganesh, V.; Shkir, Mohd.; Kathalingam, A.; AlFaify, S.
2018-02-01
Aluminum-doped zinc oxide (Al:ZnO) thin films were deposited on glass substrates by successive ion layer adsorption and reaction (SILAR) method using different precursors. This inexpensive SILAR method involves dipping of substrate sequentially in zinc solution, de-ionized water and ethylene glycol in multiple cycles. Prepared films were investigated by x-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), optical absorption, photoluminescence (PL), Raman spectroscopy and electrical studies. XRD study confirmed incorporation of aluminum in ZnO lattice with a polycrystalline hexagonal wurtzite structure of the films. The crystallite size determined by the Scherrer equation showed an increase from 28 nm to 35 nm for samples S1 to S4, respectively. SEM study showed smooth morphology with homogeneous distribution of particles. From the AFM images, the surface roughness was found to change according to precursors. For the optical analysis, the zinc chloride precursor showed high optical transmittance of about 90% in the visible range with a band gap value 3.15 eV. The room-temperature PL spectra exhibited a stronger violet emission peak at 420 nm for all the prepared samples. The Raman spectra showed a peak around 435 cm-1 which could be assigned to non-polar optical phonons (E2-high) mode AZO films of a ZnO wurtzite structure. Hall effect measurements showed n-type conductivity with low resistivity ( ρ) and high carrier concentrations ( n) of 2.39 × 10-3 Ω-cm and 8.96 × 1020 cm-3, respectively, for the film deposited using zinc chloride as precursor. The above properties make the prepared AZO film to be regarded as a very promising electrode material for fabrication of optoelectronic devices.
Comprehensive study on compositional modification of Tb3+ doped zinc phosphate glass
NASA Astrophysics Data System (ADS)
Yaacob, S. N. S.; Sahar, M. R.; Sazali, E. S.; Mahraz, Zahra Ashur; Sulhadi, K.
2018-07-01
Series of glass composition (60-x) P2O5 -40 ZnO -(x) Tb2O3 where x = 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 mol % are prepared by conventional melt quenching technique. X-Ray Diffraction (XRD), FTIR, UV-Vis-NIR and the photoluminescence (PL) spectroscopy are used to characterize the physical, structural and optical behavior of the glass sample. The XRD pattern confirms the amorphous nature and DTA verified the thermal stability of all the glass samples. Glass with 1.5 mol % of Tb2O3 possesses the highest thermal stability. Glass density is found to increase proportionally with increasing amount of Tb3+ while the molar volume behaves reversely. Six main IR absorption bands centered at about 540, 748, 891, 1085 and 1294 cm- 1 are evidenced. The UV-Vis NIR absorption spectra reveals the absorption center band at about 540, 376, 488 and 1920 nm corresponding to the absorption from 7F6 ground state to various excited state of Tb3+ ion. The optical band gaps for direct and indirect transition are in the range 4.53-5.07 eV and 4.30 eV-4.56 eV respectively. The Urbach energy decreases with the increasing concentration of Tb2O3. The PL emission spectra reveals several prominent peaks at 413, 435, 457, 488, 540, 585 and 620 nm due to electronic transition from 5D3→7F5, 5D3→7F4, 5D3→7F3, 5D4→7F6, 5D4→7F5, 5D4→7F3 and 5D4→7F5 respectively.
NASA Astrophysics Data System (ADS)
Safonov, V. A.; Habazaki, H.; Glatzel, P.; Fishgoit, L. A.; Drozhzhin, O. A.; Lafuerza, S.; Safonova, O. V.
2018-01-01
Cr-C coatings containing different amount of carbon ranging from ∼5 to 50 at.% were prepared by the direct current (DC) magnetron sputtering on a polished substrate of polycrystalline silicon. The thickness of the samples was about 400 nm. We characterized the composition and the structure of the as-received coatings and those annealed at 500 °C by X-ray diffraction (XRD), Energy dispersion X-ray spectroscopy (EDX) and valence-to-core X-ray emission spectroscopy (vtc-XES) methods As follows from XRD measurements, the samples with the carbon content above 35 at.% do not demonstrate any sign of the long-range order and annealing at 500 °C does not change their crystallinity. The vtc-XES curves of the as-prepared and annealed samples can be fitted as a superposition of corresponding spectra of chromium metal and chromium carbide (Cr3C2) phases. After the annealing, the content of carbides in the samples (and, correspondingly, the content of covalently bonded carbon) somewhat increases. This suggests that the as-received coatings contain a certain amount of carbon that is not covalently bonded to chromium (most likely, elemental carbon) and their annealing at 500 °C transforms this carbon into the additional (of the order of 2-5 at.%) amount of chromium carbide compounds. It deserves mentioning that for Cr-C coatings prepared by the electrochemical deposition from Cr(III) electrolytes containing organic compounds we have not observed changes in the vtc-X-ray emission spectra after similar annealing. This suggests that electrochemical deposition method in contrast to magnetron sputtering technique even at low temperatures favors the formation of only covalently bonded carbon.
NASA Astrophysics Data System (ADS)
Ali, F. M.; Kershi, R. M.; Sayed, M. A.; AbouDeif, Y. M.
2018-06-01
Polymer blend films based on Polyvinyl alcohol (PVA)/Poly(vinylpyrrolidone) (PVP) doped with different concentration of cerium ions [(PVA/PVP)-x wt.% Ce3+] (x = 3%, 5%, 10% and 15%) were prepared by the conventional solution casting technique. The characteristics of the prepared polymer composite films were studied using X-ray diffraction (XRD), FT-IR and UV-Vis. spectroscopy. The XRD patterns of the investigated samples revealed a clear reduction on the structural parameters such as crystallinity degree and cluster size D of the doped PVA/PVP blend films compared with the virgin one whereas there is no big difference in the d spacing of the product composite films. Significant changes in FT-IR spectra are observed which reveal an interactions between the cerium ions and PVA/PVP blends. The absorption spectra in the ultraviolet-visible region showed a wide red shift in the fundamental absorption edge of (PVA/PVP)-x wt. % Ce3+ composites. The optical gap Eg gradually decreased from 4.54 eV for the undoped PVA/PVP film to 3.10 eV by increasing Ce3+ ions content. The optical dispersion parameters have been analyzed according to Wemple-Didomenico single oscillator model. The dispersion energy Ed, the single oscillator energy Eo, the average inter-band oscillator wavelength λo and the static refractive index no are strongly affected by cerium ions doping. Cerium ions incorporation in PVA/PVP blend films leads to a significant increase in the refractive index and decrease in the optical gap. These results are likely of great important in varieties of applications including polymer waveguides, organic semiconductors, polymer solar cells and optoelectronics devices.
Highly textured and transparent RF sputtered Eu2O3 doped ZnO films
Sreedharan, Remadevi Sreeja; Ganesan, Vedachalaiyer; Sudarsanakumar, Chellappan Pillai; Bhavsar, Kaushalkumar; Prabhu, Radhakrishna; Mahadevan Pillai, Vellara Pappukutty Pillai
2015-01-01
Background Zinc oxide (ZnO) is a wide, direct band gap II-VI oxide semiconductor. ZnO has large exciton binding energy at room temperature, and it is a good host material for obtaining visible and infrared emission of various rare-earth ions. Methods Europium oxide (Eu2O3) doped ZnO films are prepared on quartz substrate using radio frequency (RF) magnetron sputtering with doping concentrations 0, 0.5, 1, 3 and 5 wt%. The films are annealed in air at a temperature of 773 K for 2 hours. The annealed films are characterized using X-ray diffraction (XRD), micro-Raman spectroscopy, atomic force microscopy, ultraviolet (UV)-visible spectroscopy and photoluminescence (PL) spectroscopy. Results XRD patterns show that the films are highly c-axis oriented exhibiting hexagonalwurtzite structure of ZnO. Particle size calculations using Debye-Scherrer formula show that average crystalline size is in the range 15–22 nm showing the nanostructured nature of the films. The observation of low- and high-frequency E2 modes in the Raman spectra supports the hexagonal wurtzite structure of ZnO in the films. The surface morphology of the Eu2O3 doped films presents dense distribution of grains. The films show good transparency in the visible region. The band gaps of the films are evaluated using Tauc plot model. Optical constants such as refractive index, dielectric constant, loss factor, and so on are calculated using the transmittance data. The PL spectra show both UV and visible emissions. Conclusion Highly textured, transparent, luminescent Eu2O3 doped ZnO films have been synthesized using RF magnetron sputtering. The good optical and structural properties and intense luminescence in the ultraviolet and visible regions from the films suggest their suitability for optoelectronic applications. PMID:25765728
Dash, Jyotirmayee; Ray, Shaumik; Nallappan, Kathirvel; Kaware, Vaibhav; Basutkar, Nitin; Gonnade, Rajesh G; Ambade, Ashootosh V; Joshi, Kavita; Pesala, Bala
2015-07-23
Spectral signatures in the terahertz (THz) frequency region are mainly due to bulk vibrations of the molecules. These resonances are highly sensitive to the relative position of atoms in a molecule as well as the crystal packing arrangement. To understand the variation of THz resonances, THz spectra (2-10 THz) of three structural isomers: 2-, 3-, and 4-cyanobenzaldehyde have been studied. THz spectra obtained from Fourier transform infrared (FTIR) spectrometry of these isomers show that the resonances are distinctly different especially below 5 THz. For understanding the intermolecular interactions due to hydrogen bonds, four molecule cluster simulations of each of the isomers have been carried out using the B3LYP density functional with the 6-31G(d,p) basis set in Gaussian09 software and the compliance constants are obtained. However, to understand the exact reason behind the observed resonances, simulation of each isomer considering the full crystal structure is essential. The crystal structure of each isomer has been determined using X-ray diffraction (XRD) analysis for carrying out crystal structure simulations. Density functional theory (DFT) simulations using CRYSTAL14 software, utilizing the hybrid density functional B3LYP, have been carried out to understand the vibrational modes. The bond lengths and bond angles from the optimized structures are compared with the XRD results in terms of root-mean-square-deviation (RMSD) values. Very low RMSD values confirm the overall accuracy of the results. The simulations are able to predict most of the spectral features exhibited by the isomers. The results show that low frequency modes (<3 THz) are mediated through hydrogen bonds and are dominated by intermolecular vibrations.
Zhang, Fengying; Ngoc, Nguyen Thi Quynh; Tay, Bao Hui; Mendyk, Aleksander; Shao, Yu-Hsuan; Lau, Raymond
2015-01-05
Novel roughness-controlled mannitol/LB Agar microparticles were synthesized by polymorphic transformation and self-assembly method using hexane as the polymorphic transformation reagent and spray-dried mannitol/LB Agar microparticles as the starting material. As-prepared microparticles were characterized by Fourier transform infrared spectra (FTIR), X-ray diffraction spectra (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and Andersen Cascade Impactor (ACI). The XRD and DSC results indicate that after immersing spray-dried mannitol/LB Agar microparticles in hexane, β-mannitol was completely transformed to α-mannitol in 1 h, and all the δ-mannitol was transformed to α form after 14 days. SEM shows that during the transformation the nanobelts on the spray-dried mannitol/LB Agar microparticles become more dispersed and the contour of the individual nanobelts becomes more noticeable. Afterward, the nanobelts self-assemble to nanorods and result in rod-covered mannitol/LB Agar microparticles. FTIR indicates new hydrogen bonds were formed among mannitol, LB Agar, and hexane. SEM images coupled with image analysis software reveal that different surface morphology of the microparticles have different drug adhesion mechanisms. Comparison of ACI results and image analysis of SEM images shows that an increase in the particle surface roughness can increase the fine particle fractions (FPFs) using the rod-covered mannitol microparticles as drug carriers. Transformed microparticles show higher FPFs than commercially available lactose carriers. An FPF of 28.6 ± 2.4% was achieved by microparticles transformed from spray-dried microparticles using 2% mannitol(w/v)/LB Agar as feed solution. It is comparable to the highest FPF reported in the literature using lactose and spray-dried mannitol as carriers.
Synthesis and Photoluminescence Properties of BaWO4:RE3+ (RE = Eu or Sm) Phosphors
NASA Astrophysics Data System (ADS)
Cho, Shinho
2018-04-01
BaWO4:RE3+ (RE = Eu or Sm) phosphor powders were prepared with different doping concentrations of the activator ion by using the conventional solid-state reaction method. The dependences in the crystal structure, luminescence intensity, and morphology on the Eu3+ and the Sm3+ concentrations in BaWO4 were investigated using X-ray diffraction (XRD), photoluminescence spectrophotometry, and scanning electron microscopy (SEM), respectively. XRD analysis showed tetragonal BaWO4 structures for all the phosphors synthesized, regardless of the type and the doping concentration of the activator ion. SEM images indicated that as the concentration of activator ions was increased, the crystalline particles showed an increasing tendency to agglomerate irregularly. The room temperature excitation spectra of Eu3+- or Sm3+-doped BaWO4 phosphors consisted of a broad charge transfer band in the ultraviolet region and several sharp 4 f-4 f transitions. When Eu3+-doped BaWO4 phosphors were excited at 274 nm, the emission spectra exhibited sharp bands due to inner shell transitions occurring from the excited energy state 5 D 0 to the lower energy levels 7 F J ( J = 1, 2, 3, and 4). For Sm3+-doped BaWO4 phosphors, three intense emission peaks at 568, 603, and 649 nm and a very weak line at 712 nm were observed. The highest asymmetry ratio-the intensity ratio of the 4 G 5/2 → 6 H 9/2 electric dipole to the 4 G 5/2 → 6 H 5/2 magnetic dipole transitions-was obtained for 1 mol% doping of Sm3+, indicating that the Sm3+ ions occupied the non-inversion symmetry sites.
Measuring Slit Width and Separation in a Diffraction Experiment
ERIC Educational Resources Information Center
Gan, K. K.; Law, A. T.
2009-01-01
We present a procedure for measuring slit width and separation in single- and double-slit diffraction experiments. Intensity spectra of diffracted laser light are measured with an optical sensor (PIN diode). Slit widths and separations are extracted by fitting to the measured spectra. We present a simple fitting procedure to account for the…
NASA Astrophysics Data System (ADS)
Park, Byung-Guon; Saravana Kumar, R.; Moon, Mee-Lim; Kim, Moon-Deock; Kang, Tae-Won; Yang, Woo-Chul; Kim, Song-Gang
2015-09-01
We demonstrate the evolution of GaN films on novel langasite (LGS) substrate by plasma-assisted molecular beam epitaxy, and assessed the quality of grown GaN film by comparing the experimental results obtained using LGS, sapphire and silicon (Si) substrates. To study the substrate effect, X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy and photoluminescence (PL) spectra were used to characterize the microstructure and stress states in GaN films. Wet etching of GaN films in KOH solution revealed that the films deposited on GaN/LGS, AlN/sapphire and AlN/Si substrates possess Ga-polarity, while the film deposited on GaN/sapphire possess N-polarity. XRD, Raman and PL analysis demonstrated that a compressive stress exist in the films grown on GaN/LGS, AlN/sapphire, and GaN/sapphire substrates, while a tensile stress appears on AlN/Si substrate. Comparative analysis showed the growth of nearly stress-free GaN films on LGS substrate due to the very small lattice mismatch ( 3.2%) and thermal expansion coefficient difference ( 7.5%). The results presented here will hopefully provide a new framework for the further development of high performance III-nitride-related devices using GaN/LGS heteroepitaxy.
Synthesis and photoluminescent and nonlinear optical properties of manganese doped ZnS nanoparticles
NASA Astrophysics Data System (ADS)
Nazerdeylami, Somayeh; Saievar-Iranizad, Esmaiel; Dehghani, Zahra; Molaei, Mehdi
2011-01-01
In this work we synthesized ZnS:Mn 2+ nanoparticles by chemical method using PVP (polyvinylpyrrolidone) as a capping agent in aqueous solution. The structure and optical properties of the resultant product were characterized using UV-vis optical spectroscopy, X-ray diffraction (XRD), photoluminescence (PL) and z-scan techniques. UV-vis spectra for all samples showed an excitonic peak at around 292 nm, indicating that concentration of Mn 2+ ions does not alter the band gap of nanoparticles. XRD patterns showed that the ZnS:Mn 2+ nanoparticles have zinc blende structure with the average crystalline sizes of about 2 nm. The room temperature photoluminescence (PL) spectrum of ZnS:Mn 2+ exhibited an orange-red emission at 594 nm due to the 4T 1- 6A 1 transition in Mn 2+. The PL intensity increased with increase in the Mn 2+ ion concentration. The second-order nonlinear optical properties of nanoparticles were studied using a continuous-wave (CW) He-Ne laser by z-scan technique. The nonlinear refractive indices of nanoparticles were in the order of 10 -8 cm 2/W with negative sign and the nonlinear absorption indices of these nanoparticles were obtained to be about 10 -3 cm/W with positive sign.
Crystal structure and composition of BAlN thin films: Effect of boron concentration in the gas flow
NASA Astrophysics Data System (ADS)
Wang, Shuo; Li, Xiaohang; Fischer, Alec M.; Detchprohm, Theeradetch; Dupuis, Russell D.; Ponce, Fernando A.
2017-10-01
We have investigated the microstructure of BxAl1-xN films grown by flow-modulated epitaxy at 1010 °C, with B/(B + Al) gas-flow ratios ranging from 0.06 to 0.18. The boron content obtained from X-ray diffraction (XRD) patterns ranges from x = 0.02 to 0.09. On the other hand, boron content deduced from the aluminum signal in the Rutherford backscattering spectra (RBS) ranges from x = 0.06 to 0.16, closely following the gas-flow ratios. Transmission electron microscopy indicates the sole presence of a wurtzite crystal structure in the BAlN films, and a tendency towards columnar growth for B/(B + Al) gas-flow ratios below 0.12. For higher ratios, the BAlN films exhibit a tendency towards twin formation and finer microstructure. Electron energy loss spectroscopy has been used to profile spatial variations in the composition of the films. The RBS data suggest that the incorporation of B is highly efficient for our growth method, while the XRD data indicate that the epitaxial growth may be limited by a solubility limit in the crystal phase at about 9%, for the range of B/(B + Al) gas-flow ratios that we have studied, which is significantly higher than previously thought.
Zhang, Xianlong; Cheng, Liping; Wu, Xueping; Tang, Yingzhao; Wu, Yucheng
2015-07-01
An activation process for developing the surface and porous structure of palygorskite/carbon (PG/C) nanocomposite using ZnCl2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (SEM), and Brunauer-Emmett-Teller analysis (BET) techniques. The effects of activation conditions were examined, including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of CC and C-H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold (1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay. Copyright © 2015. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasution, Erika L. Y.; Ahab, Atika; Nuryadin, Bebeh W.
2016-02-08
PEGylated gadolinium carbonate ((Gd{sub 2}(CO{sub 3}){sub 3})@PEG) powder was successfully synthesized by a modified solvothermal method. The synthesized products were characterized by means of X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Spectroscopy (EDS). A systematic change in the chemical surface composition, crystallinity and size properties of the Gd{sub 2}(CO{sub 3}){sub 3}@PEG particles was observed by increasing the reaction time at 5 hours, 7 hours, and 8 hours. The corresponding XRD patterns showed that the Gd{sub 2}(CO{sub 3}){sub 3} particles had hexagonal symmetry (JCPDS No. 37-0559) with a crystallite size of 3.5,more » 2.9, and 4.6 nm. FTIR spectra showed that the Gd{sub 2}(CO{sub 3}){sub 3})@PEG particles were formed with the PEG as carbonyl and hydroxyl group attached to the surface. SEM analysis showed that the Gd{sub 2}(CO{sub 3}){sub 3})@PEG particles had a flake-like morphology of homogeneous sized particles and agglomerates. EDS analysis confirmed the presence of constituent Gd{sub 2}(CO{sub 3}){sub 3} elements.« less
Paulkumar, Kanniah; Gnanajobitha, Gnanadhas; Vanaja, Mahendran; Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Pandian, Kannaiyan; Annadurai, Gurusamy
2014-01-01
Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray analysis (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7–50 nm and 9–30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology. PMID:24558336
Adsorption of Cd2+ ions on plant mediated SnO2 nanoparticles
NASA Astrophysics Data System (ADS)
Haq, Sirajul; Rehman, Wajid; Waseem, Muhammad; Shahid, Muhammad; Mahfooz-ur-Rehman; Hussain Shah, Khizar; Nawaz, Mohsan
2016-10-01
Plant mediated SnO2 nanoparticles were synthesized by using SnCl4.5H2O as a precursor material. The nanoparticles were then characterized for BET surface area measurements, energy dispersive x-rays (EDX), scanning electron microscopy (SEM), UV-vis diffuse reflectance (DRS) spectra and x-rays diffraction (XRD) analysis. The successful synthesis of SnO2 nanoparticles was confirmed by EDX analysis. The particle sizes were in the range 19-27 nm whereas the crystallite size computed from XRD measurement was found to be 19.9 nm. Batch adsorption technique was employed for the removal of Cd2+ ions from aqueous solution. The sorption studies of Cd2+ ions were performed at pHs 4 and 6. The equilibrium concentration of Cd2+ ions was determined by atomic absorption spectrometer (flame mode). The uptake of Cd2+ ions was affected by initial concentration, pH and temperature of the electrolytic solution. It was observed that the adsorption of Cd2+ ions enhanced with increase in the initial concentration of Cd2+ ions whereas a decrease in the percent adsorption was detected. From the thermodynamic parameters, the adsorption process was found spontaneous and endothermic in nature. The n values confirmed 2:1 exchange mechanism between surface protons and Cd2+ ions.
Green synthesis and characterization of ANbO3 (A = Na, K) nanopowders fabricated using a biopolymer
NASA Astrophysics Data System (ADS)
Khorrami, Gh. H.; Mousavi, M.; Khayatian, S. A.; Kompany, A.; Khorsand Zak, A.
2017-10-01
Lead-free sodium niobate (NaNbO3, NN) and potassium niobate (KNbO3, KN) nanopowders were successfully synthesized by a simple and green synthesis process in gelatin media. Gelatin, which is a biopolymer, was used as stabilizer. In order to determine the lowest calcination temperature needed to obtain pure NN and KN nanopowders, the produced gels were analyzed by thermogravometric analyzer (TGA). The produced gels were calcined at 500∘C and 600∘C. The structural and optical properties of the prepared powders were examined using X-ray diffraction (XRD) technique, transmission electron microscopy (TEM), and UV-Vis spectroscopy. The XRD results revealed that pure phase NN and KN nanopowders were formed at low temperature calcination of 500∘C and 600∘C, respectively. The Scherrer formula and size-strain plot (SSP) method were employed to estimate crystallite size and lattice strain of the samples. The TEM images show that the NN and KN samples calcined at 600∘C have cubic shape with an average particle size of 60.95 and 39.29 nm, respectively. The optical bandgap energy of the samples was calculated using UV-Vis diffused reflectance spectra of the samples and Kubelka-Munck relation.
Deviatoric stress-induced phase transitions in diamantane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Fan; Lin, Yu; Dahl, Jeremy E. P.
2014-10-21
The high-pressure behavior of diamantane was investigated using angle-dispersive synchrotron x-ray diffraction (XRD) and Raman spectroscopy in diamond anvil cells. Our experiments revealed that the structural transitions in diamantane were extremely sensitive to deviatoric stress. Under non-hydrostatic conditions, diamantane underwent a cubic (space group Pa3) to a monoclinic phase transition at below 0.15 GPa, the lowest pressure we were able to measure. Upon further compression to 3.5 GPa, this monoclinic phase transformed into another high-pressure monoclinic phase which persisted to 32 GPa, the highest pressure studied in our experiments. However, under more hydrostatic conditions using silicone oil as a pressuremore » medium, the transition pressure to the first high-pressure monoclinic phase was elevated to 7–10 GPa, which coincided with the hydrostatic limit of silicone oil. In another experiment using helium as a pressure medium, no phase transitions were observed to the highest pressure we reached (13 GPa). In addition, large hysteresis and sluggish transition kinetics were observed upon decompression. Over the pressure range where phase transitions were confirmed by XRD, only continuous changes in the Raman spectra were observed. This suggests that these phase transitions are associated with unit cell distortions and modifications in molecular packing rather than the formation of new carbon-carbon bonds under pressure.« less
Glycol stabilized magnetic nanoparticles for photocatalytic degradation of xylenol orange
NASA Astrophysics Data System (ADS)
Ullah, Ikram; Ali, Farman; Ali, Zarshad; Humayun, Muhammad; wahab, Zain Ul
2018-05-01
In this work, we have successfully prepared ZnFe2O4 magnetic nanoparticles as photocatalysts via co-precipitation method using triethylene glycol as a stabilizing agent. The resultant nanoparticles were annealed at 400 °C and then acid etched and surface functionalized with 3-(triethoxysilyl) propyl amine (APTES). Fourier transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) analysis were used to characterize these magnetic photocatalysts. XRD patterns revealed that the size of annealed and functionalized ZnFe2O4 nanoparticles falls in the range of 23.3 and 13.9 nm, respectively. The optical band gaps of the magnetic photocatalysts were calculated from UV–Visible absorption spectra using Tauc plots. The band gap of the ZnFe2O4 photocatalyst in acidic and basic medium was 2.47 and 2.7 eV, respectively. The performance of the magnetic photocatalysts was evaluated for xylenol orange (XO) degradation. The degradation rates of XO dye for the blank, annealed and functionalized photocatalysts at pH = 4 were 76%, 85%, and 90%, respectively. In addition, the influence of important parameters such as contact time, pH, catalyst, and dye dose were also investigated for all the three photocatalysts. The applied kinetics models demonstrated that the degradation followed pseudo 1st order.
NASA Astrophysics Data System (ADS)
Ertan, Salih; Şen, Fatih; Şen, Selda; Gökağaç, Gülsün
2012-06-01
In this study, platinum nanoparticle catalysts have been prepared using PtCl4 as a starting material and 1-octanethiol, 1-decanethiol, 1-dodecanethiol, and 1-hexadecanethiol as surfactants for methanol, ethanol, and 2-propanol oxidation reactions. The structure, particle sizes, and surface morphologies of the catalysts were characterized by X-ray diffraction (XRD), atomic force microscopy and transmission electron microscopy (TEM). XRD and TEM results indicate that all prepared catalysts have a face-centered cubic structure and are homogeneously dispersed on the carbon support with a narrow size distribution (2.0-1.3 nm). X-ray photoelectron spectra of the catalysts were examined and it is found that platinum has two different oxidation states, Pt (0) and Pt(IV), oxygen and sulfur compounds are H2Oads and OHads, bound and unbound thiols. The electrochemical and electrocatalytic properties of these catalysts were investigated with respect to C1-C3 alcohol oxidations by cyclic voltammetry and chronoamperometry. The highest electrocatalytic activity was obtained from catalyst I which was prepared with 1-octanethiol. This may be attributed to a decrease in the ratio of bound to unbound thiol species increase in Pt (0)/Pt(IV), H2Oads/OHads ratios, electrochemical surface area, CO tolerance and percent platinum utility.
Preparation and Characterization of Polyhydroxybutyrate/Polycaprolactone Nanocomposites
Liau, Cha Ping; Bin Ahmad, Mansor; Shameli, Kamyar; Yunus, Wan Md Zin Wan
2014-01-01
Polyhydroxybutyrate (PHB)/polycaprolactone (PCL)/stearate Mg-Al layered double hydroxide (LDH) nanocomposites were prepared via solution casting intercalation method. Coprecipitation method was used to prepare the anionic clay Mg-Al LDH from nitrate salt solution. Modification of nitrate anions by stearate anions between the LDH layers via ion exchange reaction. FTIR spectra showed the presence of carboxylic acid (COOH) group which indicates that stearate anions were successfully intercalated into the Mg-Al LDH. The formation of nanocomposites only involves physical interaction as there are no new functional groups or new bonding formed. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the mixtures of nanocomposites are intercalated and exfoliated types. XRD results showed increasing of basal spacing from 8.66 to 32.97 Å in modified stearate Mg-Al LDH, and TEM results revealed that the stearate Mg-Al LDH layers are homogeneously distributed in the PHB/PCL polymer blends matrix. Enhancement in 300% elongation at break and 66% tensile strength in the presence of 1.0 wt % of the stearate Mg-Al LDH as compare with PHB/PCL blends. Scanning electron microscopy (SEM) proved that clay improves compatibility between polymer matrix and the best ratio 80PHB/20PCL/1stearate Mg-Al LDH surface is well dispersed and stretched before it breaks. PMID:24600329
Kobayashi, Makiko; Hattori, Yusuke; Sasaki, Tetsuo; Otsuka, Makoto
2017-01-01
The purposes of this study were to clarify the amorphization by ball milling of atorvastatin calcium sesquihydrate (AT) and to analyse the change in dissolution kinetics. The amorphous AT was prepared from crystal AT by ball milling and analysed in terms of the changes of its physicochemical properties by powder X-ray diffraction analysis (XRD), thermal analysis and infrared spectroscopy (IR). Moreover, to evaluate the usefulness of the amorphous form for pharmaceutical development, intrinsic solubility of the ground product was evaluated using a dissolution kinetic method. The XRD results indicated that crystalline AT was transformed into amorphous solids by more than 30-min milling. The thermal analysis result suggested that chemical potential of the ground AT are changed significantly by milling. The IR spectra of the AT showed the band shift from the amide group at 3406 cm -1 with an intermolecular hydrogen bond to a free amide group at 3365 cm -1 by milling. The dissolution of amorphous AT follows a dissolution kinetic model involving phase transformation. The initial dissolution rate of the ground product increased with the increase in milling time to reflect the increase in the intrinsic solubility based on the amorphous state. © 2016 Royal Pharmaceutical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shuangbin; Wang, Xiaohan; University of Chinese Academy of Sciences, Beijing 100049
2014-09-01
Ba{sub x}Sr{sub 1−x}TiO{sub 3} ceramics with x ranging from 0 to 1 were prepared by direct current arc discharge technique and studied by means of x-ray diffraction (XRD) and Raman spectroscopy. The cubic-tetragonal ferroelectric phase transition in Ba{sub x}Sr{sub 1−x}TiO{sub 3} ceramics was found to occur at x ≈ 0.75. XRD investigation of as-grown BaTiO{sub 3} ceramics revealed co-existence of tetragonal and hexagonal modifications with a small amount of impurity phase BaTi{sub 4}O{sub 9}. No evidences of hexagonal phase were observed in Raman spectra of as-grown BaTiO{sub 3} ceramics, while Raman peaks related to hexagonal phase were clearly observed in the spectrummore » of fine-grain powders prepared from the same ceramics. A core-shell model for BaTiO{sub 3} ceramics prepared by direct current arc discharge technique is proposed. Absence of the hexagonal phase in any Ba{sub x}Sr{sub 1−x}TiO{sub 3} solid solution with x < 1 is discussed in the frame of specific atomic arrangement.« less
Xu, MengMeng; Zhao, YaLei; Yan, QiShe
2015-01-01
Bi₇O₉I₃, a kind of visible-light-responsive photocatalyst, with hierarchical micro/nano-architecture was successfully synthesized by oil-bath heating method, with ethylene glycol as solvent, and applied to degrade sulfonamide antibiotics. The as-prepared product was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflection spectra and scanning electron microscopy (SEM). XRD and XPS tests confirmed that the product was indeed Bi₇O₉I₃. The result of SEM observation shows that the as-synthesized Bi₇O₉I₃ consists of a large number of micro-sheets with parallel rectangle structure. The optical test exhibited strong photoabsorption in visible light irradiation, with 617 nm of absorption edges. Moreover, the difference in the photocatalytic efficiency of as-prepared Bi₇O₉I₃ at different seasons of a whole year was investigated in this study. The chemical oxygen demand removal efficiency and concentration of NO(3)(-) and SO(4)(2-) of solution after reaction were also researched to confirm whether degradation of the pollutant was complete; the results indicated a high mineralization capacity of Bi₇O₉I₃. The as-synthesized Bi₇O₉I₃exhibits an excellent oxidizing capacity of sulfadiazine sodium and favorable stability during the photocatalytic reaction.
Svarcová, Silvie; Kocí, Eva; Bezdicka, Petr; Hradil, David; Hradilová, Janka
2010-09-01
The uniqueness and limited amounts of forensic samples and samples from objects of cultural heritage together with the complexity of their composition requires the application of a wide range of micro-analytical methods, which are non-destructive to the samples, because these must be preserved for potential late revision. Laboratory powder X-ray micro-diffraction (micro-XRD) is a very effective non-destructive technique for direct phase analysis of samples smaller than 1 mm containing crystal constituents. It compliments optical and electron microscopy with elemental micro-analysis, especially in cases of complicated mixtures containing phases with similar chemical composition. However, modification of X-ray diffraction to the micro-scale together with its application for very heterogeneous real samples leads to deviations from the standard procedure. Knowledge of both the limits and the phenomena which can arise during the analysis is crucial for the meaningful and proper application of the method. We evaluated basic limits of micro-XRD equipped with a mono-capillary with an exit diameter of 0.1 mm, for example the size of irradiated area, appropriate grain size, and detection limits allowing identification of given phases. We tested the reliability and accuracy of quantitative phase analysis based on micro-XRD data in comparison with conventional XRD (reflection and transmission), carrying out experiments with two-phase model mixtures simulating historic colour layers. Furthermore, we demonstrate the wide use of micro-XRD for investigation of various types of micro-samples (contact traces, powder traps, colour layers) and we show how to enhance data quality by proper choice of experiment geometry and conditions.
NASA Astrophysics Data System (ADS)
Zhang, Jinfeng; Lv, Jiali; Dai, Kai; Liang, Changhao; Liu, Qi
2018-02-01
In this work, we have developed a simple synthetic approach of nanosheet-assembled BiOCl/BiOBr microspheres by an ethylene glycol (EG)-assisted hydrothermal method. The crystalline form, morphology, chemical composition, optical performance and surface area of BiOCl/BiOBr microspheres were identified using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy spectra (EDX), UV-vis diffuse reflectance spectroscopy (DRS) analysis, high resolution X-ray photoelectron spectra (XPS) and N2 adsorption-desorption isotherms. BiOCl/BiOBr microspheres were nanosheet-assembled particles, which possessed visible light absorption under LED light irridation. Additionally, the methylene blue (MB) photodegradation performance of different BiOCl/BiOBr microspheres irradiated under 410 nm LED light arrays were investigated, the results exhibited that as-prepared BiOCl/BiOBr products showed higher catalytic effiency than pure BiOCl or BiOBr. By optimizing the composition ration of the BiOCl and BiOBr, up to 93% degradation rate can be obtained in the 40%BiOCl/BiOBr microspheres. Finally, the photocatalytic mechanism of BiOCl/BiOBr microspheres had been proposed.
Al-Enizi, Abdullah M; Ahamad, Tansir; Al-Hajji, Abdullah Baker; Ahmed, Jahangeer; Chaudhary, Anis Ahmad; Alshehri, Saad M
2018-04-01
In the present study, stable copper nanoparticles (CuNPs) were successfully prepared in the hydrogel matrix. The prepared nanocomposite (HCuNPs) was characterized via x-ray diffraction (XRD), electron microscopy (TEM), and energy-dispersive (EDX) and x-ray photoelectron spectroscopic (XPS) studies. The wide scan XPS spectra support the presence of C, N and O in neat hydrogel; while, the XPS spectra of HCuNPs demonstrate the presence of Cu along with C, N, and O elements. TEM studies show the formation of spherical shaped CuNPs in the size range from 7 to 12nm. The rheology results reveal that the storage modulus (G') of the HCuNPs was found to be higher than the loss modulus (G"). Additionally, the antibacterial activities and cytotoxic were carried out against urinary tract infection (UTI) microbes and HeLa (cervical) cells respectively. The antibacterial results reveal that HCuNPs composites show higher zone of inhibition against these pathogens then that of corresponding hydrogel matrix. The cytotoxic effects suggest that the prepared nanocomposite could be used as promising candidates for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Farouk, M.; Samir, A.; El Okr, M.
2018-02-01
Glasses of composition [16RO-3Al2O3sbnd 6CuOsbnd 20Na2Osbnd 55P2O5], where R is the alkaline earth (R = Mg, Ca, Sr and Ba mol. %), were prepared by conventional melt quenching technique. The glass samples were characterized by X-ray diffraction, infrared spectroscopy, and spectrophotometer. XRD patterns show no sharp peaks indicating the non-crystalline nature of the prepared glasses. The density and molar volume of the glass systems were determined in order to study their structures. These results revealed that addition of alkaline earth elements leads to the formation of non-bridging oxygens (NBOs) and expands (opens up) the structure. The infrared spectra were analyzed to quantify the present phosphate groups. The optical absorption spectra of Cu2+ ions show the characteristic broadband single of Cu2+ ions in octahedral symmetry. The band gap was estimated following two methodologies. The first method considers the band edge of the transmission, while the second approach relays on the estimated values of the optical constants. A decent agreement for the band gap values using the two methods was obtained.
Luminescence enhancement in Eu3+, Sm3+ co-doped liy(MoO4)2 nano-phosphors by sol-gel process.
Zhou, Xianju; Wang, Guangchuan; Zhou, Tonghui; Zhou, Kaining; Li, Qingxu; Wang, Zhongqing
2014-05-01
A series of LiY(0.95-x)Eu(0.05)Sm(x)(MoO4)2 red light emitting phosphors were synthesized by sol-gel technique. The phase impurity and spectroscopic properties were characterized by X-ray Diffraction (XRD), Photo-Luminescence (PL) and Photo-Luminescence Excitation (PLE) spectra, respectively. It is found that the PLE spectra of the Eu3+, Sm3+ co-doped nanoparticles are enhanced and broadened as compared with the solely doped samples, which will make the co-doped phosphors match better with blue and/or UV GaN based LED chips. The red emission intensity of Eu3+ is largely enhanced by the energy transfer from Sm3+. The mechanism of the enhancement is clearly proven to be the increase in the quantum efficiency of 5D0 state of Eu3+ rather than the increase in the absorption of Eu3+. Meanwhile, the characteristic f-f transitions of Sm3+ are greatly reduced, resulting in little influence in the color purity of the co-doped phosphors. The present material is an amendatory promising red light emitting phosphor for white LEDs.
Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli
2015-01-01
Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application. PMID:26553709
Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite.
Sofronia, Ancuta M; Baies, Radu; Anghel, Elena M; Marinescu, Cornelia A; Tanasescu, Speranta
2014-10-01
The aim of this work was to study the thermal stability on heating and to obtain the processing parameters of synthetic and bone-derived hydroxyapatite over temperatures between room temperature and 1400°C by thermal analysis (thermogravimetry (TG)/differential scanning calorimetry (DSC) and thermo-mechanical analysis-TMA). Structural and surface modifications related to samples origin and calcination temperature were investigated by Fourier transformed infrared (FTIR) and Raman spectroscopy, X-ray diffraction (XRD) and BET method. FTIR spectra indicated that the organic constituents and carbonate are no longer present in the natural sample calcined at 800°C. Raman spectra highlighted the decomposition products of the hydroxyapatite. The calcination treatment modifies the processes kinetics of the synthetic samples, being able to isolate lattice water desorption processes of decarbonization and the dehydroxylation processes. Shrinkage of calcined synthetic sample increases by 10% compared to uncalcined synthetic powder. From the TMA correlated with TG analysis and heat capacity data it can be concluded that sintering temperature of the synthetic samples should be chosen in the temperature range of the onset of dehydroxylation and the temperature at which oxyapatite decomposition begins. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Biao; Zhou, Keqing; Jiang, Saihua
Highlights: • Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method. • We prepare PMMA/LZnS nanocomposites by in situ bulk polymerization of MMA. • PMMA/LZnS nanocomposites were investigated by TGA, DSC, MCC, UV–vis and PL test. • The thermal stability, flame retardant and optical properties of PMMA are improved. - Abstract: Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method and poly(methyl methacrylate) (PMMA)/layered zinc sulfide nanocomposites were obtained by in situ bulk polymerization of methyl methacrylate (MMA). X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the as-synthesized layered zinc sulfide and PMMA/layered zincmore » sulfide nanocomposites. Microscale combustion calorimeter (MCC), differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA) were used to test the thermal properties of the composites. Ultraviolet visible (UV–vis) transmittance spectra and photoluminence (PL) spectra were obtained to investigate the optical properties of the composites. From the results, the thermal degradation temperature is increased by 20–50 °C, the peak of heat release rate (pHRR) and total heat release (THR) are both decreased by above 30%, and the photoluminence intensity is enhanced with the increasing loading of layered zinc sulfide.« less
NASA Astrophysics Data System (ADS)
Nada, Amr A.; Tantawy, Hesham R.; Elsayed, Mohamed A.; Bechelany, Mikhael; Elmowafy, Mohamed E.
2018-04-01
In this paper, magnetic nanocomposites are synthesized by loading reduced graphene oxide (RG) with two components of nanoparticles consisting of titanium dioxide (TiO2) and magnetite (Fe3O4) with varying amounts. The structural and magnetic features of the prepared composite photocatalysts were investigated by powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (UV-vis/DRS), Raman and vibrating sample magnetometer (VSM). The resulting TiO2/magnetite reduced graphene oxide (MRGT) composite demonstrated intrinsic visible light photocatalytic activity, on degradation of tartrazine (TZ) dye from a synthetic aqueous solution. Specifically, it exhibits higher photocatalytic activity than magnetite reduced graphene oxide (MRG) and TiO2 nanoparticles. The photocatalytic degradation of TZ dye when using MRG and TiO2 for 3 h under visible light was 35% and 10% respectively, whereas for MRGT it was more than 95%. The higher photocatalytic efficiency of MRGT is due to the existence of reduced graphene oxide and magnetite which enhances the photocatalytic efficiency of the composite in visible light towards the degradation of harmful soluble azo dye (tartrazine).
NASA Astrophysics Data System (ADS)
Khalil, Salah; Tazarki, Helmi; Souli, Mehdi; Guasch, Cathy; Jamoussi, Bassem; Kamoun, Najoua
2017-11-01
Novel 4-Tetra-4-Tolylsulfonyl:zinc phthalocyanine and simple zinc phthalocyanine were synthesized. Our materials were grown on glass substrates by spin coating technique. Thin films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electronic micrograph (SEM), atomic force microscopy (AFM), spectrophotometer and Hall effect measurement. X-ray spectra reveal that 4-Tetra-4-Tolylsulfonyl:zinc phthalocyanine (4T4TS:ZnPc) and zinc phthalocyanine (ZnPc) thin films have a monoclinic crystalline structure in β phase. The surface properties and chemical composition were detailed using XPS measurement. SEM were used to investigate the surface morphology for 4T4TS:ZnPc and ZnPc thin films. Atomic force microscopy images have shown a decrease in surface roughness after substitution. Optical properties were investigated by measuring transmission and reflection spectra. Electrical properties were studied and the different electrical parameters was measured and compared on glass, silicon and tin dioxide substrates by Hall Effect technique. All obtained results indicate an improvement in physical properties of 4T4TS:ZnPc which allows used it in optoelectronic applications.
NASA Astrophysics Data System (ADS)
Liu, Ni; Li, Shuxin; Wang, Caifeng; Li, Jie
2018-04-01
Low-toxic core-shell ZnSe:Eu/ZnS quantum dots (QDs) were prepared through two steps in water solution: nucleation doping and epitaxial shell grown. The structural and morphological characteristics of ZnSe/ZnS:Eu QDs with different shell thickness were explored by transmission electron microscopy (TEM) and X-ray diffraction (XRD) results. The characteristic photoluminescence (PL) intensity of Eu ions was enhanced whereas that of band-edge luminescence and defect-related luminescence of ZnSe QDs was decreased with increasing shell thickness. The transformation of PL intensity revealed an efficient energy transfer process between ZnSe and Eu. The PL intensity ratio of Eu ions ( I 613) to ZnSe QDs ( I B ) under different shell thickness was systemically analyzed by PL spectra and time-resolved PL spectra. The obtained results were in agreement with the theory analysis results by the kinetic theory of energy transfer, revealing that energy was transmitted in the form of dipole-electric dipole interaction. This particular method of adjusting luminous via changing the shell thickness can provide valuable insights towards the fundamental understanding and application of QDs in the field of optoelectronics.
Zhang, Jianling; Liu, Zhimin; Han, Buxing; Li, Junchun; Li, Zhonghao; Yang, Guanying
2005-06-01
In this work, a route for the synthesis of inorganic/polymer core/shell composite nanoparticles was proposed, which can be called the antisolvent-ultrasound method. Compressed CO2 was used as antisolvent to precipitate the polymer from its solution dispersed with inorganic nanoparticles, during which ultrasonic irradiation was used to induce the coating of precipitated polymers on the surfaces of the inorganic nanoparticles. TiO2/polystyrene (PS) core/shell nanocomposites have been successfully prepared using this method. The transmission electronic micrographs (TEM) of the obtained nanocomposites show that the TiO2 nanoparticles are coated by the PS shells, of which the thickness can be tuned by the pressure of CO2. The phase structure, absorption properties, and thermal stability of the composite were characterized by X-ray diffraction (XRD), UV-vis spectra, and thermogravimetry, respectively. The results of X-ray photoelectron spectra (XPS) indicate the formation of a strong interaction between PS and TiO2 nanoparticles in the resultant products. This method has some potential advantages for applications and may be easily applied to the preparation of a range of inorganic/polymer core/shell composite nanoparticles.
NASA Astrophysics Data System (ADS)
Anitha, M.; Saravanakumar, K.; Anitha, N.; Amalraj, L.
2018-06-01
Un-doped and co-doped (Zn + F) cadmium oxide (CdO) thin films were prepared by modified spray pyrolysis technique using a nebulizer on glass substrates kept at 200 °C. They were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM), UV-vis spectroscopy, Hall Effect and photoluminescence (PL) respectively. The thin films were having thickness in the range of 520-560 nm. They were well crystalline and displayed high transparency of about >70% in the visible region. It was clearly seen from the SEM photographs that co-doping causes notable changes in the surface morphology. Electrical study exhibited the resistivity of co-doped CdO thin films drastically fell to 1.43 × 10-4 Ω-cm compared with the un-doped CdO thin film. The obtained PL spectra were well corroborated with the structural and optical studies. The high transparency, wide band gap energy and enhanced electrical properties obtained infer that Zn + F co-doped CdO thin films find application in optoelectronic devices, especially in window layer of solar cells.
Effect of Cobalt Concentration and Oxygen Vacancy on Magnetism of Co Doped ZnO Nanorods.
Li, Congli; Che, Ping; Sun, Changyan; Li, Wenjun
2016-03-01
Zn(1-x)Co(x)O (x = 0-0.07) single-crystalline nanorods were prepared by a modified microemulsion route. The crystalline structure, morphology, optical, and hysteresis loop at low and room temperature of as-prepared materials were characterized by XRD, TEM, PL spectra, and magnetic measurement respectively. The nanorods are 80-250 nm in diameter and about 3 μm in length. X-ray diffraction data, TEM images confirm that the materials synthesized in optimal conditions are ZnO:Co single crystalline solid solution without any impurities related to Co. The PL spectra show that the ferromagnetic samples exhibit strong Zn interstitials and oxygen vacancy emission indicating defects may stabilize ferromagnetic order in the obtained diluted magnetic semiconductors. Magnetic measurements show that the Zn(1-x)Co(x)O nanorods exist obvious ferromagnetic characteristics with T(c) above 300 K. M(s) and coercivities first increase and then decrease with dopant concentration increasing, reaching the highest for 3% doping level. The structural and magnetic properties of these samples support the hypothesis that the FM of DMS nanorods is due to a defect mediated mechanism instead of cobalt nanoclusters and carrier mediated.
Electronic and mechanic properties of trigonal boron nitride by first-principles calculations
NASA Astrophysics Data System (ADS)
Mei, Hua Yue; Pang, Yong; Liu, Ding Yu; Cheng, Nanpu; Zheng, Shaohui; Song, Qunliang; Wang, Min
2018-07-01
A new boron nitride allotrope with 6 atoms in a unit cell termed as trigonal BN (TBN), which belongs to P3121 space group, is theoretically investigated. Electronic structures, mechanic properties, phonon spectra and other properties were calculated by using first-principles based on density functional theory (DFT). The elastic constants reveal that TBN is mechanically stable. Furthermore, phonon dispersion indicates that TBN is dynamically stable. The calculated bulk modulus and shear modulus of TBN are 323 and 342 GPa, respectively. The calculated Young's modulus are Ex = Ey = 760 GPa, Ez = 959 GPa, indicating that TBN is a super-hard and brittle material. The universal anisotropy index, which is only 0.296, shows its weak anisotropy. Band structure states clearly that TBN is an indirect semiconductor with a band gap of 3.87 eV. The valence bands are mainly composed of N 2p states, and the conduction bands are mainly contributed by B 2p states. Simulated X-ray diffraction patterns (XRD) and Raman spectra were also provided for future experimental characterizations. Due to its band gap and super-hard properties, TBN may possess potential in super-hard, optical and electronic applications.
Photocatalytic detoxification of Acid Red 18 by modified ZnO catalyst under sunlight irradiation
NASA Astrophysics Data System (ADS)
Senthilraja, A.; Subash, B.; Dhatshanamurthi, P.; Swaminathan, M.; Shanthi, M.
2015-03-01
In this work, hybrid structured Bi-Au-ZnO composite was prepared by precipitation-decomposition method. This method is mild, economical and efficient. Bi-Au-ZnO was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrum (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL) and BET surface area measurements. Photocatalytic activity of Bi-Au-ZnO was evaluated by irradiating the Acid Red 18 (AR 18) dye solution under sun light. Heterostructured Bi-Au-ZnO photocatalyst showed higher photocatalytic activity than those of individual Bi-ZnO, Au-ZnO, bare ZnO, and TiO2-P25 at pH 11. The effects of operational parameters such as the amount of catalyst dosage, dye concentration, initial pH on photo mineralization of AR 18 dye have been analyzed. The mineralization of AR 18 has been confirmed by chemical oxygen demand (COD) measurements. A possible mechanism is proposed for the degradation of AR 18 under sun light. Finally, Bi-Au-ZnO heterojunction photocatalyst was more stable and could be easily recycled several times opening a new avenue for potential industrial applications.