NASA Astrophysics Data System (ADS)
Gupta, Jhalak; Ahmed, Arham S.
2018-05-01
The pure and Cr doped nickel oxide (NiO) nanoparticles have been synthesized by cost effective co-precipitation method having nickel nitrate as initial precursor. The synthesized samples were characterized by X-Ray diffraction (XRD), UV-Visible Spectroscopy(UV-Vis) and LCR meter for structural, optical and dielectric properties respectively. The crystallite size of pure nickel oxide nanoparticles characterized by XRD using Debye Scherer's formula was found to be 21.7nm and the same decreases on increasing Cr concentration whereas optical and dielectric properties were analyzed by UV-Vis and LCR meter respectively. The energy band gaps were determined by UV-Vis using Tauc relation.
Optical properties of ZnO/BaCO3 nanocomposites in UV and visible regions.
Zak, Ali Khorsand; Hashim, Abdul Manaf; Darroudi, Majid
2014-01-01
Pure zinc oxide and zinc oxide/barium carbonate nanoparticles (ZnO-NPs and ZB-NPs) were synthesized by the sol-gel method. The prepared powders were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-Vis), Auger spectroscopy, and transmission electron microscopy (TEM). The XRD result showed that the ZnO and BaCO3 nanocrystals grow independently. The Auger spectroscopy proved the existence of carbon in the composites besides the Zn, Ba, and O elements. The UV-Vis spectroscopy results showed that the absorption edge of ZnO nanoparticles is redshifted by adding barium carbonate. In addition, the optical parameters including the refractive index and permittivity of the prepared samples were calculated using the UV-Vis spectra. 81.05.Dz; 78.40.Tv; 42.70.-a.
X-ray diffraction, FTIR, UV-VIS and SEM studies on chromium (III) complexes
NASA Astrophysics Data System (ADS)
Mishra, Ashutosh; Dwivedi, Jagrati; Shukla, Kritika
2015-06-01
Five Chromium (III) complexes have been prepared using Schiff base ligands which derived from benzoin and five different amino acids (H2N-R). Samples were characterized by XRD, FTIR, UV-VIS and SEM method. X-Ray diffraction pattern analyzed that all chromium (III) complexes have hexagonal structure and crystalline, in nature, using Bruker D8 Advance instrument. Using VERTAX 70, FTIR spectroscopy reveals that Samples have (C=N), (C-O), (M-N) and (M-O) bonds in the range of 4000-400cm-1. UV-VIS spectroscopy give information that samples absorb the visible light which is in the range of 380-780nm. For this, Lambda 960 spectrometer used. SEM is designed for studying of the solid objects, using JEOL JSM 5600 instrument.
Mechanochromic behavior of a luminescent silicone rubber under tensile deformation
NASA Astrophysics Data System (ADS)
Kim, Yeon Ju; Lee, Sang Hwan; Jeong, Kwang-Un; Nah, Changwoon
2016-09-01
A novel mechanochromic elastomer based on silicone rubber and coumarin 6 dye have been prepared with various concentrations of the dye ranges from 2wt.% to a maximum of 5wt.% by solution mixing technique. After evaporating the solvent, cured samples were prepared as thin films using compression molding at 170° C. The optimum composition of the dye in rubber composites was determined based on the mechanochromic performance characterized with ultraviolet/visible (UV/Vis) spectrometer, x-ray diffraction (XRD) and spectrofluorometer (FL). The UV/Vis spectrometer monitors the dye aggregation in polymer film during the tensile deformation. The XRD monitors the change in size of dye aggregates. The FL monitors the optical response during tensile deformation due to the re-arrangement of dyes. As increasing a mechanical deformation to the polymeric composite film, UV/Vis absorption intensity was decreased and the FL emission wavelength was moved to decrease wavelength because of breaking dye aggregations. Also, XRD intensity peak was decreased, which dye aggregations were broken after mechanical deformation.
Synthesis and characterization of Ni doped ZnO nanoparticles
NASA Astrophysics Data System (ADS)
Tamgadge, Y. S.; Gedam, P. P.; Ganorkar, R. P.; Mahure, M. A.; Pahurkar, V. G.; Muley, G. G.
2018-05-01
In this paper, we present synthesis of L-valine assisted surface modification of Ni doped ZnO nanoparticles (NPs) using chemical precipitation method. Samples were calcined at 500oC for 2h. Uncalcined and calcined samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible (UV-vis) spectroscopy. Ni doped ZnO NPs with average particle size of 8 nm have been successfully obtained using L-valine as surface modifying agent. Increase in the particle size was observed after the calcination. XRD and TEM studies confirmed the purity, surface morphology and hexagonal wurtzite crystal structure of ZnO NPs. UV-vis spectroscopy indicated the blue shift of excitons absorption wavelength and surface modification by L-valine.
The photocatalytic investigation of methylene blue dye with Cr doped zinc oxide nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, Rajeev; Kumar, Ashavani, E-mail: ashavani@yahoo.com
2015-08-28
The present work reports eco-friendly and cost effective sol-gel technique for synthesis of Chromium doped ZnO nanoparticles at room temperature. In this process Zinc nitrate, Chromium nitrate were used as precursor. Structural as well as optical properties of Cr induced ZnO samples were analysed by X-ray diffraction technique (XRD), SEM, PL and UV-Visible spectroscopy (UV-Vis) respectively. XRD analysis shows that the samples have hexagonal (wurtzite) structure with no additional peak which suggests that Cr ions fit into the regular Zn sites of ZnO crystal structure. By using Scherrer’s formula for pure and Cr doped ZnO samples the average grain sizemore » was found to be 32 nm. Further band gap of pure and doped ZnO samples have been calculated by using UV-Vis spectra. The photo-catalytic degradation of methyl blue dye under UV irradiation was examined for synthesized samples. The results show that the concentration plays an important role in photo-catalytic activity.« less
Kyllinga brevifolia mediated greener silver nanoparticles
NASA Astrophysics Data System (ADS)
Isa, Norain; Bakhari, Nor Aziyah; Sarijo, Siti Halimah; Aziz, Azizan; Lockman, Zainovia
2017-12-01
Kyllinga brevifolia extract (KBE) was studied in this research as capping as well as reducing agent for the synthesis of greener plant mediated silver nanoparticles. This research was conducted in order to identify the compounds in the KBE that probable to work as reductant for the synthesis of Kyllinga brevifolia-mediated silver nanoparticles (AgNPs). Screening test such as Thin Layer Chromatography (TLC), Fourier Transform Infra-Red (FTIR), Carlo Erba Elemental analysis and Gas Chromatography-Mass Spectroscopy (GCMS) were used in identifying the natural compounds in KBE. The as-prepared AgNPs were characterized by UV-vis spectroscopy (UV-vis), Transmission Electron Microscope (TEM) and X-ray Diffraction (XRD). The TEM images showed that the as-synthesized silver have quasi-spherical particles are distributed uniformly with a narrow distribution from 5 nm to 40 nm. The XRD results demonstrated that the obtained AgNPs were face centre-cubic (FCC) structure. The catalytic activity of AgNPs on reduction of methylene blue (MB) using sodium borohydride (SB) was analyzed using UV-vis spectroscopy. This study showed that the efficacy of mediated AgNPs in catalysing the reduction of MB.
Goetze, Joris; Yarulina, Irina; Gascon, Jorge; Kapteijn, Freek; Weckhuysen, Bert M
2018-03-02
In small-pore zeolite catalysts, where the size of the pores is limited by eight-ring windows, aromatic hydrocarbon pool molecules that are formed inside the zeolite during the Methanol-to-Olefins (MTO) process cannot exit the pores and are retained inside the catalyst. Hydrocarbon species whose size is comparable to the size of the zeolite cage can cause the zeolite lattice to expand during the MTO process. In this work, the formation of retained hydrocarbon pool species during MTO at a reaction temperature of 400 °C was followed using operando UV-vis spectroscopy. During the same experiment, using operando X-ray Diffraction (XRD), the expansion of the zeolite framework was assessed, and the activity of the catalyst was measured using online gas chromatography (GC). Three different small-pore zeolite frameworks, i.e., CHA, DDR, and LEV, were compared. It was shown using operando XRD that the formation of retained aromatic species causes the zeolite lattice of all three frameworks to expand. Because of the differences in the zeolite framework dimensions, the nature of the retained hydrocarbons as measured by operando UV-vis spectroscopy is different for each of the three zeolite frameworks. Consequently, the magnitude and direction of the zeolite lattice expansion as measured by operando XRD also depends on the specific combination of the hydrocarbon species and the zeolite framework. The catalyst with the CHA framework, i.e., H-SSZ-13, showed the biggest expansion: 0.9% in the direction along the c -axis of the zeolite lattice. For all three zeolite frameworks, based on the combination of operando XRD and operando UV-vis spectroscopy, the hydrocarbon species that are likely to cause the expansion of the zeolite cages are presented; methylated naphthalene and pyrene in CHA, 1-methylnaphthalene and phenalene in DDR, and methylated benzene and naphthalene in LEV. Filling of the zeolite cages and, as a consequence, the zeolite lattice expansion causes the deactivation of these small-pore zeolite catalysts during the MTO process.
NASA Astrophysics Data System (ADS)
Karnan, Thenmozhi; Selvakumar, Stanly Arul Samuel
2016-12-01
In the present study, describes the synthesis of ZnO nanoparticles from rambutan (Nephelium lappaceumL.) peel extract via bio synthesis method and developed a new low cost technology to prepare ZnO nanoparticles. During the synthesis, fruit peel extract act as a natural ligation agent. The successfully prepared product was analyzed with some standard characterization studies like X-Ray Diffraction (XRD), UV-VIS Diffuse reflectance spectra (UV-Vis DRS), Field Emission Scanning Electron Microscope (FESEM), High resolution transmittance electron microscope (HR-TEM), N2 adsorption-desorption isotherm and UV-Vis absorption Spectroscopy. The photocatalytic activity of ZnO nanoparticles was evaluated by photodegradation of methyl orange (MO) dye under UV light and the result depicts around 83.99% decolorisation efficiency at 120 min of illumination. In addition with photodecolorisation, mineralization was also achieved. The mineralization has been confirmed by measuring Chemical Oxygen Demand (COD) values.
NASA Astrophysics Data System (ADS)
Sriramulu, Mohana; Sumathi, Shanmugam
2018-06-01
In this article, we have discussed the biosynthesis of palladium nanoparticles (PdNPs) using aqueous Saccharomyces cerevisiae extract and its photocatalytic application. The biosynthesised PdNPs were characterised by UV-Vis spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Atomic force microscopy (AFM). The formation of PdNPs was confirmed from the disappearance of the peak at 405 nm in the UV-Vis spectrum. Agglomerated and hexagonal shaped PdNPs were noted by SEM. FTIR was performed to identify the biomolecules responsible for the synthesis of PdNPs. Bioactive compounds in the yeast extract acted as secondary metabolites which facilitated the formation of PdNPs. The yeast synthesised PdNPs degraded 98% of direct blue 71 dye photochemically within 60 min under UV light.
PVP capped CdS nanoparticles for UV-LED applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivaram, H.; Selvakumar, D.; Jayavel, R., E-mail: rjvel@annauniv.edu
Polyvinlypyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles are synthesized by wet chemical method. The powder X-ray diffraction (XRD) result indicates that the nanoparticles are crystallized in cubic phase. The optical properties are characterized by UV-Vis absorption. The morphology of CdS nanoparticles are studied using Scanning electron microscope (SEM). The thermal behavior of the as prepared nanoparticles has been examined by Thermo gravimetric analysis (TGA). The optical absorption study of pvp capped CdS reveal a red shift confirms the UV-LED applications.
Charge transport mechanism analysis of Al/CdS:Sr{sup 2+}/ITO device under dark and light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Joydeep; Das, Mrinmay; Dey, Arka
2016-05-06
In this study, we have synthesized CdS:Sr{sup 2+} by hydrothermal technique. Material property has been studied by X-ray diffraction (XRD), Scanning electron microscope (SEM) and UV-vis absorption spectroscopy. XRD data revealed that there are mixed phases of CdS and SrS in the synthesized sample. The optical band gap of the material was estimated as 3.15 eV from UV-vis data. The synthesized material has been applied in metal-semiconductor device and transport properties have been analyzed by measuring current–voltage characteristics under dark and light conditions at room temperature. Variation in different device parameters like ideality factor, barrier height and series resistance ofmore » Al/CdS:Sr{sup 2+}/ITO device were analyzed by using Cheung’s function.« less
Spectroscopic investigations on oxidized multi-walled carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed
2016-05-06
The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet–visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg’s reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure ofmore » oxidized MWCNTs. The strong Raman peak was observed at 2563 cm{sup -1} corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.« less
Sun, Dong-Xiao; Li, Jin-Hua; Fang, Xuan; Chen, Xin-Ying; Fang, Fang; Chu, Xue-Ying; Wei, Zhi-Peng; Wang, Xiao-Hua
2014-07-01
In the present paper, we report the research on the effects of annealing temperature on the crystal quality and optical properties of ZnMgO films deposited by atom layer deposition(ALD). ZnMgO films were prepared on quartz substrates by ALD and then some of the samples were treated in air ambient at different annealing temperature. The effects of annealing temperature on the crystal quality and optical properties of ZnMgO films were characterized by X-ray diffraction (XRD), photoluminescence (PL) and ultraviolet-visible (UV-Vis) absorption spectra. The XRD results showed that the crystal quality of ZnMgO films was significantly improved when the annealing temperature was 600 degrees C, meanwhile the intensity of(100) diffraction peak was the strongest. Combination of PL and UV-Vis absorption measurements showed that it can strongly promote the Mg content increasing in ZnMgO films and increase the band gap of films. So the results illustrate that suitable annealing temperature can effectively improve the crystal quality and optical properties of ZnMgO films.
Structural and dielectric studies on Ag doped nano ZnSnO3
NASA Astrophysics Data System (ADS)
Deepa, K.; Angel, S. Lilly; Rajamanickam, N.; Jayakumar, K.; Ramachandran, K.
2018-04-01
Undoped and Ag-doped nano Zinc Stannate (ZSO) ternary oxide were prepared by co-precipitation method. The crystallographic, morphological and optical properties of the synthesized nanoparticles were studied using X-ray diffraction (XRD) and UV-Visible spectroscopy (UV-Vis) and Scanning electron microscopy (SEM). The electrical properties of the synthesized samples were studied by dielectric measurements. Higher concentration Ag doped ZSO nanoparticles exhibit higher dielectric constant at low frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janeoo, Shashi; Sharma, Mamta, E-mail: mamta.phy85@gmail.com; Goswamy, J.
Polyaniline-indium oxide (In{sub 2}O{sub 3}/PANI) nanocomposite have been prepared by in-situ polymerization of aniline and as-synthesized In{sub 2}O{sub 3} nanoparticles. X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transformation infrared (FTIR) and UV/Vis spectroscopy techniques are used to investigate the structural and optical properties of In{sub 2}O{sub 3}/PANI nanocomposite. TEM analysis shows In{sub 2}O{sub 3} nanoparticles are embedded in PANI nanofibers. FTIR spectra show the good interactions between PANI nanofibers and In{sub 2}O{sub 3} nanoparticles. The band gap and electronic transitions in In{sub 2}O{sub 3}/PANI nanocomposite is determined by using UV/Vis spectra.
NASA Astrophysics Data System (ADS)
Saputra, I. S.; Yulizar, Y.
2017-04-01
ZnO nanoparticles (ZnO NPs) were biosynthesized.The growth was observed by a sol-gel method. ZnO were successfully formed through the reaction of zinc nitrate tetrahydrate Zn(NO3)2.4H2O precursor with aqueous leaf extract of Imperata cylindrica L (ICL). The structural and optical properties of ZnO were investigated. The as-synthesized products were characterized by UV-Visible (UV-Vis), UV diffuse reflectance spectroscopy (UV-DRS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). UV-Vis absorption data showed hydrolysis and characteristic of absorption peak at 300 nm of Zn(OH)2. UV-DRS confirmed that ZnO NPs has the indirect band gap at 3.13 eV. FTIR spectrum revealed the functional groups and indicated the presence of protein as the capping and stabilizing agent on the ZnO surface. Powder XRD studies indicated the formation of pure wurtzite hexagonal structure with particle size of 11.9 nm. The detailed morphological and structural characterizations revealed that the synthesized products were hexagonal nanochip.
Microwave assisted scalable synthesis of titanium ferrite nanomaterials
NASA Astrophysics Data System (ADS)
Shukla, Abhishek; Bhardwaj, Abhishek K.; Singh, S. C.; Uttam, K. N.; Gautam, Nisha; Himanshu, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, R.
2018-04-01
Titanium ferrite magnetic nanomaterials are synthesized by one-step, one pot, and scalable method assisted by microwave radiation. Effects of titanium content and microwave exposure time on size, shape, morphology, yield, bonding nature, crystalline structure, and magnetic properties of titanium ferrite nanomaterials are studied. As-synthesized nanomaterials are characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer measurements. XRD measurements depict the presence of two phases of titanium ferrite into the same sample, where crystallite size increases from ˜33 nm to 37 nm with the increase in titanium concentration. UV-Vis measurement showed broad spectrum in the spectral range of 250-600 nm which reveals that its characteristic peaks lie between ultraviolet and visible region; ATR-FTIR and Raman measurements predict iron-titanium oxide structures that are consistent with XRD results. The micrographs of TEM and selected area electron diffraction patterns show formation of hexagonal shaped particles with a high degree of crystallinity and presence of multi-phase. Energy dispersive spectroscopy measurements confirm that Ti:Fe compositional mass ratio can be controlled by tuning synthesis conditions. Increase of Ti defects into titanium ferrite lattice, either by increasing titanium precursor or by increasing exposure time, enhances its magnetic properties.
Characterization of hydrothermally synthesized SnS nanoparticles for solar cell application
NASA Astrophysics Data System (ADS)
Rajwar, Birendra Kumar; Sharma, Shailendra Kumar
2018-05-01
In the present study, SnS nanoparticles were synthesized by simple hydrothermal method using stannous chloride and thiourea as tin (Sn) and sulfur (S) precursor respectively. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy and UV-Vis Spectroscopy techniques. XRD pattern reveals that as-prepared nanoparticles exhibit orthorhombic structure. Average particles size was calculated using Scherrer's formula and found to be 23 nm. FESEM image shows that the as-prepared nanoparticles are in plate like structure. Direct optical band gap (Eg) of as-synthesized nanoparticles was calculated through UV-Vis Spectroscopy measurement and found to be 1.34 eV, which is near to optimum need for photovoltaic solar energy conversion (1.5 eV). Thus this SnS, narrowband gap semiconductor material can be applied as an alternative absorber material for solar cell application.
NASA Astrophysics Data System (ADS)
Kafashan, Hosein; Azizieh, Mahdi; Balak, Zohre
2017-07-01
SnS1-xSex nanostructures with different Se-dopant concentrations were deposited on fluorine doped tin oxide (FTO) substrate through cathodic electrodeposition technique. The pH, temperature, applied potential (E), and deposition time remained were 2.1, 60 °C, -1 V, and 30 min, respectively. SnS1-xSex nanostructures were characterized using X-ray diffraction (XRD), field emission scanning electron microcopy (FESEM), energy dispersive X-ray spectroscopy (EDX), room temperature photoluminescence (PL), and UV-vis spectroscopy. The XRD patterns revealed that the SnS1-xSex nanostructures were polycrystalline with orthorhombic structure. FESEM showed various kinds of morphologies in SnS1-xSex nanostructures due to Se-doping. PL and UV-vis spectroscopy were used to evaluate the optical properties of SnS1-xSex thin films. The PL spectra of SnS1-xSex nanostructures displayed four emission peaks, those are a blue, a green, an orange, and a red emission. UV-vis spectra showed that the optical band gap energy (Eg) of SnS1-xSex nanostructures varied between 1.22-1.65 eV, due to Se-doping.
Application of ZnO Nanoparticle as Sulphide Gas Sensor Using UV/VIS/NIR-Spectrophotometer
NASA Astrophysics Data System (ADS)
Juliasih, N.; Buchari; Noviandri, I.
2017-04-01
The nanoparticle of metal oxides has great unique characteristics that applicable to the wide industrial as sensors and catalysts for reducing environmental pollution. Sulphide gas monitors and detectors are required for assessing safety aspects, due to its toxicity level. A thin film of ZnO as the sulphide gas sensor was synthesised by the simple method of chemical liquid deposition with variation of annealing temperature from 200 ºC to 500 ºC, and characterised by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), and UV/VIS/NIR-Spectrophotometer. Characterization studies showed nanoparticle size from the range 62 - 92 nm of diameters. The application this ZnO thin film to sulfide gas, detected by UV/VIS/NIR Spectrophotometer with diffuse reflectance, showed specific chemical reaction by the shifting of maximum % Reflectance peak. The gas sensing using this method is applicable at room.
Habibi, Mohammad Hossein; Parhizkar, Janan
2015-11-05
Cobalt ferrite nano-composite was prepared by hydrothermal route using cobalt nitrate, iron nitrate and ethylene glycol as chelating agent. The nano-composite was coated on glass by Doctor Blade method and annealed at 300 °C. The structural, optical, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy (UV-Vis DRS). Powder XRD analysis confirmed formation of CoFe2O4 spinel phase. The estimated particle size from FESEM data was 50 nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra was 1.3 eV. Photocatalytic degradation of Reactive Red 4 as an azo textile was investigated in aqueous solution under irradiation showed 68.0% degradation of the dye within 100 min. The experimental enhanced activity compare to pure Fe2O3 can be ascribed to the formation of composite, which was mainly attributable to the transfer of electron and hole to the surface of composite and hinder the electron hole recombination. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xin Hui, Yau; Yi Peng, Teoh; Wei Wen, Liu; Zhong Xian, Ooi; Peck Loo, Kiew
2016-11-01
Iron oxide nanoparticles were prepared from the reaction between the Zingiber officinale (ginger) root extracts and ferric chloride solution at 50°C for 2 h in mild stirring condition. The synthesized powder forms of nanoparticles were further characterized by using UV-Vis spectroscopy and X-ray Diffraction spectrometry. UV-Vis analysis shows the absorption peak of iron oxide nanoparticles is appeared at 370 nm. The calculation of crystallite size from the XRD showed that the average particle size of iron oxide nanoparticles was 68.43 nm. Therefore, this eco-friendly technique is low cost and large scale nanoparticles synthesis to fulfill the demand of various applications.
NASA Astrophysics Data System (ADS)
Tripathi, R. M.; Gupta, Rohit Kumar; Shrivastav, Archana; Singh, M. P.; Shrivastav, B. R.; Singh, Priti
2013-09-01
The present study demonstrates the biosynthesis of silver nanoparticles using Trichoderma koningii and evaluation of their antibacterial activity. Trichoderma koningii secretes proteins and enzymes that act as reducing and capping agent. The biosynthesized silver nanoparticles (AgNPs) were characterized by UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM) and x-ray diffraction (XRD). UV-Vis spectra showed absorbance peak at 413 nm corresponding to the surface plasmon resonance of silver nanoparticles. DLS was used to find out the size distribution profile. The size and morphology of the AgNPs was determined by TEM, which shows the formation of spherical nanoparticles in the size range of 8-24 nm. X-ray diffraction showed intense peaks corresponding to the crystalline silver. The antibacterial activity of biosynthesized AgNPs was evaluated by growth curve and inhibition zone and it was found that the AgNPs show potential effective antibacterial activity.
Structural mechanical and antibacterial properties of HPMC/SF-AgNPs nanocomposite films
NASA Astrophysics Data System (ADS)
Harish, K. V.; Rao, B. Lakshmeesha; Asha, S.; Vipin, C.; Sangappa, Y.
2018-04-01
In the present study, Hydroxypropyl Methylcellulose (HPMC) pure and HPMC/SF-AgNPs biopolymer nanocomposite films were prepared by simple solution casting method. The prepared nanocomposite films were characterized using UV-Visible spectroscopy(UV-Vis), X-ray diffraction (XRD) measurements. The mechanical properties of HPMC/SF-AgNPs nanocomposites were found to be decrease with increase in the AgNP's concentrations. The HPMC/SF-AgNPs nanocomposites showed very good antibacterial activity against human pathogens P. aeruginosa, E.coli, and S.aureus.
Spectral properties of Dy3+ doped ZnAl2O4 phosphor
NASA Astrophysics Data System (ADS)
Prakash, Ram; Kumar, Sandeep; Mahajan, Rubby; Khajuria, Pooja; Kumar, Vinay; Choudhary, R. J.; Phase, D. M.
2018-05-01
Herein, Dy3+ doped ZnAl2O4 phosphor was synthesized by the solution combustion method. The synthesized phosphor was characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS). The phase purity of the phosphor was confirmed by the XRD studies that showed cubic symmetry of the synthesized phosphor. Under UV excitation (388 nm) the PL emission spectrum of the phosphor shows characteristic transition from the Dy3+ ion. A band gap of 5.2 eV was estimated from the diffused reflectance spectroscopy. The surface properties of the phosphor were studied using the X-ray photoelectron spectroscopy.
Extracellular synthesis of silver nanoparticles using the leaf extract of Coleus amboinicus Lour
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayanan, Kannan Badri; Sakthivel, Natarajan, E-mail: puns2005@gmail.com
2011-10-15
Highlights: {yields} Synthesis of AgNPs using the leaf extract of Coleus amboinicus L. was described. {yields} UV-vis absorption spectra showed the formation of isotrophic AgNPs at 437 nm in 6 h. {yields} XRD analysis showed intense peaks corresponding to fcc structure of AgNPs. {yields} HR-TEM analysis revealed the formation of stable anisotrophic and isotrophic AgNPs. -- Abstract: In the present investigation, Coleus amboinicus Lour. leaf extract-mediated green chemistry approach for the synthesis of silver nanoparticles was described. The nanoparticles were characterized by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmissionmore » electron microscopy (TEM). The influence of leaf extract on the control of size and shape of silver nanoparticles is reported. Upon an increase in the concentration of leaf extract, there was a shift in the shape of nanoparticles from anisotrophic nanostructures like triangle, decahedral and hexagonal to isotrophic spherical nanoparticles. Crystalline nature of fcc structured nanoparticles was confirmed by XRD spectrum with peaks corresponding to (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes and bright circular spots in the selected-area electron diffraction (SAED). Such environment friendly and sustainable methods are non-toxic, cheap and alternative to hazardous chemical procedures.« less
Synthesis and photocatalytic activity of ytterbium-doped titania/diatomite composite photocatalysts
NASA Astrophysics Data System (ADS)
Tang, Wenjian; Qiu, Kehui; Zhang, Peicong; Yuan, Xiqiang
2016-01-01
Ytterbium-doped titanium dioxide (Yb-TiO2)/diatomite composite materials with different Yb concentrations were prepared by sol-gel method. The phase structure, morphology, and chemical composition of the as-prepared composites were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and ultraviolet-visible (UV-vis) diffuse reflection spectroscopy. The XRD and Raman spectroscopy analysis indicated that the TiO2 existed in the form of pure anatase in the composites. The SEM images exhibited the well deposition and dispersion of TiO2 nanoparticles with little agglomeration on the surfaces of diatoms. The UV-vis diffuse reflection spectra showed that the band gap of TiO2 could be narrowed by the introduction of Yb species, which was further affected by doping concentration of Yb. The photocatalytic activity of synthesized samples was investigated by the degradation of methylene blue (MB) under UV light irradiation. It was observed that the photocatalytic degradation followed a pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. Compared to TiO2 and TiO2/diatomite, the Yb-TiO2/diatomite composites exhibited higher photocatalytic activity toward degradation of MB using UV light irradiation.
Effect of solvent on the synthesis of SnO{sub 2} nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Virender; Singh, Karamjit; Singh, Kulwinder
Tin oxide (SnO{sub 2}) nanoparticles have been synthesized by co-precipitation method. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD) and Ultraviolet-Visible spectroscopy (UV-VIS). XRD analysis confirmed the formation of single phase of SnO{sub 2} nanoparticles. It has been found that solvents played important role in controlling the crystallite size of SnO{sub 2} nanoparticles. The XRD analysis showed well crystallized tetragonal SnO{sub 2} nanoparticles. The crystallite size of SnO{sub 2} nanoparticles varies with the solvent. Tauc plot showed that optical band gap was also tailored by controlling the solvent during synthesis.
Synthesis of ZnO nanopencils using wet chemical method and its investigation as LPG sensor
NASA Astrophysics Data System (ADS)
Shimpi, Navinchandra G.; Jain, Shilpa; Karmakar, Narayan; Shah, Akshara; Kothari, D. C.; Mishra, Satyendra
2016-12-01
ZnO nanopencils (NPCs) were prepared by a novel wet chemical process, using triethanolamine (TEA) as a mild base, which is relatively simple and cost effective method as compared to hydrothermal method. ZnO NPCs were characterized using powder X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR) spectroscopy in mid-IR and far-IR regions, X-ray Photoelectron Spectroscopy (XPS), UV-vis (UV-vis) absorption spectroscopy, room temperature Photoluminescence (PL) spectroscopy and Field Emission Scanning Electron Microscopy (FESEM). ZnO NPCs obtained, were highly pure, uniform and monodispersed.XRD pattern indicated hexagonal unit cell structure with preferred orientation along the c-axis. Sensing behaviour of ZnO NPCs was studied towards Liquefied Petroleum Gas (LPG) at different operating temperatures. The study shows that ZnO NPCs were most sensitive and promising candidate for detection of LPG at 250 °C with gas sensitivity > 60%. The high response towards LPG is due to high surface area of ZnO NPCs and their parallel alignment.
Synthesis and characterization of CdS/PVA nanocomposite films
NASA Astrophysics Data System (ADS)
Wang, Hongmei; Fang, Pengfei; Chen, Zhe; Wang, Shaojie
2007-08-01
A series CdS/PVA nanocomposite films with different amount of Cd salt have been prepared by means of the in situ synthesis method via the reaction of Cd 2+-dispersed poly vinyl-alcohol (PVA) with H 2S. The as-prepared films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption, photoluminescence (PL) spectra, Fourier transform infrared spectroscope (FTIR) and thermogravimetric analysis (TGA). The XRD results indicated the formation of CdS nanoparticles with hexagonal phase in the PVA matrix. The primary FTIR spectra of CdS/PVA nanocomposite in different processing stages have been discussed. The vibrational absorption peak of Cd sbnd S bond at 405 cm -1 was observed, which further testified the generation of CdS nanoparticles. The TGA results showed incorporation of CdS nanoparticles significantly altered the thermal properties of PVA matrix. The photoluminescence and UV-vis spectroscopy revealed that the CdS/PVA films showed quantum confinement effect.
Synthesis, structural and optical properties of PVP coated transition metal doped ZnS nanoparticles
NASA Astrophysics Data System (ADS)
Desai, N. V.; Shaikh, I. A.; Rawal, K. G.; Shah, D. V.
2018-05-01
The room temperature photoluminescence (PL) of transition metal doped ZnS nanoparticles is investigated in the present study. The PVP coated ZnS nanoparticles doped with transition metals are synthesized by facile wet chemical co-precipitation method with the concentration of impurity 1%. The UV-Vis absorbance spectra have a peak at 324nm which shifts slightly to 321nm upon introduction of the impurity. The incorporation of the transition metal as dopant is confirmed by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The particle size and the morphology are characterized by scanning electron microscopy (SEM), XRD and UV-Vis spectroscopy. The average size of synthesized nanoparticles is about 2.6nm. The room temperature photoluminescence (PL) of undoped and doped ZnS nanoparticles show a strong and sharp peak at 782nm and 781.6nm respectively. The intensity of the PL changes with the type of doping having maximum for manganese (Mn).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Ashutosh; Dwivedi, Jagrati, E-mail: hemu.dwi@gmail.com; Shukla, Kritika
Five Chromium (III) complexes have been prepared using Schiff base ligands which derived from benzoin and five different amino acids (H{sub 2}N-R). Samples were characterized by XRD, FTIR, UV-VIS and SEM method. X-Ray diffraction pattern analyzed that all chromium (III) complexes have hexagonal structure and crystalline, in nature, using Bruker D8 Advance instrument. Using VERTAX 70, FTIR spectroscopy reveals that Samples have (C=N), (C-O), (M-N) and (M-O) bonds in the range of 4000-400cm{sup −1}. UV-VIS spectroscopy give information that samples absorb the visible light which is in the range of 380-780nm. For this, Lambda 960 spectrometer used. SEM is designedmore » for studying of the solid objects, using JEOL JSM 5600 instrument.« less
Preparation of carbon nanotubes/BiOBr composites with higher visible light photocatalytic activity
NASA Astrophysics Data System (ADS)
You, Y. J.; Zhang, Y. X.; Li, R. R.; Li, C. H.
2014-12-01
A novel flower-like photocatalyst CNTs/BiOBr was successfully prepared by a facile hydrothermal method. The morphology and the physicochemical properties of the prepared samples were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDX), and UV-visible diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity was evaluated by degradation of Rhodamin B (RhB) dye. It was demonstrated that CNTs/BiOBr photocatalyst could effectively photodegrade RhB under visible light (VL) irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gawai, U. P.; Dole, B. N.; Khawal, H. A.
Ag doped ZnO nanocrystals were synthesized by co-precipitation method with the nominal compositions (x=0.00, 0.02, 0.04, 0.06). The as-synthesized Ag doped ZnO nanocrystals were characterized by X-ray diffraction (XRD), FTIR and UV-Vis. From XRD patterns samples shows hexagonal structure. The average crystallite size is in the range of 41-47 nm. All as synthesized Zn{sub 1−x}Ag{sub x}O nanocrystals are highly textured, with wurtzite structure along the (101) growth direction. The energy band gap of pure and Ag doped ZnO were calculated from UV-Vis spectra. FTIR spectra were confirmed that Ag substituted into ZnO. Chemical species of the samples were detected using FTIRmore » spectra An increase in the hexagonal lattice parameters of ZnO is observed on increasing the Ag concentration. An optical absorption study shows an increment in the band gap with increasing Ag content. From optical study the samples determines blue shift. Atomic packing fraction (APF) and c/a ratio were calculated using XRD data. It confirms the formation of ZnO with the stretching vibrational mode around at 506 to 510 cm{sup −1}.« less
Jaffri, Shaan Bibi; Ahmad, Khuram Shahzad
2018-06-13
Present study has for the first time reported Prunus cerasifera leaf extract mediated zinc oxide nanoparticles in a green and one pot synthetic mode without utilization of any chemical reducing agents. Synthesized nanoparticles were analyzed by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), fourier transmission infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). UV-Vis peak was detected at 380 nm due to surface plasmon resonance (SPR). Variety of biomolecules were revealed by FTIR involved in reduction cum stabilization of zinc oxide nanoparticles. Wurtzite hexagonal geometry with an average crystallite size of 12 nm was obtained from XRD diffraction pattern. SEM exhibited size ranges of 80-100 nm and 60- 100 nm for 200 ℃ and 600 ℃ calcination temperatures. Synthesized nanoparticles were used as bio-cleaning photocatalysts against organic pollutants i.e. bromocresol green, bromophenol blue, methyl red and methyl blue, which yielded pseudo first order reaction kinetics (R 2 = 0.98, 0.92, 0.92, 0.90 respectively). Pollutants expressed higher degradation percentages in less than 14 min in direct solar irradiance. Moreover, synthesized nanoparticles were tested against resistant microbes i.e. Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, Aspergillus terreus, Penicillium chrysogenum, Fusarium solani, Lasiodiplodia theobromae, Xanthomonas axonopodis pv. citri and Psuedomonas syringae for development of new generation of antimicrobial agents.
Structural, optical and photoelectric properties of sprayed CdS thin films
NASA Astrophysics Data System (ADS)
Chandel, Tarun; Dwivedi, Shailendra Kumar; Zaman, M. Burhanuz; Rajaram, P.
2018-05-01
In this study, CdS thin films were grown via a facile spray pyrolysis technique. The crystalline phase, morphological, compositional and optical properties of the CdS thin films have been studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and UV-vis absorption spectroscopy, respectively. XRD patterns show that the grown CdS films crystallized in the hexagonal structure. Scanning electron microscopy (SEM) study shows that the surfaces of the films are smooth and are uniformly covered with nanoparticles. EDAX results reveal that the grown films have good stochiometry. UV-vis spectroscopy shows that the grown films have transparency above 80% over the entire visible region. The photo-electric response of the CdS films grown on glass substrates has been observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajesh, E-mail: rkkaushik06@gmail.com; Dept. of Physics, Vaish College of Engineering, Rohtak-124001, Haryana; Sharma, Ashwani
The present work deals with study of structural and optical properties of Silver (Ag) doped Cadmium oxide (CdO) nanostructured synthesized by Chemical Co-precipitation Techniques followed by calcinations at small temperature. The doping concentrations were changing from 0.1 to 10 at% respectively. Structural analysis study of these calcined materials is carried out by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The optical properties of calcined samples were investigating by Fourier transformation infrared (FTIR)spectroscopy, UV-Visible Spectroscopy (UV-Vis). The structural properties analysis results revels that crystallite size are in the range of nano region and TEM results aremore » quite in accordance with XRD results.« less
Synthesis and optical properties of silver nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Jaiveer; Kaurav, Netram, E-mail: netramkaurav@yahoo.co.uk; Choudhary, K. K.
The preparation of stable, uniform silver nanoparticles by reduction of silver acetate by ethylene glycol (EG) is reported in the present paper. It is a simple process of recent interest for obtaining silver nanoparticles. The samples were characterized by X-Ray diffraction (XRD), which reveals an average particle size (D) of 38 nm. The UV/Vis spectra show that an absorption peak, occurring due to surface plasmon resonance (SPR), exists at 319 nm.
Structural and Optical Properties of Core-Shell TiO2/CdS Prepared by Chemical Bath Deposition
NASA Astrophysics Data System (ADS)
Al-Jawad, Selma M. H.
2017-10-01
Titanium dioxide (TiO2) nanorod arrays (NRAs) sensitized with cadmium sulfide (CdS) nanoparticles (NPs) were deposited by chemical bath deposition (CBD). TiO2 NRAs were also obtained by using the same method on glass substrates coated with fluorine-doped tin oxide (FTO). The structure of the FTO/TiO2/CdS core-shell was characterized by x-ray diffraction (XRD), atomic force microscopy, scanning electron microscopy, ultraviolet-visible (UV-Vis) absorption spectroscopy, photoluminescence, and photoelectrocatalysis of FTO/TiO2 and FTO/TiO2/CdS. The FTO/TiO2 conformed to anatase and rutile phase structures for different pH values and also with annealing. XRD patterns of the FTO/TiO2/CdS sample exhibited two peaks corresponding to hexagonal (100) and (101) for CdS. Scanning electron micrographs showed nanorod structures for the TiO2 thin films deposited at a pH value equal 0.7. Optical results showed the CdS deposited on nanorod TiO2 exhibited increased absorption ability in the visible light, indicating an increased photocatalytic activity for TiO2/CdS core-shell nanorods in the visible light. When illuminated with a UV-Vis light source, the TiO2/CdS core-shell films displayed high responses. A composite exists between the TiO2 nanostructure and CdS NPs because the film absorbs the incident light located in both the visible and UV-Vis regions. A higher response to UV-Vis light was attained with the use of TiO2 NRAs/CdS NPs films prepared by CBD. This approach offers a technique for fabricating photoelectrodes.
Optical absorption and photoluminescence study of nanocrystalline Zn0.92M0.08O (M: Li & Gd)
NASA Astrophysics Data System (ADS)
Punia, Khushboo; Lal, Ganesh; Kumar, Sudhish
2018-05-01
Nanocrystalline samples of Zn0.92Li0.08O and Zn0.92Gd0.08O have been synthesized using citrate sol-gel route without post synthesis annealing and characterized using powder X-ray diffraction (XRD), UV-Vis-NIR and Photoluminescence spectroscopic measurements. Analysis of XRD pattern and PL spectra revealed single phase formation of the nanocrystalline Zn0.92Li0.08O and Zn0.92Gd0.08O in the wurtzite type hexagonal structure with intrinsic crystal and surface defects. UV-Vis-NIR optical absorption measurements show that the maximum photo absorption occurs below 600nm in the UV& visible band. The estimated values of band gap energy were found to be 2.53eV and 2.73eV for Zn0.92Li0.08O and Zn0.92Gd0.08O respectively. The photoluminescence spectra excited at the wavelength 325nm displays two broad peaks in the UV and visible bands centered at ˜416 nm & ˜602 nm for Zn0.92Gd0.08O and ˜406nm & ˜598nm for Zn0.92Li0.08O. Both Gd and Li doping in ZnO leads to considerable decrease in the optical band gap energy and red shifting of the UV emission band towards the visible band.
NASA Astrophysics Data System (ADS)
Shetty, G. Rajesha; Rao, B. Lakshmeesha; Gowda, Mahadeva; Shivananda, C. S.; Asha, S.; Sangappa, Y.
2018-04-01
In this work, the structure and optical properties of Silk Fibroin (SF), lower molecular weight Hydroxypropyl Methylcellulose (HPMC(L)) and its blend film of SF-HPMC(L) were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron Microscope (SEM) and UV-Visible spectroscopy (UV-Vis). The results indicates that the homogeneous miscible blend of SF-HPMC(L) has lower crystallite size and lower optical band gap compared to virgin SF and HPMC(L). FTIR study confirms the presence of both SF and HPMC(L) molecules in the prepared blend films.
Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp.
NASA Astrophysics Data System (ADS)
Du, Liangwei; Xian, Liang; Feng, Jia-Xun
2011-03-01
In this work, the fungus Penicillium was used for rapid extra-/intracellular biosynthesis of gold nanoparticles. AuCl4 - ions reacted with the cell filtrate of Penicillium sp. resulting in extracellular biosynthesis of gold nanoparticles within 1 min. Intracellular biosynthesis of gold nanoparticles was obtained by incubating AuCl4 - solution with fungal biomass for 8 h. The gold nanoparticles were characterized by means of visual observation, UV-Vis absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The extracellular nanoparticles exhibited maximum absorbance at 545 nm in UV-Vis spectroscopy. The XRD spectrum showed Bragg reflections corresponding to the gold nanocrystals. TEM exhibited the formed spherical gold nanoparticles in the size range from 30 to 50 nm with an average size of 45 nm. SEM and TEM revealed that the intracellular gold nanoparticles were well dispersed on the cell wall and within the cell, and they are mostly spherical in shape with an average diameter of 50 nm. The presence of gold was confirmed by EDX analysis.
NASA Astrophysics Data System (ADS)
Pujar, Malatesh S.; Hunagund, Shirajahammad M.; Desai, Vani R.; Patil, Shivaprasadgouda; Sidarai, Ashok H.
2018-04-01
We report the simple Co-precipitation method for the synthesis of Cerium oxide (CeO2) nanoparticles (NPs) in an ambient temperature. We have taken the Cerium (III) nitrate hexahydrate (Ce(NO3)3.6H2O) and Sodium hydroxide (NaOH) as the precursors. The obtained NPs were analyzed using the UV-Vis spectrophotometer, Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The obtained results signify that UV-Vis spectrum exhibited a well-defined absorption peak at 274 nm and the estimated energy gap (Eg) is 4.05 eV. The FT-IR analysis provides the supporting evidence for the presence of bonding of O-H, nitrates, alcohols and O-Ce-O vibrations. The XRD result reveals that the synthesized CeO2 NPs was crystallite with cubic phase structure and the estimated average crystallite size of CeO2 NPs using Scherer's and W-H method was significantly different due to their assumptions. Further, it is purposed to study their photocatalytic biological activities.
NASA Astrophysics Data System (ADS)
Selvi, N.; Sankar, S.; Dinakaran, K.
2014-12-01
Nanocrystallites of SnO2 core and dual shells (ZnO, SiO2) coated SnO2 core-shell nanospheres were successfully synthesized by co-precipitation method. The as prepared and annealed samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM) and UV-Vis analysis. XRD pattern confirms the obtained SnO2 core with tetragonal rutile crystalline structure and the shell ZnO with hexagonal structure. FTIR result shows the functional groups present in the samples. The spherical morphology and the formation of the core-shell structures have been confirmed by HRTEM measurements. The UV-Vis showed that band gap is red shifted for as-prepared and the shells coated core-shell samples. From this investigation it can be concluded that the surface modification with different metal and insulating oxides strongly influences the optical properties of the core-shell materials which enhance their potential applications towards optical devices fabrication.
Biao, Linhai; Tan, Shengnan; Meng, Qinghuan; Gao, Jing; Zhang, Xuewei; Liu, Zhiguo; Fu, Yujie
2018-01-01
Green synthesis of gold nanoparticles using plant extracts is one of the more promising approaches for obtaining environmentally friendly nanomaterials for biological applications and environmental remediation. In this study, proanthocyanidins-functionalized gold nanoparticles were synthesized via a hydrothermal method. The obtained gold nanoparticles were characterized by ultraviolet and visible spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray diffraction (XRD) measurements. UV-Vis and FTIR results indicated that the obtained products were mainly spherical in shape, and that the phenolic hydroxyl of proanthocyanidins had strong interactions with the gold surface. TEM and XRD determination revealed that the synthesized gold nanoparticles had a highly crystalline structure and good monodispersity. The application of proanthocyanidins-functionalized gold nanoparticles for the removal of dyes and heavy metal ions Ni2+, Cu2+, Cd2+ and Pb2+ in an aqueous solution was investigated. The primary results indicate that proanthocyanidins-functionalized gold nanoparticles had high removal rates for the heavy metal ions and dye, which implies that they have potential applications as a new kind of adsorbent for the removal of contaminants in aqueous solution. PMID:29361727
Barakat, Assem; Al-Noaimi, Mousa; Suleiman, Mohammed; Aldwayyan, Abdullah S.; Hammouti, Belkheir; Ben Hadda, Taibi; Haddad, Salim F.; Boshaala, Ahmed; Warad, Ismail
2013-01-01
[NiCl2(C14H12N2)(H2O)] complex has been synthesized from nickel chloride hexahydrate (NiCl2·6H2O) and 2,9-dimethyl-1,10-phenanthroline (dmphen) as N,N-bidentate ligand. The synthesized complex was characterized by elemental analysis, infrared (IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy and differential thermal/thermogravimetric analysis (TG/DTA). The complex was further confirmed by single crystal X-ray diffraction (XRD) as triclinic with space group P-1. The desired complex, subjected to thermal decomposition at low temperature of 400 ºC in an open atmosphere, revealed a novel and facile synthesis of pure NiO nanoparticles with uniform spherical particle; the structure of the NiO nanoparticles product was elucidated on the basis of Fourier transform infrared (FT-IR), UV-vis spectroscopy, TG/DTA, XRD, scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDXS) and transmission electron microscopy (TEM). PMID:24351867
Samadi-Maybodi, Abdolraouf; Atashbozorg, Ebrahim
2006-11-15
Silicon is an essential trace element and is found in vegetables, fruits, cereals, water, pasta and rice (Oryza sativa). In this work, the silica content of different types of rice grains were measured. Here, we used the heteropoly blue photometric method with a double beam UV-vis spectrophotometer to determine the amount of silicon in rice samples (n=7) that were collected in the north of Iran. The samples were digested with wet-ashing method by microwave-assisted heating and then treated with ammonium molybdate to produce a yellow color compound in acidic solution (ca. pH 1.2) and then reduced to give a heteropoly compound with a blue color. Analyses were performed using standard addition method and absorbance values were measured with double beam UV-vis spectrophotometer at lambda(max)=815nm. Results indicated that the silica content was 307-451mg/kg for the samples. X-ray diffraction patterns and infra-red spectra were obtained from rice samples without any sample treatment.
Synthesis and characterization of Chitosan-CuO-MgO polymer nanocomposites
NASA Astrophysics Data System (ADS)
Praffulla, S. R.; Bubbly, S. G.
2018-05-01
In the present work, we have synthesized Chitosan-CuO-MgO nanocomposites by incorporating CuO and MgO nanoparticles in chitosan matrix. Copper oxide and magnesium oxide nanoparticles synthesized by precipitation method were characterized by X-ray diffraction and the diffraction patterns confirmed the monoclinic and cubic crystalline structures of CuO and MgO nanoparticles respectively. Chitosan-CuO-MgO composite films were prepared using solution- cast method with different concentrations of CuO and MgO nanoparticles (15 - 50 wt % with respect to chitosan) and characterized by XRD, FTIR and UV-Vis spectroscopy. The X-ray diffraction pattern shows that the crystallinity of the chitosan composite increases with increase in nanoparticle concentration. FTIR spectra confirm the chemical interaction between chitosan and metal oxide nanoparticles (CuO and MgO). UV absorbance of chitosan nanocomposites were up to 17% better than pure chitosan, thus confirming its UV shielding properties. The mechanical and electrical properties of the prepared composites are in progress.
Synthesis and photocatalytic activity of N-doped TiO2 produced in a solid phase reaction
NASA Astrophysics Data System (ADS)
Xin, Gang; Pan, Hongfei; Chen, Dan; Zhang, Zhihua; Wen, Bin
2013-02-01
N-doped TiO2 was synthesized by calcining a mixture of titanic acid and graphitic carbon nitride (g-C3N4) at temperatures above 500 °C. The final samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and UV-vis diffuse reflectance spectra. The photocatalytic activity of N-doped TiO2 was studied by assessing the degradation of methylene blue in an aqueous solution, under visible light and UV light irradiation. It was found that the N-doped TiO2 displayed higher photocatalytic activity than pure TiO2, under both visible and UV light.
NASA Astrophysics Data System (ADS)
Sivakumar, S.; Venkatesan, A.; Soundhirarajan, P.; Khatiwada, Chandra Prasad
2015-02-01
In the present study, synthesized pure and Ag (1%, 2%, and 3%) doped Cadmium Oxide (CdO) nanoparticles by chemical precipitation method. Then, the synthesized products were characterized by thermo gravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR) spectroscopy, Ultra violet-Vis diffused reflectance spectroscopy (UV-Vis-DRS), Scanning electron microscopy (SEM), Energy dispersive X-rays (EDX) spectroscopy, and anti-bacterial activities, respectively. The transition temperatures and phase transitions of Cd(OH)2 to CdO at 400 °C was confirmed by TG-DTA analysis. The XRD patterns show the cubic shape and average particle sizes are 21, 40, 34, and 37 nm, respectively for pure and Ag doped samples. FT-IR study confirmed the presence of CdO and Ag at 677 and 459 cm-1, respectively. UV-Vis-DRS study shows the variation on direct and indirect band gaps. The surface morphologies and elemental analysis have been confirmed from SEM and with EDX. In addition, the synthesized products have been characterized by antibacterial activities against Gram-positive and negative bacteria. Further, the present investigation suggests that CdO nanoparticles have the great potential applications on various industrial and medical fields of research.
Nanocrystalline SnO2 formation by oxygen ion implantation in tin thin films
NASA Astrophysics Data System (ADS)
Kondkar, Vidya; Rukade, Deepti; Kanjilal, Dinakar; Bhattacharyya, Varsha
2018-03-01
Metallic tin thin films of thickness 100 nm are deposited on fused silica substrates by thermal evaporation technique. These films are implanted with 45 keV oxygen ions at fluences ranging from 5 × 1015 to 5 × 1016 ions cm-2. The energy of the oxygen ions is calculated using SRIM in order to form embedded phases at the film-substrate interface. Post-implantation, films are annealed using a tube furnace for nanocrystalline tin oxide formation. These films are characterized using x-ray diffraction, Raman spectroscopy, UV-vis spectroscopy and photoluminescence spectroscopy. XRD and Raman spectroscopy studies reveal the formation of single rutile phase of SnO2. The size of the nanocrystallites formed decreases with an increase in the ion fluence. The nanocrystalline SnO2 formation is also confirmed by UV-vis and photoluminescence spectroscopy.
Interplay of structural, optical and magnetic properties in Gd doped CeO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soni, S.; Dalela, S., E-mail: sdphysics@rediffmail.com; Kumar, Sudish
In this research wok systematic investigation on the synthesis, characterization, optical and magnetic properties of Ce{sub 1-x}Gd{sub x}O{sub 2} (where x=0.02, 0.04, 0.06, and 0.10) synthesized using the Solid-state method. Structural, Optical and Magnetic properties of the samples were investigated by X-ray diffraction (XRD), UV-VIS-NIR spectroscopy and VSM. Fluorite structure is confirmed from the XRD measurement on Gd doped CeO{sub 2} samples. Magnetic studies showed that the Gd doped polycrystalline samples display room temperature ferromagnetism and the ferromagnetic ordering strengthens with the Gd concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yongkun; Tang, Kaibin, E-mail: kbtang@ustc.edu.cn; Zhu, Baichuan
2015-05-15
Highlights: • A new oxyfluoride compound Sr{sub 2}ScO{sub 3}F was prepared by a solid state route. • The structure of this compound was determined by GSAS program based on XRD data. • The photocatalytic property was investigated under UV irradiation. - Abstract: A new Ruddlesden–Popper type scandium oxyfluoride, Sr{sub 2}ScO{sub 3}F, was synthesized by a conventional solid state reaction route. The detailed structure of Sr{sub 2}ScO{sub 3}F was investigated using X-ray diffraction (XRD) and selected area electron diffraction (SAED). The disorder distribution pattern of fluorine anions was determined by the {sup 19}F nuclear magnetic resonance (NMR) spectrum. The compound crystallizesmore » in a K{sub 2}NiF{sub 4}-type tetragonal structure (space group I4/mmm) with O/F anions disordered over the apical sites of the perovskite-type Sc(O,F){sub 6} octahedron layers interleaved with strontium cations. Ultraviolet–visible (UV–vis) diffuse reflection spectrum of the prepared Sr{sub 2}ScO{sub 3}F indicates that it has an absorption in the UV–vis region. The photocatalytic activity of Sr{sub 2}ScO{sub 3}F was further investigated, showing an effective photodegradation of Rhodamine-B (RB) within 2 h under UV light irradiation.« less
Photoluminescence study of ZnS and ZnS:Pb nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virpal,, E-mail: virpalsharma.sharma@gmail.com; Hastir, Anita; Kaur, Jasmeet
2015-05-15
Photoluminescence (PL) study of pure and 5wt. % lead doped ZnS prepared by co-precipitation method was conducted at room temperature. The prepared nanoparticles were characterized by X-ray Diffraction (XRD), UV-Visible (UV-Vis) spectrophotometer, Photoluminescence (PL) and Raman spectroscopy. XRD patterns confirm cubic structure of ZnS and PbS in doped sample. The band gap energy value increased in case of Pb doped ZnS nanoparticles. The PL spectrum of pure ZnS was de-convoluted into two peaks centered at 399nm and 441nm which were attributed to defect states of ZnS. In doped sample, a shoulder peak at 389nm and a broad peak centered atmore » 505nm were observed. This broad green emission peak originated due to Pb activated ZnS states.« less
Influence of UV irradiation on hydroxypropyl methylcellulose polymer films
NASA Astrophysics Data System (ADS)
Rao, B. Lakshmeesha; Shivananda, C. S.; Shetty, G. Rajesha; Harish, K. V.; Madhukumar, R.; Sangappa, Y.
2018-05-01
Hydroxypropyl Methylcellulose (HPMC) biopolymer films were prepared by solution casting technique and effects of UV irradiation on the structural and optical properties of the polymer films were analysed using X-ray Diffraction and UV-Visible studies. From XRD data, the microcrystalline parameters (crystallite size (LXRD) and crystallinity (Xc)) were calculated and found to be decreasing with UV irradiation due to photo-degradation process. From the UV-Vis absorption data, the optical bandgap (Eg), average numbers of carbon atoms per conjugation length (N) of the polymer chain and the refractive index (n) at 550 nm (average wavelength of visible light) of virgin and UV irradiated HPMC films were calculated. With increase in UV exposure time, the optical bandgap energy (Eg) increases, and hence average number of carbon atoms per conjugation length (N) decreases, supports the photo-degradation of HPMC polymer films. The refractive index of the HPMC films decreases after UV irradiation, due to photo-degradation induced chain rearrangements.
Synthesis and characterization of PVK/AgNPs nanocomposites prepared by laser ablation.
Abd El-Kader, F H; Hakeem, N A; Elashmawi, I S; Menazea, A A
2015-03-05
Nanocomposites of Poly (n-vinylcarbazole) PVK/Ag nanoparticles were prepared by laser ablation of a silver plate in aqueous solution of chlorobenzene. The influences of laser parameters such as; time of irradiation, source power and wavelength (photon energy) on structural, morphological and optical properties have been investigated using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Ultraviolet-visible (UV-Vis) and Photoluminescence (PL). A correlation between the investigated properties has been discussed. XRD, TEM and PL indicated that the complexation between AgNPs and PVK in the composite system is possible. Only the reflection peak at 2θ=38° of AgNPs appeared in the composite nanoparticles while the other reflection peaks were destroyed. The nanoparticles shape and size distribution were evaluated from TEM images. TEM analysis revealed a lower average particle size at long laser irradiation time 40min and short laser wavelength 532nm together with high laser power 570mW. From UV-Visible spectra the values of absorption coefficient, absorption edge and energy tail were calculated. The reduction of band tail value with increasing the laser ablation parameters confirms the decrease of the disorder in such composite system. The PL and UV-Vis. spectra confirm that nanocomposite samples showed quantum confinement effect. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dong, Rui; Wang, Yuan; Wang, Ningning; Xu, Lei; He, Jie; Wu, Shanshan; Lan, Yunxiang; Hu, Jinsong
2016-09-01
Layered photocatalytic materials M1/3TiNbO5 (M = Fe, Ce) were prepared by ion-exchange of KTiNbO5 with M(NO3)3. The parent KTiNbO5 was synthesized with titanium (IV) isopropoxide and niobium oxalate by a novel polymerized complex (PC) method. The micro-structures and spectral response features of the as-prepared samples were characterized by powder X-ray diffraction (XRD), transmission electron microscope (TEM), laser Raman spectroscopy (LRS) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The results revealed that there was a significant interaction between the interlayer cation and the terminal Nbdbnd O (Tidbnd O) bond in the NbO6 (TiO6) unit of the laminates. Photocatalytic performance was evaluated in oxidation of ethyl mercaptan under natural and UV light irradiation. It can be deduced that the photocatalytic oxidization performance can be directly affected by the characteristics of the interlayer cations.
Room-temperature synthesis and photoluminescence of hexagonal CePO4 nanorods
NASA Astrophysics Data System (ADS)
Zhu, J.; Zhang, K.; Zhao, H. Y.
2018-01-01
Hexagonal CePO4 nanorods were synthesized via a simple chemical precipitation route at room-temperature without the presence of surfactants and then characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectroscopy. Hexagonal CePO4 nanorods exhibit strong ultraviolet absorption and ultraviolet luminescence, which correspond to the electronic transitions between 4f and 5d state of Ce3+ ions.
Characterization of graphene oxide produced by Hummers method and its supercapacitor applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akgül, Ö., E-mail: omeraakgul@gmail.com; Tanrıverdi, A., E-mail: aa.kudret@hotmail.com; Alver, Ü., E-mail: ualver@ktu.edu.tr
2016-03-25
In this study, Graphene Oxide (GO) is produced using Hummers method. The produced GO were investigated by x-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), UV-Vis spectrum, Raman spectroscopy and scanning electron microscopy (SEM). GO films on Ni foam were prepared by doctor-blading technique. The electrochemical performances of the as-synthesized GO electrode was evaluated using cyclic voltammetry (CV) in 6 M KOH aqueous solution. Capacitances of GO electrode was measured as 0.76 F/g.
Room temperature chemical synthesis of lead selenide thin films with preferred orientation
NASA Astrophysics Data System (ADS)
Kale, R. B.; Sartale, S. D.; Ganesan, V.; Lokhande, C. D.; Lin, Yi-Feng; Lu, Shih-Yuan
2006-11-01
Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH3COO)2 as Pb2+ and Na2SeSO3 as Se2- ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV.
NASA Astrophysics Data System (ADS)
Magesh, G.; Bhoopathi, G.; Nithya, N.; Arun, A. P.; Ranjith Kumar, E.
2018-05-01
Chitosan/ZnO nanocomposites was synthesized by in-situ chemical precipitation method. The effect of polysaccharide Chitosan concentration (0.1 g, 0.5 g, 1 g and 3 g) was investigated by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) with Energy dispersive spectroscopy (EDX), High Resolution Transmission Electron Microscopy (HRTEM), UV-visible (UV), Fourier Transform Infrared (FTIR) and Photoluminescence Spectroscopy (PL). XRD pattern confirms the hexagonal wurtzite structure of the Chitosan/ZnO nanocomposites. The structural morphology and the elemental composition of the samples were analysed by FESEM and EDX respectively. From TEM analysis, it is observed that the particles in spindle shape morphology with average particle size ranges 10-20 nm. UV-Vis analysis reveals that the Chitosan concentration affect the absorption band edge and shift towards lower wavelength. The oxygen vacancy induced photoluminescence of ZnO nanoparticles was observed and its intensity decreases by tuning the Chitosan concentration.
Novel ZrO2 based ceramics stabilized by Fe2O3, SiO2 and Y2O3
NASA Astrophysics Data System (ADS)
Rada, S.; Culea, E.; Rada, M.
2018-03-01
Samples in the 5Fe2O3·10SiO2·xY2O3·(85-x)ZrO2 composition where x = 5, 10 and 15 mol% Y2O3 were synthesized and investigated by XRD, SEM, density measurements, FTIR, UV-Vis, EPR and PL spectroscopies. X-ray diffraction patterns confirm the presence of the tetragonal and cubic ZrO2 crystalline phases in all samples. The IR data show the overlaps of absorption bands assigned to Zrsbnd Osbnd Zr and Sisbnd Osbnd linkages in samples. UV-Vis and PL data indicate higher concentrations of intrinsic defects by doping with Y2O3 concentrations. The EPR spectra are characterized by two resonance lines situated at about g ∼ 4.3 and g ∼ 2 for lower Y2O3 contents.
NASA Astrophysics Data System (ADS)
Singhal, Garima; Bhavesh, Riju; Kasariya, Kunal; Sharma, Ashish Ranjan; Singh, Rajendra Pal
2011-07-01
Development of green nanotechnology is generating interest of researchers toward ecofriendly biosynthesis of nanoparticles. In this study, biosynthesis of stable silver nanoparticles was done using Tulsi ( Ocimum sanctum) leaf extract. These biosynthesized nanoparticles were characterized with the help of UV-vis spectrophotometer, Atomic Absorption Spectroscopy (AAS), Dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM). Stability of bioreduced silver nanoparticles was analyzed using UV-vis absorption spectra, and their antimicrobial activity was screened against both gram-negative and gram-positive microorganisms. It was observed that O. sanctum leaf extract can reduce silver ions into silver nanoparticles within 8 min of reaction time. Thus, this method can be used for rapid and ecofriendly biosynthesis of stable silver nanoparticles of size range 4-30 nm possessing antimicrobial activity suggesting their possible application in medical industry.
A Study of Photoluminiscence and UV-Vis in Enhanced GaN Nanofibers
NASA Astrophysics Data System (ADS)
Robles-Garcia, Joshua; Melendez-Zambrana, Anamaris; Ramos, Idalia
2014-03-01
The photoluminiscence (PL) and UV-Vis properties of Gallium Nitride (GaN) nanofibers were investigated for samples fabricated with a precursor solution containing Gallium Nitrate Hydrate, Cellulose Acetate, and Urea in the solvents Dimethylacetamide (DMA) and Acetone. GaN is a wide bandgap (3.4 eV) semiconductor that can be used in a variety of applications including solid-state lighting, high power, and high frequency devices. In previous work, we produced polycrystalline GaN nanofibers with wurtzite structure, using the electrospinning method and a thermal treatment in nitrogen and ammonia at 1000C. In this research we study the addition of urea to the precursor solution to enhance the crystallinity of the fibers at lower sintering temperatures. The molar ratios of urea added to the precursor range from 0 to 1.7 M. After electrospinning the fibers were sintered in Nitrogen at 450C for 3 hours and then, under ammonia gas flow at 900C for 5 hours. X-Ray Diffraction (XRD), UV-Vis spectroscopy, and PL measurements at room temperature were used to study the structural and optical properties of the fibers during the sintering process. This work was sponsored by UPRH PREM (NSF-DMR-0934195).
Synthesis and Characterization of YVO4-Based Phosphor Doped with Eu3+ Ions for Display Devices
NASA Astrophysics Data System (ADS)
Thakur, Shashi; Gathania, Arvind K.
2015-10-01
YVO4:Eu nanophosphor has been synthesized by the sol-gel method. Samples were characterized by x-ray diffraction (XRD), energy-dispersive x-ray spectroscopy, Fourier-transform infrared spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, photoluminescence, and Raman spectroscopy. The XRD profile confirms the tetragonal phase of the Eu3+-doped YVO4 nanophosphor. The efficiency of the prepared phosphor was analyzed by means of its emission spectral profile. We also observed rich red emission from the prepared phosphor on excitation by an ultraviolet source. The calculated Commission International de l'Éclairage coordinates reveal excellent color purity efficiency. Such luminescent powder is useful as red phosphor in display device applications.
Investigation of tin oxide nanofibers synthesized via bio-template technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Virender Singh, E-mail: vskundu-kuk@rediffmail.com; Dhiman, Jonny; Kumar, Suresh
In the present paper tin oxide nanofibers have been by synthesized using cotton as bio-template via sol-gel route. This is comparatively a new synthesis technique. The structure and morphology of the obtained SnO{sub 2} nanofibers were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX). The optical properties of the same have been studied by using UV-Vis spectroscopy. The observed XRD pattern showed that peaks are very narrow and sharp which indicates crystalline nature of samples. SEM images gave an idea about the sample morphology and confirm that the obtained sample were nanofibers. The optical absorbancemore » spectrum of the sample under study was recorded in UV-visible region (200nm- 800nm). The band gap of the sample was found to be 3.95 eV which is higher than their bulk counterpart.« less
Saravanakumar, Arthanari; Peng, Mei Mei; Ganesh, Mani; Jayaprakash, Jayabalan; Mohankumar, Murugan; Jang, Hyun Tae
2017-09-01
Low cost and eco-friendly green synthesis of silver nanoparticles (AgNPs) from silver nitrate (AgNO 3 ) using Prunus japonica leaves extract as reducing agent by a simple method at room temperature. The biosynthesized nanoparticles (NPs) were characterized by UV-Vis, tunneling electron microscopy (HR-TEM), scanning electron microscopy (SEM) coupled with X-ray energy dispersive spectrophotometer (EDAX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). In UV-Vis spectroscopy results, the λ max was observed at 441 nm. The AgNPs synthesized were spherical, hexagonal, and irregular in shapes. The EDAX and XRD spectrum confirmed the presence of silver ions and crystalline nature of synthesized AgNPs. FTIR showed the functional groups such as C = O, N-H and C-N groups involved in the reduction of Ag + to Ag. 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay was performed and it showed the percentage inhibition in concentration-dependent manner. The synthesized AgNPs showed antibacterial activity against Escherichia coli, Proteus vulgaris, Staphylococcus aureus and Bacillus cereus to different extents and the higher activity was observed in Proteus vulgaris.
Paulkumar, Kanniah; Gnanajobitha, Gnanadhas; Vanaja, Mahendran; Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Pandian, Kannaiyan; Annadurai, Gurusamy
2014-01-01
Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray analysis (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7-50 nm and 9-30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology.
NASA Astrophysics Data System (ADS)
Cakić, Milorad; Glišić, Slobodan; Nikolić, Goran; Nikolić, Goran M.; Cakić, Katarina; Cvetinov, Miroslav
2016-04-01
Dextran sulphate stabilized silver nanoparticles (AgNPs - DS) were synthesized from aqueous solution of silver nitrate (AgNO3) and dextran sulphate sodium salt (DS). The characterization of AgNPs - DS was performed by ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and antimicrobial activity. The formation of AgNPs - DS was monitored by colour changes of the reaction mixture from yellowish to brown and by measuring the surface plasmon resonance absorption peak in UV-VIS spectra at 420 nm. The SEM analysis was used for size and shape determination of AgNPs - DS. The presence of elemental silver and its crystalline structure in AgNPs - DS were confirmed by EDX and XRD analyses. The possible functional groups of DS responsible for the reduction and stabilization of AgNPs were determinated by FTIR spectroscopy. The AgNPs - DS showed strong antibacterial activity against Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 11778, Bacillus luteus in haus strain, Bacillus subtilis ATTC 6633, Listeria monocytogenes ATCC 15313, Escherichia coli ATTC 25922, Pseudomonas aeruginosa ATTC 27853, Klebsiella pneumoniae ATTC 700603, Proteus vulgaris ATTC 8427, and antifungal activity against Candida albicans ATTC 2091.
A photodiode based on PbS nanocrystallites for FYTRONIX solar panel automatic tracking controller
NASA Astrophysics Data System (ADS)
Wageh, S.; Farooq, W. A.; Tataroğlu, A.; Dere, A.; Al-Sehemi, Abdullah G.; Al-Ghamdi, Ahmed A.; Yakuphanoglu, F.
2017-12-01
The structural, optical and photoelectrical properties of the fabricated Al/PbS/p-Si/Al photodiode based on PbS nanocrystallites were investigated. The PbS nanocrystallites were characterized by X-ray diffraction (XRD), UV-VIS-NIR, Infrared and Raman spectroscopy. The XRD diffraction peaks show that the prepared PbS nanostructure is in high crystalline state. Various electrical parameters of the prepared photodiode were analyzed from the electrical characteristics based on I-V and C-V-G. The photodiode has a high rectification ratio of 5.85×104 at dark and ±4 V. Moreover, The photocurrent results indicate a strong photovoltaic behavior. The frequency dependence of capacitance and conductance characteristics was attributed to depletion region behavior of the photodiode. The diode was used to control solar panel power automatic tracking controller in dual axis. The fabricated photodiode works as a photosensor to control Solar tracking systems.
Simple route to (NH4)xWO3 nanorods for near infrared absorption
NASA Astrophysics Data System (ADS)
Guo, Chongshen; Yin, Shu; Dong, Qiang; Sato, Tsugio
2012-05-01
Described here is how to synthesize one-dimensional ammonium tungsten bronze ((NH4)xWO3) by a facile solvothermal approach in which ethylene glycol and acetic acid were employed as solvents and ammonium paratungstate was used as a starting material, as well as how to develop the near infrared absorption properties of (NH4)xWO3 nanorods for application as a solar light control filter. The as-obtained product was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), atomic force microscope (AFM) and UV-Vis-NIR spectra. The SEM and TEM images clearly revealed that the obtained sample possessed rod/fiber-like morphologies with diameters around 120 nm. As determined by UV-Vis-NIR optical measurement, the thin film consisted of (NH4)xWO3 nanoparticles, which can selectively transmit most visible lights, but strongly absorb the near-infrared (NIR) lights and ultraviolet rays. These interesting optical properties make the (NH4)xWO3 nanorods suitable for the solar control windows.Described here is how to synthesize one-dimensional ammonium tungsten bronze ((NH4)xWO3) by a facile solvothermal approach in which ethylene glycol and acetic acid were employed as solvents and ammonium paratungstate was used as a starting material, as well as how to develop the near infrared absorption properties of (NH4)xWO3 nanorods for application as a solar light control filter. The as-obtained product was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), atomic force microscope (AFM) and UV-Vis-NIR spectra. The SEM and TEM images clearly revealed that the obtained sample possessed rod/fiber-like morphologies with diameters around 120 nm. As determined by UV-Vis-NIR optical measurement, the thin film consisted of (NH4)xWO3 nanoparticles, which can selectively transmit most visible lights, but strongly absorb the near-infrared (NIR) lights and ultraviolet rays. These interesting optical properties make the (NH4)xWO3 nanorods suitable for the solar control windows. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30612c
Umamaheswari, C; Lakshmanan, A; Nagarajan, N S
2018-01-01
The present study reports, novel and greener method for synthesis of gold nanoparticles (AuNPs) using 5,7-dihydroxy-6-metoxy-3 ' ,4 ' methylenedioxyisoflavone (Dalspinin), isolated from the roots of Dalbergia coromandeliana was carried out for the first time. The synthesized gold nanoparticles were characterized by UV-Vis spectroscopy, high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The observed surface plasmon resonance (SPR) at 532nm in the UV-Vis absorption spectrum indicates the formation of gold nanoparticles. The powder XRD and SAED pattern for synthesized gold nanoparticles confirms crystalline nature. The HR-TEM images showed that the AuNPs formed were small in size, highly monodispersed and spherical in shape. The average particle sizes of the AuNPs are found to be ~10.5nm. The prepared AuNPs were found to be stable for more than 5months without any aggregation. The catalytic degradation studies of the synthesized AuNPs towards degradation of congo red and methyl orange, showed good catalytic in the complete degradation of both the dyes. The reduction catalyzed by gold nanoparticles followed the pseudo-first order kinetics, with a rate constant of 4.5×10 -3 s -1 (R 2 =0.9959) and 1.7×10 -3 s -1 (R 2 =0.9918) for congo red (CR) and methyl orange (MO), respectively. Copyright © 2017. Published by Elsevier B.V.
Facile and fast synthesis of SnS2 nanoparticles by pulsed laser ablation in liquid
NASA Astrophysics Data System (ADS)
Johny, J.; Sepulveda-Guzman, S.; Krishnan, B.; Avellaneda, D.; Shaji, S.
2018-03-01
Nanoparticles (NPs) of tin disulfide (SnS2) were synthesized using pulsed laser ablation in liquid (PLAL) technique. Effects of different liquid media and ablation wavelengths on the morphology and optical properties of the nanoparticles were studied. Nd: YAG laser wavelengths of 532 nm and 1064 nm (frequency 10 Hz and pulse width 10 ns) were used to irradiate SnS2 target immersed in liquid for the synthesis of SnS2 nanoparticles. Here PLAL was a fast synthesis technique, the ablation was only for 30 s. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis absorption spectroscopy and photoluminescence spectroscopy were used to characterize the SnS2 NPs. TEM images showed that the liquid medium and laser wavelength influence the morphology of the NPs. SAED patterns and high resolution TEM (HRTEM) images confirmed the crystallinity of the particles. XRD and XPS analyses confirmed that SnS2 NPs were having exact crystalline structure and chemical states as that of the target. Raman analysis also supported the results obtained by XRD and XPS. Optical band gaps of the nanocolloids evaluated from their UV-vis absorption spectra were 2.4-3.05 eV. SnS2 NPs were having luminescence spectra in the blue-green region irrespective of the liquid media and ablation wavelength.
Effect of complexing agent on the photoelectrochemical properties of bath deposited CdS thin films
NASA Astrophysics Data System (ADS)
Patil, S. B.; Singh, A. K.
2010-02-01
In the present paper photoelectrochemical (PEC) performance of bath deposited CdS thin films based on complexing agents i.e. ammonia and triethanolamine (TEA) has been discussed. Effect of annealing has also been analyzed. The as-deposited and annealed (at 523 K for 1 h in air) films were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-vis) absorption spectroscopy, SEM, electrochemical impedance spectroscopy (EIS), and PEC properties. XRD studies revealed that the films were nanocrystalline in nature with mixed hexagonal and cubic phases. TEA complex resulted in better crystallinity. Further improvement in the crystallinity of the films was observed after air annealing. The marigold flower-like structure, in addition to flakes morphology, was observed with TEA complex, whereas for ammonia complex only flakes morphology was observed. The UV-vis absorption studies revealed that the optical absorption edge for the films with ammonia and TEA complex was around 475 nm and 500 nm, respectively. Annealing of the films resulted in red shift in the UV-vis absorption. The PEC cell performance of CdS films was found to be strongly affected by crystallinity and morphology of the films resulted due to complexing agent and annealing. The air annealed film deposited using TEA complex showed maximum short circuit current density ( Jsc) and open circuit voltage ( Voc) i.e. 99 μA/cm 2 and 376 mV respectively, under 10 mW/cm 2 of illumination. The films deposited using TEA complex showed good stability under PEC cell conditions.
M, Sundrarajan; K, Bama; M, Bhavani; S, Jegatheeswaran; S, Ambika; A, Sangili; P, Nithya; R, Sumathi
2017-06-01
In this work, we synthesized titanium dioxide (TiO 2 ) nanoparticles using leaf extract of Morinda citrifolia (M. citrifolia) by the advanced hydrothermal method. The synthesized TiO 2 nanoparticles were characterized by X-ray diffraction (XRD), Fourier transmission infrared (FT-IR), Ultraviolet-visible diffuse reflectance (UV-Vis DRS), Ultraviolet-visible spectroscopy (UV-Vis), Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM with EDX) techniques. The XRD major peak at 27.3° corresponds to the (110) lattice plane of tetragonal rutile TiO 2 phase and average crystalline size of nanoparticles is 10nm. The FT-IR result confirmed that TiO 2 nanoparticles and the presences of very few amount of anthraquinone and phenolic compounds of the leaf extract. The obtained nanoparticles were also characterized by UV-Vis DRS absorption spectroscopy and an intense band at 423nm clearly reveals the formation of nanoparticles. SEM images with EDX spectra clearly reveal the size of the nanoparticles, between 15 and 19nm in excellent quasi-spherical shape, by virtue of stabilization (capping) agent. The presence of elements-titanium and oxygen was verified with EDX spectrum. Furthermore, the inhibitory activity of green synthesized TiO 2 nanoparticles was tested against human pathogens like Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Candida albicans, and Aspergillus niger by the agar well-diffusion method. The TiO 2 nanoparticles exhibited superior antimicrobial activity against Gram-positive bacteria, demonstrating their antimicrobial value against pathogenic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Microalga Scenedesmus sp.: A potential low-cost green machine for silver nanoparticle synthesis.
Jena, Jayashree; Pradhan, Nilotpala; Nayak, Rati Ranjan; Dash, Bishnu P; Sukla, Lala Behari; Panda, Prasanna K; Mishra, Barada K
2014-04-01
Bionanotechnology has revolutionized nanomaterial synthesis by providing a green synthetic platform using biological systems. Among such biological systems, microalgae have tremendous potential to take up metal ions and produce nanoparticles by a detoxification process. The present study explores the intracellular and extracellular biogenic syntheses of silver nanoparticles (SNPs) using the unicellular green microalga Scenedesmus sp. Biosynthesized SNPs were characterized by AAS, UV-Vis spectroscopy, TEM, XRD, FTIR, DLS, and TGA studies and finally checked for antibacterial activity. Intracellular nanoparticle biosynthesis was initiated by a high rate of Ag(+) ion accumulation in the microalgal biomass and subsequent formation of spherical crystalline SNPs (average size, 15-20 nm) due to the biochemical reduction of Ag(+) ions. The synthesized nanoparticles were intracellular, as confirmed by the UV-Vis spectra of the outside medium. Furthermore, extracellular synthesis using boiled extract showed the formation of well scattered, highly stable, spherical SNPs with an average size of 5-10 nm. The size and morphology of the nanoparticles were confirmed by TEM. The crystalline nature of the SNPs was evident from the diffraction peaks of XRD and bright circular ring pattern of SAED. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilization of SNPs. Furthermore, the synthesized nanoparticles exhibited high antimicrobial activity against pathogenic gram-negative and gram-positive bacteria. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials in a large-scale system that could be of great use in biomedical applications.
Otunola, Gloria Aderonke; Afolayan, Anthony Jide; Ajayi, Emmanuel Olusegun; Odeyemi, Samuel Wale
2017-01-01
Background: Herbal drug delivery is limited by poor solubility and bioavailability which can be overcome with suitable nanomaterials that will enhance their pharmacokinetics and performance. Objective: This study aimed to analyze the synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from three spices. Materials and Methods: AgNPs were prepared using 0.1 M silver nitrate and aqueous extracts of Allium sativum L. (garlic), Zingiber officinale Rosc. (ginger), and Capsicum frutescens L. (cayenne pepper). The AgNPs were characterized using ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Results: The AgNPs were formed within an hour of the reaction and showed maximum UV-Vis absorption in the 375–480 nm range. SEM and TEM revealed well-dispersed spherical particles with little agglomeration, average sizes of 3–6 nm, 3–22 nm, and 3–18 nm for garlic, ginger, and cayenne pepper, respectively. FTIR showed that amine, protein, phenolic, aromatic, and alkynes groups contributed to AgNP synthesis and XRD confirmed their crystalline and face-centered cubic nature. Antibacterial action of the AgNPs was in the following order: ginger (minimum inhibitory concentration [MIC] <25 μg/mL) > garlic> cayenne pepper (MIC 125 μg/mL). Antioxidant action showed cayenne pepper > ginger > garlic (inhibitory concentration 50% [IC50]: 40, 240, and 250 μg/mL, respectively) against 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) and garlic > cayenne pepper > ginger (IC50: <31.25, 40, and 120 μg/mL, respectively) against 1,1-diphenyl-2-picrylhydrazyl. Conclusion: Optimization of this green synthesis would support the production of AgNPs with great therapeutic potentials. SUMMARY The synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from garlic, ginger and cayenne pepper were evaluatedThe AgNPs formed were characterized using UV-Vis spectroscopy, SEM and TEM microscopy, as well as EDX, XRD and FTIR spectroscopy AgNPs were well dispersed with spherical shapes and average sizes of 3-6nm, 3-22nm and 3-18 nm for garlic, ginger and cayenne pepper respectivelyAmine, protein, phenolic and alkyne groups were revealed as the capping agents for the nanoparticlesThe silver nanoparticles were confirmed to be crystalline with characteristic face centred cubic natureThe antibacterial and antioxidant activities of the AgNPs confirmed the therapeutic potential of the AgNPs. Abbreviations used: AgNPs: Silver nanoparticles; UV-Vis: ultraviolet-visible; SEM: Scanning electron microscopy; TEM: Transmission electron microscopy; EDX: Energy dispersive X-ray; XRD: X-ray diffraction; FTIR: Fourier transform infrared; GaNPs: Garlic nanoparticles; GiNPs: Ginger nanoparticles; C.PeNPs: Cayenne pepper nanoparticles; FCC: Face centred cubic; SPR: Surface Plasmon resonance; ABTS-2: 2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid); DPPH-1: 1-diphenyl-2-picrylhydrazyl. PMID:28808381
Otunola, Gloria Aderonke; Afolayan, Anthony Jide; Ajayi, Emmanuel Olusegun; Odeyemi, Samuel Wale
2017-07-01
Herbal drug delivery is limited by poor solubility and bioavailability which can be overcome with suitable nanomaterials that will enhance their pharmacokinetics and performance. This study aimed to analyze the synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from three spices. AgNPs were prepared using 0.1 M silver nitrate and aqueous extracts of Allium sativum L. (garlic), Zingiber officinale Rosc. (ginger), and Capsicum frutescens L. (cayenne pepper). The AgNPs were characterized using ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The AgNPs were formed within an hour of the reaction and showed maximum UV-Vis absorption in the 375-480 nm range. SEM and TEM revealed well-dispersed spherical particles with little agglomeration, average sizes of 3-6 nm, 3-22 nm, and 3-18 nm for garlic, ginger, and cayenne pepper, respectively. FTIR showed that amine, protein, phenolic, aromatic, and alkynes groups contributed to AgNP synthesis and XRD confirmed their crystalline and face-centered cubic nature. Antibacterial action of the AgNPs was in the following order: ginger (minimum inhibitory concentration [MIC] <25 μg/mL) > garlic> cayenne pepper (MIC 125 μg/mL). Antioxidant action showed cayenne pepper > ginger > garlic (inhibitory concentration 50% [IC50]: 40, 240, and 250 μg/mL, respectively) against 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) and garlic > cayenne pepper > ginger (IC50: <31.25, 40, and 120 μg/mL, respectively) against 1,1-diphenyl-2-picrylhydrazyl. Optimization of this green synthesis would support the production of AgNPs with great therapeutic potentials. The synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from garlic, ginger and cayenne pepper were evaluatedThe AgNPs formed were characterized using UV-Vis spectroscopy, SEM and TEM microscopy, as well as EDX, XRD and FTIR spectroscopy AgNPs were well dispersed with spherical shapes and average sizes of 3-6nm, 3-22nm and 3-18 nm for garlic, ginger and cayenne pepper respectivelyAmine, protein, phenolic and alkyne groups were revealed as the capping agents for the nanoparticlesThe silver nanoparticles were confirmed to be crystalline with characteristic face centred cubic natureThe antibacterial and antioxidant activities of the AgNPs confirmed the therapeutic potential of the AgNPs. Abbreviations used: AgNPs: Silver nanoparticles; UV-Vis: ultraviolet-visible; SEM: Scanning electron microscopy; TEM: Transmission electron microscopy; EDX: Energy dispersive X-ray; XRD: X-ray diffraction; FTIR: Fourier transform infrared; GaNPs: Garlic nanoparticles; GiNPs: Ginger nanoparticles; C.PeNPs: Cayenne pepper nanoparticles; FCC: Face centred cubic; SPR: Surface Plasmon resonance; ABTS-2: 2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid); DPPH-1: 1-diphenyl-2-picrylhydrazyl.
Cheng, Zhi-Lin; Han, Shuai
2016-01-01
A novel composite electrode material based on a N-doped TiO2-loaded NaY zeolite membrane (N-doped TiO2/NaY zeolite membrane) for photoelectrocatalysis was presented. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible (UV-vis) and X-ray photoelectron spectroscopy (XPS) characterization techniques were used to analyze the structure of the N-doped TiO2/NaY zeolite membrane. The XRD and SEM results verified that the N-doped TiO2 nanoparticles with the size of ca. 20 nm have been successfully loaded on the porous stainless steel-supported NaY zeolite membrane. The UV-vis result showed that the N-doped TiO2/NaY zeolite membrane exhibited a more obvious red-shift than that of N-TiO2 nanoparticles. The XPS characterization revealed that the doping of N element into TiO2 was successfully achieved. The photoelectrocatalysis performance of the N-doped TiO2/NaY zeolite membrane composite electrode material was evaluated by phenol removal and also the effects of reaction conditions on the catalytic performance were investigated. Owing to exhibiting an excellent catalytic activity and good recycling stability, the N-doped TiO2/NaY zeolite membrane composite electrode material was of promising application for photoelectrocatalysis in wastewater treatment.
Raza, Muhammad Akram; Kanwal, Zakia; Rauf, Anum; Sabri, Anjum Nasim; Riaz, Saira; Naseem, Shahzad
2016-01-01
Silver nanoparticles (AgNPs) of different shapes and sizes were prepared by solution-based chemical reduction routes. Silver nitrate was used as a precursor, tri-sodium citrate (TSC) and sodium borohydride as reducing agents, while polyvinylpyrrolidone (PVP) was used as a stabilizing agent. The morphology, size, and structural properties of obtained nanoparticles were characterized by scanning electron microscopy (SEM), UV-visible spectroscopy (UV-VIS), and X-ray diffraction (XRD) techniques. Spherical AgNPs, as depicted by SEM, were found to have diameters in the range of 15 to 90 nm while lengths of the edges of the triangular particles were about 150 nm. The characteristic surface plasmon resonance (SPR) peaks of different spherical silver colloids occurring in the wavelength range of 397 to 504 nm, whereas triangular particles showed two peaks, first at 392 nm and second at 789 nm as measured by UV-VIS. The XRD spectra of the prepared samples indicated the face-centered cubic crystalline structure of metallic AgNPs. The in vitro antibacterial properties of all synthesized AgNPs against two types of Gram-negative bacteria, Pseudomonas aeruginosa and Escherichia coli were examined by Kirby–Bauer disk diffusion susceptibility method. It was noticed that the smallest-sized spherical AgNPs demonstrated a better antibacterial activity against both bacterial strains as compared to the triangular and larger spherical shaped AgNPs. PMID:28335201
Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method
NASA Astrophysics Data System (ADS)
Ali, Mawlood Maajal; Mahdi, Hadeel Salih; Parveen, Azra; Azam, Ameer
2018-05-01
The nanoparticles of cerium oxide have been successfully synthesized by hydroxide mediated method, using cerium nitrate and sodium hydroxide as precursors. The microstructural properties were analyzed by X-ray diffraction technique (XRD). The X-ray diffraction results show that the cerium oxide nanoparticles were in cubic structure. The optical absorption spectra of cerium oxide were recorded by UV-VIS spectrophotometer in the range of 320 to 600 nm and photoluminescence spectra in the range of 400-540 nm and have been presented. The energy band gap was determined by Tauc relationship. The crystallite size was determined from Debye-Scherer equation and came out to be 6.4 nm.
Crystal Structure, Magnetic and Optical Properties of Mn-Doped BiFeO₃ by Hydrothermal Synthesis.
Zhang, Ning; Wei, Qinhua; Qin, Laishun; Chen, Da; Chen, Zhi; Niu, Feng; Wang, Jiangying; Huanag, Yuexiang
2017-01-01
In this paper, Mn doped BiFeO₃ were firstly synthesized by hydrothermal process. The influence of Mn doping on structural, optical and magnetic properties of BiFeO₃ was studied. The different amounts of Mn doping in BiFeO₃ were characterized by X-ray diffraction, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscope, UV-Vis diffuse reflectance spectroscopy and magnetic measurements. The X-ray diffraction (XRD) patterns confirmed the formation of pure phase rhombohedral structure in BiFe(1−x) Mn (x) O₃ (x = 0.01, 0.03, 0.05, 0.07) samples. The morphologies and chemical compositions of as-prepared samples could be observed by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscope (EDS). A relative large saturated magnetization (Ms) of 0.53 emu/g for x = 0.07 sample was obtained at room temperature, which is considered to be Mn ions doping. UV-Vis diffuse reflectance spectroscopy showed strong absorption of light in the range of 200–1000 nm, indicating the optical band gap in the visible region for these samples. This implied that BiFe(1−x) Mn(x)O₃ may be a potential photocatalyst for utilizing solar energy.
Structural, morphological and optical properties of chromium oxide nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babukutty, Blessy; Parakkal, Fasalurahman; Nair, Swapna S., E-mail: swapna.s.nair@gmail.com
2015-06-24
Chromium oxide nanoparticles are synthesized by reduction route from chloride precursors with surfactant, trioctylphosphine oxide (TOPO). Structural and morphological characterization are analyzed using X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Transmission Electron micrographs show that the average grain size lies in the range 5nm to 10nm. Optical characterization has been done by UV-VIS spectrophotometer. Distinct optical absorptions of Cr{sup 3+} ions show hinting towards the presence of Cr{sub 2}O{sub 3}. Presence of oxygen is also confirmed from Electron Energy Loss Spectroscopy (EELS) studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deus, R.C.; Cortés, J.A., E-mail: leandrosrr89@gmail.com; Ramirez, M.A.
Highlights: • CeO{sub 2} nanoparticles were obtained by microwave-hydrothermal method. • Rietveld refinement reveals a cubic structure. • KOH mineralizer agent exhibit weak agglomeration at low temperature and shorter time. - Abstract: The structural and photoluminescent properties at room temperature of CeO{sub 2} and La-doped CeO{sub 2} particles were undertaken. The obtained particles were synthesized by a microwave-assisted hydrothermal method (MAH) under different lanthanum contents. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman), Ultra-violet spectroscopy (UV–vis) and photoluminescence (PL) measurements were carried out. XRD revealed that the powders are free of secondary phases and crystallize in themore » cubic structure. Raman data show that increasing La doping content increase oxygen vacancies due to lattice expansion. The UV/vis absorption spectroscopy suggested the presence of intermediate energy levels in the band gap of structurally ordered powders. Lanthanum addition creates oxygen vacancies and shifts the photoluminescence in the low energy range leading to intense PL emission.« less
NASA Astrophysics Data System (ADS)
Hameed, M. Shahul; Princice, J. Joseph; Babu, N. Ramesh; Zahirullah, S. Syed; Deshmukh, Sampat G.; Arunachalam, A.
2018-05-01
Transparent conductive Sn doped ZnO nanorods have been deposited at various doping level by spray pyrolysis technique on glass substrate. The structural, surface morphological and optical properties of these films have been investigated with the help of X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM) and UV-Vis spectrophotometer respectively. XRD patterns revealed a successful high quality growth of single crystal ZnO nanorods with hexagonal wurtzite structure having (002) preferred orientation. The scanning electron microscope (SEM) image of the prepared films exposed the uniform distribution of Sn doped ZnO nanorod shaped grains. All these films were highly transparent in the visible region with average transmittance of 90%.
NASA Astrophysics Data System (ADS)
Singh, Jarnail; Verma, Vikram; Kumar, Ravi
2018-04-01
We present here the synthesization, structural and optical studies of Mg doped nanoparticles of Chromium oxide (Cr2O3) prepared using co-precipitation method. These samples were characterized using powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Raman spectroscopy and UV-Vis spectroscopy techniques. We have demonstrated that there is negligible change in optical band gap with the Mg doping. The prepared Cr2O3 nanoparticles are spherical in shape, but they are transformed into platelets when doped with Mg. The XRD studies reveal that the Mg doping in Cr2O3 doesn't affect the structure of Chromium oxide (Cr2O3).
Structural and morphological study of chemically synthesized CdSe thin films
NASA Astrophysics Data System (ADS)
Agrawal, P.; Singh, Randhir; Sharma, Jeewan; Sachdeva, M.; Singh, Anupinder; Bhargava, A.
2018-05-01
Nanocrystalline CdSe thin films were prepared by Chemical Bath Deposition (CBD) method using potassium nitrilo-triacetic acid cadmium complex and sodium selenosulphite. The as deposited films were red in color, uniform and well adherent to the glass substrate. These films were strongly dependent on the deposition parameters such as bath composition, deposition temperature and time. Films were annealed at 350 °C for four hours. The morphological, structural and optical properties were studied using X-ray diffraction (XRD), UV-VIS spectrophotometer measurements, scanning electron microscopy and atomic force microscopy. The XRD analysis confirmed that films are predominantly in hexagonal phase. Scanning electron micrograph shows that the grains are uniformly spread all over the film and each grain contains many nanocrystals with spherical shapes.
Poly (N-ethyl aniline)/Ag Nanocomposite as Humidity Sensor
NASA Astrophysics Data System (ADS)
Pande, Nishigandh S.; Jaspal, Dipika; Ambekar, Jalindar
Poly (N-ethyl aniline)/Ag organic-inorganic composite has been synthesized by a single step in situ chemical oxidative polymerization method. The synthesis of Poly (N-ethyl aniline)/Ag nanocomposite has been confirmed by X-ray diffraction (XRD), Ultraviolet-Vis Spectroscopy (UV-visible), Fourier transform infrared analysis (FTIR) and FE-SEM investigations. XRD spectral study exhibited major diffraction in the range 20-80∘ (2θ) and indicated the semicrystalline nature of poly (N-ethyl aniline)/Ag nanocomposite. Characteristic peaks in UV-visible and FTIR spectra of poly (N-ethyl aniline) switched to higher wave numbers in poly (N-ethyl aniline)/Ag nanocomposite. Peaks at 1789cm-1, 1595cm-1, 667cm-1 and 501cm-1 in FTIR spectrum confirmed the formation of poly (N-ethyl aniline)/Ag nanocomposite. FE-SEM photographs reported agglomerated granular particulate nature of poly (N-ethyl aniline)/Ag nanocomposite. Synthesized poly (N-ethyl aniline)/Ag nanocomposite exhibited a high response to humidity, good reproducibility and stability at room temperature. An appreciable response was shown in the presence of 40% humid atmosphere for up to successive four cycles. Composite sensitivity has been found to increase with the increasing concentration of humidity, at room temperature.
Synthesis and characterization of photo-crosslinkable 4-styryl-pyridine modified alginate.
Elsayed, Nadia H; Monier, M; Alatawi, Raedah A S
2016-07-10
In this article photo-crosslinkablestyryl-pyridine modified alginate (ASP-Alg) was prepared and entirely investigated utilizing different instrumental techniques such as Elemental analysis, Fourier transform infrared (FTIR),(13)C and (1)H nuclear magnetic resonance (NMR), ultraviolet-visible light (UV-vis), X-ray diffraction (XRD) spectra and scanning electron microscope (SEM). Upon irradiation in the UV region, the casted ASP-Alg membranes were cross-linked through the [2π+2π] cycloaddition reaction of the inserted photo-active styryl pyridine moieties. Both cross-linking density and kinetics were monitored by examining the UV-vis light spectra of the irradiated membrane at predetermined time intervals and the obtained results were found to fit with the second order mathematical kinetic model, revealing the performance of the cross-linking via bimolecular [2π+2π] cycloaddition reaction. Also, the swelling behaviors along with biodegradability were also studied, and the results indicated the decrease of the swelling ratio and degradation rate by increasing the cross-linking density. Moreover, the mechanical properties were also examined under both wet and dry conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Valizadeh, S.; Rasoulifard, M. H.; Dorraji, M. S. Seyed
2014-11-01
The magnetite-hydroxyapatite (M-HAP) nanocomposites were prepared by a chemical co- precipitation procedure and characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance spectra (DRS). The ability of the synthesized catalyst for photocatalytic degradation of Acid Blue 25 (AB25), as an organic dye, under UV irradiation was studied. The catalyst was modified employing transition metals (Mn, Fe, Co, Ni, Cu and Zn) trying to improve the catalytic performance of HAP in absence of UV irradiation and in the presence of hydrogen peroxide i.e. a Fenton like reaction. The best results obtained for Cu and Co modified M-HAPs and the effect of operational parameters such pH, amount of catalyst and hydrogen peroxide concentration was studied. In order to investigate the performance of HAP based photocatalyst in visible light region, M-HAP was modified with silver ions. At the end, Langmuir-Hinshelwood kinetic expression used to evaluate and compare the catalytic systems. The strongest degradation activity was observed for Ag-M-HAP/Vis system because of Ag3PO4 formation. Apparent reaction rate constant (Kapp) by Ag-M-HAP/Vis was 63, 36 and 19 times faster than Cu-M-HAP(II)/H2O2, Co-M-HAP(II)/H2O2 and M-HAP (I)/UV systems, respectively.
NASA Astrophysics Data System (ADS)
Mohammed, Eddya; Bouazza, Tbib; Khalil, El-Hami
2018-02-01
In this paper, we report the first synthesis of hydroxyapatite (Hap) by sol-gel using the albumin (egg white) compared with the four classical elaboration methods such as co-precipitation, solid state, and solid-liquid samples of hydroxyapatite. We use a reference sample of hydroxyapatite bought from Fluka Chemika company (Lot and Filling code 385330/1 14599). All samples are characterized by X-ray diffraction (XRD), Uv-visible spectroscopy (Uv-Vis), and Fourier transforms infrared spectroscopy (FT-IR). The XRD study showed the existence of a Hexagonal phase for all our samples prepared in our laboratory and an orthorhombic phase for the Fulka Chemika sample of Hap (Lot and Filling code 385330/1 14599). The study by Uv-visible spectroscopy was performed to determine and compare the optical gap and the disorder of each sample of Hap. The FT-IR spectroscopy demonstrated that all our Hap samples had a similar mode of vibration of the chemical bonds (OH-) and (PO4)3-.
Synthesis and photoluminescent and nonlinear optical properties of manganese doped ZnS nanoparticles
NASA Astrophysics Data System (ADS)
Nazerdeylami, Somayeh; Saievar-Iranizad, Esmaiel; Dehghani, Zahra; Molaei, Mehdi
2011-01-01
In this work we synthesized ZnS:Mn 2+ nanoparticles by chemical method using PVP (polyvinylpyrrolidone) as a capping agent in aqueous solution. The structure and optical properties of the resultant product were characterized using UV-vis optical spectroscopy, X-ray diffraction (XRD), photoluminescence (PL) and z-scan techniques. UV-vis spectra for all samples showed an excitonic peak at around 292 nm, indicating that concentration of Mn 2+ ions does not alter the band gap of nanoparticles. XRD patterns showed that the ZnS:Mn 2+ nanoparticles have zinc blende structure with the average crystalline sizes of about 2 nm. The room temperature photoluminescence (PL) spectrum of ZnS:Mn 2+ exhibited an orange-red emission at 594 nm due to the 4T 1- 6A 1 transition in Mn 2+. The PL intensity increased with increase in the Mn 2+ ion concentration. The second-order nonlinear optical properties of nanoparticles were studied using a continuous-wave (CW) He-Ne laser by z-scan technique. The nonlinear refractive indices of nanoparticles were in the order of 10 -8 cm 2/W with negative sign and the nonlinear absorption indices of these nanoparticles were obtained to be about 10 -3 cm/W with positive sign.
Cho, Bum Hwi; Oh, Youn Jun; Mun, Sang Mi; Ko, Weon Bae
2012-07-01
Zinc oxide (ZnO) nanoparticles were synthesized sonochemically by applying ultrasonic irradiation to a mixed aqueous-alcoholic solution of zinc nitrate with sodium hydroxide at room temperature. The morphology and optical properties of the ZnO nanoparticles were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-vis spectroscopy. The C60(O)n nanoparticles were synthesized by heating a mixture of C60 and 3-chloroperoxybenzoic acid in a benzene solvent under the reflux system. The heated C60(O)n-ZnO nanocomposite was synthesized in an electric furnace at 700 degrees C for two hours. The heated C60(O)n-ZnO nanocomposite was characterized by XRD, SEM, and TEM, and examined as a catalyst in the photocatalytic degradation of organic dyes by UV-vis spectroscopy. The photocatalytic effect of the heated C60(O)n-ZnO nanocomposite was evaluated by a comparison with that of unheated C60(O)n nanoparticles, heated C60(O)n nanoparticles, and unheated C60(O)n-ZnO in organic dyes, such as methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) under ultraviolet light at 365 nm.
Synthesis of Hierarchical Self-Assembled CuO and Their Structure-Enhanced Photocatalytic Performance
NASA Astrophysics Data System (ADS)
Wang, Dagui; Yan, Bing; Song, Caixiong; Ye, Ting; Wang, Yongqian
2018-01-01
Hierarchical self-assembled CuO hollow microspheres with superior photocatalytic performance are synthesized via a simple hydrothermal process in the presence of cationic surfactants (cetyltrimethylammonium bromide, CTAB). The structure, morphology, and optical absorption performance of CuO samples prepared with different surfactants including CTAB, nonionic surfactant (polyvinylpyrrolidone, PVP) and anionic surfactant (sodium dodecyl sulfate, SDS) are characterized by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible (UV-vis) absorption spectra. Moreover, the photocatalytic performances of the CuO samples are evaluated by the photo-degradation of a simulative contaminant methylene blue. The XRD patterns and FESEM images demonstrate that the category of surfactants have effects on the phase structure and morphology of CuO. Compared with bulk CuO (1.20 eV at room temperature), the band gap of CuO microspheres prepared with different surfactants including CTAB, PVP and SDS are measured at 2.16 eV, 2.29 eV, 2.44 eV, respectively, which exhibits a blue shift in the UV-vis spectra. The synthesized hierarchical self-assembled CuO hollow microspheres reveal commendable photocatalytic activity, in which the photo-degradation rate could rise to 94.1%. Additionally, a reasonable growth mechanism of CuO microspheres synthesized with different surfactants is discussed in detail.
Paulkumar, Kanniah; Gnanajobitha, Gnanadhas; Vanaja, Mahendran; Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Pandian, Kannaiyan; Annadurai, Gurusamy
2014-01-01
Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray analysis (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7–50 nm and 9–30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology. PMID:24558336
Duman, Fatih; Ocsoy, Ismail; Kup, Fatma Ozturk
2016-03-01
In this study, we report the synthesis of copper oxide nanoparticles (CuO NPs) using a medicinal plant (Matricaria chamomilla) flower extract as both reducing and capping agent and investigate their antioxidant activity and interaction with plasmid DNA (pBR322).The CuO NPs were characterized using Uv-Vis spectroscopy, FT-IR (Fourier transform infrared spectroscopy), DLS (dynamic light scattering), XRD (X-ray diffraction), EDX (energy-dispersive X-ray) spectroscopy and SEM (scanning electron microscopy). The CuO NPs exhibited nearly mono-distributed and spherical shapes with diameters of 140 nm size. UV-Vis absorption spectrum of CuO NPs gave a broad peak around 285 and 320 nm. The existence of functional groups on the surface of CuO NPs was characterized with FT-IR analysis. XRD pattern showed that the NPs are in the form of a face-centered cubic crystal. Zeta potential value was measured as -20 mV due to the presence of negatively charged functional groups in plant extract. Additionally, we demonstrated concentration-dependent antioxidant activity of CuO NPs and their interaction with plasmid DNA. We assumed that the CuO NPs both cleave and break DNA double helix structure. Copyright © 2015 Elsevier B.V. All rights reserved.
Green synthesis and characterization of ANbO3 (A = Na, K) nanopowders fabricated using a biopolymer
NASA Astrophysics Data System (ADS)
Khorrami, Gh. H.; Mousavi, M.; Khayatian, S. A.; Kompany, A.; Khorsand Zak, A.
2017-10-01
Lead-free sodium niobate (NaNbO3, NN) and potassium niobate (KNbO3, KN) nanopowders were successfully synthesized by a simple and green synthesis process in gelatin media. Gelatin, which is a biopolymer, was used as stabilizer. In order to determine the lowest calcination temperature needed to obtain pure NN and KN nanopowders, the produced gels were analyzed by thermogravometric analyzer (TGA). The produced gels were calcined at 500∘C and 600∘C. The structural and optical properties of the prepared powders were examined using X-ray diffraction (XRD) technique, transmission electron microscopy (TEM), and UV-Vis spectroscopy. The XRD results revealed that pure phase NN and KN nanopowders were formed at low temperature calcination of 500∘C and 600∘C, respectively. The Scherrer formula and size-strain plot (SSP) method were employed to estimate crystallite size and lattice strain of the samples. The TEM images show that the NN and KN samples calcined at 600∘C have cubic shape with an average particle size of 60.95 and 39.29 nm, respectively. The optical bandgap energy of the samples was calculated using UV-Vis diffused reflectance spectra of the samples and Kubelka-Munck relation.
NASA Astrophysics Data System (ADS)
Riascos, H.; Duque, J. S.; Orozco, S.
2017-01-01
ZnMnO thin films were grown on silicon substrates by pulsed laser deposition (PLD). Pulsed Nd:YAG laser was operated at a wavelength of 1064 nm and 100 mJ. ZnMnO thin films were deposited at the vacuum pressure of 10-5 Torr and with substrate temperature from room temperature to 600 °C. The effects of substrate temperature on the structural and Optical properties of ZnMnO thin films have been investigated by X-ray diffraction (XRD), Raman spectroscopy and Uv-vis spectroscopy. From XRD data of the samples, it can be showed that temperature substrate does not change the orientation of ZnMnO thin films. All the films prepared have a hexagonal wurtzite structure, with a dominant (002) peak around 2θ=34.44° and grow mainly along the c-axis orientation. The substrate temperature improved the crystallinity of the deposited films. Uv-vis analysis showed that, the thin films exhibit high transmittance and low absorbance in the visible region. It was found that the energy band to 300 ° C is 3.2 eV, whereas for other temperatures the values were lower. Raman reveals the crystal quality of ZnMnO thin films.
Passive optical limiting studies of nanostructured Cu doped ZnO-PVA composite thin films
NASA Astrophysics Data System (ADS)
Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G.
2016-01-01
We prepared undoped and Cu doped ZnO semiconducting nanoparticles (NPs) by chemical co-precipitation method and obtained Cu doped ZnO-polyvinyl alcohol (PVA) nanocomposite thin films by spin coating to investigate third order nonlinear optical and optical limiting properties under cw laser excitation. Powder samples of NPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopy. XRD pattern and FE-SEM micrograph revealed the presence of hexagonal wurtzite phase ZnO NPs having uniform morphology with average particle size of 20 nm. The presence of excitons and absorption peaks in the range 343-360 nm, revealed by UV-vis study, were attributed to excitons in n = 1 quantum state. Third order NLO properties of all composite thin films were investigated by He-Ne continuous wave (cw) laser of wavelength 632.8 nm using Z-scan technique. Thermally stimulated enhanced values of nonlinear refraction and absorption coefficients were obtained which may be attributed to self-defocusing effect, reverse saturable absorption, weak free carrier absorption and surface states properties originated from thermo optic effect. Optical limiting properties have been studied using cw diode laser of wavelength 808 nm and results are presented.
Abbasi, Amir Reza; Rizvandi, Maryam
2018-01-01
In this work, we study uptake and release properties of rifampicin (denoted henceforth as Rif) from ultrasound-assisted synthesis Cu-BTC nanoparticles in comparison with bulk Cu-BTC and activated carbon. To explore the absorption ability of the Cu-BTC to Rif, fresh sample of Cu-BTC was immersed in an aqueous solution of Rif and were monitored in real time with UV/vis spectroscopy. Results show that the adsorbed quantity of Rif over nano Cu-BTC (denoted henceforth as I) is much higher than those over a bulk Cu-BTC (denoted henceforth as II) and activated carbon. In compound I and all of the nano-MOFs the channel length is decreased so that the amount of adsorption is increased a little. The samples were characterized with X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and UV/vis spectroscopy. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Jiazhi; Yu, Junwei; Fan, Jun; Sun, Dongping; Tang, Weihua; Yang, Xuejie
2011-05-15
In this work, we describe a novel facile and effective strategy to prepare micrometer-long hybrid nanofibers by deposition of CdS nanoparticles onto the substrate of hydrated bacterial cellulose nanofibers (BCF). Hexagonal phase CdS nanocrystals were achieved via a simple hydrothermal reaction between CdCl(2) and thiourea at relatively low temperature. The prepared pristine BCF and the CdS/BCF hybrid nanofibers were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV-vis absorption spectroscopy (UV-vis), and X-ray photoelectron spectroscopy (XPS). The results reveal that the CdS nanoparticles were homogeneously deposited on the BCF surface and stabilized via coordination effect. The CdS/BCF hybrid nanofibers demonstrated high-efficiency photocatalysis with 82% methyl orange (MO) degradation after 90 min irradiation and good recyclability. The results indicate that the CdS/BCF hybrid nanofibers are promising candidate as robust visible light responsive photocatalysts. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sawala, N. S.; Koparkar, K. A.; Bajaj, N. S.; Omanwar, S. K.
2016-05-01
The host matrix LaAlO3 was synthesized by conventional solid state reaction method in which the Nd3+ ions and Yb3+ ions successfully doped at 2mol% concentrations. The phase purity was confirmed by X ray powder diffraction (XRD) method. The photoluminescence (PL) properties were studied by spectrophotometer in near infra red (NIR) and ultra violet visible (UV-VIS) region. The Nd3+ ion doped LaAlO3 converts a visible (VIS) green photon (587 nm) into near infrared (NIR) photon (1070 nm) while Yb3+ ion doped converts ultra violet (UV) photon (221 nm) into NIR photon (980 nm). The La0.98AlO3: 0.02Ln3+(Ln = Nd / Yb) can be potentiality used for betterment of photovoltaic (PV) technology. This result further indicates its potential application as a luminescence converter layer for enhancing solar cells performance.
Chang, Fei; Xie, Yunchao; Chen, Juan; Luo, Jieru; Li, Chenlu; Hu, Xuefeng; Xu, Bin
2015-02-01
Preparation of uniform BiOCI flower-like microspheres was facilely accomplished through a sim- ple protocol involving regulation of pH value in aqueous with sodium hydroxide in the presence of n-propanol. The as-prepared samples were characterized by a collection of techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), and nitrogen adsorption-desorption isotherms. Based upon the SEM analyses, uniform microspheres could be formed with coexistence of some fragments of BiOCI nanosheets without n-propanol. The addition of appropriate amount of n-propanol was beneficial to provide BiOCI samples containing only flower-like microspheres, which were further subjected to the photocatalytic measurements towards Rhodamine B in aqueous under visible light irradiation and exhibited the best catalytic performance among all samples tested. In addition, the photocatalytic process was confirmed to undergo through a photosensitization pathway, in which superoxide radicals (.O-) played critical roles.
Growth and characterization of hexamethylenetetramine crystals grown from solution
NASA Astrophysics Data System (ADS)
Babu, B.; Chandrasekaran, J.; Balaprabhakaran, S.
2014-06-01
Organic nonlinear optical single crystals of hexamethylenetetramine (HMT; 10 × 10 × 5 mm3) were prepared by crystallization from methanol solution. The grown crystals were subjected to various characterization techniques such as single crystal XRD, powder XRD, UV-Vis and electrical studies. Single crystal XRD analysis confirmed the crystalline structure of the grown crystals. Their crystalline nature was also confirmed by powder XRD technique. The optical transmittance property was identified from UV-Vis spectrum. Dielectric measurements were performed as a function of frequency at different temperatures. DC conductivity and photoconductivity studies were also carried out for the crystal. The powder second harmonic generation efficiency (SHG) of the crystal was measured using Nd:YAG laser and the efficiency was found to be two times greater than that of potassium dihydrogen phosphate (KDP).
Saravanan, Thulasingam; Raj, Srinivasan Gokul; Chandar, Nagamuthu Raja Krishna; Jayavel, Ramasamy
2015-06-01
Y2O3 nanoparticles were synthesized by co-precipitation route using yttrium nitrate hexahydrate and ammonium hydroxide as precursors. The prepared sample was calcined at 500 degrees C and subjected to various characterization studies like thermal analysis (TG/DTA), X-ray diffraction (XRD), transmission electron microscope (TEM), UV-visible (UV-Vis) and photoluminescence (PL) spectroscopy. The XRD pattern showed the cubic fluorite structure of Y2O3 without any impurity peaks, revealing high purity of the prepared sample. TEM images revealed that the calcined Y2O3 nanoparticles consist of spherical-like morphology with an average particle size of 12 nm. The absorption spectrum of calcined samples shows blue-shift compared to the as-prepared sample, which was further confirmed by PL studies. The possible formation mechanism of Y2O3 nanoparticles has been discussed based on the experimental results. Electrochemical behavior of Y2O3 nanoparticles was studied by cyclic voltammetry to assess their suitability for supercapacitor applications.
Youssef, Ahmed M; Abdel-Aziz, Mohamed S; El-Sayed, Samah M
2014-08-01
Chitosan-silver (CS-Ag) and Chitosan-gold (CS-Au) nanocomposites films were synthesized by a simple chemical method. A local bacterial isolate identified as Bacillus subtilis ss subtilis was found to be capable to synthesize both silver nanoparticles (Ag-NP) and gold nanoparticles (Au-NP) from silver nitrate (AgNO3) and chloroauric acid (AuCl(4-)) solutions, respectively. The biosynthesis of both Ag-NP and Au-NP characterize using UV/vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), and then added to chitosan by different ratios (0.5, 1 and 2%). The prepared chitosan nanocomposites films were characterize using UV, XRD, SEM and TEM. Moreover, the antibacterial activity of the prepared films was evaluated against gram positive (Staphylococcus aureus) and gram negative bacteria (Pseudomonas aerugenosa), fungi (Aspergillus niger) and yeast (Candida albicans). Therefore, these materials can be potential used as antimicrobial agents in packaging applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Growth and properties of benzil doped benzimidazole (BMZ) single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in; Crystal Growth and Crystallography Section, National Physical Laboratory, Krishnan Marg, New Delhi 110 012; Sukumar, M.
2010-09-15
In the present work, we have made an attempt to study the effect of benzil doping on the properties of benzimidazole single crystals. For this purpose we have grown pure and benzil doped benzimidazole single crystals by vertical Bridgman technique. The grown crystals were characterized by various characterization techniques. The presence of dopants confirmed by powder X-ray diffraction (XRD). Crystalline perfection of the grown crystals has been analysed by high-resolution X-ray diffraction (HRXRD). The transmittance, electrical property and mechanical strength have been analysed using UV-vis-NIR spectroscopic, dielectric and Vicker's hardness studies. The relative second harmonic generation efficiency of pure andmore » doped benzimidazole crystals measured using Kurtz powder test.« less
Spectral downshifting in MBO3:Nd3+ (M=Y, La) phosphor
NASA Astrophysics Data System (ADS)
Omanwar, S. K.; Sawala, N. S.
2017-11-01
The spectral downshifting (DS) from ultra-violet (UV)/visible (VIS) light to near infra-red (NIR) radiation in Nd3+ doped YBO3 and LaBO3 phosphors is reported. The prepared materials were characterized by X-ray powder diffraction (XRD) and photoluminescence (PL) properties along with time-decay curves were studied which confirmed the spectral DS from VIS to NIR radiation. This can be employed to overcome the spectral mismatch of crystalline silicon (c-Si) solar cell with solar spectrum. The prepared Nd3+ doped as prepared phosphors provide NIR emission (1052 nm) at excitation of 586 nm where response of c-Si solar cell was optimum. Thus spectral modification by mentioned phosphor can be utilized to improve solar cells performance. Hence these phosphors have potential application for photovoltaic (PV) technology.
Peng, Guotao; Fan, Zhengqiu; Wang, Xiangrong; Sui, Xin; Chen, Chen
2015-01-01
Microcystins (MCs) are a group of monocyclic heptapeptide toxins produced by species of cyanobacteria. Since MCs exhibit acute and chronic effects on humans and wildlife by damaging the liver, they are of increasing concern worldwide. In this study, we investigated the ability of the phthalocyanine compound (ZnPc-TiO2-SiO2) to degrade microcystin-LR (MC-LR) in the presence of visible light. X-ray diffraction (XRD) and UV-Visible diffuse reflectance spectra (UV-Vis DRS) were utilized to characterize the crystalline phase and the absorption behavior of this catalyst. According to the results, XRD spectra of ZnPc-TiO2-SiO2 powders taken in the 2θ configuration exhibited the peaks characteristic of the anatase phase. UV-Vis DRS showed that the absorption band wavelength shifted to the visible range when ZnPc was supported on the surface of TiO2-SiO2. Subsequently, several parameters including catalyst dose, MC-LR concentrations and pH were investigated. The MC-LR was quantified in each sample through high-performance liquid chromatography (HPLC). The maximum MC-LR degradation rate of 80.2% can be obtained within 300 minutes under the following conditions: catalyst dose of 7.50 g/L, initial MC-LR concentration of 17.35 mg/L, pH 6.76 and the first cycling run of the photocatalytic reaction. Moreover, the degradation process fitted well with the pseudo-first-order kinetic model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Vijay; Sonkawade, R. G.; Ali, Yasir
2012-06-05
We report the effects of heavy ion irradiation on the optical, structural, and chemical properties of polyethylene terephthalate (PET) film used in commercial bottled water. PET bottles were exposed with 120 MeV Ni ions at fluences varying from 3 x 10{sup 10} to 3 x 10{sup 12} ion/cm{sup 2}. The modifications so induced were analyzed by using UV-Vis, X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. Substantial decrease in optical band gap is observed with the increase in ion fluence. In the FTIR spectra, most of bands are decreased due the degradation of the molecular structure. XRD measurements showmore » the decrease in peak intensity, which reflects the loss of crystallinity after irradiation.« less
Shanthi, S I; Poovaragan, S; Arularasu, M V; Nithya, S; Sundaram, R; Magdalane, C Maria; Kaviyarasu, K; Maaza, M
2018-08-01
Nanoparticles of Li, Mg and Sr doped and undoped zinc oxide was prepared by simple precipitation method. The structural, optical, and magnetic properties of the samples were investigated by the Powder X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Fourier Transform Infrared (FTIR) spectroscopy, Ultra-violet Visible spectroscopy (UV-vis) spectra, Photoluminescence (PL) and Vibrational Sample Magnetometer (VSM). The Powder X-ray diffraction data confirm the formation of hexagonal wurtzite structure of all doped and undoped ZnO. The SEM photograph reveals that the pores availability and particles size in the range of 10 nm-50 nm. FTIR and UV-Visible spectra results confirm the incorporation of the dopant into the ZnO lattice nanostructure. The UV-Visible spectra indicate that the shift of blue region (lower wavelength) due to bandgap widening. Photoluminescence intensity varies with doping due to the increase of oxygen vacancies in prepared ZnO. The pure ZnO exist paramagnetic while doped (Li, Mg and Sr) ZnO exist ferromagnetic property. The photocatalytic activity of the prepared sample also carried out in detail.
Thermally stimulated nonlinear refraction in gelatin stabilized Cu-PVP nanocomposite thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamgadge, Y. S., E-mail: ystamgadge@gmail.com; Atkare, D. V.; Pahurkar, V. G.
2016-05-06
This article illustrates investigations on thermally stimulated third order nonlinear refraction of Cu-PVP nanocomposite thin films. Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD) and Ultraviolet-visible (UV-vis) spectroscopyfor structural and linear optical studies. Third order nonlinear refraction studies have been performed using closed aperture z-scan technique under continuous wave (CW) He-Ne laser. Cu-PVP nanocomposites are found to exhibit strong nonlinear refractive index stimulated by thermal lensing effect.
Low temperature synthesis of hexagonal ZnO nanorods and their hydrogen sensing properties
NASA Astrophysics Data System (ADS)
Qurashi, Ahsanulhaq; Faiz, M.; Tabet, N.; Alam, Mir Waqas
2011-08-01
The growth of hexagonal ZnO nanorods was demonstrated by low temperature chemical synthesis approach. X-ray diffraction (XRD) analysis revealed a wurtzite hexagonal structure of the ZnO nanorods. The optical properties were measured by UV-vis spectrophotometer at room temperature. X-ray photoelectron spectroscopy (XPS) confirmed high purity of the ZnO nanorods. The hydrogen sensor made of the ZnO nanorods showed reversible response. The hydrogen gas tests were carried out in presence of ambient air and the influence of operation temperature on the hydrogen gas sensing property of ZnO nanorods was also investigated.
Synthesis and characterization of graphene quantum dots/cobalt ferrite nanocomposite
NASA Astrophysics Data System (ADS)
Ramachandran, Shilpa; Sathishkumar, M.; Kothurkar, Nikhil K.; Senthilkumar, R.
2018-02-01
A facile method has been developed for the synthesis of a graphene quantum dots/cobalt ferrite nanocomposite. Graphene quantum dots (GQDs) were synthesized by a simple bottom-up method using citric acid, followed by the co-precipitation of cobalt ferrite nanoparticles on the graphene quantum dots. The morphology, structural analysis, optical properties, magnetic properties were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis absorption spectroscopy, fluorescence spectroscopy, vibrating sample magnetometry (VSM) measurements. The synthesized nanocomposite showed good fluorescence and superparamagnetic properties, which are important for biomedical applications.
NASA Astrophysics Data System (ADS)
J, Joy Sebastian Prakash; G, Vinitha; Ramachandran, Murugesan; Rajamanickam, Karunanithi
2017-10-01
Three different stabilizing agents, namely, L-cysteine, Thioglycolic acid and cysteamine hydrochloride were used to synthesize Cd(Zn)Se quantum dots (QDs). It was characterized using UV-vis spectroscopy, x-ray diffraction (XRD) and transmission electron microscopy (TEM). The non-linear optical properties (non-linear absorption and non-linear refraction) of synthesized Cd(Zn)Se quantum dots were studied with z-scan technique using diode pumped continuous wavelaser system at a wavelength of 532 nm. Our (organic) synthesized quantum dots showed optical properties similar to the inorganic materials reported elsewhere.
Synthesis and characterization of graphene oxide using modified Hummer's method
NASA Astrophysics Data System (ADS)
Kaur, Manpreet; Kaur, Harsimran; Kukkar, Deepak
2018-05-01
In the present study, a simple approach has been followed for the synthesis of graphene oxide (GO) using modified Hummers method in which graphite powder was oxidized in the presence of concentrated H2SO4 and KMnO4. The amount of NaNO3 and KMnO4 was varied to produce sheet like structure. The varied concentrations of NaNO3 and KMnO4 resulted in yielding large amount of the product. Structural, morphological and physicochemical features of the product were studied using UV-Visible spectrophotometer, Fourier Transform infrared spectroscopy (FTIR), and crystal structure was determined using X-ray powder diffraction (XRD). UV-Vis spectra of GO was observed at a maximum absorption of 230 nm due to (π-π*) transition of atomic carbon-carbon bonds. FTIR spectra revealed the presence of oxygen containing functional groups which ensures the complete exfoliation of graphite into graphene oxide X-ray powder diffraction pattern of the product showed the diffraction peak at (2θ = 26.7°) with an interlayer spacing of 0.334 nm. All the above characterizations successfully confirmed the formation of GO.
Onwudiwe, Damian C; Ajibade, Peter A
2011-01-01
The synthesis of II-VI semiconductor nanoparticles obtained by the thermolysis of certain group 12 metal complexes as precursors is reported. Thermogravimetric analysis of the single source precursors showed sharp decomposition leading to their respective metal sulfides. The structural and optical properties of the prepared nanoparticles were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) UV-Vis and photoluminescence spectroscopy. The X-ray diffraction pattern showed that the prepared ZnS nanoparticles have a cubic sphalerite structure; the CdS indicates a hexagonal phase and the HgS show the presence of metacinnabar phase. The TEM image demonstrates that the ZnS nanoparticles are dot-shaped, the CdS and the HgS clearly showed a rice and spherical morphology respectively. The UV-Vis spectra exhibited a blue-shift with respect to that of the bulk samples which is attributed to the quantum size effect. The band gap of the samples have been calculated from absorption spectra and werefound to be about 4.33 eV (286 nm), 2.91 eV (426 nm) and 4.27 eV (290 nm) for the ZnS, CdS and HgS samples respectively.
Onwudiwe, Damian C.; Ajibade, Peter A.
2011-01-01
The synthesis of II-VI semiconductor nanoparticles obtained by the thermolysis of certain group 12 metal complexes as precursors is reported. Thermogravimetric analysis of the single source precursors showed sharp decomposition leading to their respective metal sulfides. The structural and optical properties of the prepared nanoparticles were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) UV-Vis and photoluminescence spectroscopy. The X-ray diffraction pattern showed that the prepared ZnS nanoparticles have a cubic sphalerite structure; the CdS indicates a hexagonal phase and the HgS show the presence of metacinnabar phase. The TEM image demonstrates that the ZnS nanoparticles are dot-shaped, the CdS and the HgS clearly showed a rice and spherical morphology respectively. The UV-Vis spectra exhibited a blue-shift with respect to that of the bulk samples which is attributed to the quantum size effect. The band gap of the samples have been calculated from absorption spectra and werefound to be about 4.33 eV (286 nm), 2.91 eV (426 nm) and 4.27 eV (290 nm) for the ZnS, CdS and HgS samples respectively. PMID:22016607
Preparation and characterization of PVP-PVA–ZnO blend polymer nano composite films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Divya, S., E-mail: divi.fysics@gmail.com; Saipriya, G.; Hemalatha, J., E-mail: hemalatha@nitt.edu
Flexible self-standing films of PVP-PVA blend composites are prepared by using ZnO as a nano filler at different concentrations. The structural, compositional, morphological and optical studies made with the help of X-ray diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Scanning electron microscope (SEM), Atomic Force Microscopy (AFM), Ultraviolet-visible spectroscopy (UV-vis) and Photoluminescence (PL) spectra are presented in this paper. The results of XRD indicate that ZnO nanoparticles are formed with hexagonal phase in the polymeric matrix. SEM images show the dispersion of ZnO nano filler in the polymer matrix. UV–vis spectra reveal that the absorption peak is centered around 235more » nm and 370 nm for the nano composite films. The blue shift is observed with decrease in the concentration of the nano filler. PL spectra shows the excitation wavelength is given at 320 nm.The emission peaks were observed at 383 nm ascribing to the electronic transitions between valence band and conduction band and the peak at 430 nm.« less
NASA Astrophysics Data System (ADS)
Kumari, Lakshmi; Kar, Asit Kumar
2018-05-01
ZnO nanorods with varying precursor concentration have been successfully synthesized by the hydrothermal method. The effect of the precursor concentration on the structural, morphological and optical properties of the resulting nanorods was investigated by means of X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), UV-Vis spectroscopy and photoluminescence (PL) spectroscopy. The crystalline structural characterization demonstrated that the synthesized materials crystallize in pure ZnO wurtzite structure without any other secondary phase. SEM micrographs demonstrate nanorod type features in all the samples. In addition, they show that increase of precursor concentration changes the length and diameter of nanorods. The UV-Vis studies show a strong absorption band in UV region at 373 nm attributed to the band-edge absorption of wurtzite hexagonal ZnO, blue shifted relative to its bulk form (380 nm). The PL spectra of obtained nanorods excited at 360 nm present broad visible emission. Moreover, as the visible region (from 510 to 550 nm) is concerned, it is speculated that the increase of the precursor concentration affects strongly the kind of interstitial defects (Oi, Zni and Vo) formed in ZnO nanorods. The luminescence intensity decreases with the increase of precursor concentration.
Synthesis and photocatalytic properties of TiO{sub 2} nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, X.H.; Liang, Y.; Wang, Z.
2008-08-04
TiO{sub 2} particles, rods, flowers and sheets were prepared by hydrothermal method via adjusting the temperature, the pressure and the concentration of TiCl{sub 4}. The as-prepared TiO{sub 2} powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra and N{sub 2} adsorption-desorption measurements. It was found that pressure is the most important factor influencing the morphology of TiO{sub 2}. The photocatalytic activity of the products was evaluated by the photodegradation of aqueous brilliant red X-3B solution under UV light. Among the as-prepared nanostructures, the flower-like TiO{sub 2}more » exhibited the highest photocatalytic activity.« less
The role of annealing temperature variation on ZnO nanorods array deposited on TiO2 seed layer
NASA Astrophysics Data System (ADS)
Asib, N. A. M.; Aadila, A.; Afaah, A. N.; Rusop, M.; Khusaimi, Z.
2018-05-01
Seed layer of Titanium dioxide (TiO2) by sol-gel spin coating technique were coated on glass substrate to grow Zinc oxide nanorods (ZNR) by solution-immersion method. The fabricated ZNR were annealed at various temperatures ranged from 400 to 600° C. FESEM images revealed that smaller ZNR were densely grown at optimum temperature of 450 and 500°C. Meanwhile, for all samples a dominant (0 0 2) diffraction peak of ZNR recorded by XRD patterns was at 34.4° which corresponding to hexagonal ZNR with a wurtzite structure. UV-Vis absorbance spectra showed the maximum absorption properties at UV region were detected at 450 and 500°C. The samples also showed high absorbance values at visible region.
Structural, optical and magnetic behaviour of nanocrystalline Volborthite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arvind, Hemant K., E-mail: hemantarvind@gmail.com; Kumar, Sudhish, E-mail: skmlsu@gmail.com; Kalal, Sangeeta
2016-05-06
Nanocrystalline sample of Volborthite (Copper Pyrovanadate: Cu{sub 3}V{sub 2} (OH){sub 2}O{sub 7}.2H{sub 2}O) has been synthesized using wet chemical route and characterized by XRD, SEM, FTIR, UV-Vis-NIR spectroscopic and magnetization measurements. Room temperature X-ray diffraction analysis confirms the single phase monoclinic structure and nanocrystalline nature of Volborthite. The UV-Visible optical absorption spectrum displays two broad absorption peaks in the range of 200-350 nm and 400-1000 nm. The direct band gap is found to be E{sub g}= ∼2.74 eV. Bulk Volborthite was reported to be a natural frustrated antiferromagnet, however our nanocrystalline Volborthite display week ferromagnetic hysteresis loop with very small coercivity andmore » retentivity at room temperature.« less
Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst
NASA Astrophysics Data System (ADS)
Han, Lei; Wang, Ping; Zhu, Chengzhou; Zhai, Yueming; Dong, Shaojun
2011-07-01
In this paper, a stable and highly efficient plasmonic photocatalyst, Ag@AgCl, with cube-like morphology, has been successfully prepared via a simple hydrothermal method. Using methylene dichloride as chlorine source in the synthesis can efficiently control the morphology of Ag@AgCl, due to the low release rate of chloride ions. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectra were used to characterize the obtained product. The photocatalytic activity of the obtained product was evaluated by the photodegradation of methyl orange (MO) under visible light irradiation, and it was found, interestingly, that Ag@AgCl exhibits high visible light photocatalytic activity and good stability.In this paper, a stable and highly efficient plasmonic photocatalyst, Ag@AgCl, with cube-like morphology, has been successfully prepared via a simple hydrothermal method. Using methylene dichloride as chlorine source in the synthesis can efficiently control the morphology of Ag@AgCl, due to the low release rate of chloride ions. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectra were used to characterize the obtained product. The photocatalytic activity of the obtained product was evaluated by the photodegradation of methyl orange (MO) under visible light irradiation, and it was found, interestingly, that Ag@AgCl exhibits high visible light photocatalytic activity and good stability. Electronic supplementary information (ESI) available: SEM images of the AgCl samples synthesized by changing the addition amount of PVP and AgNO3. See DOI: 10.1039/c1nr10247h
Dinakaran, Paul M; Bhagavannarayana, G; Kalainathan, S
2012-11-01
4-Methoxy 4-nitrostilbene (MONS), a new organic nonlinear optical material has been synthesized. Based on the solubility data good quality single crystal with dimensions up to 38×11×3 mm(3) has been grown by slow evaporation method using ethyl methyl ketone (MEK) as a solvent. Powder XRD confirms the crystalline property and also the diffraction planes have been indexed. The lattice parameters for the grown MONS crystals were determined by using single crystal X-ray diffraction analysis and it reveals that the crystal lattice system is triclinic. The crystalline perfection of the grown crystals has been analysed by high resolution X-ray diffraction (HRXRD) rocking curve measurements. Fourier transform infrared (FTIR) spectrum for powdered MONS sample confirms the functional groups present in the grown crystal. The UV-vis absorption spectrum has been recorded in the range of 190-1100 nm and the cut off wavelength 499 nm has been determined. The optical constants of MONS have been determined through UV-vis-NIR spectroscopy. The MONS crystals were further subjected to other characterizations. i.e., (1)H NMR, TG/DTA, photoluminescence and microhardness test. The Kurtz and Perry powder technique confirms the NLO property of the grown crystal and the SHG efficiency of MONS was found to be 1.55× greater than that of KDP crystal. Copyright © 2012 Elsevier B.V. All rights reserved.
Characterization of nanocrystalline ZnO:Al films by sol-gel spin coating method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gareso, P. L., E-mail: pgareso@gmail.com; Rauf, N., E-mail: pgareso@gmail.com; Juarlin, E., E-mail: pgareso@gmail.com
2014-09-25
Nanocrystalline ZnO films doped with aluminium by sol-gel spin coating method have been investigated using optical transmittance UV-Vis and X-ray diffraction (X-RD) measurements. ZnO films were prepared using zinc acetate dehydrate (Zn(CH{sub 3}COO){sub 2}@@‡2H{sub 2}O), ethanol, and diethanolamine (DEA) as a starting material, solvent, and stabilizer, respectively. For doped films, AlCl{sub 3} was added to the mixture. The ZnO:Al films were deposited on a transparent conductive oxide (TCO) substrate using spin coating technique at room temperature with a rate of 3000 rpm in 30 sec. The deposited films were annealed at various temperatures from 400°C to 600°C during 60 minutes.more » The transmittance UV-Vis measurement results showed that after annealing at 400°C, the energy band gap profile of nanocrystalline ZnO:Al film was a blue shift. This indicated that the band gap of ZnO:Al increased after annealing due to the increase of crystalline size. As the annealing temperature increased the bandgap energy was a constant. In addition to this, there was a small oscillation occurring after annealing compared to the as–grown samples. In the case of X-RD measurements, the crystalinity of the films were amorphous before annealing, and after annealing the crystalinity became enhance. Also, X-RD results showed that structure of nanocrystalline ZnO:Al films were hexagonal polycrystalline with lattice parameters are a = 3.290 Å and c = 5.2531 Å.« less
Synthesis and characterization of gold nanodogbones by the seeded mediated growth method
NASA Astrophysics Data System (ADS)
Huang, Chien-Jung; Chiu, Pin-Hsiang; Wang, Yeong-Her; Meen, Teen-Hang; Yang, Cheng-Fu
2007-10-01
Novel gold nanodogbones (GDBs) are successfully fabricated using a simple seeded mediated growth (SMG) method. The shapes of GDBs depend on the amount of added vitamin C solvent. The amount of vitamin C solvent was varied from 10 to 40 µl to investigate the influence of vitamin C solvent on the GDBs. It is found that the aspect ratios (R) of GDBs were in the range from 2.34 to 1.46, and the UV-vis absorption measurement revealed a pronounced blueshift on the longitudinal surface plasmon resonance (SPR) band from 713 to 676 nm. The GDBs were determined by x-ray diffraction (XRD) to be single-crystalline with a face-centered cubic (fcc) structure. The lattice constant calculated from this selected-area electron diffraction (SAED) pattern is 4.068 Å.
Guo, Yujiao; Cui, Kuixin; Hu, Mingyi; Jin, Shengming
2017-08-01
The wire-like Fe 3+ -doped (BiO) 2 CO 3 photocatalyst was synthesized by a hydrothermal method. The photocatalytic property of Fe 3+ -doped (BiO) 2 CO 3 nanowires was evaluated through degradation of sodium isopropyl xanthate under UV-visible light irradiation. The as-prepared Fe 3+ -doped (BiO) 2 CO 3 nanowires were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) in detail. The results of XRD showed that the crystallinity of (BiO) 2 CO 3 nanowires decreased when Fe 3+ ions were introduced into the solution system. XPS results illustrated that xanthate could be absorbed on the surface of Fe 3+ -doped (BiO) 2 CO 3 nanowires to produce BiS bond at the beginning of the reaction, which could broaden the visible light absorption. FTIR spectra confirmed the formation of SO 4 2- after photocatalytic decomposition of xanthate solution. The Fe 3+ -doped (BiO) 2 CO 3 nanowires showed an enhanced photocatalytic activity for decomposition of xanthate due to the narrower band gap and larger BET surface area, comparing with pure (BiO) 2 CO 3 nanowires. By the results of UV-vis spectra of the solution and FTIR spectra of recycled Fe 3+ -doped (BiO) 2 CO 3 , the xanthate was oxidized completely into CO 2 and SO 4 2- . The photocatalytic degradation process of xanthate followed a pseudo-second-order kinetics model. The mechanism of enhanced photocatalytic activity was proposed as well. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Jin Yi; Sim, Ho Hyung; Song, Sinae; Noh, Yeoung Ah; Lee, Hong Woon; Taik Kim, Hee
2018-03-01
Titanium dioxide (TiO2) is one of the representative ceramic materials containing photocatalyst, optic and antibacterial activity. The hydroxyl radical in TiO2 applies to the intensive oxidizing agent, hence TiO2 is suitable to use photocatalytic materials. Black TiO2was prepared through reduction of amorphous TiO2 conducting under H2 which leads to color changes. Its black color is proven that absorbs 100% light across the whole-visible light, drawing enhancement of photocatalytic property. In this study, we aimed to compare the photocatalytic activity of silver ion doped on TiO2(TiO2/Ag+) and silver ion doped on black TiO2(black TiO2/Ag+) under visible light range. TiO2/Ag+ was fabricated following steps. 1) TiO2 was synthesized by a sol-gel method from Titanium tetraisopropoxide (TTIP). 2) Then AgNO3 was added during an aging process step for silver ion doping on the surface of TiO2. Moreover, Black TiO2/Ag+ was obtained same as TiO2/Ag+ except for calcination under H2. The samples were characterized X-ray diffraction (XRD), UV-visible reflectance (UV-vis DRS), and Methylene Blue degradation test. XRD analysis confirmed morphology of TiO2. The band gap of black TiO2/Ag+ was confirmed (2.6 eV) through UV-vis DRS, which was lower than TiO2/Ag+ (2.9 eV). The photocatalytic effect was conducted by methylene blue degradation test. It demonstrated that black TiO2/Ag+ had a photocatalytic effect under UV light also visible light.
Cheng, Zhi-Lin; Sun, Wei
2015-01-01
N-doped ZnO nanoparticles were successfully assembled into hollow halloysite nanotubes (HNTs) by using the impregnation method. The catalysts based on N-doped ZnO-loaded HNTs nanocomposites (N-doped ZnO/HNTs) were characterized by X-ray diffraction (XRD), transmission electron microscopy-energy dispersive X-ray (TEM-EDX), scanning electron microscopy-energy dispersive X-ray (SEM-EDX), UV-vis and Fourier transform infrared spectroscopy (FT-IR) techniques. The XRD pattern showed ZnO nanoparticles with hexagonal structure loaded on HNTs. The TEM-EDX analysis indicated ZnO particles with the crystal size of ca.10 nm scattered in hollow structure of HNTs, and furthermore the concentration of N atom in nanocomposites was up to 2.31%. The SEM-EDX verified most of N-ZnO nanoparticles existing in hollow nanotubes of HNTs. Besides containing an obvious ultraviolet absorbance band, the UV-vis spectra of the N-doped ZnO/HNTs catalysts showed an available visible absorbance band by comparing to HNTs and non-doped ZnO/HNTs. The photocatalytic activity of the N-doped ZnO/HNTs catalysts was evaluated by the degradation of methyl orange (MO) solution with the concentration of 20 mg/L under the simulated solar-light irradiation. The result showed that the N-doped ZnO/HNTs catalyst exhibited a desirable solar-light photocatalytic activity.
NASA Astrophysics Data System (ADS)
Lassoued, Abdelmajid; Lassoued, Mohamed Saber; Dkhil, Brahim; Gadri, Abdellatif; Ammar, Salah
2017-11-01
Pure and copper (Cu concentration varying from 2 to 8%) doped hematite (α-Fe2O3) nanocrystals were synthesized through co-precipitation method using simple equipment. X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FT-IR), Raman spectroscopy, Differential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA) and Ultraviolet-Visible (UV-Vis) techniques were used to characterize the synthesized samples. XRD measurements confirm that all the prepared nanocrystals consist only in nanocrystalline hematite phase. These results along with TEM and SEM show that the size of the nanoparticles decreases with Cu-doping down to 21 nm. FT-IR confirm the phase purity of the nanoparticles synthesized. The Raman spectroscopy was used not only to prove that we synthesized pure and Cu-doped hematite but also to identify their phonon modes. The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. The UV-Vis absorption measurements confirm that the decrease of particle size is accompanied by a decrease in the band gap value from 2.12 eV for pure α-Fe2O3 down to 1.91 eV for 8% Cu-doped α-Fe2O3. 8% Cu-doped hematite had the smallest size, the best crystallinity and the lowest band gap.
Mahmoodi, Vahid; Ahmadpour, Ali; Rohani Bastami, Tahereh; Hamed Mousavian, Mohammad Taghi
2018-01-01
In this study, highly photoactive BiOI nanoparticles (NPs) under sunlight irradiation were synthesized by a facile precipitation method using polyvinylpyrrolidone (PVP) at room temperature. The as-prepared catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transition electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR) and UV-vis diffuse reflectance spectra (UV-vis DRS). The results of XRD showed that PVP did not have any significant effect on tetragonal crystalline structure of BiOI. Also, using different amounts of PVP in the synthesis led to different morphologies and sizes of BiOI particles. It was found that using 0.2 g of PVP in the synthesis method changed morphology from 1-μm platelets to NPs with size under 10 nm. In addition, the photocatalytic performance of prepared photocatalysts was evaluated in the photodegradation of reactive blue 19 (RB19) dye under sunlight irradiation. The BiOI synthesized using 0.2 g PVP (BiOI0.2) showed higher degradation efficiency compared to BiOI prepared without any additive. Excellent visible light photocatalytic properties of nano-scaled BiOI0.2 samples compared to BiOI platelets could be attributed to higher surface-to-volume ratio and narrow band-gap energy of as-prepared BiOI0.2 NPs. © 2017 The American Society of Photobiology.
Zhao, Weirong; Ai, Zhuyu; Dai, Jiusong; Zhang, Meng
2014-01-01
Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading. Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV-vis light, respectively. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and photoelectrochemical characterizations. DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV-vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2). This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR) effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2. Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of TiO2 and increased the utilization of solar energy, greatly boosting the photocatalytic activity for hydrogen production under UV-vis light.
NASA Astrophysics Data System (ADS)
Nishanthini, R.; Muthu Menaka, M.; Pandi, P.; Bahavan Palani, P.; Neyvasagam, K.
The copper telluride (Cu2Te) thin film of thickness 240nm was coated on a microscopic glass substrate by thermal evaporation technique. The prepared films were annealed at 150∘C and 250∘C for 1h. The annealing effect on Cu2Te thin films was examined with different characterization methods like X-ray Diffraction Spectroscopy (XRD), Scanning Electron Microscopy (SEM), Ultra Violet-Visible Spectroscopy (UV-VIS) and Photoluminescence (PL) Spectroscopy. The peak intensities of XRD spectra were increased while increasing annealing temperature from 150∘C to 250∘C. The improved crystallinity of the thin films was revealed. However, the prepared films are exposed complex structure with better compatibility. Moreover, the shift in band gap energy towards higher energies (blue shift) with increasing annealing temperature is observed from the optical studies.
NASA Astrophysics Data System (ADS)
Sahin, B.; Aydin, R.
2018-07-01
Nanostructured CdO films have been successfully synthesized with different ratios of surfactant triethanolamine (TEA) under SILAR condition. The influence of addition of TEA on the physical properties of CdO nanoparticles was studied. The surface morphology of the films was studied by metallurgical microscope and SEM analysis. Surface topography of the film was studied by AFM. The structural properties of the samples were studied by X-ray diffraction (XRD). The XRD studies confirm that the deposited CdO films has cubic structure (111) preferred orientation with well-crystallinity and purity. The optical bandgap energy was estimated based on the UV-vis spectroscopies which were obtained in the range of 2.16 eV-2.46 eV. Our study is encouraging to get enhanced surface topography by surfactant TEA.
NASA Astrophysics Data System (ADS)
Gholamrezaei, Sousan; Salavati-Niasari, Masoud; Ghanbari, Davood; Bagheri, Samira
2016-01-01
Different morphologies of Ag2Te nanostructures were synthesized using TeCl4 as a new precursor and hydrazine hydrate as reducing agent by a hydrothermal method. Various parameters that affect on morphology and purity of nanostructures were optimized. According to our experiments the best time and temperature for preparation of this nanostructure are 12 h and 120 °C. The photo-catalytic behaviour of nanostructures in presence of UV- visible light for degradation of methyl orange was investigated. Results show that the presence of UV light is necessary for an efficient degradation of dye in aqueous solution. On the other hand, as observations propose the Ag2Te reveal a strong photoluminescence peak at room temperature that could be attributed to high level transition in the semiconductor. Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) techniques and UV-visible scanning spectrometer (UV-Vis).
Sboui, Mouheb; Nsib, Mohamed Faouzi; Rayes, Ali; Swaminathan, Meenakshisundaram; Houas, Ammar
2017-10-01
A novel photocatalyst based on TiO 2 -PANI composite supported on small pieces of cork has been reported. It was prepared by simple impregnation method of the polyaniline (PANI)-modified TiO 2 on cork. The TiO 2 -PANI/Cork catalyst shows the unique feature of floating on the water surface. The as-synthesized catalyst was characterized by X-ray diffraction (XRD), scanning electron micrograph (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), UV-vis diffuse reflectance spectra (UV-vis DRS) and the Brunauer-Emmett-Teller (BET) surface area analysis. Characterization suggested the formation of anatase highly dispersed on the cork surface. The prepared floating photocatalyst showed high efficiency for the degradation of methyl orange dye and other organic pollutants under solar irradiation and constrained conditions, i.e., no-stirring and no-oxygenation. The TiO 2 -PANI/Cork floating photocatalyst can be reused for at least four consecutive times without significant decrease of the degradation efficiency. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Xing, Weinan; Ni, Liang; Huo, Pengwei; Lu, Ziyang; Liu, Xinlin; Luo, Yingying; Yan, Yongsheng
2012-10-01
A novel nanocatalyst CdS/halloysite nanotubes (HNTs) was synthesized by hydrothermal method with direct growth of CdS nanoparticles on the surface of HNTs. The as-prepared photocatalysts had been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), Fourier transform infrared (FT-IR) and the thermo gravimetric analysis (TGA). The photocatalytic activity of the sample was evaluated by the degradation of tetracycline (TC) under visible light irradiation. Benefit from the excellent properties of CdS and HNTs, the photocatalyst exhibited good photocatalytic activity and stability. In order to find out the optimum synthesis condition to obtain the best photocatalytic activity, a series of experiments were performed with different CdS loading capacity, different sources of sulfide and different hydrothermal temperatures, etc. The best photodegradation rate could reach 93% in 60 min under visible light irradiation. Therefore, the combination of CdS nanoparticles with HNTs endowed this material with a potential use in environmental treatments in industries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawala, N. S., E-mail: nssawala@gmail.com; Koparkar, K. A.; Omanwar, S. K.
2016-05-06
The host matrix LaAlO{sub 3} was synthesized by conventional solid state reaction method in which the Nd{sup 3+} ions and Yb{sup 3+} ions successfully doped at 2mol% concentrations. The phase purity was confirmed by X ray powder diffraction (XRD) method. The photoluminescence (PL) properties were studied by spectrophotometer in near infra red (NIR) and ultra violet visible (UV-VIS) region. The Nd{sup 3+} ion doped LaAlO{sub 3} converts a visible (VIS) green photon (587 nm) into near infrared (NIR) photon (1070 nm) while Yb{sup 3+} ion doped converts ultra violet (UV) photon (221 nm) into NIR photon (980 nm). The La{sub 0.98}AlO{sub 3}: {sub 0.02}Ln{supmore » 3+}(Ln = Nd / Yb) can be potentiality used for betterment of photovoltaic (PV) technology. This result further indicates its potential application as a luminescence converter layer for enhancing solar cells performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naqvi, Syed Mohd. Adnan, E-mail: adiaks2004@yahoo.co.in; Irshad, Kashif, E-mail: alig.kashif@gmail.com; Soleimani, Hassan, E-mail: hassan.soleimani@petronas.com.my, E-mail: noorhana-yahya@petronas.com.my
2014-10-24
Nanosized Cr-doped ZnO nano particles were synthesized by facile sol-gel auto combustion method. The structural and optical properties of Cr-doped ZnO nanoparticles have been investigated by XRD and UV-Vis spectroscopy at room temperature for 0% to 8% concentration. X-ray diffraction analysis reveals that the Cr-doped ZnO crystallizes in a single phase polycrystalline nature with wurtzite lattice. With every % of doping, the peaks are shifting scarcely and doping of Cr is possible up to 7%. After that, the last peak vanishes, that signifies its structure is transmuted from 8% doping. The average crystallite size decreases with increase in Cr concentrationmore » (i.e. 28.9 nm for 0% to 25.8 nm for 8%). The UV-Vis spectra of the nanoparticles betoken an incrementation in the band gap energy from 3.401, 3.415, 3.431, 3.437,3.453, 3.514,3.521, 3.530 and 3.538 eV respectively, for 0,1, 2, 3, 4, 5, 6, 7 and 8 % doping concentration.« less
NASA Astrophysics Data System (ADS)
Wanag, Agnieszka; Kusiak-Nejman, Ewelina; Kowalczyk, Łukasz; Kapica-Kozar, Joanna; Ohtani, Bunsho; Morawski, Antoni W.
2018-04-01
In this paper titanium dioxide carbon modification with benzene as a carbon source is presented. A TiO2/graphitic carbon nanocomposites were synthesized by thermal modification in the presence of benzene vapours at different temperature (300-700 °C). The new materials were characterized by a various techniques, such as: X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (UV-vis/DR), surface-enhanced Raman spectroscopy. BET specific surface area was also measured. The photocatalytic activity of obtained nanocomposites was measured by the decomposition of acetic acid and methylene blue under UV-vis irradiation. The results show that photocatalytic activity increasing with increase in carbon concentration and temperature of modification. It can be noted that adsorption degree has a very high impact on methylene blue decomposition. The highest photocatalytic activity was found for the photocatalyst modified at 600 °C contains 1.13 wt% of carbon. It should be noted that, the influence of crystallite size, crystal structure changes and specific surface area for photocatalytic activity are presented.
Karthikeyan, C; Haja Hameed, A S; Sagaya Agnes Nisha, J; Ravi, G
2013-11-01
4-N,N'-dimethylamino-N-methyl-4-stilbazolium toyslate (DAST) and diethanolamine (DEA) added DAST crystals are grown by slow cooling method. The corresponding powder samples are examined by characterization studies such as XRD, FT-IR, FT-Raman, UV-Vis-NIR and photoluminescence studies. From the powder X-ray diffraction, their lattice parameter values are found out. Since the vibrational spectra of the molecules are considerably contributed to their linear and nonlinear optical effects, Infrared and Raman spectroscopic studies are carried out for the samples. The UV-Vis-NIR absorption spectra of the samples are used to find the nature of transitions occurred in the samples. Using the density functional theory, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) analyses are done in order to explain the transition and density of states (DOS). The first order hyperpolarizability is calculated by HF and B3LYP/6-311 G(d,p) basis sets for the DAST molecule. From the photoluminescence (PL) spectral studies, the strong excitation emissions are observed. Copyright © 2013 Elsevier B.V. All rights reserved.
Solar photocatalytic degradation of isoproturon over TiO2/H-MOR composite systems.
Sharma, Mangalampalli V Phanikrishna; Durgakumari, Valluri; Subrahmanyam, Machiraju
2008-12-30
The photocatalytic degradation and mineralization of isoproturon herbicide was investigated in aqueous solution containing TiO2 over H-mordenite (H-MOR) photocatalysts under solar light. The catalysts are characterized by X-ray diffraction (XRD), UV-Vis diffused reflectance spectra (UV-Vis DRS), Fourier transform-infra red spectra (FT-IR) and scanning electron microscopy (SEM) techniques. The effect of TiO2, H-MOR support and different wt% of TiO2 over the support on the photocatalytic degradation and influence of parameters such as TiO2 loading, catalyst amount, pH and initial concentration of isoproturon on degradation are evaluated. 15wt% TiO2/H-MOR composite is found to be optimum. The degradation reaction follows pseudo-first order kinetics and is discussed in terms of Langmuir-Hinshelwood (L-H) kinetic model. The extent of isoproturon mineralization studied with chemical oxygen demand (COD) and total organic carbon (TOC) measurements and approximately 80% mineralization occurred in 5h. A plausible mechanism is proposed based on the intermediates identified by liquid chromatography-mass spectroscopy (LC-MS).
Novel Bi/BiOBr/AgBr composite microspheres: Ion exchange synthesis and photocatalytic performance
NASA Astrophysics Data System (ADS)
Lyu, Jianchang; Li, Zhenlu; Ge, Ming
2018-06-01
Novel Bi/BiOBr/AgBr composite microspheres were prepared by a rational in situ ion exchange reaction between Bi/BiOBr microspheres and AgNO3. The characteristic of the as-obtained ternary microspheres was tested by X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence (PL). Under visible light irradiation, Bi/BiOBr/AgBr microspheres exhibited an excellent photocatalytic efficiency for rhodamine B (RhB) degradation, which was about 1.4 and 4.9 times as high as that of Bi/BiOBr and BiOBr/AgBr, demonstrating that the highest separation efficiency of charge carriers in the heterostructured Bi/BiOBr/AgBr. The photocatalytic activity of Bi/BiOBr/AgBr microspheres just exhibited a slight decrease after three consecutive cycles. The photocatalytic mechanism investigation confirmed that the superoxide radicals (O2•-) were the dominant reactive oxygen species for RhB degradation in Bi/BiOBr/AgBr suspension.
Venil, Chidambaram Kulandaisamy; Sathishkumar, Palanivel; Malathi, Mahalingam; Usha, Rajamanickam; Jayakumar, Rajarajeswaran; Yusoff, Abdull Rahim Mohd; Ahmad, Wan Azlina
2016-02-01
In this work, the synthesis of silver nanoparticles from a pigment produced by a recently-discovered bacterium, Chryseobacterium artocarpi CECT 8497, was achieved, followed by an investigation of its anticancer properties. The bacterial pigment was identified as flexirubin following NMR ((1)H NMR and (13)C NMR), UV-Vis, and LC-MS analysis. An aqueous silver nitrate solution was treated with isolated flexirubin to produce silver nanoparticles. The synthesised silver nanoparticles were subsequently characterised by UV-Vis spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) Spectroscopy methodologies. Furthermore, the anticancer effects of synthesised silver nanoparticles in a human breast cancer cell line (MCF-7) were evaluated. The tests showed significant cytotoxicity activity of the silver nanoparticles in the cultured cells, with an IC50 value of 36μgmL(-1). This study demonstrates that silver nanoparticles, synthesised from flexirubin from C. artocarpi CECT 8497, may have potential as a novel chemotherapeutic agent. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xiaojuan; Jin, Bo; Huang, Jingwen; Zhang, Qingchun; Peng, Rufang; Chu, Shijin
2018-06-01
In this study, novel ternary Fe2O3/ZnO/ZnFe2O4 (ZFO) composites were successfully prepared through a simple hydrothermal reaction with subsequent thermal treatment. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis, Barrett-Joyner-Halenda (BJH) measurement, and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic degradation of rhodamine B (Rh B) under visible light irradiation indicated that the ZFO composites calcined at 500 °C has the best photocatalytic activity (the photocatalytic degradation efficiency can reach up to 95.7% within 60 min) and can maintain a stable photocatalytic degradation efficiency for at least three cycles. In addition, the photocatalytic activity of ZFO composites toward dye decomposition follows the order cationic Rh B > anionic methyl orange. Finally, using different scavengers, superoxide and hydroxyl radicals were identified as the primary active species during the degradation reaction of Rh B.
Nanostructuring on zinc phthalocyanine thin films for single-junction organic solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhary, Dhirendra K.; Kumar, Lokendra, E-mail: lokendrakr@allduniv.ac.in
2016-05-23
Vertically aligned and random oriented crystalline molecular nanorods of organic semiconducting Zinc Phthalocyanine (ZnPc) have been grown on ITO coated glass substrate using solvent volatilization method. Interesting changes in surface morphology were observed under different solvent treatment. Vertically aligned nanorods of ZnPc thin film were observed in the films treated with acetone, where as the random oriented nanorods were observed in the films treated with chloroform. The X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) have been used for characterization of nanostructures. The optical properties of the nanorods have been investigated by UV-Vis. absorption spectroscopy.
Chandramohan, A; Bharathikannan, R; Kandavelu, V; Chandrasekaran, J; Kandhaswamy, M A
2008-12-01
Crystalline substance of naphthalene picrate (NP) was synthesized and single crystals were grown using slow evaporation solution growth technique. The solubility of the naphthalene picrate complex was estimated using different solvents such as chloroform and benzene. The material was characterized by elemental analysis, powder X-ray diffraction (XRD), nuclear magnetic resonance (NMR) and fourier transform-infrared (FT-IR) techniques. The electronic absorption was studied through UV-vis spectrophotometer. Thermal behavior and stability of the crystal were studied using thermogravimetric (TG) and differential thermal analysis (DTA) techniques. The second harmonic generation (SHG) of the material was confirmed using Nd:YAG laser.
Preparation and Optoelectrical Properties of p-CuO/n-Si Heterojunction by a Simple Sol-Gel Method
NASA Astrophysics Data System (ADS)
He, Bo; Xu, Jing; Ning, Huanpo; Zhao, Lei; Xing, Huaizhong; Chang, Chien-Cheng; Qin, Yuming; Zhang, Lei
The Cuprous oxide (CuO) thin film was prepared on texturized Si wafer by a simple sol-gel method to fabricate p-CuO/n-Si heterojunction photoelectric device. The novel sol-gel method is very cheap and convenient. The structural, optical and electrical properties of the CuO film were studied by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectrophotometer and Hall effect measurement. A good nonlinear rectifying behavior is obtained for the p-CuO/n-Si heterojunction. Under reverse bias, good photoelectric behavior is obtained.
Enhancement of durability of NIR emission of Ag2S@ZnS QDs in water
NASA Astrophysics Data System (ADS)
Karimipour, M.; Bagheri, M.; Molaei, M.
2017-11-01
Stability of Ag2S@ZnS QDs in water is a crucial concern for their application in biology. In this work, both physical sustainability and emission stability of Ag2S QDs were enhanced using parameter optimization of a pulsed microwave irradiation (MI) method up to 105 days after their preparation. UV-Vis and photoluminescence spectroscopies depicted an absorption and emission about 817 nm and 878 nm, respectively. X-ray diffraction (XRD) analysis showed a growth of Ag2S acanthite phase. Transmission Electron Microscopy (TEM) images revealed a clear formation of Ag2S@ZnS core-shell structure.
Structural and dielectric studies of Ce doped BaSnO3 perovskite nanostructures
NASA Astrophysics Data System (ADS)
Angel, S. Lilly; Deepa, K.; Rajamanickam, N.; Jayakumar, K.; Ramachandran, K.
2018-04-01
Undoped and Cerium (Ce) doped BaSnO3(BSO) nanostructures were synthesized by co-precipitation method. The cubic structure and perovskite phase were confirmed by X-ray diffraction (XRD). The crystallite size of BSO is 41nm and when Ce ion concentration is increased, the crystallite sizesdecreased. The nanocube, nanocuboids and nanorods are observed from SEM analysis. The purity of the undoped and doped samples are confirmed by EDS spectrum. For larger defects, wide band gap was obtained from UV-Vis and PL spectrum. The dielectric constants are increased at low frequencies when Ce impurities are introduced in the BSO matrix at Sn site.
Influences of Co doping on the structural and optical properties of ZnO nanostructured
NASA Astrophysics Data System (ADS)
Majeed Khan, M. A.; Wasi Khan, M.; Alhoshan, Mansour; Alsalhi, M. S.; Aldwayyan, A. S.
2010-07-01
Pure and Co-doped ZnO nanostructured samples have been synthesized by a chemical route. We have studied the structural and optical properties of the samples by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), field-emission transmission electron microscope (FETEM), energy-dispersive X-ray (EDX) analysis and UV-VIS spectroscopy. The XRD patterns show that all the samples are hexagonal wurtzite structures. Changes in crystallite size due to mechanical activation were also determined from X-ray measurements. These results were correlated with changes in particle size followed by SEM and TEM. The average crystallite sizes obtained from XRD were between 20 to 25 nm. The TEM images showed the average particle size of undoped ZnO nanostructure was about 20 nm whereas the smallest average grain size at 3% Co was about 15 nm. Optical parameters such as absorption coefficient ( α), energy band gap ( E g ), the refractive index ( n), and dielectric constants ( σ) have been determined using different methods.
Ag modified LaCoO3 perovskite oxide for photocatalytic application
NASA Astrophysics Data System (ADS)
Jayapandi, S.; Prakasini, V. Anitha; Anitha, K.
2018-04-01
The present investigation has been carried out to develop a novel photocatalytic material based on lanthanum cobaltite (LaCoO3) and silver (Ag) doped LaCoO3 perovskite oxide. Pure LaCoO3 and 5 Mol% Ag doped LaCoO3 (Ag-LaCoO3) have been synthesized by simple co-precipitation method and characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) and photoluminescence (PL) techniques and its photocatalytic activity was evaluated by photodegradation of methylene blue under sunlight irradiation. The observed XRD, UV and PL results indicate that Ag influences on the crystallite size and absorption coefficient of LaCoO3 perovskite oxide. The percentage of dye degradations was calculated as 60% and 99 % for LaCoO3 and 5 Mol% Ag-LaCoO3 pervoskite oxides respectively for 10 minutes (10 min) exposure to sunlight, which indicates that 5 mol% of Ag-LaCoO3, has better photodegradation activity. Hence, the present investigation confirms that Ag influences the photocatalytic activity of a material and the observations will be helpful for further developing new photocatalytic materials.
Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis
NASA Astrophysics Data System (ADS)
Philip, Daizy
2010-03-01
Biological synthesis of gold and silver nanoparticles of various shapes using the leaf extract of Hibiscus rosa sinensis is reported. This is a simple, cost-effective, stable for long time and reproducible aqueous room temperature synthesis method to obtain a self-assembly of Au and Ag nanoparticles. The size and shape of Au nanoparticles are modulated by varying the ratio of metal salt and extract in the reaction medium. Variation of pH of the reaction medium gives silver nanoparticles of different shapes. The nanoparticles obtained are characterized by UV-vis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR spectroscopy. Crystalline nature of the nanoparticles in the fcc structure are confirmed by the peaks in the XRD pattern corresponding to (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes, bright circular spots in the selected area electron diffraction (SAED) and clear lattice fringes in the high-resolution TEM image. From FTIR spectra it is found that the Au nanoparticles are bound to amine groups and the Ag nanoparticles to carboxylate ion groups.
Studies on Optical and Electrical Properties of Hafnium Oxide Nanoparticles
NASA Astrophysics Data System (ADS)
Jayaraman, Venkatachalam; Sagadevan, Suresh; Sudhakar, Rajesh
2017-07-01
In this paper, the synthesis and physico-chemical properties of hafnium oxide nanoparticles (HfO2 NPs) are analyzed and reported. The synthesis was carried out by the precipitation route by using hafnium tetrachloride (HfCl4) as precursor material with potassium hydroxide (KOH) dissolved in Millipore water. In the precipitation technique, the chemical reaction is comparatively simple, low-cost and non-toxic compared to other synthetic methods. The synthesized HfO2 NPs were characterized by using powder x-ray diffraction (PXRD), ultraviolet-visible (UV-Vis) spectroscopy, Raman analysis, and high-resolution transmission electron microscopy (HRTEM). The monoclinic structure of the HfO2 NPs was resolved utilizing x-ray diffraction (XRD). The optical properties were studied from the UV-Vis absorption spectrum. The optical band gap of the HfO2NPs was observed to be 5.1 eV. The Raman spectrum shows the presence of HfO2 NPs. The HRTEM image showed that the HfO2 NPs were of spherical shape with an average particle size of around 28 nm. The energy-dispersive x-ray spectroscopy (EDS) spectrum obviously demonstrated the presence of HfO2 NPs. Analysis and studies on the dielectric properties of the HfO2 NPs such as the dielectric constant, the dielectric loss, and alternating current (AC) conductivity were carried out at varying frequencies and temperatures.
Optical and Structural Characterization of ZnO/TiO2 Bilayer Thin Films Grown by Sol-Gel Spin Coating
NASA Astrophysics Data System (ADS)
Gareso, P. L.; Musfitasari; Juarlin, Eko
2018-03-01
Structural and optical properties of ZnO/TiO2 bilayers thin films have been investigated using x-ray diffraction (X-RD), scanning electron microscopy (SEM), and optical transmittance UV-Vis measurements. ZnO thin films were prepared by dissolving zinc acetate dehydrated into a solvent of ethanol and then added triethanolamin. In the case of TiO2 layers, tetraisoproxide was dissolved into ethanol and then added an acetate acid. The layer of ZnO was deposited first followed by TiO2 layer on a glass substrate using a spin coating technique. The ZnO/TiO2 bilayers were annealed at various temperatures from 300°C until 600°C for 60 minutes. The X-ray diffraction results show that there was an enhancement of the x-ray spectra as annealed temperature increased to 600°C in comparison to the samples that were annealed at 300°C. Based on the optical measurement of UV-Vis, the band gap energy of ZnO/TiO2 bilayer is around 3.2 eV at temperature of 300°C. This value is similar to the band gap energy of ZnO. SEM results show that there is no cluster in the surface of ZnO/TiO2 bilayer.
Seo, Hyeon Jin; Hwang, Ki-Hwan; Na, Young Hoon; Boo, Jin-Hyo
2018-09-01
This study focused on the photocatalytic degradation effect of the μ-dielectric barrier discharge (μ-DBD) plasma treated titanium dioxide (TiO2) nanoparticles on environmental contaminant such as formaldehyde. TiO2 nanoparticles were treated by a μ-DBD plasma source with nitrogen gas. We analyzed the degradation of formaldehyde with the plasma treated TiO2 nanoparticles by UV-visible spectrophotometer (UV-VIS), and demonstrated that the photocatalytic activity of the μ-DBD plasma-treated TiO2 nanoparticles showed significantly high catalytic efficiency rather than without plasma treated TiO2 nanoparticles. Field emission scanning electron microscopes (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and water contact angle analyzer were used to measure the effects of photocatalytic degradation for the plasma treated TiO2 nanoparticles.
NASA Astrophysics Data System (ADS)
Praveena, P.; Dhanavel, S.; Sangamithirai, D.; Narayanan, V.; Stephen, A.
2018-04-01
A novel polycabazole(PCz)/graphitic carbon nitride(g-C3N4) nanocomposite was synthesized via chemical oxidative polymerization method. In the present work, camphor sulfonic acid (CSA) was used as a dopantand ammonium peroxydisulphate (APS) was used as an oxidizing agent. The PCz/g-C3N4 nanocompositewas characterizedusing X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and UV-Visible spectroscopy (UV-Vis). The obtained results confirm the successful formation of PCz/g-C3N4 nanocomposite. Visible light induced photocatalytic activity of the novel catalyst was demonstrated using methylene blue as a target pollutant. The results suggestthat PCz/g-C3N4 nanocomposite can be used as an effective catalyst for the degradation of organic pollutants from waste water.
NASA Astrophysics Data System (ADS)
Zamratul, M. I. M.; Zaidan, A. W.; Khamirul, A. M.; Nurzilla, M.; Halim, S. A.
New glass system of neodymium - doped zinc soda lime silica glass has been synthesized for the first time by melt-quenching of glass waste soda lime silica (SLS) with zinc oxide (ZnO) as precursor glass and Nd2O3 as dopant. In order to examine the effect of Nd3+ on the structural and optical properties, the prepared sample of structure [(ZnO)0.5(SLS)0.5](Nd2O3)x (x = 0, 1, 2, 3, 4 and 5 wt%) was characterized through X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-Vis spectroscopy (UV-Vis) and the photoluminescence (PL). XRD pattern justifies the amorphous nature of synthesized glasses. FTIR spectroscopy has been used to observe the structural evolution of ZnO4 and SiO4 groups. The UV-Vis-NIR absorption spectra reveals seven peaks centered at excitation of electron from ground state 4I9/2 to 4D3/2 + 4D5/2 (∼360 nm), 2G9/2 + 2D3/2 + 2P3/2(∼470 nm), 2K13/2 + 4G7/2 + 4G9/2 (∼523 nm), 4G5/2 + 2G7/2 (∼583 nm), 4F9/2 (∼678 nm), 4S3/2 + 4F7/2 (∼748 nm) and 4F5/2 + 2H9/2 (∼801 nm). PL spectra under the excitation of 800 nm display four emission bands centered at 531 nm, 598 nm, 637 nm and 671 nm corresponding to 4G7/2 → 4I9/2, (4G7/2 → 4I11/2, 4G5/2 → 4I9/2), (4G5/2 → 4I11/2) and (4G7/2 → 4I13/2, 4G5/2 → 4I11/2) respectively.
NASA Astrophysics Data System (ADS)
Naseem, Saira; Khalid, Muhammad; Tahir, Muhammad Nawaz; Halim, Mohammad A.; Braga, Ataualpa A. C.; Naseer, Muhammad Moazzam; Shafiq, Zahid
2017-09-01
Herein, we present the synthesis of novel xanthene-based hydrazone (1). The chemical structure of 1 was resolved using spectroscopic techniques such as NMR, FT-IR, UV-VIS and X-ray crystallographic approaches. X-ray diffraction analysis shows that the compound (1) crystallizes in triclinic crystal lattice with the Pbar1 space group and diffused to form multi-layered structure due to non-covalent interactions such as intramolecular hydrogen bonding (H.B). In addition to experimental investigation, density functional theory (DFT) calculation with M06-2X/6-31G(d,p) and B3LYP/6-31G(d,p) level of theories was performed on compound (1) to obtain optimized geometry, spectroscopic and electronic properties. DFT optimized geometry shows good agreement with the experimental XRD structure. The hyper conjugative interactions and hydrogen bonding network are responsible for the stability of compound (1) as revealed by natural bond orbital (NBO) calculation. Moreover, hydrogen bonding network in the dimer is confirmed by FT-IR and thermodynamic studies showing excellent agreement with XRD and NBO findings. TD-DFT/UV-VIS analysis provides insight that maximum excitation is found in 1 which shows good agreement with experimental UV-VIS result. The global reactivity parameters are calculated using the energies of frontier molecular orbitals also disclosed that the compound is more stable might be due to hydrogen bonding network. Experimental and molecular docking studies indicated that this compound has anti-bacterial and anti-diabetic properties. The binding affinity of this compound against the multidrug efflux pump subunit AcrB OS=Escherichia coli (strain K12) and Human Pancreatic Alpha-Amylase is -9.2 and -10.00 kcal/mol which are higher than the control drugs. Pi-Pi, Pi-anaion, amide-pi and pi-alkyl bonds play key role in drug-protein complexes.
NASA Astrophysics Data System (ADS)
Fatimah, I.
2017-02-01
TiO2-SiO2have been synthesized by the sol-gel method from titanium isopropoxide and varied silica precursors: tetraethyl orthosilicate and tetra methyl ortho silicate. To study the effect of the precursor, prepared materials were characterized by X-ray diffraction, scanning electron microscopy, Diffuse Reflectance UV-vis optical absorption, and also gas sorption analysis. XRD patterns showed the formation of TiO2 anatase in the TiO2-SiO2 composite with different crystallite size from different silica precursor as well as the different surface morphology. The DRUV-vis absorption spectra exhibit similar band gap energy correspond to 3.21eV value while the surface area, pore volume and pore radius of the materials seems to be affected by the precursor. The higher specific surface area contributes to give the enhanced activity in phenol hydroxylation and methylene blue photodegradation.
Ding, Zhongfen; Sanchez, Timothy; Labouriau, Andrea; Iyer, Srinivas; Larson, Toti; Currier, Robert; Zhao, Yusheng; Yang, Dali
2010-08-19
Aggregates of reaction intermediates form during the early stages of aniline oxidative polymerization whenever the initial mole ratio of proton concentration to aniline monomer concentration is low ([H(+)](0)/[An](0)
Synthesis of novel CeO2-BiVO4/FAC composites with enhanced visible-light photocatalytic properties.
Zhang, Jin; Wang, Bing; Li, Chuang; Cui, Hao; Zhai, Jianping; Li, Qin
2014-09-01
To utilize visible light more effectively in photocatalytic reactions, a fly ash cenosphere (FAC)-supported CeO2-BiVO4 (CeO2-BiVO4/FAC) composite photocatalyst was prepared by modified metalorganic decomposition and impregnation methods. The physical and photophysical properties of the composite have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and UV-Visible diffuse reflectance spectra. The XRD patterns exhibited characteristic diffraction peaks of both BiVO4 and CeO2 crystalline phases. The XPS results showed that Ce was present as both Ce(4+) and Ce(3+) oxidation states in CeO2 and dispersed on the surface of BiVO4 to constitute a p-n heterojunction composite. The absorption threshold of the CeO2-BiVO4/FAC composite shifted to a longer wavelength in the UV-Vis absorption spectrum compared to the pure CeO2 and pure BiVO4. The composites exhibited enhanced photocatalytic activity for Methylene Blue (MB) degradation under visible light irradiation. It was found that the 7.5wt.% CeO2-BiVO4/FAC composite showed the highest photocatalytic activity for MB dye wastewater treatment. Copyright © 2014. Published by Elsevier B.V.
Effects of copper on the preparation and characterization of Na-Ca-P borate glasses.
Shailajha, S; Geetha, K; Vasantharani, P; Sheik Abdul Kadhar, S P
2015-03-05
Glasses in the system Na2O-CaO-B2O3-P2O5: CuO have been prepared by melt quenching at 1200°C and rapidly cooling at room temperature. The structural, optical and thermal properties have been investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectroscopy, thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform infrared (FTIR) spectroscopy, high resolution scanning electron microscopy (HRSEM) with energy dispersive X-ray (EDX) spectroscopy and high resolution transmission electron microscope (HRTEM) with energy dispersive X-ray (EDAX). The amorphous and crystalline nature of these samples was verified by XRD. Glass transition, crystallization and thermal stability were determined by TG-DTA investigations. Direct optical energy band gaps before and after doping with different percents of copper oxide were evaluated from 4.81eV to 2.99eV indicated the role of copper in the glassy matrix by UV spectra. FTIR spectrum reveals characteristic absorption bands due to various groups of triangular and tetrahedral borate network. Due to the amorphous nature, the particles like agglomerates on the glass surface were investigated by the HRSEM analysis. The crystalline nature of the samples in XRD is confirmed by SAED pattern using HRTEM. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cao, Shaoqiang; Zhang, Hongyang; Song, Yuanqing; Zhang, Jianling; Yang, Haigang; Jiang, Long; Dan, Yi
2015-07-01
Polypyrrole/polyvinyl alcohol-titanium dioxide (PPy/PVA-TiO2) composite films used as photo-catalysts were fabricated by combining TiO2 sol with PPy/PVA solution in which PPy was synthesized by in situ polymerization of pyrrole (Py) in polyvinyl alcohol (PVA) matrix and loaded on glass. The prepared photo-catalysts were investigated by X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra and photoluminescence (PL). The results indicate that the composites have same crystal structure as the TiO2 and extend the optic absorption from UV region to visible light region. By detecting the variation ratio, detected by ultraviolet-vis spectroscopy, of model pollutant rhodamine B (RhB) solution in the presence of the composite films under both UV and visible light irradiation, the photo-catalytic performance of the composite films was investigated. The results show that the PPy/PVA-TiO2 composite films show better photo-catalytic properties than TiO2 film both under UV and visible light irradiation, and the photo-catalytic degradation of RhB follows the first-order kinetics. The effects of the composition of composite films and the concentration of RhB on the photo-catalytic performance, as well as the possible photo-catalytic mechanism, were also discussed. By photo-catalytic recycle experiments, the structure stability of the PPy/PVA-TiO2 composite film was investigated and the results show that the photo-catalytic activity under both UV and visible light irradiation have no significant decrease after four times of recycle experiments, suggesting that the photo-catalyst film is stable during the photo-catalytic process, which was also confirmed by the XRD pattern and FT-IR spectra of the composite film before and after photo-catalytic.
Dayakar, T; Venkateswara Rao, K; Bikshalu, K; Rajendar, V; Park, Si-Hyun
2017-06-01
A non-enzymatic glucose biosensor was developed by utilizing the zinc oxide nanoparticles (ZnO NPs) synthesized by a novel green method using the leaf extract of Ocimum tenuiflorum. The structural, optical and morphological properties of ZnO NPs characterized by means of X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDAX) spectroscopy, and transmission electron microscopy (TEM). The XRD analysis revealed that the ZnO NPs were crystalline and had a hexagonal wurtzite structure. The crystallite size measured by XRD was the same as that measured using SEM and TEM. The UV-vis absorption spectrum estimates the band gap of ZnO NPs present in the range of 2.82 to 3.45eV. The reduction and formation of ZnO NPs mainly due to the involvement of leaf extract bio-molecular compounds analyzed from the FTIR spectra. The SEM result confirms the morphology of the NPs responsible from the various concentration of leaf extract in the synthesis process. HRTEM analysis depicts the spherical structure of ZnO NPs. The synthesized NPs have the average size ranges from 10 to 20nm. The fabricated GCE/ZnO glucose sensor represents superior electro catalytic activity that has been observed for ZnO NPs with a reproducible sensitivity of 631.30μAmM -1 cm -2 , correlation coefficient of R=0.998, linear dynamic range from 1-8.6mM, low detection limit of 0.043μM (S/N=3) and response time<4s. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jarad, Amer N.; Ibrahim, Kamarulazizi; Ahmed, Nasser M.
2016-07-01
In this work we report preparation and investigation of structural and optical properties of polyaniline conducting polymer. By using sol-gel in spin coating technique to synthesize thin films of conducting polymer polyaniline (PANI). Conducting polymer polyaniline was synthesized by the chemical oxidative polymerization of aniline monomers. The thin films were characterized by technique: Hall effect, High Resolution X-ray diffraction (HR-XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), and UV-vis spectroscopy. Polyaniline conductive polymer exhibit amorphous nature as confirmed by HR-XRD. The presence of characteristic bonds of polyaniline was observed from FTIR spectroscopy technique. Electrical and optical properties revealed that (p-type) conductivity PANI with room temperature, the conductivity was 6.289×10-5 (Ω.cm)-1, with tow of absorption peak at 426,805 nm has been attributed due to quantized size of polyaniline conducting polymer.
Jawaher, K Rackesh; Indirajith, R; Krishnan, S; Robert, R; Pasha, S K Khadheer; Deshmukh, Kalim; Sastikumar, D; Das, S Jerome
2018-08-01
Cr2O3-SnO2 heterojunction nanocomposites were prepared via chemical precipitation method. The prepared samples were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectra and Field Emission Electron Microscopy (FESEM). The XRD spectrum confirms the presence of both tetragonal rutile SnO2 and rhombohedral corundum Cr2O3 structure. Further investigation into the gas sensing performances of the prepared Cr2O3-SnO2 nanocomposites exhibited an enhanced sensitivity towards VOPs such as isopropanol, acetone, ethanol and formaldehyde. Especially, isopropanol vapor sensor shows excellent sensitivity at an operating temperature of 100 °C. The highest sensitivity for Cr2O3-SnO2 heterojunction nanocomposites indicate that these materials can be a good candidate for the production of high-performance isopropanol sensors.
NASA Astrophysics Data System (ADS)
Philip, Daizy; Unni, C.
2011-05-01
Aqueous extract of Ocimum sanctum leaf is used as reducing agent for the environmentally friendly synthesis of gold and silver nanoparticles. The nanoparticles were characterized using UV-vis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. These methods allow the synthesis of hexagonal gold nanoparticles having size ∼30 nm showing two surface plasmon resonance (SPR) bands by changing the relative concentration of HAuCl 4 and the extract. Broadening of SPR is observed at larger quantities of the extract possibly due to biosorption of gold ions. Silver nanoparticles with size in the range 10-20 nm having symmetric SPR band centered around 409 nm are obtained for the colloid synthesized at room temperature at a pH of 8. Crystallinity of the nanoparticles is confirmed from the XRD pattern. Biomolecules responsible for capping are different in gold and silver nanoparticles as evidenced by the FTIR spectra.
NASA Astrophysics Data System (ADS)
Lenin, M.; Ramasamy, P.
2008-10-01
Single crystals of 3-nitroacetanilide, an organic nonlinear optical material has been grown by the Bridgman-Stockbarger method. The single crystal X-ray diffraction (XRD) data revealed the noncentrosymmetric crystal structure, which is an essential criterion for second harmonic generation. The crystalline nature of the grown crystals was confirmed using powder XRD techniques. The functional group of the compound is identified by FTIR spectrum. The thermal stability and its tendency to grow as single crystal in solution and in melt have been identified for the new title compound. The UV-vis spectrum of mNAA shows the lower optical cut off at 400 nm and was transparent in the visible region. The second harmonic generation efficiency was found using Kurtz powder technique. The dielectric constant and dielectric loss of the crystal were measured as a function of frequency and temperature, and the results are discussed.
Ab-initio study of double perovskite Ba2YSbO6
NASA Astrophysics Data System (ADS)
Mondal, Golak; Jha, D.; Himanshu, A. K.; Lahiri, J.; Singh, B. K.; Kumar, Uday; Ray, Rajyavardhan
2018-04-01
The density functional theory with generalized gradient approximation has been used to investigate the electronic structure of double perovskite oxide Ba2YSbO6 (BYS) synthesized in polycrystalline form by solid state reaction. Structural characterization of the compound was done through X-ray diffraction (XRD) followed by Riedvelt analysis of the XRD pattern. The crystal structure is cubic, space group being Fm-3m (No. 225) with the lattice parameter, a = 8.424 Å. Optical band-gap of this system has been calculated using UV-Vis Spectroscopy and Kubelka-Munk (KM) function, having the value 4.56eV. A detailed study of the electronic properties has also been carried out using the Full-Potential Linear Augmented Plane Wave (FPLAPW) as implemented in WIEN2k. BYS is found to be a large band-gap insulator with potential technological applications, such as dielectric resonators and filters in microwave applications.
Wu, Zhongbiao; Sheng, Zhongyi; Liu, Yue; Wang, Haiqiang; Tang, Nian; Wang, Jie
2009-05-30
Pd-modified TiO(2) prepared by thermal impregnation method was used in this study for photocatalytic oxidation of NO in gas phase. The physico-chemical properties of Pd/TiO(2) catalysts were characterized by X-ray diffraction analysis (XRD), Brunauer-Emmett-Teller measurements (BET), X-ray photoelectron spectrum analysis (XPS), transmission electron microscopy (TEM), high resolution-transmission electron microscopy (HR-TEM), UV-vis diffuse reflectance spectra (UV-vis DRS) and photoluminescence spectra (PL). It was found that Pd dopant existed as PdO particles in as-prepared photocatalysts. The results of PL spectra indicated that the photogenerated electrons and holes were efficiently separated after Pd doping. During in situ XPS study, it was found that the content of hydroxyl groups on the surface of Pd/TiO(2) increased when the catalyst was irradiated by UV light, which could result in the improvement of photocatalytic activity. The activity test showed that the optimum Pd dopant content was 0.05 wt.%. And the maximum conversion of NO was about 72% higher than that of P25 when the initial concentration of NO was 200 ppm, which showed that Pd/TiO(2) photocatalysts could be potentially applied to oxidize higher concentration of NO.
Horikoshi, Satoshi; Shirasaka, Yutaro; Uchida, Hiroshi; Horikoshi, Natsuko; Serpone, Nick
2016-08-04
To date syntheses of nitrogen-doped TiO2 photocatalysts (TiO2-xNx) have been carried out under high temperatures and high pressures with either NH3 or urea as the nitrogen sources. This article reports for the first time the facile preparation of N-doped TiO2 (P25 titania) in aqueous media at ambient temperature and pressure under inert conditions (Ar- and N2-purged dispersions) with 4-nitrophenol (or 4-nitrobenzaldehyde) as the nitrogen source. The resulting N-doped P25 TiO2 materials were characterized by UV/Vis and X-ray photoelectron spectroscopies (XPS) that confirmed the presence of nitrogen within the photocatalyst; X-ray diffraction (XRD) techniques confirmed the crystalline phases of the doped material. The photocatalytic activity of N-doped TiO2 was assessed through examining the photodegradation of 4-chlorophenol in aqueous media and iso-propanol as a volatile pollutant under UV/Vis and visible-light irradiation. Under visible light irradiation, undoped P25 was inactive contrary to N-doped P25 that successfully degraded 95% of the 4-chlorophenol (after 10 h) and 23% of iso-propanol (after 2.5 h).
NASA Astrophysics Data System (ADS)
Adavallan, K.; Krishnakumar, N.
2014-06-01
Gold nanoparticles (Au-NPs) were synthesized at room temperature using Morus alba (mulberry) leaf extract as reducing and stabilizing agent. The development of plant mediated synthesis of nanoparticles is gaining importance due to its simplicity, low cost, non-toxicity, eco-friendliness, long term stability and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au-NPs. The formation and morphology of biosynthesized nanoparticles are investigated with the help of UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) techniques. Au-NPs formation was screened by UV-Vis spectroscopy through color conversion due to surface plasmon resonance band at 538 nm for Au-NPs. DLS studies revealed that the average size of Au-NPs was 50 nm. TEM studies showed the particles to be nearly spherical with few irregular shapes and particle size ranges 15-53 nm. The AFM image clearly shows the surface morphology of the well-dispersed Au-NPs with less than 50 nm. The high crystallinity of nanoparticles is evident from bright circular spots in the selected area electron diffraction (SAED) pattern. X-ray diffraction pattern showed high purity and face-centered cubic structure of Au-NPs. The FT-IR results indicate the presence of different functional groups present in the biomolecule capping the nanoparticles. Further, biosynthesized Au-NPs show strong zone of inhibition against Vibrio cholera (gram-negative) and Staphylococcus aureus (gram-positive) whereas, chemically synthesized Au-NPs and mulberry leaf extract exhibit a fair zone of inhibition.
Structural and optical investigation in Er3+ doped Y2MoO6 phosphors
NASA Astrophysics Data System (ADS)
Mondal, Manisha; Rai, Vineet Kumar
2018-05-01
The Er3+ doped Y2MoO6 phosphors have been structurally and optically characterized by X-ray Diffraction (XRD), Field emission scanning electron microscopy (FESEM), UV-Vis absorption spectroscopy and frequency upconversion (UC) emission studies. The crystal and the particles size are found to be ˜ 85 nm and ˜ 200 nm from XRD and FESEM analysis. The intense peak at ˜ 206 nm in the UV-Vis absorption spectroscopy is attributed due to the charge transfer transition between the Mo6+ and the O2- ions in the MoO4 group in the host molybdate. The frequency UC emission studies of the prepared phosphors under 980 nm diode laser excitation shows the intense UC emission in the 0.3 mol% concentrations for the Er3+ ions. In the UC emission spectra, the emission peaks at green (˜ 525 nm and ˜ 546 nm) and red (˜ 656 nm) bands are corresponding to the 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of Er3+ ions. The mechanisms involved in the UC process have been explored with the help of energy level diagram. Moreover, the CIE point (0.31, 0.60) lie in the green colour region which indicates that the developed phosphor have suitable applications in NIR to visible upconverter and in making green light display devices.
Rahman, Mohammed M; Khan, Sher Bahadar; Marwani, Hadi M; Asiri, Abdullah M; Alamry, Khalid A; Al-Youbi, Abdulrahman O
2013-01-30
We have prepared calcined CuO microsheets (MSs) by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM) etc. The detailed structural, compositional, and optical characterizations of the MSs were evaluated by XRD pattern, FT-IR, X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy, respectively which confirmed that the obtained MSs are well-crystalline CuO and possessed good optical properties. The CuO MSs morphology was investigated by FESEM, which confirmed that the calcined nanomaterials were sheet-shaped and grown in large-quantity. Here, the efficiency of the CuO MS was applied for a selective adsorption of gold(III) ion prior to its detection by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of CuO MSs towards various metal ions, including Au(III), Cd(II), Co(II), Cr(III), Fe(III), Pd(II), and Zn(II) was analyzed. Based on the adsorption isotherm study, it was confirmed that the selectivity of MSs phase was mostly towards Au(III) ion. The static adsorption capacity for Au(III) was calculated to be 57.0 mg g(-1). From Langmuir adsorption isotherm, it was confirmed that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of adsorption sites. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Shaohua, E-mail: linsh75@163.com; Zhang, Xiwang; Sun, Qinju
2013-11-15
Graphical abstract: - Highlights: • Fe-doped TiO{sub 2} immobilized on glass-fiber net were prepared by sol–gel method. • Fe inhibited the phase transition of TiO{sub 2} from anatase to rutile. • The optimal Fe doping dose was around 0.005 wt%. • The optimal calcination temperature was around 600 °C. - Abstract: Iron-doped anatase titanium dioxide catalysts coated on glass-fiber were successfully synthesized by a dip-coating sol–gel method. The prepared catalysts were characterized by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy to understand the synthesis mechanism, and their photocatalytic activities weremore » evaluated by photodegradation of phenol under simulated solar irradiation. EDX analysis confirmed the existence of iron in the immobilized catalysts. XRD suggested that the phase transition of the catalysts from anatase to rutile were restrained, and almost pure anatase TiO{sub 2} could retain even the calcination temperature reached 800 °C. The UV-Vis diffuse reflectance spectroscopy of the catalysts showed a red shift and increased photoabsorbance in the visible range for all the doped samples. Iron loading and calcination temperature have obvious influences on photocatalytic activity. In this study, the optimal doping dose and calcination temperature were around 0.005 wt% and 600 °C, respectively.« less
Govindhan, R; Karthikeyan, B
2017-10-01
The data presented in this article are related to the research entitled of UV-A stable nanotubes. The nanotubes have been prepared from 3,5-bis(trifluoromethyl)benzylamine derivative of tyrosine (BTTP). XRD data reveals the size of the nanotubes. As-synthesized nanotubes (BTTPNTs) are characterized by UV-vis optical absorption studies [1] and photo physical degradation kinetics. The resulted dataset is made available to enable critical or extended analyzes of the BTTPNTs as an excellent light resistive materials.
NASA Astrophysics Data System (ADS)
Mahudeswaran, A.; Vivekanandan, J.; Vijayanand, P. S.; Kojima, T.; Kato, S.
2016-01-01
Poly(aniline-co-o-bromoaniline) (p(an-co-o-BrAn)) copolymer has been synthesized using chemical oxidation method in the hydrochloric acid medium. Copolymerization of aniline with o-bromoaniline of different compositions, such as 1:1, 1:2, 2:1, 1:3 and 3:1 molar ratios were prepared. The synthesized copolymer is soluble in polar solvents like dimethyl sulphoxide (DMSO), dimethyl formamide (DMF), Tetrahydrofuran (THF) and 1-methyl 2-pyrrolidone (NMP). The copolymer is analyzed by various characterization techniques, such as FTIR, UV-Visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), conductivity, Differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). FTIR spectrum confirms the characteristic peaks of the copolymer containing benzenoid and quinoid ring stretching. UV spectrum reveals the formation of π-π∗ transition and n-π∗ transition between the energy levels. XRD peaks reveal that the copolymer possesses amorphous nature. Morphological study reveals that the agglomerated particles form globular structure and size of the each particle is about 100 nm. The electrical conductivity of the copolymers is found in the range of 10-5Scm-1. These organic semiconductor materials can be used to fabricate thinner and cheaper environmental friendly optoelectronic devices that will replace the conventional inorganic semiconductors.
Qasim, Mohd; Asghar, Khushnuma; Singh, Braj Raj; Prathapani, Sateesh; Khan, Wasi; Naqvi, A H; Das, Dibakar
2015-02-25
A novel visible light active and magnetically separable nanophotocatalyst, Ni0.5Zn0.5Fe2O4/Zn0.95Ni0.05O (denoted as NZF@Z), with varying amount of Ni0.5Zn0.5Fe2O4, has been synthesized by egg albumen assisted sol gel technique. The structural, optical, magnetic, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), fourier transform infrared spectroscopy (FTIR), UV-visible (UV-Vis) spectroscopy, and vibrating sample magnetometry (VSM) techniques. Powder XRD, TEM, FTIR and energy dispersive spectroscopic (EDS) analyses confirm coexistence of Ni0.5Zn0.5Fe2O4 and Zn0.95Ni0.05O phases in the catalyst. Crystallite sizes of Ni0.5Zn0.5Fe2O4 and Zn0.95Ni0.05O in pure phases and nanocomposites, estimated from Debye-Scherrer equation, are found to be around 15-25 nm. The estimated particle sizes from TEM and FESEM data are ∼(22±6) nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra, of Zn0.95Ni0.05O, 15%NZF@Z, 40%NZF@Z and 60%NZF@Z are 2.95, 2.72, 2.64, and 2.54 eV respectively. Magnetic measurements (field (H) dependent magnetization (M)) show all samples to be super-paramagnetic in nature and saturation magnetizations (Ms) decrease with decreasing ferrite content in the nanocomposites. These novel nanocomposites show excellent photocatalytic activities on Rhodamin Dye. Copyright © 2014 Elsevier B.V. All rights reserved.
Green chemistry for the preparation of L-cysteine functionalized silver nanoflowers
NASA Astrophysics Data System (ADS)
Ma, Xinfu; Guo, Qingquan; Xie, Yu; Ma, Haixiang
2016-05-01
The preparation of size- and shape-controlled metallic nanostructures in an eco-friendly manner has been regarded as one of the key issues in nanoscience research today. In this paper, biosynthesis of silver nanoflowers (AgNFs) using L-cysteine as reducing and capping agent in alkaline solution via 70 °C water bath for 4 h has been demonstrated. The formation of L-cys-AgNPs was observed visually by color change of the samples. The prepared samples were characterized by UV-vis spectroscopy, Transmission electron microscopy (TEM) spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). These results indicate that single-crystalline of AgNFs have been successfully synthesized.
Optical limiting in gelatin stabilized Cu-PVP nanocomposite colloidal suspension
NASA Astrophysics Data System (ADS)
Tamgadge, Y. S.; Gedam, P. P.; Thakare, N. B.; Talwatkar, S. S.; Sunatkari, A. L.; Muley, G. G.
2018-05-01
This article illustrates investigations on optical limiting properties of Cu-PVP nanocomposite colloidal suspension. Gelatin stabilized Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD), Ultraviolet-visible (UV-vis) spectroscopy, etc. for structural and linear optical studies. Optical limiting properties of Colloidal Cu-PVP nanocomposites have been investigated at 808 nm diode CW laser. Minimum optical limiting threshold was found for GCu3-PVP nanocomposites sample. The strong optical limiting is thermal in origin as CW laser is used and effects are attributed to thermal lensing effect.
ZnO:Gd nanocrystals for fluorescent applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Divya, N. K., E-mail: divyank90@gmail.com; Pradyumnan, P. P.
2016-05-23
Gadolinium doped ZnO crystals within the solubility limit of gadolinium in ZnO matrix were prepared by solid state reaction technique. The method is relatively less expense and enables the production in large scale. The samples were characterised by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), UV/Vis diffuse reflectance spectroscopy and photoluminescence techniques. Fluorescent property studies of gadolinium doped ZnO at room temperature show enhanced visible light emission due to the defects and oxygen vacancies produced via doping. This work reports the impact of gadolinium doping in the structural, optical and luminescent properties of ZnO inmore » detail.« less
The Effects of ph on Structural and Optical Characterization of Iron Oxide Thin Films
NASA Astrophysics Data System (ADS)
Tezel, Fatma Meydaneri; Özdemir, Osman; Kariper, I. Afşin
In this study, the iron oxide thin films have been produced by chemical bath deposition (CBD) method as a function of pH onto amorphous glass substrates. The surface images of the films were investigated with scanning electron microscope (SEM). The crystal structures, orientation of crystallization, crystallite sizes, and dislocation density i.e. structural properties of the thin films were analyzed with X-ray diffraction (XRD). The optical band gap (Eg), optical transmission (T%), reflectivity (R%), absorption coefficient (α), refraction index (n), extinction coefficient (k) and dielectric constant (ɛ) of the thin films were investigated depending on pH, deposition time, solution temperature, substrate temperature, thickness of the films by UV-VIS spectrometer.
NASA Astrophysics Data System (ADS)
Botewad, S. N.; Pahurkar, V. G.; Muley, G. G.
2016-05-01
The fabrication and study of a cladding modified fiber optic intrinsic urea biosensor based on evanescent wave absorbance has been presented. The sensor was prepared using cladding modification technique by removing a small portion of cladding of an optical fiber and modifying with an active cladding of porous polyaniline-boric acid (PBA) matrix to immobilize enzyme-urease through cross-linking via glutaraldehyde. The nature of as-synthesized and deposited PBA film on fiber optic sensing element was studied by ultraviolet-visible (UV-vis) spectroscopy and X-ray diffraction (XRD) analysis. The performance of the developed sensor was studied for different urea concentrations in solutions prepared in phosphate buffer.
Simple method for the growth of 4H silicon carbide on silicon substrate
NASA Astrophysics Data System (ADS)
Asghar, M.; Shahid, M. Y.; Iqbal, F.; Fatima, K.; Nawaz, Muhammad Asif; Arbi, H. M.; Tsu, R.
2016-03-01
In this study we report thermal evaporation technique as a simple method for the growth of 4H silicon carbide on p-type silicon substrate. A mixture of Si and C60 powder of high purity (99.99%) was evaporated from molybdenum boat. The as grown film was characterized by XRD, FTIR, UV-Vis Spectrophotometer and Hall Measurements. The XRD pattern displayed four peaks at 2Θ angles 28.550, 32.700, 36.100 and 58.900 related to Si (1 1 1), 4H-SiC (1 0 0), 4H-SiC (1 1 1) and 4H-SiC (2 2 2), respectively. FTIR, UV-Vis spectrophotometer and electrical properties further strengthened the 4H-SiC growth.
CTAB assisted synthesis of tungsten oxide nanoplates as an efficient low temperature NOX sensor
NASA Astrophysics Data System (ADS)
Mehta, Swati S.; Tamboli, Mohaseen S.; Mulla, Imtiaz S.; Suryavanshi, Sharad S.
2018-02-01
Tungsten oxide nanoplates with porous morphology were effectively prepared by acidification using CTAB (HexadeCetyltrimethyl ammonium bromide) as a surfactant. For characterization, the synthesized materials were subjected to X-Ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV-Visible spectroscopy (UV-Vis) and surface area (BET) measurements. The morphology and size of the particles were controlled by solution acidity. The BET results confirmed that the materials are well crystallized and mesoporous in nature. The nanocrystalline powder was used to prepare thick films by screen printing on alumina substrate for the investigation of gas sensing properties. The gas response measurements revealed that the samples acidified using 10 M H2SO4 exhibits highest response of 91% towards NOX at optimum temperature of 200 °C for 100 ppm, and it also exhibits 35% response at room temperature.
NASA Astrophysics Data System (ADS)
Sankar, Renu; Manikandan, Perumal; Malarvizhi, Viswanathan; Fathima, Tajudeennasrin; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan
2014-03-01
Copper oxide (CuO) nanoparticles were synthesized by treating 5 mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV-visible spectrophotometry. An intense surface Plasmon resonance between 250-300 nm in the UV-vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140 nm, further negative zeta potential disclose its stability at -28.9 mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight.
Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.
Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin
2014-02-01
The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. © 2013.
Morphology, structure and optical properties of hydrothermally synthesized CeO2/CdS nanocomposites
NASA Astrophysics Data System (ADS)
Mohanty, Biswajyoti; Nayak, J.
2018-04-01
CeO2/CdS nanocomposites were synthesized using a two-step hydrothermal technique. The effects of precursor concentration on the optical and structural properties of the CeO2/CdS nanoparticles were systematically studied. The morphology, composition and the structure of the CeO2/CdS nanocomposite powder were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectrum analysis (EDXA) and X-ray diffraction (XRD), respectively. The optical properties of CeO2/CdS nanocomposites were studied by UV-vis absorption and photoluminescence (PL) spectroscopy. The optical band gaps of the CeO2/CdS nanopowders ranged from 2.34 eV to 2.39 eV as estimated from the UV-vis absorption. In the room temperature photoluminescence spectrum of CeO2/CdS nanopowder, a strong blue emission band was observed at 400 nm. Since the powder shows strong visible luminescence, it may be used as a blue phosphor in future. The original article published with this DOI was submitted in error. The correct article was inadvertently left out of the original submission. This has been rectified and the correct article was published online on 16 April 2018.
An approach for scalable production of silver (Ag) decorated WS2 nanosheets
NASA Astrophysics Data System (ADS)
Sumesh, C. K.; Kapatel, Sanni; Chaudhari, Arti
2018-05-01
In the Present study we report the synthesis of Ag nanoparticles (NPs) decorated WS2 nanosheets by sonochemical exfoliation followed by simple chemical reduction process at room temperature. The morphology and microstructure of the as-synthesized Ag-WS2 nanocomposite were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and optical absorption (UV-Vis.) spectroscopy. X-ray and TEM analysis shows the presence of Ag with significant peak over 38.08°, 44.22°, 64.37° and 77.33° at 2θ angle for (111), (200), (220) and (311) respectively. The Ag nanoparticles are randomly distributed throughout the surface of the WS2 nanosheets without undergoing further oxidation during the formation of composites. The formation of Ag-WS2 nanocomposites shows a clear blue shift in the absorption as we obtained the characteristics absorption valleys at 456, 536 and 631 nm from the UV Vis spectroscopy analysis compared to pure WS2 nanosheets. Henceforth a facile method for the Ag decoration on WS2 nanosheets was put forward and briefly discussed. The proposed synthesis method is very promising for the low cost and large-scale synthesis of other noble metal incorporation TMDC compounds.
Synthesis and characterization of Ag embedded graphitic carbon nitride
NASA Astrophysics Data System (ADS)
Patra, P. C.; Mohapatra, Y. N.
2018-05-01
Silver embedded graphitic carbon nitride (g-C3N4:Ag) was prepared by a simple wet chemical pathway using dimethylformamide (DMF) as a common solvent which facilitate homogenous distribution of Ag nanoparticles under ambient conditions. The phase, chemical structure and thermal stability of the as prepared g-C3N4:Ag composite was characterized by X-ray diffraction (XRD), Fourier transmission infrared (FTIR) spectroscopy and Thermo gravimetric analysis (TGA). The optical properties of g-C3N4:Ag were investigated by diffuse reflectance UV/vis spectroscopy and steady state photoluminescence (PL) spectroscopy. The bandgap of g-C3N4:Ag is determined to be 2.72 eV compared to 2.85 eV for that of pure g-C3N4 using Kubelka-Monk function. Comparing the UV/vis spectra, there is a broad spectrum in the region 2.3 to 2.6 eV in the case of g-C3N4:Ag, which is attributed to the presence of Ag nanoparticles. The emission peak of g-C3N4:Ag is slightly broadened and quenched in intensity to that of pure g-C3N4.
NASA Astrophysics Data System (ADS)
Li, Ling; Zhuang, Huisheng; Bu, Dan
2011-08-01
The novel visible-light-activated La/I/TiO 2 nanocomposition photocatalyst was successfully synthesized using precipitation-dipping method, and characterized by X-ray powder diffraction (XRD), the Brunauer-Emmett-Teller (BET) method, transmission electron microscopy (TEM), thermogravimetry-differential scanning calorimetry (TG-DSC) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity of La/I/TiO 2 was evaluated by studying photodegradation of reactive blue 19 as a probe reaction under simulated sunlight irradiation. Photocatalytic experiment results showed that the maximum specific photocatalytic activity of the La/I/TiO 2 photocatalyst appeared when the molar ratio of La/Ti was 2.0 at%, calcined at 350 °C for 2 h, due to the sample with good crystallization, high BET surface area and small crystal size. Under simulated sunlight irradiation, the degradation of reactive blue 19 aqueous solution reached 98.6% in 80 min, which showed La/I/TiO 2 photocatalyst to be much higher photocatalytic activity compared to standard Degussa P25 photocatalyst. The higher visible light activity is due to the codoping of lanthanum and iodine.
NASA Astrophysics Data System (ADS)
Vignesh, K.; Suganthi, A.; Min, Bong-Ki; Kang, Misook
2015-01-01
In this present work, BiOI sensitized zirconia (BiOI-ZrO2) nanoparticles were fabricated using a precipitation-deposition method. The physicochemical characteristics of BiOI/ZrO2 were studied through X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), BET-surface area, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis-DRS) and photoluminescence (PL) spectroscopy techniques. The absorption maximum of ZrO2 was shifted to the visible region after sensitization with BiOI. BET-surface area results inferred that the prepared hetero-junctions were meso-porous in nature. The photocatalytic activity of BiOI-ZrO2 for the degradation of methyl violet (MV) dye under simulated solar light irradiation was investigated in detail. 3% BiOI-ZrO2 exhibited the highest photocatalytic performance (98% of MV degradation) when compared with ZrO2 and BiOI. The enhancement in the photocatalytic activity of BiOI-ZrO2 is ascribed to the sensitization effect of BiOI, suppression of electron-hole recombination and the formation of p-n hetero-junction.
NASA Astrophysics Data System (ADS)
Huo, Pengwei; Yan, Yongsheng; Li, Songtian; Li, Huaming; Huang, Weihong
2010-03-01
A series of poly-o-phenylenediamine/TiO 2/fly-ash cenospheres(POPD/TiO 2/fly-ash cenospheres) composites have been prepared from o-phenylenediamine and TiO 2/fly-ash cenospheres under various polymerization conditions. The properties of the samples were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), specific surface area (BET), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and UV-vis diffuse reflectance spectrum (UV-vis DRS). Photocatalytic activity was studied by degradation of antibiotics waste water under visible light. The results indicate that the photo-induced method is viable for preparing modified photocatalysts, and the modified photocatalysts have good absorption in visible light range. The photocatalysts of POPD/TiO 2/fly-ash cenospheres which have good performance are prepared at pH 3 and 4, and the polymerized time around 40 min. When the photocatalysts are prepared under the conditions of pH 3 and polymerized time 40 min, the degradation rate of roxithromycin waste water could reach near 60%, and it indicates that the way of POPD modified TiO 2/fly-ash cenospheres to degrade the antibiotics waste water is viable.
Structural properties and optical characterization of flower-like Mg doped NiO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allaedini, Ghazaleh, E-mail: jiny-ghazaleh@yahoo.com; Tasirin, Siti Masrinda; Aminayi, Payam
In this study, un-doped and Mg doped NiO nanoparticles have been synthesized through a simple sol-gel method. To investigate the effect of Mg-doping on the structure of NiO, the obtained nanoparticles were characterized using scanning electron microscopy (SEM). Flower/star like morphology was clearly observed in the SEM micrographs. The BET (Brunauer-Emmett-Teller) nitrogen absorption isotherm exhibits high specific surface area (∼37 m{sup 2} /g) for the Mg doped NiO nanoparticles. X-Ray diffraction (XRD) of the prepared Mg-NiO nanoparticles showed a face-centered cubic (f.c.c) structure, and the average particle size was estimated to be 32 nm using Scherrer’s formula. Energy Dispersive X-Ray (EDX)more » confirms that the NiO particles are successfully doped with Mg. Photoluminescence (PL) and UV-Vis optical absorption characteristics of the prepared nanoparticles have also been investigated in this study. The PL emission response showed a blue shift when NiO was doped with Mg, which is indicative of interstitial oxygen. The UV-Vis results demonstrate a band gap increase as NiO nanoparticles are doped with Mg.« less
NASA Astrophysics Data System (ADS)
Nada, Amr A.; Tantawy, Hesham R.; Elsayed, Mohamed A.; Bechelany, Mikhael; Elmowafy, Mohamed E.
2018-04-01
In this paper, magnetic nanocomposites are synthesized by loading reduced graphene oxide (RG) with two components of nanoparticles consisting of titanium dioxide (TiO2) and magnetite (Fe3O4) with varying amounts. The structural and magnetic features of the prepared composite photocatalysts were investigated by powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (UV-vis/DRS), Raman and vibrating sample magnetometer (VSM). The resulting TiO2/magnetite reduced graphene oxide (MRGT) composite demonstrated intrinsic visible light photocatalytic activity, on degradation of tartrazine (TZ) dye from a synthetic aqueous solution. Specifically, it exhibits higher photocatalytic activity than magnetite reduced graphene oxide (MRG) and TiO2 nanoparticles. The photocatalytic degradation of TZ dye when using MRG and TiO2 for 3 h under visible light was 35% and 10% respectively, whereas for MRGT it was more than 95%. The higher photocatalytic efficiency of MRGT is due to the existence of reduced graphene oxide and magnetite which enhances the photocatalytic efficiency of the composite in visible light towards the degradation of harmful soluble azo dye (tartrazine).
Pál, Edit; Hornok, Viktória; Sebok, Dániel; Majzik, Andrea; Dékány, Imre
2010-08-01
Lysozyme/gold thin layers were prepared by layer-by-layer (LbL) self-assembly method. The build-up of the films was followed by UV-vis-absorbance spectra, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) techniques. The structural property of films was examined by X-ray diffraction (XRD) measurements, while their morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). It was found that gold nanoparticles (NPs) had cubic crystalline structure, the primary particles form aggregates in the thin layer due to the presence of lysozyme molecules. The UV-vis measurements prove change in particle size while the colour of the film changes from wine-red to blue. The layer thickness of films was determined using the above methods and the loose, porous structure of the films explains the difference in the results. The vapour adsorption property of hybrid layers was also studied by QCM using different saturated vapours and ammonia gas. The lysozyme/Au films were most sensitive for ammonia gas among the tested gases/vapours due to the strongest interaction between the functional groups of the protein. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vanalakar, S. A.; Agawane, G. L.; Kamble, A. S.; Patil, P. S.; Kim, J. H.
2017-12-01
Cu2ZnSnSe4 (CZTSe) has attracted intensive attention as an absorber material for the thin-film solar cells due to its high absorption coefficient, direct band gap, low toxicity, and abundance of its constituent elements. In this study nanostructured CZTSe nanoparticles are prepared via green hydrothermal synthesis without using toxic solvents, organic amines, catalysts or noxious chemicals. The structural, optical, and morphological properties of CZTSe nanostructured powder were studied using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy, and transmission electron microscope (TEM) techniques. Raman peaks at 170, 195, and 232 cm-1 confirm the formation of pure phase CZTSe nanostructured particles. In addition, the EDS and XPS results confirm the appropriate chemical purity of the annealed CZTSe nanoparticles. Meanwhile, the TEM analysis showed the presence of phase pure oval like CZTSe particle with size of about 80-140 nm. The UV-Vis-NIR absorption spectra analysis showed that the optical band gap of CZTSe nanostructured particles is about 1.14 eV. This band gap energy is close to the optimum value of a photovoltaic solar cell absorber material.
Precursor effect on the property and catalytic behavior of Fe-TS-1 in butadiene epoxidation
NASA Astrophysics Data System (ADS)
Wu, Mei; Zhao, Huahua; Yang, Jian; Zhao, Jun; Song, Huanling; Chou, Lingjun
2017-11-01
The effect of iron precursor on the property and catalytic behavior of iron modified titanium silicalite molecular sieve (Fe-TS-1) catalysts in butadiene selective epoxidation has been studied. Three Fe-TS-1 catalysts were prepared, using iron nitrate, iron chloride and iron sulfate as precursors, which played an important role in adjusting the textural properties and chemical states of TS-1. Of the prepared Fe-TS-1 catalysts, those modified by iron nitrate (FN-TS-1) exhibited a significant enhanced performance in butadiene selective epoxidation compared to those derived from iron sulfate (FS-TS-1) or iron chloride (FC-TS-1) precursors. To obtain a deep understanding of their structure-performance relationship, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Temperature programmed desorption of NH3 (NH3-TPD), Diffuse reflectance UV-Vis spectra (DR UV-Vis), Fourier transformed infrared spectra (FT-IR) and thermal gravimetric analysis (TGA) were conducted to characterize Fe-TS-1 catalysts. Experimental results indicated that textural structures and acid sites of modified catalysts as well as the type of Fe species influenced by the precursors were all responsible for the activity and product distribution.
Khafajeh, R; Molaei, M; Karimipour, M
2017-06-01
In this study, ZnSe and ZnSe:Cu quantum dots (QDs) were synthesized using Na 2 SeO 3 as the Se source by a rapid and room temperature photochemical (UV-assisted) approach. Thioglycolic acid (TGA) was employed as the capping agent and UV illumination activated the chemical reactions. Synthesized QDs were successfully characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL) and UV-visible (UV-vis) spectroscopy, Fourier transform-infrared (FT-IR), and energy dispersive X-ray spectroscopy (EDX). XRD analysis demonstrated the cubic zinc blend phase QDs. TEM images indicated that round-shaped particles were formed, most of which had a diameter of about 4 nm. The band gap of the ZnSe QDs was higher than that for ZnSe in bulk. PL spectra indicated an emission with three peaks related to the excitonic, surface trap states and deep level (DL) states. The band gap and QD emission were tunable only by UV illumination time during synthesis. ZnSe:Cu showed green emission due to transition of electrons from the Conduction band (CB) or surface trap states to the 2 T 2 acceptor levels of Cu 2 + . The emission was increased by increasing the Cu 2 + ion concentration, such that the optimal value of PL intensity was obtained for the nominal mole ratio of Cu:Zn 1.5%. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Arockia doss, M.; Rajarajan, G.; Thanikachalam, V.; Selvanayagam, S.; Sridhar, B.
2017-01-01
A piperidin-4-one containing picrate 3,5-diethyl -2,6-di(thiophen-2-yl)piperidin-4-on-1-ium picrate [3,5-DPPP] was synthesized. The molecular structure of 3,5-DPPP was confirmed by FT-IR, NMR, Uv-Vis, single crystal XRD analysis and DFT and HF methods with 6-31G(d,p) basis set. The XRD data confirm the transfer of protons from picric acid (O2) to piperidin-4-one ring (N1). The 3,5-DPPP compound is stabilized by the presence of intermolecular and intramolecular hydrogen bonds (N-H⋯O, C-H⋯S and C-H⋯O). Density functional theory and HF calculations have been used widely for calculating a wide variety of molecular properties such as optimized structure, FT-IR and Uv-Vis spectra, and provided reliable results which are in agreement with experimental data. The charge density data have been used to understand the properties of molecular systems. Furthermore, several quantum chemical insights have been obtained in the form of the total and partial density of states, the HOMO-LUMO energy gap and electrostatic potential map etc. In addition, the polarizability and first hyperpolarizability were calculated to show the potential applications of 3,5-DPPP in nonlinear optics.
Synthesis of Cu/CuO nanoparticles in mesoporous material by solid state reaction
NASA Astrophysics Data System (ADS)
Sohrabnezhad, Sh.; Valipour, A.
2013-10-01
The Mobil Composition of Matter No. 41 (MCM-41) containing 1.0 and 5.0 wt.% of Cu was synthesized under solid state reaction. The calcinations of samples were done at two different temperatures, 500 and 300 °C. X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) were used for samples characterization. Powder X-ray diffraction showed that when Cu(CH3COO)2 content is about 1.0 wt.% in Cu/MCM-41, the guest CuO-NPs and copper ions is formed on the silica channel wall, and more exists in the crystalline state. When Cu(CH3COO)2 content exceeds this value (5.0 wt.%), CuO nanoparticles and Cu2+ ions can be observed in low crystalline state. From the diffuse reflectance spectra it was confirmed that 5 wt.% Cu/MCM-41 sample calcined at 500 °C show plasmon resonance band due to Cu nanoparticles in the range between 500 and 600 nm and small copper clusters Cun in 450 nm. It also shows that some of the Cu2+ ions are present octahedrally in extraframework position in all samples. Both fourier transform infrared and diffuse reflectance spectra indicate that some of Cu2+ ions are tetrahedrally within the framework position in 1 wt.% Cu/MCM-41 samples. TEM images indicated that nanoparticles size of CuO is in range of 30-40 nm.
Progression in structural, magnetic and electrical properties of La-doped group IV elements
NASA Astrophysics Data System (ADS)
Deepapriya, S.; Annie Vinosha, P.; Rodney, John D.; Jerome Das, S.
2018-04-01
Progression of group IV elements such as zinc ferrite (ZnFe2O4), cobalt ferrite (CoFe2O4) was synthesized by doping lanthanum (La), via adopting a facile co-precipitation method. Doping hefty rare earth ion in spinel structure can amend to the physical properties of the lattice, which can be used in the enhancement of magnetic and electrical properties of the as-synthesized nanomaterial, it is vital to metamorphose and optimize its micro structural and magnetic features. The structural properties of the samples was analysed by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), Transmission electron microscopy (TEM) and UV-visible spectral analysis (UV-vis) reveals the optical property and optical band gap. The magnetic properties were evaluated using a vibrating sample magnetometer (VSM), the presence of functional group was confirmed by FTIR. XRD analyses elucidates that the synthesized samples zinc and cobalt had a spinel structure. From TEM analyses the morphology and diameter of the particle was observed. The substituted rare earth ions in Zinc ferrite inhibit the grain growth of the materials in an efficient manner compared with that of the Cobalt ferrite.
NASA Astrophysics Data System (ADS)
Li, Huijie; Meng, Fanming; Gong, Jinfeng; Fan, Zhenghua; Qin, Rui
2018-03-01
CeO2 nanospheres with the core-shell nanostructure have been successfully synthesized by a template-free hydrothermal method. The structures, morphologies and optical properties of core-shell CeO2 nanospheres were analyzed by X-ray diffraction (XRD), TG, Fourier transform infrared spectroscopy, XRD, EDS, SAED, scanning electron microscopy and transmission electron microscopy, UV-Vis diffuse reflectance spectra, Raman analyses. The degradation efficiencies of core-shell CeO2 nanospheres for methyl orange were as high as 93.49, 95.67 and 98.28% within 160 min, and the rates of photo degradation of methyl orange by core-shell CeO2 nanospheres under UV-light were 0.01693, 0.01782 and 0.02375 min-1. Methyl orange was degraded in photocatalytic oxidation processes, which mainly gave the credit to a large number of reactive species including h+, surface superoxide species ·O2 -, and ·OH radicals. The core-shell structure, small crystallite size and the conversion between Ce3+ and Ce4+ of CeO2 nanospheres were of importance for its catalytic activity. These results demonstrated the possibility of improving the efficient catalysts of the earth abundant CeO2 catalysts.
Optical and superparamagnetic behavior of ZnFe2O4 nanoparticles
NASA Astrophysics Data System (ADS)
Lal, Ganesh; Punia, Khushboo; Dolia, S. N.; Kumar, Sudhish
2018-05-01
Nanoparticles of zinc ferrite have been synthesized using a low temperature citrate sol-gel route and characterized by powder X-ray diffraction (XRD), Raman & UV-Vis-NIR spectroscopic and SQUID magnetometry measurements. Analysis of XRD pattern and Raman spectrum confirmed that the synthesized ZnFe2O4 sample crystallizes in single phase fcc spinel ferrite structure and the average particle size of nanoparticles is estimated to 24nm. Optical absorption study shows that maximum photo absorption take place in the visible band and peaking in UV band at 206nm and the band gap energy is estimated to Eg = 2.1eV. Zero Field Cooled (ZFC) and Field Cooled (FC) modes of magnetization down to 5K and in fields up to 20kOe shows that ZnFe2O4 nanoparticles exhibits superparamagnetism with high magneto-crystalline anisotropy and high magnetization. Small difference of 9K between the separation temperature TS=˜30K and blocking temperature TB= 21K are suggestive of the formation of ferromagnetic clusters and a narrow particle size distribution of the nanoparticles in superparamagnetic ZnFe2O4 nanoparticles.
Sadeghi, Babak; Gholamhoseinpoor, F
2015-01-05
Biomolecules present in plant extracts can be used to reduce metal ions to nanoparticles in a single-step green synthesis process. This biogenic reduction of metal ion to base metal is quite rapid, readily conducted at room temperature and pressure, and easily scaled up. Mediated Synthesis by plant extracts is environmentally benign. The involved reducing agents include the various water soluble plant metabolites (e.g. alkaloids, phenolic compounds, terpenoids) and co-enzymes. Silver (Ag) nanoparticles have the particular focus of plant-based syntheses. Extracts of a diverse range of Ziziphora tenuior (Zt) have been successfully used in making nanoparticles. The aim of this study was to investigate the antioxidant properties of this plant and its ability to synthesize silver nanoparticles. Z.tenuior leaves were used to prepare the aqueous extract for this study. Silver nanoparticles were characterized with different techniques such as UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 8 to 40 nm. FT-IR spectroscopy revealed that silver nanoparticles were functionalized with biomolecules that have primary amine group (NH₂), carbonyl group, -OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of silver nanoparticles with size of 38 nm. In addition to plant extracts, live plants can be used for the synthesis. Here were view the methods of making nanoparticles using plant extracts. The scanning electron microscopy (SEM) implies the right of forming silver nanoparticles. The results of TEM, SEM, FT-IR, UV-VIS and XRD confirm that the leaves extract of Zt can synthesis silver nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.
Preparation and antibacterial properties of titanium-doped ZnO from different zinc salts
2014-01-01
To research the relationship of micro-structures and antibacterial properties of the titanium-doped ZnO powders and probe their antibacterial mechanism, titanium-doped ZnO powders with different shapes and sizes were prepared from different zinc salts by alcohothermal method. The ZnO powders were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED), and the antibacterial activities of titanium-doped ZnO powders on Escherichia coli and Staphylococcus aureus were evaluated. Furthermore, the tested strains were characterized by SEM, and the electrical conductance variation trend of the bacterial suspension was characterized. The results indicate that the morphologies of the powders are different due to preparation from different zinc salts. The XRD results manifest that the samples synthesized from zinc acetate, zinc nitrate, and zinc chloride are zincite ZnO, and the sample synthesized from zinc sulfate is the mixture of ZnO, ZnTiO3, and ZnSO4 · 3Zn (OH)2 crystal. UV-vis spectra show that the absorption edges of the titanium-doped ZnO powders are red shifted to more than 400 nm which are prepared from zinc acetate, zinc nitrate, and zinc chloride. The antibacterial activity of titanium-doped ZnO powders synthesized from zinc chloride is optimal, and its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) are lower than 0.25 g L−1. Likewise, when the bacteria are treated by ZnO powders synthesized from zinc chloride, the bacterial cells are damaged most seriously, and the electrical conductance increment of bacterial suspension is slightly high. It can be inferred that the antibacterial properties of the titanium-doped ZnO powders are relevant to the microstructure, particle size, and the crystal. The powders can damage the cell walls; thus, the electrolyte is leaked from cells. PMID:24572014
Netala, Vasudeva Reddy; Kotakadi, Venkata Subbaiah; Bobbu, Pushpalatha; Gaddam, Susmila Aparna; Tartte, Vijaya
2016-12-01
The present study reports that the biosynthesis of AgNPs using an endophytic fungus isolated from the ethnomedicinal plant Centella asiatica. The endophytic fungus was identified as Aspergillus versicolor ENT7 based on 18S rRNA gene sequencing (NCBI Accession number KF493864). The AgNPs synthesized were characterized by UV-visible spectroscopy, Fourier transform infra-red spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), particle size analyzer, and zeta potential measurements. The UV-Vis absorption spectra showed the peak at 429 nm which confirmed the synthesis of AgNPs. TEM analysis revealed that the AgNPs were spherical in shape with 3-40 nm in size; similar results were also obtained by Horiba particle size analyzer with 5-40 nm in size. The synthesized AgNPs were highly stable due to their high negative zeta potential value of -38.2 mV. XRD studies showed (111), (200), (220), (311), and (222) planes of the face-centered cubic (FCC) lattice, indicating the crystalline nature of the AgNPs. Selected area electron diffraction (SAED) pattern of the AgNPs showed five circular fringes which were in accordance with XRD data and confirmed the formation of high crystalline nature of AgNPs. FTIR measurements indicated the peaks at 3273, 2925, 1629, 1320, and 1020 cm -1 corresponding to different functional groups possibly involved in the synthesis and stabilization of AgNPs. The synthesized AgNPs exhibited effective free radical scavenging activity with the IC50 value of 60.64 µg/ml. The synthesized AgNPs were found to be highly toxic against both gram-positive and gram-negative bacteria and also showed a very good antifungal activity.
Synthesis and characterization of CdTe nanostructures grown by RF magnetron sputtering method
NASA Astrophysics Data System (ADS)
Akbarnejad, Elaheh; Ghoranneviss, Mahmood; Hantehzadeh, Mohammad Reza
2017-08-01
In this paper, we synthesize Cadmium Telluride nanostructures by radio frequency (RF) magnetron sputtering system on soda lime glass at various thicknesses. The effect of CdTe nanostructures thickness on crystalline, optical and morphological properties has been studied by means of X-ray diffraction (XRD), UV-VIS-NIR spectrophotometry, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), respectively. The XRD parameters of CdTe nanostructures such as microstrain, dislocation density, and crystal size have been examined. From XRD analysis, it could be assumed that increasing deposition time caused the formation of the wurtzite hexagonal structure of the sputtered films. Optical properties of the grown nanostructures as a function of film thickness have been observed. All the films indicate more than 60% transmission over a wide range of wavelengths. The optical band gap values of the films have obtained in the range of 1.62-1.45 eV. The results indicate that an RF sputtering method succeeded in depositing of CdTe nanostructures with high purity and controllable physical properties, which is appropriate for photovoltaic and nuclear detector applications.
Narayanan, Kannan Badri; Park, Hyun Ho; Sakthivel, Natarajan
2013-12-01
Green synthesis of extracellular mycogenic silver nanoparticles using the fungus, Cylindrocladium floridanum is reported. The synthesized mycogenic silver nanoparticles were characterized using UV-Vis absorption spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) techniques. The nanoparticles exhibit fcc structure with Bragg's reflections of (111), (200), (220) and (311) was evidenced by XRD pattern, high-resolution TEM lattice fringes and circular rings in selected-area electron diffraction (SAED) pattern. The morphology of nanoparticles was roughly spherical in shape with an average size of ca. 25 nm. From FTIR spectrum, it was found that the biomolecules with amide I and II band were involved in the stabilization of nanoparticles. These mycogenic silver nanoparticles exhibited the homogeneous catalytic potential in the reduction of pollutant, 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using sodium borohydride, which followed a pseudo-first-order kinetic model. Thus, the synthesis of metal nanoparticles using sustainable microbial approach opens up possibilities in the usage of mycogenic metal nanoparticles as catalysts in various chemical reactions. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.
2018-04-01
Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.
Crystal growth, characterization and theoretical studies of 4-aminopyridinium picrate
NASA Astrophysics Data System (ADS)
Aditya Prasad, A.; Muthu, K.; Rajasekar, M.; Meenatchi, V.; Meenakshisundaram, S. P.
2015-01-01
Single crystals of 4-aminopyridinium picrate (APP) were grown by slow evaporation of a mixed solvent system methanol-acetone (1:1, v/v) containing equimolar quantities of 4-aminopyridine and picric acid. Structure is elucidated by single crystal XRD analysis and the crystal belongs to monoclinic system with four molecules in the unit cell (space group P21/c) and the cell parameter values are, a = 8.513 Å (±0.015), b = 11.33 Å (±0.02), c = 14.33 Å (±0.03) and β = 104.15° (±0.019), V = 1340 A3 (±6) with refined R factors R1 = 0.0053 and wR2 = 0.0126. The electron density mapping is interpreted to find coordinates for each atom in the crystallized molecules. The various functional groups present in the molecule are confirmed by FT-IR analysis. UV-visible spectral analysis was used to determine the band gap energy of 4-aminopyridinium picrate. Powder X-ray diffraction pattern reveals the crystallinity of the as-grown crystal and it closely resembles the simulated XRD from the single crystal XRD analysis. Scanning electron microscopy reveals the surface morphology of the grown crystal. Optimized geometry is derived by Hartree-Fock theory calculations and the first-order molecular hyperpolarizability (β), theoretically calculated bond length, bond angles and excited state energy from theoretical UV-vis spectrum were estimated.
NASA Astrophysics Data System (ADS)
Georgieva, J.; Valova, E.; Armyanov, S.; Tatchev, D.; Sotiropoulos, S.; Avramova, I.; Dimitrova, N.; Hubin, A.; Steenhaut, O.
2017-08-01
Highly ordered TiO2 nanotube arrays (TNTA) have attracted much attention due to the excellent photocatalytic, optical and electrical properties. However, their absorption range is limited to ultraviolet (UV) spectrum only due to the wide band gap (3.2 eV). One of the strategies to overcome this problem is doping with boron and nitrogen. They are produced via titanium sheet anodization and subsequent electrochemical treatment of titania in an electrolyte containing boric acid. The as-prepared B-TNTA are annealed in N2 atmosphere at 500 °C for 2 h to obtain B,N-TNTA. The samples are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS). The B,N-TNTA consist of uniform and well aligned nanotubes with an average inner diameter of 80-100 nm and a length not exceeding 1 μm. The photocurrent response measurements of undoped TNTA, N-doped and B,N-co-doped samples are performed under UV and visible light (Vis) illumination and a comparison is made. The obtained results show that the B,N-doping leads to remarkable photocurrent enhancement and better photocatalytic activity for methyl orange (MO) degradation due to the synergistic effects of B,N-co-doping and lower electron-hole recombination rates.
NASA Astrophysics Data System (ADS)
Pan, Jinbo; Liu, Jianjun; Zuo, Shengli; Khan, Usman Ali; Yu, Yingchun; Li, Baoshan
2018-06-01
Z-scheme CdS/CQDs/BiOCl heterojunction was synthesized by a facile region-selective deposition process. Owing to the electronegativity of the groups on the surface of Carbon Quantum Dots (CQDs), they can be sandwiched between CdS and BiOCl, based on the stepwise region-selective deposition process. The samples were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoelectrochemical measurements and photoluminescence (PL). The results indicate that CQDs with size of 2-5 nm and CdS nanoparticles with size of 5-10 nm dispersed uniformly on the surface of cuboid BiOCl nanosheets. The photocatalytic performance tests reveal that the CdS/CQDs/BiOCl heterojunction exhibits much higher photocatalytic activity than that of BiOCl, CdS/BiOCl and CQDs/BiOCl for Rhodamine B (RhB) and phenol photodegradation under visible and UV light illumination, respectively. The enhanced photocatalytic performance should be attributed to the Z-scheme structure of CdS/CQDs/BiOCl, which not only improves visible light absorption and the migration efficiency of the photogenerated electron-holes but also keeps high redox ability of CdS/CQDs/BiOCl composite.
Mendiola-Alvarez, S Y; Guzmán-Mar, J L; Turnes-Palomino, G; Maya-Alejandro, F; Hernández-Ramírez, A; Hinojosa-Reyes, L
2017-05-01
Photocatalytic degradation of 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous solution using Cr(III)-doped TiO 2 under UV and visible light was investigated. The semiconductor material was synthesized by a microwave-assisted sol-gel method with Cr(III) doping contents of 0.02, 0.04, and 0.06 wt%. The catalyst was characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), nitrogen physisorption, UV-Vis diffuse reflectance spectroscopy (DRS), and atomic absorption spectroscopy (AAS). The photocatalytic activity for the photodegradation of MCPA was followed by reversed-phase high-performance liquid chromatography (HPLC) and total organic carbon (TOC) analysis. The intermediates formed during degradation were identified using gas chromatography-mass spectrometry (GC-MS). Chloride ion evolution was measured by ion chromatography. Characterization results showed that Cr(III)-doped TiO 2 materials possessed a small crystalline size, high surface area, and mesoporous structure. UV-Vis DRS showed enhanced absorption in the visible region as a function of the Cr(III) concentration. The Cr(III)-doped TiO 2 catalyst with 0.04 wt% of Cr(III) was more active than bare TiO 2 for the degradation of MCPA under both UV and visible light. The intermediates identified during MCPA degradation were 4-chloro-2-methylphenol (CMP), 2-(4-hydroxy-2-methylphenoxy) acetic acid (HMPA), and 2-hydroxybuta-1,3-diene-1,4-diyl-bis (oxy)dimethanol (HBDM); the formation of these intermediates depended on the radiation source.
Nanostructure of aluminium (Al) - Doped zinc oxide (AZO) thin films
NASA Astrophysics Data System (ADS)
Hussin, Rosniza; Husin, M. Asri
2017-12-01
Aluminium (Al)-doped Zinc Oxide (ZnO) was deposited on glass substrates by using the sol-gel dip coating technique. Next, AZO sol-gel solution was produced via sol-gel method. Al was used as doped element with molar ratios of 1%, 2%, and 3%, while the calcination temperatures were set at 400°C, 500°C, and 600°C for 2 hours. In fact, characterization was carried out in order to determine the effect of calcination temperature and molar ratio of doping by using several techniques, such as X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Field Emission Scanning Electron Microscopy (FESEM), and Ultraviolet-Visible spectroscopy (UV-Vis). XRD was performed to investigate the crystal structure in which the ZnO was in wurtzite hexagonal form. Next, Energy Dispersive Spectroscopy (EDS) was used to determine the composition of thin films where the result revealed the existence of zinc, oxygen, and aluminium. The roughness of the deposited film was later measured by using the AFM approach where the findings indicated increment in RMS from 8.496 nm to 35.883 nm as the temperature was increased. Additionally, FESEM was carried out to look into the microstructure surfaces of the deposited AZO thin film for increased temperature caused the particle to grow bigger for all molar ratio of dopant. Lastly, UV-Vis was conducted to study the optical properties of AZO, in which the result demonstrated that AZO thin film possessed the highest transmittance percentage among all samples above 90% with band gap value that ranged from 3.25 eV to 3.32 eV.
The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan.
Potara, Monica; Maniu, Dana; Astilean, Simion
2009-08-05
In this study we present a clean, nontoxic, environmentally friendly synthesis procedure to generate a large variety of gold nanoparticles (GNPs) by using chitosan, a biocompatible, biodegradable, natural polymer, as reducing and stabilizing agent. The formation of gold-chitosan nanocomposites was characterized by UV-vis absorption spectroscopy, transmission electron microscopy (TEM), x-ray diffraction (XRD) and Raman spectroscopy. The results show that the reaction temperature plays a crucial role in controlling the size, shape and crystalline structure of GNPs. In addition, it is demonstrated that chitosan can perform as a scaffold for the assembly of GNPs, which were successfully applied as substrate for surface-enhanced Raman scattering (SERS). To test the SERS activity, a relevant biological molecule--tryptophan--was adopted as the analyte.
NASA Astrophysics Data System (ADS)
Endo, A.; Sakida, S.; Benino, Y.; Nanba, T.
2011-10-01
Surface crystallized glass ceramics with fresnoite (Ba2TiSi2O8) phase were prepared by conventional heat treatment of 30BaO-20TiO2-50SiO2 glass together with ultrasonic surface treatment (UST) technique. The precursor glass was fully crystallized in a bulk form without any cracks, and the optical transparency and crystallographic orientation of the crystalline layers were evaluated by UV-Vis spectroscopy and XRD diffraction analyses, respectively. These properties were both enhanced significantly by applying UST using fresnoite/water suspension before the crystallization process, which is advantage for nonlinear optical applications of bulk glass ceramics. The effects of UST on the crystallization behavior were investigated by applying UST with various conditions.
NASA Astrophysics Data System (ADS)
Nandhini, S.; Murugakoothan, P.
2018-04-01
Zinc Guanidinium Sulfate (ZGuS), a semi-organic single crystal, was synthesized using slow evaporation solution growth technique. It is a non-centrosymmetric crystal with space group I4 ¯2d . The crystalline nature of the crystal and the strain were determined using powder X-ray diffraction analysis. The crystalline perfection of the grown crystal was revealed using HR-XRD analysis. The UV-vis-NIR transmittance spectrum depicts 60% transparency with lower-cut off wavelength of 210 nm. The emission spectrum of the crystal was determined using photoluminescence study. Piezoelectricity was confirmed by determining the piezoelectric charge coefficient (d33). These findings shows that the title compound can be employed for photonic and transducer applications.
NASA Astrophysics Data System (ADS)
Wang, Xia; Li, Zongbao; Jia, Lichao; Xing, Xiaobo
2018-05-01
A simple strategy to greatly increase the photocatalytic ability of nanocrystalline anatase has been put forward to fabricate efficient TiO2-based photocatalysts under visible irradiation. By surface modification with V ion, samples with different ratios were synthesized by using an incipient wetness impregnation method. The as-prepared specimens were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectroscopy. The photocatalytic activities were evaluated by using methylene blue degradations. Meanwhile, the optimized loading structure and electronic structures were calculated by using the density function theory (DFT). This work should provide a practical route to reasonably design and synthesize high-performance TiO2-based nanostructured photocatalysts.
Effect of annealing temperature on titania nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manikandan, K., E-mail: sanjaymani367@gmail.com; Arumugam, S., E-mail: sanjaymani367@gmail.com; Chandrasekaran, G.
2014-04-24
Titania polycrystalline samples are prepared by using sol-gel route hydrolyzing a alkoxide titanium precursor under acidic conditions. The as prepared samples are treated with different calcination temperatures. The anatase phase of titania forms when treated below 600°C, above that temperature the anatase phase tends to transform into the rutile phase of titania. The experimental determination of average grain size, phase formation, lattice parameters and the crystal structures of titania samples at different calcinations is done using X-ray diffraction (XRD). Fourier Transform Infra-red Spectroscopy (FTIR), UV-vis-NIR spectroscopy and Scanning Electron Microscopy (SEM) and Energy Dispersive Analysis X-ray are used to characterizemore » the samples to bring impact on the respective properties.« less
Structural and optical properties of NiFe2O4 synthesized via green technology
NASA Astrophysics Data System (ADS)
Patel, S.; Saleem, M.; Varshney, Dinesh
2018-05-01
The nanoparticles of NiFe2O4 were successfully synthesized via green technology using banana peel extract as the catalyst as well as the medium for reaction technique is reported. Analysis of X-ray diffraction spectrum revealed the cubic structure for the prepared spinel ferrite samples crystallized into cubic spinel structure with the space group Fd3m. The Retvield refinement was carried out which obeyed the results obtained from the XRD spectrum analysis of the sample. Raman spectrum provided confirmation for the spinel structure formation and five active Raman modes were observed. Since the optical band-gap value shows inverse response to the crystallite size, The UV-Vis spectrum study confirmed dual but reduced band-gap value.
Influence of Mn doping on structural, dielectric and optical properties of neodymium orthoferrite
NASA Astrophysics Data System (ADS)
Somvanshi, Anand; Manzoor, Samiya; Husain, Shahid
2018-05-01
We report the study of structural, dielectric and optical properties of nanocrystalline samples of NdFe1-xMnxO3 (x=0, 0.1 and 0.2) synthesized using solid state reaction route. X-ray diffraction (XRD) patterns are recorded to confirm phase purity. These samples conform in orthorhombic crystal symmetry with Pbnm space group. The lattice parameters are determined using Rietveld refinement. The crystallite size is calculated using Scherrer formula and that is found to lie in the range of 40-50 nm. The dielectric constant (ɛ') decreases with the increase in frequency as well as Mn doping concentration. Energy bandgap (Eg) as determined using UV-Vis. absorption spectra, is found to decrease with the increase in Mn doping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botewad, S. N.; Pahurkar, V. G.; Muley, G. G., E-mail: gajananggm@yahoo.co.in
2016-05-06
The fabrication and study of a cladding modified fiber optic intrinsic urea biosensor based on evanescent wave absorbance has been presented. The sensor was prepared using cladding modification technique by removing a small portion of cladding of an optical fiber and modifying with an active cladding of porous polyaniline-boric acid (PBA) matrix to immobilize enzyme-urease through cross-linking via glutaraldehyde. The nature of as-synthesized and deposited PBA film on fiber optic sensing element was studied by ultraviolet-visible (UV-vis) spectroscopy and X-ray diffraction (XRD) analysis. The performance of the developed sensor was studied for different urea concentrations in solutions prepared in phosphatemore » buffer.« less
Second harmonic generation and crystal growth of new chalcone derivatives
NASA Astrophysics Data System (ADS)
Patil, P. S.; Dharmaprakash, S. M.; Ramakrishna, K.; Fun, Hoong-Kun; Sai Santosh Kumar, R.; Narayana Rao, D.
2007-05-01
We report on the synthesis, crystal structure and optical characterization of chalcone derivatives developed for second-order nonlinear optics. The investigation of a series of five chalcone derivatives with the second harmonic generation powder test according to Kurtz and Perry revealed that these chalcones show efficient second-order nonlinear activity. Among them, high-quality single crystals of 3-Br-4'-methoxychalcone (3BMC) were grown by solvent evaporation solution growth technique. Grown crystals were characterized by X-ray powder diffraction (XRD), laser damage threshold, UV-vis-NIR and refractive index measurement studies. Infrared spectroscopy, thermogravimetric analysis and differential thermal analysis measurements were performed to study the molecular vibration and thermal behavior of 3BMC crystal. Thermal analysis does not show any structural phase transition.
NASA Astrophysics Data System (ADS)
Soliman, Y. S.
2014-09-01
A new gel dosimeter based on a radiation-sensitive silver nitrate was formulated and investigated for its potential use in γ-radiation treatment, from 3 to 100 Gy. This gel matrix is analyzed by UV-vis spectrophotometry and X-ray diffraction (XRD). Subjecting the gel to γ-rays produces Ag nanoparticles that exhibit a plasmon resonance absorption band at 450 nm. The intensity of this band increases linearly with the increase of absorbed dose up to 100 Gy. Stability of Ag nanoparticle in the dark at 6 °C is good. The overall uncertainty (2σ) of the gel dosimeter is estimated as ~4.65% in the dose range of 5-100 Gy.
Colloidal synthesis of monodispersed ZnS and CdS nanocrystals from novel zinc and cadmium complexes
NASA Astrophysics Data System (ADS)
Onwudiwe, Damian C.; Mohammed, Aliyu D.; Strydom, Christien A.; Young, Desmond A.; Jordaan, Anine
2014-06-01
Monodispersed spherical and hexagonal shaped ZnS and CdS nanocrystals respectively, have been synthesized using novel heteroleptic complexes of xanthate (S2CObu) and dithiocarbamate (S2CNMePh). The nanocrystals were prepared via colloidal route and stabilized in hexadecylamine (HDA). The morphology of the as-prepared nanocrystals was characterized using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and powdered X-ray diffraction (p-XRD) analysis. An average diameter of 7.2 nm and 8.6 nm were obtained for the ZnS and CdS respectively. The optical properties of the nanoparticles studied by UV-vis and photoluminescence (PL) spectroscopy showed a blue shift in the absorption spectra, and band edge emission respectively.
Synthesis and dielectric properties of zinc oxide nanoparticles using a biotemplate
DOE Office of Scientific and Technical Information (OSTI.GOV)
P, Sharmila P, E-mail: sharmilavishram@gmail.com; Tharayil, Nisha J., E-mail: nishajohntharayil@gmail.com
Zinc Oxide nanoparticles are synthesized using DNA as capping agent. Zinc oxide nanoparticles are synthesized using DNA as a capping agent. Structural and morphological characterizations are done using SEM, FTIR and XRD. The particle size and lattice parameters are calculated from the diffraction data. The optical properties are studied using UV-Vis absorption spectroscopy and bandgap variation with temperature is determined. The dielectric property of nanoparticles is studied by varying temperature and frequency. The dielectric constant and dispersion parameters are found out. Method of Cole-Cole analysis is used to study the high temperature dispersion of relaxation time. The variation of bothmore » AC and DC conductivity are studied and activation energy calculated.« less
NASA Astrophysics Data System (ADS)
Choudhary, Manoj Kumar; Kataria, Jyoti; Cameotra, Swaranjit Singh; Singh, Jagdish
2016-01-01
The significant antibacterial activity of silver nanoparticles draws the major attention toward the present nanobiotechnology. Also, the use of plant material for the synthesis of metal nanoparticles is considered as a green technology. In this context, a non-toxic, eco-friendly, and cost-effective method has been developed for the synthesis of silver nanoparticles using seed extract of mung beans ( Vigna radiata). The synthesized nanoparticles have been characterized by UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), atomic absorption spectroscopy (AAS), and X-ray diffraction (XRD). The UV-visible spectrum showed an absorption peak at around 440 nm. The different types of phytochemicals present in the seed extract synergistically reduce the Ag metal ions, as each phytochemical is unique in terms of its structure and antioxidant function. The colloidal silver nanoparticles were observed to be highly stable, even after 5 months. XRD analysis showed that the silver nanoparticles are crystalline in nature with face-centered cubic geometry and the TEM micrographs showed spherical particles with an average size of 18 nm. Further, the antibacterial activity of silver nanoparticles was evaluated by well-diffusion method and it was observed that the biogenic silver nanoparticles have an effective antibacterial activity against Escherichia coli and Staphylococcus aureus. The outcome of this study could be useful for nanotechnology-based biomedical applications.
As-synthesis of nanostructure AgCl/Ag/MCM-41 composite
NASA Astrophysics Data System (ADS)
Sohrabnezhad, Sh.; Pourahmad, A.
2012-02-01
In this work, we present the simple synthetic route for silver chloride/silver nanoparticles (AgCl/Ag-NPs) using as-synthesis method. The structure, composition and optical properties of such material were investigated by transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), X-ray diffraction (XRD) and FTIR. Powder X-ray diffraction showed that when AgNO 3 content is below 0.1 wt.% in synthetic gel, the guest AgCl/Ag-NPs is formed on the silica channel wall, and lower exists in the crystalline state. When AgNO 3 content exceeds this value, AgCl/Ag nanoparticles can be observed in high crystalline state. The absorption at 327 nm ascribed to the characteristic absorption of the AgCl semiconductor. Ag nanoparticles have been shown to exist in the nanocomposite at 375 nm. When AgNO 3 content is above 0.1 wt.% in synthetic gel, spectra exhibited stronger absorption at 450-700 nm that was attributed to the surface plasmonic resonance of silver nanoparticles. The obtained AgCl/Ag/MCM-41 sample exhibit enhanced photocatalytic activity for the degradation of methylene blue under visible-light irradiation.
Mahdavi, Reza; Ashraf Talesh, S Siamak
2017-11-01
In this research, the effect of ultrasonic irradiation power (0, 75, 150 and 200W) and time (0, 5, 15 and 20min) on the structure, morphology and photocatalytic activity of zinc oxide nanoparticles synthesized by sol-gel method was investigated. Crystallographic structures and the morphologies of the resultant powders were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns showed that ZnO samples were crystallized in their pure phase. The purity of samples was increased by increasing the ultrasonic irradiation power and time. Not only did ultrasonic irradiation unify both the structure and the morphology, but also it reduced the size and prohibited particles from aggregation. The optical behavior of the samples was studied by UV-vis spectroscopy. Photocatalytic activity of particles was measured by degradation of methyl orange under radiation of ultraviolet light. Ultrasound nanoparticles represented higher degradation compared to non-ultrasound ones. Copyright © 2017 Elsevier B.V. All rights reserved.
Estimation of lattice strain in nanocrystalline RuO2 by Williamson-Hall and size-strain plot methods
NASA Astrophysics Data System (ADS)
Sivakami, R.; Dhanuskodi, S.; Karvembu, R.
2016-01-01
RuO2 nanoparticles (RuO2 NPs) have been successfully synthesized by the hydrothermal method. Structure and the particle size have been determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). UV-Vis spectra reveal that the optical band gap of RuO2 nanoparticles is red shifted from 3.95 to 3.55 eV. BET measurements show a high specific surface area (SSA) of 118-133 m2/g and pore diameter (10-25 nm) has been estimated by Barret-Joyner-Halenda (BJH) method. The crystallite size and lattice strain in the samples have been investigated by Williamson-Hall (W-H) analysis assuming uniform deformation, deformation stress and deformation energy density, and the size-strain plot method. All other relevant physical parameters including stress, strain and energy density have been calculated. The average crystallite size and the lattice strain evaluated from XRD measurements are in good agreement with the results of TEM.
Annealing Temperature Dependent Structural and Optical Properties of RF Sputtered ZnO Thin Films.
Sharma, Shashikant; Varma, Tarun; Asokan, K; Periasamy, C; Boolchandani, Dharmendar
2017-01-01
This work investigates the effect of annealing temperature on structural and optical properties of ZnO thin films grown over Si 100 and glass substrates using RF sputtering technique. Annealing temperature has been varied from 300 °C to 600 °C in steps of 100, and different microstructural parameters such as grain size, dislocation density, lattice constant, stress and strain have been evaluated. The structural and surface morphological characterization has been done using X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). XRD analysis reveals that the peak intensity of 002 crystallographic orientation increases with increased annealing temperature. Optical characterization of deposited films have been done using UV-Vis-NIR spectroscopy and photoluminescence spectrometer. An increase in optical bandgap of deposited ZnO thin films with increasing annealing temperature has been observed. The average optical transmittance was found to be more than 85% for all deposited films. Photoluminiscense spectra (PL) suggest that the crystalline quality of deposited film has increased at higher annealing temperature.
Synthesis, optical properties and efficient photocatalytic activity of CdO/ZnO hybrid nanocomposite
NASA Astrophysics Data System (ADS)
Reddy, Ch Venkata; Babu, B.; Shim, Jaesool
2018-01-01
Pure CdO, ZnO and CdO/ZnO hybrid nanocomposite photocatalyst were synthesized using simple co-precipitation technique and studied in detail. The synthesized photocatalysts were characterized using several measurements such as X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), surface analysis (BET), diffuse reflectance UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, FT-IR, TG-DTA and photoluminescence (PL). The XRD results revealed that the hexagonal and cubic crystal structure of CdO and ZnO nanoparticles. The optical response for the composite showed the presence of separate absorption signature for CdO and ZnO in the visible region at about 510 nm and 360 nm respectively. The CdO/ZnO hybrid nanocomposite photocatalyst exhibited enhanced photocatalytic degradation activity compared to pristine CdO and ZnO. The enhanced photocatalytic activity may be due to the higher specific surface area and significantly reduced the electron-hole recombination rate.
NASA Astrophysics Data System (ADS)
Mahdieh, Mohammad Hossein; Mozaffari, Hossein
2017-10-01
In this paper, we investigate experimentally the effect of electric field on the size, optical properties and crystal structure of colloidal nanoparticles (NPs) of aluminum prepared by nanosecond Pulsed Laser Ablation (PLA) in deionized water. The experiments were conducted for two different conditions, with and without the electric field parallel to the laser beam path and the results were compared. To study the influence of electric field, two polished parallel aluminum metals plates perpendicular to laser beam path were used as the electrodes. The NPs were synthesized for target in negative, positive and neutral polarities. The colloidal nanoparticles were characterized using the scanning electron microscopy (SEM), UV-vis absorption spectroscopy and X-ray Diffraction (XRD). The results indicate that initial charge on the target has strong effect on the size properties and concentration of the synthesized nanoparticles. The XRD patterns show that the structure of produced NPs with and without presence of electric field is Boehmite (AlOOH).
Annealing effect on structural and optical properties of chemical bath deposited MnS thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulutas, Cemal, E-mail: cemalulutas@hakkari.edu.tr; Gumus, Cebrail
2016-03-25
MnS thin film was prepared by the chemical bath deposition (CBD) method on commercial microscope glass substrate deposited at 30 °C. The as-deposited film was given thermal annealing treatment in air atmosphere at various temperatures (150, 300 and 450 °C) for 1 h. The MnS thin film was characterized by using X-ray diffraction (XRD), UV-vis spectrophotometer and Hall effect measurement system. The effect of annealing temperature on the structural, electrical and optical properties such as optical constants of refractive index (n) and energy band gap (E{sub g}) of the film was determined. XRD measurements reveal that the film is crystallized inmore » the wurtzite phase and changed to tetragonal Mn{sub 3}O{sub 4} phase after being annealed at 300 °C. The energy band gap of film decreased from 3.69 eV to 3.21 eV based on the annealing temperature.« less
Highly Sensitive NiO Nanoparticle based Chlorine Gas Sensor
NASA Astrophysics Data System (ADS)
Arif, Mohd.; Sanger, Amit; Singh, Arun
2018-03-01
We have synthesized a chemiresistive sensor for chlorine (Cl2) gas in the range of 2-200 ppm based on nickel oxide (NiO) nanoparticles obtained by wet chemical synthesis. The nanoparticles were characterized by x-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and photoluminescence (PL) spectroscopy. XRD spectra of the sensing layer revealed the cubic phase of NiO nanoparticles. The NiO nanoparticle size was calculated to be ˜ 21 nm using a Williamson-Hall plot. The bandgap of the NiO nanoparticles was found to be 3.13 eV using Tauc plots of the absorbance curve. Fast response time (12 s) and optimum recovery time (˜ 27 s) were observed for 10 ppm Cl2 gas at moderate temperature of 200°C. These results demonstrate the potential application of NiO nanoparticles for fabrication of highly sensitive and selective sensors for Cl2 gas.
NASA Astrophysics Data System (ADS)
Kumar, Manish; Devi, Pooja; Shivling, V. D.
2017-08-01
Stable ruthenium nanoparticles (RuNPs) have been synthesized by the chemical reduction of ruthenium trichloride trihydrate (RuCl3 · 3H2O) using sodium borohydride (NaBH4) as a reductant and polyvinylpyrrolidone (PVP) as a protecting agent in the aqueous medium at room temperature. The nanoparticles thus prepared were characterized by their morphology and structural analysis from transmission electron microscopy (TEM), X-ray powder diffraction (XRD), UV-vis spectroscopy, Fourier transformation infrared and thermogravimetric analysis (TGA) techniques. The TEM image suggested a homogeneous distribution of PVP-protected RuNPs having a small average diameter of 2-4 nm with a chain-like network structure. The XRD pattern also confirmed that a crystallite size is around 2 nm of PVP-protected RuNPs having a single broad peak. The thermal stability studied using TGA, indicated good stability and the electrochemical properties of these nanoparticles revealed that saturation current increases for PVP-protected RuNPs/GC.
Ahmadi, Seyed Javad; Noori-Kalkhoran, Omid; Shirvani-Arani, Simindokht
2010-03-15
UO(2)(2+) ion-imprinted polymer materials used for solid-phase extraction were prepared by copolymerization of a ternary complex of uranyl ions with styrene and divinyl benzene in the presence of 2,2'-azobisisobutyronitrile. The imprinted particles were leached by HCl 6M. Various parameters in polymerization steps such as DVB/STY ratio, time of polymerization and temperature of polymerization were varied to achieve the most efficient uranyl-imprinted polymer. X-ray diffraction (XRD), infra-red spectroscopy (IR), thermo gravimetric analysis (TGA), UV-vis and nitrogen sorption were used to characterize the polymer particles. The XRD results showed that uranyl ions were completely removed from the polymer after leaching process. IR Analysis indicated that the N,N'-ethylenebis(pyridoxylideneiminato) remained intact in the polymer even after leaching. Some parameters such as pH, weight of the polymer, elution time, eluent volume and aqueous phase volume which affects the efficiency of the polymer were studied. (c) 2009 Elsevier B.V. All rights reserved.
Bankura, K P; Maity, D; Mollick, M M R; Mondal, D; Bhowmick, B; Bain, M K; Chakraborty, A; Sarkar, J; Acharya, K; Chattopadhyay, D
2012-08-01
A simple one-step rapid synthetic route is described for the preparation of silver nanoparticles by reduction of silver nitrate (AgNO3) using aqueous dextran solution which acts as both reducing and capping agent. The formation of silver nanoparticles is assured by characterization with UV-vis spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The absorbance of the silver nanoparticles is observed at 423 nm. The AFM image clearly shows the surface morphology of the well-dispersed silver nanoparticles with size range of 10-60 nm. TEM images show that the nanoparticles are spherical in shape with ∼5-10 nm dimensions. The crystallinity of Ag nanoparticles is assured by XRD analysis. The antimicrobial activity of as synthesized silver nanoparticles is tested against the bacteria, Bacillus subtilis, Bacillus cereus, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The bacterial growth is inhibited by gradual reduction of the concentration of the silver nanoparticles. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effect of RE (Nd3+, Sm3+) oxide on structural, optical properties of Na2O-Li2O-ZnO-B2O3 glass system
NASA Astrophysics Data System (ADS)
Hivrekar, Mahesh M.; Bhoyar, D. N.; Mande, V. K.; Dhole, V. V.; Solunke, M. B.; Jadhav, K. M.
2018-05-01
Zinc borate glass activated with rare earth oxide (Nd2O3, Sm2O3) of Na2O-Li2O-ZnO-B2O3 quaternary system has been prepared successfully by melt quenching method. The nucleation and growth of RE oxide were controlled temperature range 950-1000° C and rapid cooling at room temperature. The physical, structural and optical properties were characterized by using X-ray diffraction (XRD), SEM, Ultraviolet-visible spectroscopy (UV-Vis). XRD and SEM studies confirmed the amorphous nature, surface morphology of prepared zinc borate glass. The physical parameters like density, molar volume, molar mass of Nd3+, Sm3+ doped borate glass are summarized in the present article. The optical absorption spectra along with tauc's plot are presented. The optical energy band gap increases due to the addition of rare earth oxide confirming the role of network modifier.
NASA Astrophysics Data System (ADS)
Arif, Mohd.; Sanger, Amit; Vilarinho, Paula M.; Singh, Arun
2018-04-01
Nanocrystalline ZnO thin films were deposited on glass substrate via sol-gel dip-coating technique then annealed at 300°C, 400°C, and 500°C for 1 h. Their optical, structural, and morphological properties were studied using ultraviolet-visible (UV-Vis) spectrophotometry, x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). XRD diffraction revealed that the crystalline nature of the thin films increased with increasing annealing temperature. The c-axis orientation improved, and the grain size increased, as indicated by increased intensity of the (002) plane peak at 2θ = 34.42° corresponding to hexagonal ZnO crystal. The average crystallite size of the thin films ranged from 13 nm to 23 nm. Increasing the annealing temperature resulted in larger crystallite size and higher crystallinity with increased surface roughness. The grain size according to SEM analysis was in good agreement with the x-ray diffraction data. The optical bandgap of the thin films narrowed with increasing annealing temperature, lying in the range of 3.14 eV to 3.02 eV. The transmission of the thin films was as high as 94% within the visible region. The thickness of the thin films was 400 nm, as measured by ellipsometry, after annealing at the different temperatures of 300°C, 400°C, and 500°C.
Simple method for the growth of 4H silicon carbide on silicon substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asghar, M.; Shahid, M. Y.; Iqbal, F.
In this study we report thermal evaporation technique as a simple method for the growth of 4H silicon carbide on p-type silicon substrate. A mixture of Si and C{sub 60} powder of high purity (99.99%) was evaporated from molybdenum boat. The as grown film was characterized by XRD, FTIR, UV-Vis Spectrophotometer and Hall Measurements. The XRD pattern displayed four peaks at 2Θ angles 28.55{sup 0}, 32.70{sup 0}, 36.10{sup 0} and 58.90{sup 0} related to Si (1 1 1), 4H-SiC (1 0 0), 4H-SiC (1 1 1) and 4H-SiC (2 2 2), respectively. FTIR, UV-Vis spectrophotometer and electrical properties further strengthenedmore » the 4H-SiC growth.« less
Synthesis process and photocatalytic properties of BiOBr nanosheets for gaseous benzene.
Liu, Yu; Yin, Yongquan; Jia, Xueqing; Cui, Xiangyu; Tian, Canrui; Sang, Yuanhua; Liu, Hong
2016-09-01
A series of nano-BiOBr were prepared by an effective hydrothermal method in the presence of cetyltrimethyl ammonium bromide (CTAB) and ethanol at different calcination temperatures. The as-prepared nano-BiOBr samples were characterized by measuring the specific area (S BET), UV-Vis diffuse reflectance spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The results show that the calcination temperature has an important impact on the morphology and microstructure of BiOBr. The nano-BiOBr calcined at 120 °C showed excellent photocatalytic degradation properties for benzene, with photocatalytic degradation rate of 75 % for benzene under UV irradiation for 90 min, and removal efficiency of benzene was significantly enhanced by using nano-BiOBr catalyst compared to UV irradiation alone. BiOBr catalyst possessed good photocatalytic activity even after three consecutive photocatalytic reaction cycles, illustrating its excellent stability. The photocatalytic degradation of benzene followed the first-order kinetics, and the good catalytic capability of nano-BiOBr catalyst can be attributed to its crystalline, hierarchical nanostructure and nanosheet thickness.
NASA Astrophysics Data System (ADS)
Sawala, N. S.; Omanwar, S. K.
2017-03-01
The phosphors LaPO4 (Lanthanum phosphate) doped with Ce(III)/Ce3+ and co-doped with Ce3+-Nd3+ and Ce3+-Yb3+ were effectively synthesized by conventional solid state reaction method. The prepared samples were characterized by powder X-ray diffraction (XRD) and surface morphology was studied by scanning electronic microscope (SEM). The photoluminescence (PL) properties were studied by spectrophotometers in near infrared (NIR) and ultraviolet visible (UV-VIS) region. Additionally the luminescence time decay curves of samples were investigated to confirm energy transfer (ET) process. The Ce3+-Nd3+ ion co-doped LaPO4 phosphors can convert a photon of UV region (278 nm) into photons of NIR region (1058 nm). While Ce3+-Yb3+ ion doped LaPO4 phosphors convert photons of UV region (278 nm) into photons of NIR region (979 nm). The Ce3+ ion acts like sensitizer and Nd3+/Yb3+ ions act as activators. Both kinds of emissions are suitable for improving spectral response of solar cells.
UV-visible light photocatalytic properties of NaYF4:(Gd, Si)/TiO2 composites
NASA Astrophysics Data System (ADS)
Mavengere, Shielah; Kim, Jung-Sik
2018-06-01
In this study, a new novel composite photocatalyst of NaYF4:(Gd, Si)/TiO2 phosphor has been synthesized by two step method of solution combustion and sol-gel. The photocatalyst powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-vis spectroscopy and photoluminescence (PL) spectroscopy. Raman spectroscopy confirmed the anatase TiO2 phase which remarkably increased with existence of yttrium silicate compounds between 800 cm-1 and 900 cm-1. Double-addition of Gd3+-Si4+ ions in NaYF4 host introduced sub-energy band levels with intense absorption in the ultraviolet (UV) light region. Photocatalytic activity was examined by exposing methylene blue (MB) solutions mixed with photocatalyst powders to 254 nm UV-C fluorescent lamp and 200 W visible lights. The UV and visible photocatalytic reactivity of the NaYF4:(Gd, 1% Si)/TiO2 phosphor composites showed enhanced MB degradation efficiency. The coating of NaYF4:(Gd, 1% Si) phosphor with TiO2 nanoparticles creates energy band bending at the phosphor/TiO2 interfaces. Thus, these composites exhibited enhanced absorption of UV/visible light and the separation of electron and hole pairs for efficient photocatalysis.
Effect of isovalent dopants on photodegradation ability of ZnS nanoparticles
NASA Astrophysics Data System (ADS)
Khaparde, Rohini; Acharya, Smita
2016-06-01
Isovalent (Mn, Cd, Cu, Co)-doped-ZnS nanoparticles having size vary in between 2 to 5 nm are synthesized by co-precipitation route. Their photocatalytic activity for decoloration of Cango Red and Malachite Green dyes is tested in visible radiation under natural conditions. Structural and morphological features of the samples are investigated by X-ray diffraction, Raman spectroscopy, Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and UVsbnd Vis spectrometer. Single phase zinc blende structure of as-synthesized undoped and doped-ZnS is confirmed by XRD and revealed by Rietveld fitting. SEM and TEM images show ultrafine nanoparticles having size in the range of 2 to 5 nm. UV-Vis absorption spectra exhibit blue shift in absorption edge of undoped and doped ZnS as compared to bulk counterpart. The photocatalytic activity as a function of dopant concentration and irradiation time is systematically studied. The rate of de-coloration of dyes is detected by UVsbnd Vis absorption spectroscopy and organic dye mineralization is confirmed by table of carbon (TOC) study. The photocatalytic activity of Mn-doped ZnS is highest amongst all dopants; however Co as a dopant is found to reduce photocatalytic activity than pure ZnS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitra, Atanu; Bhaumik, Asim, E-mail: msab@iacs.res.i; Nandi, Mahasweta
2009-05-15
Syntheses of titania-based nanomaterials by simple sol-gel route using a mixture of CTAB and salicylate as well as salicylate ions as templates have been reported. The materials are characterized by the powder X-ray diffraction (XRD), thermal analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and spectroscopic (FT IR, UV-VIS) analyses. A disordered mesoscale orientation of nanoparticles (ca. 2-4 nm) composed of TiO{sub 2}-salicylate surface complex has been obtained when 1:1 mixing ratio of CTAB and salicylate at the CTAB concentration of 0.001 M was employed as a template. All these nanocomposites exhibit a considerable red shift at the onsetsmore » of their absorption band compared to pure (organic-free) nanocrystalline TiO{sub 2} and show blue luminescence at room temperature. This assembly of nanoparticles is highly interesting in the context of visible light sensitization and nanodevice fabrication. - Graphical abstract: A new titania-salicylate nanostructure material has been synthesized, which exhibit a considerable red shift towards the visible region vis-a-vis nanocrystalline (organic-free) TiO{sub 2} and blue luminescence at room temperature.« less
Characterization of La/Fe/TiO2 and Its Photocatalytic Performance in Ammonia Nitrogen Wastewater
Luo, Xianping; Chen, Chunfei; Yang, Jing; Wang, Junyu; Yan, Qun; Shi, Huquan; Wang, Chunying
2015-01-01
La/Fe/TiO2 composite photocatalysts were synthesized by Sol-Gel method and well characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen-physical adsorption, and UV-Vis diffuse reflectance spectra (UV-Vis DRS). It is interesting that the doped catalysts were in anatase phase while the pure TiO2 was in rutile phase. In addition, the composites possessed better physical chemical properties in photocatalytic activity than pure TiO2: stronger visible-light-response ability, larger specific surface area, and more regular shape in morphology. The photodegradation results of ammonia nitrogen indicate that: the La/Fe/TiO2 had higher catalytic activity to ammonia nitrogen waste water compared pure TiO2 and the other single metal-doped TiO2. pH 10 and 2 mmol/L H2O2 were all beneficial to the removal of ammonia nitrogen by La/Fe/TiO2. However, the common inorganic ions of Cl−, NO3−, SO42−, HCO3−/CO32−, Na+, K+, Ca2+ and Mg2+ in water all inhibited the degradation of ammonia nitrogen. By balance calculation, at least 20% of ammonia nitrogen was converted to N2 during the 64.6% removal efficiency of ammonia nitrogen. PMID:26593929
Effect of reduction time on third order optical nonlinearity of reduced graphene oxide
NASA Astrophysics Data System (ADS)
Sreeja, V. G.; Vinitha, G.; Reshmi, R.; Anila, E. I.; Jayaraj, M. K.
2017-04-01
We report the influence of reduction time on structural, linear and nonlinear optical properties of reduced graphene oxide (rGO) thin films synthesized by spin coating method. We observed that the structural, linear and nonlinear optical properties can be tuned with reduction time in GO is due to the increased structural ordering because of the restoration of sp2 carbon atoms with the time of reduction. The nonlinear absorption studies by open aperture Z-scan technique exhibited a saturable absorption. The nonlinear refraction studies showed the self de focusing nature of rGO by closed aperture Z scan technique. The nonlinear absorption coefficient and saturation intensity varies with the time for reduction of GO which is attributed to the depletion of valence band and the conduction band filling effect. Our results emphasize duration for reduction of GO dependent optical nonlinearity of rGO thin films to a great extent and explore its applications Q switched mode locking laser systems for generating ultra short laser pulses and in optical sensors. The rGO coated films were characterized by X-Ray diffraction method (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, UV-Vis absorption spectroscopy (UV-Vis), Photoluminescence (PL) and Scanning electron microscope (SEM) measurements.
NASA Astrophysics Data System (ADS)
Pugazhendhi, S.; Palanisamy, P. K.; Jayavel, R.
2018-05-01
Green synthesis techniques are developing as more simplistic and eco-friendly approach for the synthesis of metal nanoparticles compared to chemical reduction methods. Herein we report Synthesis of highly stable silver nanoparticles using Mirabillis jalapa seed extract as a reducing and capping agent. The as-prepared silver nanoparticles were characterized by UV-vis spectroscopy (UV-vis) to confirm the formation of silver nanoparticles by its characteristic surface plasmon resonance peak observed at 420 nm. The Powder X-ray diffraction (P-XRD) revealed the structure and crystalline nature of synthesized silver nanoparticles, The Fourier transform infra-red spectroscopic (FT-IR) revealed the presence of the biomolecules in the extract that acted as reducing as well stabilizing agent. The high resolution transmission electron microscopic (HRTEM) images divulged that the synthesized silver nanoparticles were spherical in shape and poly dispersed. The energy dispersive X-ray diffraction (EDX) profile revealed the elements present in the as-synthesized colloidal silver nanoparticles and its percentages. The Zeta potential measured for silver nanoparticles evidenced that the prepared silver nanoparticles owned high stability in room temperature itself. The as-synthesized silver nanoparticles (AgNPs) in colloidal form were showed good antimicrobial effects and it's were found to exhibit third order optical nonlinearity as studied by Z-scan technique using 532 nm Nd:YAG (SHG) CW laser beam (COHERENT-Compass 215 M-50 diode pumped) output as source. The negative nonlinearity observed was well utilized for the study of optical limiting behavior of the silver nanoparticles.
NASA Astrophysics Data System (ADS)
Vignesh, K.; Suganthi, A.; Rajarajan, M.; Sakthivadivel, R.
2012-03-01
Hesperidin a flavanoid, modified TiO2 nanoparticles (Hes-TiO2) was synthesized to improve the visible light driven photocatalytic performance of TiO2. The synthesized nanoparticles were characterized by UV-visible diffuse reflectance spectroscopy (UV-vis-DRS), FT-IR, powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic activity of Hes-TiO2 was investigated based on the decolorization of eosin-Y under visible light irradiation. Hes-TiO2 showed high efficiency for the decolorization of eosin-Y. The influences of various reaction parameters like effect of pH, catalyst dosage and initial dye concentration on the photocatalytic efficiency were investigated. The adsorption of eosin-Y on Hes-TiO2 was found favorable by the Langmuir approach. The removal percentage of chemical oxygen demand (COD) was determined to evaluate the mineralization of eosin-Y during photodecolorization. Based on the intermediates obtained in the GC-MS spectroscopic technique, a probable degradation mechanism has been proposed.
NASA Astrophysics Data System (ADS)
Mohan Kumar, Kesarla; Sinha, Madhulika; Mandal, Badal Kumar; Ghosh, Asit Ranjan; Siva Kumar, Koppala; Sreedhara Reddy, Pamanji
2012-06-01
A green rapid biogenic synthesis of silver nanoparticles (Ag NPs) using Terminalia chebula (T. chebula) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 452 nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by T. chebula extract was completed within 20 min which was evidenced potentiometrically. Synthesised nanoparticles were characterised using UV-vis spectroscopy, Fourier transformed infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The hydrolysable tannins such as di/tri-galloyl-glucose present in the extract were hydrolyzed to gallic acid and glucose that served as reductant while oxidised polyphenols acted as stabilizers. In addition, it showed good antimicrobial activity towards both Gram-positive bacteria (S. aureus ATCC 25923) and Gram-negative bacteria (E. coli ATCC 25922). Industrially it may be a smart option for the preparation of silver nanoparticles.
A novel orange-red emitting NaCaVO{sub 4}:Sm{sup 3+} phosphor for solid state lighting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Pankaj, E-mail: pankaj79biswas@gmail.com; Kumar, Vinay, E-mail: vinaykdhiman@yahoo.com; Ntwaeaborwa, O. M.
2016-05-06
The samarium doped NaCaVO{sub 4} phosphor was synthesized by the combustion method. The X-ray powder diffraction (XRD) analysis confirmed that the phosphor powder crystallized as orthorhombic structure belonging to space group Cmcm. From Williamson-Hall analysis the grain size and microstrain in the powder was estimated. The Fourier- transform infrared (FT-IR) studies further validated the formation of vanadate phase of the phosphor. Photoluminescence (PL) study revealed that the phosphor could be efficiently excited by UV-VIS from 200 nm to 500 nm. The 565 nm, 602 nm, 648 nm and 713 nm emissions were ascribed to {sup 4}G{sub 5/2} to {sup 6}H{submore » J} (J = 5/2, 7/2, 9/2 and 11/2) transitions of the Sm{sup 3+} ion. The present material may be explored as a novel phosphor to be excited by UV light emitting diodes (LEDs) chips for solid-state lighting and display applications.« less
Fabrication of ZnO nanoparticles based sensitive methanol sensor and efficient photocatalyst
NASA Astrophysics Data System (ADS)
Faisal, M.; Khan, Sher Bahadar; Rahman, Mohammed M.; Jamal, Aslam; Abdullah, M. M.
2012-07-01
ZnO nanoparticles (NPs) were prepared by hydrothermal treatment with starting materials (zinc chloride and urea) in the presence of ammonium hydroxide and characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and UV-vis spectroscopy. The synthesized nanoparticles are crystalline with wurtzite hexagonal phase having average particle size in the range of 80-130 nm. Photocatalytic activity of the prepared ZnO NPs was evaluated by the degradation of methylene blue and almost complete degradation (91.0%) takes place within 85 min of irradiation time. Prepared ZnO nanostructures possessed high photocatalytic activity when compared with TiO2-UV100. Additionally, the sensing properties of the ZnO films were investigated for various concentrations of methanol in liquid phase by simple I-V technique at room conditions. It was observed that ZnO thin film exhibits good sensitivity (0.9554 μA cm-2 mM-1) towards detection of methanol at room conditions.
Sankar, Renu; Manikandan, Perumal; Malarvizhi, Viswanathan; Fathima, Tajudeennasrin; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan
2014-01-01
Copper oxide (CuO) nanoparticles were synthesized by treating 5 mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV-visible spectrophotometry. An intense surface Plasmon resonance between 250-300 nm in the UV-vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140 nm, further negative zeta potential disclose its stability at -28.9 mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight. Copyright © 2013 Elsevier B.V. All rights reserved.
Photodiode Based on CdO Thin Films as Electron Transport Layer
NASA Astrophysics Data System (ADS)
Soylu, M.; Kader, H. S.
2016-11-01
Cadmium oxide (CdO) thin films were synthesized by the sol-gel method. The films were analyzed by means of XRD, AFM, and UV/Vis spectrophotometry. X-ray diffraction patterns confirm that the films are formed from CdO with cubic crystal structure and consist of nano-particles. The energy gap of the prepared film was found to be 2.29 eV. The current-voltage ( I- V) characteristics of the CdO/ p-Si heterojunction were examined in the dark and under different illumination intensities. The heterojunction showed high rectifying behavior and a strong photoresponse. Main electrical parameters of the photodiode such as series and shunt resistances ( R s and R sh), saturation current I 0, and photocurrent I ph, were extracted considering a single diode equivalent circuit of a photovoltaic cell. Results indicate that the application of CdO thin films as an electron transport layer on p-Si acts as a photodetector in the field of the UV/visible.
Bozetine, Hakima; Wang, Qi; Barras, Alexandre; Li, Musen; Hadjersi, Toufik; Szunerits, Sabine; Boukherroub, Rabah
2016-03-01
We report on a simple and one-pot synthetic method to produce ZnO/carbon quantum dots (ZnO/CQDs) nanocomposites. The morphological features and chemical composition of the nanocomposites were characterized using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analyses (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The optical properties of the nanocomposites were examined using UV-visible (UV-vis) spectrophotometry. The photocatalytic activity of the ZnO/CQDs was evaluated for the degradation of a model organic pollutant, rhodamine B, under visible light irradiation at room temperature. The highly efficient photodegradation capability of the nanocomposite was demonstrated by comparison with ZnO particles, prepared using identical experimental conditions. Overall, the present approach adheres to green chemistry principles and the nanocomposite holds promise for the development of remarkably efficient catalytic systems. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Yuewen; Hao, Haixia; Wu, Qingyao; Gao, Zihan; Xie, Hongde
2018-06-01
A series of novel polymer-rare earth complexes with Eu3+ ions have been synthesized and investigated successfully, including the binary complexes containing the single ligand poly(ethylene-co-acrylic acid) (EAA) and the ternary complexes using 1,10-phenanthroline (phen), dibenzoylmethane (DBM) or thenoyltrifluoroacetone (TTA) as the second ligand. Their structures have been characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis and X-ray diffraction (XRD), which confirm that both EAA and small molecules participate in the coordination reaction with rare earth ions, and they can disperse homogeneously in the polymer matrixes. Both ultraviolet-visible (UV-vis) absorption and photoluminescence tests for the complexes have been recorded. The relationship between fluorescence intensity of polymer-rare earth complexes and the quantity of ligand EAA has been studied and discussed. The films casted from the complexes solution can emit strong characteristic red light under UV light excitation. All these results suggest that the complexes possess potential application as luminescent materials.
Du, Yucheng; Zhang, Shihao; Wang, Jinshu; Wu, Junshu; Dai, Hongxing
2018-04-01
Niobium oxide nanowire-deposited carbon fiber (CF) samples were prepared using a hydrothermal method with amorphous Nb 2 O 5 ·nH 2 O as precursor. The physical properties of the samples were characterized by means of numerous techniques, including X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), UV-visible spectroscopy (UV-vis), N 2 adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy. The efficiency for the removal of Cr(VI) was determined. Parameters such as pH value and initial Cr(VI) concentration could influence the Cr(VI) removal efficiency or adsorption capacity of the Nb 2 O 5 /carbon fiber sample obtained after hydrothermal treatment at 160°C for 14hr. The maximal Cr(VI) adsorption capacity of the Nb 2 O 5 nanowire/CF sample was 115mg/g. This Nb 2 O 5 /CF sample also showed excellent photocatalytic activity and stability for the reduction of Cr(VI) under UV-light irradiation: the Cr(VI) removal efficiency reached 99.9% after UV-light irradiation for 1hr and there was no significant decrease in photocatalytic performance after the use of the sample for 10 repeated cycles. Such excellent Cr(VI) adsorption capacity and photocatalytic performance was related to its high surface area, abundant surface hydroxyl groups, and good UV-light absorption ability. Copyright © 2017. Published by Elsevier B.V.
Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S
2016-01-01
This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.
NASA Astrophysics Data System (ADS)
Prasannaraj, Govindaraj; Venkatachalam, Perumal
2017-06-01
This report describes the synthesis of metallic silver nanoparticles (AgNPs) using extracts of four medicinal plants (Aegle marmelos (A. marmelos), Alstonia scholaris (A. scholaris), Andrographis paniculata (A. paniculata) and Centella asiatica (C. asiatica)). The bio-conjugates were characterized by UV-visible spectroscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), Fourier transform infrared spectrometry (FTIR), x-ray diffraction (XRD) and zeta potential. This analysis confirmed that UV-Vis spectral peaks at 375 nm, 380 nm, 420 nm and 380 nm are corresponding to A. marmelos, A. scholaris, A. paniculata and C. asiatica mediated AgNPs, respectively. SEM images revealed that all the obtained four AgNPs are predominantly spherical, fibres and rectangle in shape with an average size of 36-97 nm. SEM-EDS and XRD analysis confirmed the presence of elemental AgNPs in crystalline form for all the four nanoparticle samples. The phytochemicals of various medicinal plant extracts with different functional groups were responsible for reduction of Ag+ to AgNPs, which act as capping and stabilizing agent. Among four types of AgNPs tested for anticancer activity, the Ap mediated AgNPs had shown enhanced activity against HepG2 cells (27.01 µg ml-1) and PC3 cells (32.15 µg ml-1).
Mishra, Abhijeet; Sardar, Meryam
2015-01-01
In the present study, we report in vitro synthesis of silver and gold nanoparticles (NPs) using cellulase enzyme in a single step reaction. Synthesized nanoparticles were characterized by UV-VIS spectroscopy, Dynamic Light Spectroscopy (DLS), Transmission Electron Microscopy (TEM), Energy-dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), Circular Dichroism (CD) and Fourier Transform Infrared Spectroscopy (FTIR). UV-visible studies shows absorption band at 415nm and 520nm for silver and gold NPs respectively due to surface plasmon resonance. Sizes of NPs as shown by TEM are 5-25nm for silver and 5-20nm for gold. XRD peaks confirmed about phase purity and crystallinity of silver and gold NPs. FTIR data shows presence of amide I peak on both the NPs. The cellulase assisted synthesized NPs were further exploited as immobilization matrix for cellulase enzyme. Thermal stability analysis reveals that the immobilized cellulase on synthesized NPs retained 77-80% activity as compared to free enzyme. While reusability data suggests immobilized cellulase can be efficiently used up to sixth cycles with minimum loss of enzyme activity. The secondary structural analysis of cellulase enzyme during the synthesis of NPs and also after immobilization of cellulase on these NPs was carried out by CD spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.
Arul, Velusamy; Edison, Thomas Nesakumar Jebakumar Immanuel; Lee, Yong Rok; Sethuraman, Mathur Gopalakrishnan
2017-03-01
In this work, a simple hydrothermal route for the synthesis of fluorescent nitrogen doped carbon dots (N-CDs) is reported. The Hylocereus undatus (H. undatus) extract and aqueous ammonia are used as carbon and nitrogen source, respectively. The optical properties of synthesized N-CDs are analyzed using UV-Visible (UV-Vis) and fluorescence spectroscopy. The surface morphology, elemental composition, crystallinity and functional groups present in the N-CDs are examined using high resolution transmission electron microscopy (HR-TEM) with energy dispersive spectroscopy (EDS), selected area electron diffraction (SAED), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy, respectively. The synthesized N-CDs emit strong blue fluorescence at 400nm under the excitation of 320nm. Further, the excitation dependent emission properties are also observed from the fluorescence of synthesized N-CDs. The HR-TEM results reveal that synthesized N-CDs are in spherical shape with average diameter of 2.5nm. The XRD pattern exhibits, the graphitic nature of synthesized N-CDs. The doping of nitrogen is confirmed from the EDS and FT-IR studies. The cytotoxicity and biocompatibility of N-CDs are evaluated through MTT assay on L-929 (Lymphoblastoid-929) and MCF-7 (Michigan Cancer Foundation-7) cells. The results indicate that the fluorescent N-CDs show less cytotoxicity and good biocompatibility on both L-929 and MCF-7 cells. Moreover, the N-CDs show excellent catalytic activity towards the reduction of methylene blue by sodium borohydride. Copyright © 2017 Elsevier B.V. All rights reserved.
A simple and low temperature process for super-hydrophilic rutile TiO 2 thin films growth
NASA Astrophysics Data System (ADS)
Mane, R. S.; Joo, Oh-Shim; Min, Sun-Ki; Lokhande, C. D.; Han, Sung-Hwan
2006-11-01
We investigate an environmentally friendly aqueous solution system for rutile TiO2 violet color nanocrystalline thin films growth on ITO substrate at room temperature. Film shows considerable absorption in visible region with excitonic maxima at 434 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV-vis, water surface contact angle and energy dispersive X-ray analysis (EDX) techniques in addition to actual photo-image that shows purely rutile phase of TiO2 with violet color, super-hydrophilic and densely packed nanometer-sized spherical grains of approximate diameter 3.15 ± 0.4 nm, characterize the films. Band gap energy of 4.61 eV for direct transition was obtained for the rutile TiO2 films. Film surface shows super-hydrophilic behavior, as exhibited water contact angle was 7°. Strong visible absorption (not due to chlorine) leaves future challenge to use these films in extremely thin absorber (ETA) solar cells.
Synthesis and characterization of single-crystalline zinc tin oxide nanowires
NASA Astrophysics Data System (ADS)
Shi, Jen-Bin; Wu, Po-Feng; Lin, Hsien-Sheng; Lin, Ya-Ting; Lee, Hsuan-Wei; Kao, Chia-Tze; Liao, Wei-Hsiang; Young, San-Lin
2014-05-01
Crystalline zinc tin oxide (ZTO; zinc oxide with heavy tin doping of 33 at.%) nanowires were first synthesized using the electrodeposition and heat treatment method based on an anodic aluminum oxide (AAO) membrane, which has an average diameter of about 60 nm. According to the field emission scanning electron microscopy (FE-SEM) results, the synthesized ZTO nanowires are highly ordered and have high wire packing densities. The length of ZTO nanowires is about 4 μm, and the aspect ratio is around 67. ZTO nanowires with a Zn/(Zn + Sn) atomic ratio of 0.67 (approximately 2/3) were observed from an energy dispersive spectrometer (EDS). X-ray diffraction (XRD) and corresponding selected area electron diffraction (SAED) patterns demonstrated that the ZTO nanowire is hexagonal single-crystalline. The study of ultraviolet/visible/near-infrared (UV/Vis/NIR) absorption showed that the ZTO nanowire is a wide-band semiconductor with a band gap energy of 3.7 eV.
Synthesis and characterization of single-crystalline zinc tin oxide nanowires.
Shi, Jen-Bin; Wu, Po-Feng; Lin, Hsien-Sheng; Lin, Ya-Ting; Lee, Hsuan-Wei; Kao, Chia-Tze; Liao, Wei-Hsiang; Young, San-Lin
2014-01-01
Crystalline zinc tin oxide (ZTO; zinc oxide with heavy tin doping of 33 at.%) nanowires were first synthesized using the electrodeposition and heat treatment method based on an anodic aluminum oxide (AAO) membrane, which has an average diameter of about 60 nm. According to the field emission scanning electron microscopy (FE-SEM) results, the synthesized ZTO nanowires are highly ordered and have high wire packing densities. The length of ZTO nanowires is about 4 μm, and the aspect ratio is around 67. ZTO nanowires with a Zn/(Zn + Sn) atomic ratio of 0.67 (approximately 2/3) were observed from an energy dispersive spectrometer (EDS). X-ray diffraction (XRD) and corresponding selected area electron diffraction (SAED) patterns demonstrated that the ZTO nanowire is hexagonal single-crystalline. The study of ultraviolet/visible/near-infrared (UV/Vis/NIR) absorption showed that the ZTO nanowire is a wide-band semiconductor with a band gap energy of 3.7 eV.
Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed ( Kappaphycus alvarezii) Extract
NASA Astrophysics Data System (ADS)
Yew, Yen Pin; Shameli, Kamyar; Miyake, Mikio; Kuwano, Noriyuki; Bt Ahmad Khairudin, Nurul Bahiyah; Bt Mohamad, Shaza Eva; Lee, Kar Xin
2016-06-01
In this study, a simple, rapid, and eco-friendly green method was introduced to synthesize magnetite nanoparticles (Fe3O4-NPs) successfully. Seaweed Kappaphycus alvarezii ( K. alvarezii) was employed as a green reducing and stabilizing agents. The synthesized Fe3O4-NPs were characterized with X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM) techniques. The X-ray diffraction planes at (220), (311), (400), (422), (511), (440), and (533) were corresponding to the standard Fe3O4 patterns, which showed the high purity and crystallinity of Fe3O4-NPs had been synthesized. Based on FT-IR analysis, two characteristic absorption peaks were observed at 556 and 423 cm-1, which proved the existence of Fe3O4 in the prepared nanoparticles. TEM image displayed the synthesized Fe3O4-NPs were mostly in spherical shape with an average size of 14.7 nm.
Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed (Kappaphycus alvarezii) Extract.
Yew, Yen Pin; Shameli, Kamyar; Miyake, Mikio; Kuwano, Noriyuki; Bt Ahmad Khairudin, Nurul Bahiyah; Bt Mohamad, Shaza Eva; Lee, Kar Xin
2016-12-01
In this study, a simple, rapid, and eco-friendly green method was introduced to synthesize magnetite nanoparticles (Fe3O4-NPs) successfully. Seaweed Kappaphycus alvarezii (K. alvarezii) was employed as a green reducing and stabilizing agents. The synthesized Fe3O4-NPs were characterized with X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM) techniques. The X-ray diffraction planes at (220), (311), (400), (422), (511), (440), and (533) were corresponding to the standard Fe3O4 patterns, which showed the high purity and crystallinity of Fe3O4-NPs had been synthesized. Based on FT-IR analysis, two characteristic absorption peaks were observed at 556 and 423 cm(-1), which proved the existence of Fe3O4 in the prepared nanoparticles. TEM image displayed the synthesized Fe3O4-NPs were mostly in spherical shape with an average size of 14.7 nm.
NASA Astrophysics Data System (ADS)
Qutub, Nida; Pirzada, Bilal Masood; Umar, Khalid; Mehraj, Owais; Muneer, M.; Sabir, Suhail
2015-11-01
CdS/ZnS sandwich and core-shell nanocomposites were synthesized by a simple and modified Chemical Precipitation method under ambient conditions. The synthesized composites were characterized by XRD, SEM, TEM, EDAX and FTIR. Optical properties were analyzed by UV-vis. Spectroscopy and the photoluminescence study was done to monitor the recombination of photo-generated charge-carriers. Thermal stability of the synthesized composites was analyzed by Thermal Gravimetric Analysis (TGA). XRD revealed the formation of nanocomposites as mixed diffraction peaks were observed in the XRD pattern. SEM and TEM showed the morphology of the nanocomposites particles and their fine particle size. EDAX revealed the appropriate molar ratios exhibited by the constituent elements in the composites and FTIR gave some characteristic peaks which indicated the formation of CdS/ZnS nanocomposites. Electrochemical Impedance Spectroscopy was done to study charge transfer properties along the nanocomposites. Photocatalytic properties of the synthesized composites were monitored by the photocatalytic kinetic study of Acid Blue dye and p-chlorophenol under visible light irradiation. Results revealed the formation of stable core-shell nanocomposites and their efficient photocatalytic properties.
Impact of Plasma Surface Treatment on Bamboo Charcoal/silver Nanocomposite
NASA Astrophysics Data System (ADS)
Vignesh, K.; Vijayalakshmi, K. A.; Karthikeyan, N.
2016-10-01
Bamboo charcoal (BC) accompanied silver (Ag) nanocomposite is synthesized through sol-gel method. The produced BC/Ag nanocomposite was surface modified by air and oxygen plasma treatments. Silver ions (Ag+) will serve to improve the antibacterial activity as well as the surface area of BC. Plasma treatment has improved the surface functional groups, crystalline intensity and antibacterial activity of the prepared nanocomposite. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies show that Ag nanoparticles have good agreement with BC and the particle size has a mean diameter of 20-40nm. We observe the carboxyl functional groups in Fourier transform infrared spectroscopy (FTIR) after the oxygen plasma treatment. Moreover surface area and adsorption were analyzed by using the Brunauer, Emmett and Teller (BET) surface area (SBET) and UV-Vis spectroscopy.
NASA Astrophysics Data System (ADS)
Parveen, Azra; Agrawal, Shraddha; Azam, Ameer
2018-05-01
The nanoparticles of 5% Co doped NiO were synthesized by auto-combustion method in aqueous medium using NaOH as a fuel. The obtained particles were characterized using X-ray diffraction studies XRD. The results of structural characterization shows the formation of Co doped Nickel oxide nanoparticles in single phase without any impurity. The optical absorption spectra of Co doped NiO sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The variation of dielectric constant and dielectric loss has been studied as function of frequency. Co doping affects the optical properties and band gap. NiO can potentially be used in optical, electronic, catalytic materials, antimicrobial agent and super-paramagnetic devices.
Hu, Changying; Xu, Jie; Zhu, Yaqi; Chen, Acong; Bian, Zhaoyong; Wang, Hui
2016-09-01
Morphological effect of bismuth vanadate (BiVO4) on visible light-driven catalytic degradation of aqueous paracetamol was carefully investigated using four monoclinic BiVO4 catalysts. The catalysts with different morphologies were controllably prepared by a hydrothermal method without any additions. The prepared catalysts were fully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis diffuse reflectance spectroscopy (DRS). Under the visible light irradiation, these catalysts with different morphology were investigated to degrade aqueous paracetamol contaminant. The degradation effects were evaluated based on the catalyst morphology, solution pH, initial paracetamol concentration, and catalyst dosage. Cube-like BiVO4 powders exhibited excellent photocatalytic performance. The optimal photocatalytic performance of the cube-like BiVO4 in degrading paracetamol was achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsultany, Forat H., E-mail: foratusm@gmail.com; Ahmed, Naser M.; Hassan, Z.
A seed/catalyst-free growth of ZnO nanowires (ZnO-NWs) on a glass substrate were successfully fabricated using thermal evaporation technique. These nanowires were grown on ITO seed layers of different thicknesses of 25 and 75 nm, which were deposited on glass substrates by radio frequency (RF) magnetron sputtering. Prior to synthesized ITO nanowires, the sputtered ITO seeds were annealed using the continuous wave (CW) CO2 laser at 450 °C in air for 15 min. The effect of seed layer thickness on the morphological, structural, and optical properties of ZnO-NWs were systematically investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM),more » and UV-Vis spectrophotometer.« less
Synthesis of copper nanocolloids using a continuous flow based microreactor
NASA Astrophysics Data System (ADS)
Xu, Lei; Peng, Jinhui; Srinivasakannan, C.; Chen, Guo; Shen, Amy Q.
2015-11-01
The copper (Cu) nanocolloids were prepared by sodium borohydride (NaBH4) reduction of metal salt solutions in a T-shaped microreactor at room temperature. The influence of NaBH4 molar concentrations on copper particle's diameter, morphology, size distribution, and elemental compositions has been investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The ultraviolet-visible spectroscopy (UV-vis) was used to verify the chemical compounds of nanocolloids and estimate the average size of copper nanocolloids. The synthesized copper nanocolloids were uniform in size and non-oxidized. A decrease in the mean diameter of copper nanocolloids was observed with increasing NaBH4 molar concentrations. The maximum mean diameter (4.25 nm) occurred at the CuSO4/NaBH4 molar concentration ratio of 1:2.
Guo, Zongxia; Gong, Ruiying; Jiang, Yi; Wan, Xiaobo
2015-08-14
Oligopeptide-based derivatives are important synthons for bio-based functional materials. In this article, a Gly-(L-Val)-Gly-(L-Val)-coumarin (GVGV-Cou) conjugate was synthesized, which forms 3D networks in ethanol. The gel nanostructures were characterized by UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), SEM and TEM. It is suggested that the formation of charge transfer (CT) complexes between the coumarin moieties is the main driving force for the gel formation. The capability of the gel to encapsulate and release dyes was explored. Both Congo Red (CR) and Methylene Blue (MB) can be trapped in the CT gel matrix and released over time. The present gel might be used as a functional soft material for guest encapsulation and release.
Depositing of CuS nanocrystals upon the graphene scaffold and their photocatalytic activities
NASA Astrophysics Data System (ADS)
Wang, Yongbin; Zhang, Lixin; Jiu, Hongfang; Li, Na; Sun, Yixin
2014-06-01
A series of copper sulfide nanocrystals/graphene nanocomposites (CuS/GR) with different weight ratios of GR were fabricated via a one-step hydrothermal approach by using dimethylsulfoxide (DMSO) as the source of sulfur and solvent. The as-prepared samples were studied by X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (DRS), transmission scanning electron microscopy (TEM) and photoluminescence spectra (PL) are employed to determine the properties of the samples. The results show that the CuS nanocrystals with an average size of 16 nm almost overspread on the GR graphene scaffold. The samples exhibit excellent photocatalytic activities in degrading the methylene blue (MB) compared with pure CuS. This work shows that CuS/GR nanocomposites would be promising in dye wastewater treatment as Fenton-like reagents.
Preparation, characterization and photocatalytic activities of TiO2-SrTiO3 composites
NASA Astrophysics Data System (ADS)
Wang, Yan; Zhu, Lianjie; Gao, Fubo; Xie, Hanjie
2017-01-01
Series of TiO2-SrTiO3 composites were synthesized by hydrothermal method, using TiO2 nanotube array as a precursor and Sr(OH)2 as a Sr source material. TiO2-SrTiO3 products with various composition were obtained by simply changing the reaction time. The as-synthesized products were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The optical properties were studied by means of UV-Vis absorption spectroscopy and photoluminescence (PL) spectra. Their photocatalytic activities were assessed by photodegradation of rhodamine B (RhB) solution and the photocatalytic reaction mechanism was discussed. The TiO2-SrTiO3 composites obtained at 2 h exhibits the highest activity for photodegradation of RhB.
Preparation of Ag-loaded octahedral Bi2WO6 photocatalyst and its photocatalytic activity
NASA Astrophysics Data System (ADS)
An, Liang; Wang, Guanghui; Zhou, Xuan; Wang, Yi; Gao, Fang; Cheng, Yang
2014-12-01
In this work, an Ag-loaded octahedral Bi2WO6 photocatalyst has been successfully prepared by the hydrothermal method and photo deposition method. X-ray diffraction (XRD), energy dispersive analysis of X-ray (EDX), field-emission scanning electron microscopy (FE-SEM) and ultra-violet adsorption spectrum (UV-Vis) were employed for characterization of the composite photocatalyst. Furthermore, two different photocatalysts including the obtained Ag-loaded octahedral Bi2WO6 were employed here for photodegradation of model contaminated water of Orange II (OII). Results show that Ag-loaded Bi2WO6 photocatalyst exhibits superior photocatalytic properties compared to the undoped Bi2WO6. The reasons for improvement in photocatalytic activity of the Ag-loaded octahedral Bi2WO6 were also discussed.
Synthesis, characterization and antibacterial property of ZnO:Mg nanoparticles
NASA Astrophysics Data System (ADS)
Kompany, A.; Madahi, P.; Shahtahmasbi, N.; Mashreghi, M.
2012-09-01
Sol-gel method was successfully used for the synthesis of ZnO nanoparticles (NPs) doped with different concentrations of Mg and the structural, optical and antibacterial properties of the nanoparticles were studied. The synthesized ZnO:Mg powders were characterized using x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transformation Infrared (FTIR) and UV-Vis spectroscopy. It was revealed that the samples have hexagonal Wurtzite structure, and the phase segregation takes place for 15% Mg content. TEM images show that the average size of the particles is about 50 nm. Also, the antibacterial activities of the nanoparticles were tested against Escherichia coli (Gram negative) cultures. ZnO:Mg nanofluid showed good antibacterial activity which increases with the increase of NPs concentration, and decreases slightly with the amount of Mg.
Antimony sulfide thin films prepared by laser assisted chemical bath deposition
NASA Astrophysics Data System (ADS)
Shaji, S.; Garcia, L. V.; Loredo, S. L.; Krishnan, B.; Aguilar Martinez, J. A.; Das Roy, T. K.; Avellaneda, D. A.
2017-01-01
Antimony sulfide (Sb2S3) thin films were prepared by laser assisted chemical bath deposition (LACBD) technique. These thin films were deposited on glass substrates from a chemical bath containing antimony chloride, acetone and sodium thiosulfate under various conditions of normal chemical bath deposition (CBD) as well as in-situ irradiation of the chemical bath using a continuous laser of 532 nm wavelength. Structure, composition, morphology, optical and electrical properties of the Sb2S3 thin films produced by normal CBD and LACBD were analyzed by X-Ray diffraction (XRD), Raman Spectroscopy, Atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and Photoconductivity. The results showed that LACBD is an effective synthesis technique to obtain Sb2S3 thin films for optoelectronic applications.
Electrical transport in AZO nanorods
NASA Astrophysics Data System (ADS)
Yildiz, A.; Cansizoglu, H.; Karabacak, T.
2015-10-01
Al-doped ZnO (AZO) nanorods (NRs) with different lengths were deposited by utilizing glancing angle deposition (GLAD) technique in a DC sputter system at room temperature. The structural and optical characteristics of the NRs were investigated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-vis-NIR spectroscopy measurements. A band gap of about 3.5 eV was observed for the NRs. A novel capping process utilizing varying deposition angles was used to introduce a blanket metal top contact for the electrical characterization of NRs. Current-voltage (I-V) measurements were used to properly evaluate the approximate resistivity of a single NR. The electrical conduction was found to be governed by the thermally activated transport mechanism. Activation energy was determined as 0.14 eV from temperature dependent resistivity data.
Fabrication and characterization of nickel oxide nanoparticles/silicon NiO NPS/Si
NASA Astrophysics Data System (ADS)
Shuihab, Aliyah; Khalf, Surour
2018-05-01
In this study, (NiO) thin film which prepared by chemical method and deposited by drop casting technique on glass. The structural, optical and chemical analyses have been investigated. X-ray diffraction (XRD) measurements relieve that the (NiO) thin film was polycrystalline, cubic structure and there is no trace of the other material. UV-Vis measurements reveal that the energy gap of (NiO) thin film was found 1.8 eV. The Fourier Transform Infrared Spectroscopy (FTIR) spectrum of (NiO) thin film shows NiO nanoparticles had its IR peak of Ni-O stretching vibration and shifted to blue direction. Due to their quantum size effect and spherical nanostructures, the FTIR absorption of NiO nanoparticles is blue-shifted compared to that of the bulk form.
Khan, Shadab Ali; Uddin, Imran; Moeez, Sana; Ahmad, Absar
2014-01-01
In this paper, we for the first time show the ability of the mesophilic fungus Fusarium oxysporum in the bioleaching of waste material such as Fly-ash for the extracellular production of highly crystalline and highly stable, protein capped, fluorescent and water soluble silica nanoparticles at ambient conditions. When the fungus Fusarium oxysporum is exposed to Fly-ash, it is capable of selectively leaching out silica nanoparticles of quasi-spherical morphology within 24 h of reaction. These silica nanoparticles have been completely characterized by UV-vis spectroscopy, Photoluminescence (PL), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Energy dispersive analysis of X-rays (EDAX). PMID:25244567
Environmentally benign processing of YAG transparent wafers
NASA Astrophysics Data System (ADS)
Yang, Yan; Wu, Yiquan
2015-12-01
Transparent yttrium aluminum garnet (YAG) wafers were successfully produced via aqueous tape casting and vacuum sintering techniques using a new environmentally friendly binder, a copolymer of isobutylene and maleic anhydride with the commercial name ISOBAM (noted as ISOBAM). Aqueous YAG slurries were mixed by ball-milling, which was followed by de-gassing and tape casting of wafers. The final YAG green tapes were homogenous and flexible, and could be bent freely without cracking. After the drying and sintering processes, transparent YAG wafers were achieved. The microstructures of both the green tape and vacuum-sintered YAG ceramic were observed by scanning electronic microscopy (SEM). Phase compositions were examined by X-ray diffraction (XRD). Optical transmittance was measured in UV-VIS regions with the result that the transmittance is 82.6% at a wavelength of 800 nm.
NASA Astrophysics Data System (ADS)
Bindhu, M. R.; Umadevi, M.
2013-01-01
Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri.
Synthesis and Properties of Iron Oxide Particles Prepared by Hidrothermal Method
NASA Astrophysics Data System (ADS)
Saragi, T.; Santika, A. S.; Permana, B.; Syakir, N.; Kartawidjaja, M.; Risdiana
2017-05-01
Iron oxide of hematite (α-Fe2O3) has been successfully synthesized by hydrothermal method. The starting materials were Fe(NO3)3.9H2O, 2-methoxyethanol, diethanolamine and n-hexane. The optical, morphology and crystal structure were measured by UV-VIS, TEM and XRD, respectively. From UV-VIS measurement, it was found that the band-gap of sample was 4.17 eV. The morphology of particle was plate-like form. The sample which sintered at 1100°C has high quality crystal with hexagonal structure of α-Fe2O3 phase.
Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf
NASA Astrophysics Data System (ADS)
Philip, Daizy
2010-11-01
This paper reports the rapid biological synthesis of spherical gold nanoparticles at room temperature using fresh/dry leaf extract of Mangifera indica. This is a simple, cost-effective, stable for long time and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au nanoparticles of size ˜20 nm and 17 nm. The nanoparticles were obtained within 2 min of addition of the extract to the solution of HAuCl 4·3H 2O and the colloid is found to be stable for more than 5 months. Smaller and more uniformly distributed particles could be obtained with dried leaf extract. The nanoparticles obtained are characterized by UV-vis, transmission electron microscopy (TEM) and X-ray diffraction (XRD). Crystalline nature of the nanoparticles in the fcc structure is confirmed by the peaks in the XRD pattern corresponding to (1 1 1), (2 0 0), (2 2 0), (3 1 1) and (2 2 2) planes, bright circular spots in the selected area electron diffraction (SAED) and clear lattice fringes in the high-resolution TEM image. The possible biomolecules responsible for efficient stabilization are suggested by studying the FTIR spectrum of the sample. This environmentally benign method provides much faster synthesis and colloidal stability comparable to those of chemical reduction.
NASA Astrophysics Data System (ADS)
Krutyakov, Yurii A.; Zherebin, Pavel M.; Kudrinskiy, Alexey A.; Zubavichus, Yan V.; Presniakov, Mikhail Yu; Yapryntsev, Alexey D.; Karabtseva, Anastasia V.; Mikhaylov, Dmitry M.; Lisichkin, Georgii V.
2016-09-01
A simple synthetic procedure for high-stable dispersions of porous composite Ag/AgCl nanoparticles stabilized with amphoteric surfactant sodium tallow amphopolycarboxyglycinate has been proposed for the first time. The prepared samples were characterized by UV-vis spectroscopy, x-ray powder diffraction (XRD), x-ray photoelectron spectroscopy, small area electron diffraction (SAED), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electron probe micro-analysis. In addition, measurements (carried out at the Kurchatov synchrotron radiation source stations) of the Ag K-edge extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) spectra and XRD of the prepared nanoparticles have been performed. The obtained results suggest that small-sized Ag clusters are homogeneously distributed in the mass of the AgCl nanoparticle (~80 nm) formed during the synthesis. The Ag/AgCl dispersion demonstrates photocatalytic activity (with respect to methyl orange) and high bactericidal activity against E. coli. This activity is superior to the activity of both Ag and AgCl nanoparticles stabilized by the same surfactant. Thus, porous composite Ag/AgCl nanoparticles can be used as a multifunctional agent that is able to remove both pollutants and bacterium from water.
Comprehensive study on compositional modification of Tb3+ doped zinc phosphate glass
NASA Astrophysics Data System (ADS)
Yaacob, S. N. S.; Sahar, M. R.; Sazali, E. S.; Mahraz, Zahra Ashur; Sulhadi, K.
2018-07-01
Series of glass composition (60-x) P2O5 -40 ZnO -(x) Tb2O3 where x = 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 mol % are prepared by conventional melt quenching technique. X-Ray Diffraction (XRD), FTIR, UV-Vis-NIR and the photoluminescence (PL) spectroscopy are used to characterize the physical, structural and optical behavior of the glass sample. The XRD pattern confirms the amorphous nature and DTA verified the thermal stability of all the glass samples. Glass with 1.5 mol % of Tb2O3 possesses the highest thermal stability. Glass density is found to increase proportionally with increasing amount of Tb3+ while the molar volume behaves reversely. Six main IR absorption bands centered at about 540, 748, 891, 1085 and 1294 cm- 1 are evidenced. The UV-Vis NIR absorption spectra reveals the absorption center band at about 540, 376, 488 and 1920 nm corresponding to the absorption from 7F6 ground state to various excited state of Tb3+ ion. The optical band gaps for direct and indirect transition are in the range 4.53-5.07 eV and 4.30 eV-4.56 eV respectively. The Urbach energy decreases with the increasing concentration of Tb2O3. The PL emission spectra reveals several prominent peaks at 413, 435, 457, 488, 540, 585 and 620 nm due to electronic transition from 5D3→7F5, 5D3→7F4, 5D3→7F3, 5D4→7F6, 5D4→7F5, 5D4→7F3 and 5D4→7F5 respectively.
NASA Astrophysics Data System (ADS)
Govindappa, M.; Hemashekhar, B.; Arthikala, Manoj-Kumar; Ravishankar Rai, V.; Ramachandra, Y. L.
2018-06-01
The current research study is to develop an easy and eco-friendly method for the synthesis of AgNPs using aqueous leaf extract of Calophyllum tomentosum (CtAgNPs) and evaluated the extract to know the effects of anti-bacterial, antioxidant, anti-diabetic, anti-inflammatory and anti-tyrosinase activity. Using UV-vis spectrophotometer, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) characterized the Calophyllum tomentosum mediated silver nanoparticles. The leaf extract of C. tomentosum yielded flavonoids, saponins, tannins, alkaloids, glycosides, phenols, terpenoids and coumarins. AgNPs formation was confirmed by UV-vis spectra at 438 nm. Crystalline structure with a face centered cubic (fcc) of AgNPs was observed in XRD. FTIR had shown that the phytochemicals were responsible for the reduction and capping material of silver nanoparticles. The size and shape of the AgNPs were determined using SEM. From EDX study analysed the strong absorption property of AgNPs. The CtAgNPs have showed significant antibacterial activity on multi drug resistance bacteria. The CtAgNPs had shown strong antioxidant (DPPH, H2O2 scavenging, nitric oxide scavenging power, reducing power) activities. The CtAgNPs had strongly inhibited the α-glucosidase and DPPIV compared to α-amylase. The CtAgNPs exhibited strong anti-inflammatory activity (albumin denaturation, membrane stabilization, heat haemolytic, protein inhibitory, lipoxygenase, xanthine oxidase) and tyrosinase inhibitory activity. To our best knowledge, this is the first attempt on the synthesis of silver nanoparticles using Calophyllum tomentosum leaves extract. Hence, to validate our results the in vivo studies at molecular level are needed to develop an antioxidant, anti-diabetic and anti-inflammatory agent.
Solid state synthesis of starch-capped silver nanoparticles.
Hebeish, A; Shaheen, Th I; El-Naggar, Mehrez E
2016-06-01
The present research addresses the establishment of a technique which is solely devoted to environmentally friendly one-pot green synthesis of dry highly stable powdered silver nanoparticles (AgNPs) using starch as both reductant and stabilizing agent in the presence of sodium hydroxide. It is believed that the sodium hydroxide can improve the reduction potential of starch. Thus when the alkali treated starch is submitted to addition of silver nitrate (AgNO3), the alkali treated starch induces the well-established dual role of starch; reduction of silver ions (Ag(+)) to AgNPs and capping the as-formed AgNPs to prevent them from further growth and agglomeration. Beside assessment of AgNPs formation, structural and morphological characteristics of AgNPs are investigated by making use of UV-vis spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential, FT-IR and X-ray diffraction (XRD) analysis. Research outputs signify (a) the absorbance around 410-420nm in the UV-vis spectra of AgNPs appears most, probably owing to the presence of nanosized silver particles and the intensity of this peak increases by increasing AgNO3 concentration; (b) that highly stable AgNPs with well-dispersed particle are successfully prepared using the present research-based innovation; (c) that the size of AgNPs does not exceed 30nm with sphere-like morphology even at the highest Ag(+) concentration employed during synthesis operation; (d) that the XRD and FT-IR confirm the successful preparation of pure AgNPs without noticeable impurities; (d) and that the one-pot synthesis of powdered AgNPs in large scale is clean and easily operated and easily transportation which may be applied as per demands of industries such as textile and painting industry. Copyright © 2016. Published by Elsevier B.V.
Malaikozhundan, Balasubramanian; Vijayakumar, Sekar; Vaseeharan, Baskaralingam; Jenifer, Anthonisamy Anthoni; Chitra, Ponnaiah; Prabhu, Narayanan Marimuthu; Kannapiran, Ethiraj
2017-10-01
Silver nanoparticle was green synthesized involving the unripe fruit extracts of Solanum nigrum (Sn-AgNPs). The synthesized Sn-AgNPs was bio-physically characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Transmission electron microscopy (TEM). UV-Vis recorded the absorbance spectra at 443 nm. XRD analysis clearly demonstrated the crystalline nature of Sn-AgNPs with Bragg's reflection peaks at 111, 200, 220 and 311 lattice planes. The FTIR spectrum of Sn-AgNPs showed strong bands at 3432, 1555, 1455, 862 and 406 cm -1 which corresponds at O-H, C-H, C-C, C-OH and C-N groups respectively. TEM exhibited the spherical shape of Sn-AgNPs with particle size between 20 and 30 nm. The antibacterial effects of Sn-AgNPs were tested on clinically important biofilm forming Gram positive (Bacillus pumulis and Enterococcus faecalis) and Gram negative (Proteus vulgaris and Vibrio parahaemolyticus) bacteria. The greater inhibition of B. pumulis and E. faecalis was observed at 100 μg mL -1 of Sn-AgNPs compared to P. vulgaris and V. parahaemolyticus. The biofilm inhibition potential of Sn-AgNPs was greater against Gram positive bacteria than that of Gram negative bacteria. Furthermore, Sn-AgNPs effectively degraded the industrial effluent methyl orange dye by photocatalysis. It is concluded that Sn-AgNPs could be used as an effective therapeutics against the biofilm of clinically important bacteria. The green synthesized Sn-AgNPs can be employed to degrade dye effluents and prevent environmental pollution as well. Copyright © 2017 Elsevier Ltd. All rights reserved.
Khan, Arif Ullah; Yuan, Qipeng; Khan, Zia Ul Haq; Ahmad, Aftab; Khan, Faheem Ullah; Tahir, Kamran; Shakeel, Muhammad; Ullah, Sadeeq
2018-05-07
Plants mediated synthesis of noble metal nanoparticles is encountered as a clean, environment friendly, lucrative and benign loom. The current study consists of clean and green synthesis of Silver nanoparticles (AgNPs). Phytoconstituents from Longan (Euphorbia longana Lam.) fruit peel were used to reduce Ag + into AgNPs. Different analytical techniques i.e. UV-vis Spectroscopy, X-ray diffraction spectroscopy (XRD), electron dispersive X-ray (EDX), High-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR) were used to analyze the synthesized AgNPs. AgNPs have localized surface plasmon resonance (LSPR) peak at 445 nm which is confirmed by UV-vis spectroscopy. HRTEM showed that the prepared AgNPs are spheroid in shape and well dispersed while XRD results showed that the AgNPs are face centered cubic crystalline. EDX confirmed the elemental composition of AgNPs. The antiproliferative response of AgNPs was assayed by an exhaustive MTT assay. AgNPs showed potent anticancer activity (88%) against breast cancer cells MCF-7. Moreover, the green produced AgNPs effectively scavenged 91% of the stable and harmful 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical which confirms its' efficient antioxidant nature. AgNPs have profound photocatalytic degradation (99%) of methylene blue in a short period of time (7 min). The noteworthy biological and photocatalytic responses of the green and cleanly produced AgNPs are encountered to their well dispersion, petite volume and round shaped structure. Copyright © 2018 Elsevier B.V. All rights reserved.
Ghareib, Mohamed; Tahon, Medhat Abu; Saif, Mona Mostafa; El-Sayed Abdallah, Wafaa
2016-01-01
The development of green approaches for the biosynthesis of silver nanoparticles (AgNPs) is of prime significance in the field of nanotechnology research. A fast and eco-friendly protocol for the biosynthesis of extracellular AgNPs using culture supernatant (CS) from the fungus Cunninghamella phaeospora was studied in this work. This CS was proved as a potential new source for the extracellular biosynthesis of AgNPs. The AgNPs were formed at 100 oC and pH 9 within four min of contact between CS and 1mM silver nitrate (AgNO3) solution. Nitrate reductase (NR) was confirmed to play a pivotal role in the biosynthesis of AgNPs. The enzyme expressed its highest activity at 80 oC and pH 9. At 100 oC the enzyme retained 70% of its original activity for one hour. The half-life (T1/2) of the enzyme activity was calculated to be 1.55 h confirming its thermostability. The produced AgNPs were characterized by UV-Vis spectroscopy, high resolution-transmission electron microscope (HR-TEM) and x-ray diffraction (XRD). These NPs showed an absorption peak at 415 nm in UV-Vis spectrum corresponding to the plasmon resonance of AgNPs. Transmission electron micrographs revealed the production of monodispersed spherical NPs with average particle size 14 nm. XRD spectrum of the NPs confirmed the formation of metallic crystalline silver. It was also suggested that the aromatic amino acids play a role in the biosynthesis process. The current research provided an insight on the green biosynthesis of AgNPs including some mechanistic aspects using a new mycogenic source. PMID:28243290
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shasti, M.; Mortezaali, A., E-mail: mortezaali@alzahra.ac.ir; Dariani, R. S.
2015-01-14
In this study, Aluminum doped Zinc Oxide (AZO) layer is deposited on p-type silicon (p-Si) by spray pyrolysis method to fabricate ultraviolet-visible (UV/Vis) photodetector as Al doping process can have positive effect on the photodetector performance. Morphology, crystalline structure, and Al concentration of AZO layer are investigated by SEM, XRD, and EDX. The goal of this study is to analyze the mechanism of carrier transport by means of current-voltage characteristics under UV/Vis illumination in two cases: (a) electrodes connected to the surface of AZO layer and (b) electrodes connected to cross section of heterojunction (AZO/p-Si). Measurements indicate that the AZO/p-Simore » photodiode exhibits a higher photocurrent and lower photoresponse time under visible illumination with respect to AZO photodetector; while under UV illumination, the above result is inversed. Besides, the internal junction field of AZO/p-Si heterojunction plays an important role on this mechanism.« less
Roy, S; Joshi, Amish G; Chatterjee, S; Ghosh, Anup K
2018-06-07
X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to study the structural and morphological characteristics of cobalt doped tin(iv) oxide (Sn1-xCoxO2; 0 ≤ x ≤ 0.04) nanocrystals synthesized by a chemical co-precipitation technique. Electronic structure analysis using X-ray photoemission spectroscopy (XPS) shows the formation of tin interstitials (Sni) and reduction of oxygen vacancies (VO) in the host lattice on Co doping and that the doped Co exists in mixed valence states of +2 and +3. Using XRD, the preferential position of the Sni and doped Co in the unit cell of the nanocrystals have been estimated. Rietveld refinement of XRD data shows that samples are of single phase and variation of lattice constants follows Vegard's law. XRD and TEM measurements show that the crystallite size of the nanocrystals decrease with increase in Co doping concentration. SAED patterns confirm the monocrystalline nature of the samples. The study of the lattice dynamics using Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy shows the existence of many disorder activated forbidden optical phonon modes, along with the corresponding classical modes, signifying Co induced local symmetry breaking in the nanocrystals. UV-Vis spectroscopy shows that the optical band gap has red shifted with increase in doping concentration. The study of Urbach energy confirms the increase in disorder in the nanocrystals with Co doping. Local symmetry breaking induced UV emission along with violet, blue and green luminescence has been observed from the PL study. The spectral contribution of UV emission decreases and green luminescence increases with increase in doping. Using PL, in conjunction with Raman spectroscopy, the type of oxygen vacancy induced in the nanocrystals on Co doping has been confirmed and the position of the defect levels in the forbidden zone (w.r.t. the optical band gap) has been studied.
Popovych, Nataliia; Kyriienko, Pavlo; Soloviev, Sergiy; Baran, Rafal; Millot, Yannick; Dzwigaj, Stanislaw
2016-10-26
Silver has been identified in the framework of Ag x SiBEA zeolites (where x = 3-6 Ag wt%) by the combined use of XRD, 109 Ag MAS NMR, FTIR, diffuse reflectance UV-visible, EPR and XPS spectroscopy. The incorporation of Ag ions into the framework of SiBEA zeolite has been evidenced by XRD. The consumption of OH groups as a result of their reaction with the silver precursor has been monitored by FTIR and photoluminescence spectroscopy. The changes in the silver state as a function of Ag content and thermal and hydrogen treatment at 573 K have been identified by 109 Ag MAS NMR, EPR, DR UV-visible, TEM and XPS investigations. The acidity of AgSiBEA has been investigated by FTIR spectroscopy of adsorbed CO and pyridine used as probe molecules.
Optical characteristics of butyl rubber loaded with general purpose furnace (GPF) carbon black
NASA Astrophysics Data System (ADS)
Alfaramawi, K.
2018-06-01
Optical characteristics of butyl rubber/GPF carbon black (BR/GPFCB) composites with carbon black (CB) concentrations 40, 60, 80 and 100 phr (part per hundred part of rubber) were investigated. The structure of the BR/GPFCB composites was analyzed by x-ray diffraction (XRD). All samples with various CB showed diffraction peaks around 2θ = 14°, 25° and 44° which correspond to interlayer spacing of 6.23 Å, 3.62 Å and 2.10 Å respectively. The peaks were shifted toward larger 2θ angles with increasing CB concentration, indicating a decrease in layer spacing. Ultraviolet and visible (UV–vis) absorbance spectra in the range from 200 nm to 800 nm of the BR/GPFCB composites were studied. In the UV range of the spectra, an absorption edge was recorded. Direct and indirect optical band gaps for the composites were evaluated. The direct band gap values were found-as shown to be slightly greater than that of the indirect ones. The reflectance spectra in the UV optical range were demonstrated. Most of the incident UV light was absorbed inside the composites while a very small fraction was reflected and transmitted. This was attributed to the high UV absorption property of the CB filler. The refractive index of the composite was calculated from the reflectance data. The dependence of the real and imaginary parts of the complex dielectric constant on the incident light energy was characterized. The dielectric loss factor was found to decrease with increasing incident photon energy until approximately 5.5 eV (around the absorption edge) and then it increased rapidly.
Sivakumar, S; Venkatesan, A; Soundhirarajan, P; Khatiwada, Chandra Prasad
2015-12-05
In this research, a chemical precipitation method was used to synthesize undoped and doped cadmium oxide nanoparticles and studied by TG-DTA, XRD, FT-IR, SEM, with EDX and antibacterial activities, respectively. The melting points, thermal stability and the kinetic parameters like entropy (ΔS), enthalpy (ΔH), Gibb's energy (ΔG), activation energy (E), frequency factor (A) were evaluated from TG-DTA measurements. X-ray diffraction analysis (XRD) brought out the information about the synthesized products exist in spherical in shape with cubic structure. The functional groups and band area of the samples were established by Fourier transform infrared (FT-IR) spectroscopy. The direct and indirect band gap energy of pure and doped samples were determined by UV-Vis-DRS. The surface morphological, elemental compositions and particles sizes were evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Finally, antibacterial activities indicated the Gram-positive and Gram-negative bacteria are more active in transporter, dehydrogenize and periplasmic enzymatic activities of pure and doped samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Structural and optical studies of hydrothermally synthesized MoS{sub 2} nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacko, Levna; Swetha, A. K.; Aneesh, P. M., E-mail: aneeshpm@cukerala.ac.in
2016-05-06
Transition-metal dichalcogenides like molybdenum disulphide have intrigued intensive interest as two-dimensional (2D) materials beyond extensively studied graphene due to their unique electronic and optical properties. Here we report the hydrothermal synthesis of MoS{sub 2} nanostructures without the addition of any surfactants. The structural and optical properties of the synthesized samples were characterized by various techniques, including X-ray diffraction (XRD), UV-Vis absorption, photoluminescence (PL), and Raman analysis. XRD and Raman spectroscopic studies confirm the formation of hexagonal phase and well ordered stacking of S-Mo-S layers. The increased lattice parameters of MoS{sub 2} samples are due to the stress or strain inducedmore » bending and folding of the layers. The synthesized MoS{sub 2} nanostructures shows a large optical absorption in 300-700 nm region and strong luminescence at 640 nm. In addition, the optical results demonstrates the quantum confinement in layered d-electron material MoS{sub 2} that can lead to engineer its various properties for electronic and optoelectronic applications.« less
NASA Astrophysics Data System (ADS)
Mahadik, Ashwini; Soni, P. H.; Desai, C. F.
2017-12-01
Among quite a number of technologically important NLO materials, Potassium Dihydrogen Phosphate (KDP) is one of the most favourable ones for second harmonic generation applications, such as in electro-optic modulators, parametric oscillators and harmonic generators. The authors report here their studies on KDP crystals doped with L-Cysteine (1 mol% and 2 mol%). The dopant inclusion in the crystals was confirmed using Fourier transform infrared (FT-IR) spectroscopy and Powder X-Ray Diffraction (XRD). The XRD results also confirm the tetragonal structure with lattice parameters a = b = 7.45 Å and c = 6.98 Å. The presence of functional groups of crystals was analyzed using the FTIR spectra. For band gap evaluation, UV-Vis spectra were used and it was found to be 3.41 eV, 4.40eVand 4.50 eV, respectively in the cases of pure KDP, 1 mol% and 2 mol% L-Cysteine dopings. The spectra quality indicates good transparency of the doped crystals in the visible region, a feature quite desirable for applications in optoelectronics.
The new 3-(tert-butyl)-1-(2-nitrophenyl)-1H-pyrazol-5-amine: Experimental and computational studies
NASA Astrophysics Data System (ADS)
Cuenú, Fernando; Muñoz-Patiño, Natalia; Torres, John Eduard; Abonia, Rodrigo; Toscano, Rubén A.; Cobo, J.
2017-11-01
The molecular and supramolecular structure of the title compound, 3-(tertbutyl)-1-(2-nitrophenyl)-1H-pyrazol-5-amine (2NPz) from the single crystal X-ray diffraction (SC-XRD) and spectroscopic data analysis is reported. The computational analysis of the structure, geometry optimization, vibrational frequencies, nuclear magnetic resonance and UV-Vis is also described and compared with experimental data. Satisfactory theoretical aspects were made for the molecule using density functional theory (DFT), with B3LYP and B3PW91 functionals, and Hartree-Fock (HF), with 6-311++G(d,p) basis set, using GAUSSIAN 09 program package without any constraint on the geometry. With VEDA 4 software, vibrational frequencies were assigned in terms of the potential energy distribution while, with the GaussSum software, the percentage contribution of the frontier orbitals at each transition of the electronic absorption spectrum was established. The obtained results indicated that optimized geometry could well reflect the molecular structural parameters from SC-XRD. Theoretical data obtained for the vibrational analysis and NMR spectra are consistent with experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yudoyono, Gatut, E-mail: gyudoyono@physics.its.ac.id; Zharvan, Vicran; Ichzan, Nur
Titanium dioxide (titania) nanoparticle were synthesized by coprecipitation process of titanium trichloride (TiCl{sub 3}) in aqueous medium, with NH{sub 4}OH as pH regulator. The pH solution was varied during the synthesis process between pH 3-8.4, and all samples were calcined temperature at 400°C for 3 hours. Characteristics and properties of the TiO{sub 2} powder were investigated using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM). XRD results show that the single-phase rutile formed when the pH is less than 5, anatase single phase formed began pH 8, and the pH of the solution between 5-8 formed mixed phase rutile-anatase-brookite, rutile-brookite ormore » anatase-brookite. Methylene Blue (MB) photodegradation test were performed in order to evaluate photocatalytic activity. Nanoparticles TiO{sub 2} rutile, anatase phase, and mixed phase rutile-brookite, anatase-brookite used to test the photocatalytic activity by measuring the absorbance spectrum photodegradation using UV-Vis spectrometer. The test results showed that the mixture phase of rutile-brookite provide the greatest photodegradation than other phases.« less
Sivakami, R; Dhanuskodi, S; Karvembu, R
2016-01-05
RuO2 nanoparticles (RuO2 NPs) have been successfully synthesized by the hydrothermal method. Structure and the particle size have been determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). UV-Vis spectra reveal that the optical band gap of RuO2 nanoparticles is red shifted from 3.95 to 3.55eV. BET measurements show a high specific surface area (SSA) of 118-133m(2)/g and pore diameter (10-25nm) has been estimated by Barret-Joyner-Halenda (BJH) method. The crystallite size and lattice strain in the samples have been investigated by Williamson-Hall (W-H) analysis assuming uniform deformation, deformation stress and deformation energy density, and the size-strain plot method. All other relevant physical parameters including stress, strain and energy density have been calculated. The average crystallite size and the lattice strain evaluated from XRD measurements are in good agreement with the results of TEM. Copyright © 2015 Elsevier B.V. All rights reserved.
Optical properties of zinc borotellurite glass doped with trivalent dysprosium ion
NASA Astrophysics Data System (ADS)
Ami Hazlin, M. N.; Halimah, M. K.; Muhammad, F. D.; Faznny, M. F.
2017-04-01
The zinc borotellurite doped with dysprosium oxide glass samples with chemical formula {[(TeO2) 0 . 7(B2O3) 0 . 3 ] 0 . 7(ZnO) 0 . 3 } 1 - x(Dy2O3)x (where x=0.01, 0.02, 0.03, 0.04 and 0.05 M fraction) were prepared by using conventional melt quenching technique. The structural and optical properties of the proposed glass systems were characterized by using X-ray diffraction (XRD) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and UV-VIS spectroscopy. The amorphous nature of the glass systems is confirmed by using XRD technique. The infrared spectra of the glass systems indicate three obvious absorption bands which are assigned to BO3 and TeO4 vibrational groups. Based on the absorption spectra obtained, the direct and indirect optical band gaps, as well as the Urbach energy were calculated. It is observed that both the direct and indirect optical band gaps increase with the concentration of Dy3+ ions. On the other hand, the Urbach energy is observed to decrease as the concentration of Dy3+ ions increases.
NASA Astrophysics Data System (ADS)
Hanedar, Yesim; Demir, Umit; Oznuluer, Tuba
2016-10-01
Grass-like nanostructured α-Fe2O3 photoelectrodes were prepared for the first time through a simple cathodic electrodeposition method from an oxygenated aqueous solution of Fe3+ at room temperature without using surfactant, capping agents or any other additives. The α-Fe2O3 electrodeposits were characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis absorption and photoelectrochemical (PEC) techniques. The SEM and XRD results indicated that the as-deposited α-Fe2O3 are composed of single crystalline nanoleaves. The formation mechanisms of α-Fe2O3 have also been proposed based on a series of cyclic voltammetric and XPS studies. This new electrochemical method is expected to be a useful technique for the fabrication of single crystalline and photoactive α-Fe2O3 nanostructures directly onto the electrode surface, which is required in most applications, such as energy conversion and storage and sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Police Anil Kumar; Srinivas, Basavaraju; Kala, Pruthu
Highlights: {yields} Visible active Bi-TiO{sub 2} photocatalyst preparation and thorough charaterization. {yields} Bi-TiO{sub 2} shows high activity for isoproturon degradation under solar light irradiation. {yields} The spectral response of TiO{sub 2} shifts from UV to visible light region by Bi doping. {yields} Bi{sup 3+{delta}+} species are playing a vital role in minimizing e{sup -}/h{sup +} recombination. -- Abstract: Bi-doped TiO{sub 2} catalyst was prepared by sol-gel method and was characterized by thermo gravimetric analysis (TGA), X-ray diffraction spectra (XRD), X-ray photo electronic spectroscopy (XPS), UV-Vis diffused reflectance spectra (DRS), photoluminescence spectra (PLS), transmission electron microscopy (TEM), energy dispersive analysis ofmore » X-rays (EDAX) and BET surface area. The photocatalytic activity of the catalysts were evaluated for the degradation of isoproturon herbicide under solar light irradiation. The UV-Visible DRS of Bi-doped TiO{sub 2} showed red shift in optical absorption. The presence of Bi{sup 3+{delta}+} species are playing a vital role in minimizing the electron hole recombination resulting higher activity compared to bare TiO{sub 2}.« less
NASA Astrophysics Data System (ADS)
Yang, Yuhao; Huang, Wenhuan
2018-05-01
TiO2-graphene (P25-GR, PG) nanocomposite was fabricated from P25 titania and graphite oxide by hydrothermal method, and then Cu nanoparticles (Cu NPs) were assembled in P25-GR composite (Cu- P25-GR, CPG) under microwave-assisted chemical reduction. The prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV-Vis absorption (UV-Vis) and Raman spectroscopies. Cu NPs were well dispersed on the surface of PG and are in metallic state. The ternary Cu-P25-GR (CPG) nanocomposites show an extended light absorption range and more efficient charge separation properties compared to binary P25-GR (PG) composite. Methylene blue photodegradation experiment proved that surface plasmon resonance (SPR) phenomenon had an effect on photoreaction efficiency. The corresponding hydrogen evolution rate for CPG prepared using 0.002 M Cu(NO3)2 solution was 10 times higher than with pure P25, and 2.3 times higher than with PG in the same test conditions. The improved photocatalytic performance can be attributed to the presence of GR in the prepared composite and to the SPR effect, leading to the longer lifetime of photogenerated electronhole pairs and faster interfacial charge transfer rate. We expect that our work would be useful for the further exploration of GR-based nanocomposites.
Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization
NASA Astrophysics Data System (ADS)
Hidayah, N. M. S.; Liu, Wei-Wen; Lai, Chin-Wei; Noriman, N. Z.; Khe, Cheng-Seong; Hashim, U.; Lee, H. Cheun
2017-10-01
Graphene oxide (GO) and reduced graphene oxide (RGO) are known to have superior properties for various applications. This work compares the properties of GO and RGO with graphite. GO was prepared by using Improved Hummer's method whereas the produced GO was subjected to chemical reduction with the use of hydrazine hydrate. Graphite, GO and RGO had different morphologies, quality, functionalized groups, UV-Vis absorption peaks and crystallinity. With the removal of oxygen-containing functional group during reduction for RGO, the quality of samples was decreased due to higher intensity of D band than G band was seen in Raman results. In addition, platelet-like surface can be observed on the surface of graphite as compared to GO and RGO where wrinkled and layered flakes, and crumpled thin sheets were observed on GO and RGO surface respectively. Fourier Transform Infra-Red (FTIR) analysis showed the presence of abundant oxygen-containing functional groups in GO as compared to RGO and graphite. The characteristic peaks at 26.62°, 9.03° and 24.10° for graphite, GO and RGO, respectively, can be detected from X-Ray diffraction (XRD). Furthermore, the reduction also caused red shift at 279nm from 238nm, as obtained from ultraviolet visible (UV-Vis) analysis. The results proved that GO was successfully oxidized from graphite whereas RGO was effectively reduced from GO.
Lü, Xiang-fei; Sun, Wan-jun; Li, Jun; Xu, Wei-xia; Zhang, Feng-xing
2013-07-01
Three porphyrins containing different functional groups (-OH, C-O2C2H5, -COOH), 5-(4-hydroxy) phenyl-10,15,20-triphenyl porphyrin (1a), 5-(4-ethylacetatatomethoxy) phenyl-10,15,20-triphenyl porphyrin (1b), 5-(4-carboxylatomethoxy) phenyl-10,15,20-triphenyl porphyrin (1c), were synthesized and characterized spectroscopically. The CuPp(2a, 2b, 2c)-TiO2 photocatalysts were then prepared and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis-DRS), Fourier-transform infrared spectroscopy (FT-IR). The photocatalytic activities of the photocatalysts were investigated by carrying out the photodegradation of 4-nitrophenol in aqueous solution under simulated solar irradiation. It was found that the CuPp(2a, 2b, 2c)-TiO2 enhanced the photocatalytic efficiency of bare TiO2 in photodegrading the 4-NP due to the interaction between CuPp(2a, 2b, 2c) and TiO2, resulted in the enhancement of the photogenerated electron-hole separation. The reasons of this enhanced photocatalytic activity were also discussed. Based on the present study, it could be considered as a promising photocatalyst for the further industrial application. Copyright © 2013 Elsevier B.V. All rights reserved.
Structural, chemical and optical properties of SnO2 NPs obtained by three different synthesis routes
NASA Astrophysics Data System (ADS)
Drzymała, Elżbieta; Gruzeł, Grzegorz; Depciuch, Joanna; Budziak, Andrzej; Kowal, Andrzej; Parlinska-Wojtan, Magdalena
2017-08-01
Polyol (P), chemical precipitation (C) and microwave-assisted (M) syntheses were chosen to produce SnO2 nanoparticles with uniform size and minimum agglomeration. Their structural, chemical and optical properties were investigated using dynamic light scattering (DLS), scanning transmission electron microscopy (STEM), Raman, Fourier Transform Infrared (FTIR) using the Attenuated Total Reflectance (ATR) technique and Ultraviolet-Visible (UV-Vis) spectroscopies. STEM observations showed that the SnO2(P) and SnO2(C) nanoparticles (NPs) are combined into larger agglomerates with heterogeneous thickness, while the microwave-assisted NPs form a uniform thin layer across the TEM grid. The strongest agglomeration of the SnO2(C) NPs, observed by DLS, STEM and UV-Vis is explained by the very moderate amount of water present on the surface of the NPs identified by FTIR spectroscopy. High resolution STEM combined with SAED and X-ray diffraction (XRD) patterns confirmed the crystalline character of the NPs. In the nanoparticles from polyol synthesis, chlorine from the remains of metal precursors during reduction was detected by energy dispersive spectroscopy (EDS), contrary to the NPs obtained by the chemical precipitation and microwave-assisted methods. All three syntheses routes lead to small, 2-10 nm SnO2 NPs, which were the result of the low concentration of Cl ions in the solutions.
Dong, Fan; Zhao, Weirong; Wu, Zhongbiao; Guo, Sen
2009-03-15
Multi-type nitrogen doped TiO(2) nanoparticles were prepared by thermal decomposition of the mixture of titanium hydroxide and urea at 400 degrees C for 2h. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (UV-vis DRS), and photoluminescence (PL). The results showed that the as-prepared samples exhibited strong visible light absorption due to multi-type nitrogen doped in the form of substitutional (N-Ti-O and Ti-O-N) and interstitial (pi* character NO) states, which were 0.14 and 0.73 eV above the top of the valence band, respectively. A physical model of band structure was established to clarify the visible light photocatalytic process over the as-prepared samples. The photocatalytic activity was evaluated for the photodegradation of gaseous toluene under visible light irradiation. The activity of the sample prepared from wet titanium hydroxide and urea (TiO(2)-Nw, apparent reaction rate constant k = 0.045 min(-1)) was much higher than other samples including P25 (k = 0.0013 min(-1)). The high activity can be attributed to the results of the synergetic effects of strong visible light absorption, good crystallization, large surface hydroxyl groups, and enhanced separation of photoinduced carriers.
NASA Astrophysics Data System (ADS)
Yang, Weiwei; Li, Chunhu; Wang, Liang; Sun, ShengNan; Yan, Xin
2015-10-01
The photocatalysts of activated semi-coke supported TiO2-rGO nanocomposite (TiO2-rGO/ASC) with different contents of reduced graphene oxide were fabricated by one-step solvothermal method for NO removal under visible light irradiation. It was confirmed that 8% content of reduced graphene oxide presented the best NO photooxidation performance under visible light irradiation at 70 °C with 350-400 mg/m3 NO,5% O2 and 5% relative humidity. The reasons for improved activity were discussed, alloyed with the mechanism of producing CO. Detailed structural information of TiO2-rGO/ASC photocatalysts was characterized by scanning electron microscope (SEM), energy dispersive X-ray Spectroscopy (EDX), X-ray diffraction analysis (XRD), UV-Vis diffuse reflectance spectra (UV-Vis DRS) and photoluminescence (PL), which indicated that the introduction of rGO was responsible for well dispersion, smaller crystalline size, red shift of absorption band and suppressing quick photo-induced charges recombination of TiO2-rGO/ASC photocatalysts. Optimization of operational parameters with 70 °C, 8% O2 and 8% relative humidity were also obtained. Deactivation of TiO2-rGO/ASC photocatalysts for NO removal was investigated by Fourier-transform infrared (FTIR) analysis. Regeneration experiments showed that thermal vapor regeneration would be optimal method owing to excellent regenerative capacity and inexpensive procedure.
Poongodi, G; Anandan, P; Kumar, R Mohan; Jayavel, R
2015-09-05
Nanostructured cobalt doped ZnO thin films were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV-Vis spectroscopy. The XRD results showed that the thin films were well crystalline with hexagonal wurtzite structure. The results of EDAX and XPS revealed that Co was doped into ZnO structure. FESEM images revealed that the films possess granular morphology without any crack and confirm that Co doping decreases the grain size. UV-Vis transmission spectra show that the substitution of Co in ZnO leads to band gap narrowing. The Co doped ZnO films were found to exhibit improved photocatalytic activity for the degradation of methylene blue dye under visible light in comparison with the undoped ZnO film. The decrease in grain size and extending light absorption towards the visible region by Co doping in ZnO film contribute equally to the improved photocatalytic activity. The bactericidal efficiency of Co doped ZnO films were investigated against a Gram negative (Escherichia coli) and a Gram positive (Staphylococcus aureus) bacteria. The optical density (OD) measurement showed better bactericidal activity at higher level of Co doping in ZnO. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zahran, H. Y.; Yahia, I. S.; Alamri, F. H.
2017-05-01
Pyronin Y dye (PY) is a kind of xanthene derivatives. Thin films of pyronin Y were deposited onto highly cleaned glass substrates using low-cost/spin coating technique. The structure properties of pyronin Y thin films with different thicknesses were investigated by using X-ray diffraction (XRD) and atomic force microscope (AFM). PY thin films for all the studied thicknesses have an amorphous structure supporting the short range order of the grain size. AFM supports the nanostructure with spherical/clusters morphologies of the investigated thin films. The optical constants of pyronin Y thin films for various thicknesses were studied by using UV-vis-NIR spectrophotometer in the wavelength range 350-2500 nm. The transmittance T(λ), reflectance R(λ) spectral and absorbance (abs(λ)) were obtained for all film thicknesses at room temperature and the normal light incident. These films showed a high transmittance in the wide scale wavelengths. For different thicknesses of the studied thin films, the optical band gaps were determined and their values around 2 eV. Real and imaginary dielectric constants, dissipation factor and the nonlinear optical parameters were calculated in the wavelengths to the range 300-2500 nm. The pyronin Y is a new organic semiconductor with a good optical absorption in UV-vis regions and it is suitable for nonlinear optical applications.
NASA Astrophysics Data System (ADS)
Mukherjee, Moumita; Ghorai, Uttam Kumar; Samanta, Madhupriya; Santra, Angshuman; Das, Gour P.; Chattopadhyay, Kalyan K.
2017-10-01
To improve the photocatalytic performance of metal phthalocyanine based catalyst, Copper Phthalocyanine (CuPc) functionalized reduced graphene oxide (RGO) nanocomposite has been synthesized through a simple chemical approach. The obtained product was characterized by X-ray diffraction technique (XRD), Fourier transform infrared (FTIR) spectroscopy, Ultraviolet-visible spectroscopy (UV-vis) and High resolution transmission electron microscopy (HRTEM). The photocatalytic activity of the RGO/CuPc nanocomposite was performed by the degradation of Rhodamine B (RhB) under visible light irradiation. The photocatalytic studies revealed that the RGO/CuPc nanocomposite exhibits much stronger catalytic behavior than the pristine CuPc nanotube. A plausible mechanism for the photodegradation of Rhodamine B (RhB) was suggested. The RGO wrapped CuPc nanotube composite materials offer great potential as active photocatalysts for degradation of organic pollutions in industrial waste water.
NASA Astrophysics Data System (ADS)
Subba Rao, Y.; Kotakadi, Venkata S.; Prasad, T. N. V. K. V.; Reddy, A. V.; Sai Gopal, D. V. R.
2013-02-01
A simple method for the green synthesis of silver nanoparticles (AgNPs) using aqueous extract of Lakshmi tulasi (Ocimum sanctum) leaf as a reducing and stabilizing agent. AgNPs were rapidly synthesized using aqueous extract of tulasi leaf with AgNO3 solution within 15 min. The green synthesized AgNPs were characterized using physic-chemical techniques viz., UV-Vis, X-ray diffraction (XRD), scanning electron microscope (SEM) coupled with X-ray energy dispersive spectroscopy (EDX) and Fourier transform-infrared spectroscopy (FT-IR). Characterization data reveals that the particles were crystalline in nature and triangle shaped with an average size of 42 nm. The zeta potential of AgNPs were found to be -55.0 mV. This large negative zeta potential value indicates repulsion among AgNPs and their dispersion stability.
A simple and facile synthesis of MPA capped CdSe and CdSe/CdS core/shell nanoparticles
NASA Astrophysics Data System (ADS)
Sukanya, D.; Sagayaraj, P.
2015-06-01
II-VI semiconductor nanostructures, in particular, CdSe quantum dots have drawn a lot of attention because of their promising potential applications in biological tagging, photovoltaic, display devices etc. due to their excellent optical properties, high emission quantum yield, size dependent emission wavelength and high photostability. In this paper, we describe the synthesis and properties of mercaptopropionic acid capped CdSe and CdSe/CdS nanoparticles through a simple and efficient co-precipitation method followed by hydrothermal treatment. The growth process, characterization and the optical absorption as a function of wavelength for the synthesized MPA capped CdSe and CdSe/CdS nanoparticles have been determined using X-ray diffraction study (XRD), Ultraviolet-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR) and High Resolution Transmission Electron Microscopy (HRTEM).
Preparation and Optical Properties of CuS Nanofilms by a Facile Two-Step Process
NASA Astrophysics Data System (ADS)
Cui, Zhankui; Zhou, Junqiang; Ge, Suxiang; Zhao, Hongxiao
CuS nanofilms were prepared by a facile two-step process including chemical bath deposition of Cu nanofilms first and the subsequent thermal sulfuration step. The composition and structure of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Raman spectroscopy. The optical properties of CuS nanofilms were determined by Ultraviolet-visible (UV-Vis) technique. The results show that the nanofilms composed by Cu spherical nanoparticles were completely transformed to the nanofilms composed by CuS nanosheets when the sulfuration temperature was 350∘C. The light absorption edges of CuS nanofilms exhibit red shift when sulfuration occurred at lower temperature. A plausible growth mechanism related with gas phase reaction for formation of CuS nanofilms was also proposed.
NASA Astrophysics Data System (ADS)
Thanh Ngo, Vo Ke; Phat Huynh, Trong; Giang Nguyen, Dang; Phuong Uyen Nguyen, Hoang; Lam, Quang Vinh; Dat Huynh, Thanh
2015-12-01
Gold nanobipyramids (NBPs) have attracted much attention because they have potential for applications in smart sensing devices, such as medical diagnostic equippments. This is due to the fact that they show more advantageous plasmonic properties than other gold nanostructures. We describe a chemical reduction method for synthesizing NBPs using conventional heating with ascorbic acid reduction and cetyltrimethylamonium bromide (CTAB) + AgNO3 as capping agents. The product was characterized by ultraviolet-visible spectroscopy (UV-vis), Fourier transmission infrared spectroscopy (FTIR), transmission electron microscopy (TEM), x-ray powder diffraction (XRD). The results showed that gold nanoparticles were formed with bipyramid shape (tip-to-tip distance of 88.4 ± 9.4 nm and base length of 29.9 ± 3.2 nm) and face-centered-cubic crystalline structure. Optimum parameters for preparation of NBPs are also found.
Surface characteristics changes in polymeric material by swift ion beam
NASA Astrophysics Data System (ADS)
Abdul-Kader, A. M.; El-Gendy, Y. A.
2018-03-01
In this work, polyethylene (PE) samples were subjected to 9 MeV Cl+2 ions with fluences ranging from 1 × 1013 to 5 × 1014 ion/cm2. Rutherford back scattering spectrometry (RBS), X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy and Vicker's micro-hardness (Hv) techniques were used to investigate the compositional transformation, changes in the structure, optical and surface hardness of bombarded samples. The adhesion parameters were analyzed using the contact angle measurements. The obtained results showed that the ion irradiation caused a decrease in the crystallinity of polyethylene and increase in absorption of oxygen on the polymer surface as well. The absorption edge shifted towards the red shift as Cl-ion fluence increases. It was found that the hardness and adhesion parameters increase with increasing the ion beam fluence.
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Wani, Mohmmad Y.; Arranja, Claudia T.; Castro, Ricardo A. E.; Paixão, José A.; Sobral, Abilio J. F. N.
2018-01-01
Fluorescent materials are important for low-cost opto-electronic and biomedical sensor devices. In this study we present the synthesis and characterization of graphene modified with bis-thiosemicarbazone (BTS). This new material was characterized using Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible (UV-Vis) and Raman spectroscopy techniques. Further evaluation by X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and atomic-force microscopy (AFM) allowed us to fully characterize the morphology of the fabricated material. The average height of the BTSGO sheet is around 10 nm. Optical properties of BTSGO evaluated by photoluminescence (PL) spectroscopy showed red shift at different excitation wavelength compared to graphene oxide or bisthiosemicarbazide alone. These results strongly suggest that BTSGO material could find potential applications in graphene based optoelectronic devices.
Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of Methylene blue
NASA Astrophysics Data System (ADS)
Velanganni, S.; Pravinraj, S.; Immanuel, P.; Thiruneelakandan, R.
2018-04-01
In the present manuscript, thin films of Zinc Oxide (ZnO) have been deposited on a FTO substrate using a simple successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) method. Cadmium Sulphide (CdS) nanoparticles are sensitized over ZnO thin films using SILAR method. The synthesized nanostructured CdS/ZnO heterojunction thin films was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), High resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy and Raman spectroscopy techniques. The band gap of CdS nanoparticles over ZnO nanostructure was found to be about 3.20 eV. The photocatalytic activities of the deposited CdS/ZnO thin films were evaluated by the degradation of methylene blue (MB) in an aqueous solution under sun light irradiation.
Ultrasound with low intensity assisted the synthesis of nanocrystalline TiO2 without calcination.
Ghows, Narjes; Entezari, Mohamad H
2010-06-01
A novel method has been developed for the preparation of nano-sized TiO(2) with anatase phase. Nanoparticles with diameter about 6 nm were prepared at a relatively low temperature (75 degrees C) and short time. The synthesis was carried out by the hydrolysis of titanium tetra-isopropoxide (TTIP) in the presence of water, ethanol, and dispersant under ultrasonic irradiation (500 kHz) at low intensity. The results show that variables such as water/ethanol ratio, irradiation time, and temperature have a great influence on the particle size and crystalline phases of TiO(2) nanoparticles. Characterization of the product was carried out by different techniques such as powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and UV-vis spectroscopy. (c) 2010 Elsevier B.V. All rights reserved.
Surfaces wettability and morphology modulation in a fluorene derivative self-assembly system
NASA Astrophysics Data System (ADS)
Cao, Xinhua; Gao, Aiping; Zhao, Na; Yuan, Fangyuan; Liu, Chenxi; Li, Ruru
2016-04-01
A new organogelator based on fluorene derivative (gelator 1) was designed and synthesized. Organogels could be obtained via the self-assembly of the derivative in acetone, toluene, ethyl acetate, hexane, DMSO and petroleum ether. The self-assembly process was thoroughly characterized using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV-vis, FT-IR and the contact angle. Surfaces with different morphologies and wetting properties were formed via the self-assembly of gelator 1 in the six different solvents. Interestingly, a superhydrophobic surface with a contact angle of 150° was obtained from organogel 1 in DMSO and exhibited the lotus-effect. The sliding angle necessary for a water droplet to move on the glass was only 15°. Hydrogen bonding and van der Waals forces were attributed as the main driving forces for gel formation.
Bindhu, M R; Umadevi, M
2013-01-15
Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Faghihi, Khalil; Faramarzi, Ellahe; Shabanian, Meisam
2011-04-01
New poly(amide-imide)-montmorillonite reinforced nanocomposites containing Bis(4-N-trimellitylimido) diphenyl ether moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 4 was synthesized by the direct polycondensation reaction of Bis(4-N-trimellitylimido) diphenyl ether 3 with 4,4'-diamino diphenyl ether 2 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). Morphology and structure of the resulting PAI-nanocomposite films 4a and 4b with 10 and 20 mass% silicate particles respectively, were characterized by FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The properties of nanocomposites films were investigated by using Uv-vis spectroscopy, thermogravimetric analysis (TGA) and water uptake measurements.
Photocatalytic Performance of a Novel MOF/BiFeO₃ Composite.
Si, Yunhui; Li, Yayun; Zou, Jizhao; Xiong, Xinbo; Zeng, Xierong; Zhou, Ji
2017-10-10
In this study, MOF/BiFeO₃ composite (MOF, metal-organic framework) has been synthesized successfully through a one-pot hydrothermal method. The MOF/BiFeO₃ composite samples, pure MOF samples and BiFeO₃ samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and by UV-vis spectrophotometry. The results and analysis reveal that MOF/BiFeO₃ composite has better photocatalytic behavior for methylene blue (MB) compared to pure MOF and pure BiFeO₃. The enhancement of photocatalytic performance should be due to the introduction of MOF change the surface morphology of BiFeO 3, which will increase the contact area with MB. This composing strategy of MOF/BiFeO₃ composite may bring new insight into the designing of highly efficient photocatalysts.
Synthesis Structural and Optical Properties Of (Co, Al) co-doped ZnO Nano Particles
NASA Astrophysics Data System (ADS)
Swapna, P.; Venkatramana Reddy, S.
2018-02-01
We prepared (Co, Al) co-doped ZnO nanostructures using the method chemical co-precipitation successfully, at room temperature using PEG (Poly ethylene glycol) as stabilizing agent. Samples are prepared with different concentrations by keeping aluminium at 5 mol percent constant and varying the concentration of cobalt from 1 to 5 mol percent. After the preparation all the samples are carefully subjected to characterizations such as XRD, SEM with EDS, TEM, PL and UV-VIS-NIR. XRD pattern shows that all the samples possess hexagonal wurtzite crystal structure having no secondary phases pertaining to Al or cobalt, which shows successful dissolution of the dopents. TEM results shows the accurate size of particles and is confirmed the XRD data. SEM images of all the samples shows that particles are in nearly spherical shape, EDS spectrum reveals that incorporation of cobalt and aluminum in host lattice. PL spectrum shows that all the samples containing two prominent peaks centered at 420 nm and 446 nm. UV-VIS-NIR spectra has shown three absorptions peaks in the range of wavelength 550 nm to 700 nm, which are ascribed as typical d-d transitions of cobalt ions.
Kora, Aruna Jyothi; Rastogi, Lori
2016-10-01
A facile and green method for the reduction of selenite was developed using a Gram-negative bacterial strain Pseudomonas aeruginosa, under aerobic conditions. During the process of bacterial conversion, the elemental selenium nanoparticles were produced. These nanoparticles were systematically characterized using various analytical techniques including UV-visible spectroscopy, XRD, Raman spectroscopy, SEM, DLS, TEM and FTIR spectroscopy techniques. The generation of selenium nanoparticles was confirmed from the appearance of red colour in the culture broth and broad absorption peaks in the UV-vis. The synthesized nanoparticles were spherical, polydisperse, ranged from 47 to 165 nm and the average particle size was about 95.9 nm. The selected-area electron diffraction, XRD patterns; and Raman spectroscopy established the amorphous nature of the fabricated nanoparticles. The IR data demonstrated the bacterial protein mediated selenite reduction and capping of the produced nanoparticles. The selenium removal was assessed at different selenite concentrations using ICP-OES and the results showed that the tested bacterial strain exhibited significant selenite reduction activity. The results demonstrate the possible application of P. aeruginosa for bioremediation of waters polluted with toxic and soluble selenite. Moreover, the potential metal reduction capability of the bacterial strain can function as green method for aerobic generation of selenium nanospheres. Copyright © 2016 Elsevier Ltd. All rights reserved.
Synthesis and characterization of the Cu2ZnSnS4 system for photovoltaic applications
NASA Astrophysics Data System (ADS)
Sánchez Pinzón, D. L.; Soracá Perez, G. Y.; Gómez Cuaspud, J. A.; López, E. Vera
2017-01-01
This paper focuses on the synthesis and characterization of a ceramic material based on the Cu2ZnSnS4 system, through the implementation of a hydrothermal route. For this purpose, we started from nitrate dissolutions in a 1.0mol L-1 concentration, which were mixed and treated in a teflon lined vessel steel at 280°C for 48h. The Physicochemical characterization of the solid was evaluated by means of ultraviolet visible spectroscopy (UV-VIS), X-ray diffraction (XRD), Raman spectroscopy, scanning and transmission electron microscopy (SEM-TEM) and solid state impedance spectroscopy (IS). The initial characterization through UV measurements confirms a Band-gap around 1.46eV obtained by the Kubelka-Munk method, which demonstrates the effectiveness of the synthesis method in the obtaining of a semiconductor material. The XRD results confirm the obtaining of a crystalline material of pure phase with tetragonal geometry and I-42m space group. The preferential crystalline orientation was achieved along (2 2 0) facet, with crystallite sizes of nanometric order (6.0nm). The morphological aspects evaluated by means electron microscopy, confirmed the homogeneity of the material, showing specifically a series of textural and surface properties of relevant importance. Finally, the electrical characterizations allow to validate the semiconductor behaviour of CZTS system for development of photovoltaic technologies.
Synthesis and properties of platinum on multiwall carbon nanotube modified by chitosan
NASA Astrophysics Data System (ADS)
Fikriyyah, A. K.; Chaldun, E. R.; Indriyati
2018-03-01
Platinum nanoparticles on multiwall carbon nanotubes (Pt/MWCNT) play an important role in fuel cell to convert the chemical energy from a fuel into electricity. In this study, Pt/MWCNT electrocatalysts were prepared by chemical reduction of the metal salts in chitosan as the support. Firstly, commercial MWCNTs were functionalized by oxidative process using a mixture of nitric acid and sulfuric acid. Then, functionalized MWCNTs were mixed with chitosan-acetic acid solution to conduct grafting reaction with NH2 groups in chitosan by solution polymerization method. Platinum nanoparticles were loaded onto the surface of the MWCNTs after hexachloroplatinic acid was reduced by sodium hydroxide solution. The result showed that Pt was attached on MWCNT based on analysis from EDS, XRD, and UV Vis Spectroscopy. UV Vis analysis indicates the plasmon absorbance band of Pt nanoparticles in Pt/MWCNT, while XRD analysis confirmed the size of Pt particle in nanometer. This elucidates the potential procedure to synthesize Pt/MWCNT using chitosan.
The Green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L
NASA Astrophysics Data System (ADS)
Suman, T. Y.; Radhika Rajasree, S. R.; Ramkumar, R.; Rajthilak, C.; Perumal, P.
2014-01-01
In the present work, we describe the synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia. UV-vis spectroscopy, XRD, FTIR, FE-SEM, EDX and TEM were performed to characterize the formation of gold nanoparticles. The synthesized gold nanoparticles were characterized by a peak at 540 nm in the UV-vis spectrum. The XRD peaks at 38°, 44°, 64° and 77° can be indexed to the (1 1 1), (2 0 0), (2 2 0) and (3 1 1) Bragg's reflections of cubic structure of metallic gold, respectively. The FTIR result showed that extract containing protein might be responsible for the formation of the nanoparticles and may play an important role in the stabilization of the formed nanoparticles. FESEM images revealed that the particles were triangle and mostly spherical in shape. TEM images clearly revealed the size of the nanoparticles were 12.17-38.26 nm in size.
The Green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L.
Suman, T Y; Rajasree, S R Radhika; Ramkumar, R; Rajthilak, C; Perumal, P
2014-01-24
In the present work, we describe the synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia. UV-vis spectroscopy, XRD, FTIR, FE-SEM, EDX and TEM were performed to characterize the formation of gold nanoparticles. The synthesized gold nanoparticles were characterized by a peak at 540 nm in the UV-vis spectrum. The XRD peaks at 38°, 44°, 64° and 77° can be indexed to the (111), (200), (220) and (311) Bragg's reflections of cubic structure of metallic gold, respectively. The FTIR result showed that extract containing protein might be responsible for the formation of the nanoparticles and may play an important role in the stabilization of the formed nanoparticles. FESEM images revealed that the particles were triangle and mostly spherical in shape. TEM images clearly revealed the size of the nanoparticles were 12.17-38.26 nm in size. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Deborah, M.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin
2015-03-01
The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (0 0 2) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery.
Nosheen, Erum; Shah, Syed Mujtaba; Hussain, Hazrat; Murtaza, Ghulam
2016-09-01
This article presents a comprehensive relative report on the grafting of ZnS with renowned ruthenium ((Ru) dyes i.e. N3, N719 and Z907) and gives insight into their charge transfer interaction and sensitization mechanism for boosting solar cell efficiency. Influence of dye concentration on cell performance is also reported here. ZnS nanoparticles synthesized by a simple coprecipitation method with an average particle size of 15±2nm were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Elemental dispersive X-ray analysis (EDAX), tunneling electron microscopy (TEM) and UV-Visible (UV-Vis) spectroscopy. UV-Vis, photoluminescence (PL) and Fourier transform infra-red (FT-IR) spectroscopy confirms the successful grafting of these dyes over ZnS nanoparticles surface. Low-energy metal-to-ligand charge-transfer transition (MLCT) bands of dyes are mainly affected on grafting over the nanoparticle surface. Moreover their current voltage (I-V) results confirm the efficiency enhancement in ZnS solid state dye sensitized solar cells (SSDSSCs) owing to effective sensitization of this material with Ru dyes and helps in finding the optimum dye concentration for nanoparticles sensitization. Highest rise in overall solar cell efficiency i.e. 64% of the reference device has been observed for 0.3mM N719-ZnS sample owing to increased open circuit voltage (Voc) and fill factor (FF). Experimental and proposed results were found in good agreement with each other. Copyright © 2016 Elsevier B.V. All rights reserved.
ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation
NASA Astrophysics Data System (ADS)
Matinise, N.; Fuku, X. G.; Kaviyarasu, K.; Mayedwa, N.; Maaza, M.
2017-06-01
The research work involves the development of better and reliable method for the bio-fabrication of Zinc oxide nanoparticles through green method using Moringa Oleifera extract as an effective chelating agent. The electrochemical activity, crystalline structure, morphology, isothermal behavior, chemical composition and optical properties of ZnO nanoparticles were studied using various characterization techniques i.e. Cyclic voltammetry (CV), X-ray powder diffraction (XRD), High resolution transmission electron microscopy (HRTEM), Selected area electron diffraction (SEAD), Differential scanning calorimetry/thermogravimetric analysis (DSC/TGA), Fourier Transform Infrared analysis (FTIR) and Ultraviolet spectroscopy studies (UV-vis). The electrochemical analysis proved that the ZnO nano has high electrochemical activity without any modifications and therefore are considered as a potential candidate in electrochemical applications. The XRD pattern confirmed the crystallinity and pure phase of the sample. DSC/TGA analysis of ZnO sample (before anneal) revealed three endothermic peaks around 140.8 °C, 223.7 °C and 389.5 °C. These endothermic peaks are attributed to the loss of volatile surfactant, conversion of zinc hydroxide to zinc oxide nanoparticles and transformation of zinc oxide into zinc nanoparticles. Mechanisms of formation of the ZnO nanoparticles via the chemical reaction of the Zinc nitrate precursor with the bioactive compounds of the Moringa oleifera are proposed for each of the major family compounds: Vitamins, Flavonoids, and Phenolic acids.
NASA Astrophysics Data System (ADS)
Zhong, Liansheng; Hu, Chaohao; Zhuang, Jing; Zhong, Yan; Wang, Dianhui; Zhou, Huaiying
2018-06-01
AgBr/MgBi2O6 heterostructured photocatalysts were synthesized by the deposition-precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS) were employed to examine the phase structure, morphology and optical properties of the as-prepared samples. The photocatalytic activity was investigated by decomposing methylene blue (MB) solution under visible light irradiation (λ > 420 nm). AgBr/MgBi2O6 composites exhibited significantly enhanced visible-light-driven photocatalytic properties in comparison with pure MgBi2O6 and AgBr. When the molar ratio of AgBr to MgBi2O6 was 3:1, the composite catalyst showed the optimal photocatalytic activity and excellent stability. The enhanced photocatalytic activity of AgBr/MgBi2O6 composites was attributed to the formation of p-n heterojunction between AgBr and MgBi2O6, thereby resulting in the effective separation and transfer of photogenerated electrons-hole pairs.
Sun, Xiaoxia; Wang, Kunpeng; Shu, Yu; Zou, Fangdong; Zhang, Boxing; Sun, Guangwu; Uyama, Hiroshi; Wang, Xinhou
2017-01-01
In this study, novel photocatalyst monolith materials were successfully fabricated by a non-solvent induced phase separation (NIPS) technique. By adding a certain amount of ethyl acetate (as non-solvent) into a cellulose/LiCl/N,N-dimethylacetamide (DMAc) solution, and successively adding titanium dioxide (TiO2) nanoparticles (NPs), cellulose/TiO2 composite monoliths with hierarchically porous structures were easily formed. The obtained composite monoliths possessed mesopores, and two kinds of macropores. Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), and Ultraviolet-visible Spectroscopy (UV-Vis) measurements were adopted to characterize the cellulose/TiO2 composite monolith. The cellulose/TiO2 composite monoliths showed high efficiency of photocatalytic activity in the decomposition of methylene blue dye, which was decomposed up to 99% within 60 min under UV light. Moreover, the composite monoliths could retain 90% of the photodegradation efficiency after 10 cycles. The novel NIPS technique has great potential for fabricating recyclable photocatalysts with highly efficiency. PMID:28772734
Shifu, Chen; Xiaoling, Yu; Huaye, Zhang; Wei, Liu
2010-08-15
In this paper, the heterostructure In(2)O(3)/In(OH)(3) photocatalyst was prepared by programmed thermal treatment of In(OH)(3) using In(NO(3))(3).9H(2)O as the precursor. Various characterization methods such as X-ray power diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared spectrometry (FT-IR) and transmission electron microscopy (TEM) were employed to investigate the structure, morphologies, and optical properties. Terephthalic acid was used as a probe molecule to detect the generation of hydroxyl radicals (OH) on the surface of UV-illuminated photocatalyst by a photoluminescence (PL) technique. The results showed that the photocatalytic activity of the heterostructure In(2)O(3)/In(OH)(3) was higher than that of single In(2)O(3) or In(OH)(3). The increased photocatalytic activity may be attributed to the formation of the heterojunction between In(2)O(3) and In(OH)(3), which suppresses the recombination of photoexcited electrons-hole pairs. Copyright 2010 Elsevier B.V. All rights reserved.
Huang, Lanlan; Luo, Fang; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra
2015-02-25
This study investigates green tea extract synthesized conditions impacting on the reactivity of iron nanoparticles (Fe NPs) used for the degradation of malachite green (MG), including the volume ratio of Fe(2+) and tea extract, the solution pH and temperature. Results indicated that the reactivity of Fe NPs increased with higher temperature, but fell with increasing pH and the volume ratio of Fe(2+) and tea extract. Scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), Fourier transform infrared spectroscope (FTIR) and X-ray diffraction (XRD) indicated that Fe NPs were spherical in shape, their diameter was 70-80 nm and they were mainly composed of iron oxide nanoparticles. UV-visible (UV-vis) indicated that reactivity of Fe NPs used in degradation of MG significantly depended on the synthesized conditions of Fe NPs. This was due to their impact on the reactivity and morphology of Fe NPs. Finally, degradation of MG showed that 90.56% of MG was removed using Fe NPs. Copyright © 2014 Elsevier B.V. All rights reserved.
Functional behaviour of polypropylene/ZnO soluble starch nanocomposites
NASA Astrophysics Data System (ADS)
Chandramouleeswaran, Subramani; Mhaske, S. T.; Kathe, A. A.; Varadarajan, P. V.; Prasad, Virendra; Vigneshwaran, Nadanathangam
2007-09-01
ZnO-polypropylene nanocomposites (nano-PP) were prepared using nanoparticles of ZnO stabilized by soluble starch (nano-ZnO) as filler in PP by the melt mixing process. X-ray diffraction (XRD) and other spectroscopic analysis—ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) and photoluminescence—revealed the presence and characteristics of nano-ZnO in the composites. The presence of ZnO imparts whiteness, while starch increased the yellowing of polymers. The nanocomposites were analyzed for changes in optical, mechanical, electrical and rheological properties, as influenced by the increasing concentration of nano-ZnO. The mechanical properties were marginally increased and the dielectric strength of the nano-PP increased to a notable level. By monitoring the evolution of the carbonyl absorption bands from FTIR analysis, the efficacy of nano-ZnO in the reduction of photo-degradation due to UV irradiation was demonstrated. The excellent antibacterial activity exhibited by nano-ZnO impregnated PP against two human pathogenic bacteria, Staphylococcus aureus and Klebsiella pneumoniae, makes it a suitable candidate for food packaging applications.
Stachurska, Patrycja; Kuterasiński, Łukasz; Dziedzicka, Anna; Górecka, Sylwia; Chmielarz, Lucjan; Łojewska, Joanna; Sitarz, Maciej
2018-01-01
Iron-substituted MFI, Y and USY zeolites prepared by two preparation routes—classical ion exchange and the ultrasound modified ion-exchange method—were characterised by micro-Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet (UV)/visible diffuse reflectance spectroscopy (UV/Vis DRS). Ultrasound irradiation, a new technique for the preparation of the metal salt suspension before incorporation to the zeolite structure, was employed. An experimental study of selective catalytic reduction (SCR) of NO with NH3 on both iron-substituted reference zeolite catalysts and those prepared through the application of ultrasound conducted during an ion-exchange process is presented. The prepared zeolite catalysts show high activity and selectivity in SCR deNOx abatement. The MFI-based iron catalysts, especially those prepared via the sonochemical method, revealed superior activity in the deNOx process, with almost 100% selectivity towards N2. The hydrothermal stability test confirmed high stability and activity of MFI-based catalysts in water-rich conditions during the deNOx reaction at 450 °C. PMID:29301370
Near-infrared quantum cutting in Yb3+ ion doped strontium vanadate
NASA Astrophysics Data System (ADS)
Sawala, N. S.; Bajaj, N. S.; Omanwar, S. K.
2016-05-01
The materials Sr3-x(VO4)2:xYb were successfully synthesized by co-precipitation method varying the concentration of Yb3+ ions from 0 to 0.06 mol. It was characterize by powder X-ray powder diffraction (XRD) and surface morphology was studied by scanning electronic microscope (SEM). The photoluminescence (PL) properties were studied by spectrophotometers in near infra red (NIR) and ultra violet visible (UV-VIS) region. The Yb3+ ion doped tristrontium vanadate (Sr3(VO4)2) phosphors that can convert a photon of UV region (349 nm) into photons of NIR region (978, 996 and 1026 nm). Hence this phosphor could be used as a quantum cutting (QC) luminescent convertor in front of crystalline silicon solar cell (c-Si) panels to reduce thermalization loss due to spectral mismatch of the solar cells. The theoretical value of quantum efficiency (QE) was calculated from steady time decay measurement and the maximum efficiency approached up to 144.43%. The Sr(3-x) (VO4)2:xYb can be potentiality used for betterment of photovoltaic (PV) technology.
NASA Astrophysics Data System (ADS)
Sasikala, A.; Linga Rao, M.; Savithramma, N.; Prasad, T. N. V. K. V.
2015-10-01
The use of different parts of plants for the synthesis of nanoparticles is considered as a green technology as it does not involve any harmful chemicals. Herein, we report on rapid biosynthesis of silver nanoparticles (SNPs) from aqueous stem bark extract of Cochlospermum religiosum a medicinal plant. The reduced silver nanoparticles were characterized by using UV-Visible spectroscopy (UV-Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis, atomic force microscopy, and Fourier transform infrared (FT-IR). The UV-Visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 445 nm, XRD showed that the particles are crystalline in nature, with a face-centered cubic structure and the SEM images showed that the spherical-shaped silver nanoparticles were observed and the size range was found to be 20-35 nm. FT-IR spectroscopy analysis revealed that carbohydrate, polyphenols, and protein molecules were involved in the synthesis and capping of silver nanoparticles. These phytosynthesized SNPs were tested for their antimicrobial activity and it analyzed by measuring the inhibitory zone. Cochlospermum religiosum aqueous stem bark extract of SNPs showed highest toxicity to Staphylococcus followed by Pseudomonas, Escherichia coli and Bacillus and lowest toxicity towards Proteus. Whereas in fungal species highest inhibition zone against Aspergillus flavus followed by Rhizopus, Fusarium, and Curvularia, and minimum inhibition zone was observed against Aspergillus niger species. The outcome of this study could be useful for the development of value added products from indigenous medicinal plants of India for nanotechnology-based biomedical applications.
Curcio, Monique S; Oliveira, Michel P; Waldman, Walter R; Sánchez, Benigno; Canela, Maria Cristina
2015-01-01
Photocatalysts supported on polymers are not frequently used in heterogeneous photocatalysis because of problems such as wettability and stability that affect photocatalysis conditions. In this work, we used polypropylene as support for TiO2 sol-gel to evaluate its stability and efficiency under UV radiation. We also tested the effect of the thermo-pressing PP/TiO2 system on the photocatalytic efficiency and stability under UV radiation. The films were characterized by scanning electron microscopy (SEM), UV-Vis spectroscopy and X-ray diffraction (XRD). The SEM micrographs showed that the films of TiO2 sol-gel onto PP has approximately 1.0-μm thick and regular surface and the generation of polypropylene nanowires on hot-pressed samples. XRD showed the formation of TiO2 anatase on the surface of the films made by dip-coating. All photocatalysts were tested in decontaminating air-containing gaseous formaldehyde (70 ppmv) presenting degradation of the target compound to the limit of detection. The photocatalysts showed no deactivation during the entire period tested (30 h), and its reuse after washing showed better photocatalytic performance than on first use. The photocatalyst showed the best results were tested for 360 h with no observed deactivation. Aging studies showed that the film of TiO2 causes different effects on the photostability of composites, with stabilizing effect when exposed to most energetic UVC radiation (λmax = 254 nm) and degradative effects when exposed to UVA radiation (λmax = 365 nm).
NASA Astrophysics Data System (ADS)
Yingzhe, Zhang; Yuxing, He; Qingdong, Qin; Fuchun, Wang; Wankun, Wang; Yongmei, Luo
2018-06-01
In this paper, nano-magnetic Cu/Fe/Fe3O4 catalyst was prepared by a new aqueous solution ball milling method assisted by high-frequency electromagnetic field at room temperature. The products were characterized by means of X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), selected area electron diffraction (SAED), and vibrating sample magnetometer (VSM). Microwave induced catalytic degradation of methylene blue (MB) was carried out in the presence of Cu/Fe/Fe3O4. The concentration of methylene blue was determined by UV-Vis spectrophotometry. The solid catalyst showed high catalytic activity of degrade MB and considerable saturation magnetization, lower remanence and coercivity. It indicate that the catalyst can be effectively separated for reuse by simply applying an external magnetic field and it can greatly promote their potential industrial application to eliminate organic pollutants from waste-water. Finally, we found that it is the non-thermal effect of microwave that activated the catalytic activity of Cu/Fe/Fe3O4 to degrade MB.
Biosynthesis of Stable Antioxidant ZnO Nanoparticles by Pseudomonas aeruginosa Rhamnolipids
Singh, Brahma Nand; Rawat, Ajay Kumar Singh; Khan, Wasi; Naqvi, Alim H.; Singh, Braj Raj
2014-01-01
During the last several years, various chemical methods have been used for synthesis of a variety of metal nanoparticles. Most of these methods pose severe environmental problems and biological risks; therefore the present study reports a biological route for synthesis of zinc oxide nanoparticles using Pseudomonas aeruginosa rhamnolipids (RLs) (denoted as RL@ZnO) and their antioxidant property. Formation of stable RL@ZnO nanoparticles gave mostly spherical particles with a particle size ranging from 35 to 80 nm. The RL@ZnO nanoparticles were characterized by UV-visible (UV–vis) spectroscopy, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), and thermal gravimetric analysis. The UV–vis spectra presented a characteristic absorbance peak at ∼360 nm for synthesized RL@ZnO nanoparticles. The XRD spectrum showed that RL@ZnO nanoparticles are crystalline in nature and have typical wurtzite type polycrystals. Antioxidant potential of RL@ZnO nanoparticles was assessed through 2,2–diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, and superoxide anion free radicals with varying concentration and time of the storage up to 15 months, while it was found to decline in bare ZnO nanoparticles. Similarly, the inhibitory effects on β-carotene oxidation and lipid peroxidation were also observed. These results elucidate the significance of P. aeruginosa RL as effective stabilizing agents to develop surface protective ZnO nanoparticles, which can be used as promising antioxidants in biological system. PMID:25187953
NASA Astrophysics Data System (ADS)
Mazloom, Fatemeh; Masjedi-Arani, Maryam; Salavati-Niasari, Masoud
2017-08-01
Zinc vanadate (Zn3V2O8) nanostructures have been successfully synthesized via simple, rapid and solvent-free solid-state method by using different complex precursors of Zn and NH4VO3 as novel starting materials. Effects of various zinc (II) Schiff base complex precursors and calcination temperatures were investigated to reach optimum condition. It was found that particle size and optical property of the as-prepared products could be greatly influenced via these parameters. The products were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Photoluminescence and ultraviolet-visible (UV-Vis) spectroscopy. The photocatalytic activity of zinc vanadate nano and bulk structures were compared by degradation of phenol red aqueous solution.
Novel band gap-tunable K-Na co-doped graphitic carbon nitride prepared by molten salt method
NASA Astrophysics Data System (ADS)
Zhao, Jiannan; Ma, Lin; Wang, Haoying; Zhao, Yanfeng; Zhang, Jian; Hu, Shaozheng
2015-03-01
Novel band gap-tunable K-Na co-doped graphitic carbon nitride was prepared by molten salt method using melamine, KCl, and NaCl as precursor. X-ray diffraction (XRD), N2 adsorption, Scanning electron microscope (SEM), UV-vis spectroscopy, Photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared catalysts. The CB and VB potentials of graphitic carbon nitride could be tuned from -1.09 and +1.55 eV to -0.29 and +2.25 eV by controlling the weight ratio of eutectic salts to melamine. Besides, ions doping inhibited the crystal growth of graphitic carbon nitride, enhanced the surface area, and increased the separation rate of photogenerated electrons and holes. The visible-light-driven Rhodamine B (RhB) photodegradation and mineralization performances were significantly improved after K-Na co-doping.
NASA Astrophysics Data System (ADS)
Liu, Lian; Yang, Pengfei; Li, Junying; Zhang, Zhiliang; Yu, Xi; Lu, Ling
2017-05-01
Sliver nanoparticles (AgNPs) were synthesized and functionalized with furan group on their surface, followed by the reverse Diels-Alder (DA) reaction with bismaleimide to vary the particle size, so as to give different antibacterial activities. These nanoparticles were characterized using Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Ultraviolet-Visible (UV-vis), Nanoparticle Size Analyzer and X-Ray Photoelectron Spectroscopy (XPS). It was found that the cross-linking reaction with bismaleimide had a great effect on the size of AgNPs. The size of the AgNPs could be controlled by the temperature of DA/r-DA equilibrium. The antibacterial activity was assessed using the inhibition zone diameter by introducing the particles into a media containing Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, respectively. It was found that these particles were effective bactericides. Furthermore, the antibacterial activity of the nanoparticles decreased orderly as the particle size enlarged.
Biosynthesis and stabilization of Au and Au Ag alloy nanoparticles by fungus, Fusarium semitectum
NASA Astrophysics Data System (ADS)
Dasaratrao Sawle, Balaji; Salimath, Basavaraja; Deshpande, Raghunandan; Dhondojirao Bedre, Mahesh; Krishnamurthy Prabhakar, Belawadi; Venkataraman, Abbaraju
2008-09-01
Crystallized and spherical-shaped Au and Au-Ag alloy nanoparticles have been synthesized and stabilized using a fungus, F . semitectum in an aqueous system. Aqueous solutions of chloroaurate ions for Au and chloroaurate and Ag+ ions (1 : 1 ratio) for Au-Ag alloy were treated with an extracellular filtrate of F . semitectum biomass for the formation of Au nanoparticles (AuNP) and Au-Ag alloy nanoparticles (Au-AgNP). Analysis of the feasibility of the biosynthesized nanoparticles and core-shell alloy nanoparticles from fungal strains is particularly significant. The resultant colloidal suspensions are highly stable for many weeks. The obtained Au and Au-Ag alloy nanoparticles were characterized by the surface plasmon resonance (SPR) peaks using a UV-vis spectrophotometer, and the structure, morphology and size were determined by Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and transmission electron microscopy (TEM). Possible optoelectronics and medical applications of these nanoparticles are envisaged.
Liu, Xian-Hao; Luo, Xiao-Hong; Lu, Shu-Xia; Zhang, Jing-Chang; Cao, Wei-Liang
2007-03-01
A novel cetyltrimethyl ammonium silver bromide (CTASB) complex has been prepared simply through the reaction of silver nitrate with cetyltrimethyl ammonium bromide (CTAB) in aqueous solution at room temperature by controlling the concentration of CTAB and the molar ratio of CTAB to silver nitrate in the reaction solution, in which halogen in CTAB is used as surfactant counterion. The structure and thermal behavior of cetyltrimethyl ammonium silver bromide have been investigated by using X-ray diffraction (XRD), infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), UV/vis spectroscopy, thermal analysis (TG-DTA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The results show that the complex possesses a metastable layered structure. Upon heating the CTASB aqueous dispersion to above 80 degrees C, the structure change of the complex took place and CTAB-capped nanosized silver bromide particles further formed.
The fabrication of visible light responsive Ag-SiO2 co-doped TiO2 thin films by the sol-gel method
NASA Astrophysics Data System (ADS)
Dam Le, Duy; Dung Dang, Thi My; Thang Chau, Vinh; Chien Dang, Mau
2010-03-01
In this study we have successfully deposited Ag-SiO2 co-doped TiO2 thin films on glass substrates by the sol-gel method. After being coated by a dip coating method, the film was transparent, smooth and had strong adhesion on the glass surface. The deposited film was characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), a scanning electron microscope (SEM) and atomic force microscope (AFM) to investigate its crystallization, transmittance and surface structure. The antifogging ability is explained by the contact angle of water on the surface of the glass substrates under visible-light. The obtained results show that Ag-SiO2 co-doped TiO2 film has potential applications for self cleaning and anti-bacterial ceramic tiles.
NASA Astrophysics Data System (ADS)
Sahlabadi, Maryam; Daryanavard, Marzieh; Hadadzadeh, Hassan; Amirghofran, Zahra
2018-03-01
A new mononuclear of copper (II), [Cu(theophylline)2(H2O)3]·2H2O, has been synthesized by reaction of theophylline (1,3-dimethyl-7H-purine-2,6-dione) with copper (II) nitrate in water. Further, its nanocomplex has been prepared through the three different methods including sonication, grinding, and a combination thereof, sonication-grinding. The prepared nanocomplex was characterized using different techniques including FT-IR, UV-Vis, X-ray diffraction (XRD) analysis, and field-emission scanning electron microscopy (FE-SEM). Moreover, the anticancer activity of the precursor complex, nanocomplex, free theophylline ligand, and the starting copper salt (Cu(NO3)2·3H2O) was investigated against the K562 cell line. The results show that the nanocomplex is an effective nano metal-based anticancer agent with IC50 = 11.7 μM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supriyono,; Krisnandi, Yuni Krisyuningsih; Gunlazuardi, Jarnuzi, E-mail: jarnuzi@ui.ac.id
2016-04-19
Electrodeposition of gold nanoparticles (Au NPs) on the mesoporous TiO{sub 2} photoelectrode to enchance visible region photocurrent have been investigated. Mesoporous TiO{sub 2} was prepared by a sol gel method and immobilized to the fluorine doped tin oxide (FTO) substrate by dip coating technique. Gold nanoparticles were electrodeposited on the TiO{sub 2} surface and the result FTO/TiO{sub 2}/Au was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), UV-Vis diffuse reflectance spectroscopy (DRS), and X-ray diffraction (XRD). The generated photocurrent was evaluated with an electrochemical workstation (e-DAQ/e-recorder 401) using 60 W wolfram lamp as visible lightmore » source. The photoelectrochemical evaluation indicated that the presence of gold nanoparticles on TiO{sub 2} photoelectrode shall enhance the photocurrent up to 50%.« less
NASA Astrophysics Data System (ADS)
Kardanpour, Reihaneh; Tangestaninejad, Shahram; Mirkhani, Valiollah; Moghadam, Majid; Mohammadpoor-Baltork, Iraj; Zadehahmadi, Farnaz
2016-03-01
Efficient synthesis of various benzimidazoles and benzothiazoles under mild conditions catalyzed by Cu(II) anchored onto UiO-66-NH2 metal organic framework is reported. In this manner, first, the aminated UiO-66 was modified with thiophene-2-carbaldehyde and then the prepared Schiff base was reacted with CuCl2. The prepared catalyst was characterized by FT-IR, UV-vis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and field emission scanning electron microscopy (FE-SEM). The UiO-66-NH2-TC-Cu was applied as a highly efficient catalyst for synthesis of benzimidazole and benzothiazole derivatives by the reaction of aldehydes with 1,2-diaminobenzene or 2-aminothiophenol. The Cu(II)-containing MOF was reused several times without any appreciable loss of its efficiency.
Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S
2014-01-01
Biomediated silver nanoparticles were synthesized with the aid of an eco-friendly biomaterial, namely, aqueous Tribulus terrestris extract. Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous T. terrestris leaf extracts as both the reducing and capping agent. Silver ions were rapidly reduced by aqueous T. terrestris leaf extracts, leading to the formation of highly crystalline silver nanoparticles. An attempt has been made and formation of the silver nanoparticles was verified by surface plasmon spectra using an UV-vis (Ultra violet), spectrophotometer. Morphology and crystalline structure of the prepared silver nanoparticles were characterized by TEM (Transmission Electron Microscope) and XRD (X-ray Diffraction), techniques, respectively. FT-IR (Fourier Transform Infrared), analysis suggests that the obtained silver nanoparticles might be stabilized through the interactions of carboxylic groups, carbonyl groups and the flavonoids present in the T. terrestris extract. Copyright © 2013 Elsevier B.V. All rights reserved.
Green synthesis of nanosilver as a sensor for detection of hydrogen peroxide in water.
Shukla, Vineet K; Yadav, Raghvendra S; Yadav, Poonam; Pandey, Avinash C
2012-04-30
Present "green" synthesis is an efficient, easy-going, fast, renewable, inexpensive, eco-friendly and non-toxic approach for nanosilver formation, which offers numerous benefits over physiochemical approaches. The X-ray diffraction (XRD) pattern suggests the formation and crystallinity of nanosilver. The average particle size of silver nanoparticles was 8.25±1.37 nm as confirmed by transmission electron microscopy (TEM). The UV-vis absorption spectrum shows a characteristic absorption peak of silver nanoparticles at 410 nm. FTIR confirms Azadirachtin as reducing and stabilizing agent for nanosilver formation. In addition, the nanosilver modified electrode (Ag/GC) exhibited an excellent electro-catalytic activity toward the reduction of hydrogen peroxide (H(2)O(2)). The produced nanosilver is stable and comparable in size. These silver nanoparticles show potential applications in the field of sensors, catalysis, fuel cells and nanodevices. Copyright © 2012 Elsevier B.V. All rights reserved.
Effect of copper and nickel doping on the optical and structural properties of ZnO
NASA Astrophysics Data System (ADS)
Muǧlu, G. Merhan; Sarıtaş, S.; ćakıcı, T.; Şakar, B.; Yıldırım, M.
2017-02-01
The present study is focused on the Cu doped ZnO and Ni doped ZnO dilute magnetic semiconductor thin films. ZnO:Cu and ZnO:Ni thin films were grown by Chemically Spray Pyrolysis (CSP) method on glass substrates. Optical analysis of the films was done spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. The structure, morphology, topology and elemental analysis of ZnO:Cu and ZnO:Ni dilute magnetic thin films were investigated by X-ray diffraction (XRD), Raman Analysis, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) techniques, respectively. Also The magnetic properties of the ZnO:Ni thin film was investigated by vibrating sample magnetometer (VSM) method. VSM measurements of ZnO:Ni thin film showed that the ferromagnetic behavior.
NASA Astrophysics Data System (ADS)
Hashemi, Hamed; Namazi, Hassan
2018-07-01
A new blue fluorescent surface modified graphene oxide (GO) by 6-(5-bromothiophen-2-yl) benzo[c][1,2,5]selenadiazole-5-carboxylic acid (TB) denoted as (GO-TB) was synthesized. The obtained hybrid was characterized by Scanning Electron Microscope (SEM/EDS); Brunauer-Emmett-Teller (BET); X-Ray Diffraction Spectroscopy (XRD); X-Ray Photoelectron Spectroscopy (XPS); UV-Vis Absorption Spectroscopy, and Fourier Transformed Infrared Spectroscopy (FTIR). The synthesized TB moiety displayed orange emission around 590 nm, while GO-TB exhibited a blue photoluminescence around 431 and 159 nm blue shift of photoluminescence. Doxorubicin immobilized on the hybrid surface up to 93%, and the release behavior in three different pHs was investigated. The release profile indicated a pH-dependent liberation with Fickian diffusion mechanism. The cytotoxicity of the hybrid was studied and the IC50 value for the hybrid was 5.16 µg/ml.
Arab Chamjangali, M; Bagherian, G; Javid, A; Boroumand, S; Farzaneh, N
2015-11-05
In this study, the photo-decolorization of a mixture of methylene blue (MB) and methyl orange (MO) was investigated using Ag-ZnO multipods. The photo-catalyst used, ZnO multipods, was successfully synthesized. The surface of ZnO microstructure was modified by deposition of different amounts of Ag nanoparticles (Ag NPs) using the photo-reduction method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis and atomic absorption spectroscopy. The photo-catalytic efficiency of Ag-ZnO is mainly controlled by the amount of Ag NPs deposited on the ZnO surface. The results obtained suggest that Ag-ZnO containing 6.5% Ag NPs, has the highest photo-catalytic performance in the simultaneous photo-degradation of dyes at a shorter time. Copyright © 2015 Elsevier B.V. All rights reserved.
Reusable magnetic nanobiocatalyst for synthesis of silver and gold nanoparticles.
Mazumder, Jahirul Ahmed; Ahmad, Razi; Sardar, Meryam
2016-12-01
In the present work, we describe a simple procedure for the biosynthesis of nanosilver and gold by the reduction of silver nitrate and auric chloride respectively using a nanobiocatalyst. The nanobiocatalyst was prepared by covalent coupling of alpha amylase on (3-aminopropyl)triethoxysilane (APTES) modified iron oxide magnetic nanoparticles. The nanobiocatalyst retains 77% of its activity as compared to free alpha amylase. The nanobiocatalyst can be used up to three consecutive cycles for the synthesis of nano silver and gold. The biosynthesized nanoparticles after each cycle were characterized by UV-vis spectrophotometer, Dynamic Light Spectroscopy (DLS), Transmission Electron Microscope (TEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Silver and gold nanoparticles of same morphology and dimensions were formed in each cycle. The procedure for synthesis of nanoparticles using an immobilized enzyme is eco-friendly and can be used repeatedly. Copyright © 2016 Elsevier B.V. All rights reserved.
Low temperature growth of ZnO nanorods array via solution-immersion on TiO2 seed layer
NASA Astrophysics Data System (ADS)
Asib, N. A. M.; Aadila, A.; Afaah, A. N.; Rusop, M.; Khusaimi, Z.
2018-05-01
In this work, TiO2:ZNR thin films were successfully fabricated on glass substrates at low temperatures of 75 to 90°C. The substrates were coated with titanium dioxide (TiO2) using sol-gel spin coating, which act as seed layer to grow zinc oxide nanorods (ZNR) by solution-immersion method. At 90 and 95° C, ZNR with hexagonal tip are well dispersed without any aggregation and exhibit more uniform nanorods array as observed using FESEM. The diffraction peak intensity of the (0 0 2)-plane increased as the temperature increased, indicating improved orientation in the c-axis direction of the ZNR as detected in XRD patterns. From UV-Vis absorbance spectra, it was found that the samples has higher absorption properties at middle range of immersion temperatures; 80, 85 and 90°C.
NASA Astrophysics Data System (ADS)
Naz, M.; Nasiri, N.; Ikram, M.; Nafees, M.; Qureshi, M. Z.; Ali, S.; Tricoli, A.
2017-11-01
The work aimed to prepare silver nanoparticles (Ag-NPs) from silver nitrate and various concentrations of the seed extract ( Setaria verticillata) by a green synthetic route. The chemical and physical properties of the resulting Ag-NPs were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectrometry and ultraviolet-visible (UV-Vis) spectrophotometry. Anticancer activity of Ag-NPs (5-20 nm) had dose-dependent cytotoxic effect against breast cancer (MCF7-FLV) cells. The in vitro toxicity was studied on adult earthworms (Lumbricina) resulting in statistically significant ( P < 0.05) inhibition. The prepared NPs were loaded with hydrophilic anticancer drugs (ACD), doxorubicin (DOX) and daunorubicin (DNR), for developing a novel drug delivery carrier having significant adsorption capacity and efficiency to remove the side effects of the medicines effective for leukemia chemotherapy.
NASA Astrophysics Data System (ADS)
Hong, Shaoming; Ren, Huijun; Fang, Yanfeng; Huang, Yingping; Li, Ruiping
2018-05-01
Three-dimensionally (3D) BiOBr microflowers were prepared by a simple solvothermal method, employing Bi(NO3)3 · 5H2O and NaBr as starting reagents in ethanol. The structural, light absorption and morphological properties of as-prepared BiOBr microspheres were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis diffuse reflectance spectroscopy (DRS), etc. The results showed that ethanol acted not only as a solvent but also as a template in 3D BiOBr preparation. The BiOBr microspheres exhibited superior photocatalytic activity compared with 2D BiOBr nanosheets, far exceeding that of TiO2 (Degussa, P25). It was found that both superoxide radical (O2 •-) and holes (h+) played a key role in the degradation of RhB by BiOBr microflowers.
Vertical growth of ZnO nanorods on ZnO seeded FTO substrate for dye sensitized solar cells
NASA Astrophysics Data System (ADS)
Marimuthu, T.; Anandhan, N.
2018-04-01
Zinc oxide (ZnO) nanorods (NRs) were electrochemically grown on fluorine doped tin oxide (FTO) and ZnO seeded FTO substrates. X-ray diffraction (XRD) patterns, Raman spectra and photoluminescence (PL) spectra reveal that the hexagonal wurtzite structured ZnO grown on a seeded FTO substrate has a high crystallinity, crystal quality and less atomic defects. Felid emission scanning electron microscope (FE-SEM) images display a high growth density of NRs grown on seeded FTO substrate compared to NRs grown on FTO substrate. The efficiency of the DSSCs based on NRs grown on FTO and seeded FTO substrates is 0.85 and 1.52 %, respectively. UV-Vis absorption spectra and electrochemical impedance spectra depict that the NRs grown on seeded FTO photoanode have higher dye absorption and charge recombination resistance than that of the NRs grown on FTO substrate.
NASA Astrophysics Data System (ADS)
Saberi, Maliheh; Ashkarran, Ali Akbar
Tungsten-doped TiO2 gas sensors were successfully synthesized using sol-gel process and spin coating technique. The fabricated sensor was characterized by field emission scanning electron microscopy (FE-SEM), ultraviolet visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), X-Ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Gas sensing properties of pristine and tungsten-doped TiO2 nanolayers (NLs) were probed by detection of CO2 gas. A series of experiments were conducted in order to find the optimum operating temperature of the prepared sensors and also the optimum value of tungsten concentration in TiO2 matrix. It was found that introducing tungsten into the TiO2 matrix enhanced the gas sensing performance. The maximum response was found to be (1.37) for 0.001g tungsten-doped TiO2 NLs at 200∘C as an optimum operating temperature.
NASA Astrophysics Data System (ADS)
Hezaveh, Saba Mahdavi; Khanmohammadi, Hamid; Zendehdel, Mojgan
2018-06-01
The immobilized azo-azomethine receptors on amorphous SiO2, S-B, SiO2 nanoparticles, S-NPs, and NaY zeolite, S-ZY, have been prepared and applied as solid phase sensors for detection of HSO4-, over other interfering anions, in 100% aqueous media. Remarkably, S-B and S-ZY show unique and rapid sensitivity towards HSO4-, which could it easily visualized through naked eye detection even at 5 × 10-4 mol L-1 and 4 × 10-4 mol L-1, respectively. The fabricated solid phase sensors were characterized using powder XRD diffraction, TGA-DTA, FE-SEM and also FT-IR techniques. Moreover, the related molecular anion receptor, HL, has been prepared and used for naked eye detection of F- and AcO-, in dry DMSO. The anions recognition ability of HL was also evaluated using UV-Vis and 1H NMR spectroscopic methods.
Adsorption of malachite green dye from aqueous solution on the bamboo leaf ash
NASA Astrophysics Data System (ADS)
Kuntari, Priwidyanjati, Dessyntha Anggiani
2017-12-01
Bamboo leaf ash has been developed as an adsorbent material for removal malachite green from aqueous solution. Adsorption parameters have studied are contact time and initial pH. The effect of contact time and pH were examined in the batch adsorption processes. The physicochemical characters of bamboo leaf ash were investigated by using X-Ray Diffraction (XRD) and FT-IR spectroscopy. Malachite green concentration was determined by UV-Vis spectrophotometer. FT-IR spectrogram of bamboo leaf ash shows that typical fingerprint of adsorbent material with Si-O-Si or Al-O-Al group. The X-ray diffractograms of bamboo leaf ash show that adsorbent material has a highly amorphous nature. The percentage of adsorption was showed raised with increasing contact time. The optimum removal of malachite green when the initial dye concentration, initial pH, weight of adsorbent and contact time was 20 mg/L, 7, 0.25 g and 75 minutes respectively.
NASA Astrophysics Data System (ADS)
Suresh, Gopal; Gunasekar, Poosali Hariharan; Kokila, Dhanasegaran; Prabhu, Durai; Dinesh, Devadoss; Ravichandran, Nagaiya; Ramesh, Balasubramanian; Koodalingam, Arunagirinathan; Vijaiyan Siva, Ganesan
2014-06-01
Green synthesis of silver nanoparticles (AgNPs) using aqueous root extract of Delphinium denudatum (Dd) by reduction of Ag+ ions from silver nitrate solution has been investigated. The synthesized DdAgNPs were characterized by using UV-Vis spectroscopy, X-ray diffraction (XRD), Field emission scanning electron microscope (FESEM) and Fourier transform infrared spectroscopy (FTIR). The prepared DdAgNPs showed maximum absorbance at 416 nm and particles were polydispersed in nature, spherical in shape and the size of the particle obtained was ⩽85 nm. The DdAgNPs exhibited antibacterial activity against Staphylococcus aureus ATCC 6538, Bacillus cereus NCIM 2106, Escherichia coli ATCC 8739 and Pseudomonas aeruginosa ATCC 9027. The DdAgNPs showed potent larvicidal activity against second instar larvae of dengue vector Aedes aegypti with a LC50 value of 9.6 ppm.
NASA Astrophysics Data System (ADS)
Besral, N.; Paul, T.; Thakur, S.; Sarkar, S.; Sardar, K.; Chanda, K.; Das, A.; Chattopadhyay, K. K.
2018-04-01
The impact of varying electron beam voltage upon room temperature CL (cathodoluminescence) properties of crystalline organic-inorganic lead halide perovskite CH3NH3PbBr3 (Methylammonium lead tribromide) microcubes have been studied. CH3NH3PbBr3 microcubes were synthesized at room temperature by a very straight forward wet chemical route. After preliminary characterizations like XRD (X-ray diffraction), FESEM (Field emission scanning electron microscopy), UV-Vis spectroscopy, CL study at three different beam voltages i.e. 5 kV, 10 kV and 15 kV respectively was performed at room temperature. Prominent emission signals were obtained with emission peaks at 2.190 eV (FWHM 0.120 eV), 2.222 eV (FWHM 0.108 eV) and 2.242 eV (FWHM 0.095 eV) for electron beam voltages 5 kV, 10 kV and 15 kV respectively.
NASA Astrophysics Data System (ADS)
Zaghdoudi, W.; Bardaoui, A.; Khalifa, N.; Chtourou, R.
2013-01-01
In this study, organic-inorganic hybrid perovskite multiple quantum wells (PbI QWs) embedded in porous anodic alumina (PAA) thin films on glass and aluminum substrates are investigated in detail. The pore height and diameter of the nanoscale structure of porous anodic alumina (PAA) film produced by the anodization technique are controllable. The synthesized films are characterized morphologically using the atomic force microscopy (AFM). Scanning electron microscopy (SEM) study showed granular surface. The structural and optical properties were investigated by X-ray diffraction (XRD), photoluminescence (PL) and UV-Vis-NIR spectrophotometer. The effect of the two different substrates on the impregnation of the PbI QW in the PAA is presented. Both PL and AFM studies show a better penetration of the PbI QW in the case of the Al substrate providing a wider pore diameter. Remarkable enhancement of quantum confinement is demonstrated.
Fe-tannic acid complex dye as photo sensitizer for different morphological ZnO based DSSCs
NASA Astrophysics Data System (ADS)
Çakar, Soner; Özacar, Mahmut
2016-06-01
In this paper we have synthesized different morphological ZnO nanostructures via microwave hydrothermal methods at low temperature within a short time. We described different morphologies of ZnO at different Zn(NO3)2/KOH mole ratio. The ZnO nanostructures were characterized via X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and UV-vis spectrophotometry. All ZnO structures have hexagonal wurtzite type structures. The FESEM images showed various morphologies of ZnO such as plate, rod and nanoparticles. Dye sensitized solar cells have been assembled by these different morphological structures photo electrode and tannic acid or Fe-tannic acid complex dye as sensitizer. We have achieved at maximum efficiencies of photovoltaic cells prepared with ZnO plate in all dye systems. The conversion efficiencies of dye sensitized solar cells are 0.37% and 1.00% with tannic acid and Fe-tannic acid complex dye, respectively.
Study of structural and optical properties of ZnS zigzag nanostructured thin films
NASA Astrophysics Data System (ADS)
Rahchamani, Seyyed Zabihollah; Rezagholipour Dizaji, Hamid; Ehsani, Mohammad Hossein
2015-11-01
Zinc sulfide (ZnS) nanostructured thin films of different thicknesses with zigzag shapes have been deposited on glass substrates by glancing angle deposition (GLAD) technique. Employing a homemade accessory attached to the substrate holder enabled the authors to control the substrate temperature and substrate angle. The prepared samples were subjected to X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and UV-VIS. spectroscopy techniques. The structural studies revealed that the film deposited at room temperature crystallized in cubic structure. The FESEM images of the samples confirmed the formation of zigzag nano-columnar shape with mean diameter about 60-80 nm. By using the data obtained from optical studies, the real part of the refractive index (n), the absorption coefficient (α) and the band gap (Eg) of the samples were calculated. The results show that the refractive indices of the prepared films are very sensitive to deposition conditions.
Preparation and characterization of graphene/CdS nanocomposites
NASA Astrophysics Data System (ADS)
Wu, Jili; Bai, Song; Shen, Xiaoping; Jiang, Lei
2010-11-01
Graphene-based nanocomposites are emerging as a new class of materials that hold promise for many applications. In this paper, we present a facile approach for the preparation of graphene/CdS nanocomposites through simple reflux processes, in which thiourea (CS(NH 2) 2) and thioacetamide (C 2H 5NS) act as a sulphide source, respectively. The samples were characterized by the X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectrum (FT-IR), ultraviolet-visible (UV-vis) spectroscopy and thermogravimetry analysis. It was shown that in the nanocomposites, the CdS nanoparticles were densely and uniformly deposited on the graphene sheets, and the sulphide source used has a great influence on the morphology, structure and property of the graphene/CdS nanocomposites. The good distribution of CdS nanoparticles on graphene sheets guarantees the efficient optoelectronic properties of graphene/CdS and would be promising for practical applications in future nanotechnology.
NASA Astrophysics Data System (ADS)
Su, Chia Hung; Velusamy, Palaniyandi; Kumar, Govindarajan Venkat; Adhikary, Shritama; Pandian, Kannaiyan; Anbu, Periyasamy
2017-01-01
In the present study, a simple method to impregnate silver nanoparticles (AgNPs) into carboxymethyl cellulose (CMC) and sodium alginate (SA) is reported for the first time. Single step synthesis of carboxymethyl cellulose (CMC) and sodium alginate (SA) biopolymer protected silver nanoparticles (AgNPs) using aniline as a reducing agent under reflux conditions was investigated. The synthesized nanoparticles were characterized by UV-Vis spectrophotometry, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The FESEM results of CMC@AgNPs and SA@AgNPs showed the formation of spherical nanoparticles sized 30-60 nm. Testing of the antibiofilm efficacy of the polymer protected AgNPs against different bacterial strains such as Klebsiella pneumoniae MTCC 4032 and Streptococcus pyogenes MTCC 1924 revealed that the biopolymer protected AgNPs had excellent antibiofilm activity.
Facile synthesis and photocatalytic activity of bi-phase dispersible Cu-ZnO hybrid nanoparticles
NASA Astrophysics Data System (ADS)
Liu, Xiao; Liu, HongLing; Zhang, WenXing; Li, XueMei; Fang, Ning; Wang, XianHong; Wu, JunHua
2015-04-01
Bi-phase dispersible Cu-ZnO hybrid nanoparticles were synthesized by one-pot non-aqueous nanoemulsion with the use of poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The transmission electron microscopy (TEM) and X-ray diffraction (XRD) show high crystallinity of the Cu-ZnO hybrid nanoparticles and an average particle size of ~19.4 nm. The ultraviolet-visible light absorbance spectrometry (UV-vis) and photoluminescence spectrophotometry (PL) demonstrate well dispersibility and excellent optical performance of Cu-ZnO hybrid nanoparticles both in organic and aqueous solvent. The X-ray photoelectron spectroscopy (XPS) confirms Cu1+ and Cu2+ in ZnO. The observation using Sudan red (III) as probe molecule reveals that the Cu-ZnO hybrid nanoparticles possess enhanced photocatalytic activity and stability which are promising for potential applications in photocatalysis.
NASA Astrophysics Data System (ADS)
Carja, Gabriela; Nakajima, Akira; Dranca, Cristian; Okada, Kiyoshi
2010-10-01
A room temperature nanocarving strategy is developed for the fabrication of nanoparticles of nickel oxide on zinc-substituted anionic clay matrix (Ni/ZnLDH). It is based on the growth and organization of nanoparticles of nickel oxide which occur during the structural reconstruction of the layered structure of the anionic clay in NiSO4 aqueous solution. No organic compounds are used during the fabrication. The described material was characterized by X-ray diffraction (XRD), IR spectroscopy (FTIR), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that the nickel-clay nanoarchitecture consists of small nanoparticles of nickel oxide (average size 7 nm) deposited on the larger nanoparticles (average size 90 nm) of zinc-substituted clay. The optical properties of the new nickel-zinc formulation are studied by UV-Vis.
Sinha, Godhuli; Ganguli, Dibyendu; Chaudhuri, Subhadra
2008-03-01
Gallium oxide (beta-Ga2O3) nanoparticles were successfully deposited on quartz glass substrates using sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/n-hexane/ethylene glycol monomethyl ether (EGME) reverse micelle-mediated solvothermal process with different omega values. The mean diameter of Ga2O3 particles was approximately 2-3 nm and found to be approximately independent of omega values of the reverse micelles. However, when the Ga2O3 nanocrystalline films were nitrided at 900 degrees C under flowing NH3 atmosphere for 1 h, the mean diameter of the resulted gallium nitride (wurtzite-GaN) nanoparticles varied from 3-9 nm. Both nanocrystalline films of Ga2O3 and GaN were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy and photoluminescence in order to study their chemical and physical properties explicitly.
Stabilization and enhanced energy gap by Mg doping in ɛ-phase Ga2O3 thin films
NASA Astrophysics Data System (ADS)
Bi, Xiaoyu; Wu, Zhenping; Huang, Yuanqi; Tang, Weihua
2018-02-01
Mg-doped Ga2O3 thin films with different doping concentrations were deposited on sapphire substrates using laser molecular beam epitaxy (L-MBE) technique. X-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and ultraviolet-visible (UV-vis) absorption spectrum were used to characterize the crystal structure and optical properties of the as-grown films. Compared to pure Ga2O3 thin film, the Mg-doped thin films have transformed from the most stable β-phase into ɛ-phase. The absorption edge shifted to about 205 nm and the optical bandgap increased to ˜ 6 eV. These properties reveal that Mg-doped Ga2O3 films may have potential applications in the field of deep ultraviolet optoelectronic devices, such as deep ultraviolet photodetectors, short wavelength light emitting devices and so on.
Li, Li; Yan, Zi F; Lu, Gao Q; Zhu, Zhong H
2006-01-12
Mesoporous chromium oxide (Cr2O3) nanocrystals were first synthesized by the thermal decomposition reaction of Cr(NO3)3.9H2O using citric acid monohydrate (CA) as the mesoporous template agent. The texture and chemistry of chromium oxide nanocrystals were characterized by N2 adsorption-desorption isotherms, FTIR, X-ray diffraction (XRD), UV-vis, and thermoanalytical methods. It was shown that the hydrate water and CA are the crucial factors in influencing the formation of mesoporous Cr2O3 nanocrystals in the mixture system. The decomposition of CA results in the formation of a mesoporous structure with wormlike pores. The hydrate water of the mixture provides surface hydroxyls that act as binders, making the nanocrystals aggregate. The pore structures and phases of chromium oxide are affected by the ratio of precursor-to-CA, thermal temperature, and time.
Synthesis of nano-titanium dioxide by sol-gel route
NASA Astrophysics Data System (ADS)
Kaler, Vandana; Duchaniya, R. K.; Pandel, U.
2016-04-01
Nanosized titanium dioxide powder was synthesised via sol-gel route by hydrolysis of titanium tetraisopropoxide with ethanol and water mixture in high acidic medium. The synthesized nanopowder was further characterized by X-ray Diffraction, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and Ultraviolet Visible Spectroscopy in order to determine size, morphology and crystalline structure of the material. The synthesis of nano-TiO2 powder in anatase phase was realized by XRD. The optical studies of nano-TiO2 powder was carried out by UV-Vis spectroscopy and band gap was calculated as 3.5eV, The SEM results with EDAX confirmed that prepared nano-TiO2 particles were in nanometer range with irregular morphology. The FTIR analysis showed that only desired functional groups were present in sample. These nano-TiO2 particles have applications in solar cells, chemical sensors and paints, which are thrust areas these days.
Fast and inexpensive synthesis of pentacene with high yield using 6,13-pentacenequinone as precursor
NASA Astrophysics Data System (ADS)
Mota, María L.; Rodriguez, Bibiana; Carrillo, Amanda; Ambrosio, Roberto C.; Luque, Priscy A.; Mireles, Marcela; Vivaldo, Israel; Quevedo, Manuel A.
2018-02-01
Pentacene is an important semiconductor in the field of organic electronics. In this work is presented an alternative synthesis procedure to obtain pentacene from 6,13-pentacenequinone as a precursor. Synthesis of pentacene was performed in two reactions, Diels-Adler cycloaddition of 6,13-pentacenequinone followed by 6,13-pentacenequinone reduction to pentacene, employing LiAlH4 as reducing agent. The products were characterized by Fourier Transform Infrared Spectroscopy (FTIR), 1H-Nuclear Magnetic Resonance Spectroscopy (1H-NMR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Ultraviolet-Visible Spectroscopy (UV-VIS). In this work, 6,13-pentacenequinone was synthetized with a high yield (55%) using an alternative method. The optimization process resulted in an overall reduction of reaction time while exhibiting high yield. The method presented here provides an affordable pentacene synthesis route with high purity, which can be further applied for research and development of organic electronic applications.
Moşneag, Silvia C; Popescu, Violeta; Dinescu, Adrian; Borodi, George
2013-01-01
The level of nitrates from groundwater from Cluj County and other areas from Romania have increased values, exceeding or getting close to the allowed limit values, putting in danger human and animal heath. In this study we used granular activated carbon adsorbent (GAC) for nitrate (NO(-)3) removal for the production of drinking water from groundwater of the Cluj county. The influences of the contact time, nitrate initial concentration, and adsorbent concentration have been studied. We determined the equilibrium adsorption capacity of GAC, used for NO(-)3 removal and we applied the Langmuir and Freundlich isotherm models. Ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy, X ray diffraction (XRD), Scanning Electron Microscopy (SEM) were used for process characterization. We also determined: pH, conductivity, Total Dissolved Solids and Total Hardness. The GAC adsorbents have excellent capacities of removing nitrate from groundwater from Cluj County areas.
Simulation and experimental results of optical and thermal modeling of gold nanoshells.
Ghazanfari, Lida; Khosroshahi, Mohammad E
2014-09-01
This paper proposes a generalized method for optical and thermal modeling of synthesized magneto-optical nanoshells (MNSs) for biomedical applications. Superparamagnetic magnetite nanoparticles with diameter of 9.5 ± 1.4 nm are fabricated using co-precipitation method and subsequently covered by a thin layer of gold to obtain 15.8 ± 3.5 nm MNSs. In this paper, simulations and detailed analysis are carried out for different nanoshell geometry to achieve a maximum heat power. Structural, magnetic and optical properties of MNSs are assessed using vibrating sample magnetometer (VSM), X-ray diffraction (XRD), UV-VIS spectrophotometer, dynamic light scattering (DLS), and transmission electron microscope (TEM). Magnetic saturation of synthesized magnetite nanoparticles are reduced from 46.94 to 11.98 emu/g after coating with gold. The performance of the proposed optical-thermal modeling technique is verified by simulation and experimental results. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kardanpour, Reihaneh; Tangestaninejad, Shahram; Mirkhani, Valiollah; Moghadam, Majid; Mohammadpoor-Baltork, Iraj; Zadehahmadi, Farnaz
2015-03-01
Metal-organic frameworks (MOFs) containing Mo Schiff base complexes were prepared by post-synthesis method and applied as efficient catalysts in the epoxidation of alkenes with tert-BuOOH. In this manner, UiO-66-NH2 (UiO=University of Oslo) MOF was reacted with salicylaldehyde and thiophene-2-carbaldehyde to produce bidentate Schiff bases. Then, the Schiff base ligands were used for immobilization of molybdenyl acetylacetonate. These new catalysts were characterized by FT-IR, UV-vis spectroscopic techniques, X-ray diffraction (XRD), BET, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and field emission scanning electron microscopy (FE-SEM). These catalytic systems showed excellent activity in the epoxidation of alkenes such as cyclic and linear ones with tert-butyl hydroperoxide (TBHP) in 1,2-dichloroethane, and reused several times without any appreciable loss of their activity.
NASA Astrophysics Data System (ADS)
Faghihi, Khalil; Shabanian, Meisam
2011-04-01
Two new samples of polyamide-montmorillonite reinforced nanocomposites based on 4,4'-azodibenzoic acid were prepared by a convenient solution intercalation technique. Polyamide (PA) 4 as a source of polymer matrix was synthesized by the direct polycondensation reaction of 4,4'-azodibenzoic acid 2 with 4,4'-diamino diphenyl sulfone 3 in the presence of triphenyl phosphate (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). Morphology and structure of the resulting PA-nanocomposite films 4a and 4b with 10 and 20% silicate particles were characterized by FTIR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of clay dispersion and the interaction between clay and polymeric chains on the properties of nanocomposite films were investigated by using Uv-vis spectroscopy, thermogravimetric analysis (TGA) and water uptake measurements.
Mechanistic approach to study conjugation of nanoparticles for biomedical applications.
Uddin, Imran
2018-05-16
Interaction of nanoparticles with biological systems turns out to be vibrant for their efficient application in biomedical field. Here, we have shown antibiotic amakicin loaded nanoparticles are responsible for the dual role as reducing and stabilizing the silver nanoparticles without the use of any undesired chemicals. Synthesized nanoparticles are well-dispersed having quasi spherical morphology with an average particle size around 10-11 nm. Crystallinity of nanoparticles was measured using selected area electron diffraction (SAED) and powder XRD analysis which show that particles are perfectly crystalline with cubic phase of geometry. UV-Vis, FTIR and circular dichroism (CD) analysis explained the presence and interaction of antibiotic on the nanoparticle's surface. Amakicin functionalized Ag nanoparticles used in this study have shown enhanced antibacterial activity against E. coli. These studies will help in designing an in-depth understanding that how nanostructures can possibly interact with biological systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Characterization of potassium bromide crystals grown in the aqueous solution of picric acid
NASA Astrophysics Data System (ADS)
Maheswari, J. Uma; Krishnan, C.; Kalyanaraman, S.; Selvarajan, P.
2016-12-01
Potassium bromide crystals were grown in the aqueous solution of picric acid by slow evaporation technique at room temperature. X-ray Diffraction (XRD) analysis ensures that the grown sample is in Fm3m space group and FCC structure. Energy Dispersive X-ray Spectroscopy (EDX) reveals the presence of elements in the title compound. UV-Vis-NIR spectrum reveals that the grown sample is a promising nonlinear optical (NLO) material. FTIR analysis confirms the functional groups present in the sample. The thermogravimetric (TG) and differential thermogravimetric (DTA) analyses ensure that the sample material is thermally stable up to 160 °C. The second harmonic efficiency of the sample is 1.3 times greater than that of standard KDP. The mechanical strength of the grown sample is estimated by Vickers microhardness tester. The electrical properties were investigated by impedance analysis and the results of various studies of the grown crystals are discussed.
NASA Astrophysics Data System (ADS)
Ma, Zhijun; Ji, Huijiao; Tan, Dezhi; Dong, Guoping; Teng, Yu; Zhou, Jiajia; Guan, Miaojia; Qiu, Jianrong; Zhang, Ming
2011-07-01
In this paper, we report on a novel strategy for the preparation of silver nanoparticle-doped SiO2 microspheres (Ag-SMSs) with an interesting strawberry-like morphology using a simple and efficient electrospraying method. SEM (scanning electron microscopy), TEM (transmission electron microscopy), XRD (x-ray diffraction), EDS (energy-dispersive spectroscopy) and UV-vis spectra (ultraviolet-visible spectra) were applied to investigate the morphology, structure, composition and optical properties of the hybrid microspheres, and E. coli (Escherichia coli) was used as a model microbe to evaluate their antibacterial ability. The results showed that the Ag-SMSs were environmentally stable and washing resistant. The Ag-SMSs exhibited effective inhibition against proliferation of E. coli, and their antibacterial ability could be well preserved for a long time. The environmental stability, washing resistance, efficient antibacterial ability and simple but productive preparation method endowed the Ag-SMSs with great potential for practical biomedical applications.
Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability.
Qian, Wang; Wang, Haiqing; Chen, Jin; Kong, Yan
2015-04-14
Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was successfully synthesized via one-step hydrothermal method. The material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with spherical morphology, narrow pore size distribution and high specific surface area. Most of vanadium and iron atoms existing as tetrahedral V 4+ and Fe 3+ species were co-doped into the silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 exhibited improved hydrothermal stability compared with the pure MCM-48.
Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability
Qian, Wang; Wang, Haiqing; Chen, Jin; Kong, Yan
2015-01-01
Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was successfully synthesized via one-step hydrothermal method. The material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with spherical morphology, narrow pore size distribution and high specific surface area. Most of vanadium and iron atoms existing as tetrahedral V4+ and Fe3+ species were co-doped into the silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 exhibited improved hydrothermal stability compared with the pure MCM-48. PMID:28788030
Microstructure-related properties of magnesium fluoride films at 193nm by oblique-angle deposition.
Guo, Chun; Kong, Mingdong; Lin, Dawei; Liu, Cunding; Li, Bincheng
2013-01-14
Magnesium fluoride (MgF2) films deposited by resistive heating evaporation with oblique-angle deposition have been investigated in details. The optical and micro-structural properties of single-layer MgF2 films were characterized by UV-VIS and FTIR spectrophotometers, scanning electron microscope (SEM), atomic force microscope (AFM), and x-ray diffraction (XRD), respectively. The dependences of the optical and micro-structural parameters of the thin films on the deposition angle were analyzed. It was found that the MgF2 film in a columnar microstructure was negatively inhomogeneous of refractive index and polycrystalline. As the deposition angle increased, the optical loss, extinction coefficient, root-mean-square (rms) roughness, dislocation density and columnar angle of the MgF2 films increased, while the refractive index, packing density and grain size decreased. Furthermore, IR absorption of the MgF2 films depended on the columnar structured growth.
Effect of different sound atmospheres on SnO2:Sb thin films prepared by dip coating technique
NASA Astrophysics Data System (ADS)
Kocyigit, Adem; Ozturk, Erhan; Ejderha, Kadir; Turgut, Guven
2017-11-01
Different sound atmosphere effects were investigated on SnO2:Sb thin films, which were deposited with dip coating technique. Two sound atmospheres were used in this study; one of them was nay sound atmosphere for soft sound, another was metallic sound for hard sound. X-ray diffraction (XRD) graphs have indicated that the films have different orientations and structural parameters in quiet room, metallic and soft sound atmospheres. It could be seen from UV-Vis spectrometer measurements that films have different band gaps and optical transmittances with changing sound atmospheres. Scanning electron microscope (SEM) and AFM images of the films have been pointed out that surfaces of films have been affected with changing sound atmospheres. The electrical measurements have shown that films have different I-V plots and different sheet resistances with changing sound atmospheres. These sound effects may be used to manage atoms in nano dimensions.
NASA Astrophysics Data System (ADS)
Sharma, Dimple; Malik, B. P.; Gaur, Arun
2015-12-01
The ZnS quantum dots (QDs) with Cr and Cu doping were synthesized by chemical co-precipitation method. The nanostructures of the prepared undoped and doped ZnS QDs were characterized by UV-vis spectroscopy, Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The sizes of QDs were found to be within 3-5 nm range. The nonlinear parameters viz. Two photon absorption coefficient (β2), nonlinear refractive index (n2), third order nonlinear susceptibility (χ3) at wavelength 532 nm and Four photon absorption coefficient (β4) at wavelength 1064 nm have been calculated by Z-scan technique using nanosecond Nd:YAG laser in undoped, Cr doped and Cu doped ZnS QDs. Higher values of nonlinear parameters for doped ZnS infer that they are potential material for the development of photonics devices and sensor protection applications.
The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route
NASA Astrophysics Data System (ADS)
Li, Ji; Ma, Tuteng; Wei, Ming; Liu, Weifeng; Jiang, Guoshun; Zhu, Changfei
2012-06-01
An electrodeposition route for preparing Cu2ZnSnSe4 thin films for thin film solar cell absorber layers is demonstrated. The Cu2ZnSnSe4 thin films are prepared by co-electrodeposition Cu-Zn-Sn metallic precursor and subsequently annealing in element selenium atmosphere. The structure, composition and optical properties of the films were investigated by X-ray diffraction (XRD), Raman spectrometry, energy dispersive spectrometry (EDS) and UV-VIS absorption spectroscopy. The Cu2ZnSnSe4 thin film with high crystalline quality was obtained, the band gap and absorption coefficient were 1.0 eV and 10-4 cm-1, which is quite suitable for solar cells fabrication. A solar cell with the structure of ZnO:Al/i-ZnO/CdS/Cu2ZnSnSe4/Mo/glass was fabricated and achieved an conversion efficiency of 1.7%.
Hu, Yimin; Han, Jie; Ge, Lingling; Guo, Rong
2018-01-31
In this paper, viscoelastic wormlike micelles consisting of cationic liquid-type surfactant, 1-hexadecyl-3-octyl imidazolium bromide ([C 16 imC 8 ]Br), water and different additives were utilized for the synthesis of CdS quantum dots. First, the influence of different additives, such as [Cd(NH 3 ) 6 ]Cl 2 and ethanethioamid (precursors for the synthesis of CdS quantum dots), and temperature on the viscoelasticity of the [C 16 imC 8 ]Br aqueous solution was studied by dynamic and steady rheology. Furthermore, the synthesized CdS quantum dots and their photoluminescence properties were characterized by transmission electron microscopy (TEM), UV-Vis absorption spectroscopy, X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX). In the end, the mechanism for the synthesis of CdS quantum dots in [C 16 imC 8 ]Br wormlike micelles is proposed.
Moldovan, Bianca; David, Luminita; Vulcu, Adriana; Olenic, Liliana; Perde-Schrepler, Maria; Fischer-Fodor, Eva; Baldea, Ioana; Clichici, Simona; Filip, Gabriela Adriana
2017-10-01
A green, rapid and cost effective method for the bio-synthesis of silver nanoparticles (AgNPs), using polyphenols present in European cranberry bush fruit extracts was developed. The obtained AgNPs were characterized by ultra-violet visible spectroscopy (UV-VIS), Fourier transform - infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and X-ray diffraction patterns (XRD). The average size of the spherical AgNPs was found to be 25nm. The anti-inflammatory effect of the biomaterials was investigated, both in vitro (on HaCaT cell line, exposed to UVB radiation) and in vivo (on acute inflammation model in Wistar rats). Our results support the conclusion that the photosynthesized silver nanoparticles present a potent anti-inflammatory activity and could be successfully used as therapeutic tools for treatment of inflammation. Copyright © 2017 Elsevier B.V. All rights reserved.
Tseng, Yao-Hsuan; Chang, I-Guo; Tai, Yian; Wu, Kung-Wei
2012-01-01
In this study, gold-loaded titanium dioxide was prepared by an impregnation method to investigate the effect of surface plasmon resonance (SPR) on photoactivity. The deposited gold nanoparticles (NPs) absorb visible light because of SPR. The effects of both the gold content and the TiO2 size of Au/TiO2 on SPR and the photocatalytic efficiency were investigated. The morphology, crystal structure, light absorption, emission from the recombination of a photoexcited electron and hole, and the degree of aggregation were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-visible-diffuse reflectance spectra (UV-VIS-DRS), photoluminescence (PL) spectroscopy, and turbidimetry, respectively. Photocatalytic activity was evaluated by the decolorization of methyl orange solution over modified titania under UV and UV/GLED (green light emitting diode) illumination. Au/TiO2 NPs exhibited an absorption peak (530-570 nm) because of SPR. The results of our photocatalytic experiments indicated that the UV-inducedly photocatalytic reaction rate was improved by simultaneously using UV and green light illumination; this corresponds to the adsorption region of SPR. Au/TiO2 could use the enhanced electric field amplitude on the surface of the Au particle in the spectral vicinity of its plasmon resonance and thus improve the photoactivity. Experimental results show that the synergistic effect between UV and green light for the improvement of photoactivity increases with increasing the SPR absorption, which in turn is affected by the Au content and TiO2 size.
NASA Astrophysics Data System (ADS)
Kumar, Yogendra; Rana, Amit Kumar; Bhojane, Prateek; Pusty, Manojit; Bagwe, Vivas; Sen, Somaditya; Shirage, Parasharam M.
2015-10-01
ZnO nanostructured films were prepared by a chemical bath deposition method on glass substrates without any assistance of either microwave or high pressure autoclaves. The effect of solute concentration on the pure wurtzite ZnO nanostructure morphologies is studied. The control of the solute concentration helps to control the nanostructure to form nano-needles, and -rods. X-ray diffraction (XRD) studies revealed highly c-axis oriented thin films. Scanning electron microscopy (SEM) confirms the modification of the nanostructure dependent on the concentration. Transmission electron microscopy (TEM) results show the single crystalline electron diffraction pattern, indicating high quality nano-material. UV-vis results show the variation in the band gap from 3.20 eV to 3.14 eV with increasing concentration as the nanostructures change from needle- to rod-like. Photoluminescence (PL) data indicate the existence of defects in the nanomaterials emitting light in the yellow-green region, with broad UV and visible spectra. A sharp and strong peak is observed at ˜438 cm-1 by Raman spectroscopy, assigned to the {{{{E}}}2}{{high}} optical mode of ZnO, the characteristic peak for the highly-crystalline wurtzite hexagonal phase. The solute concentration significantly affects the formation of defect states in the nanostructured films, and as a result, it alters the structural and optical properties. Current-voltage characteristics alter with the measurement environment, indicating potential sensor applications.
NASA Astrophysics Data System (ADS)
Arul, Velusamy; Sethuraman, Mathur Gopalakrishnan
2018-04-01
Green synthesis of fluorescent nitrogen doped carbon dots (N-CDs) using Actinidia deliciosa (A. deliciosa) fruit extract as a carbon precursor and aqueous ammonia as a nitrogen dopant is reported here. The synthesized N-CDs were characterized by high resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), selected area electron diffraction (SAED), UV-Visible spectroscopy (UV-Vis), fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The average size of the N-CDs was approximately 3.59 nm and the calculated inter layer distance was found to be 0.21 nm. Raman spectroscopy and SAED pattern revealed the graphitic nature of the synthesized N-CDs. The N-CDs were found to emit intense blue color at 405 nm under the excitation of 315 nm. The doping of nitrogen over the surface of the N-CDs was confirmed by EDS, FT-IR and XPS studies. The synthesized N-CDs were found to exhibit excellent catalytic activity in the reduction of Rhodamine-B using sodium borohydrate. The MTT assay was used to evaluate the cytotoxicity and biocompatibility of N-CDs towards L-929 and MCF-7 cells. From the results obtained, it was found that the N-CDs exhibit low cytotoxicity and superior biocompatibility on both L-929 and MCF-7 cells.
Preparation and visible light photocatalytic activity of Bi2O3/Bi2WO6 heterojunction photocatalysts
NASA Astrophysics Data System (ADS)
Yan, C. Y.; Yi, W. T.; Xiong, J.; Ma, J.
2018-03-01
The Bi2O3 nanorods, flower-like Bi2WO6 and Bi2O3/Bi2WO6 heterojunction composites with the molar ratio of nBi:nW from 2:1, 2.5:1, to 3:1 have been synthesized via one-step hydrothermal method and two-step hydrothermal method, respectively. The products are characterized by powder X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy (UV-vis DRS), and scanning electron microscopy (SEM). Photocatalytic experiments indicate that such Bi2O3/Bi2WO6 composite possesses higher photocatalytic activity for RhB degradation under visible-light irradiation in comparison with pure Bi2O3 and Bi2WO6. The enhancement of the photocatalytic activity of the Bi2O3/Bi2WO6 heterojunction catalysts can be ascribed to the reduced recombination of the photoexcited electrons and holes during the photocatalytic reaction. The effect of the molar ratio of nBi:nW on the catalytic performance of the heterojunction catalysts was also investigated. And the optimal molar ratio of nBi:nW is 2.5:1 which was synthesized by one-step hydrothermal method.
NASA Astrophysics Data System (ADS)
Chaudhuri, Sadhan Kumar; Malodia, Lalit
2017-11-01
Green synthesis of zinc oxide nanoparticles was carried out using Calotropis leaf extract with zinc acetate salt in the presence of 2 M NaOH. The combination of 200 mM zinc acetate salt and 15 ml of leaf extract was ideal for the synthesis of less than 20 nm size of highly monodisperse crystalline nanoparticles. Synthesized nanoparticles were characterized through UV-Vis spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), EDX (energy dispersive X-ray), and AFM (atomic force microscopy). Effects of biogenic zinc oxide (ZnO) nanoparticles on growth and development of tree seedlings in nursery stage were studied in open-air trenches. The UV-Vis absorption maxima showed peak near 350 nm, which is characteristic of ZnO nanoparticles. DLS data showed that single peak is at 11 nm (100%) and Polydispersity Index is 0.245. XRD analysis showed that these are highly crystalline ZnO nanoparticles having an average size of 10 nm. FTIR spectra were recorded to identify the biomolecules involved in the synthesis process, which showed absorption bands at 4307, 3390, 2825, 871, 439, and 420 cm-1. SEM images showed that the particles were spherical in nature. The presence of zinc and oxygen was confirmed by EDX and the atomic % of zinc and oxygen were 33.31 and 68.69, respectively. 2D and 3D images of ZnO nanoparticles were obtained by AFM studies, which indicated that these are monodisperse having size ranges between 1.5 and 8.5 nm. Significant enhancement of growth was observed in Neem ( Azadirachta indica), Karanj ( Pongamia pinnata), and Milkwood-pine ( Alstonia scholaris) seedlings in foliar spraying ZnO nanoparticles to nursery stage of tree seedlings. Out of the three treated saplings, Alstonia scholaris showed maximum height development.
Impact of Nd3+ ions on physical and optical properties of Lithium Magnesium Borate glass
NASA Astrophysics Data System (ADS)
Mhareb, M. H. A.; Hashim, S.; Ghoshal, S. K.; Alajerami, Y. S. M.; Saleh, M. A.; Dawaud, R. S.; Razak, N. A. B.; Azizan, S. A. B.
2014-11-01
Enhancing the up-conversion efficiency of borate glass via optimized doping of rare earth ions is an ever-ending quest in lasing glass. Neodymium (Nd3+) doped Lithium Magnesium Borate (LMB) glasses are prepared using the melt-quenching method. X-ray diffraction (XRD), Fourier transformed infrared (FTIR), UV-Vis-NIR absorption and Photoluminescence (PL) spectroscopic characterizations are made to examine the influence of Nd3+ concentration on physical properties and optical properties. Nd3+ contents dependent density, molar volume, refractive index, ion concentration, Polaron radius, inter nuclear distance, field strength, energy band gap and oscillator strength are calculated. XRD patterns confirm the amorphous nature of all glasses and the FTIR spectra reveal the presence of BO3 and BO4 functional groups. UV-Vis-IR spectra exhibit ten prominent bands centered at 871, 799, 741, 677, 625, 580, 522, 468, 426, 349 nm corresponding to the transitions from the ground state to 4F3/2, (4F5/2 + 2H9/2), (4F7/2 + 4S3/2), 4F9/2, 2H11/2, (4G5/2 + 2G7/2), (2K13/2 + 4G7/2 + 4G9/2), (2G9/2 + 2D3/2 + 2P3/2), (2P1/2 + 2D5/2), (4D3/2 + 4D5/2) excited states, respectively. A hyper-sensitive transition related to (4G5/2 + 2G7/2) level is evidenced at 580 nm. The room temperature up-conversion emission spectra at 800 nm excitation displays three peaks centered at 660, 610 and 540 nm. Glass with 0.5 mol% of Nd3+ showing an emission enhancement by a factor to two is attributed to the energy transfer between Mg2+ and Nd3+ ions. Our results suggest that these glasses can be nominated for solid state lasers and other photonic devices.
Metal-free inactivation of E. coli O157:H7 by fullerene/C3N4 hybrid under visible light irradiation.
Ouyang, Kai; Dai, Ke; Chen, Hao; Huang, Qiaoyun; Gao, Chunhui; Cai, Peng
2017-02-01
Interest has grown in developing safe and high-performance photocatalysts based on metal-free materials for disinfection of bacterial pathogens under visible light irradiation. In this paper, the C 60 /C 3 N 4 and C 70 /C 3 N 4 hybrids were synthesized by a hydrothermal method, and characterized by X-ray diffraction (XRD), UV-vis diffuse reflection spectroscopy (UV-vis DRS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and high revolution transmission electron microscope (HRTEM). The performance of photocatalytic disinfection was investigated by the inactivation of Escherichia coli O157:H7. Both C 60 /C 3 N 4 and C 70 /C 3 N 4 hybrids showed similar crystalline structure and morphology with C 3 N 4 ; however, the two composites exhibited stronger bacterial inactivation than C 3 N 4 . In particular, C 70 /C 3 N 4 showed the highest bactericidal efficiency and was detrimental to all E. coli O157:H7 in 4h irradiation. Compared to C 3 N 4 , the enhancement of photocatalytic activity of composites could be attributed to the effective transfer of the photoinduced electrons under visible light irradiation. Owing to the excellent performance of fullerenes (C 60 , C 70 )/C 3 N 4 composites, a visible light response and environmental friendly photocatalysts for disinfection were achieved. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Chethan Prathap, K. N.; Lokanath, N. K.
2018-04-01
Coumarin derivatives are an important class of heterocyclic compounds due to their physical and biological properties. Coumarin derivatives have been identified with many significant electro-optical properties and biological activities. Three novel coumarin derivatives containing benzene sulfonohydrazide group were synthesized by condensation reaction. The synthesized compounds were characterized by various spectroscopic techniques (Mass, 1H/13C NMR and FTIR). Thermal and optical properties were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and UV-Vis spectroscopic studies. Finally their structures were confirmed by single crystal X-ray diffraction (XRD) studies. The three compounds exhibit diverse intermolecular interactions, as observed by the crystal packing and Hirshfeld surface analysis. Further, their structures were optimized by density functional theory (DFT) calculations using B3LYP hybrid functionals with 6-311G+(d,p) level basis set. The Mulliken charge, molecular electrostatic potential (MEP), frontier molecular orbitals (HOMO-LUMO) were investigated. The experimentally determined parameters were compared with those calculated theoretically and they complement each other with a very good correlation. The transitions among the molecular orbitals were investigated using time-dependent density functional theory (TD-DFT) and the electronic absorption spectra obtained showed very good agreement with the experimentally measured UV-Vis spectra. Furthermore, non-linear optical (NLO) properties were investigated by calculating polarizabilities and hyperpolarizabilities. All three compounds exhibit significantly high hyperpolarizabilities compared to the reference material urea, which makes them potential candidates for NLO applications.
NASA Astrophysics Data System (ADS)
Li, Qiuye; Lu, Gongxuan
Different-shaped one-dimensional (1D) titanic acid nanomaterials (TANs) were prepared by hydrothermal synthesis. By changing the reaction temperature (120, 170 and 200 °C), three kinds of 1D TAN, short-nanotubes (SNT), long-nanotubes (LNT), and nanorods (NR), were obtained. The obtained TANs were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), and solid-stated diffuse reflectance UV-vis spectra (UV-vis DRS) techniques. Based on these 1D TAN, Eosin Y-sensitized Pt-loaded TAN were prepared by the in situ impregnation and photo-reduction method. Their photocatalytic activity for hydrogen generation was evaluated in triethanolamine (TEOA) aqueous solution under visible light irradiation (λ ≥ 420 nm). The results indicated that the morphology difference led to a significant variation of photocatalytic performance for hydrogen generation, with the activity order as follows: Eosin Y-sensitized Pt-loaded LNT > Eosin Y-sensitized Pt-loaded NR > Eosin Y-sensitized Pt-loaded SNT. The experimental conditions for photocatalytic hydrogen generation such as Pt loading content, the mass ratio of Eosin Y to TAN, and so on, were optimized. As a result, the highest apparent quantum yields of hydrogen generation for Eosin Y-sensitized Pt-loaded SNT, LNT, and NR were 6.65, 17.36, and 15.04%, respectively. The stability of these photocatalysts and the reaction mechanism of the photocatalytic hydrogen generation are also discussed in detail.
NASA Astrophysics Data System (ADS)
Wang, Xuejiang; Song, Jingke; Huang, Jiayu; Zhang, Jing; Wang, Xin; Ma, RongRong; Wang, Jiayi; Zhao, Jianfu
2016-12-01
Magnetic photocatalyst - iodine and nitrogen codoped TiO2 based on chitosan decorated magnetic activated carbon (I-N-T/CMAC) was prepared via simple coprecipitation and sol-gel method. The characteristics of photocatalysts were investigated by X-ray diffraction (XRD), N2 adsorption-desorption isotherm, field emission scanning electron microscopy (FESEM), energy dispersive spectrometry (EDS), fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflection spectroscopy (UV-vis DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). It turned out that the prepared material had large surface area, enhanced absorption of visible light, and magnetically separable properties when mole ratio of I/Ti was 0.1. Iodine-nitrogen codoped magnetic photocatalyst was used for the removal of salicylic acid (SA), and the rate of adsorption reaction for SA by I0.1-N-T/CMAC followed the pseudo second-order kinetic. Under visible light irradiation, 89.71% SA with initial concentration = 30 mg/L could be removed by I0.1-N-T/CMAC, and photodegradation rate of SA on I0.1-N-T/CMAC composites was 0.0084 min-1 which is about 4 times higher than that of magnetic photocatalyst with nitrogen doped only. The effects of SA initial concentration, pH, coexisting anions and humic acid to the degradation of SA with the prepared material were also investigated. Main oxidative species in the photodegradation process are rad OH and h+.
Zhou, Panpan; Xie, Yu; Fang, Jing; Ling, Yun; Yu, Changling; Liu, Xiaoming; Dai, Yuhua; Qin, Yuancheng; Zhou, Dan
2017-07-01
In this paper, the mesoporous TiO 2 with different concentration of CdS quantum dots (i.e., x% CdS/TiO 2 ) was successfully fabricated by the sol-gel method. The composition, structure and morphology of the nanocomposites were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), UV-vis diffuse reflectance spectroscopy (UV-Vis/DRS) and nitrogen physical adsorption test and so on. The proportion of CdS and TiO 2 is very important for the photocatalytic performance. As a result, the photocatalytic degradation performance from the most to the least is in the order of 2% CdS/TiO 2 , 4% CdS/TiO 2 , 8% CdS/TiO 2 , pure TiO 2 and 1% CdS/TiO 2 . The photocatalytic (PC) activity of the 2% CdSTiO 2 is characterized by photocatalytic degradation of methyl orange, which can be completely degraded within 45 min better than 60 min TiO 2 takes. It is also much better than CdS. Moreover, other four organic pollutants, such as methylthionine chloride, bisphenol A, rhodamine B, malachite green can also be degraded quickly on the condition of 2% CdS/TiO 2 . What's more, the chemical stability and cycling capability of 2% CdS/TiO 2 are reflected by five cyclic degradation of methyl orange. Copyright © 2017 Elsevier Ltd. All rights reserved.
Meshram, J V; Koli, V B; Phadatare, M R; Pawar, S H
2017-04-01
Initially micro-organisms get exposed to the surfaces, this demands development of anti-microbial surfaces to inhibit their proliferation. Therefore, herein, we attempt screen printing technique for development of PVA-GE/ZnO nanocomposite (PG/ZnO) films. The synthesis of PG/ZnO nanocomposite includes two steps as: (i) Coating of Zinc Oxide nanoparticles (ZnO NPs) by poly ethylene glycol in order to be compatible with organic counterparts. (ii) Deposition of coated nanoparticles on the PG film surface. The results suggest the enhancement in anti-microbial activity of PG/ZnO nanocomposite over pure ZnO NPs against both Gram positive Bacillus subtilis and Gram negative Escherichia coli from zone of inhibition. The uniformity in deposition is further confirmed by scanning electron microscopy (SEM) images. The phase identification of ZnO NPs and formation of PG/ZnO nanocomposite has been confirmed by X-ray diffraction (XRD) analysis and UV-vis spectroscopy (UV-vis). The Attenuated total reflection Spectroscopy (ATR) analysis indicates the ester bond between PVA and gelatin molecules. The thermal stability of nanocomposite is studied by thermogravimetric analysis (TGA) revealing increase in crystallinity due to ZnO NPs which could be utilized to inhibit the growth of micro-organisms. The tensile strength is found to be higher and percent elongation is double of PG/ZnO nanocomposite than PG composite film. Copyright © 2016. Published by Elsevier B.V.
Vadivel, S; Maruthamani, D; Habibi-Yangjeh, A; Paul, Bappi; Dhar, Siddhartha Sankar; Selvam, Kaliyamoorthy
2016-10-15
Hybrid organic/inorganic nanocomposites comprised of calcium ferrite (CaFe2O4) and graphitic carbon nitride (g-C3N4) were prepared via a simple two-step process. The hybridized CaFe2O4/g-C3N4 heterostructure was characterized by a variety of techniques, including X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy, electrochemical impedance spectroscopy (EIS), and photoelectrochemical studies. Photocatalytic activity of the prepared samples was evaluated against degradation of methylene blue (MB) under visible-light irradiation. The photocatalytic activity of CaFe2O4 30%/g-C3N4 nanocomposite, as optimum photocatalyst, for degradation of MB was superior to the pure CaFe2O4 and g-C3N4 samples. It was demonstrated that the photogenerated holes and superoxide ion radicals were the two main reactive species towards the photocatalytic degradation of MB over the nanocomposite. Based on the experimental results, a possible photocatalytic mechanism for the MB degradation over the nanocomposite was proposed. This work may provide some inspiration for the fabrication of spinel ferrites with efficient photocatalytic performance. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Hailong; Gao, Yan; Xiong, Zhuo; Liao, Chen; Shih, Kaimin
2018-05-01
A series of Au-g-C3N4 (Au-CN) catalysts were prepared through a NaBH4-reduction method using g-C3N4 (CN) from pyrolysis of urea as precursor. The catalysts' surface area, crystal structure, surface morphology, chemical state, functional group composition and optical properties were characterized by X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, ultraviolet visible (UV-vis) diffuse reflectance spectra, fourier transform infrared, photoluminescence and transient photocurrent analysis. The carbon dioxide (CO2) photoreduction activities under ultraviolet visible (UV-vis) light irradiation were significantly enhanced when gold (Au) was loaded on the surface of CN. 2Au-CN catalyst with Au to CN mole ratio of 2% showed the best catalytic activity. After 2 h UV-vis light irradiation, the methane (CH4) yield over the 2Au-CN catalyst was 9.1 times higher than that over the pure CN. The CH4 selectivity also greatly improved for the 2Au-CN compared to the CN. The deposited Au nanoparticles facilitated the separation of electron-hole pairs on the CN surface. Moreover, the surface plasmon resonance effect of Au further promoted the generation of hot electrons and visible light absorption. Therefore, Au loading significantly improved CO2 photoreduction performance of CN under UV-vis light irradiation.
NASA Astrophysics Data System (ADS)
Gholizadeh, A.; Reyhani, A.; Parvin, P.; Mortazavi, S. Z.
2017-05-01
ZnO nanostructures (including nano-plates and nano-rods (NRs)) are grown in various temperatures and Ar/O2 flow rates using thermal chemical vapor deposition, which affect the structure, nano-plate/NR population, and the quality of ZnO nanostructures. X-ray diffraction (XRD) attests that the peak intensity of the crystallographic plane (1 0 0) is correlated to nano-plate abundance. Moreover, optical properties elucidate that the population of nano-plates in samples strongly affect the band gap, binding energy of the exciton, and UV-visible (UV-vis) absorption and spectral luminescence emissions. In fact, the exciton binding energy reduces from ~100 to 80 meV when the population of nano-plates increases in samples. Photovoltaic characteristics based on the drop-casting on Si solar cells reveals three dominant factors, namely, the equivalent series resistance, decreasing reflectance, and down-shifting, in order to scale up the absolute efficiency by 3%. As a consequence, the oxygen vacancies in ZnO nanostructures give rise to the down-shifting and increase of free-carriers, leading to a reduction in the equivalent series resistance and an enlargement of fill factor. To obtain a larger I sc, reduction of spectral reflectance is essential; however, the down-shifting process is shown to be dominant by lessening the surface electron-hole recombination rate over the UV-blue spectral range.
NASA Astrophysics Data System (ADS)
Hu, Xiao-Sai; Shen, Yong; Xu, Li-Hui; Wang, Li-Ming; Lu, Li-sha; Zhang, Ya-ting
2016-11-01
The flower-like CuS hierarchical structures were synthesized by solvothermal method. The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared(FTIR) spectroscopy, UV-vis optical absorption spectroscopy and thermogravimetric analysis (TGA). The results demonstrated that the as-prepared flower-like CuS with the diameter of 1-5 um was pure hexagonal phase CuS and had well-defined flower-like structures. (1) The as-prepared CuS was proved to possess high photocatalytic performance with band gap of 1.45 eV. The degradation rate of Methylene blue (MB) was up to, 98.26%, 100% after 30 min under UV and visible irradiation. (2)The UPF of cotton fabric treated with CuS reached up to 174 compared with the original untreated fabric with the UPF 20.62. (3) The electromagnetic interference shielding effectiveness (EMI SE) of CuS coating was up to 27-31 dB when the content of CuS increased to 28.6%wt in the frequency of 300 KHz-3 GHz. Furthermore, the influence of reaction conditions on the morphology of the as-prepared CuS was investigated systematically and the possible formation mechanism of the CuS hierarchical structure was also proposed.
NASA Astrophysics Data System (ADS)
Ajibade, Peter A.; Ejelonu, Benjamin C.
2013-09-01
Zn(II), Cd(II) and Hg(II) dithiocarbamate complexes have been synthesized and characterized by elemental analysis, thermogravimetric analysis, UV-Vis, FTIR, 1H- and 13C NMR spectroscopy. The complexes were thermolysed at 180 °C and used as single molecule precursors for the synthesis of HDA capped ZnS, CdS and HgS nanoparticles and polymethylmethacrylate (PMMA) nanocomposites. The optical and structural properties of the nanoparticles and nanocomposites were studied by UV-Vis, PL, XRD and SEM. The crystallites sizes of the nanoparticles varied between 3.03 and 23.45 nm. SEM and EDX analyses of the nanocomposites confirmed the presence of the nanoparticles in the polymer matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Peigong; Fan, Caimei, E-mail: fancm@163.com; Wang, Yawen
Graphical abstract: The cubic phase BaTiO{sub 3} nanoparticles can be obtained at 600 °C and changed into tetragonal phase at 900 °C by a dual chelating sol–gel method, and the photocatalytic activities of the photocatalysts calcined at different temperatures were investigated by the removal of humic acid (HA) from water under UV light irradiation. Highlights: ► The humic acid in water was firstly degradated by BaTiO{sub 3} photocatalyst. ► The cubic BaTiO{sub 3} was obtained and changed into tetragonal phase at lower temperature. ► The chelating agents had an important influence on the phase formation of BaTiO{sub 3}. ► Themore » tetragonal phase BaTiO{sub 3} calcined at 900 °C exhibited higher photocatalytic activity under UV irradiation. -- Abstract: In this paper, a dual chelating sol–gel method was used to synthesize BaTiO{sub 3} nanoparticles by using acetylacetone and citric acid as chelating agents. The samples calcined at different temperatures were analyzed by thermogravimetric and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscope (SEM) and UV–vis diffuse reflectance spectra (UV–vis). The results indicated that cubic phase BaTiO{sub 3} nanoparticles about 19.6 nm can be obtained at 600 °C and changed into tetragonal phase at 900 °C about 97.1 nm. All the BaTiO{sub 3} nanoparticles showed effective photocatalytic activities on the removal of humic acid (HA) under UV light irradiation. A comparison of single (acetylacetone or citric acid) and dual chelating (acetylacetone and citric acid) synthetic processes was also studied and the results demonstrated that the dual chelating agents indeed reduced phase transformation temperature from cubic to tetragonal BaTiO{sub 3}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Anju, E-mail: singh-nk24@yahoo.com; Vishwakarma, H. L., E-mail: horilal5@yahoo.com
2015-07-31
In this work, ZnO nanorods were achieved by a simple chemical precipitation method in the presence of capping agent Poly Vinyl Pyrrolidone (PVP) at room temperature. X-Ray Diffraction (XRD) result indicates that the synthesized undoped ZnO nanorods have wurtzite hexagonal structure without any impurities. It has been seen that the growth orientation of the prepared ZnO nanorods were (101). XRD analysis revealed that the nanorods having the crystallite size 49 nm. The Scanning Electron Microscopy (SEM) image confirmed the size and shape of these nanorods. The diameter of nanorods has been found that 1.52 µm to 1.61 µm and the lengthmore » of about 4.89 µm. It has also been found that at room temperature Ultra Violet Visible (UV-VIS) absorption band is around 355 nm (blue shifted as compared to bulk). Electroluminescence (EL) studies show that emission of light is possible at very small threshold voltage and increases rapidly with increasing applied voltage. It is seen that smaller ZnO nanoparticles give higher electroluminescence brightness starting at lower threshold voltage. The brightness is also affected by increasing the frequency of AC signal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, Nillohit; Sinha, Arijit; Khan, Gobinda Gopal
2011-01-15
We report a chemical route for the deposition of nanocrystalline thin films of CuS, using aqueous solutions of Cu(CH{sub 3}COO){sub 2}, SC(NH{sub 2}){sub 2} and N(CH{sub 2}CH{sub 2}OH){sub 3} [triethanolamine, i.e. TEA] in proper concentrations and ratios. The films were structurally characterized using X-ray diffraction technique (XRD), field emission scanning electron microscopy (FESEM) and optical analysis [both photo luminescence (PL) and ultraviolet-visible (UV-vis)]. Optical studies showed a large blue shift in the band gap energy of the films due to quantum confinement effect exerted by the nanocrystals. From both XRD and FESEM analyses, formation of CuS nanocrystals with sizes withinmore » 10-15 nm was evident. A study on the mechanical properties was carried out using nanoindentation and nanoscratch techniques, which showed good mechanical stability and high adherence of the films with the bottom substrate. Such study on the mechanical properties of the CuS thin films is being reported here for the first time. Current-voltage (I-V) measurements were also carried out for the films, which showed p-type conductivity.« less
NASA Astrophysics Data System (ADS)
Rahman, Mohammed M.; Jamal, A.; Khan, Sher Bahadar; Faisal, M.
2011-10-01
Hydrothermally prepared as-grown low-dimensional nano-particles (NPs) have been characterized using UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and electron dispersion spectroscopy (EDS). The uniformity of the nano-material was executed by the scanning electron microscopy, where the single phase of the nano-crystalline β-Fe 2O 3 was characterized using XRD techniques. β-Fe 2O 3 nanoparticles fabricated glassy carbon electrode (GCE) have improved chloroform-sensing performances in terms of electrical response ( I- V technique) for detecting analyte in liquid phase. The analytical performances were investigated, which showed that the better sensitivity, stability, and reproducibility of the sensor improved significantly by using Fe 2O 3 NPs thin-film on GCE. The calibration plot was linear ( R = 0.9785) over the large range of 12.0 μM to 12.0 mM. The sensitivity was calculated as 2.1792 μA cm -2 mM -1 with a detection limit of 4.4 ± 0.10 μM in short response time (10.0 s).
Morphological, structural and optical properties of MEH-PPV: PC70BM nanocomposite film
NASA Astrophysics Data System (ADS)
Mhamdi, Asya; Sweii, Fatma ben Slama; Saidi, Hamza; Saidi, Faouzi; Bouazizi, Abdelaziz
2018-05-01
In this report, the influence of annealing temperature and spin coating speed on the structural and morphological properties of a blend of poly (2-methoxy-5-(2-ethyl-oxy)-p-phenylene-vinylene) (MEH-PPV) and [6-6]-phenyl-C71-butyric acid methyl ester (PC70BM) layer has been investigated. The photoactive layer (MEH-PPV: PC70BM) was deposited on ZnO film deposited on top of indium tin oxide (ITO) substrate by spin-coating. The effect of spin coating speed via atomic force microscope (AFM) leads to conclude that high speed is favorable for a good homogeneity of the film surface and good aggregates dispersion. The optimized structure was studied by varying the annealing temperatures using X-ray diffraction (XRD). The XRD analysis indicates that annealing treatment promoted the ordered aggregation and crystallization of MEH-PPV: PC70BM films. Indeed, the blend ratio effect on the optical properties of MEH-PPV: PC70BM thin film was investigated. While, the effect of incorporation of PC70BM on the optical properties was studied using UV-Vis and photoluminescence (PL) measurement. We conclude that MEH-PPV: PC70BM (1:3) film leads to high charge transfer rate.
Electrical and Optical Properties of Nanocrystalline A8ZnNb6O24 (A = Ba, Sr, Ca, Mg) Ceramics
NASA Astrophysics Data System (ADS)
John, Fergy; Thomas, Jijimon K.; Jacob, John; Solomon, Sam
2017-08-01
Nanoparticles of A8ZnNb6O24 (A = Ba, Sr, Ca, and Mg, abbreviated as BZN, SZN, CZN, and MZN) have been synthesized by an auto-igniting combustion technique and their structural and optical properties characterized. The phase purity, crystal structure, and particle size of the prepared nanopowders were examined by x-ray diffraction (XRD) analysis and transmission electron microscopy. The XRD results revealed that all the samples crystallized with hexagonal perovskite structure in space group P6 3 cm. The Fourier-transform infrared and Raman (FT-Raman) spectra of the samples were investigated in detail. The ultraviolet-visible (UV-Vis) absorption spectra of the samples were also recorded and their optical bandgap energy values calculated. The nanopowders synthesized by the combustion technique were sintered to 95% of theoretical density at temperature of 1250°C for 2 h. The surface morphology of the sintered pellets was studied by scanning electron microscopy. The photoluminescence spectra of the samples showed intense emission in the blue-green region. Complex impedance analysis was used to determine the grain and grain boundary effects on the dielectric behavior of the ceramics.
NASA Astrophysics Data System (ADS)
Hai, Thien An Phung; Sugimoto, Ryuichi
2018-06-01
A simple method for the preparation of multicolor polyvinyl alcohol (PVA) by chemical oxidative polymerization is introduced. The PVA surface was successfully modified with conjugated polymers composed of 3-hexylthiophene (3HT) and fluorene (F). The incorporation of the 3HT/F copolymer onto the PVA surface was confirmed by Fourier-transform infrared (FT-IR), ultraviolet-visible (UV-vis), and fluorescence spectroscopies, X-ray diffraction (XRD), as well as thermogravimetric analysis (TGA), contact angle, and field-emission scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray (EDX) analysis. Different 3HT/F ratios on the PVA surface result in optical properties that include multicolor-emission and absorption behavior. The color of the resultant (3HT/F)-g-PVA shifted from red to blue, and the quantum yield increased with increasing F content. The surface hydrophobicity of the modified PVA increased significantly through grafting with the conjugated polymers, with the water contact angle increasing by 30° compared to pristine PVA. The PVA XRD peaks were less intense following surface modification. Thermogravimetric analyses reveal that the thermal stability of the PVA decreases as a result of grafting with the 3HT/F copolymers.
Zhao, Baoxiu; Li, Xiang; Yang, Long; Wang, Fen; Li, Jincheng; Xia, Wenxiang; Li, Weijiang; Zhou, Li; Zhao, Colin
2015-01-01
ß-Ga2O3 nanorod was first directly prepared by the microwave irradiation hydrothermal way without any subsequent heat treatments, and its characterizations were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), UV-Vis diffuse reflection spectroscopy techniques, and also its photocatalytic degradation for perfluorooctanoic acid (PFOA) was investigated. XRD patterns revealed that ß-Ga2O3 crystallization increased with the enhancement of microwave power and the adding of active carbon (AC). PFOA, as an environmental and persistent pollutant, is hard decomposed by hydroxyl radicals (HO·); however, it is facilely destroyed by ß-Ga2O3 photocatalytic reaction in an anaerobic atmosphere. The important factors such as pH, ß-Ga2O3 dosage and bubbling atmosphere were researched, and the degradation and defluorination was 98.8% and 56.2%, respectively. Reductive atmosphere reveals that photoinduced electron may be the major reactant for PFOA. Furthermore, the degradation kinetics for PFOA was simulated and constant and half-life was calculated, respectively. © 2014 The American Society of Photobiology.
NASA Astrophysics Data System (ADS)
Mirzaee, Majid; Dolati, Abolghasem
2015-03-01
We report on the preparation and characterization of high-purity chromium (0.5-2.5 at.%)-doped indium tin oxide (ITO, In:Sn = 90:10) films deposited by sol-gel-mediated dip coating. The effects of different Cr-doping contents on structural, morphological, optical and electrical properties of the films were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), UV-Vis spectroscopy and four-point probe methods. XRD showed high phase purity cubic In2O3 and indicated a contraction of the lattice with Cr doping. FESEM micrographs show that grain size decreased with increasing the Cr-doping content. A method to determine chromium species in the sample was developed through the decomposition of the Cr 2 p XPS spectrum in Cr6+ and Cr3+ standard spectra. Optical and electrical studies revealed that optimum opto-electronic properties, including minimum sheet resistance of 4,300 Ω/Sq and an average optical transmittance of 85 % in the visible region with a band gap of 3.421 eV, were achieved for the films doped with Cr-doping content of 2 at.%.
NASA Astrophysics Data System (ADS)
Muaz, A. K. M.; Hashim, U.; Arshad, M. K. Md.; Ruslinda, A. R.; Ayub, R. M.; Gopinath, Subash C. B.; Voon, C. H.; Liu, Wei-Wen; Foo, K. L.
2016-07-01
In this paper, sol-gel method spin coating technique is adopted to prepare nanoparticles titanium dioxide (TiO2) thin films. The prepared TiO2 sol was synthesized using titanium butoxide act as a precursor and subjected to deposited on the p-type silicon oxide (p-SiO2) and glass slide substrates under room temperature. The effect of different alcoholic solvents of methanol and ethanol on the structural, morphological, optical and electrical properties were systematically investigated. The coated TiO2 thin films were annealed in furnace at 773 K for 1 h. The structural properties of the TiO2 films were examined with X-ray Diffraction (XRD). From the XRD analysis, both solvents showing good crystallinity with anatase phase were the predominant structure. Atomic Force Microscopy (AFM) was employed to study the morphological of the thin films. The optical properties were investigated by Ultraviolet-visible (UV-Vis) spectroscopy were found that ethanol as a solvent give a higher optical transmittance if compare to the methanol solvent. The electrical properties of the nanoparticles TiO2 thin films were measured using two-point-probe technique.
Chemical bath deposition of Cu{sub 3}BiS{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshmukh, S.G., E-mail: deshmukhpradyumn@gmail.com; Vipul, Kheraj, E-mail: vipulkheraj@gmail.com; Panchal, A.K.
2016-05-06
First time, copper bismuth sulfide (Cu{sub 3}BiS{sub 3}) thin films were synthesized on the glass substrate using simple, low-cost chemical bath deposition (CBD) technique. The synthesized parameters such as temperature of bath, pH and concentration of precursors were optimized for the deposition of uniform, well adherent Cu{sub 3}BiS{sub 3} thin films. The optical, surface morphology and structural properties of the Cu{sub 3}BiS{sub 3} thin films were studied using UV-VIS-NIR spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The as- synthesized Cu{sub 3}BiS{sub 3} film exhibits a direct band gap 1.56 to 1.58 eV having absorption coefficient of the ordermore » of 10{sup 5} cm{sup −1}. The XRD declares the amorphous nature of the films. SEM images shows films were composed of close-packed fine spherical nanoparticles of 70-80 nm in diameter. The chemical composition of the film was almost stoichiometric. The optical study indicates that the Cu{sub 3}BiS{sub 3} films can be applied as an absorber layer for thin film solar cells.« less
Effect of Zn doping on structural, optical and thermal properties of CeO2 nanoparticles
NASA Astrophysics Data System (ADS)
Ramasamy, V.; Vijayalakshmi, G.
2015-09-01
The undoped and Zn doped CeO2 nanoparticles were synthesized by chemical precipitation method at room temperature. The undoped and Zn doped CeO2 nanoparticles have been characterized by X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), ultraviolet visible and photoluminescence (PL) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and thermogravimetry and differential thermal analysis (TG-DTA). The cubic fluorite structures of the CeO2 nanoparticles were determined by XRD. The influence of particle size on structural parameters such as lattice parameter (a), inter planar distance (d), dislocation density (δ), microstrain (ε), lattice strain (η) and texture co-efficient (TC) were also determined. The lattice strains were determined by Williamson-Hall plot method. The effect of Zn doping with shifting of the bands were observed by UV-Vis spectroscopy and also their optical band gap were determined. The emission spectra and energy band diagram of the undoped and Zn doped samples were derived from PL spectroscopy. The structural bond vibrations of undoped and Zn doped CeO2 nanoparticles were analyzed by FTIR spectroscopy. The thermal property (weight loss and decomposition) of the sample is observed by TG-DTA curve.
Deborah, M; Jawahar, A; Mathavan, T; Dhas, M Kumara; Benial, A Milton Franklin
2015-03-15
The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (002) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.
Influence of Iron Doping on Structural, Optical and Magnetic Properties of TiO2 Nanoparticles
NASA Astrophysics Data System (ADS)
Zahid, R.; Manzoor, M.; Rafiq, A.; Ikram, M.; Nafees, M.; Butt, A. R.; Hussain, S. G.; Ali, S.
2018-05-01
In this study, various concentrations of Fe doped TiO2 nanoparticles have been successfully synthesized using the sol-gel method. A variety of characterization techniques as ultra-violet visible (UV-Vis) spectroscopy, X-ray diffractometer (XRD), vibrating sample magnetometry (VSM) and field emission scanning electron microscopy (FESEM) were employed to analyze the prepared nanopowders. XRD measurement confirmed the substitution of Fe ion without disturbing the tetragonal crystal system of TiO2. The crystallite size was found to decrease and lattice strain increases upon doping estimated by Williamson Hall plot. Furthermore, the average grain size calculated by FESEM found was between 10 and 30 nm for pure and doped TiO2. UV-Vis spectroscopy showed an increase in absorption accompanied red shift and increase in band gap energies from 3.36 to 3.62 eV with the addition of Fe. The FTIR spectroscopy was employed to confirm the presence of functional groups in the fabricated nanopowders. Upon mixing the saturation magnetization (Ms) varying from (2.12 to 1.51)10-2 emu/g was observed.
Synthesis and characterization of Y2O3 nano-material: An experimental and theoretical study
NASA Astrophysics Data System (ADS)
Ahmad, Sheeraz; Faizan, Mohd; Ahmad, Shabbir; Ikram, Mohd
2018-04-01
We made an attempt to synthesize pure Y2O3 nanomaterial by using the sol-gel method followed by annealing at 600°C and 900°C. The synthesized Y2O3 nanoparticle was characterized by using XRD, FTIR, and UV-Vis spectroscopy. The structural refinement was performed using FULLPROF software by the Rietveld method. The refinement parameters such as lattice constant, atomic position, occupancy, R-factor and goodness of fit (χ2) were calculated. The nanoparticle has a single phase cubic structure with Ia -3 space group. The main absorption band in FTIR spectra centered at 560 cm-1 is attributed to Y-O vibration while the broadband at 3450 cm-1 arises due to O-H vibration. The band gap was obtained from the reflectance spectra using the K-M function F(R∞). The optimized structural parameters and UV-Vis spectrum were calculated using DFT and TD-DFT/B3LYP methods in bulk phase of Y2O3 and compared with experimental UV-Vis spectra in nanophase.
ZnO nanorods decorated with ZnS nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joicy, S.; Sivakumar, P.; Thangadurai, P., E-mail: thangaduraip.nst@pondiuni.edu.in
In this study, ZnO nanorods (NRs) and ZnS nanoparticles decorated ZnO-NRs were prepared by a combination of hydrothermal and hydrolysis method. Structural and optical properties of the samples were studied by XRD, FE-SEM, UV-Vis DRS and photoluminescence spectroscopy. Microscopy analysis revealed that the diameter of ZnO-NRs was ∼500 nm and the length was ranging from a few hundred nm to several micrometers and their surface was decorated with ZnS nanoparticles. UV-Vis DRS showed the absorption of ZnS decorated ZnO-NRs was blue shifted with respect to pure ZnO-NRs which enhanced the separation of electron-hole pairs. PL spectrum of ZnS decorated ZnO-NRs showedmore » a decrease in intensity of UV and green emissions with the appearance of blue emission at 436 nm.« less
NASA Astrophysics Data System (ADS)
Hamadanian, M.; Reisi-Vanani, A.; Majedi, A.
2010-01-01
A novel copper and sulfur codoped TiO 2 photocatalyst was synthesized by modified sol-gel method using titanium(IV) isopropoxide, CuCl 2·2H 2O and thiourea as precursors. The samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy equipped with energy dispersive X-ray micro-analysis (SEM-EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) analysis. The XRD results showed undoped and Cu,S-codoped TiO 2 nanoparticles only include anatase phase. Effect of calcination temperature showed rutile phase appears in 650 and 700 °C for undoped and 0.1% Cu,S-codoped TiO 2, respectively. The SEM analysis revealed the doping of Cu and S does not leave any change in morphology of the catalyst surface. The increase of copper doping enhanced "red-shift" in the UV-vis absorption spectra. The TEM images confirmed the dopants suppressed the growth of TiO 2 grains. The photocatalytic activity of samples was tested for degradation of methyl orange (MO) solutions. The results showed photocatalytic activity of the catalysts with 0.05% Cu,0.05% S and 0.1% Cu,0.05% S were higher than that of other catalysts under ultraviolet (UV) and visible irradiation, respectively. Because of synergetic effect of S and Cu, the Cu,S-codoped TiO 2 catalyst has higher activity than undoped and Cu or S doped TiO 2 catalysts.
Van Viet, Pham; Sang, Truong Tan; Bich, Nguyen Ho Ngoc; Thi, Cao Minh
2018-05-01
Silver nanoparticles (Ag NPs) were synthesized by an improved green synthesis method via a photo-reduction process using low-power UV light in the presence of poly (vinyl pyrrolidone) (PVP) as the surface stabilizer. The effective synthesis process was achieved by optimized synthesis parameters such as C 2 H 5 OH: H 2 O ratio, AgNO 3 : PVP ratio, pH value, and reducing time. The formation of Ag NPs was identified by Ultraviolet-visible (UV-vis) absorption spectra, X-ray diffraction pattern (XRD) and Fourier transform infrared spectroscopy (FTIR) spectra. Ag NPs were crystallized according to (111), (200), and (220) planes of the face-centered cubic. The transmission electron microscopy (TEM) image showed that the morphology of Ag NPs was uniform spherical with the average particle size of 16 ± 2 nm. The results of XRD pattern, TEM image, and dynamic light scattering (DLS) analysis proved that Ag crystals with uniform size were formed after the reduction process. The mechanism of the formation of Ag NPs was proposed and confirmed by FTIR spectra. The antibacterial activity of Ag NPs against Escherichia coli (E. coli) was tested and approximately 100% of E. coli was eliminated by Ag NPs 35 ppm. In the future, this study can become a new process for the application of Ag NPs as an antibiotic in the industrial scale. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghiasuddin; Akram, Muhammad; Adeel, Muhammad; Khalid, Muhammad; Tahir, Muhammad Nawaz; Khan, Muhammad Usman; Asghar, Muhammad Adnan; Ullah, Malik Aman; Iqbal, Muhammad
2018-05-01
Carbon-carbon coupling play a vital role in the synthetic field of organic chemistry. Two novel pyridine derivatives: 3-bromo-5-(2,5-difluorophenyl)pyridine (1) and 3,5-bis(naphthalen-1-yl)pyridine (2) were synthesized via carbon-carbon coupling, characterized by XRD, spectroscopic techniques and also investigated by using density functional theory (DFT). XRD data and optimized DFT studies are found to be in good correspondence with each other. The UV-Vis analysis of compounds under study i.e. (1) and (2) was obtained by using "TD-DFT/B3LYP/6-311 + G(d,p)" level of theory to explain the vertical transitions. Calculated FT-IR and UV-Vis results are found to be in good agreement with experimental FT-IR and UV-Vis findings. Natural bond orbital (NBO) study was performed using B3LYP/6-311 + G(d,p) level to find the most stable molecular structure of the compounds. Frontier molecular orbital (FMO) analysis were performed at B3LYP/6-311 + G(d,p) level of theory, which indicates that the molecules might be bioactive. Moreover, the bioactivity of compounds (1) and (2) have been confirmed by the experimental activity in terms of zones of inhibition against bacteria and fungus. Chemical reactivity of compounds (1) and (2) was indicated by mapping molecular electrostatic potential (MEP) over the entire stabilized geometries of the compounds under study. The nonlinear optical properties were computed with B3LYP/6-311 + G(d,p) level of theory which are found greater than the value of urea due to conjugation effect. Two state model has been further employed to explain the nonlinear optical properties of compounds under investigation.
Indium doped ZnO nano-powders prepared by RF thermal plasma treatment of In2O3 and ZnO
NASA Astrophysics Data System (ADS)
Lee, Mi-Yeon; Song, Min-Kyung; Seo, Jun-Ho; Kim, Min-Ho
2015-06-01
Indium doped ZnO nano-powders were synthesized by the RF thermal plasma treatment of In2O3 and ZnO. For this purpose, micron-sized ZnO powder was mixed with In2O3 powder at the In/Zn ratios of 0.0, 1.2, and 2.4 at. % by ball milling for 1 h, after which the mixtures were injected into RF thermal plasma generated at the plate power level of ˜140 kV A. As observed from the field emission scanning electron microscopy (FE-SEM) images of the RF plasma-treated powders, hexagonal prism-shaped nano-crystals were mainly obtained along with multi-pod type nano-particles, where the number of multi-pods decreased with increasing In/Zn ratios. In addition, the X-ray diffraction (XRD) data for the as-treated nano-powders showed the diffraction peaks for the In2O3 present in the precursor mixture to disappear, while the crystalline peaks for the single phase of ZnO structure shifted toward lower Bragg angles. In the UV-vis absorption spectra of the as-treated powders, redshifts were also observed with increases of the In/Zn ratios. Together with the FE-SEM images and the XRD data, the redshifts were indicative of the doping process of ZnO with indium, which took place during the RF thermal plasma treatment of In2O3 and ZnO.
Zheng, Yan-Qiong; Zhang, Jing; Yang, Fang; Komino, Takeshi; Wei, Bin; Zhang, Jianhua; Wang, Zixing; Pu, Wenhong; Yang, Changzhu; Adachi, Chihaya
2015-10-09
The dependence of the morphology of neat chloroaluminum phthalocyanine (ClAlPc) films on substrate temperature (Tsub) during deposition is investigated by variable angle spectroscopic ellipsometry (VASE), x-ray diffraction (XRD), and atomic force microscopy (AFM) to obtain detailed information about the molecular orientation, phase separation, and crystallinity. AFM images indicate that both grain size and root mean square (RMS) roughness noticeably increase with Tsub both in neat and blend films. Increasing Tsub from room temperature to 420 K increases the horizontal orientation of the ClAlPc molecules with an increase of the mean molecular tilt angle from 60.13° (300 K) to 65.86° (420 K). The UV-vis absorption band of the corresponding films increases and the peak wavelength slightly red shifts with the Tsub increase. XRD patterns show a clear diffraction peak at Tsub over 390 K, implying the π-stacking of interconnected ClAlPc molecules at high Tsub. Planar and bulk heterojunction (BHJ) photovoltaic cells containing pristine ClAlPc films and ClAlPc:C60 blend films fabricated at Tsub of 390 K show increases in the power conversion efficiency (ηPCE) of 28% (ηPCE = 3.12%) and 36% (ηPCE = 3.58%), respectively, relative to devices as-deposited at room temperature. The maximum short circuit current in BHJs is obtained at 390 K in the Tsub range from 300 K to 450 K.
NASA Astrophysics Data System (ADS)
Ungula, J.; Dejene, B. F.; Swart, H. C.
2018-04-01
Gallium-doped zinc oxide nanoparticles (GZO NPs) were synthesized by the reflux precipitation method at 1, 3, 5, 7 and 8 pH conditions of Ga/Zn precursor solution (Ga/Zn sol.). Analysis of X-ray diffraction (XRD) spectra showed that the diffraction peak intensities of GZO NPs increased and the crystallite sizes varied from 11 to 27 nm with an increase in the pH of the Zn/Ga sol. Scanning electron microscopy micrographs showed agglomerated tiny particles that formed on big slabs of nanorods at the lower pH, but fine and enlarged particles on nano-spherical bases formed at the higher pH values. The photoluminescence exciton peak intensities of the GZO NPs and their respective FWHM increased to a maximum at the 5 pH and then reduced slightly as the solution got more basic. The increase of the deep level peak intensities with the increase in the pH followed the XRD diffraction intensity results. It was observed that both the exciton and DLE peaks emission positions shifted to lower wavelengths up to the 5 pH and then red shifted for a further increase in the pH values. The UV-vis analysis also demonstrated that the optical properties of the GZO NPs improved with the increase Ga/Zn sol. pH, as shown by the blue shift of the absorption edge of the reflectance spectra. The band gap energy was tuned from 3.18 to 3.31 eV with the increase in the pH from 1 to 5. An additional increase in the pH yielded no significant change in the optical properties of the GZO NPs.
Preparation and spectral properties of europium hydrogen squarate microcrystals
NASA Astrophysics Data System (ADS)
Kolev, T.; Danchova, N.; Shandurkov, D.; Gutzov, S.
2018-04-01
A simple scheme for preparation of europium hydrogen squarate octahydrate microcrystals, Eu(HSq)3·8H2O is demonstrated. The microcrystalline powders obtained have a potential application as non-centrosymmetric and UV radiation - protective hybrid optical material. The site-symmetry of the Eu - ion is C2V or lower, obtained from diffuse reflectance spectra. The formation of europium hydrogen squarate is supported by IR - spectroscopy, UV-vis spectroscopy, chemical analysis and X-ray diffraction. A detailed analysis of the UV-vis and IR spectra of the micropowders prepared is presented. The reaction between europium oxide and squaric acid leads to formation of microcrystalline plate-like crystals of europium hydrogen squarate Eu(HSq)3·8H2O, a non-centrosymmetric hybrid optical material with a potential application as UV radiation - protective coatings.
Structural and optical studies on selected web spinning spider silks
NASA Astrophysics Data System (ADS)
Karthikeyani, R.; Divya, A.; Mathavan, T.; Asath, R. Mohamed; Benial, A. Milton Franklin; Muthuchelian, K.
2017-01-01
This study investigates the structural and optical properties in the cribellate silk of the sheet web spider Stegodyphus sarasinorum Karsch (Eresidae) and the combined dragline, viscid silk of the orb-web spiders Argiope pulchella Thorell (Araneidae) and Nephila pilipes Fabricius (Nephilidae). X-ray diffraction (XRD), Fourier transform infra-red (FTIR), Ultraviolet-visible (UV-Vis) and fluorescence spectroscopic techniques were used to study these three spider silk species. X-ray diffraction data are consistent with the amorphous polymer network which is arising from the interaction of larger side chain amino acid contributions due to the poly-glycine rich sequences known to be present in the proteins of cribellate silk. The same amorphous polymer networks have been determined from the combined dragline and viscid silk of orb-web spiders. From FTIR spectra the results demonstrate that, cribellate silk of Stegodyphus sarasinorum, combined dragline viscid silk of Argiope pulchella and Nephila pilipes spider silks are showing protein peaks in the amide I, II and III regions. Further they proved that the functional groups present in the protein moieties are attributed to α-helical and side chain amino acid contributions. The optical properties of the obtained spider silks such as extinction coefficients, refractive index, real and imaginary dielectric constants and optical conductance were studied extensively from UV-Vis analysis. The important fluorescent amino acid tyrosine is present in the protein folding was investigated by using fluorescence spectroscopy. This research would explore the protein moieties present in the spider silks which were found to be associated with α-helix and side chain amino acid contributions than with β-sheet secondary structure and also the optical relationship between the three different spider silks are investigated. Successful spectroscopic knowledge of the internal protein structure and optical properties of the spider silks could permit industrial production of silk-based fibres with unique properties under benign conditions.
Ghate, Minakshi; Dahule, H K; Thejo Kalyani, N; Dhoble, S J
2018-03-01
A novel blue luminescent 6-chloro-2-(4-cynophenyl) substituted diphenyl quinoline (Cl-CN DPQ) organic phosphor has been synthesized by the acid-catalyzed Friedlander reaction and then characterized to confirm structural, optical and thermal properties. Structural properties of Cl-CN-DPQ were analyzed by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction technique (XRD) and scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX) spectroscopy. FTIR spectra confirmed the presence of different functional groups and bond stretching. 1 H-NMR and 13 C-NMR confirmed the formation of an organic Cl-CN-DPQ compound. X-ray diffraction study provided its crystalline nature. The surface morphology of Cl-CN-DPQ was analyzed by SEM, while EDAX spectroscopy revealed the elemental analysis. Differential thermal analysis (TGA/DTA) disclosed its thermal stability up to 250°C. The optical properties of Cl-CN-DPQ were investigated by UV-vis absorption and photoluminescence (PL) measurements. Cl-CN-DPQ exhibits intense blue emission at 434 nm in a solid-state crystalline powder with CIE co-ordinates (0.157, 0.027), when excited at 373 nm. Cl-CN-DPQ shows remarkable Stokes shift in the range 14800-5100 cm -1 , which is the characteristic feature of intense light emission. A narrow full width at half-maximum (FWHM) value of PL spectra in the range 42-48 nm was observed. Oscillator strength, energy band gap, quantum yield, and fluorescence energy yield were also examined using UV-vis absorption and photoluminescence spectra. These results prove its applications towards developing organic luminescence devices and displays, organic phosphor-based solar cells and displays, organic lasers, chemical sensors and many more. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Jahir Khan, Mohammad; Qayyum, Shariq; Alam, Fahad; Husain, Qayyum
2011-11-01
Proteins adsorbed on nanoparticles (NPs) are being used in biotechnology, biosensors and drug delivery. However, understanding the effect of NPs on the structure of proteins is still in a nascent state. In the present paper tin oxide (SnO2) NPs were synthesized by the reaction of SnCl4·5H2O in methanol via the sol-gel method and characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The binding of these SnO2-NPs with α-amylase was investigated by using UV-vis, fluorescence and circular dichroism (CD) spectroscopic techniques. A strong quenching of tryptophan fluorescence intensity in α-amylase was observed due to formation of a ground state complex with SnO2-NPs. Far-UV CD spectra showed that the secondary structure of α-amylase was changed in the presence of NPs. The Michaelis-Menten constant (Km), was found to be 26.96 and 28.45 mg ml - 1, while Vmax was 4.173 and 3.116 mg ml - 1 min - 1 for free and NP-bound enzyme, respectively.
NASA Astrophysics Data System (ADS)
Rajendran, Ranjith; Varadharajan, Krishnakumar; Jayaraman, Venkatesan; Singaram, Boobas; Jeyaram, Jayaprakash
2018-02-01
The enhanced photocatalytic performance of nanocomposite is synthesized via the hydrothermal method and characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FT-IR), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS) and photoluminescence spectroscopy (PL). Under visible light irradiation, PVA assisted Bi2WO6-CdS nanocomposite film displayed enhanced photocatalytic efficiency and inhibition of photocorrosion as compared with pure CdS, pure Bi2WO6 and Bi2WO6-CdS composite. The PVA assisted Bi2WO6-CdS composite film catalyst showed stable catalytic performance until seven successive runs with 92% of methylene blue(MB) degradation, and easy to recover after degradation of organic pollutant. PVA assisted Bi2WO6-CdS nanocomposite film has optimal band edge position for superior photocatalytic degradation. Furthermore, the trapping experiment was carried out using different scavenger for active species. Among the active species, OH· are the most responsive species which play a vital role in the degradation of metronidazole and MB.
Rasulov, Bakhtiyor; Rustamova, Nigora; Yili, Abulimiti; Zhao, Hai-Qing; Aisa, Haji A
2016-07-01
Silver nanoparticles (SNPs) were synthesized on the basis of exopolysaccharides (low and high molar mass) of diazotrophic Bradyrhizobium japonicum 36 strain. The synthesis of SNPs was carried out by direct reduction of silver nitrate with ethanol-insoluble (high molar mass, HMW) and ethanol-soluble (low molar mass, LMW) fractions of exopolysaccharides (EPS), produced by diazotrophic strain B. japonicum 36. SNPs were characterized using UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). SNPs synthesized on the basis of LMW EPS absorbed radiation in the visible regions of 420 nm, whereas SNPs based on the HMW EPS have a wavelength maximum at 450 nm because of the strong SPR transition. Moreover, the antibacterial and antifungal activities of the SNPs were examined in vitro against Escherichia coli, Staphylococcus aureus, and Candida albicans. SNPs synthesized on the basis of LMW EPS were active than those synthesized on the basis of HMW EPS. Besides, UV-visible spectroscopic evaluation confirmed that SNPs synthesized on the basis of LMW EPS were far more stable than those obtained on the basis of HMW EPS.
Preparation and photocatalytic activity of nonmetal Co-doped titanium dioxide photocatalyst
NASA Astrophysics Data System (ADS)
Sun, Xiaogang; Xing, Jun; Qiu, Jingping
2016-06-01
A series of boron and sulfur co-doped titanium dioxide (TiO2) photocatalysts were prepared by a sol-gel method using boric acid, thiourea and tetrabutyl titanate [Ti(OC4H9)4] as precursors. The photoabsorbance of as-prepared photocatalysts was measured by UV-Vis diffuse reflectance spectroscopy (DRS), and its microstructure was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and N2 adsorption-desorption measurements. The prepared photocatalysts consisted of the anatase phase mainly in the form of spherical particles. The photocatalytic performance was studied by photodegradation of methyl blue (MB) in water under UV and visible light irradiation. The calcination temperature and the codoping content influenced the photoactivity. The synergistic effect of boron and sulfur co-doping played an important role in improving the photocatalytic activity. In addition, the possibility of cyclic usage of codoped TiO2 was also confirmed, the photocatalytic activity of TiO2 remained above 91% of that of the fresh sample after being used four times. It was shown that the co-doped TiO2 could be activated by visible light and could thus be potentially applied for the treatment of water contaminated by organic pollutants.
NASA Astrophysics Data System (ADS)
Wang, Jianmin; Wang, Yunan; Liu, Yinglei; Li, Song; Cao, Feng; Qin, Gaowu
CaFe2O4 nanofibers with diameters of about 130nm have been fabricated via a facile electrospinning method. The structures, morphologies and optical properties of the obtained CaF2O4 nanofibers have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-Visible UV-Vis diffuse reflectance spectrum. The photocatalytic activities of the CaFe2O4 nanofibers are evaluated by the photo-degradation of Methyl orange (MO). The results show that the CaFe2O4 nanofibers (72%) exhibit much higher photocatalytic performance than the CaFe2O4 powders (27%) prepared by conventional method under visible light irradiation. The enhanced photocatalytic performance of CaFe2O4 nanofibers could be attributed to the large surface area, high photogenerated charge carriers density and low charge transfer resistance, as revealed by photoelectrochemical measurement. And fundamentally, it could be attributed to the decreased particle size and the fibrous nanostructure. This work not only provides an efficient way to improve the photocatalytic activity of CaFe2O4, but also provides a new method for preparing materials with nanofibrous structure.
Nakaya, Masafumi; Tanaka, Itaru; Muramatsu, Atsushi
2012-12-01
In this study, the random dope of Mn into CdS nanoparticles in zincblende phase has been carried out under the mild reaction condition. The resulting nanoparticles were characterized by energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), X-ray diffractometer (XRD), UV-Vis spectrometer, PL spectrometer, and SQUID. EDX showed that the compositions of Mn doped CdS nanoparticles were readily controlled. TEM showed the particle sizes were not significantly affected by the compositions, retaining to be ca. 3 nm with a narrow size distribution. UV-Vis and PL spectra of the resulting nanoparticles showed the intra-Mn level may be affected by the quantum size effect. SQUID measurement showed that the resulting nanoparticles showed diamagnetism, paramagnetism and superparamagnetism dependent on Mn content.
NASA Astrophysics Data System (ADS)
Kumari, G. Vanitha; Asha, S.; Ananth, A. Nimrodh; Rajan, M. A. Jothi; Mathavan, T.
2018-04-01
Polyethylene glycol (PEG)/Silver (Ag) functionalized reduced graphene oxide aerogel (RGOA) was synthesized. PEG/Ag decorated reduced graphene oxide aerogel was characterized using XRD, Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR). The surface morphology of PEG/Ag/RGOA was analyzed using scanning electron microscope. The non-covalent interaction between reduced graphene oxide layers and the interaction between PEG and Ag on RGOA were studied by FT-IR spectra. It was observed that the interaction between Ag and PEG could enhance the properties of RGOA. Methyl Orange (MO) dye degradation was observed from UV-Vis Spectra. The process was studied by monitoring the simultaneous decrease in the height of UV-Vis absorption peak of dye solution. The results show that PEG/RGOA and PEG/Ag/RGOA are an efficient catalyst for dye degradation.
Ajibade, Peter A; Ejelonu, Benjamin C
2013-09-01
Zn(II), Cd(II) and Hg(II) dithiocarbamate complexes have been synthesized and characterized by elemental analysis, thermogravimetric analysis, UV-Vis, FTIR, (1)H- and (13)C NMR spectroscopy. The complexes were thermolysed at 180 °C and used as single molecule precursors for the synthesis of HDA capped ZnS, CdS and HgS nanoparticles and polymethylmethacrylate (PMMA) nanocomposites. The optical and structural properties of the nanoparticles and nanocomposites were studied by UV-Vis, PL, XRD and SEM. The crystallites sizes of the nanoparticles varied between 3.03 and 23.45 nm. SEM and EDX analyses of the nanocomposites confirmed the presence of the nanoparticles in the polymer matrix. Copyright © 2013 Elsevier B.V. All rights reserved.
Ajitha, B; Reddy, Y Ashok Kumar; Reddy, P Sreedhara
2015-05-01
Silver nanoparticles (AgNPs) were prepared through green route with the aid of Momordica charantia leaf extract as both reductant and stabilizer. X-ray diffraction pattern (XRD) and selected area electron diffraction (SAED) fringes revealed the structure of AgNPs as face centered cubic (fcc). Morphological studies elucidate the nearly spherical AgNPs formation with particle size in nanoscale. Biosynthesized AgNPs were found to be photoluminescent and UV-Vis absorption spectra showed one surface plasmon resonance peak (SPR) at 424nm attesting the spherical nanoparticles formation. XPS study provides the surface chemical nature and oxidation state of the synthesized nanoparticles. FTIR spectra ascertain the reduction and capping nature of phytoconstituents of leaf extract in AgNPs synthesis. Further, these AgNPs showed effective antimicrobial activity against tested pathogens and thus applicable as potent antimicrobial agent. In addition, the synthesized AgNPs were observed to have an excellent catalytic activity on the reduction of methylene blue by M. charantia which was confirmed by the decrement in maximum absorbance values of methylene blue with respect to time and is ascribed to electron relay effect. Copyright © 2015 Elsevier B.V. All rights reserved.
Sundararajan, M L; Jeyakumar, T; Anandakumaran, J; Karpanai Selvan, B
2014-10-15
Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, (1)H NMR, (13)C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base. Copyright © 2014 Elsevier B.V. All rights reserved.
2018-01-01
In small-pore zeolite catalysts, where the size of the pores is limited by eight-ring windows, aromatic hydrocarbon pool molecules that are formed inside the zeolite during the Methanol-to-Olefins (MTO) process cannot exit the pores and are retained inside the catalyst. Hydrocarbon species whose size is comparable to the size of the zeolite cage can cause the zeolite lattice to expand during the MTO process. In this work, the formation of retained hydrocarbon pool species during MTO at a reaction temperature of 400 °C was followed using operando UV–vis spectroscopy. During the same experiment, using operando X-ray Diffraction (XRD), the expansion of the zeolite framework was assessed, and the activity of the catalyst was measured using online gas chromatography (GC). Three different small-pore zeolite frameworks, i.e., CHA, DDR, and LEV, were compared. It was shown using operando XRD that the formation of retained aromatic species causes the zeolite lattice of all three frameworks to expand. Because of the differences in the zeolite framework dimensions, the nature of the retained hydrocarbons as measured by operando UV–vis spectroscopy is different for each of the three zeolite frameworks. Consequently, the magnitude and direction of the zeolite lattice expansion as measured by operando XRD also depends on the specific combination of the hydrocarbon species and the zeolite framework. The catalyst with the CHA framework, i.e., H-SSZ-13, showed the biggest expansion: 0.9% in the direction along the c-axis of the zeolite lattice. For all three zeolite frameworks, based on the combination of operando XRD and operando UV–vis spectroscopy, the hydrocarbon species that are likely to cause the expansion of the zeolite cages are presented; methylated naphthalene and pyrene in CHA, 1-methylnaphthalene and phenalene in DDR, and methylated benzene and naphthalene in LEV. Filling of the zeolite cages and, as a consequence, the zeolite lattice expansion causes the deactivation of these small-pore zeolite catalysts during the MTO process. PMID:29527401
NASA Astrophysics Data System (ADS)
Thuong Huyen Tran, Thi; Kosslick, Hendrik; Schulz, Axel; Liem Nguyen, Quang
2017-03-01
In the present work, nano-sized TiO2 polymorphs (anatase, brookite, and rutile) were synthesized via hydrothermal treatment of an amorphous titania. Three polymorphs were characterized by XRD, Raman spectroscopy, SEM, UV-Vis DRS, and N2-sorption measurements. The photocatalytic degradation experiments were performed with low catalyst concentration, high organic loading under a 60 W UV-Vis solarium lamp irradiation. The photocatalytic degradation was monitored by UV-Vis spectroscopy and TOC measurements. Cinnamic acid, ibuprofen, phenol, diatrizoic acid and the dyes rhodamine B and rose bengal were used as model pollutants. The formation of intermediates was studied by ESI-TOF-MS measurements. The presence of active species was checked by quenching the activity by addition of scavengers. The photocatalytic activity decreased in the order: anatase ⩾ brookite > rutile, with growing recalcitrance of organic compounds. The differences in the activity are more pronounced in the degree of mineralization. The valence band holes and superoxide radicals were the major active species in the photocatalytic treatment with anatase and brookite, whereas hydroxyl radicals and superoxide radicals contributed mainly in the treatment with rutile explaining the lower activity of rutile. The complementary use of UV-Vis spectroscopy and TOC measurements was required to obtain a comprehensive realistic assessment on the photocatalytic performance of catalyst. Invited talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.
Investigation and characterization of ZnO single crystal microtubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Naser, Qusay A.H.; Zhou, Jian, E-mail: jianzhou@whut.edu.cn; Liu, Guizhen
2016-04-15
Morphological, structural, and optical characterization of microwave synthesized ZnO single crystal microtubes were investigated in this work. The structure and morphology of the ZnO microtubes are characterized using X-ray diffraction (XRD), single crystal diffraction (SCD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The results reveal that the as-synthesized ZnO microtube has a highly regular hexagonal cross section and smooth surfaces with an average length of 650–700 μm, an average outer diameter of 50 μm and wall thickness of 1–3 μm, possessing a single crystal wurtzite hexagonal structure. Optical properties of ZnOmore » single crystal microtubes were investigated by photoluminescence (PL) and ultraviolet-visible (UV-vis) absorption techniques. Room-temperature PL spectrum of the microtube reveal a strong UV emission peak at around 375.89 nm and broad and a weak visible emission with a main peak identified at 577 nm, which was assigned to the nearest band-edge emission and the deep-level emission, respectively. The band gap energy of ZnO microtube was found to be 3.27 eV. - Highlights: • ZnO microtube length of 650–700 μm, diameter of 50 μm, wall thickness of 1–3 μm • ZnO microtube possesses a single crystal wurtzite hexagonal structure. • The crystal system is hexahedral oriented along a-axis with indices of (100). • A strong and sharp UV emission at 375.89 nm (3.29 eV) • One prominent absorption band around 378.88 nm (3.27 eV)« less
Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.
2013-01-01
The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041
Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R
2013-09-01
The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.
Effects of Regolith Properties on UV/VIS Spectra and Implications for Lunar Remote Sensing
NASA Astrophysics Data System (ADS)
Coman, Ecaterina Oana
Lunar regolith chemistry, mineralogy, various maturation factors, and grain size dominate the reflectance of the lunar surface at ultraviolet (UV) to visible (VIS) wavelengths. These regolith properties leave unique fingerprints on reflectance spectra in the form of varied spectral shapes, reflectance intensity values, and absorption bands. With the addition of returned lunar soils from the Apollo and Luna missions as ground truth, these spectral fingerprints can be used to derive maps of global lunar chemistry or mineralogy to analyze the range of basalt types on the Moon, their spatial distribution, and source regions for clues to lunar formation history and evolution. The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) is the first lunar imager to detect bands at UV wavelengths (321 and 360 nm) in addition to visible bands (415, 566, 604, 643, and 689 nm). This dissertation uses a combination of laboratory and remote sensing studies to examine the relation between TiO2 concentration and WAC UV/VIS spectral ratios and to test the effects of variations in lunar chemistry, mineralogy, and soil maturity on ultraviolet and visible wavelength reflectance. Chapter 1 presents an introduction to the dissertation that includes some background in lunar mineralogy and remote sensing. Chapter 2 covers coordinated analyses of returned lunar soils using UV-VIS spectroscopy, X-ray diffraction, and micro X-ray fluorescence. Chapter 3 contains comparisons of local and global remote sensing observations of the Moon using LROC WAC and Clementine UVVIS TiO2 detection algorithms and Lunar Prospector (LP) Gamma Ray Spectrometer (GRS)-derived FeO and TiO2 concentrations. While the data shows effects from maturity and FeO on the UV/VIS detection algorithm, a UV/VIS relationship remains a simple yet accurate method for TiO2 detection on the Moon.
Chen, Yan; Wang, Jing; Liu, Chunmeng; Tang, Jinke; Kuang, Xiaojun; Wu, Mingmei; Su, Qiang
2013-02-11
An efficient near-infrared (NIR) phosphor LiSrPO(4):Eu(2+), Pr(3+) is synthesized by solid-state reaction and systematically investigated using x-ray diffraction, diffuse reflection spectrum, photoluminescence spectra at room temperature and 3 K, and the decay curves. The UV-Vis-NIR energy transfer mechanism is proposed based on these results. The results demonstrate Eu(2+) can be an efficient sensitizer for harvesting UV photon and greatly enhancing the NIR emission of Pr(3+) between 960 and 1060 nm through efficient energy feeding by allowed 4f-5d absorption of Eu(2+) with high oscillator strength. Eu(2+)/Pr(3+) may be an efficient donor-acceptor pair as solar spectral converter for Si solar cells.
Demirci, Selim; Yurddaskal, Metin; Dikici, Tuncay; Sarıoğlu, Cevat
2018-03-05
In this work, iodine (I) doped hollow and mesoporous Fe 2 O 3 photocatalyst particles were fabricated for the first time through sol-gel method. Phase structure, surface morphology, particle size, specific surface area and optical band gap of the synthesized Fe 2 O 3 photocatalysts were analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), BET surface analysis, particle size analyzer and UV-vis diffuse reflectance spectrum (UV-vis DRS), respectively. Also, electrochemical properties and photoluminescence spectra of Fe 2 O 3 particles were measured. The results illustrated that high crystalline, hollow and mesoporous Fe 2 O 3 particles were formed. The optical band gap values of the Fe 2 O 3 photocatalysts changed between 2.104 and 1.93eV. Photocatalytic efficiency of Fe 2 O 3 photocatalysts were assessed via MB solution. The photocatalytic activity results exhibited that I doping enhanced the photocatalytic efficiency. 1% mole iodine doped (I-2) Fe 2 O 3 photocatalyst had 97.723% photodegradation rate and 8.638×10 -2 min -1 kinetic constant which showed the highest photocatalytic activity within 45min. Moreover, stability and reusability experiments of Fe 2 O 3 photocatalysts were carried out. The Fe 2 O 3 photocatalysts showed outstanding stability after four sequence tests. As a result, I doped Fe 2 O 3 is a good candidate for photocatalysts. Copyright © 2017 Elsevier B.V. All rights reserved.
Selvarajan, S; Suganthi, A; Rajarajan, M
2018-06-01
A silver/polypyrrole/copper oxide (Ag/PPy/Cu 2 O) ternary nanocomposite was prepared by sonochemical and oxidative polymerization simple way, in which Cu 2 O was decorated with Ag nanoparticles, and covered by polyprrole (PPy) layer. The as prepared materials was characterized by UV-vis-spectroscopy (UV-vis), FT-IR, X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM) with EDX, high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Sensing of serotonin (5HT) was evaluated electrocatalyst using polypyrrole/glassy carbon electrode (PPy/GCE), polypyrrole/copper oxide/glassy carbon electrode (PPy/Cu 2 O/GCE) and silver/polypyrrole/copper oxide/glassy carbon electrode (Ag/PPy/Cu 2 O/GCE). The Ag/PPy/Cu 2 O/GCE was electrochemically treated in 0.1MPBS solution through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The peak current response increases linearly with 5-HT concentration from 0.01 to 250 µmol L -1 and the detection limit was found to be 0.0124 μmol L -1 . It exhibits high electrocatalytic activity, satisfactory repeatability, stability, fast response and good selectivity against potentially interfering species, which suggests its potential in the development of sensitive, selective, easy-operation and low-cost serotonin sensor for practical routine analyses. The proposed method is potential to expand the possible applied range of the nanocomposite material for detection of various concerned electro active substances. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Peng, Ziling; Wu, Dan; Wang, Wei; Tan, Fatang; Ng, Tsz Wai; Chen, Jianguo; Qiao, Xueliang; Wong, Po Keung
2017-02-01
Bacterial inactivation by magnetic photocatalysts has now received growing interests due to the easy separation for recycle and reuse of photocatalysts. In this study, magnetic Fe@ZnO0.6S0.4 photocatalyst was prepared by a facile two-step precipitation method. Multiple techniques such as X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffused reflectance spectra (UV-vis DRS) and vibrating sample magnetometer (VSM) were employed to characterize the structure, morphology and physicochemical properties of the photocatalyst. The as-obtained Fe@ZnO0.6S0.4 possessing magnetic property was easily collected from the reaction system by a magnet. Under white light-emitting-diode (LED) lamp irradiation, Fe@ZnO0.6S0.4 nanocomposite could completely inactivate 7-log of Escherichia coli K-12 within 5 h. More importantly, almost no decrease of photocatalytic efficiency in bacterial inactivation was observed even after five consecutive cycles, demonstrating Fe@ZnO0.6S0.4 exhibited good stability for reuse. The low released rate of Fe2+/Fe3+ and Zn2+ from Fe@ZnO0.6S0.4 composite further indicated the photocatalyst showed low cytotoxicity to bacterium and high stability under LED lamp irradiation. Facile preparation, high photocatalytic efficiency, good stability and reusability, and magnetic recovery property endow Fe@ZnO0.6S0.4 nanocomposite to be a promising photocatalytic material for bacterial inactivation.
Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M N; Li, Chuanlong; Hu, Hongbo; Zhang, Xuehong
2017-12-01
Herein, a facile biosynthesis of silver nanoparticles (AgNPs) and AgNPs-loaded chitosan-alginate constructs with biomedical potentialities is reported. The UV-vis spectroscopic profile confirmed the synthesis of AgNPs using methanolic leaves extract of Euphorbia helioscopia. The newly developed AgNPs were characterized using various analytical and imaging techniques including UV-vis and FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The optimally yielded AgNPs at 24h reaction period were loaded onto various chitosan-alginate constructs. A maximum of 95% loading efficiency (LE) was recorded with a chitosan: alginate ratio at 2:1, followed by 81% at 2:2 ratios. The anti-bacterial activities of AgNPs and AgNPs loaded chitosan-alginate constructs were tested against six bacterial strains i.e. Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Morganella morganii and Haemophilus influenza. A significant reduction in the log values was recorded for all test constructs, in comparison to the initial bacterial count (control value, i.e., 1.5×10 8 CFU/mL). The cytotoxicity profile revealed complete biocompatibility against normal cell line i.e. L929. Almost all constructs showed considerable cytotoxicity up to certain extant against human epithelial cells (HeLa) cancer cells. In summary, the highest antibacterial activities along with anti-cancer behavior both suggest the biomedical potentialities of newly engineered AgNPs and AgNPs-loaded chitosan-alginate constructs. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza; Joo, Sang Woo
2016-02-01
A simple and sensitive flow injection chemiluminescence (CL) method was developed for determination of nalidixic acid by application of CdS quantum dots (QDs) in KMnO4-morin CL system in acidic medium. Optical and structural features of L-cysteine capped CdS quantum dots which were synthesized via hydrothermal approach were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and ultraviolet-visible (UV-Vis) spectroscopy. Moreover, the potential mechanism of the proposed CL method was described using the results of the kinetic curves of CL systems, the spectra of CL, PL and UV-Vis analyses. The CL intensity of the KMnO4-morin-CdS QDs system was considerably increased in the presence of nalidixic acid. Under the optimum condition, the enhanced CL intensity was linearly proportional to the concentration of nalidixic acid in the range of 0.0013 to 21.0 mg L- 1, with a detection limit of (3σ) 0.003 mg L- 1. Also, the proposed CL method was utilized for determination of nalidixic acid in environmental water samples, and commercial pharmaceutical formulation to approve its applicability. Furthermore, corona discharge ionization ion mobility spectrometry (CD-IMS) method was utilized for determination of nalidixic acid and the results of real sample analysis by two proposed methods were compared. Comparison the analytical features of these methods represented that the proposed CL method is preferable to CD-IMS method for determination of nalidixic acid due to its high sensitivity and precision.
Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza; Joo, Sang Woo
2016-02-05
A simple and sensitive flow injection chemiluminescence (CL) method was developed for determination of nalidixic acid by application of CdS quantum dots (QDs) in KMnO4-morin CL system in acidic medium. Optical and structural features of L-cysteine capped CdS quantum dots which were synthesized via hydrothermal approach were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and ultraviolet-visible (UV-Vis) spectroscopy. Moreover, the potential mechanism of the proposed CL method was described using the results of the kinetic curves of CL systems, the spectra of CL, PL and UV-Vis analyses. The CL intensity of the KMnO4-morin-CdS QDs system was considerably increased in the presence of nalidixic acid. Under the optimum condition, the enhanced CL intensity was linearly proportional to the concentration of nalidixic acid in the range of 0.0013 to 21.0 mg L(-1), with a detection limit of (3σ) 0.003 mg L(-1). Also, the proposed CL method was utilized for determination of nalidixic acid in environmental water samples, and commercial pharmaceutical formulation to approve its applicability. Furthermore, corona discharge ionization ion mobility spectrometry (CD-IMS) method was utilized for determination of nalidixic acid and the results of real sample analysis by two proposed methods were compared. Comparison the analytical features of these methods represented that the proposed CL method is preferable to CD-IMS method for determination of nalidixic acid due to its high sensitivity and precision. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Li; Li, Xu; Wang, Ziru; Shen, Yun; Liu, Ming
2017-10-01
TiO2 microtubes with a yam-like surface were prepared for the first time through a simple and efficient double soaking sol-gel route by utilizing Platanus acerifolia seed fibers as bio-templates. The physicochemical properties of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Brunauer Emmett Teller (BET) surface analysis and Ultraviolet-visible absorption spectroscopy (UV-vis). The results showed that the obtained TiO2 microtubes had an anatase phase and were composed of a smooth internal wall and a rough yam-like external wall with an average diameter of 24 μm and the wall thickness of 2 μm. The surface area and pore volume of the as-prepared TiO2 microtubes reached 128.271 m2/g and 0.149 cm3/g, respectively. The UV-vis analysis displayed a favorable extension of light absorption capacity of TiO2 microtubes. The synthetic mechanism was preliminarily discussed as well. The moisture in the natural fiber templates facilitated the mild hydrolysis of titanium sol, leaving a prime layer on the surface of the fibers, and subsequently assisted in the successful preparation of TiO2 microtubes with a yam-like surface without requiring specific control of hydrolysis. Photocatalytic experiments indicated that the as-obtained TiO2 microtubes exhibited a higher efficiency than commercial P25 in the degradation of tetracycline hydrochloride.
Synthesis of mesoporous zeolite single crystals with cheap porogens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao Haixiang; Li Changlin; Ren Jiawen
2011-07-15
Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, {sup 27}Al magic angle spinning nuclear magnetic resonance ({sup 27}Al MAS NMR), temperature-programmed desorption of ammonia (NH{sub 3}-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystalmore » pores are randomly distributed in the whole crystal. {sup 27}Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites. - Graphical abstract: Mesoporous zeolite single crystals were synthesized by using cheap porogens as template. Highlights: > Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals were synthesized. > Soluble starch or sodium carboxymethyl cellulose (CMC) was used as porogens. > The mesoporous zeolites had connected mesopores although closed pores existed. > Higher catalytic activities were obtained.« less
2016-03-30
wavelength where n = k) is 1605 nm from the film (f). Figure 1 XRD patterns of the AZO films on quartz substrate Figure 2 UV-Vis-NIR...71.6 1605 9.87 x10 -4 Figure 3 Refractive index n (left) and extinction coefficient k of (right) the AZO films. 4. Conclusions AZO films were
NASA Astrophysics Data System (ADS)
Altürk, Sümeyye; Avcı, Davut; Başoğlu, Adil; Tamer, Ömer; Atalay, Yusuf; Dege, Necmi
2018-02-01
Crystal structure of the synthesized copper(II) complex with 6-methylpyridine-2-carboxylic acid, [Cu(6-Mepic)2·H2O]·H2O, was determined by XRD, FT-IR and UV-Vis spectroscopic techniques. Furthermore, the geometry optimization, harmonic vibration frequencies for the Cu(II) complex were carried out by using Density Functional Theory calculations with HSEh1PBE/6-311G(d,p)/LanL2DZ level. Electronic absorption wavelengths were obtained by using TD-DFT/HSEh1PBE/6-311G(d,p)/LanL2DZ level with CPCM model and major contributions were determined via Swizard/Chemissian program. Additionally, the refractive index, linear optical (LO) and non-nonlinear optical (NLO) parameters of the Cu(II) complex were calculated at HSEh1PBE/6-311G(d,p) level. The experimental and computed small energy gap shows the charge transfer in the Cu(II) complex. Finally, the hyperconjugative interactions and intramolecular charge transfer (ICT) were studied by performing of natural bond orbital (NBO) analysis.
Altürk, Sümeyye; Avcı, Davut; Başoğlu, Adil; Tamer, Ömer; Atalay, Yusuf; Dege, Necmi
2018-02-05
Crystal structure of the synthesized copper(II) complex with 6-methylpyridine-2-carboxylic acid, [Cu(6-Mepic) 2 ·H 2 O]·H 2 O, was determined by XRD, FT-IR and UV-Vis spectroscopic techniques. Furthermore, the geometry optimization, harmonic vibration frequencies for the Cu(II) complex were carried out by using Density Functional Theory calculations with HSEh1PBE/6-311G(d,p)/LanL2DZ level. Electronic absorption wavelengths were obtained by using TD-DFT/HSEh1PBE/6-311G(d,p)/LanL2DZ level with CPCM model and major contributions were determined via Swizard/Chemissian program. Additionally, the refractive index, linear optical (LO) and non-nonlinear optical (NLO) parameters of the Cu(II) complex were calculated at HSEh1PBE/6-311G(d,p) level. The experimental and computed small energy gap shows the charge transfer in the Cu(II) complex. Finally, the hyperconjugative interactions and intramolecular charge transfer (ICT) were studied by performing of natural bond orbital (NBO) analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuliati, L.; Salleh, A. M.; Hatta, M. H. M.; Lintang, H. O.
2018-04-01
In this study, titanium dioxide-carbon nitride (TiO2-CN) composites were prepared by three methods, which were one pot oxidation, impregnation, and physical mixing. Each series of the photocatalysts was prepared with different ratios of titanium to carbon (Ti/C), i.e., 1, 5, 10, 20, and 50 mol%. All samples were characterized by X-ray diffraction (XRD) and diffuse reflectance ultraviolet-visible (DR UV-Vis) spectroscopies. The characterization results confirmed the successful preparation of TiO2, CN, and the TiO2-CN composites. Photocatalytic activity tests were carried out for degradation of salicylic acid at room temperature for 6 h under UV and visible light irradiations. It was confirmed that all the prepared TiO2-CN composites showed better photocatalytic activities than the bare TiO2 and the bare CN. Under UV light irradiation, 90.6% of salicylic acid degradation was achieved on the best composite prepared by one pot oxidation with 5 mol% of titanium to carbon (Ti/C) ratio. On the other hand, the highest degradation under visible light irradiation was 94.3%, observed on the composite that was prepared also by one pot oxidation method with the Ti/C ratio of 10 mol%. Therefore, among the investigated methods, the best method to prepare the titanium dioxide-carbon nitride composites with high photocatalytic activity was one pot oxidation method.
Degradation of blue and red inks by Ag/AgCl photocatalyst under UV light irradiation
NASA Astrophysics Data System (ADS)
Daupor, Hasan; Chenea, Asmat
2017-08-01
Objective of this research, cubic Ag/AgCl photocatalysts with an average particle size of 500 nm has been successfully synthesized via a modified precipitation reaction between ZrCl4 and AgNO3. Method for analysis, the crystal structure of the product was characterized by X-ray powder diffraction (XRD). The morphology and composition were studied by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV-vis diffuse-reflection spectra (DRS) and so on. The result showed that the optical absorption spectrum exhibited strong absorption in the visible region around 500-600 nm due to surface plasmon resonance (SPR) of metallic silver nanoparticles. SEM micrographs showed that the obtained Ag/AgCl had cubic morphology and appeared on the porous surface as the cubic cage morphology. As a result, this porous surface also positively affected the photocatalytic reaction. The photocatalytic activity of the obtained product was evaluated by the photodegradation of blue and red ink solutions under UV light irradiation, and it was interestingly, discovered that AgCl could degrade 0.25% and 0.10% in 7 hours for blue and red inks solution respectively, Which were higher than of commercial AgCl. The result suggested that the morphology of Ag/AgCl strongly affected their photocatalytic activities. O2-, OH- reaction. radicals and Cl° atom are main species during photocatalytic reaction.
Tamboli, Mohaseen S; Kulkarni, Milind V; Patil, Rajendra H; Gade, Wasudev N; Navale, Shalaka C; Kale, Bharat B
2012-04-01
Silver-polyaniline (Ag-PANI) nanocomposite was synthesized by in situ polymerization method using ammonium persulfate (APS) as an oxidizing agent in the presence of dodecylbenzene sulfonic acid (DBSA) and silver nitrate (AgNO(3)). The as synthesized Ag-PANI nanocomposite was characterized by using different analytical techniques such as UV-visible (UV-vis) and Fourier transform Infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). UV-visible spectra of the synthesized nanocomposite showed a sharp peak at ~420 nm corresponding to the surface plasmon resonance (SPR) of the silver nanoparticles (AgNPs) embedded in the polymer matrix which is overlapped by the polaronic peak of polyaniline appearing at that wavelength. Nanowires of Ag-PANI nanocomposite with diameter 50-70 nm were observed in FE-SEM and TEM. TGA has indicated an enhanced thermal stability of nanocomposite as compared to that of pure polymer. The Ag-PANI nanocomposite has shown an antibacterial activity against model organisms, a gram positive Bacillus subtilis NCIM 6633 in Mueller-Hinton (MH) medium, which is hitherto unattempted. The Ag-PANI nanocomposite with monodispersed AgNPs is considered to have potential applications in sensors, catalysis, batteries and electronic devices. Copyright © 2011 Elsevier B.V. All rights reserved.
Che Ramli, Zatil Amali; Asim, Nilofar; Isahak, Wan N. R. W.; Emdadi, Zeynab; Ahmad-Ludin, Norasikin; Yarmo, M. Ambar; Sopian, K.
2014-01-01
This study involves the investigation of altering the photocatalytic activity of TiO2 using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC), TiO2/carbon (C), and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC) was obtained after treating TiO2/carbon with 1.0 M KOH solution, followed by calcination at a temperature of 450°C. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TG-DTA), Brunauer-Emmet-Teller (BET), and UV-Vis spectroscopy were used to characterize and evaluate the prepared samples. The specific surface area was determined to be in the following order: TiO2/AC > TiO2/C > TiO2/PANi > TiO2 (179 > 134 > 54 > 9 m2 g−1). The evaluation of photocatalytic performance for the degradation of methylene blue under UV light irradiation was also of the same order, with 98 > 84.7 > 69% conversion rate, which is likely to be attributed to the porosity and synergistic effect in the prepared samples. PMID:25013855
NASA Astrophysics Data System (ADS)
Hassan, Mohamed Elfatih; Cong, Longchao; Liu, Guanglong; Zhu, Duanwei; Cai, Jianbo
2014-03-01
C-TiO2 thin films were synthesized by a modified sol-gel route based on the self-assembly technique exploiting Tween80 (T80) as a pore directing agent and carbon source. The effect of calcination time on the photocatalytic activity of C-doped TiO2 catalyst was studied. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transforms infrared (FTIR), UV-vis diffuse reflectance spectroscopy, and photoluminescence spectra (PL). The XRD results showed that C-TiO2 sample calcined at 400 °C for various times exhibited anatase phase and no other crystal phase was identified. C-TiO2 exhibited a shift in an absorption edge of samples in the visible region than that of conventional or reference TiO2. The XPS results showed an existence of C in the TiO2 catalysts and C might be existed as Csbnd Osbnd Ti group. Moreover, the C-TiO2 thin film calcined at 400 °C for 30 min showed the lowest PL intensity due to a decrease in the recombination rate of photogenerated electrons and holes under UV light irradiation. Also the photocatalytic activity of synthesized catalyst was evaluated by decomposition of methyl orange (MO) under visible light irradiation. The results showed that the optimum preparations of C-TiO2 thin films were found to be under calcination temperature of 400, calcination time of 30 min, and with preparation 9 layers film.
Kharat, Sopan N; Mendhulkar, Vijay D
2016-05-01
The simple, eco-friendly and cost effective method of green synthesis of silver nanoparticle in the leaf extract of medicinal plant Elephantopus scaber L. is illustrated in the present work. The synthesized silver nanoparticles (AgNPs) were characterized with UV-Vis-spectroscopy, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The UV-spectra show maximum absorbance at 435 nm, NTA analysis shows 78 nm average sizes of nanoparticles, TEM analysis indicates spherical shape of the nanoparticles with the average diameter of 50 nm. The XRD peaks at 2θ range of 30-80° correspond to (111), (200), (220), (311) reflection planes that indicate the structure of metallic silver. FTIR analysis reveals surface capping of phenolic groups. Existence of peaks in the range of 1611 to 1400 cm(-1) indicates the presence of aromatic rings in the leaf extract. The peak at 1109 cm(-1) is due to the presence of OH groups. The antioxidant activity of synthesized nanoparticles was evaluated performing DPPH assay and it is observed that the photosynthesized nanoparticle also possesses antioxidant potentials. Thus, it can be used as potential free radical scavenger. Silver particles have tremendous applications in the field of diagnostics and therapeutics. To this context, the surface coating of plant metabolite constituents has great potentials. Therefore, the present work has been undertaken to synthesize the AgNPs using leaf extract of medicinal plant, E. scaber, to characterize and access their antioxidant properties. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Patle, L. B.; Huse, V. R.; Chaudhari, A. L.
2017-10-01
Nanocrystalline undoped and transition metal ion doped (TM:Cu2+, Mn2+ and Fe3+) TiO2 nanoparticles, with 1 mol% were synthesized by a simple and cost effective modified co-precipitation method at room temperature and were successfully used as photoanode for dye sensitized solar cell (DSSC). The effect of transition metal ions into TiO2 nano crystalline powder has been systematically investigated using x-ray diffraction (XRD), UV-Vis spectroscope, scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive x-ray spectroscopy (EDX). The results of XRD confirm nanocrystalline anatase tetragonal structure of prepared undoped and TM doped TiO2 semiconductor. The influence of doping on band edge movement has been estimated using UV-visible spectroscopy. The SEM results indicate that microscopic effect of doping on morphology of the TiO2. The peaks of EDX signify incorporation of transition metal cations into TiO2 lattice. The effect of doping on flat band potential was estimated using interpolation on Mott-Schottky plot. The performances of DSSCs of undoped and doped TiO2 photoelectrodes were investigated under light illumination. In comparison with undoped and (Cu2+, Fe3+) doped TiO2 photoanodes we found that incorporation of Mn2+ into TiO2 exhibits improvement in photoconversion efficiency (η). There is increase in photoconversion efficiency of DSSCs with Mn2+ doped TiO2 by 6% as compared to that of undoped TiO2 photoanode.
NASA Astrophysics Data System (ADS)
Rajkumar, K. S.; Kanipandian, N.; Thirumurugan, R.
2016-01-01
The increasing use of nano based-products induces the potential hazards from their manufacture, transportation, waste disposal and management processes. In this report, we emphasized the acute toxicity of silver nanoparticles (AgNPs) using freshwater fish Labeo rohita as an aquatic animal model. The AgNPs were synthesized using chemical reduction method and the formation of AgNPs was monitored by UV-Visible spectroscopy analysis. The functional groups, crystaline nature and morphological characterizations were carried out by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analysis. UV-Vis range was observed at 420 nm and XRD pattern showed that the particles are crystalline nature. HRTEM analysis revealed that the morphology of particles was spherical and size ranges between 50 and 100 nm. This investigation was extended to determine the potential acute toxicity, L. rohita was treated orally with the lethal concentration (LC50) of AgNPs. The antioxidative responses were studied in the three major tissues such as gill, liver and muscle of L. rohita. The results of this investigation showed that increasing the concentration of AgNPs led to bioaccumulation of AgNPs in the major tissues. The haematological parameters showed significant alterations in the treated fish. The histological changes caused by chemically synthesized AgNPs demonstrated the damages in the tissues, primary lamella and blood vessels of L. rohita. The histological study also displayed the formation of vacuolation in liver and muscle when compared with untreated tissues (control) of L. rohita.
Green synthesis of magnetite (Fe3O4) nanoparticles using Graptophyllum pictum leaf aqueous extract
NASA Astrophysics Data System (ADS)
Sari, I. P.; Yulizar, Y.
2017-04-01
Magnetite nanoparticles (MNPs) attracted the attention of many researchers due to their unique properties. In this research, nanoscale magnetite particles have been successfully synthesized through an environmentally friendly method using aqueous extract of Graptophyllum pictum leaf (GPLE). In MNPs formation, GPLE acted as a base source and capping agent. Alkaloids in GPLE were hydrolyzed in water and hydroxilated Fe2+ to form Fe3O4 nanoparticles powder through calcination. After the addition of leaf extract, MNPs formation was observed by color change from pale yellow to dark brown. The synthesized nanoparticles were characterized using UV-Vis spectrophotometer, X-Ray diffraction (XRD), and Fourier transform infra red (FTIR) spectroscopy. The results confirmed that MNPs formation indicated the surface plasmon resonance at a maximum wavelength, λmax 291 nm. The average crystallite size is 23.17 nm. The formed MNPs through green synthesis method promise in various medical applications such as drug carrier and targeted therapy.
Gan, Sinyee; Zakaria, Sarani; Chia, Chin Hua; Chen, Ruey Shan; Ellis, Amanda V; Kaco, Hatika
2017-01-01
Here, a stable derivative of cellulose, called cellulose carbamate (CC), was produced from Kenaf (Hibiscus cannabinus) core pulp (KCP) and urea with the aid of a hydrothermal method. Further investigation was carried out for the amount of nitrogen yielded in CC as different urea concentrations were applied to react with cellulose. The effect of nitrogen concentration of CC on its solubility in a urea-alkaline system was also studied. Regenerated cellulose products (hydrogels and aerogels) were fabricated through the rapid dissolution of CC in a urea-alkaline system. The morphology of the regenerated cellulose products was viewed under Field emission scanning electron microscope (FESEM). The transformation of allomorphs in regenerated cellulose products was examined by X-ray diffraction (XRD). The transparency of regenerated cellulose products was determined by Ultraviolet-visible (UV-Vis) spectrophotometer. The degree of swelling (DS) of regenerated cellulose products was also evaluated. This investigation provides a simple and efficient procedure of CC determination which is useful in producing regenerated CC products.
Nandi, Mahasweta; Roy, Partha; Uyama, Hiroshi; Bhaumik, Asim
2011-12-14
Highly ordered 2D-hexagonal mesoporous silica has been functionalized with 3-aminopropyltriethoxysilane (3-APTES). This is followed by its condensation with a dialdehyde, 4-methyl-2,6-diformylphenol to produce an immobilized Schiff-base ligand (I). This material is separately treated with methanolic solution of copper(II) chloride and nickel(II) chloride to obtain copper and nickel anchored mesoporous materials, designated as Cu-AMM and Ni-AMM, respectively. The materials have been characterized by Fourier transform infrared (FT-IR) and UV-vis diffuse reflectance (DRS) spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N(2) adsorption-desorption studies and (13)C CP MAS NMR spectroscopy. The metal-grafted mesoporous materials have been used as catalysts for the efficient and selective epoxidation of alkenes, viz. cyclohexene, trans-stilbene, styrene, α-methyl styrene, cyclooctene and norbornene to their corresponding epoxides in the presence of tert-butyl hydroperoxide (TBHP) as the oxidant under mild liquid phase conditions.
Mangifera Indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles
NASA Astrophysics Data System (ADS)
Philip, Daizy
2011-01-01
The use of various parts of plants for the synthesis of nanoparticles is considered as a green technology as it does not involve any harmful chemicals. The present study reports a facile and rapid biosynthesis of well-dispersed silver nanoparticles. The method developed is environmentally friendly and allows the reduction to be accelerated by changing the temperature and pH of the reaction mixture consisting of aqueous AgNO 3 and Mangifera Indica leaf extract. At a pH of 8, the colloid consists of well-dispersed triangular, hexagonal and nearly spherical nanoparticles having size ˜20 nm. The UV-vis spectrum of silver nanoparticles gave surface plasmon resonance (SPR) at 439 nm. The synthesized nanocrystals were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Water soluble organics present in the leaf are responsible for the reduction of silver ions. This green method provides faster synthesis comparable to chemical methods and can be used in areas such as cosmetics, foods and medical applications.
Sobhani-Nasab, Ali; Rahimi-Nasrabadi, Mehdi; Naderi, Hamid Reza; Pourmohamadian, Vafa; Ahmadi, Farhad; Ganjali, Mohammad Reza; Ehrlich, Hermann
2018-07-01
Sonochemically prepared nanoparticles of terbium tungstate (TWNPs) were evaluated through scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy, and the optimal products were further characterized in terms of their electrochemical properties using conventional and continuous cyclic voltammetry (CV, and CCV), galvanostatic charge/discharge technique, and electrochemical impedance spectroscopy (EIS). The CV studies indicated the TWNPs to have specific capacitance (SC) values of 336 and 205 F g -1 at 1 and 200 mV s -1 , and galvanostatic charge-discharge tests revealed the SC of the TWNP-based electrodes to be 300 F g -1 at 1 Ag -1 . Also continuous cyclic voltammetry evaluations proved the sample as having a capacitance retention value of 95.3% after applying 4000 potential cycles. In the light of the results TWNPs were concluded as favorable electrode materials for use in hybrid vehicle systems. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Zhiqiu; Li, Ying; Wang, Jun; Zou, Mingming; Gao, Jingqun; Kong, Yumei; Li, Kai; Han, Guangxi
ZnO/hydroxylapatite (ZnO/HA) composite with HA molar content of 6.0% was prepared by the method of precipitation and heat-treated at 500 °C for 40 min and was characterized by powder X-ray diffraction (XRD). The sonocatalytic activities of ZnO/HA composite was carried out through the damage of bovine serum albumin (BSA) in aqueous solution. Furthermore, the effects of several factors on the damage of BSA molecules were evaluated by means of UV-vis and fluorescence spectra. Experimental results indicated that the damage degree of BSA aggravated with the increase of ultrasonic irradiation time, irradiation power and ZnO/HA addition amount, but weakened with the increase of solution acidity and ionic strength. In addition, the damage site to BSA was also studied by synchronous fluorescence technology and the damage site was mainly at tryptophan (Trp) residue. This paper provides a valuable reference for driving sonocatalytic method to treat tumor in clinic application.
Facile growth of barium oxide nanorods: structural and optical properties.
Ahmad, Naushad; Wahab, Rizwan; Alam, Manawwer
2014-07-01
This paper reports a large-scale synthesis of barium oxide nanorods (BaO-NRs) by simple solution method at a very low-temperature of - 60 degrees C. The as-grown BaO-NRs were characterized in terms of their morphological, structural, compositional, optical and thermal properties. The morphological characterizations of as-synthesized nanorods were done by scanning electron microscopy (SEM) which confirmed that the synthesized products are rod shaped and grown in high density. The nanorods exhibits smooth and clean surfaces throughout their lengths. The crystalline property of the material was analyzed with X-ray diffraction pattern (XRD). The compositional and thermal properties of synthesized nanorods were observed via Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis which confirmed that the synthesized nanorods are pure BaO and showed good thermal stability. The nanorods exhibited good optical properties as was confirmed from the room-temperature UV-vis spectroscopy. Finally, a plausible mechanism for the formation of BaO-NRs is also discussed in this paper.
Suman, T Y; Radhika Rajasree, S R; Kanchana, A; Elizabeth, S Beena
2013-06-01
Silver has been used since time to control bodily infection, prevent food spoilage and heal wounds by preventing infection. The present study aims at an environmental friendly method of synthesizing silver nanoparticles, from the root of Morinda citrifolia; without involving chemical agents associated with environmental toxicity. The obtained nanoparticles were characterized by UV-vis absorption spectroscopy with an intense surface plasmon resonance band at 413 nm clearly reveals the formation of silver nanoparticles. Fourier transmission infra red spectroscopy (FTIR) showed nanopartilces were capped with plant compounds. Field emission-scanning electron microscopy (FE-SEM) and Transmission electron microscopy (TEM) showed that the spherical nature of the silver nanoparticles with a size of 30-55 nm. The X-ray diffraction spectrum XRD pattern clearly indicates that the silver nanoparticles formed in the present synthesis were crystalline in nature. In addition these biologically synthesized nanoparticles were also proved to exhibit excellent cytotoxic effect on HeLa cell. Copyright © 2013 Elsevier B.V. All rights reserved.
Roy, Kaushik; Sarkar, C K; Ghosh, C K
2015-07-05
In this study, we have reported a fast and eco-benign procedure to synthesis silver nanoparticle at room temperature using potato (Solanum tuberosum) infusion along with the study of its photocatalytic activity on methyl orange dye. After addition of potato infusion to silver nitrate solution, the color of the mixture changed indicating formation of silver nanoparticles. Time dependent UV-Vis spectra were obtained to study the rate of nanoparticle formation with time. Purity and crystallinity of the biogenic silver nanoparticles were examined by X-ray diffraction (XRD). Average size and morphology of the nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infra-red spectroscopy (FTIR) was employed to detect functional bio-molecules responsible that contribute to the reduction and capping of biosynthesized Ag nanoparticles. Further, these synthesized nanoparticles were used to investigate their ability to degrade methyl orange dye under sunlight irradiation and the results showed effective photocatalytic property of these biogenic silver nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sedira, Sofiane; Ayachi, Ahmed Abdelhakim; Lakehal, Sihem; Fateh, Merouane; Achour, Slimane
2014-08-01
Due to their remarkable antibacterial/antivirus properties, silver nanoparticles (Ag NPs) and zinc oxide quantum dots (ZnO Qds) have been widely used in the antimicrobial field. The mechanism of action of Ag NPs on bacteria was recently studied and it has been proven that Ag NPs exerts their antibacterial activities mainly by the released Ag+. In this work, Ag NPs and ZnO Qds were synthesized using polyol and hydrothermal method, respectively. It was demonstrated that Ag NPs can be oxidized easily in aqueous solution and the addition of acetic acid can increase the Ag+ release which improves the antibacterial activity of Ag NPs. A comparative study between bactericidal effect of Ag NPs/acetic acid and Ag NPs/ZnO Qds on Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia and Staphylococcus aureus was undertaken using agar diffusion method. The obtained colloids were characterized using UV-vis spectroscopy, Raman spectrometry, X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM).
NASA Astrophysics Data System (ADS)
Sivaraj, Rajeshwari; Rahman, Pattanathu K. S. M.; Rajiv, P.; Salam, Hasna Abdul; Venckatesh, R.
2014-12-01
This investigation explains the biosynthesis and characterization of copper oxide nanoparticles from an Indian medicinal plant by an eco-friendly method. The main objective of this study is to synthesize copper oxide nanoparticles from Tabernaemontana divaricate leaves through a green chemistry approach. Highly stable, spherical copper oxide nanoparticles were synthesized by using 50% concentration of Tabernaemontana leaf extract. Formation of copper oxide nanoparticles have been characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM) analysis. All the analyses revealed that copper oxide nanoparticles were 48 ± 4 nm in size. Functional groups and chemical composition of copper oxide were also confirmed. Antimicrobial activity of biogenic copper oxide nanoparticles were investigated and maximum zone of inhibition was found in 50 μg/ml copper oxide nanoparticles against urinary tract pathogen (Escherichia coli).
NASA Astrophysics Data System (ADS)
Li, Juxia
2018-02-01
CdS/(Cal-Ta2O5-SiO2) composite photocatalyst has been successfully fabricated via wet chemistry method. Ta2O5-SiO2 with multi-step Ta2O5 deposition on SiO2 has more Ta2O5 on SiO2 to ensure the active sites. Trough multi-step calcination, Ta2O5 can load on SiO2 with uniform and stable, which make it have high photocatalytic activity. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance ultraviolet-visible spectroscopy (UV-vis) and photoluminescence spectroscopy (PL). Without any co-catalysts, the as-prepared CdS/(Cal-Ta2O5-SiO2) exhibited remarkable photocatalytic activity and recyclability both in the degradation of rhodamine B and in the hydrogen production from water splitting under visible light.
Kim, Donguk; Kwon, Samyoung; Park, Young; Boo, Jin-Hyo; Nam, Sang-Hun; Joo, Yang Tae; Kim, Minha; Lee, Jaehyeong
2016-05-01
In present work, the effects of the heat treatment on the structural, optical, and thermochromic properties of vanadium oxide films were investigated. Vanadium dioxide (VO2) thin films were deposited on glass substrate by reactive pulsed DC magnetron sputtering from a vanadium metal target in mixture atmosphere of argon and oxygen gas. Various heat treatment conditions were applied in order to evaluate their influence on the crystal phases formed, surface morphology, and optical properties. The films were characterized by an X-ray diffraction (XRD) in order to investigate the crystal structure and identify the phase change as post-annealing temperature of 500-600 degrees C for 5 minutes. Surface conditions of the obtained VO2(M) films were analyzed by field emission scanning electron microscopy (FE-SEM) and the semiconductor-metal transition (SMT) characteristics of the VO2 films were evaluate by optical spectrophotometry in the UV-VIS-NIR, controlling temperature of the films.
Raut, Rajesh Warluji; Mendhulkar, Vijay Damodhar; Kashid, Sahebrao Balaso
2014-03-05
The metal nanoparticle synthesis is highly explored field of nanotechnology. The biological methods seem to be more effective; however, due to slow reduction rate and polydispersity of the resulting products, they are less preferred. In the present study, we report rapid and facile synthesis of silver nanoparticles at room temperature. The exposure of reaction mixtures containing silver nitrate and dried leaf powder of Withania somnifera Linn to direct sunlight resulted in reduction of metal ions within five minutes whereas, the dark exposure took almost 12h. Further studies using different light filters reveal the role of blue light in reduction of silver ions. The synthesized silver nanoparticles were characterized by UV-Vis, Infrared spectroscopy (IR), Transmission Electron Microscopy (TEM), X-ray Diffraction studies (XRD), Nanoparticle Tracking Analysis (NTA), Energy Dispersive Spectroscopy (EDS), and Cyclic Voltammetry (CV). The Antibacterial and antifungal studies showed significant activity as compared to their respective standards. Copyright © 2014 Elsevier B.V. All rights reserved.
Spectral downshifting from blue to near infer red region in Ce3+-Nd3+ co-doped YAG phosphor
NASA Astrophysics Data System (ADS)
Sawala, N. S.; Omanwar, S. K.
2016-07-01
The YAG phosphors co-doped with Ce3+-Nd3+ ions by varying concentration of Nd3+ ion from 1 mol% to 15 mol% were successfully synthesized by conventional solid state reaction method. The phosphors were characterized by powder X-ray powder diffraction (XRD) and surface morphology was studied by scanning electronic microscope (SEM). The photoluminescence (PL) properties were studied in near infra red (NIR) and ultra violet visible (UV-VIS) region. The synthesized phosphors can convert a blue region photon (453 nm) into photons of NIR region (1063 nm). The energy transfer (ET) process was studied by time decay curve and PL spectra. The theoretical value of energy transfer efficiency (ETE) was calculated from time decay luminescence measurement and the maximum efficiency approached up to 82.23%. Hence this phosphor could be prime candidate as a downshifting (DS) luminescent convertor (phosphor) in front of crystalline silicon solar cell (c-Si) panels to reduce thermalization loss in the solar cells.
NASA Astrophysics Data System (ADS)
Pourmasoud, Saeid; Sobhani-Nasab, Ali; Behpour, Mohsen; Rahimi-Nasrabadi, Mehdi; Ahmadi, Farhad
2018-04-01
YbVO4 nanoparticles YbVO4/NiWO4 nanocomposites were synthesized by simple and new method. The effect of various polymeric capping agents such as Tween 80, Tween 20 and PEG on the shape and size of YbVO4/NiWO4 nanocomposites were investigated. YbVO4/NiWO4 nanocomposites were analyzed through some techniques including, X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, vibrating sample magnetometer (VSM), thermogravimetry differential thermal analysis (TG-DTA), transmission electron microscopy (TEM), field emission electron microscopy (FESEM), ultraviolet-visible spectroscopy (UV-Vis), and energy-dispersive X-ray spectroscopy (EDX). This attempt is the first study on the photocatalytic performance of the YbVO4/NiWO4 nanocomposites in various conditions such as size of particles and kind of dyes (rhodamine B (Rh B), methylene blue (MB), methyl orange (MO), and phenol red (Ph R)), under visible light.
NASA Astrophysics Data System (ADS)
Sudharsana, N.; Krishnakumar, V.; Nagalakshmi, R.
2016-10-01
A 3-methoxy-4-hydroxybenzaldehyde-2,4,6-trinitrophenol (mhba-tnp) cocrystal was grown by the slow evaporation solution growth technique using ethanol as a solvent. As-grown crystals were characterized by single crystal X-ray diffraction (XRD) study and crystallized with a centrosymmetric space group. Optical properties of the grown crystal have been studied by Ultraviolet-Visible (UV-Vis) absorption spectra in the range from 200 to 800nm and the band gap energy of the crystal was obtained as 2.8eV. Fourier transform infrared (FTIR) and micro Raman spectral analyses have been carried out to confirm the functional groups present in the title compound. Differential scanning calorimetry (DSC) and polarized light thermomicroscopy (PLTM) analyses were carried out to find the melting point. In addition, the optimized geometric parameters and the molecular orbitals were calculated using density functional theory (DFT) with the help of the Gaussian 03W software.
NASA Astrophysics Data System (ADS)
Li, Siheng; Wang, Enbo; Tian, Chungui; Mao, Baodong; Kang, Zhenhui; Li, Qiuyu; Sun, Guoying
2008-07-01
In this paper, a simple strategy is developed for rational fabrication of a class of jingle-bell-shaped hollow structured nanomaterials marked as Ag@ MFe 2O 4 ( M=Ni, Co, Mg, Zn), consisting of ferrite hollow shells and metal nanoparticle cores, using highly uniform colloidal Ag@C microspheres as template. The final composites were obtained by direct adsorption of metal cations Fe 3+ and M 2+ on the surface of the Ag@C spheres followed by calcination process to remove the middle carbon shell and transform the metal ions into pure phase ferrites. The as-prepared composites were characterized by X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy and SQUID magnetometer. The results showed that the composites possess the magnetic property of the ferrite shell and the optical together with antibacterial property of the Ag core.
NASA Astrophysics Data System (ADS)
Huang, Zhujian; Wu, Pingxiao; Gong, Beini; Yang, Shanshan; Li, Hailing; Zhu, Ziao; Cui, Lihua
2016-05-01
To further enhance the visible light responsive property and the chemical stability of Fe/clay mineral catalysts, glutamic acid-iron chelate intercalated montmorillonite (G-Fe-Mt) was developed. The physiochemical properties of G-Fe-Mt were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), etc. The results showed that glutamic acid-iron chelates were successfully intercalated into the gallery of montmorillonite and the intercalated glutamic acid-iron chelate molecules were well preserved. The product G-Fe-Mt displayed excellent catalytic performance in heterogeneous photo-Fenton reaction under sunlight irradiation at acidic and neutral pH values. The chelation and the visible light responsiveness of glutamic acid produce a synergistic effect leading to greatly enhanced sunlight-Fenton reaction catalyzed by the heterogeneous G-Fe-Mt under neutral pH. G-Fe-Mt is a promising catalyst for advanced oxidation processes.
Komagataeibacter rhaeticus as an alternative bacteria for cellulose production.
Machado, Rachel T A; Gutierrez, Junkal; Tercjak, Agnieszka; Trovatti, Eliane; Uahib, Fernanda G M; Moreno, Gabriela de Padua; Nascimento, Andresa P; Berreta, Andresa A; Ribeiro, Sidney J L; Barud, Hernane S
2016-11-05
A strain isolated from Kombucha tea was isolated and used as an alternative bacterium for the biosynthesis of bacterial cellulose (BC). In this study, BC generated by this novel bacterium was compared to Gluconacetobacter xylinus biosynthesized BC. Kinetic studies reveal that Komagataeibacter rhaeticus was a viable bacterium to produce BC according to yield, thickness and water holding capacity data. Physicochemical properties of BC membranes were investigated by UV-vis and Fourier transform infrared spectroscopies (FTIR), thermogravimetrical analysis (TGA) and X-ray diffraction (XRD). Additionally, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were also used for morphological characterization. Mechanical properties at nano and macroscale were studied employing PeakForce quantitative nanomechanical property mapping (QNM) and dynamic mechanical analyzer (DMA), respectively. Results confirmed that BC membrane biosynthesized by Komagataeibacter rhaeticus had similar physicochemical, morphological and mechanical properties than BC membrane produced by Gluconacetobacter xylinus and can be widely used for the same applications. Copyright © 2016 Elsevier Ltd. All rights reserved.