Sample records for diffraction-enhanced imaging contrast

  1. Thermal x-ray diffraction and near-field phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Classen, Anton; Peng, Tao; Medvedev, Nikita; Wang, Fenglin; Chapman, Henry N.; Shih, Yanhua

    2017-10-01

    Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. In this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.

  2. Thermal x-ray diffraction and near-field phase contrast imaging

    DOE PAGES

    Li, Zheng; Classen, Anton; Peng, Tao; ...

    2017-12-27

    Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. Here in this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.

  3. Diffraction enhance x-ray imaging for quantitative phase contrast studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, A. K.; Singh, B., E-mail: balwants@rrcat.gov.in; Kashyap, Y. S.

    2016-05-23

    Conventional X-ray imaging based on absorption contrast permits limited visibility of feature having small density and thickness variations. For imaging of weakly absorbing material or materials possessing similar densities, a novel phase contrast imaging techniques called diffraction enhanced imaging has been designed and developed at imaging beamline Indus-2 RRCAT Indore. The technique provides improved visibility of the interfaces and show high contrast in the image forsmall density or thickness gradients in the bulk. This paper presents basic principle, instrumentation and analysis methods for this technique. Initial results of quantitative phase retrieval carried out on various samples have also been presented.

  4. Effect of contrast enhancement prior to iteration procedure on image correction for soft x-ray projection microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamsranjav, Erdenetogtokh, E-mail: ja.erdenetogtokh@gmail.com; Shiina, Tatsuo, E-mail: shiina@faculity.chiba-u.jp; Kuge, Kenichi

    2016-01-28

    Soft X-ray microscopy is well recognized as a powerful tool of high-resolution imaging for hydrated biological specimens. Projection type of it has characteristics of easy zooming function, simple optical layout and so on. However the image is blurred by the diffraction of X-rays, leading the spatial resolution to be worse. In this study, the blurred images have been corrected by an iteration procedure, i.e., Fresnel and inverse Fresnel transformations repeated. This method was confirmed by earlier studies to be effective. Nevertheless it was not enough to some images showing too low contrast, especially at high magnification. In the present study,more » we tried a contrast enhancement method to make the diffraction fringes clearer prior to the iteration procedure. The method was effective to improve the images which were not successful by iteration procedure only.« less

  5. Mass density images from the diffraction enhanced imaging technique.

    PubMed

    Hasnah, M O; Parham, C; Pisano, E D; Zhong, Z; Oltulu, O; Chapman, D

    2005-02-01

    Conventional x-ray radiography measures the projected x-ray attenuation of an object. It requires attenuation differences to obtain contrast of embedded features. In general, the best absorption contrast is obtained at x-ray energies where the absorption is high, meaning a high absorbed dose. Diffraction-enhanced imaging (DEI) derives contrast from absorption, refraction, and extinction. The refraction angle image of DEI visualizes the spatial gradient of the projected electron density of the object. The projected electron density often correlates well with the projected mass density and projected absorption in soft-tissue imaging, yet the mass density is not an "energy"-dependent property of the object, as is the case of absorption. This simple difference can lead to imaging with less x-ray exposure or dose. In addition, the mass density image can be directly compared (i.e., a signal-to-noise comparison) with conventional radiography. We present the method of obtaining the mass density image, the results of experiments in which comparisons are made with radiography, and an application of the method to breast cancer imaging.

  6. Preliminary studies of enhanced contrast radiography in anatomy and embryology of insects with Elettra synchrotron light

    NASA Astrophysics Data System (ADS)

    Hönnicke, M. G.; Foerster, L. A.; Navarro-Silva, M. A.; Menk, R.-H.; Rigon, L.; Cusatis, C.

    2005-08-01

    Enhanced contrast X-ray imaging is achieved by exploiting the real part of the refraction index, which is responsible for the phase shifts, in addition to the imaginary part, which is responsible for the absorption. Such techniques are called X-ray phase contrast imaging. An analyzer-based X-ray phase contrast imaging set-up with Diffraction Enhanced Imaging processing (DEI) were used for preliminary studies in anatomy and embryology of insects. Parasitized stinkbug and moth eggs used as control agents of pests in vegetables and adult stinkbugs and mosquitoes ( Aedes aegypti) were used as samples. The experimental setup was mounted in the SYRMEP beamline at ELETTRA. Images were obtained using a high spatial resolution CCD detector (pixel size 14×14 μm 2) coupled with magnifying optics. Analyzer-based X-ray phase contrast images (PCI) and edge detection images show contrast and details not observed with conventional synchrotron radiography and open the possibility for future study in the embryonic development of insects.

  7. Phase modulation due to crystal diffraction by ptychographic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Civita, M.; Diaz, A.; Bean, R. J.

    Solving the phase problem in x-ray crystallography has occupied a considerable scientific effort in the 20th century and led to great advances in structural science. Here we use x-ray ptychography to demonstrate an interference method which measures the phase of the beam transmitted through a crystal, relative to the incoming beam, when diffraction takes place. The observed phase change of the direct beam through a small gold crystal is found to agree with both a quasikinematical model and full dynamical theories of diffraction. Our discovery of a diffraction contrast mechanism will enhance the interpretation of data obtained from crystalline samplesmore » using the ptychography method, which provides some of the most accurate x-ray phase-contrast images.« less

  8. Phase modulation due to crystal diffraction by ptychographic imaging

    DOE PAGES

    Civita, M.; Diaz, A.; Bean, R. J.; ...

    2018-03-06

    Solving the phase problem in x-ray crystallography has occupied a considerable scientific effort in the 20th century and led to great advances in structural science. Here we use x-ray ptychography to demonstrate an interference method which measures the phase of the beam transmitted through a crystal, relative to the incoming beam, when diffraction takes place. The observed phase change of the direct beam through a small gold crystal is found to agree with both a quasikinematical model and full dynamical theories of diffraction. Our discovery of a diffraction contrast mechanism will enhance the interpretation of data obtained from crystalline samplesmore » using the ptychography method, which provides some of the most accurate x-ray phase-contrast images.« less

  9. Phase modulation due to crystal diffraction by ptychographic imaging

    NASA Astrophysics Data System (ADS)

    Civita, M.; Diaz, A.; Bean, R. J.; Shabalin, A. G.; Gorobtsov, O. Yu.; Vartanyants, I. A.; Robinson, I. K.

    2018-03-01

    Solving the phase problem in x-ray crystallography has occupied a considerable scientific effort in the 20th century and led to great advances in structural science. Here we use x-ray ptychography to demonstrate an interference method which measures the phase of the beam transmitted through a crystal, relative to the incoming beam, when diffraction takes place. The observed phase change of the direct beam through a small gold crystal is found to agree with both a quasikinematical model and full dynamical theories of diffraction. Our discovery of a diffraction contrast mechanism will enhance the interpretation of data obtained from crystalline samples using the ptychography method, which provides some of the most accurate x-ray phase-contrast images.

  10. Instrumentation For Diffraction Enhanced Imaging Experiments At HASYLAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohmann, M.; Dix, W.-R.; Metge, J.

    The new X-ray radiography imaging technique, named diffraction enhanced imaging (DEI), enables almost scatter free absorption imaging, the production of the so-called refraction images of a sample. The images show improved contrast compared to standard imaging applications. At the HASYLAB wiggler beamline W2 at the 2nd-generation storage ring DORIS a 5cm wide beam with an adjustable energy between 10 and 70keV is available. A Si [111] pre-monochromator is used followed by the main monochromator using the (111) or the (333)-reflection. Visualization of fossils, detecting internal pearl structures, monitoring of bone and cartilage and documentation of implant healing in bone aremore » application examples at HASYLAB.« less

  11. Comparison of diffraction-enhanced computed tomography and monochromatic synchrotron radiation computed tomography of human trabecular bone.

    PubMed

    Connor, D M; Hallen, H D; Lalush, D S; Sumner, D R; Zhong, Z

    2009-10-21

    Diffraction-enhanced imaging (DEI) is an x-ray-based medical imaging modality that, when used in tomography mode (DECT), can generate a three-dimensional map of both the apparent absorption coefficient and the out-of-plane gradient of the index of refraction of the sample. DECT is known to have contrast gains over monochromatic synchrotron radiation CT (SRCT) for soft tissue structures. The goal of this experiment was to compare contrast-to-noise ratio (CNR) and resolution in images of human trabecular bone acquired using SRCT with images acquired using DECT. All images were acquired at the National Synchrotron Light Source (Upton, NY, USA) at beamline X15 A at an x-ray energy of 40 keV and the silicon [3 3 3] reflection. SRCT, apparent absorption DECT and refraction DECT slice images of the trabecular bone were created. The apparent absorption DECT images have significantly higher spatial resolution and CNR than the corresponding SRCT images. Thus, DECT will prove to be a useful tool for imaging applications in which high contrast and high spatial resolution are required for both soft tissue features and bone.

  12. Interferometric detection of nanoparticles

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, Karen

    Interferometric surfaces enhance light scattering from nanoparticles through constructive interference of partial scattered waves. By placing the nanoparticles on interferometric surfaces tuned to a special surface phase interferometric condition, the particles are detectable in the dilute limit through interferometric image contrast in a heterodyne light scattering configuration, or through diffraction in a homodyne scattering configuration. The interferometric enhancement has applications for imaging and diffractive biosensors. We present a modified model based on Double Interaction (DI) to explore bead-based detection mechanisms using imaging, scanning and diffraction. The application goal of this work is to explore the trade-offs between the sensitivity and throughput among various detection methods. Experimentally we use thermal oxide on silicon to establish and control surface interferometric conditions. Surface-captured gold beads are detected using Molecular Interferometric Imaging (MI2) and Spinning-Disc Interferometry (SDI). Double-resonant enhancement of light scattering leads to high-contrast detection of 100 nm radius gold nanoparticles on an interferometric surface. The double-resonance condition is achieved when resonance (or anti-resonance) from an asymmetric Fabry-Perot substrate coincides with the Mie resonance of the gold nanoparticle. The double-resonance condition is observed experimentally using molecular interferometric imaging (MI2). An invisibility condition is identified for which the gold nanoparticles are optically cloaked by the interferometric surface.

  13. Understanding refraction contrast using a comparison of absorption and refraction computed tomographic techniques

    NASA Astrophysics Data System (ADS)

    Wiebe, S.; Rhoades, G.; Wei, Z.; Rosenberg, A.; Belev, G.; Chapman, D.

    2013-05-01

    Refraction x-ray contrast is an imaging modality used primarily in a research setting at synchrotron facilities, which have a biomedical imaging research program. The most common method for exploiting refraction contrast is by using a technique called Diffraction Enhanced Imaging (DEI). The DEI apparatus allows the detection of refraction between two materials and produces a unique ''edge enhanced'' contrast appearance, very different from the traditional absorption x-ray imaging used in clinical radiology. In this paper we aim to explain the features of x-ray refraction contrast as a typical clinical radiologist would understand. Then a discussion regarding what needs to be considered in the interpretation of the refraction image takes place. Finally we present a discussion about the limitations of planar refraction imaging and the potential of DEI Computed Tomography. This is an original work that has not been submitted to any other source for publication. The authors have no commercial interests or conflicts of interest to disclose.

  14. Research of the relationships between light dispersion and contrast of the registered image at different background brightness

    NASA Astrophysics Data System (ADS)

    Stoyanov, Stiliyan; Mardirossian, Garo

    2012-10-01

    The light diffraction is for telescope apparatuses an especially important characteristic which has an influence on the record image contrast from the eye observer. The task of the investigation is to determine to what degree the coefficient of light diffraction influences the record image brightness. The object of the theoretical research are experimental results provided from a telescope system experiment in the process of observation of remote objects with different brightness of the background in the fixed light diffraction coefficients and permanent contrast of the background in respect to the object. The received values and the ratio of the image contrast to the light diffraction coefficient is shown in a graphic view. It's settled that with increasing of the value of background brightness in permanent background contrast in respect to the object, the image contrast sharply decrease. The relationship between the increase of the light diffraction coefficient and the decrease of the brightness of the project image from telescope apparatuses can be observed.

  15. Development of an X-ray prism for a combined diffraction enhanced imaging and fluorescence imaging system

    NASA Astrophysics Data System (ADS)

    Bewer, Brian E.

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These X-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing a large change in intensity for a small angle change introduced by the X-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultra small angle X-ray scattering (USAXS) contrast thus improving visualization and extending the utility of X-ray imaging. To improve on the current DEI technique this body of work describes the design of an X-ray prism (XRP) included in the imaging system which allows the analyzer crystal to be aligned anywhere on the rocking curve without moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from muradians for direct mechanical movement of the analyzer crystal to milliradian control for movement the XRP angle. In addition to using an XRP for the traditional DEI acquisition method of two scans on opposite sides of the rocking curve preliminary tests will be presented showing the potential of using an XRP to scan quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single fast measurement thus removing the occurrence of motion artifacts for each point or line used during a scan. The XRP design is also intended to be compatible with combined imaging systems where more than one technique is used to investigate a sample. Candidates for complimentary techniques are investigated and measurements from a combined X-ray imaging system are presented.

  16. Nano-Optics for Chemical and Materials Characterization

    NASA Astrophysics Data System (ADS)

    Beversluis, Michael; Stranick, Stephan

    2007-03-01

    Light microscopy can provide non-destructive, real-time, three-dimensional imaging with chemically-specific contrast, but diffraction frequently limits the resolution to roughly 200 nm. Recently, structured illumination techniques have allowed fluorescence imaging to reach 50 nm resolution [1]. Since these fluorescence techniques were developed for use in microbiology, a key challenge is to take the resolution-enhancing features and apply them to contrast mechanisms like vibrational spectroscopy (e.g., Raman and CARS microscopy) that provide morphological and chemically specific imaging.. We are developing a new hybrid technique that combines the resolution enhancement of structured illumination microscopy with scanning techniques that can record hyperspectral images with 100 nm spatial resolution. We will show such superresolving images of semiconductor nanostructures and discuss the advantages and requirements for this technique. Referenence: 1. M. G. L. Gustafsson, P. Natl. Acad. Sci. USA 102, 13081-13086 (2005).

  17. Coherent X-ray diffraction from collagenous soft tissues

    PubMed Central

    Berenguer de la Cuesta, Felisa; Wenger, Marco P. E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.

    2009-01-01

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60–70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the ‘speckled’ nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques. PMID:19706395

  18. Coherent X-ray diffraction from collagenous soft tissues.

    PubMed

    Berenguer de la Cuesta, Felisa; Wenger, Marco P E; Bean, Richard J; Bozec, Laurent; Horton, Michael A; Robinson, Ian K

    2009-09-08

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.

  19. Super-resolution differential interference contrast microscopy by structured illumination.

    PubMed

    Chen, Jianling; Xu, Yan; Lv, Xiaohua; Lai, Xiaomin; Zeng, Shaoqun

    2013-01-14

    We propose a structured illumination differential interference contrast (SI-DIC) microscopy, breaking the diffraction resolution limit of differential interference contrast (DIC) microscopy. SI-DIC extends the bandwidth of coherent transfer function of the DIC imaging system, thus the resolution is improved. With 0.8 numerical aperture condenser and objective, the reconstructed SI-DIC image of 53 nm polystyrene beads reveals lateral resolution of approximately 190 nm, doubling that of the conventional DIC image. We also demonstrate biological observations of label-free cells with improved spatial resolution. The SI-DIC microscopy can provide sub-diffraction resolution and high contrast images with marker-free specimens, and has the potential for achieving sub-diffraction resolution quantitative phase imaging.

  20. MTF evaluation of in-line phase contrast imaging system

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoran; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing

    2017-02-01

    X-ray phase contrast imaging (XPCI) is a novel method that exploits the phase shift for the incident X-ray to form an image. Various XPCI methods have been proposed, among which, in-line phase contrast imaging (IL-PCI) is regarded as one of the most promising clinical methods. The contrast of the interface is enhanced due to the introduction of the boundary fringes in XPCI, thus it is generally used to evaluate the image quality of XPCI. But the contrast is a comprehensive index and it does not reflect the information of image quality in the frequency range. The modulation transfer function (MTF), which is the Fourier transform of the system point spread function, is recognized as the metric to characterize the spatial response of conventional X-ray imaging system. In this work, MTF is introduced into the image quality evaluation of the IL-PCI system. Numerous simulations based on Fresnel - Kirchhoff diffraction theory are performed with varying system settings and the corresponding MTFs were calculated for comparison. The results show that MTF can provide more comprehensive information of image quality comparing to contrast in IL-PCI.

  1. High-resolution electron microscopy and its applications.

    PubMed

    Li, F H

    1987-12-01

    A review of research on high-resolution electron microscopy (HREM) carried out at the Institute of Physics, the Chinese Academy of Sciences, is presented. Apart from the direct observation of crystal and quasicrystal defects for some alloys, oxides, minerals, etc., and the structure determination for some minute crystals, an approximate image-contrast theory named pseudo-weak-phase object approximation (PWPOA), which shows the image contrast change with crystal thickness, is described. Within the framework of PWPOA, the image contrast of lithium ions in the crystal of R-Li2Ti3O7 has been observed. The usefulness of diffraction analysis techniques such as the direct method and Patterson method in HREM is discussed. Image deconvolution and resolution enhancement for weak-phase objects by use of the direct method are illustrated. In addition, preliminary results of image restoration for thick crystals are given.

  2. Compatibility of a Diffractive Pupil and Coronagraphic Imaging

    NASA Technical Reports Server (NTRS)

    Bendek, Eduardo; Belikov, Rusian; Pluzhnyk, Yevgeniy; Guyon, Olivier

    2013-01-01

    Detection and characterization of exo-earths require direct-imaging techniques that can deliver contrast ratios of 10(exp 10) at 100 milliarc-seconds or smaller angular separation. At the same time, astrometric data is required to measure planet masses and can help detect planets and constrain their orbital parameters. To minimize costs, a single space mission can be designed using a high efficiency coronograph to perform direct imaging and a diffractive pupil to calibrate wide-field distortions to enable high precision astrometric measurements. This paper reports the testing of a diffractive pupil on the high-contrast test bed at the NASA Ames Research Center to assess the compatibility of using a diffractive pupil with coronographic imaging systems. No diffractive contamination was found within our detectability limit of 2x10(exp -7) contrast outside a region of 12lambda/D and 2.5x10(exp -6) within a region spanning from 2 to 12lambda/D. Morphology of the image features suggests that no contamination exists even beyond the detectability limit specified or at smaller working angles. In the case that diffractive contamination is found beyond these stated levels, active wavefront control would be able to mitigate its intensity to 10(exp -7) or better contrast.

  3. Dark-field imaging based on post-processed electron backscatter diffraction patterns of bulk crystalline materials in a scanning electron microscope.

    PubMed

    Brodusch, Nicolas; Demers, Hendrix; Gauvin, Raynald

    2015-01-01

    Dark-field (DF) images were acquired in the scanning electron microscope with an offline procedure based on electron backscatter diffraction (EBSD) patterns (EBSPs). These EBSD-DF images were generated by selecting a particular reflection on the electron backscatter diffraction pattern and by reporting the intensity of one or several pixels around this point at each pixel of the EBSD-DF image. Unlike previous studies, the diffraction information of the sample is the basis of the final image contrast with a pixel scale resolution at the EBSP providing DF imaging in the scanning electron microscope. The offline facility of this technique permits the selection of any diffraction condition available in the diffraction pattern and displaying the corresponding image. The high number of diffraction-based images available allows a better monitoring of deformation structures compared to electron channeling contrast imaging (ECCI) which is generally limited to a few images of the same area. This technique was applied to steel and iron specimens and showed its high capability in describing more rigorously the deformation structures around micro-hardness indents. Due to the offline relation between the reference EBSP and the EBSD-DF images, this new technique will undoubtedly greatly improve our knowledge of deformation mechanism and help to improve our understanding of the ECCI contrast mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Phase-contrast x-ray imaging of microstructure and fatigue-crack propagation in single-crystal nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Husseini, Naji Sami

    Single-crystal nickel-base superalloys are ubiquitous in demanding turbine-blade applications, and they owe their remarkable resilience to their dendritic, hierarchical microstructure and complex composition. During normal operations, they endure rapid low-stress vibrations that may initiate fatigue cracks. This failure mode in the very high-cycle regime is poorly understood, in part due to inadequate testing and diagnostic equipment. Phase-contrast imaging with coherent synchrotron x rays, however, is an emergent technique ideally suited for dynamic processes such as crack initiation and propagation. A specially designed portable ultrasonic-fatigue apparatus, coupled with x-ray radiography, allows real-time, in situ imaging while simulating service conditions. Three contrast mechanisms - absorption, diffraction, and phase contrast - span the immense breadth of microstructural features in superalloys. Absorption contrast is sensitive to composition and crack displacements, and diffraction contrast illuminates dislocation aggregates and crystallographic misorientations. Phase contrast enhances electron-density gradients and is particularly useful for fatigue-crack studies, sensitive to internal crack tips and openings less than one micrometer. Superalloy samples were imaged without external stresses to study microstructure and mosaicity. Maps of rhenium and tungsten concentrations revealed strong segregation to the center of dendrites, as manifested by absorption contrast. Though nominally single crystals, dendrites were misoriented from the bulk by a few degrees, as revealed by diffraction contrast. For dynamic studies of cyclic fatigue, superalloys were mounted in the portable ultrasonic-fatigue apparatus, subjected to a mean tensile stress of ˜50-150 MPa, and cycled in tension to initiate and propagate fatigue cracks. Radiographs were recorded every thousand cycles over the multimillion-cycle lifetime to measure micron-scale crack growth. Crack openings were very small, as determined by absorption and phase contrast, and suggested multiple fracture modes for propagation along {111} planes at room temperature, which was verified by finite element analysis. With increasing temperature, cracks became Mode I (perpendicular to the loading axis) in character and more sensitive to the microstructure. Advancing plastic zones ahead of crack tips altered the crystallographic quality, from which diffraction contrast anticipated initiation and propagation. These studies demonstrate the extreme sensitivity of x-ray radiography for detailed studies of superalloys and crack growth processes.

  5. Characterization of polycrystalline materials using synchrotron X-ray imaging and diffraction techniques

    NASA Astrophysics Data System (ADS)

    Ludwig, W.; King, A.; Herbig, M.; Reischig, P.; Marrow, J.; Babout, L.; Lauridsen, E. M.; Proudhon, H.; Buffière, J. Y.

    2010-12-01

    The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure at the micrometer length scale. Repeated observation during (interrupted) mechanical tests provide unprecedented insight into crystallographic and grain microstructure related aspects of polycrystalline deformation and degradation mechanisms.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berenguer de la Cuesta, Felisa; Wenger, Marco P.E.; Bean, Richard J.

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patternsmore » from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.« less

  7. Qualitative evaluation of titanium implant integration into bone by diffraction enhanced imaging.

    PubMed

    Wagner, A; Sachse, A; Keller, M; Aurich, M; Wetzel, W-D; Hortschansky, P; Schmuck, K; Lohmann, M; Reime, B; Metge, J; Arfelli, F; Menk, R; Rigon, L; Muehleman, C; Bravin, A; Coan, P; Mollenhauer, J

    2006-03-07

    Diffraction enhanced imaging (DEI) uses refraction of x-rays at edges, which allows pronounced visualization of material borders and rejects scattering which often obscures edges and blurs images. Here, the first evidence is presented that, using DEI, a destruction-free evaluation of the quality of integration of metal implants into bone is possible. Experiments were performed in rabbits and sheep with model implants to investigate the option for DEI as a tool in implant research. The results obtained from DEI were compared to conventional histology obtained from the specimens. DE images allow the identification of the quality of ingrowth of bone into the hydroxyapatite layer of the implant. Incomplete integration of the implant with a remaining gap of less than 0.3 mm caused the presence of a highly refractive edge at the implant/bone border. In contrast, implants with bone fully grown onto the surface did not display a refractive signal. Therefore, the refractive signal could be utilized to diagnose implant healing and/or loosening.

  8. Qualitative evaluation of titanium implant integration into bone by diffraction enhanced imaging

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Sachse, A.; Keller, M.; Aurich, M.; Wetzel, W.-D.; Hortschansky, P.; Schmuck, K.; Lohmann, M.; Reime, B.; Metge, J.; Arfelli, F.; Menk, R.; Rigon, L.; Muehleman, C.; Bravin, A.; Coan, P.; Mollenhauer, J.

    2006-03-01

    Diffraction enhanced imaging (DEI) uses refraction of x-rays at edges, which allows pronounced visualization of material borders and rejects scattering which often obscures edges and blurs images. Here, the first evidence is presented that, using DEI, a destruction-free evaluation of the quality of integration of metal implants into bone is possible. Experiments were performed in rabbits and sheep with model implants to investigate the option for DEI as a tool in implant research. The results obtained from DEI were compared to conventional histology obtained from the specimens. DE images allow the identification of the quality of ingrowth of bone into the hydroxyapatite layer of the implant. Incomplete integration of the implant with a remaining gap of less than 0.3 mm caused the presence of a highly refractive edge at the implant/bone border. In contrast, implants with bone fully grown onto the surface did not display a refractive signal. Therefore, the refractive signal could be utilized to diagnose implant healing and/or loosening.

  9. Enhancing resolution and contrast in second-harmonic generation microscopy using an advanced maximum likelihood estimation restoration method

    NASA Astrophysics Data System (ADS)

    Sivaguru, Mayandi; Kabir, Mohammad M.; Gartia, Manas Ranjan; Biggs, David S. C.; Sivaguru, Barghav S.; Sivaguru, Vignesh A.; Berent, Zachary T.; Wagoner Johnson, Amy J.; Fried, Glenn A.; Liu, Gang Logan; Sadayappan, Sakthivel; Toussaint, Kimani C.

    2017-02-01

    Second-harmonic generation (SHG) microscopy is a label-free imaging technique to study collagenous materials in extracellular matrix environment with high resolution and contrast. However, like many other microscopy techniques, the actual spatial resolution achievable by SHG microscopy is reduced by out-of-focus blur and optical aberrations that degrade particularly the amplitude of the detectable higher spatial frequencies. Being a two-photon scattering process, it is challenging to define a point spread function (PSF) for the SHG imaging modality. As a result, in comparison with other two-photon imaging systems like two-photon fluorescence, it is difficult to apply any PSF-engineering techniques to enhance the experimental spatial resolution closer to the diffraction limit. Here, we present a method to improve the spatial resolution in SHG microscopy using an advanced maximum likelihood estimation (AdvMLE) algorithm to recover the otherwise degraded higher spatial frequencies in an SHG image. Through adaptation and iteration, the AdvMLE algorithm calculates an improved PSF for an SHG image and enhances the spatial resolution by decreasing the full-width-at-halfmaximum (FWHM) by 20%. Similar results are consistently observed for biological tissues with varying SHG sources, such as gold nanoparticles and collagen in porcine feet tendons. By obtaining an experimental transverse spatial resolution of 400 nm, we show that the AdvMLE algorithm brings the practical spatial resolution closer to the theoretical diffraction limit. Our approach is suitable for adaptation in micro-nano CT and MRI imaging, which has the potential to impact diagnosis and treatment of human diseases.

  10. Geometry of phase-separated domains in phospholipid bilayers by diffraction-contrast electron microscopy.

    PubMed Central

    Hui, S W

    1981-01-01

    The sizes and shapes of solidus (gel) phase domains in the hydrated molecular bilayers of dilauroylphosphatidylcholine/dipalmitoylphasphatidylcholine (DLPC/DPPC) (1:1) and phosphatidylserine (PS)/DPPC (1:2) are visualized directly by low dose diffraction-contrast electron microscopy. The temperature and humidity of the bilayers are controlled by an environmental chamber set in an electron microscope. The contrast between crystalline domains is enhanced by electron optical filtering of the diffraction patterns of the bilayers. The domains are seen as a patchwork in the plane of the bilayer, with an average width of 0.2-0.5 micrometer. The percentage of solidus area measured from diffraction-contrast micrographs at various temperatures agrees in general with those depicted by known phase diagrams. The shape and size of the domains resemble those seen by freeze-fracture in multilamellar vesicles. Temperature-related changes in domain size and in phase boundary per unit area are more pronounced in the less miscible DLPC/DPPC mixture. No significant change in these geometric parameters with temperature is found in the PS/DPPC mixture. Mapping domains by their molecular diffraction signals not only verifies the existance of areas of different molecular packing during phase separation but also provides a quantitative measurement of structural boundaries and defects in lipid bilayers. Images FIGURE 1 FIGURE 3 FIGURE 6 PMID:6894707

  11. Resolution enhancement in coherent x-ray diffraction imaging by overcoming instrumental noise.

    PubMed

    Kim, Chan; Kim, Yoonhee; Song, Changyong; Kim, Sang Soo; Kim, Sunam; Kang, Hyon Chol; Hwu, Yeukuang; Tsuei, Ku-Ding; Liang, Keng San; Noh, Do Young

    2014-11-17

    We report that reference objects, strong scatterers neighboring weak phase objects, enhance the phase retrieval and spatial resolution in coherent x-ray diffraction imaging (CDI). A CDI experiment with Au nano-particles exhibited that the reference objects amplified the signal-to-noise ratio in the diffraction intensity at large diffraction angles, which significantly enhanced the image resolution. The interference between the diffracted x-ray from reference objects and a specimen also improved the retrieval of the phase of the diffraction signal. The enhancement was applied to image NiO nano-particles and a mitochondrion and confirmed in a simulation with a bacteria phantom. We expect that the proposed method will be of great help in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.

  12. Cork Embedded Internal Features and Contrast Mechanisms with Del Using 18, 20, 30, 36 and 40 keV Synchrotron X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, D.V.; Zhong, Z.; Akatsuka, T.

    Images of the cork used for wine and other bottles are visualized with the use of diffraction-enhanced imaging (DEI) technique. Present experimental studies allowed us to identify the cracks, holes, porosity, and importance of soft-matter (soft-material) and associated biology by visualization of the embedded internal complex features of the biological material such as cork and its microstructure. Highlighted the contrast mechanisms above and below the K-absorption edge of iodine and studied the attenuation through a combination of weakly and strongly attenuating materials.

  13. Cork Embedded Internal Features and Contrast Mechanisms with DEI using 18, 20, 30, 36, and 40 kev Synchrotron X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donepudi, R.; Cesareo, R; Brunetti, A

    Images of the cork used for wine and other bottles are visualized with the use of diffraction-enhanced imaging (DEI) technique. Present experimental studies allowed us to identify the cracks, holes, porosity, and importance of soft-matter (soft-material) and associated biology by visualization of the embedded internal complex features of the biological material such as cork and its microstructure. Highlighted the contrast mechanisms above and below the K-absorption edge of iodine and studied the attenuation through a combination of weakly and strongly attenuating materials.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connor, D.M.; Miller, L.; Benveniste, H.

    Our understanding of early development in Alzheimer's disease (AD) is clouded by the scale at which the disease progresses; amyloid beta (A{beta}) plaques, a hallmark feature of AD, are small ({approx} 50 {micro}m) and low contrast in diagnostic clinical imaging techniques. Diffraction enhanced imaging (DEI), a phase contrast x-ray imaging technique, has greater soft tissue contrast than conventional radiography and generates higher resolution images than magnetic resonance microimaging. Thus, in this proof of principle study, DEI in micro-CT mode was performed on the brains of AD-model mice to determine if DEI can visualize A{beta} plaques. Results revealed small nodules inmore » the cortex and hippocampus of the brain. Histology confirmed that the features seen in the DEI images of the brain were A{beta} plaques. Several anatomical structures, including hippocampal subregions and white matter tracks, were also observed. Thus, DEI has strong promise in early diagnosis of AD, as well as general studies of the mouse brain.« less

  15. Multi-kernel deconvolution for contrast improvement in a full field imaging system with engineered PSFs using conical diffraction

    NASA Astrophysics Data System (ADS)

    Enguita, Jose M.; Álvarez, Ignacio; González, Rafael C.; Cancelas, Jose A.

    2018-01-01

    The problem of restoration of a high-resolution image from several degraded versions of the same scene (deconvolution) has been receiving attention in the last years in fields such as optics and computer vision. Deconvolution methods are usually based on sets of images taken with small (sub-pixel) displacements or slightly different focus. Techniques based on sets of images obtained with different point-spread-functions (PSFs) engineered by an optical system are less popular and mostly restricted to microscopic systems, where a spot of light is projected onto the sample under investigation, which is then scanned point-by-point. In this paper, we use the effect of conical diffraction to shape the PSFs in a full-field macroscopic imaging system. We describe a series of simulations and real experiments that help to evaluate the possibilities of the system, showing the enhancement in image contrast even at frequencies that are strongly filtered by the lens transfer function or when sampling near the Nyquist frequency. Although results are preliminary and there is room to optimize the prototype, the idea shows promise to overcome the limitations of the image sensor technology in many fields, such as forensics, medical, satellite, or scientific imaging.

  16. Dynamic spatial filtering using a digital micromirror device for high-speed optical diffraction tomography.

    PubMed

    Jin, Di; Zhou, Renjie; Yaqoob, Zahid; So, Peter T C

    2018-01-08

    Optical diffraction tomography (ODT) is an emerging microscopy technique for three-dimensional (3D) refractive index (RI) mapping of transparent specimens. Recently, the digital micromirror device (DMD) based scheme for angle-controlled plane wave illumination has been proposed to improve the imaging speed and stability of ODT. However, undesired diffraction noise always exists in the reported DMD-based illumination scheme, which leads to a limited contrast ratio of the measurement fringe and hence inaccurate RI mapping. Here we present a novel spatial filtering method, based on a second DMD, to dynamically remove the diffraction noise. The reported results illustrate significantly enhanced image quality of the obtained interferograms and the subsequently derived phase maps. And moreover, with this method, we demonstrate mapping of 3D RI distribution of polystyrene beads as well as biological cells with high accuracy. Importantly, with the proper hardware configuration, our method does not compromise the 3D imaging speed advantage promised by the DMD-based illumination scheme. Specifically, we have been able to successfully obtain interferograms at over 1 kHz speed, which is critical for potential high-throughput label-free 3D image cytometry applications.

  17. Quantum enhanced superresolution microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Oron, Dan; Tenne, Ron; Israel, Yonatan; Silberberg, Yaron

    2017-02-01

    Far-field optical microscopy beyond the Abbe diffraction limit, making use of nonlinear excitation (e.g. STED), or temporal fluctuations in fluorescence (PALM, STORM, SOFI) is already a reality. In contrast, overcoming the diffraction limit using non-classical properties of light is very difficult to achieve due to the fragility of quantum states of light. Here, we experimentally demonstrate superresolution microscopy based on quantum properties of light naturally emitted by fluorophores used as markers in fluorescence microscopy. Our approach is based on photon antibunching, the tendency of fluorophores to emit photons one by one rather than in bursts. Although a distinctively quantum phenomenon, antibunching is readily observed in most common fluorophores even at room temperature. This nonclassical resource can be utilized directly to enhance the imaging resolution, since the non-classical far-field intensity correlations induced by antibunching carry high spatial frequency information on the spatial distribution of emitters. Detecting photon statistics simultaneously in the entire field of view, we were able to detect non-classical correlations of the second and third order, and reconstructed images with resolution significantly beyond the diffraction limit. Alternatively, we demonstrate the utilization of antibunching for augmenting the capabilities of localization-based superresolution imaging in the presence of multiple emitters, using a novel detector comprised of an array of single photon detectors connected to a densely packed fiber bundle. These features allow us to enhance the spatial and temporal resolution with which multiple emitters can be imaged compared with other techniques that rely on CCD cameras.

  18. Quality of image of grating target placed in vitreous of isolated pig eyes photographed through different implanted multifocal intraocular lenses.

    PubMed

    Inoue, Makoto; Noda, Toru; Ohnuma, Kazuhiko; Bissen-Miyajima, Hiroko; Hirakata, Akito

    2011-11-01

    To determine the quality of the image of a grating target placed in the vitreous of isolated pig eyes and photographed through implanted refractive and diffractive multifocal intraocular lenses (IOL). Refractive multifocal (NXG1, PY60MV), diffractive multifocal (ZM900, SA60D3) and monofocal (SA60AT, ZA9003) IOL were implanted in the capsular bag of isolated pig eyes. A grating target was placed in the vitreous and photographed through a flat or a wide-field viewing contact lens. The contrast of the grating targets of different spatial frequencies was measured. With the flat corneal contact lens, the gratings appeared clear and not distorted when viewed through the optics of the NXG1 and PY60MV for far vision but were distorted with reduced contrast when viewed through the optical zone for near vision. The images through the diffractive zone of the ZM900 and SA60D3 were more defocused than with the monofocal IOL (p < 0.005). Ghost images oriented centrifugally of the original image were seen with the ZM900 resulting in lower contrast at higher spatial frequencies than with the SA60D3 with less defocused images only in the central area. With the wide-field viewing contact lens, the images were less defocused and the contrast was comparable to both refractive and diffractive multifocal IOL. Both refractive and diffractive multifocal IOL reduced the contrast of the retinal image when viewed through a flat corneal contact lens but less defocused when viewed through a wide-field viewing contact lens. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.

  19. Multiple image x-radiography for functional lung imaging

    NASA Astrophysics Data System (ADS)

    Aulakh, G. K.; Mann, A.; Belev, G.; Wiebe, S.; Kuebler, W. M.; Singh, B.; Chapman, D.

    2018-01-01

    Detection and visualization of lung tissue structures is impaired by predominance of air. However, by using synchrotron x-rays, refraction of x-rays at the interface of tissue and air can be utilized to generate contrast which may in turn enable quantification of lung optical properties. We utilized multiple image radiography, a variant of diffraction enhanced imaging, at the Canadian light source to quantify changes in unique x-ray optical properties of lungs, namely attenuation, refraction and ultra small-angle scatter (USAXS or width) contrast ratios as a function of lung orientation in free-breathing or respiratory-gated mice before and after intra-nasal bacterial endotoxin (lipopolysaccharide) instillation. The lung ultra small-angle scatter and attenuation contrast ratios were significantly higher 9 h post lipopolysaccharide instillation compared to saline treatment whereas the refraction contrast decreased in magnitude. In ventilated mice, end-expiratory pressures result in an increase in ultra small-angle scatter contrast ratio when compared to end-inspiratory pressures. There were no detectable changes in lung attenuation or refraction contrast ratio with change in lung pressure alone. In effect, multiple image radiography can be applied towards following optical properties of lung air-tissue barrier over time during pathologies such as acute lung injury.

  20. Development of an x-ray prism for analyzer based imaging systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bewer, Brian; Chapman, Dean

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP)more » was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.« less

  1. Development of an x-ray prism for analyzer based imaging systems

    NASA Astrophysics Data System (ADS)

    Bewer, Brian; Chapman, Dean

    2010-08-01

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP) was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.

  2. Development of an x-ray prism for analyzer based imaging systems.

    PubMed

    Bewer, Brian; Chapman, Dean

    2010-08-01

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP) was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.

  3. Noise and analyzer-crystal angular position analysis for analyzer-based phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Majidi, Keivan; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-04-01

    The analyzer-based phase-contrast x-ray imaging (ABI) method is emerging as a potential alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a computed imaging method (meaning that images are calculated from raw data). ABI can simultaneously generate a number of planar parametric images containing information about absorption, refraction, and scattering properties of an object. These images are estimated from raw data acquired by measuring (sampling) the angular intensity profile of the x-ray beam passed through the object at different angular positions of the analyzer crystal. The noise in the estimated ABI parametric images depends upon imaging conditions like the source intensity (flux), measurements angular positions, object properties, and the estimation method. In this paper, we use the Cramér-Rao lower bound (CRLB) to quantify the noise properties in parametric images and to investigate the effect of source intensity, different analyzer-crystal angular positions and object properties on this bound, assuming a fixed radiation dose delivered to an object. The CRLB is the minimum bound for the variance of an unbiased estimator and defines the best noise performance that one can obtain regardless of which estimation method is used to estimate ABI parametric images. The main result of this paper is that the variance (hence the noise) in parametric images is directly proportional to the source intensity and only a limited number of analyzer-crystal angular measurements (eleven for uniform and three for optimal non-uniform) are required to get the best parametric images. The following angular measurements only spread the total dose to the measurements without improving or worsening CRLB, but the added measurements may improve parametric images by reducing estimation bias. Next, using CRLB we evaluate the multiple-image radiography, diffraction enhanced imaging and scatter diffraction enhanced imaging estimation techniques, though the proposed methodology can be used to evaluate any other ABI parametric image estimation technique.

  4. Noise and Analyzer-Crystal Angular Position Analysis for Analyzer-Based Phase-Contrast Imaging

    PubMed Central

    Majidi, Keivan; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-01-01

    The analyzer-based phase-contrast X-ray imaging (ABI) method is emerging as a potential alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a computed imaging method (meaning that images are calculated from raw data). ABI can simultaneously generate a number of planar parametric images containing information about absorption, refraction, and scattering properties of an object. These images are estimated from raw data acquired by measuring (sampling) the angular intensity profile (AIP) of the X-ray beam passed through the object at different angular positions of the analyzer crystal. The noise in the estimated ABI parametric images depends upon imaging conditions like the source intensity (flux), measurements angular positions, object properties, and the estimation method. In this paper, we use the Cramér-Rao lower bound (CRLB) to quantify the noise properties in parametric images and to investigate the effect of source intensity, different analyzer-crystal angular positions and object properties on this bound, assuming a fixed radiation dose delivered to an object. The CRLB is the minimum bound for the variance of an unbiased estimator and defines the best noise performance that one can obtain regardless of which estimation method is used to estimate ABI parametric images. The main result of this manuscript is that the variance (hence the noise) in parametric images is directly proportional to the source intensity and only a limited number of analyzer-crystal angular measurements (eleven for uniform and three for optimal non-uniform) are required to get the best parametric images. The following angular measurements only spread the total dose to the measurements without improving or worsening CRLB, but the added measurements may improve parametric images by reducing estimation bias. Next, using CRLB we evaluate the Multiple-Image Radiography (MIR), Diffraction Enhanced Imaging (DEI) and Scatter Diffraction Enhanced Imaging (S-DEI) estimation techniques, though the proposed methodology can be used to evaluate any other ABI parametric image estimation technique. PMID:24651402

  5. Covariance of lucky images for increasing objects contrast: diffraction-limited images in ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Cagigal, Manuel P.; Valle, Pedro J.; Colodro-Conde, Carlos; Villó-Pérez, Isidro; Pérez-Garrido, Antonio

    2016-01-01

    Images of stars adopt shapes far from the ideal Airy pattern due to atmospheric density fluctuations. Hence, diffraction-limited images can only be achieved by telescopes without atmospheric influence, e.g. spatial telescopes, or by using techniques like adaptive optics or lucky imaging. In this paper, we propose a new computational technique based on the evaluation of the COvariancE of Lucky Images (COELI). This technique allows us to discover companions to main stars by taking advantage of the atmospheric fluctuations. We describe the algorithm and we carry out a theoretical analysis of the improvement in contrast. We have used images taken with 2.2-m Calar Alto telescope as a test bed for the technique resulting that, under certain conditions, telescope diffraction limit is clearly reached.

  6. Imaging nanoscale lattice variations by machine learning of x-ray diffraction microscopy data

    DOE PAGES

    Laanait, Nouamane; Zhang, Zhan; Schlepütz, Christian M.

    2016-08-09

    In this paper, we present a novel methodology based on machine learning to extract lattice variations in crystalline materials, at the nanoscale, from an x-ray Bragg diffraction-based imaging technique. By employing a full-field microscopy setup, we capture real space images of materials, with imaging contrast determined solely by the x-ray diffracted signal. The data sets that emanate from this imaging technique are a hybrid of real space information (image spatial support) and reciprocal lattice space information (image contrast), and are intrinsically multidimensional (5D). By a judicious application of established unsupervised machine learning techniques and multivariate analysis to this multidimensional datamore » cube, we show how to extract features that can be ascribed physical interpretations in terms of common structural distortions, such as lattice tilts and dislocation arrays. Finally, we demonstrate this 'big data' approach to x-ray diffraction microscopy by identifying structural defects present in an epitaxial ferroelectric thin-film of lead zirconate titanate.« less

  7. Imaging nanoscale lattice variations by machine learning of x-ray diffraction microscopy data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laanait, Nouamane; Zhang, Zhan; Schlepütz, Christian M.

    In this paper, we present a novel methodology based on machine learning to extract lattice variations in crystalline materials, at the nanoscale, from an x-ray Bragg diffraction-based imaging technique. By employing a full-field microscopy setup, we capture real space images of materials, with imaging contrast determined solely by the x-ray diffracted signal. The data sets that emanate from this imaging technique are a hybrid of real space information (image spatial support) and reciprocal lattice space information (image contrast), and are intrinsically multidimensional (5D). By a judicious application of established unsupervised machine learning techniques and multivariate analysis to this multidimensional datamore » cube, we show how to extract features that can be ascribed physical interpretations in terms of common structural distortions, such as lattice tilts and dislocation arrays. Finally, we demonstrate this 'big data' approach to x-ray diffraction microscopy by identifying structural defects present in an epitaxial ferroelectric thin-film of lead zirconate titanate.« less

  8. Linear information retrieval method in X-ray grating-based phase contrast imaging and its interchangeability with tomographic reconstruction

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Gao, K.; Wang, Z. L.; Shao, Q. G.; Hu, R. F.; Wei, C. X.; Zan, G. B.; Wali, F.; Luo, R. H.; Zhu, P. P.; Tian, Y. C.

    2017-06-01

    In X-ray grating-based phase contrast imaging, information retrieval is necessary for quantitative research, especially for phase tomography. However, numerous and repetitive processes have to be performed for tomographic reconstruction. In this paper, we report a novel information retrieval method, which enables retrieving phase and absorption information by means of a linear combination of two mutually conjugate images. Thanks to the distributive law of the multiplication as well as the commutative law and associative law of the addition, the information retrieval can be performed after tomographic reconstruction, thus simplifying the information retrieval procedure dramatically. The theoretical model of this method is established in both parallel beam geometry for Talbot interferometer and fan beam geometry for Talbot-Lau interferometer. Numerical experiments are also performed to confirm the feasibility and validity of the proposed method. In addition, we discuss its possibility in cone beam geometry and its advantages compared with other methods. Moreover, this method can also be employed in other differential phase contrast imaging methods, such as diffraction enhanced imaging, non-interferometric imaging, and edge illumination.

  9. Nanox: a miniature mechanical stress rig designed for near-field X-ray diffraction imaging techniques.

    PubMed

    Gueninchault, N; Proudhon, H; Ludwig, W

    2016-11-01

    Multi-modal characterization of polycrystalline materials by combined use of three-dimensional (3D) X-ray diffraction and imaging techniques may be considered as the 3D equivalent of surface studies in the electron microscope combining diffraction and other imaging modalities. Since acquisition times at synchrotron sources are nowadays compatible with four-dimensional (time lapse) studies, suitable mechanical testing devices are needed which enable switching between these different imaging modalities over the course of a mechanical test. Here a specifically designed tensile device, fulfilling severe space constraints and permitting to switch between X-ray (holo)tomography, diffraction contrast tomography and topotomography, is presented. As a proof of concept the 3D characterization of an Al-Li alloy multicrystal by means of diffraction contrast tomography is presented, followed by repeated topotomography characterization of one selected grain at increasing levels of deformation. Signatures of slip bands and sudden lattice rotations inside the grain have been shown by means of in situ topography carried out during the load ramps, and diffraction spot peak broadening has been monitored throughout the experiment.

  10. Nanox: a miniature mechanical stress rig designed for near-field X-ray diffraction imaging techniques

    PubMed Central

    Gueninchault, N.; Proudhon, H.; Ludwig, W.

    2016-01-01

    Multi-modal characterization of polycrystalline materials by combined use of three-dimensional (3D) X-ray diffraction and imaging techniques may be considered as the 3D equivalent of surface studies in the electron microscope combining diffraction and other imaging modalities. Since acquisition times at synchrotron sources are nowadays compatible with four-dimensional (time lapse) studies, suitable mechanical testing devices are needed which enable switching between these different imaging modalities over the course of a mechanical test. Here a specifically designed tensile device, fulfilling severe space constraints and permitting to switch between X-ray (holo)tomography, diffraction contrast tomography and topotomography, is presented. As a proof of concept the 3D characterization of an Al–Li alloy multicrystal by means of diffraction contrast tomography is presented, followed by repeated topotomography characterization of one selected grain at increasing levels of deformation. Signatures of slip bands and sudden lattice rotations inside the grain have been shown by means of in situ topography carried out during the load ramps, and diffraction spot peak broadening has been monitored throughout the experiment. PMID:27787253

  11. Synthesis of Gd2O3:Eu nanoplatelets for MRI and fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Maalej, Nabil M.; Qurashi, Ahsanulhaq; Assadi, Achraf Amir; Maalej, Ramzi; Shaikh, Mohammed Nasiruzzaman; Ilyas, Muhammad; Gondal, Mohammad A.

    2015-05-01

    We synthesized Gd2O3 and Gd2O3 doped by europium (Eu) (2% to 10%) nanoplatelets using the polyol chemical method. The synthesized nanoplatelets were characterized by X-ray diffraction (XRD), FESEM, TEM, and EDX techniques. The optical properties of the synthesized nanoplatelets were investigated by photoluminescence spectroscopy. We also studied the magnetic resonance imaging (MRI) contrast enhancement of T1 relaxivity using 3 T MRI. The XRD for Gd2O3 revealed a cubic crystalline structure. The XRD of Gd2O3:Eu3+ nanoplatelets were highly consistent with Gd2O3 indicating the total incorporation of the Eu3+ ions in the Gd2O3 matrix. The Eu doping of Gd2O3 produced red luminescence around 612 nm corresponding to the radiative transitions from the Eu-excited state 5D0 to the 7F2. The photoluminescence was maximal at 5% Eu doping concentration. The stimulated CIE chromaticity coordinates were also calculated. Judd-Ofelt analysis was used to obtain the radiative properties of the sample from the emission spectra. The MRI contrast enhancement due to Gd2O3 was compared to DOTAREM commercial contrast agent at similar concentration of gadolinium oxide and provided similar contrast enhancement. The incorporation of Eu, however, decreased the MRI contrast due to replacement of gadolinium by Eu.

  12. Synthesis of Gd2O3:Eu nanoplatelets for MRI and fluorescence imaging.

    PubMed

    Maalej, Nabil M; Qurashi, Ahsanulhaq; Assadi, Achraf Amir; Maalej, Ramzi; Shaikh, Mohammed Nasiruzzaman; Ilyas, Muhammad; Gondal, Mohammad A

    2015-01-01

    We synthesized Gd2O3 and Gd2O3 doped by europium (Eu) (2% to 10%) nanoplatelets using the polyol chemical method. The synthesized nanoplatelets were characterized by X-ray diffraction (XRD), FESEM, TEM, and EDX techniques. The optical properties of the synthesized nanoplatelets were investigated by photoluminescence spectroscopy. We also studied the magnetic resonance imaging (MRI) contrast enhancement of T1 relaxivity using 3 T MRI. The XRD for Gd2O3 revealed a cubic crystalline structure. The XRD of Gd2O3:Eu(3+) nanoplatelets were highly consistent with Gd2O3 indicating the total incorporation of the Eu(3+) ions in the Gd2O3 matrix. The Eu doping of Gd2O3 produced red luminescence around 612 nm corresponding to the radiative transitions from the Eu-excited state (5)D0 to the (7)F2. The photoluminescence was maximal at 5% Eu doping concentration. The stimulated CIE chromaticity coordinates were also calculated. Judd-Ofelt analysis was used to obtain the radiative properties of the sample from the emission spectra. The MRI contrast enhancement due to Gd2O3 was compared to DOTAREM commercial contrast agent at similar concentration of gadolinium oxide and provided similar contrast enhancement. The incorporation of Eu, however, decreased the MRI contrast due to replacement of gadolinium by Eu.

  13. Super-resolution pupil filtering for visual performance enhancement using adaptive optics

    NASA Astrophysics Data System (ADS)

    Zhao, Lina; Dai, Yun; Zhao, Junlei; Zhou, Xiaojun

    2018-05-01

    Ocular aberration correction can significantly improve visual function of the human eye. However, even under ideal aberration correction conditions, pupil diffraction restricts the resolution of retinal images. Pupil filtering is a simple super-resolution (SR) method that can overcome this diffraction barrier. In this study, a 145-element piezoelectric deformable mirror was used as a pupil phase filter because of its programmability and high fitting accuracy. Continuous phase-only filters were designed based on Zernike polynomial series and fitted through closed-loop adaptive optics. SR results were validated using double-pass point spread function images. Contrast sensitivity was further assessed to verify the SR effect on visual function. An F-test was conducted for nested models to statistically compare different CSFs. These results indicated CSFs for the proposed SR filter were significantly higher than the diffraction correction (p < 0.05). As such, the proposed filter design could provide useful guidance for supernormal vision optical correction of the human eye.

  14. Quantitative assessment of image motion blur in diffraction images of moving biological cells

    NASA Astrophysics Data System (ADS)

    Wang, He; Jin, Changrong; Feng, Yuanming; Qi, Dandan; Sa, Yu; Hu, Xin-Hua

    2016-02-01

    Motion blur (MB) presents a significant challenge for obtaining high-contrast image data from biological cells with a polarization diffraction imaging flow cytometry (p-DIFC) method. A new p-DIFC experimental system has been developed to evaluate the MB and its effect on image analysis using a time-delay-integration (TDI) CCD camera. Diffraction images of MCF-7 and K562 cells have been acquired with different speed-mismatch ratios and compared to characterize MB quantitatively. Frequency analysis of the diffraction images shows that the degree of MB can be quantified by bandwidth variations of the diffraction images along the motion direction. The analytical results were confirmed by the p-DIFC image data acquired at different speed-mismatch ratios and used to validate a method of numerical simulation of MB on blur-free diffraction images, which provides a useful tool to examine the blurring effect on diffraction images acquired from the same cell. These results provide insights on the dependence of diffraction image on MB and allow significant improvement on rapid biological cell assay with the p-DIFC method.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latychevskaia, Tatiana, E-mail: tatiana@physik.uzh.ch; Fink, Hans-Werner; Chushkin, Yuriy

    Coherent diffraction imaging is a high-resolution imaging technique whose potential can be greatly enhanced by applying the extrapolation method presented here. We demonstrate the enhancement in resolution of a non-periodical object reconstructed from an experimental X-ray diffraction record which contains about 10% missing information, including the pixels in the center of the diffraction pattern. A diffraction pattern is extrapolated beyond the detector area and as a result, the object is reconstructed at an enhanced resolution and better agreement with experimental amplitudes is achieved. The optimal parameters for the iterative routine and the limits of the extrapolation procedure are discussed.

  16. Smart Image Enhancement Process

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J. (Inventor); Rahman, Zia-ur (Inventor); Woodell, Glenn A. (Inventor)

    2012-01-01

    Contrast and lightness measures are used to first classify the image as being one of non-turbid and turbid. If turbid, the original image is enhanced to generate a first enhanced image. If non-turbid, the original image is classified in terms of a merged contrast/lightness score based on the contrast and lightness measures. The non-turbid image is enhanced to generate a second enhanced image when a poor contrast/lightness score is associated therewith. When the second enhanced image has a poor contrast/lightness score associated therewith, this image is enhanced to generate a third enhanced image. A sharpness measure is computed for one image that is selected from (i) the non-turbid image, (ii) the first enhanced image, (iii) the second enhanced image when a good contrast/lightness score is associated therewith, and (iv) the third enhanced image. If the selected image is not-sharp, it is sharpened to generate a sharpened image. The final image is selected from the selected image and the sharpened image.

  17. Enhancing the pictorial content of digital holograms at 100 frames per second.

    PubMed

    Tsang, P W M; Poon, T-C; Cheung, K W K

    2012-06-18

    We report a low complexity, non-iterative method for enhancing the sharpness, brightness, and contrast of the pictorial content that is recorded in a digital hologram, without the need of re-generating the latter from the original object scene. In our proposed method, the hologram is first back-projected to a 2-D virtual diffraction plane (VDP) which is located at close proximity to the original object points. Next the field distribution on the VDP, which shares similar optical properties as the object scene, is enhanced. Subsequently, the processed VDP is expanded into a full hologram. We demonstrate two types of enhancement: a modified histogram equalization to improve the brightness and contrast, and localized high-boost-filtering (LHBF) to increase the sharpness. Experiment results have demonstrated that our proposed method is capable of enhancing a 2048x2048 hologram at a rate of around 100 frames per second. To the best of our knowledge, this is the first time real-time image enhancement is considered in the context of digital holography.

  18. Dynamical diffraction imaging (topography) with X-ray synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Kuriyama, M.; Steiner, B. W.; Dobbyn, R. C.

    1989-01-01

    By contrast to electron microscopy, which yields information on the location of features in small regions of materials, X-ray diffraction imaging can portray minute deviations from perfect crystalline order over larger areas. Synchrotron radiation-based X-ray optics technology uses a highly parallel incident beam to eliminate ambiguities in the interpretation of image details; scattering phenomena previously unobserved are now readily detected. Synchrotron diffraction imaging renders high-resolution, real-time, in situ observations of materials under pertinent environmental conditions possible.

  19. Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Fan, Jiadong; Sun, Zhibin; Wang, Yaling; Park, Jaehyun; Kim, Sunam; Gallagher-Jones, Marcus; Kim, Yoonhee; Song, Changyong; Yao, Shengkun; Zhang, Jian; Zhang, Jianhua; Duan, Xiulan; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya; Fan, Chunhai; Zhao, Yuliang; Chai, Zhifang; Gao, Xueyun; Earnest, Thomas; Jiang, Huaidong

    2016-09-01

    High-resolution imaging offers one of the most promising approaches for exploring and understanding the structure and function of biomaterials and biological systems. X-ray free-electron lasers (XFELs) combined with coherent diffraction imaging can theoretically provide high-resolution spatial information regarding biological materials using a single XFEL pulse. Currently, the application of this method suffers from the low scattering cross-section of biomaterials and X-ray damage to the sample. However, XFELs can provide pulses of such short duration that the data can be collected using the “diffract and destroy” approach before the effects of radiation damage on the data become significant. These experiments combine the use of enhanced coherent diffraction imaging with single-shot XFEL radiation to investigate the cellular architecture of Staphylococcus aureus with and without labeling by gold (Au) nanoclusters. The resolution of the images reconstructed from these diffraction patterns were twice as high or more for gold-labeled samples, demonstrating that this enhancement method provides a promising approach for the high-resolution imaging of biomaterials and biological systems.

  20. Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser

    PubMed Central

    Fan, Jiadong; Sun, Zhibin; Wang, Yaling; Park, Jaehyun; Kim, Sunam; Gallagher-Jones, Marcus; Kim, Yoonhee; Song, Changyong; Yao, Shengkun; Zhang, Jian; Zhang, Jianhua; Duan, Xiulan; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya; Fan, Chunhai; Zhao, Yuliang; Chai, Zhifang; Gao, Xueyun; Earnest, Thomas; Jiang, Huaidong

    2016-01-01

    High-resolution imaging offers one of the most promising approaches for exploring and understanding the structure and function of biomaterials and biological systems. X-ray free-electron lasers (XFELs) combined with coherent diffraction imaging can theoretically provide high-resolution spatial information regarding biological materials using a single XFEL pulse. Currently, the application of this method suffers from the low scattering cross-section of biomaterials and X-ray damage to the sample. However, XFELs can provide pulses of such short duration that the data can be collected using the “diffract and destroy” approach before the effects of radiation damage on the data become significant. These experiments combine the use of enhanced coherent diffraction imaging with single-shot XFEL radiation to investigate the cellular architecture of Staphylococcus aureus with and without labeling by gold (Au) nanoclusters. The resolution of the images reconstructed from these diffraction patterns were twice as high or more for gold-labeled samples, demonstrating that this enhancement method provides a promising approach for the high-resolution imaging of biomaterials and biological systems. PMID:27659203

  1. Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser.

    PubMed

    Fan, Jiadong; Sun, Zhibin; Wang, Yaling; Park, Jaehyun; Kim, Sunam; Gallagher-Jones, Marcus; Kim, Yoonhee; Song, Changyong; Yao, Shengkun; Zhang, Jian; Zhang, Jianhua; Duan, Xiulan; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya; Fan, Chunhai; Zhao, Yuliang; Chai, Zhifang; Gao, Xueyun; Earnest, Thomas; Jiang, Huaidong

    2016-09-23

    High-resolution imaging offers one of the most promising approaches for exploring and understanding the structure and function of biomaterials and biological systems. X-ray free-electron lasers (XFELs) combined with coherent diffraction imaging can theoretically provide high-resolution spatial information regarding biological materials using a single XFEL pulse. Currently, the application of this method suffers from the low scattering cross-section of biomaterials and X-ray damage to the sample. However, XFELs can provide pulses of such short duration that the data can be collected using the "diffract and destroy" approach before the effects of radiation damage on the data become significant. These experiments combine the use of enhanced coherent diffraction imaging with single-shot XFEL radiation to investigate the cellular architecture of Staphylococcus aureus with and without labeling by gold (Au) nanoclusters. The resolution of the images reconstructed from these diffraction patterns were twice as high or more for gold-labeled samples, demonstrating that this enhancement method provides a promising approach for the high-resolution imaging of biomaterials and biological systems.

  2. High-angle annular dark field scanning transmission electron microscopy on carbon-based functional polymer systems.

    PubMed

    Sourty, Erwan; van Bavel, Svetlana; Lu, Kangbo; Guerra, Ralph; Bar, Georg; Loos, Joachim

    2009-06-01

    Two purely carbon-based functional polymer systems were investigated by bright-field conventional transmission electron microscopy (CTEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). For a carbon black (CB) filled polymer system, HAADF-STEM provides high contrast between the CB agglomerates and the polymer matrix so that details of the interface organization easily can be revealed and assignment of the CB phase is straightforward. For a second system, the functional polymer blend representing the photoactive layer of a polymer solar cell, details of its nanoscale organization could be observed that were not accessible with CTEM. By varying the camera length in HAADF-STEM imaging, the contrast can be enhanced between crystalline and amorphous compounds due to diffraction contrast so that nanoscale interconnections between domains are identified. In general, due to its incoherent imaging characteristics HAADF-STEM allows for reliable interpretation of the data obtained.

  3. Synchrotron-radiation phase-contrast imaging of human stomach and gastric cancer: in vitro studies.

    PubMed

    Tang, Lei; Li, Gang; Sun, Ying-Shi; Li, Jie; Zhang, Xiao-Peng

    2012-05-01

    The electron density resolution of synchrotron-radiation phase-contrast imaging (SR-PCI) is 1000 times higher than that of conventional X-ray absorption imaging in light elements, through which high-resolution X-ray imaging of biological soft tissue can be achieved. For biological soft tissue, SR-PCI can give better imaging contrast than conventional X-ray absorption imaging. In this study, human resected stomach and gastric cancer were investigated using in-line holography and diffraction enhanced imaging at beamline 4W1A of the Beijing Synchrotron Radiation Facility. It was possible to depict gastric pits, measuring 50-70 µm, gastric grooves and tiny blood vessels in the submucosa layer by SR-PCI. The fine structure of a cancerous ulcer was displayed clearly on imaging the mucosa. The delamination of the gastric wall and infiltration of cancer in the submucosa layer were also demonstrated on cross-sectional imaging. In conclusion, SR-PCI can demonstrate the subtle structures of stomach and gastric cancer that cannot be detected by conventional X-ray absorption imaging, which prompt the X-ray diagnosis of gastric disease to the level of the gastric pit, and has the potential to provide new methods for the imageology of gastric cancer.

  4. Nano-imaging enabled via self-assembly

    PubMed Central

    McLeod, Euan; Ozcan, Aydogan

    2014-01-01

    SUMMARY Imaging object details with length scales below approximately 200 nm has been historically difficult for conventional microscope objective lenses because of their inability to resolve features smaller than one-half the optical wavelength. Here we review some of the recent approaches to surpass this limit by harnessing self-assembly as a fabrication mechanism. Self-assembly can be used to form individual nano- and micro-lenses, as well as to form extended arrays of such lenses. These lenses have been shown to enable imaging with resolutions as small as 50 nm half-pitch using visible light, which is well below the Abbe diffraction limit. Furthermore, self-assembled nano-lenses can be used to boost contrast and signal levels from small nano-particles, enabling them to be detected relative to background noise. Finally, alternative nano-imaging applications of self-assembly are discussed, including three-dimensional imaging, enhanced coupling from light-emitting diodes, and the fabrication of contrast agents such as quantum dots and nanoparticles. PMID:25506387

  5. Preliminayr Study on Diffraction Enhanced Radiographic Imaging for a Canine Model of Cartilage Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muehleman,C.; Li, J.; Zhong, Z.

    2006-01-01

    Objective: To demonstrate the ability of a novel radiographic technique, Diffraction Enhanced Radiographic Imaging (DEI), to render high contrast images of canine knee joints for identification of cartilage lesions in situ. Methods: DEI was carried out at the X-15A beamline at Brookhaven National Laboratory on intact canine knee joints with varying levels of cartilage damage. Two independent observers graded the DE images for lesions and these grades were correlated to the gross morphological grade. Results: The correlation of gross visual grades with DEI grades for the 18 canine knee joints as determined by observer 1 (r2=0.8856, P=0.001) and observer 2more » (r2=0.8818, P=0.001) was high. The overall weighted ? value for inter-observer agreement was 0.93, thus considered high agreement. Conclusion: The present study is the first study for the efficacy of DEI for cartilage lesions in an animal joint, from very early signs through erosion down to subchondral bone, representing the spectrum of cartilage changes occurring in human osteoarthritis (OA). Here we show that DEI allows the visualization of cartilage lesions in intact canine knee joints with good accuracy. Hence, DEI may be applicable for following joint degeneration in animal models of OA.« less

  6. Line x-ray source for diffraction enhanced imaging in clinical and industrial applications

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqin

    Mammography is one type of imaging modalities that uses a low-dose x-ray or other radiation sources for examination of breasts. It plays a central role in early detection of breast cancers. The material similarity of tumor-cell and health cell, breast implants surgery and other factors, make the breast cancers hard to visualize and detect. Diffraction enhanced imaging (DEI), first proposed and investigated by D. Chapman is a new x-ray radiographic imaging modality using monochromatic x-rays from a synchrotron source, which produced images of thick absorbing objects that are almost completely free of scatter. It shows dramatically improved contrast over standard imaging when applied to the same phantom. The contrast is based not only on attenuation but also on the refraction and diffraction properties of the sample. This imaging method may improve image quality of mammography, other medical applications, industrial radiography for non-destructive testing and x-ray computed tomography. However, the size, and cost, of a synchrotron source limits the application of the new modality to be applicable at clinical levels. This research investigates the feasibility of a designed line x-ray source to produce intensity compatible to synchrotron sources. It is composed of a 2-cm in length tungsten filament, installed on a carbon steel filament cup (backing plate), as the cathode and a stationary oxygen-free copper anode with molybdenum coating on the front surface serves as the target. Characteristic properties of the line x-ray source were computationally studied and the prototype was experimentally investigated. SIMIION code was used to computationally study the electron trajectories emanating from the filament towards the molybdenum target. A Faraday cup on the prototype device, proof-of-principle, was used to measure the distribution of electrons on the target, which compares favorably to computational results. The intensities of characteristic x-ray for molybdenum, tungsten and rhodium targets were investigated with different window materials for -30kV to -100kV applied potential. Heat loading and thermal management of the target has been investigated computationally using COMSOL code package, and experimental measurements of target temperature rise was taken via thermocouples attached to the target. Temperature measurements for low voltage, low current regime without active cooling were compared to computational results for code-experiment benchmarking. Two different phantoms were used in the simulation of DEI images, which showed that the designed x-ray source with DEI setup could produce images with significant improved contrast. The computational results, along with experimental measurements on the prototype setup, indicate the possibility of scale up to larger area x-ray source adequate for DEI applications.

  7. High Resolution X-ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement

    DTIC Science & Technology

    2008-06-01

    Imaging with Acoustic Tissue-Selective Contrast Enhancement PRINCIPAL INVESTIGATOR: Gerald J. Diebold, Ph.D. CONTRACTING... Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement 5b. GRANT NUMBER W81XWH-04-1-0481 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...additional phase contrast features are visible at the interfaces of soft tissues as slight contrast enhancements . The image sequence in Fig. 2 shows an image

  8. Diffraction and imaging study of imperfections of crystallized lysozyme with coherent X-rays

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Chu, Y. S.; Lai, B.; Thomas, B. R.; Chernov, A. A.

    2004-01-01

    Phase-contrast X-ray diffraction imaging and high-angular-resolution diffraction combined with phase-contrast radiographic imaging were employed to characterize defects and perfection of a uniformly grown tetragonal lysozyme crystal in the symmetric Laue case. The full-width at half-maximum (FWHM) of a 4 4 0 rocking curve measured from the original crystal was approximately 16.7 arcsec and imperfections including line defects, inclusions and other microdefects were observed in the diffraction images of the crystal. The observed line defects carry distinct dislocation features running approximately along the <1 1 0> growth front and have been found to originate mostly in a central growth area and occasionally in outer growth regions. Inclusions of impurities or formations of foreign particles in the central growth region are resolved in the images with high sensitivity to defects. Slow dehydration led to the broadening of a fairly symmetric 4 4 0 rocking curve by a factor of approximately 2.6, which was primarily attributed to the dehydration-induced microscopic effects that are clearly shown in X-ray diffraction images. The details of the observed defects and the significant change in the revealed microstructures with drying provide insight into the nature of imperfections, nucleation and growth, and the properties of protein crystals.

  9. Image contrast of diffraction-limited telescopes for circular incoherent sources of uniform radiance

    NASA Technical Reports Server (NTRS)

    Shackleford, W. L.

    1980-01-01

    A simple approximate formula is derived for the background intensity beyond the edge of the image of uniform incoherent circular light source relative to the irradiance near the center of the image. The analysis applies to diffraction-limited telescopes with or without central beam obscuration due to a secondary mirror. Scattering off optical surfaces is neglected. The analysis is expected to be most applicable to spaceborne IR telescopes, for which diffraction can be the major source of off-axis response.

  10. Soft x-ray coherent diffraction imaging on magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Shi, Xiaowen; Lee, James; Mishra, Shrawan; Parks, Daniel; Tyliszczak, Tolek; Shapiro, David; Roy, Sujoy; Kevan, Steve; Stxm Team At Als Collaboration; Soft X-Ray Microscopy Group At Als Collaboration; Soft X-ray scattering at ALS, LBL Team

    2014-03-01

    Coherent soft X-rays diffraction imaging enable coherent magnetic resonance scattering at transition metal L-edge to be probed so that magnetic domains could be imaged with very high spatial resolution with phase contrast, reaching sub-10nm. One of the overwhelming advantages of using coherent X-rays is the ability to resolve phase contrast images with linearly polarized light with both phase and absorption contrast comparing to real-space imaging, which can only be studied with circularly polarized light with absorption contrast only. Here we report our first results on high-resolution of magnetic domains imaging of CoPd multilayer thin film with coherent soft X-ray ptychography method. We are aiming to resolve and understand magnetic domain wall structures with the highest obtainable resolution here at Advanced Light Source. In principle types of magnetic domain walls could be studied so that Neel or Bloch walls can be distinguished by imaging. This work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02- 05CH11231).

  11. An improved contrast enhancement algorithm for infrared images based on adaptive double plateaus histogram equalization

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Jin, Weiqi; Li, Li; Li, Yiyang

    2018-05-01

    Infrared thermal images can reflect the thermal-radiation distribution of a particular scene. However, the contrast of the infrared images is usually low. Hence, it is generally necessary to enhance the contrast of infrared images in advance to facilitate subsequent recognition and analysis. Based on the adaptive double plateaus histogram equalization, this paper presents an improved contrast enhancement algorithm for infrared thermal images. In the proposed algorithm, the normalized coefficient of variation of the histogram, which characterizes the level of contrast enhancement, is introduced as feedback information to adjust the upper and lower plateau thresholds. The experiments on actual infrared images show that compared to the three typical contrast-enhancement algorithms, the proposed algorithm has better scene adaptability and yields better contrast-enhancement results for infrared images with more dark areas or a higher dynamic range. Hence, it has high application value in contrast enhancement, dynamic range compression, and digital detail enhancement for infrared thermal images.

  12. Diffraction effects and inelastic electron transport in angle-resolved microscopic imaging applications.

    PubMed

    Winkelmann, A; Nolze, G; Vespucci, S; Naresh-Kumar, G; Trager-Cowan, C; Vilalta-Clemente, A; Wilkinson, A J; Vos, M

    2017-09-01

    We analyse the signal formation process for scanning electron microscopic imaging applications on crystalline specimens. In accordance with previous investigations, we find nontrivial effects of incident beam diffraction on the backscattered electron distribution in energy and momentum. Specifically, incident beam diffraction causes angular changes of the backscattered electron distribution which we identify as the dominant mechanism underlying pseudocolour orientation imaging using multiple, angle-resolving detectors. Consequently, diffraction effects of the incident beam and their impact on the subsequent coherent and incoherent electron transport need to be taken into account for an in-depth theoretical modelling of the energy- and momentum distribution of electrons backscattered from crystalline sample regions. Our findings have implications for the level of theoretical detail that can be necessary for the interpretation of complex imaging modalities such as electron channelling contrast imaging (ECCI) of defects in crystals. If the solid angle of detection is limited to specific regions of the backscattered electron momentum distribution, the image contrast that is observed in ECCI and similar applications can be strongly affected by incident beam diffraction and topographic effects from the sample surface. As an application, we demonstrate characteristic changes in the resulting images if different properties of the backscattered electron distribution are used for the analysis of a GaN thin film sample containing dislocations. © 2017 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  13. Naturalness preservation image contrast enhancement via histogram modification

    NASA Astrophysics Data System (ADS)

    Tian, Qi-Chong; Cohen, Laurent D.

    2018-04-01

    Contrast enhancement is a technique for enhancing image contrast to obtain better visual quality. Since many existing contrast enhancement algorithms usually produce over-enhanced results, the naturalness preservation is needed to be considered in the framework of image contrast enhancement. This paper proposes a naturalness preservation contrast enhancement method, which adopts the histogram matching to improve the contrast and uses the image quality assessment to automatically select the optimal target histogram. The contrast improvement and the naturalness preservation are both considered in the target histogram, so this method can avoid the over-enhancement problem. In the proposed method, the optimal target histogram is a weighted sum of the original histogram, the uniform histogram, and the Gaussian-shaped histogram. Then the structural metric and the statistical naturalness metric are used to determine the weights of corresponding histograms. At last, the contrast-enhanced image is obtained via matching the optimal target histogram. The experiments demonstrate the proposed method outperforms the compared histogram-based contrast enhancement algorithms.

  14. Analysis of energy dispersive x-ray diffraction profiles for material identification, imaging and system control

    NASA Astrophysics Data System (ADS)

    Cook, Emily Jane

    2008-12-01

    This thesis presents the analysis of low angle X-ray scatter measurements taken with an energy dispersive system for substance identification, imaging and system control. Diffraction measurements were made on illicit drugs, which have pseudo- crystalline structures and thus produce diffraction patterns comprising a se ries of sharp peaks. Though the diffraction profiles of each drug are visually characteristic, automated detection systems require a substance identification algorithm, and multivariate analysis was selected as suitable. The software was trained with measured diffraction data from 60 samples covering 7 illicit drugs and 5 common cutting agents, collected with a range of statistical qual ities and used to predict the content of 7 unknown samples. In all cases the constituents were identified correctly and the contents predicted to within 15%. Soft tissues exhibit broad peaks in their diffraction patterns. Diffraction data were collected from formalin fixed breast tissue samples and used to gen erate images. Maximum contrast between healthy and suspicious regions was achieved using momentum transfer windows 1.04-1.10 and 1.84-1.90 nm_1. The resulting images had an average contrast of 24.6% and 38.9% compared to the corresponding transmission X-ray images (18.3%). The data was used to simulate the feedback for an adaptive imaging system and the ratio of the aforementioned momentum transfer regions found to be an excellent pa rameter. Investigation into the effects of formalin fixation on human breast tissue and animal tissue equivalents indicated that fixation in standard 10% buffered formalin does not alter the diffraction profiles of tissue in the mo mentum transfer regions examined, though 100% unbuffered formalin affects the profile of porcine muscle tissue (a substitute for glandular and tumourous tissue), though fat is unaffected.

  15. Diffraction and Imaging Study of Imperfections of Protein Crystals with Coherent X-rays

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Thomas, B. R.; Chernov, A. A.; Chu, Y. S.; Lai, B.

    2004-01-01

    High angular-resolution x-ray diffraction and phase contrast x-ray imaging were combined to study defects and perfection of protein crystals. Imperfections including line defects, inclusions and other microdefects were observed in the diffraction images of a uniformly grown lysozyme crystal. The observed line defects carry distinct dislocation features running approximately along the <110> growth front and have been found to originate mostly in a central growth area and occasionally in outer growth regions. Slow dehydration led to the broadening of a fairly symmetric 4 4 0 rocking curve by a factor of approximately 2.6, which was primarily attributed to the dehydration-induced microscopic effects that are clearly shown in diffraction images. X-ray imaging and diffraction characterization of the quality of apoferritin crystals will also be discussed in the presentation.

  16. Characterization of ultrafine grained Cu-Ni-Si alloys by electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Altenberger, I.; Kuhn, H. A.; Gholami, M.; Mhaede, M.; Wagner, L.

    2014-08-01

    A combination of rotary swaging and optimized precipitation hardening was applied to generate ultra fine grained (UFG) microstructures in low alloyed high performance Cu-based alloy CuNi3Si1Mg. As a result, ultrafine grained (UFG) microstructures with nanoscopically small Ni2Si-precipitates exhibiting high strength, ductility and electrical conductivity can be obtained. Grain boundary pinning by nano-precipitates enhances the thermal stability. Electron channeling contrast imaging (ECCI) and especially electron backscattering diffraction (EBSD) are predestined to characterize the evolving microstructures due to excellent resolution and vast crystallographic information. The following study summarizes the microstructure after different processing steps and points out the consequences for the most important mechanical and physical properties such as strength, ductility and conductivity.

  17. Coherent total internal reflection dark-field microscopy: label-free imaging beyond the diffraction limit.

    PubMed

    von Olshausen, Philipp; Rohrbach, Alexander

    2013-10-15

    Coherent imaging is barely applicable in life-science microscopy due to multiple interference artifacts. Here, we show how these interferences can be used to improve image resolution and contrast. We present a dark-field microscopy technique with evanescent illumination via total internal reflection that delivers high-contrast images of coherently scattering samples. By incoherent averaging of multiple coherent images illuminated from different directions we can resolve image structures that remain unresolved by conventional (incoherent) fluorescence microscopy. We provide images of 190 nm beads revealing resolution beyond the diffraction limit and slightly increased object distances. An analytical model is introduced that accounts for the observed effects and which is confirmed by numerical simulations. Our approach may be a route to fast, label-free, super-resolution imaging in live-cell microscopy.

  18. Techniques for High Contrast Imaging in Multi-Star Systems II: Multi-Star Wavefront Control

    NASA Technical Reports Server (NTRS)

    Sirbu, D.; Thomas, S.; Belikov, R.

    2017-01-01

    Direct imaging of exoplanets represents a challenge for astronomical instrumentation due to the high-contrast ratio and small angular separation between the host star and the faint planet. Multi-star systems pose additional challenges for coronagraphic instruments because of the diffraction and aberration leakage introduced by the additional stars, and as a result are not planned to be on direct imaging target lists. Multi-star wavefront control (MSWC) is a technique that uses a coronagraphic instrument's deformable mirror (DM) to create high-contrast regions in the focal plane in the presence of multiple stars. Our previous paper introduced the Super-Nyquist Wavefront Control (SNWC) technique that uses a diffraction grating to enable the DM to generate high-contrast regions beyond the nominal controllable region. These two techniques can be combined to generate high-contrast regions for multi-star systems at any angular separations. As a case study, a high-contrast wavefront control (WC) simulation that applies these techniques shows that the habitable region of the Alpha Centauri system can be imaged reaching 8 times 10(exp -9) mean contrast in 10 percent broadband light in one-sided dark holes from 1.6-5.5 lambda (wavelength) divided by D (distance).

  19. The Simultaneous Combination of Phase Contrast Imaging with In Situ X-ray diffraction from Shock Compressed Matter

    NASA Astrophysics Data System (ADS)

    McBride, Emma Elizabeth; Seiboth, Frank; Cooper, Leora; Frost, Mungo; Goede, Sebastian; Harmand, Marion; Levitan, Abe; McGonegle, David; Miyanishi, Kohei; Ozaki, Norimasa; Roedel, Melanie; Sun, Peihao; Wark, Justin; Hastings, Jerry; Glenzer, Siegfried; Fletcher, Luke

    2017-10-01

    Here, we present the simultaneous combination of phase contrast imaging (PCI) techniques with in situ X-ray diffraction to investigate multiple-wave features in laser-driven shock-compressed germanium. Experiments were conducted at the Matter at Extreme Conditions end station at the LCLS, and measurements were made perpendicular to the shock propagation direction. PCI allows one to take femtosecond snapshots of magnified real-space images of shock waves as they progress though matter. X-ray diffraction perpendicular to the shock propagation direction provides the opportunity to isolate and identify different waves and determine the crystal structure unambiguously. Here, we combine these two powerful techniques simultaneously, by using the same Be lens setup to focus the fundamental beam at 8.2 keV to a size of 1.5 mm on target for PCI and the 3rd harmonic at 24.6 keV to a spot size of 2 um on target for diffraction.

  20. Signal enhancement and Patterson-search phasing for high-spatial-resolution coherent X-ray diffraction imaging of biological objects.

    PubMed

    Takayama, Yuki; Maki-Yonekura, Saori; Oroguchi, Tomotaka; Nakasako, Masayoshi; Yonekura, Koji

    2015-01-28

    In this decade coherent X-ray diffraction imaging has been demonstrated to reveal internal structures of whole biological cells and organelles. However, the spatial resolution is limited to several tens of nanometers due to the poor scattering power of biological samples. The challenge is to recover correct phase information from experimental diffraction patterns that have a low signal-to-noise ratio and unmeasurable lowest-resolution data. Here, we propose a method to extend spatial resolution by enhancing diffraction signals and by robust phasing. The weak diffraction signals from biological objects are enhanced by interference with strong waves from dispersed colloidal gold particles. The positions of the gold particles determined by Patterson analysis serve as the initial phase, and this dramatically improves reliability and convergence of image reconstruction by iterative phase retrieval. A set of calculations based on current experiments demonstrates that resolution is improved by a factor of two or more.

  1. Signal enhancement and Patterson-search phasing for high-spatial-resolution coherent X-ray diffraction imaging of biological objects

    PubMed Central

    Takayama, Yuki; Maki-Yonekura, Saori; Oroguchi, Tomotaka; Nakasako, Masayoshi; Yonekura, Koji

    2015-01-01

    In this decade coherent X-ray diffraction imaging has been demonstrated to reveal internal structures of whole biological cells and organelles. However, the spatial resolution is limited to several tens of nanometers due to the poor scattering power of biological samples. The challenge is to recover correct phase information from experimental diffraction patterns that have a low signal-to-noise ratio and unmeasurable lowest-resolution data. Here, we propose a method to extend spatial resolution by enhancing diffraction signals and by robust phasing. The weak diffraction signals from biological objects are enhanced by interference with strong waves from dispersed colloidal gold particles. The positions of the gold particles determined by Patterson analysis serve as the initial phase, and this dramatically improves reliability and convergence of image reconstruction by iterative phase retrieval. A set of calculations based on current experiments demonstrates that resolution is improved by a factor of two or more. PMID:25627480

  2. Contrast-enhanced fluid-attenuated inversion recovery vs. contrast-enhanced spin echo T1-weighted brain imaging.

    PubMed

    Falzone, Cristian; Rossi, Federica; Calistri, Maurizio; Tranquillo, Massimo; Baroni, Massimo

    2008-01-01

    In humans, contrast-enhanced fluid-attenuated inversion recovery (FLAIR) imaging plays an important role in detecting brain disease. The aim of this study was to define the clinical utility of contrast-enhanced FLAIR imaging by comparing the results with those with contrast-enhanced spin echo T1-weighted images (SE T1WI) in animals with different brain disorders. Forty-one dogs and five cats with a clinical suspicion of brain disease and 30 normal animals (25 dogs and five cats) were evaluated using a 0.2 T permanent magnet. Before contrast medium injection, spin echo T1-weighted, SE T1WI, and FLAIR sequences were acquired in three planes. SE T1WI and FLAIR images were also acquired after gadolinium injection. Sensitivity in detecting the number, location, margin, and enhancement pattern and rate were evaluated. No lesions were found in a normal animal. In affected animals, 48 lesions in 34 patients were detected in contrast-enhanced SE T1WI whereas 81 lesions in 44 patients were detected in contrast-enhanced FLAIR images. There was no difference in the characteristics of the margins or enhancement pattern of the detected lesions. The objective enhancement rate, the mean value between lesion-to-white matter ratio and lesion-to-gray matter ratio, although representing an overlap of T1 and T2 effects and not pure contrast medium shortening of T1 relaxation, was better in contrast-enhanced FLAIR images. These results suggest a superiority of contrast-enhanced FLAIR images as compared with contrast-enhanced SE T1WI in detecting enhancing brain lesions.

  3. Image contrast enhancement using adjacent-blocks-based modification for local histogram equalization

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Pan, Zhibin

    2017-11-01

    Infrared images usually have some non-ideal characteristics such as weak target-to-background contrast and strong noise. Because of these characteristics, it is necessary to apply the contrast enhancement algorithm to improve the visual quality of infrared images. Histogram equalization (HE) algorithm is a widely used contrast enhancement algorithm due to its effectiveness and simple implementation. But a drawback of HE algorithm is that the local contrast of an image cannot be equally enhanced. Local histogram equalization algorithms are proved to be the effective techniques for local image contrast enhancement. However, over-enhancement of noise and artifacts can be easily found in the local histogram equalization enhanced images. In this paper, a new contrast enhancement technique based on local histogram equalization algorithm is proposed to overcome the drawbacks mentioned above. The input images are segmented into three kinds of overlapped sub-blocks using the gradients of them. To overcome the over-enhancement effect, the histograms of these sub-blocks are then modified by adjacent sub-blocks. We pay more attention to improve the contrast of detail information while the brightness of the flat region in these sub-blocks is well preserved. It will be shown that the proposed algorithm outperforms other related algorithms by enhancing the local contrast without introducing over-enhancement effects and additional noise.

  4. Phase retrieval by coherent modulation imaging.

    PubMed

    Zhang, Fucai; Chen, Bo; Morrison, Graeme R; Vila-Comamala, Joan; Guizar-Sicairos, Manuel; Robinson, Ian K

    2016-11-18

    Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single-diffraction pattern has been an algorithmic and experimental challenge. Here we report a method of phase retrieval that uses a known modulation of the sample exit wave. This coherent modulation imaging method removes inherent ambiguities of coherent diffraction imaging and uses a reliable, rapidly converging iterative algorithm involving three planes. It works for extended samples, does not require tight support for convergence and relaxes dynamic range requirements on the detector. Coherent modulation imaging provides a robust method for imaging in materials and biological science, while its single-shot capability will benefit the investigation of dynamical processes with pulsed sources, such as X-ray free-electron lasers.

  5. The GKSS beamlines at PETRA III and DORIS III

    NASA Astrophysics Data System (ADS)

    Haibel, A.; Beckmann, F.; Dose, T.; Herzen, J.; Utcke, S.; Lippmann, T.; Schell, N.; Schreyer, A.

    2008-08-01

    Due to the high brilliance of the new storage ring PETRA III at DESY in Hamburg, the low emittance of 1 nmrad and the high fraction of coherent photons also in the hard X-ray range extremely intense and sharply focused X-ray light will be provided. These advantages of the beam fulfill excellently the qualifications for the planned Imaging BeamLine IBL and the High Energy Materials Science Beamline (HEMS) at PETRA III, i.e. for absorption tomography, phase enhanced and phase contrast experiments, for diffraction, for nano focusing, for nano tomography, and for high speed or in-situ experiments with highest spatial resolution. The existing HARWI II beamline at the DORIS III storage ring at DESY completes the GKSS beamline concept with setups for high energy tomography (16-150 keV) and diffraction (16-250 keV), characterized by a large field of view and an excellent absorption contrast with spatial resolutions down to 2 μm.

  6. Diffracting aperture based differential phase contrast for scanning X-ray microscopy.

    PubMed

    Kaulich, Burkhard; Polack, Francois; Neuhaeusler, Ulrich; Susini, Jean; di Fabrizio, Enzo; Wilhein, Thomas

    2002-10-07

    It is demonstrated that in a zone plate based scanning X-ray microscope, used to image low absorbing, heterogeneous matter at a mesoscopic scale, differential phase contrast (DPC) can be implemented without adding any additional optical component to the normal scheme of the microscope. The DPC mode is simply generated by an appropriate positioning and alignment of microscope apertures. Diffraction from the apertures produces a wave front with a non-uniform intensity. The signal recorded by a pinhole photo diode located in the intensity gradient is highly sensitive to phase changes introduced by the specimen to be recorded. The feasibility of this novel DPC technique was proven with the scanning X-ray microscope at the ID21 beamline of the European Synchrotron Radiation facility (ESRF) operated at 6 keV photon energy. We observe a differential phase contrast, similar to Nomarski's differential interference contrast for the light microscope, which results in a tremendous increase in image contrast of up to 20 % when imaging low absorbing specimen.

  7. Effect of multiple circular holes Fraunhofer diffraction for the infrared optical imaging

    NASA Astrophysics Data System (ADS)

    Lu, Chunlian; Lv, He; Cao, Yang; Cai, Zhisong; Tan, Xiaojun

    2014-11-01

    With the development of infrared optics, infrared optical imaging systems play an increasingly important role in modern optical imaging systems. Infrared optical imaging is used in industry, agriculture, medical, military and transportation. But in terms of infrared optical imaging systems which are exposed for a long time, some contaminations will affect the infrared optical imaging. When the contamination contaminate on the lens surface of the optical system, it would affect diffraction. The lens can be seen as complementary multiple circular holes screen happen Fraunhofer diffraction. According to Babinet principle, you can get the diffraction of the imaging system. Therefore, by studying the multiple circular holes Fraunhofer diffraction, conclusions can be drawn about the effect of infrared imaging. This paper mainly studies the effect of multiple circular holes Fraunhofer diffraction for the optical imaging. Firstly, we introduce the theory of Fraunhofer diffraction and Point Spread Function. Point Spread Function is a basic tool to evaluate the image quality of the optical system. Fraunhofer diffraction will affect Point Spread Function. Then, the results of multiple circular holes Fraunhofer diffraction are given for different hole size and hole spacing. We choose the hole size from 0.1mm to 1mm and hole spacing from 0.3mm to 0.8mm. The infrared wavebands of optical imaging are chosen from 1μm to 5μm. We use the MATLAB to simulate light intensity distribution of multiple circular holes Fraunhofer diffraction. Finally, three-dimensional diffraction maps of light intensity are given to contrast.

  8. White-light optical vortex coronagraph

    NASA Astrophysics Data System (ADS)

    Kanburapa, Prachyathit

    An optical vortex is characterized by a dark core of destructive interference in a light beam. One of the methods commonly employed to create an optical vortex is by using a computer-generated hologram. A vortex hologram pattern is computed from the interference pattern between a reference plane wave and a vortex wave, resulting in a forked grating pattern. In astronomy, an optical vortex coronagraph is one of the most promising high contrast imaging techniques for the direct imaging of extra-solar planets. Direct imaging of extra-solar planets is a challenging task since the brightness of the parent star is extremely high compared to its orbiting planets. The on-axis light from the parent star gets diffracted in the coronagraph, forming a "ring of fire" pattern, whereas the slightly off-axis light from the planet remains intact. Lyot stop can then be used to block the ring of fire pattern, thus allowing only the planetary light to get through to the imaging camera. Contrast enhancements of 106 or more are possible, provided the vortex lens (spiral phase plate) has exceptional optical quality. By using a vortex hologram with a 4 microm pitch, and an f/300 focusing lens, we were able to demonstrate the creation of a "ring of fire" using a white light emitting diode as a source. A dispersion compensating linear diffraction grating of 4 microm pitch was used to bring the rings together to form a single white light ring of fire. To our knowledge, this is the first time a vortex hologram based OVC has been demonstrated, resulting in a well-formed white light ring of fire. Experimental results show measured power contrast of 1/515 when HeNe laser source was used as a light source and 1/77 when using a white light emitting diode.

  9. Newly Diagnosed Breast Cancer: Comparison of Contrast-enhanced Spectral Mammography and Breast MR Imaging in the Evaluation of Extent of Disease.

    PubMed

    Lee-Felker, Stephanie A; Tekchandani, Leena; Thomas, Mariam; Gupta, Esha; Andrews-Tang, Denise; Roth, Antoinette; Sayre, James; Rahbar, Guita

    2017-11-01

    Purpose To compare the diagnostic performances of contrast material-enhanced spectral mammography and breast magnetic resonance (MR) imaging in the detection of index and secondary cancers in women with newly diagnosed breast cancer by using histologic or imaging follow-up as the standard of reference. Materials and Methods This institutional review board-approved, HIPAA-compliant, retrospective study included 52 women who underwent breast MR imaging and contrast-enhanced spectral mammography for newly diagnosed unilateral breast cancer between March 2014 and October 2015. Of those 52 patients, 46 were referred for contrast-enhanced spectral mammography and targeted ultrasonography because they had additional suspicious lesions at MR imaging. In six of the 52 patients, breast cancer had been diagnosed at an outside institution. These patients were referred for contrast-enhanced spectral mammography and targeted US as part of diagnostic imaging. Images from contrast-enhanced spectral mammography were analyzed by two fellowship-trained breast imagers with 2.5 years of experience with contrast-enhanced spectral mammography. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value were calculated for both imaging modalities and compared by using the Bennett statistic. Results Fifty-two women with 120 breast lesions were included for analysis (mean age, 50 years; range, 29-73 years). Contrast-enhanced spectral mammography had similar sensitivity to MR imaging (94% [66 of 70 lesions] vs 99% [69 of 70 lesions]), a significantly higher PPV than MR imaging (93% [66 of 71 lesions] vs 60% [69 of 115 lesions]), and fewer false-positive findings than MR imaging (five vs 45) (P < .001 for all results). In addition, contrast-enhanced spectral mammography depicted 11 of the 11 secondary cancers (100%) and MR imaging depicted 10 (91%). Conclusion Contrast-enhanced spectral mammography is potentially as sensitive as MR imaging in the evaluation of extent of disease in newly diagnosed breast cancer, with a higher PPV. © RSNA, 2017.

  10. Image degradation characteristics and restoration based on regularization for diffractive imaging

    NASA Astrophysics Data System (ADS)

    Zhi, Xiyang; Jiang, Shikai; Zhang, Wei; Wang, Dawei; Li, Yun

    2017-11-01

    The diffractive membrane optical imaging system is an important development trend of ultra large aperture and lightweight space camera. However, related investigations on physics-based diffractive imaging degradation characteristics and corresponding image restoration methods are less studied. In this paper, the model of image quality degradation for the diffraction imaging system is first deduced mathematically based on diffraction theory and then the degradation characteristics are analyzed. On this basis, a novel regularization model of image restoration that contains multiple prior constraints is established. After that, the solving approach of the equation with the multi-norm coexistence and multi-regularization parameters (prior's parameters) is presented. Subsequently, the space-variant PSF image restoration method for large aperture diffractive imaging system is proposed combined with block idea of isoplanatic region. Experimentally, the proposed algorithm demonstrates its capacity to achieve multi-objective improvement including MTF enhancing, dispersion correcting, noise and artifact suppressing as well as image's detail preserving, and produce satisfactory visual quality. This can provide scientific basis for applications and possesses potential application prospects on future space applications of diffractive membrane imaging technology.

  11. Tolerance of image enhancement brightness and contrast in lateral cephalometric digital radiography for Steiner analysis

    NASA Astrophysics Data System (ADS)

    Rianti, R. A.; Priaminiarti, M.; Syahraini, S. I.

    2017-08-01

    Image enhancement brightness and contrast can be adjusted on lateral cephalometric digital radiographs to improve image quality and anatomic landmarks for measurement by Steiner analysis. To determine the limit value for adjustments of image enhancement brightness and contrast in lateral cephalometric digital radiography for Steiner analysis. Image enhancement brightness and contrast were adjusted on 100 lateral cephalometric radiography in 10-point increments (-30, -20, -10, 0, +10, +20, +30). Steiner analysis measurements were then performed by two observers. Reliabilities were tested by the Interclass Correlation Coefficient (ICC) and significance tested by ANOVA or the Kruskal Wallis test. No significant differences were detected in lateral cephalometric analysis measurements following adjustment of the image enhancement brightness and contrast. The limit value of adjustments of the image enhancement brightness and contrast associated with incremental 10-point changes (-30, -20, -10, 0, +10, +20, +30) does not affect the results of Steiner analysis.

  12. Image contrast enhancement with brightness preservation using an optimal gamma correction and weighted sum approach

    NASA Astrophysics Data System (ADS)

    Jiang, G.; Wong, C. Y.; Lin, S. C. F.; Rahman, M. A.; Ren, T. R.; Kwok, Ngaiming; Shi, Haiyan; Yu, Ying-Hao; Wu, Tonghai

    2015-04-01

    The enhancement of image contrast and preservation of image brightness are two important but conflicting objectives in image restoration. Previous attempts based on linear histogram equalization had achieved contrast enhancement, but exact preservation of brightness was not accomplished. A new perspective is taken here to provide balanced performance of contrast enhancement and brightness preservation simultaneously by casting the quest of such solution to an optimization problem. Specifically, the non-linear gamma correction method is adopted to enhance the contrast, while a weighted sum approach is employed for brightness preservation. In addition, the efficient golden search algorithm is exploited to determine the required optimal parameters to produce the enhanced images. Experiments are conducted on natural colour images captured under various indoor, outdoor and illumination conditions. Results have shown that the proposed method outperforms currently available methods in contrast to enhancement and brightness preservation.

  13. Assessment of contrast enhanced respiration managed cone-beam CT for image guided radiotherapy of intrahepatic tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Nikolaj K. G., E-mail: nkyj@regionsjaelland.dk; Stewart, Errol; Imaging Research Lab, Robarts Research Institute, London, Ontario N6A 5B7

    2014-05-15

    Purpose: Contrast enhancement and respiration management are widely used during image acquisition for radiotherapy treatment planning of liver tumors along with respiration management at the treatment unit. However, neither respiration management nor intravenous contrast is commonly used during cone-beam CT (CBCT) image acquisition for alignment prior to radiotherapy. In this study, the authors investigate the potential gains of injecting an iodinated contrast agent in combination with respiration management during CBCT acquisition for liver tumor radiotherapy. Methods: Five rabbits with implanted liver tumors were subjected to CBCT with and without motion management and contrast injection. The acquired CBCT images were registeredmore » to the planning CT to determine alignment accuracy and dosimetric impact. The authors developed a simulation tool for simulating contrast-enhanced CBCT images from dynamic contrast enhanced CT imaging (DCE-CT) to determine optimal contrast injection protocols. The tool was validated against contrast-enhanced CBCT of the rabbit subjects and was used for five human patients diagnosed with hepatocellular carcinoma. Results: In the rabbit experiment, when neither motion management nor contrast was used, tumor centroid misalignment between planning image and CBCT was 9.2 mm. This was reduced to 2.8 mm when both techniques were employed. Tumors were not visualized in clinical CBCT images of human subjects. Simulated contrast-enhanced CBCT was found to improve tumor contrast in all subjects. Different patients were found to require different contrast injections to maximize tumor contrast. Conclusions: Based on the authors’ animal study, respiration managed contrast enhanced CBCT improves IGRT significantly. Contrast enhanced CBCT benefits from patient specific tracer kinetics determined from DCE-CT.« less

  14. Color Retinal Image Enhancement Based on Luminosity and Contrast Adjustment.

    PubMed

    Zhou, Mei; Jin, Kai; Wang, Shaoze; Ye, Juan; Qian, Dahong

    2018-03-01

    Many common eye diseases and cardiovascular diseases can be diagnosed through retinal imaging. However, due to uneven illumination, image blurring, and low contrast, retinal images with poor quality are not useful for diagnosis, especially in automated image analyzing systems. Here, we propose a new image enhancement method to improve color retinal image luminosity and contrast. A luminance gain matrix, which is obtained by gamma correction of the value channel in the HSV (hue, saturation, and value) color space, is used to enhance the R, G, and B (red, green and blue) channels, respectively. Contrast is then enhanced in the luminosity channel of L * a * b * color space by CLAHE (contrast-limited adaptive histogram equalization). Image enhancement by the proposed method is compared to other methods by evaluating quality scores of the enhanced images. The performance of the method is mainly validated on a dataset of 961 poor-quality retinal images. Quality assessment (range 0-1) of image enhancement of this poor dataset indicated that our method improved color retinal image quality from an average of 0.0404 (standard deviation 0.0291) up to an average of 0.4565 (standard deviation 0.1000). The proposed method is shown to achieve superior image enhancement compared to contrast enhancement in other color spaces or by other related methods, while simultaneously preserving image naturalness. This method of color retinal image enhancement may be employed to assist ophthalmologists in more efficient screening of retinal diseases and in development of improved automated image analysis for clinical diagnosis.

  15. Feature and contrast enhancement of mammographic image based on multiscale analysis and morphology.

    PubMed

    Wu, Shibin; Yu, Shaode; Yang, Yuhan; Xie, Yaoqin

    2013-01-01

    A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII).

  16. Feature and Contrast Enhancement of Mammographic Image Based on Multiscale Analysis and Morphology

    PubMed Central

    Wu, Shibin; Xie, Yaoqin

    2013-01-01

    A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII). PMID:24416072

  17. Diffraction and Transmission Synchrotron Imaging at the German Light Source ANKA--Potential Industrial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rack, Alexander; Weitkamp, Timm; European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex

    2009-03-10

    Diffraction and transmission synchrotron imaging methods have proven to be highly suitable for investigations in materials research and non-destructive evaluation. The high flux and spatial coherence of X-rays from modern synchrotron light sources allows one to work using high resolution and different contrast modalities. This article gives a short overview of different transmission and diffraction imaging methods with high potential for industrial applications, now available for commercial access via the German light source ANKA (Forschungszentrum Karlsruhe) and its new department ANKA Commercial Service (ANKA COS, http://www.anka-cos.de)

  18. Imaging fully hydrated whole cells by coherent x-ray diffraction microscopy.

    PubMed

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Naitow, Hisashi; Kunishima, Naoki; Yoshida, Takashi; Ishikawa, Tetsuya; Song, Changyong

    2013-03-01

    Nanoscale imaging of biological specimens in their native condition is of long-standing interest, in particular with direct, high resolution views of internal structures of intact specimens, though as yet progress has been limited. Here we introduce wet coherent x-ray diffraction microscopy capable of imaging fully hydrated and unstained biological specimens. Whole cell morphologies and internal structures better than 25 nm can be clearly visualized without contrast degradation.

  19. CO₂ processing and hydration of fruit and vegetable tissues by clathrate hydrate formation.

    PubMed

    Takeya, Satoshi; Nakano, Kohei; Thammawong, Manasikan; Umeda, Hiroki; Yoneyama, Akio; Takeda, Tohoru; Hyodo, Kazuyuki; Matsuo, Seiji

    2016-08-15

    CO2 hydrate can be used to preserve fresh fruits and vegetables, and its application could contribute to the processing of carbonated frozen food. We investigated water transformation in the frozen tissue of fresh grape samples upon CO2 treatment at 2-3 MPa and 3°C for up to 46 h. Frozen fresh bean, radish, eggplant and cucumber samples were also investigated for comparison. X-ray diffraction indicated that after undergoing CO2 treatment for several hours, structure I CO2 hydrate formed within the grape tissue. Phase-contrast X-ray imaging using the diffraction-enhanced imaging technique revealed the presence of CO2 hydrate within the intercellular spaces of these tissues. The carbonated produce became effervescent because of the dissociation of CO2 hydrate through the intercellular space, especially above the melting point of ice. In addition, suppressed metabolic activity resulting from CO2 hydrate formation, which inhibits water and nutrient transport through intercellular space, can be expected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Diffraction Contrast Tomography: A Novel 3D Polycrystalline Grain Imaging Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuettner, Lindsey Ann

    2017-06-06

    Diffraction contrast tomography (DCT) is a non-destructive way of imaging microstructures of polycrystalline materials such as metals or crystalline organics. It is a useful technique to map 3D grain structures as well as providing crystallographic information such as crystal orientation, grain shape, and strain. Understanding the internal microstructure of a material is important in understanding the bulk material properties. This report gives a general overview of the similar techniques, DCT data acquisition, and analysis processes. Following the short literature review, potential work and research at Los Alamos National Laboratory (LANL) is discussed.

  1. Enhancing resolution in coherent x-ray diffraction imaging.

    PubMed

    Noh, Do Young; Kim, Chan; Kim, Yoonhee; Song, Changyong

    2016-12-14

    Achieving a resolution near 1 nm is a critical issue in coherent x-ray diffraction imaging (CDI) for applications in materials and biology. Albeit with various advantages of CDI based on synchrotrons and newly developed x-ray free electron lasers, its applications would be limited without improving resolution well below 10 nm. Here, we review the issues and efforts in improving CDI resolution including various methods for resolution determination. Enhancing diffraction signal at large diffraction angles, with the aid of interference between neighboring strong scatterers or templates, is reviewed and discussed in terms of increasing signal-to-noise ratio. In addition, we discuss errors in image reconstruction algorithms-caused by the discreteness of the Fourier transformations involved-which degrade the spatial resolution, and suggest ways to correct them. We expect this review to be useful for applications of CDI in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.

  2. How many photons are needed to reconstruct random objects in coherent X-ray diffractive imaging?

    PubMed

    Jahn, T; Wilke, R N; Chushkin, Y; Salditt, T

    2017-01-01

    This paper presents an investigation of the reconstructibility of coherent X-ray diffractive imaging diffraction patterns for a class of binary random `bitmap' objects. Combining analytical results and numerical simulations, the critical fluence per bitmap pixel is determined, for arbitrary contrast values (absorption level and phase shift), both for the optical near- and far-field. This work extends previous investigations based on information theory, enabling a comparison of the amount of information carried by single photons in different diffraction regimes. The experimental results show an order-of-magnitude agreement.

  3. An analytical optimization model for infrared image enhancement via local context

    NASA Astrophysics Data System (ADS)

    Xu, Yongjian; Liang, Kun; Xiong, Yiru; Wang, Hui

    2017-12-01

    The requirement for high-quality infrared images is constantly increasing in both military and civilian areas, and it is always associated with little distortion and appropriate contrast, while infrared images commonly have some shortcomings such as low contrast. In this paper, we propose a novel infrared image histogram enhancement algorithm based on local context. By constraining the enhanced image to have high local contrast, a regularized analytical optimization model is proposed to enhance infrared images. The local contrast is determined by evaluating whether two intensities are neighbors and calculating their differences. The comparison on 8-bit images shows that the proposed method can enhance the infrared images with more details and lower noise.

  4. Quantitative evaluation of high-resolution features in images of negatively stained Tobacco Mosaic Virus.

    PubMed

    Chang, C F; Williams, R C; Grano, D A; Downing, K H; Glaeser, R M

    1983-01-01

    This study investigates the causes of the apparent differences between the optical diffraction pattern of a micrograph of a Tobacco Mosaic Virus (TMV) particle, the optical diffraction pattern of a ten-fold photographically averaged image, and the computed diffraction pattern of the original micrograph. Peak intensities along the layer lines in the transform of the averaged image appear to be quite unlike those in the diffraction pattern of the original micrograph, and the diffraction intensities for the averaged image extend to unexpectedly high resolution. A carefully controlled, quantitative comparison reveals, however, that the optical diffraction pattern of the original micrograph and that of the ten-fold averaged image are essentially equivalent. Using computer-based image processing, we discovered that the peak intensities on the 6th layer line have values very similar in magnitude to the neighboring noise, in contrast to what was expected from the optical diffraction pattern of the original micrograph. This discrepancy was resolved by recording a series of optical diffraction patterns when the original micrograph was immersed in oil. These patterns revealed the presence of a substantial phase grating effect, which exaggerated the peak intensities on the 6th layer line, causing an erroneous impression that the high resolution features possessed a good signal-to-noise ratio. This study thus reveals some pitfalls and misleading results that can be encountered when using optical diffraction patterns to evaluate image quality.

  5. Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Fezzaa, K.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.

    2012-07-01

    The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (˜2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.

  6. Ptychography: use of quantitative phase information for high-contrast label free time-lapse imaging of living cells

    NASA Astrophysics Data System (ADS)

    Suman, Rakesh; O'Toole, Peter

    2014-03-01

    Here we report a novel label free, high contrast and quantitative method for imaging live cells. The technique reconstructs an image from overlapping diffraction patterns using a ptychographical algorithm. The algorithm utilises both amplitude and phase data from the sample to report on quantitative changes related to the refractive index (RI) and thickness of the specimen. We report the ability of this technique to generate high contrast images, to visualise neurite elongation in neuronal cells, and to provide measure of cell proliferation.

  7. Contrast Enhancement for Thermal Acoustic Breast Cancer Imaging via Resonant Stimulation

    DTIC Science & Technology

    2008-03-01

    AD_________________ Award Number: W81XWH-06-1-0389 TITLE: Contrast Enhancement for Thermal...5a. CONTRACT NUMBER Contrast Enhancement for Thermal Acoustic Breast Cancer Imaging via Resonant Stimulation 5b. GRANT NUMBER W81XWH-06-1-0389...13. SUPPLEMENTARY NOTES 14. ABSTRACT This research plans to develop enhanced contrast thermal acoustic imaging (TAI) technology for the

  8. Dual-energy CT for detection of contrast enhancement or leakage within high-density haematomas in patients with intracranial haemorrhage.

    PubMed

    Watanabe, Yoshiyuki; Tsukabe, Akio; Kunitomi, Yuki; Nishizawa, Mitsuo; Arisawa, Atsuko; Tanaka, Hisashi; Yoshiya, Kazuhisa; Shimazu, Takeshi; Tomiyama, Noriyuki

    2014-04-01

    Our study aimed to elucidate the diagnostic performance of dual-energy CT (DECT) in the detection of contrast enhancement in intracranial haematomas (ICrH) with early phase dual-energy computed tomography angiography (CTA) and compare the results with those obtained by delayed CT enhancement. Thirty-six patients with ICrH were retrospectively included in this study. All patients had undergone single-energy non-contrast CT and contrast-enhanced dual-source DECT. DECT images were post-processed with commercial software, followed by obtaining iodine images and virtual non-contrast images and generating combined images that created the impression of 120-kVp images. Two neuroradiologists, blinded to the patients' data, reviewed two reading sessions: session A (non-contrast CT and combined CT) and session B (non-contrast CT, combined CT, and iodine images) for detection of contrast enhancement in the haematomas. Contrast leakage or enhancement was detected in 23 (57.5 %) out of 40 haemorrhagic lesions in 36 patients on delayed CT. Three enhanced lesions were depicted only in the DECT iodine images. The sensitivity, specificity, positive predictive value, and negative predictive value of session A were 82.6, 94.1, 95.0, and 80.0 %, respectively, and those of session B were 95.7, 94.1, 95.7, and 94.1 %, respectively. DECT emphasised the iodine enhancement and facilitated the detection of contrast enhancement or leakage.

  9. Diffraction contrast near heterostructure boundaries--its nature and its application.

    PubMed

    Bangert, U; Harvey, A J

    1993-03-01

    Two phenomena of diffraction contrast arising at or near III-V compound heterostructure boundaries are described and quantitatively analyzed. In the first observation alpha/delta-fringe contrast at boundaries inclined to the electron beam is discussed. Theoretical fringe profiles are generated according to the theory by Gevers et al. in 1964, which are then compared with experimental profiles. Applications to the characterization of AlGaAs/GaAs and InGaAsP/InP interfaces regarding composition, abruptness, and lattice tilt are presented. In the second study a new and very sensitive characterization technique for the direct determination of the strain in strained-layer structures is described. The method uses electron microscope images of 90 degrees-wedges, which exhibit a shift in the thickness contours due to strain relaxation at the edge, and compares these to images which are obtained theoretically by implementing finite element strain calculations in wedges in the dynamical theory of diffraction contrast. The considerable potential of this method is demonstrated on the strain analysis of strained GaInAs/GaAs structures.

  10. Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings.

    PubMed

    Márquez, Andrés; Neipp, Cristian; Beléndez, Augusto; Gallego, Sergi; Ortuño, Manuel; Pascual, Inmaculada

    2003-09-01

    We demonstrate edge-enhanced imaging produced by volume phase gratings recorded on a polyvinyl alcohol/acrylamide photopolymer. Bragg diffraction, exhibited by volume gratings, modifies the impulse response of the imaging system, facilitating spatial filtering operations with no need for a physical Fourier plane. We demonstrate that Kogelnik's coupled-wave theory can be used to calculate the transfer function for the transmitted and the diffracted orders. The experimental and simulated results agree, and they demonstrate the feasibility of our proposal.

  11. X-ray diffraction microscopy on frozen hydrated specimens

    NASA Astrophysics Data System (ADS)

    Nelson, Johanna

    X-rays are excellent for imaging thick samples at high resolution because of their large penetration depth compared to electrons and their short wavelength relative to visible light. To image biological material, the absorption contrast of soft X-rays, especially between the carbon and oxygen K-shell absorption edges, can be utilized to give high contrast, high resolution images without the need for stains or labels. Because of radiation damage and the desire for high resolution tomography, live cell imaging is not feasible. However, cells can be frozen in vitrified ice, which reduces the effect of radiation damage while maintaining their natural hydrated state. X-ray diffraction microscopy (XDM) is an imaging technique which eliminates the limitations imposed by current focusing optics simply by removing them entirely. Far-field coherent diffraction intensity patterns are collected on a pixelated detector allowing every scattered photon to be collected within the limits of the detector's efficiency and physical size. An iterative computer algorithm is then used to invert the diffraction intensity into a real space image with both absorption and phase information. This technique transfers the emphasis away from fabrication and alignment of optics, and towards data processing. We have used this method to image a pair of freeze-dried, immuno-labeled yeast cells to the highest resolution (13 nm) yet obtained for a whole eukaryotic cell. We discuss successes and challenges in working with frozen hydrated specimens and efforts aimed at high resolution imaging of vitrified eukaryotic cells in 3D.

  12. Scanning electron microscope observation of dislocations in semiconductor and metal materials.

    PubMed

    Kuwano, Noriyuki; Itakura, Masaru; Nagatomo, Yoshiyuki; Tachibana, Shigeaki

    2010-08-01

    Scanning electron microscope (SEM) image contrasts have been investigated for dislocations in semiconductor and metal materials. It is revealed that single dislocations can be observed in a high contrast in SEM images formed by backscattered electrons (BSE) under the condition of a normal configuration of SEM. The BSE images of dislocations were compared with those of the transmission electron microscope and scanning transmission electron microscope (STEM) and the dependence of BSE image contrast on the tilting of specimen was examined to discuss the origin of image contrast. From the experimental results, it is concluded that the BSE images of single dislocations are attributed to the diffraction effect and related with high-angle dark-field images of STEM.

  13. Enhancement of multispectral thermal infrared images - Decorrelation contrast stretching

    NASA Technical Reports Server (NTRS)

    Gillespie, Alan R.

    1992-01-01

    Decorrelation contrast stretching is an effective method for displaying information from multispectral thermal infrared (TIR) images. The technique involves transformation of the data to principle components ('decorrelation'), independent contrast 'stretching' of data from the new 'decorrelated' image bands, and retransformation of the stretched data back to the approximate original axes, based on the inverse of the principle component rotation. The enhancement is robust in that colors of the same scene components are similar in enhanced images of similar scenes, or the same scene imaged at different times. Decorrelation contrast stretching is reviewed in the context of other enhancements applied to TIR images.

  14. Clinical utility of three-dimensional contrast-enhanced ultrasound in the differentiation between noninvasive and invasive neoplasms of urinary bladder.

    PubMed

    Li, Qiu-yang; Tang, Jie; He, En-hui; Li, Yan-mi; Zhou, Yun; Zhang, Xu; Chen, Guangfu

    2012-11-01

    The purpose of this study was to evaluate the effectiveness of three-dimensional contrast-enhanced ultrasound in differentiating invasive and noninvasive neoplasms of urinary bladder. A total of 60 lesions in 60 consecutive patients with bladder tumors received three dimensional ultrasonography, low acoustic power contrast enhanced ultrasonography and low acoustic power three-dimensional contrast-enhanced ultrasound examination. The IU22 ultrasound scanner and a volume transducer were used and the ultrasound contrast agent was SonoVue. The contrast-specific sonographic imaging modes were PI (pulse inversion) and PM (power modulation). The three dimensional ultrasonography, contrast enhanced ultrasonography, and three-dimensional contrast-enhanced ultrasound images were independently reviewed by two readers who were not in the images acquisition. Images were analyzed off-site. A level of confidence in the diagnosis of tumor invasion of the muscle layer was assigned on a 5° scale. Receiver operating characteristic analysis was used to assess overall confidence in the diagnosis of muscle invasion by tumor. Kappa values were used to assess inter-readers agreement. Histologic diagnosis was obtained for all patients. Final pathologic staging revealed 44 noninvasive tumors and 16 invasive tumors. Three-dimensional contrast-enhanced ultrasound depicted all 16 muscle-invasive tumors. The diagnostic performance of three-dimensional contrast-enhanced ultrasound was better than those of three dimensional ultrasonography and contrast enhanced ultrasonography. The receiver operating characteristic curves were 0.976 and 0.967 for three-dimensional contrast-enhanced ultrasound, those for three dimensional ultrasonography were 0.881 and 0.869, those for contrast enhanced ultrasonography were 0.927 and 0.929. The kappa values in the three dimensional ultrasonography, contrast enhanced ultrasonography and three-dimensional contrast-enhanced ultrasound for inter-reader agreements were 0.717, 0.794 and 0.914. Three-dimensional contrast-enhanced ultrasound imaging, with contrast-enhanced spatial visualization is clinical useful for differentiating invasive and noninvasive neoplasms of urinary bladder objectively. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Limitations of contrast enhancement for infrared target identification

    NASA Astrophysics Data System (ADS)

    Du Bosq, Todd W.; Fanning, Jonathan D.

    2009-05-01

    Contrast enhancement and dynamic range compression are currently being used to improve the performance of infrared imagers by increasing the contrast between the target and the scene content. Automatic contrast enhancement techniques do not always achieve this improvement. In some cases, the contrast can increase to a level of target saturation. This paper assesses the range-performance effects of contrast enhancement for target identification as a function of image saturation. Human perception experiments were performed to determine field performance using contrast enhancement on the U.S. Army RDECOM CERDEC NVESD standard military eight target set using an un-cooled LWIR camera. The experiments compare the identification performance of observers viewing contrast enhancement processed images at various levels of saturation. Contrast enhancement is modeled in the U.S. Army thermal target acquisition model (NVThermIP) by changing the scene contrast temperature. The model predicts improved performance based on any improved target contrast, regardless of specific feature saturation or enhancement. The measured results follow the predicted performance based on the target task difficulty metric used in NVThermIP for the non-saturated cases. The saturated images reduce the information contained in the target and performance suffers. The model treats the contrast of the target as uniform over spatial frequency. As the contrast is enhanced, the model assumes that the contrast is enhanced uniformly over the spatial frequencies. After saturation, the spatial cues that differentiate one tank from another are located in a limited band of spatial frequencies. A frequency dependent treatment of target contrast is needed to predict performance of over-processed images.

  16. Conical diffraction as a versatile building block to implement new imaging modalities for superresolution in fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Fallet, Clément; Caron, Julien; Oddos, Stephane; Tinevez, Jean-Yves; Moisan, Lionel; Sirat, Gabriel Y.; Braitbart, Philippe O.; Shorte, Spencer L.

    2014-08-01

    We present a new technology for super-resolution fluorescence imaging, based on conical diffraction. Conical diffraction is a linear, singular phenomenon taking place when a polarized beam is diffracted through a biaxial crystal. The illumination patterns generated by conical diffraction are more compact than the classical Gaussian beam; we use them to generate a super-resolution imaging modality. Conical Diffraction Microscopy (CODIM) resolution enhancement can be achieved with any type of objective on any kind of sample preparation and standard fluorophores. Conical diffraction can be used in multiple fashion to create new and disruptive technologies for super-resolution microscopy. This paper will focus on the first one that has been implemented and give a glimpse at what the future of microscopy using conical diffraction could be.

  17. Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy

    PubMed Central

    Chowdhury, Shwetadwip; Eldridge, Will J.; Wax, Adam; Izatt, Joseph A.

    2017-01-01

    Sub-diffraction resolution imaging has played a pivotal role in biological research by visualizing key, but previously unresolvable, sub-cellular structures. Unfortunately, applications of far-field sub-diffraction resolution are currently divided between fluorescent and coherent-diffraction regimes, and a multimodal sub-diffraction technique that bridges this gap has not yet been demonstrated. Here we report that structured illumination (SI) allows multimodal sub-diffraction imaging of both coherent quantitative-phase (QP) and fluorescence. Due to SI’s conventionally fluorescent applications, we first demonstrate the principle of SI-enabled three-dimensional (3D) QP sub-diffraction imaging with calibration microspheres. Image analysis confirmed enhanced lateral and axial resolutions over diffraction-limited QP imaging, and established striking parallels between coherent SI and conventional optical diffraction tomography. We next introduce an optical system utilizing SI to achieve 3D sub-diffraction, multimodal QP/fluorescent visualization of A549 biological cells fluorescently tagged for F-actin. Our results suggest that SI has a unique utility in studying biological phenomena with significant molecular, biophysical, and biochemical components. PMID:28663887

  18. Visual Contrast Enhancement Algorithm Based on Histogram Equalization

    PubMed Central

    Ting, Chih-Chung; Wu, Bing-Fei; Chung, Meng-Liang; Chiu, Chung-Cheng; Wu, Ya-Ching

    2015-01-01

    Image enhancement techniques primarily improve the contrast of an image to lend it a better appearance. One of the popular enhancement methods is histogram equalization (HE) because of its simplicity and effectiveness. However, it is rarely applied to consumer electronics products because it can cause excessive contrast enhancement and feature loss problems. These problems make the images processed by HE look unnatural and introduce unwanted artifacts in them. In this study, a visual contrast enhancement algorithm (VCEA) based on HE is proposed. VCEA considers the requirements of the human visual perception in order to address the drawbacks of HE. It effectively solves the excessive contrast enhancement problem by adjusting the spaces between two adjacent gray values of the HE histogram. In addition, VCEA reduces the effects of the feature loss problem by using the obtained spaces. Furthermore, VCEA enhances the detailed textures of an image to generate an enhanced image with better visual quality. Experimental results show that images obtained by applying VCEA have higher contrast and are more suited to human visual perception than those processed by HE and other HE-based methods. PMID:26184219

  19. Sequential contrast-enhanced MR imaging of the penis.

    PubMed

    Kaneko, K; De Mouy, E H; Lee, B E

    1994-04-01

    To determine the enhancement patterns of the penis at magnetic resonance (MR) imaging. Sequential contrast material-enhanced MR images of the penis in a flaccid state were obtained in 16 volunteers (12 with normal penile function and four with erectile dysfunction). Subjects with normal erectile function showed gradual and centrifugal enhancement of the corpora cavernosa, while those with erectile dysfunction showed poor enhancement with abnormal progression. Sequential contrast-enhanced MR imaging provides additional morphologic information for the evaluation of erectile dysfunction.

  20. A preliminary evaluation of self-made nanobubble in contrast-enhanced ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Wu, Kaizhi; Li, Jing; Liu, Haijuan; Zhou, Qibing; Ding, Mingyue

    2014-03-01

    Nanoscale bubbles (nanobubbles) have been reported to improve contrast in tumor-targeted ultrasound imaging due to the enhanced permeation and retention effects at tumor vascular leaks. In this work, a self-made nanobubble ultrasound contrast agent was preliminarily characterized and evaluated in-vitro and in-vivo. Fundamental properties such as morphology appearance, size distribution, zeta potential, bubble concentration (bubble numbers per milliliter contrast agent suspension) and the stability of nanobubbles were assessed by light microscope and particle sizing analysis. Then the concentration intensity curve and time intensity curves (TICs) were acquired by ultrasound imaging experiment in-vitro. Finally, the contrast-enhanced ultrasonography was performed on rat to investigate the procedure of liver perfusion. The results showed that the nanobubbles had good shape and uniform distribution with the average diameter of 507.9 nm, polydispersity index (PDI) of 0.527, and zeta potential of -19.17 mV. Significant contrast enhancement was observed in in-vitro ultrasound imaging, demonstrating that the self-made nanobubbles can enhance the contrast effect of ultrasound imaging efficiently in-vitro. Slightly contrast enhancement was observed in in-vivo ultrasound imaging, indicating that the nanobubbles are not stable enough in-vivo. Future work will be focused on improving the ultrasonic imaging performance, stability, and antibody binding of the nanoscale ultrasound contrast agent.

  1. Temporal subtraction contrast-enhanced dedicated breast CT

    NASA Astrophysics Data System (ADS)

    Gazi, Peymon M.; Aminololama-Shakeri, Shadi; Yang, Kai; Boone, John M.

    2016-09-01

    The development of a framework of deformable image registration and segmentation for the purpose of temporal subtraction contrast-enhanced breast CT is described. An iterative histogram-based two-means clustering method was used for the segmentation. Dedicated breast CT images were segmented into background (air), adipose, fibroglandular and skin components. Fibroglandular tissue was classified as either normal or contrast-enhanced then divided into tiers for the purpose of categorizing degrees of contrast enhancement. A variant of the Demons deformable registration algorithm, intensity difference adaptive Demons (IDAD), was developed to correct for the large deformation forces that stemmed from contrast enhancement. In this application, the accuracy of the proposed method was evaluated in both mathematically-simulated and physically-acquired phantom images. Clinical usage and accuracy of the temporal subtraction framework was demonstrated using contrast-enhanced breast CT datasets from five patients. Registration performance was quantified using normalized cross correlation (NCC), symmetric uncertainty coefficient, normalized mutual information (NMI), mean square error (MSE) and target registration error (TRE). The proposed method outperformed conventional affine and other Demons variations in contrast enhanced breast CT image registration. In simulation studies, IDAD exhibited improvement in MSE (0-16%), NCC (0-6%), NMI (0-13%) and TRE (0-34%) compared to the conventional Demons approaches, depending on the size and intensity of the enhancing lesion. As lesion size and contrast enhancement levels increased, so did the improvement. The drop in the correlation between the pre- and post-contrast images for the largest enhancement levels in phantom studies is less than 1.2% (150 Hounsfield units). Registration error, measured by TRE, shows only submillimeter mismatches between the concordant anatomical target points in all patient studies. The algorithm was implemented using a parallel processing architecture resulting in rapid execution time for the iterative segmentation and intensity-adaptive registration techniques. Characterization of contrast-enhanced lesions is improved using temporal subtraction contrast-enhanced dedicated breast CT. Adaptation of Demons registration forces as a function of contrast-enhancement levels provided a means to accurately align breast tissue in pre- and post-contrast image acquisitions, improving subtraction results. Spatial subtraction of the aligned images yields useful diagnostic information with respect to enhanced lesion morphology and uptake.

  2. Simulation tools for analyzer-based x-ray phase contrast imaging system with a conventional x-ray source

    NASA Astrophysics Data System (ADS)

    Caudevilla, Oriol; Zhou, Wei; Stoupin, Stanislav; Verman, Boris; Brankov, J. G.

    2016-09-01

    Analyzer-based X-ray phase contrast imaging (ABI) belongs to a broader family of phase-contrast (PC) X-ray imaging modalities. Unlike the conventional X-ray radiography, which measures only X-ray absorption, in PC imaging one can also measures the X-rays deflection induced by the object refractive properties. It has been shown that refraction imaging provides better contrast when imaging the soft tissue, which is of great interest in medical imaging applications. In this paper, we introduce a simulation tool specifically designed to simulate the analyzer-based X-ray phase contrast imaging system with a conventional polychromatic X-ray source. By utilizing ray tracing and basic physical principles of diffraction theory our simulation tool can predicting the X-ray beam profile shape, the energy content, the total throughput (photon count) at the detector. In addition we can evaluate imaging system point-spread function for various system configurations.

  3. MR imaging with i.v. superparamagnetic iron oxide: efficacy in the detection of focal hepatic lesions.

    PubMed

    Winter, T C; Freeny, P C; Nghiem, H V; Mack, L A; Patten, R M; Thomas, C R; Elliott, S

    1993-12-01

    The purpose of this study was to evaluate the efficacy of superparmagnetic iron oxide (SPIO) in the detection of focal hepatic lesions on MR images. The study included 21 patients with 115 focal hepatic lesions and eight patients without focal hepatic lesions. T1- and T2-weighted MR images were obtained at 1.5 T before and 60 min after the end of injection of an SPIO agent. Contrast-enhanced CT scans were obtained in all patients within 10 days after MR imaging. The effect of SPIO on the signal intensity of the liver and spleen was assessed by using quantitative analysis of the region of interest. Efficacy was evaluated by using multiple criteria and unenhanced and SPIO-enhanced images. Evaluations included subjective assessment of image quality, counting the number of lesions detected, and statistical analysis of quantitative changes in the signal intensity of lesions and of normal liver. By all criteria, SPIO-enhanced T2-weighted MR images were superior to unenhanced T2-weighted images and to contrast-enhanced CT scans. Conversely, by all criteria, SPIO-enhanced T1-weighted MR images were worse than unenhanced T1-weighted images and contrast-enhanced CT scans. The mean lesion-to-liver contrast on T2-weighted images was 317% on unenhanced images and 1745% on SPIO-enhanced images. For T1-weighted, the mean contrast was 26% on unenhanced images and 18% on SPIO-enhanced images. SPIO is an efficacious contrast agent for the detection of focal hepatic lesions when T2-weighted MR images are used.

  4. The PIAA Coronagraph: Optical design and Diffraction Effects

    NASA Astrophysics Data System (ADS)

    Pluzhnik, E. A.; Guyon, O.; Ridgway, S.; Martinache, F.; Woodruff, R.; Blain, C.; Galicher, R.

    2005-12-01

    Properly apodized pupils are suitable for high dynamical range imaging of extrasolar terrestrial planets. Phase-induced amplitude apodization (PIAA) of the telescope pupil (Guyon 2003) combines the advantages of classical pupil apodization with full throughput, no loss of angular resolution and low chromaticity. Diffraction propagation effects can decrease both the achieved contrast and the spectral bandwidth of the coronagraph. We show here how the diffraction effects in the PIAA optics can be corrected by an appropriate optical design. The proposed hybrid coronagraph design preserves the 10-10 PSF contrast at ≈ 1.5 λ /d required for efficient exoplanet imaging over the whole visible spectrum. This work was carried out under JPL contract numbers 1254445 and 1257767 for Development of Technologies for the Terrestrial Planet Finder Mission, with the support and hospitality of the National Astronomical Observatory of Japan.

  5. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil.

    PubMed

    Kappen, P; Arhatari, B D; Luu, M B; Balaur, E; Caradoc-Davies, T

    2013-06-01

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography∕diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).

  6. Contrast-enhanced photoacoustic tomography of human joints

    NASA Astrophysics Data System (ADS)

    Tian, Chao; Keswani, Rahul K.; Gandikota, Girish; Rosania, Gus R.; Wang, Xueding

    2016-03-01

    Photoacoustic tomography (PAT) provides a unique tool to diagnose inflammatory arthritis. However, the specificity and sensitivity of PAT based on endogenous contrasts is limited. The development of contrast enhanced PAT imaging modalities in combination with small molecule contrast agents could lead to improvements in diagnosis and treatment of joint disease. Accordingly, we adapted and tested a PAT clinical imaging system for imaging the human joints, in combination with a novel PAT contrast agent derived from an FDA-approved small molecule drug. Imaging results based on a photoacoustic and ultrasound (PA/US) dual-modality system revealed that this contrast-enhanced PAT imaging system may offer additional information beyond single-modality PA or US imaging system, for the imaging, diagnosis and assessment of inflammatory arthritis.

  7. NASA High Contrast Imaging for Exoplanets

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.

    2008-01-01

    Described is NASA's ongoing program for the detection and characterization of exosolar planets via high-contrast imaging. Some of the more promising proposed techniques under assessment may enable detection of life outside our solar system. In visible light terrestrial planets are approximately 10(exp -10) dimmer than the parent star. Issues such as diffraction, scatter, wavefront, amplitude and polarization all contribute to a reduction in contrast. An overview of the techniques will be discussed.

  8. Closed Loop, DM Diversity-based, Wavefront Correction Algorithm for High Contrast Imaging Systems

    NASA Technical Reports Server (NTRS)

    Give'on, Amir; Belikov, Ruslan; Shaklan, Stuart; Kasdin, Jeremy

    2007-01-01

    High contrast imaging from space relies on coronagraphs to limit diffraction and a wavefront control systems to compensate for imperfections in both the telescope optics and the coronagraph. The extreme contrast required (up to 10(exp -10) for terrestrial planets) puts severe requirements on the wavefront control system, as the achievable contrast is limited by the quality of the wavefront. This paper presents a general closed loop correction algorithm for high contrast imaging coronagraphs by minimizing the energy in a predefined region in the image where terrestrial planets could be found. The estimation part of the algorithm reconstructs the complex field in the image plane using phase diversity caused by the deformable mirror. This method has been shown to achieve faster and better correction than classical speckle nulling.

  9. Contrast-enhanced optical coherence microangiography with acoustic-actuated microbubbles

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Hsuan; Zhang, Jia-Wei; Yeh, Chih-Kuang; Wei, Kuo-Chen; Liu, Hao-Li; Tsai, Meng-Tsan

    2017-04-01

    In this study, we propose to use gas-filled microbubbles (MBs) simultaneously actuated by the acoustic wave to enhance the imaging contrast of optical coherence tomography (OCT)-based angiography. In the phantom experiments, MBs can result in stronger backscattered intensity, enabling to enhance the contrast of OCT intensity image. Moreover, simultaneous application of low-intensity acoustic wave enables to temporally induce local vibration of particles and MBs in the vessels, resulting in time-variant OCT intensity which can be used for enhancing the contrast of OCT intensitybased angiography. Additionally, different acoustic modes and different acoustic powers to actuate MBs are performed and compared to investigate the feasibility of contrast enhancement. Finally, animal experiments are performed. The findings suggest that acoustic-actuated MBs can effectively enhance the imaging contrast of OCT-based angiography and the imaging depth of OCT angiography is also extended.

  10. Structured illumination microscopy for dual-modality 3D sub-diffraction resolution fluorescence and refractive-index reconstruction

    PubMed Central

    Chowdhury, Shwetadwip; Eldridge, Will J.; Wax, Adam; Izatt, Joseph A.

    2017-01-01

    Though structured illumination (SI) microscopy is a popular imaging technique conventionally associated with fluorescent super-resolution, recent works have suggested its applicability towards sub-diffraction resolution coherent imaging with quantitative endogenous biological contrast. Here, we demonstrate that SI can efficiently integrate together the principles of fluorescent super-resolution and coherent synthetic aperture to achieve 3D dual-modality sub-diffraction resolution, fluorescence and refractive-index (RI) visualizations of biological samples. We experimentally demonstrate this framework by introducing a SI microscope capable of 3D sub-diffraction resolution fluorescence and RI imaging, and verify its biological visualization capabilities by experimentally reconstructing 3D RI/fluorescence visualizations of fluorescent calibration microspheres as well as alveolar basal epithelial adenocarcinoma (A549) and human colorectal adenocarcinmoa (HT-29) cells, fluorescently stained for F-actin. This demonstration may suggest SI as an especially promising imaging technique to enable future biological studies that explore synergistically operating biophysical/biochemical and molecular mechanisms at sub-diffraction resolutions. PMID:29296504

  11. Spatial light modulator array with heat minimization and image enhancement features

    DOEpatents

    Jain, Kanti [Briarcliff Manor, NY; Sweatt, William C [Albuquerque, NM; Zemel, Marc [New Rochelle, NY

    2007-01-30

    An enhanced spatial light modulator (ESLM) array, a microelectronics patterning system and a projection display system using such an ESLM for heat-minimization and resolution enhancement during imaging, and the method for fabricating such an ESLM array. The ESLM array includes, in each individual pixel element, a small pixel mirror (reflective region) and a much larger pixel surround. Each pixel surround includes diffraction-grating regions and resolution-enhancement regions. During imaging, a selected pixel mirror reflects a selected-pixel beamlet into the capture angle of a projection lens, while the diffraction grating of the pixel surround redirects heat-producing unused radiation away from the projection lens. The resolution-enhancement regions of selected pixels provide phase shifts that increase effective modulation-transfer function in imaging. All of the non-selected pixel surrounds redirect all radiation energy away from the projection lens. All elements of the ESLM are fabricated by deposition, patterning, etching and other microelectronic process technologies.

  12. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization

    PubMed Central

    Chiu, Chung-Cheng; Ting, Chih-Chung

    2016-01-01

    Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods. PMID:27338412

  13. Cryotherapy of Renal Lesions: Enhancement on Contrast-Enhanced Sonography on Postoperative Day 1 Does Not Imply Viable Tissue Persistence.

    PubMed

    Bertolotto, Michele; Siracusano, Salvatore; Cicero, Calogero; Iannelli, Mariano; Silvestri, Tommaso; Celia, Antonio; Guarise, Alessandro; Stacul, Fulvio

    2017-02-01

    To investigate whether persistent enhancement detected on contrast-enhanced sonography at postoperative day 1 (early contrast-enhanced sonography) after cryoablation of renal tumors implies the presence of residual viable tumor tissue, defined as residual enhancing tissue on reference imaging (computed tomography or magnetic resonance imaging) performed 6 months after the procedure. Seventy-four patients with percutaneous cryoablation of renal tumors had early contrast-enhanced sonography from November 2011 to August 2015. Two independent readers evaluated early contrast-enhanced sonographic findings and contrast-enhanced sonographic investigations performed 1 month after cryoablation of lesions that displayed enhancement on early contrast-enhanced sonography. They scored intralesional enhancement in 4 groups: no enhancement, few intralesional vessels, focal enhancing areas, and diffuse enhancement. Inter-reader agreement in evaluating lesion vascularity on early contrast-enhanced sonography was assessed with weighted κ statistics. Computed tomography or magnetic resonance imaging performed 6 months after the treatment was the reference procedure for assessing the absence or presence of residual disease. Inter-reader agreement in assessing intratumoral vascularization on early contrast-enhanced sonography was very good (κ = 0.90). Enhancement was absent for both readers in 33 of 74 cases; only a few intralesional vessels were visible in 21; whereas diffuse or focal enhancement was present in 13. In the remaining 7 patients, there were differences. Four lesions with focal enhancement on early contrast-enhanced sonography and 1 that was considered avascular had residual tumors on reference imaging. Ablation was successful in the remaining 69 of 74 patients (93%). After cryoablation, intratumoral enhancement on early contrast-enhanced sonography does not imply tumor cell viability. © 2016 by the American Institute of Ultrasound in Medicine.

  14. Segmentation methods for breast vasculature in dual-energy contrast-enhanced digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Lau, Kristen C.; Lee, Hyo Min; Singh, Tanushriya; Maidment, Andrew D. A.

    2015-03-01

    Dual-energy contrast-enhanced digital breast tomosynthesis (DE CE-DBT) uses an iodinated contrast agent to image the three-dimensional breast vasculature. The University of Pennsylvania has an ongoing DE CE-DBT clinical study in patients with known breast cancers. The breast is compressed continuously and imaged at four time points (1 pre-contrast; 3 post-contrast). DE images are obtained by a weighted logarithmic subtraction of the high-energy (HE) and low-energy (LE) image pairs. Temporal subtraction of the post-contrast DE images from the pre-contrast DE image is performed to analyze iodine uptake. Our previous work investigated image registration methods to correct for patient motion, enhancing the evaluation of vascular kinetics. In this project we investigate a segmentation algorithm which identifies blood vessels in the breast from our temporal DE subtraction images. Anisotropic diffusion filtering, Gabor filtering, and morphological filtering are used for the enhancement of vessel features. Vessel labeling methods are then used to distinguish vessel and background features successfully. Statistical and clinical evaluations of segmentation accuracy in DE-CBT images are ongoing.

  15. Medial tibial pain: a dynamic contrast-enhanced MRI study.

    PubMed

    Mattila, K T; Komu, M E; Dahlström, S; Koskinen, S K; Heikkilä, J

    1999-09-01

    The purpose of this study was to compare the sensitivity of different magnetic resonance imaging (MRI) sequences to depict periosteal edema in patients with medial tibial pain. Additionally, we evaluated the ability of dynamic contrast-enhanced imaging (DCES) to depict possible temporal alterations in muscular perfusion within compartments of the leg. Fifteen patients with medial tibial pain were examined with MRI. T1-, T2-weighted, proton density axial images and dynamic and static phase post-contrast images were compared in ability to depict periosteal edema. STIR was used in seven cases to depict bone marrow edema. Images were analyzed to detect signs of compartment edema. Region-of-interest measurements in compartments were performed during DCES and compared with controls. In detecting periosteal edema, post-contrast T1-weighted images were better than spin echo T2-weighted and proton density images or STIR images, but STIR depicted the bone marrow edema best. DCES best demonstrated the gradually enhancing periostitis. Four subjects with severe periosteal edema had visually detectable pathologic enhancement during DCES in the deep posterior compartment of the leg. Percentage enhancement in the deep posterior compartment of the leg was greater in patients than in controls. The fast enhancement phase in the deep posterior compartment began slightly slower in patients than in controls, but it continued longer. We believe that periosteal edema in bone stress reaction can cause impairment of venous flow in the deep posterior compartment. MRI can depict both these conditions. In patients with medial tibial pain, MR imaging protocol should include axial STIR images (to depict bone pathology) with T1-weighted axial pre and post-contrast images, and dynamic contrast enhanced imaging to show periosteal edema and abnormal contrast enhancement within a compartment.

  16. Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading

    DOE PAGES

    Hudspeth, M.; Sun, T.; Parab, N.; ...

    2015-01-01

    Using a high-speed camera and an intensified charge-coupled device (ICCD), a simultaneous X-ray imaging and diffraction technique has been developed for studying dynamic material behaviors during high-rate tensile loading. A Kolsky tension bar has been used to pull samples at 1000 s –1and 5000 s –1strain-rates for super-elastic equiatomic NiTi and 1100-O series aluminium, respectively. By altering the ICCD gating time, temporal resolutions of 100 ps and 3.37 µs have been achieved in capturing the diffraction patterns of interest, thus equating to single-pulse and 22-pulse X-ray exposure. Furthermore, the sample through-thickness deformation process has been simultaneously imagedviaphase-contrast imaging. It ismore » also shown that adequate signal-to-noise ratios are achieved for the detected white-beam diffraction patterns, thereby allowing sufficient information to perform quantitative data analysis diffractionviain-house software ( WBXRD_GUI). Finally, of current interest is the ability to evaluate crystald-spacing, texture evolution and material phase transitions, all of which will be established from experiments performed at the aforementioned elevated strain-rates.« less

  17. Contrast-enhanced magneto-photo-acoustic imaging in vivo using dual-contrast nanoparticles☆

    PubMed Central

    Qu, Min; Mehrmohammadi, Mohammad; Truby, Ryan; Graf, Iulia; Homan, Kimberly; Emelianov, Stanislav

    2014-01-01

    By mapping the distribution of targeted plasmonic nanoparticles (NPs), photoacoustic (PA) imaging offers the potential to detect the pathologies in the early stages. However, optical absorption of the endogenous chromophores in the background tissue significantly reduces the contrast resolution of photoacoustic imaging. Previously, we introduced MPA imaging – a synergistic combination of magneto-motive ultrasound (MMUS) and PA imaging, and demonstrated MPA contrast enhancement using cell culture studies. In the current study, contrast enhancement was investigated in vivo using the magneto-photo-acoustic (MPA) imaging augmented with dual-contrast nanoparticles. Liposomal nanoparticles (LNPs) possessing both optical absorption and magnetic properties were injected into a murine tumor model. First, photoacoustic signals were generated from both the endogenous absorbers in the tissue and the liposomal nanoparticles in the tumor. Then, given significant differences in magnetic properties of tissue and LNPs, the magnetic response of LNPs (i.e. MMUS signal) was utilized to suppress the unwanted PA signals from the background tissue thus improving the PA imaging contrast. In this study, we demonstrated the 3D MPA imaging of LNP-labeled xenografted tumor in a live animal. Compared to conventional PA imaging, the MPA imaging show significantly enhanced contrast between the nanoparticle-labeled tumor and the background tissue. Our results suggest the feasibility of MPA imaging for high contrast in vivo mapping of dual-contrast nanoparticles. PMID:24653976

  18. Synthesis route and three different core-shell impacts on magnetic characterization of gadolinium oxide-based nanoparticles as new contrast agents for molecular magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Azizian, Gholamreza; Riyahi-Alam, Nader; Haghgoo, Soheila; Moghimi, Hamid Reza; Zohdiaghdam, Reza; Rafiei, Behrooz; Gorji, Ensieh

    2012-10-01

    Despite its good resolution, magnetic resonance imaging intrinsically has low sensitivity. Recently, contrast agent nanoparticles have been used as sensitivity and contrast enhancer. The aim of this study was to investigate a new controlled synthesis method for gadolinium oxide-based nanoparticle preparation. For this purpose, diethyleneglycol coating of gadolinium oxide (Gd2O3-DEG) was performed using new supervised polyol route, and small particulate gadolinium oxide (SPGO) PEGylation was obtained with methoxy-polyethylene-glycol-silane (550 and 2,000 Da) coatings as SPGO-mPEG-silane550 and 2,000, respectively. Physicochemical characterization and magnetic properties of these three contrast agents in comparison with conventional Gd-DTPA were verified by dynamic light scattering transmission electron microscopy, Fourier transform infrared spectroscopy, inductively coupled plasma, X-ray diffraction, vibrating sample magnetometer, and the signal intensity and relaxivity measurements were performed using 1.5-T MRI scanner. As a result, the nanoparticle sizes of Gd2O3-DEG, SPGO-mPEG-silane550, and SPGO-mPEG-silane2000 could be reached to 5.9, 51.3, 194.2 nm, respectively. The image signal intensity and longitudinal ( r 1) and transverse relaxivity ( r 2) measurements in different concentrations (0.3 to approximately 2.5 mM), revealed the r 2/ r 1 ratios of 1.13, 0.89, 33.34, and 33.72 for Gd-DTPA, Gd2O3-DEG, SPGO-mPEG-silane550, and SPGO-mPEG-silane2000, respectively. The achievement of new synthesis route of Gd2O3-DEG resulted in lower r 2/ r 1 ratio for Gd2O3-DEG than Gd-DTPA and other previous synthesized methods by this and other groups. The smaller r 2/ r 1 ratios of two PEGylated-SPGO contrast agents in our study in comparison with r 2/ r 1 ratio of previous PEGylation ( r 2/ r 1 = 81.9 for mPEG-silane 6,000 MW) showed that these new three introduced contrast agents could potentially be proper contrast enhancers for cellular and molecular MR imaging.

  19. Amplitude image processing by diffractive optics.

    PubMed

    Cagigal, Manuel P; Valle, Pedro J; Canales, V F

    2016-02-22

    In contrast to the standard digital image processing, which operates over the detected image intensity, we propose to perform amplitude image processing. Amplitude processing, like low pass or high pass filtering, is carried out using diffractive optics elements (DOE) since it allows to operate over the field complex amplitude before it has been detected. We show the procedure for designing the DOE that corresponds to each operation. Furthermore, we accomplish an analysis of amplitude image processing performances. In particular, a DOE Laplacian filter is applied to simulated astronomical images for detecting two stars one Airy ring apart. We also check by numerical simulations that the use of a Laplacian amplitude filter produces less noisy images than the standard digital image processing.

  20. Optimal wavefront estimation of incoherent sources

    NASA Astrophysics Data System (ADS)

    Riggs, A. J. Eldorado; Kasdin, N. Jeremy; Groff, Tyler

    2014-08-01

    Direct imaging is in general necessary to characterize exoplanets and disks. A coronagraph is an instrument used to create a dim (high-contrast) region in a star's PSF where faint companions can be detected. All coronagraphic high-contrast imaging systems use one or more deformable mirrors (DMs) to correct quasi-static aberrations and recover contrast in the focal plane. Simulations show that existing wavefront control algorithms can correct for diffracted starlight in just a few iterations, but in practice tens or hundreds of control iterations are needed to achieve high contrast. The discrepancy largely arises from the fact that simulations have perfect knowledge of the wavefront and DM actuation. Thus, wavefront correction algorithms are currently limited by the quality and speed of wavefront estimates. Exposures in space will take orders of magnitude more time than any calculations, so a nonlinear estimation method that needs fewer images but more computational time would be advantageous. In addition, current wavefront correction routines seek only to reduce diffracted starlight. Here we present nonlinear estimation algorithms that include optimal estimation of sources incoherent with a star such as exoplanets and debris disks.

  1. Temporal subtraction contrast-enhanced dedicated breast CT

    PubMed Central

    Gazi, Peymon M.; Aminololama-Shakeri, Shadi; Yang, Kai; Boone, John M.

    2016-01-01

    Purpose To develop a framework of deformable image registration and segmentation for the purpose of temporal subtraction contrast-enhanced breast CT is described. Methods An iterative histogram-based two-means clustering method was used for the segmentation. Dedicated breast CT images were segmented into background (air), adipose, fibroglandular and skin components. Fibroglandular tissue was classified as either normal or contrast-enhanced then divided into tiers for the purpose of categorizing degrees of contrast enhancement. A variant of the Demons deformable registration algorithm, Intensity Difference Adaptive Demons (IDAD), was developed to correct for the large deformation forces that stemmed from contrast enhancement. In this application, the accuracy of the proposed method was evaluated in both mathematically-simulated and physically-acquired phantom images. Clinical usage and accuracy of the temporal subtraction framework was demonstrated using contrast-enhanced breast CT datasets from five patients. Registration performance was quantified using Normalized Cross Correlation (NCC), Symmetric Uncertainty Coefficient (SUC), Normalized Mutual Information (NMI), Mean Square Error (MSE) and Target Registration Error (TRE). Results The proposed method outperformed conventional affine and other Demons variations in contrast enhanced breast CT image registration. In simulation studies, IDAD exhibited improvement in MSE(0–16%), NCC (0–6%), NMI (0–13%) and TRE (0–34%) compared to the conventional Demons approaches, depending on the size and intensity of the enhancing lesion. As lesion size and contrast enhancement levels increased, so did the improvement. The drop in the correlation between the pre- and post-contrast images for the largest enhancement levels in phantom studies is less than 1.2% (150 Hounsfield units). Registration error, measured by TRE, shows only submillimeter mismatches between the concordant anatomical target points in all patient studies. The algorithm was implemented using a parallel processing architecture resulting in rapid execution time for the iterative segmentation and intensity-adaptive registration techniques. Conclusion Characterization of contrast-enhanced lesions is improved using temporal subtraction contrast-enhanced dedicated breast CT. Adaptation of Demons registration forces as a function of contrast-enhancement levels provided a means to accurately align breast tissue in pre- and post-contrast image acquisitions, improving subtraction results. Spatial subtraction of the aligned images yields useful diagnostic information with respect to enhanced lesion morphology and uptake. PMID:27494376

  2. Modeling the effects of contrast enhancement on target acquisition performance

    NASA Astrophysics Data System (ADS)

    Du Bosq, Todd W.; Fanning, Jonathan D.

    2008-04-01

    Contrast enhancement and dynamic range compression are currently being used to improve the performance of infrared imagers by increasing the contrast between the target and the scene content, by better utilizing the available gray levels either globally or locally. This paper assesses the range-performance effects of various contrast enhancement algorithms for target identification with well contrasted vehicles. Human perception experiments were performed to determine field performance using contrast enhancement on the U.S. Army RDECOM CERDEC NVESD standard military eight target set using an un-cooled LWIR camera. The experiments compare the identification performance of observers viewing linearly scaled images and various contrast enhancement processed images. Contrast enhancement is modeled in the US Army thermal target acquisition model (NVThermIP) by changing the scene contrast temperature. The model predicts improved performance based on any improved target contrast, regardless of feature saturation or enhancement. To account for the equivalent blur associated with each contrast enhancement algorithm, an additional effective MTF was calculated and added to the model. The measured results are compared with the predicted performance based on the target task difficulty metric used in NVThermIP.

  3. Contrast-enhanced magneto-photo-acoustic imaging in vivo using dual-contrast nanoparticles.

    PubMed

    Qu, Min; Mehrmohammadi, Mohammad; Truby, Ryan; Graf, Iulia; Homan, Kimberly; Emelianov, Stanislav

    2014-06-01

    By mapping the distribution of targeted plasmonic nanoparticles (NPs), photoacoustic (PA) imaging offers the potential to detect the pathologies in the early stages. However, optical absorption of the endogenous chromophores in the background tissue significantly reduces the contrast resolution of photoacoustic imaging. Previously, we introduced MPA imaging - a synergistic combination of magneto-motive ultrasound (MMUS) and PA imaging, and demonstrated MPA contrast enhancement using cell culture studies. In the current study, contrast enhancement was investigated in vivo using the magneto-photo-acoustic (MPA) imaging augmented with dual-contrast nanoparticles. Liposomal nanoparticles (LNPs) possessing both optical absorption and magnetic properties were injected into a murine tumor model. First, photoacoustic signals were generated from both the endogenous absorbers in the tissue and the liposomal nanoparticles in the tumor. Then, given significant differences in magnetic properties of tissue and LNPs, the magnetic response of LNPs (i.e. MMUS signal) was utilized to suppress the unwanted PA signals from the background tissue and thus improves the PA imaging contrast. In this study, we demonstrated the 3D MPA image of LNP-labeled xenografted tumor in a live animal. Compared to conventional PA imaging, the MPA images show significantly enhanced contrast between the nanoparticle-labeled tumor and the background tissue. Our results suggest the feasibility of MPA for high contrast in vivo mapping of dual-contrast nanoparticles.

  4. The behavior of single-crystal silicon to dynamic loading using in-situ X-ray diffraction and phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Lee, Hae Ja; Xing, Zhou; Galtier, Eric; Arnold, Brice; Granados, Eduardo; Brown, Shaughnessy B.; Tavella, Franz; McBride, Emma; Fry, Alan; Nagler, Bob; Schropp, Andreas; Seiboth, Frank; Samberg, Dirk; Schroer, Christian; Gleason, Arianna E.; Higginbotham, Andrew

    Hydrostatic and uniaxial compression studies have revealed that crystalline silicon undergoes phase transitions from a cubic diamond structure to a variety of phases including orthorhombic Imma phase, body-centered tetragonal phase, and a hexagonal primitive phase. The dynamic response of silicon at high pressure, however, is not well understood. Phase contrast imaging has proven to be a powerful tool for probing density changes caused by the shock propagation into a material. In order to characterize the elastic and phase transitions, we image shock waves in Si with high spatial resolution using the LCLS X-ray free electron laser and Matter in Extreme Conditions instrument. In this study, the long pulse optical laser with pseudo-flat top shape creates high pressures up to 60 GPa. We measure the crystal structure by observing X-ray diffraction orthogonal to the shock propagation direction over a range of pressures. We describe the capability of simultaneously performing phase contrast imaging and in situ X-ray diffraction during shock loading and discuss the dynamic response of Si in high-pressure phases Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The MEC instrument is supported by.

  5. Increased transverse relaxivity in ultrasmall superparamagnetic iron oxide nanoparticles used as MRI contrast agent for biomedical imaging.

    PubMed

    Mishra, Sushanta Kumar; Kumar, B S Hemanth; Khushu, Subash; Tripathi, Rajendra P; Gangenahalli, Gurudutta

    2016-09-01

    Synthesis of a contrast agent for biomedical imaging is of great interest where magnetic nanoparticles are concerned, because of the strong influence of particle size on transverse relaxivity. In the present study, biocompatible magnetic iron oxide nanoparticles were synthesized by co-precipitation of Fe 2+ and Fe 3+ salts, followed by surface adsorption with reduced dextran. The synthesized nanoparticles were spherical in shape, and 12 ± 2 nm in size as measured using transmission electron microscopy; this was corroborated with results from X-ray diffraction and dynamic light scattering studies. The nanoparticles exhibited superparamagnetic behavior, superior T 2 relaxation rate and high relaxivities (r 1  = 18.4 ± 0.3, r 2  = 90.5 ± 0.8 s -1 mM -1 , at 7 T). MR image analysis of animals before and after magnetic nanoparticle administration revealed that the signal intensity of tumor imaging, specific organ imaging and whole body imaging can be clearly distinguished, due to the strong relaxation properties of these nanoparticles. Very low concentrations (3.0 mg Fe/kg body weight) of iron oxides are sufficient for early detection of tumors, and also have a clear distinction in pre- and post-enhancement of contrast in organs and body imaging. Many investigators have demonstrated high relaxivities of magnetic nanoparticles at superparamagnetic iron oxide level above 50 nm, but this investigation presents a satisfactory, ultrasmall, superparamagnetic and high transverse relaxivity negative contrast agent for diagnosis in pre-clinical studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Fluorescence and diffusive wave diffraction tomographic probes in turbid media

    NASA Astrophysics Data System (ADS)

    Li, Xingde

    1998-10-01

    Light transport over long distances in tissue-like highly scattering media is well approximated as a diffusive process. Diffusing photons can be used to detect, localize and characterize non-invasively optical inhomogeneities such as tumors and hematomas embedded in thick biological tissue. Most of the contrast relies on the endogenous optical property differences between the inhomogeneities and the surrounding media. Recently exogenous fluorescent contrast agents have been considered as a means to enhance the sensitivity and specificity for tumor detection. In the first part of the thesis (Chapter 2 and 3), a theoretical basis is established for modeling the transport, of fluorescent photons in highly scattering media. Fluorescent Diffuse Photon Density Waves (FDPDW) are used to describe the transport of fluorescent photons. A detailed analysis based upon a practical signal-to-noise model was used to access the utility of the fluorescent method. The analysis reveals that a small heterogeneity, embedded in deep tissue-like turbid media with biologically relevant parameters, and with a practically achievable 5-fold fluorophore concentration contrast, can be detected and localized when its radius is greater than 0.2 cm, and can be characterized when its radius is greater than 0.7 cm. In vivo and preliminary clinical studies demonstrate the feasibility of using FDPDW's for tumor diagnosis. Optical imaging with diffusing photons is challenging. Many of the imaging algorithms developed so far are either fundamentally incorrect as in the case of back- projection approach, or require a huge amount of computational resources and CPU time. In the second part of the thesis (Chapter 4), a fast, K-space diffraction tomographic imaging algorithm based upon spatial angular spectrum analysis is derived and applied. Absolute optical properties of thin inhomogeneities and relative optical properties of spatially extended inhomogeneities are reconstructed within a sub-second time scale. Phantom experiments have demonstrated the power of the K-space algorithm and preliminary clinical investigations have exhibited its potential for real time optical diagnosis and imaging of breast cancer.

  7. Quality of image of grating target placed in model of human eye with corneal aberrations as observed through multifocal intraocular lenses.

    PubMed

    Inoue, Makoto; Noda, Toru; Mihashi, Toshifumi; Ohnuma, Kazuhiko; Bissen-Miyajima, Hiroko; Hirakata, Akito

    2011-04-01

    To evaluate the quality of the image of a grating target placed in a model eye viewed through multifocal intraocular lenses (IOLs). Laboratory investigation. Refractive (NXG1 or PY60MV) or diffractive (ZM900 or SA60D3) multifocal IOLs were placed in a fluid-filled model eye with human corneal aberrations. A United States Air Force resolution target was placed on the posterior surface of the model eye. A flat contact lens or a wide-field contact lens was placed on the cornea. The contrasts of the gratings were evaluated under endoillumination and compared to those obtained through a monofocal IOL. The grating images were clear when viewed through the flat contact lens and through the central far-vision zone of the NXG1 and PY60MV, although those through the near-vision zone were blurred and doubled. The images observed through the central area of the ZM900 with flat contact lens were slightly defocused but the images in the periphery were very blurred. The contrast decreased significantly in low frequencies (P<.001). The images observed through the central diffractive zone of the SA60D3 were slightly blurred, although the images in the periphery were clearer than that of the ZM900. The images were less blurred in all of the refractive and diffractive IOLs with the wide-field contact lens. Refractive and diffractive multifocal IOLs blur the grating target but less with the wide-angle viewing system. The peripheral multifocal optical zone may be more influential on the quality of the images with contact lens system. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns

    NASA Astrophysics Data System (ADS)

    Vespucci, S.; Winkelmann, A.; Naresh-Kumar, G.; Mingard, K. P.; Maneuski, D.; Edwards, P. R.; Day, A. P.; O'Shea, V.; Trager-Cowan, C.

    2015-11-01

    Electron backscatter diffraction is a scanning electron microscopy technique used to obtain crystallographic information on materials. It allows the nondestructive mapping of crystal structure, texture, and strain with a lateral and depth resolution on the order of tens of nanometers. Electron backscatter diffraction patterns (EBSPs) are presently acquired using a detector comprising a scintillator coupled to a digital camera, and the crystallographic information obtainable is limited by the conversion of electrons to photons and then back to electrons again. In this article we will report the direct acquisition of energy-filtered EBSPs using a digital complementary metal-oxide-semiconductor hybrid pixel detector, Timepix. We show results from a range of samples with different mass and density, namely diamond, silicon, and GaN. Direct electron detection allows the acquisition of EBSPs at lower (≤5 keV) electron beam energies. This results in a reduction in the depth and lateral extension of the volume of the specimen contributing to the pattern and will lead to a significant improvement in lateral and depth resolution. Direct electron detection together with energy filtering (electrons having energy below a specific value are excluded) also leads to an improvement in spatial resolution but in addition provides an unprecedented increase in the detail in the acquired EBSPs. An increase in contrast and higher-order diffraction features are observed. In addition, excess-deficiency effects appear to be suppressed on energy filtering. This allows the fundamental physics of pattern formation to be interrogated and will enable a step change in the use of electron backscatter diffraction (EBSD) for crystal phase identification and the mapping of strain. The enhancement in the contrast in high-pass energy-filtered EBSD patterns is found to be stronger for lighter, less dense materials. The improved contrast for such materials will enable the application of the EBSD technique to be expanded to materials for which conventional EBSD analysis is not presently practicable.

  9. Local gray level S-curve transformation - A generalized contrast enhancement technique for medical images.

    PubMed

    Gandhamal, Akash; Talbar, Sanjay; Gajre, Suhas; Hani, Ahmad Fadzil M; Kumar, Dileep

    2017-04-01

    Most medical images suffer from inadequate contrast and brightness, which leads to blurred or weak edges (low contrast) between adjacent tissues resulting in poor segmentation and errors in classification of tissues. Thus, contrast enhancement to improve visual information is extremely important in the development of computational approaches for obtaining quantitative measurements from medical images. In this research, a contrast enhancement algorithm that applies gray-level S-curve transformation technique locally in medical images obtained from various modalities is investigated. The S-curve transformation is an extended gray level transformation technique that results into a curve similar to a sigmoid function through a pixel to pixel transformation. This curve essentially increases the difference between minimum and maximum gray values and the image gradient, locally thereby, strengthening edges between adjacent tissues. The performance of the proposed technique is determined by measuring several parameters namely, edge content (improvement in image gradient), enhancement measure (degree of contrast enhancement), absolute mean brightness error (luminance distortion caused by the enhancement), and feature similarity index measure (preservation of the original image features). Based on medical image datasets comprising 1937 images from various modalities such as ultrasound, mammograms, fluorescent images, fundus, X-ray radiographs and MR images, it is found that the local gray-level S-curve transformation outperforms existing techniques in terms of improved contrast and brightness, resulting in clear and strong edges between adjacent tissues. The proposed technique can be used as a preprocessing tool for effective segmentation and classification of tissue structures in medical images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Phase retrieval by coherent modulation imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fucai; Chen, Bo; Morrison, Graeme R.

    Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging (CDI) is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single diffraction pattern has been an algorithmic and experimental challenge. Here we report a method of phase retrieval that uses a known modulation of the sample exit-wave. This coherent modulation imaging (CMI) method removes inherent ambiguities of CDI and uses a reliable, rapidly converging iterative algorithm involving three planes. It works formore » extended samples, does not require tight support for convergence, and relaxes dynamic range requirements on the detector. CMI provides a robust method for imaging in materials and biological science, while its single-shot capability will benefit the investigation of dynamical processes with pulsed sources, such as X-ray free electron laser.« less

  11. Phase retrieval by coherent modulation imaging

    DOE PAGES

    Zhang, Fucai; Chen, Bo; Morrison, Graeme R.; ...

    2016-11-18

    Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging (CDI) is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single diffraction pattern has been an algorithmic and experimental challenge. Here we report a method of phase retrieval that uses a known modulation of the sample exit-wave. This coherent modulation imaging (CMI) method removes inherent ambiguities of CDI and uses a reliable, rapidly converging iterative algorithm involving three planes. It works formore » extended samples, does not require tight support for convergence, and relaxes dynamic range requirements on the detector. CMI provides a robust method for imaging in materials and biological science, while its single-shot capability will benefit the investigation of dynamical processes with pulsed sources, such as X-ray free electron laser.« less

  12. Morton neuroma: evaluation with MR imaging performed with contrast enhancement and fat suppression.

    PubMed

    Terk, M R; Kwong, P K; Suthar, M; Horvath, B C; Colletti, P M

    1993-10-01

    To evaluate clinically suspected Morton neuroma with contrast material-enhanced magnetic resonance (MR) images. Fifteen patients with clinically suspected Morton neuroma underwent examination with conventional T1- and T2-weighted MR imaging and a combination of fat suppression and administration of gadopentetate dimeglumine. A T1-weighted spectral presaturation with inversion recovery sequence was used for fat suppression. In six patients, a tumor that conformed to the clinical findings was seen in the interdigital space; surgical findings in these patients correlated closely with the imaging findings in all patients. Patients without positive findings on MR images tended to have less typical clinical findings and received nonsurgical treatment. In all patients, the lesions were best depicted with the combination of contrast-enhanced imaging and fat suppression; conventional MR images either entirely failed to demonstrate the lesions or demonstrated the lesions less clearly. In patients who need imaging confirmation of a clinically suspected Morton neuroma, the combination of fat suppression and contrast enhancement provides reliable high-contrast images.

  13. Nanodiamond-Manganese dual mode MRI contrast agents for enhanced liver tumor detection.

    PubMed

    Hou, Weixin; Toh, Tan Boon; Abdullah, Lissa Nurrul; Yvonne, Tay Wei Zheng; Lee, Kuan J; Guenther, Ilonka; Chow, Edward Kai-Hua

    2017-04-01

    Contrast agent-enhanced magnetic resonance (MR) imaging is critical for the diagnosis and monitoring of a number of diseases, including cancer. Certain clinical applications, including the detection of liver tumors, rely on both T1 and T2-weighted images even though contrast agent-enhanced MR imaging is not always reliable. Thus, there is a need for improved dual mode contrast agents with enhanced sensitivity. We report the development of a nanodiamond-manganese dual mode contrast agent that enhanced both T1 and T2-weighted MR imaging. Conjugation of manganese to nanodiamonds resulted in improved longitudinal and transverse relaxivity efficacy over unmodified MnCl 2 as well as clinical contrast agents. Following intravenous administration, nanodiamond-manganese complexes outperformed current clinical contrast agents in an orthotopic liver cancer mouse model while also reducing blood serum concentration of toxic free Mn 2+ ions. Thus, nanodiamond-manganese complexes may serve as more effective dual mode MRI contrast agent, particularly in cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. A comparative study on preprocessing techniques in diabetic retinopathy retinal images: illumination correction and contrast enhancement.

    PubMed

    Rasta, Seyed Hossein; Partovi, Mahsa Eisazadeh; Seyedarabi, Hadi; Javadzadeh, Alireza

    2015-01-01

    To investigate the effect of preprocessing techniques including contrast enhancement and illumination correction on retinal image quality, a comparative study was carried out. We studied and implemented a few illumination correction and contrast enhancement techniques on color retinal images to find out the best technique for optimum image enhancement. To compare and choose the best illumination correction technique we analyzed the corrected red and green components of color retinal images statistically and visually. The two contrast enhancement techniques were analyzed using a vessel segmentation algorithm by calculating the sensitivity and specificity. The statistical evaluation of the illumination correction techniques were carried out by calculating the coefficients of variation. The dividing method using the median filter to estimate background illumination showed the lowest Coefficients of variations in the red component. The quotient and homomorphic filtering methods after the dividing method presented good results based on their low Coefficients of variations. The contrast limited adaptive histogram equalization increased the sensitivity of the vessel segmentation algorithm up to 5% in the same amount of accuracy. The contrast limited adaptive histogram equalization technique has a higher sensitivity than the polynomial transformation operator as a contrast enhancement technique for vessel segmentation. Three techniques including the dividing method using the median filter to estimate background, quotient based and homomorphic filtering were found as the effective illumination correction techniques based on a statistical evaluation. Applying the local contrast enhancement technique, such as CLAHE, for fundus images presented good potentials in enhancing the vasculature segmentation.

  15. Pre-clinical evaluation of a nanoparticle-based blood-pool contrast agent for MR imaging of the placenta.

    PubMed

    Ghaghada, Ketan B; Starosolski, Zbigniew A; Bhayana, Saakshi; Stupin, Igor; Patel, Chandreshkumar V; Bhavane, Rohan C; Gao, Haijun; Bednov, Andrey; Yallampalli, Chandrasekhar; Belfort, Michael; George, Verghese; Annapragada, Ananth V

    2017-09-01

    Non-invasive 3D imaging that enables clear visualization of placental margins is of interest in the accurate diagnosis of placental pathologies. This study investigated if contrast-enhanced MRI performed using a liposomal gadolinium blood-pool contrast agent (liposomal-Gd) enables clear visualization of the placental margins and the placental-myometrial interface (retroplacental space). Non-contrast MRI and contrast-enhanced MRI using a clinically approved conventional contrast agent were used as comparators. Studies were performed in pregnant rats under an approved protocol. MRI was performed at 1T using a permanent magnet small animal scanner. Pre-contrast and post-liposomal-Gd contrast images were acquired using T1-weighted and T2-weighted sequences. Dynamic Contrast enhanced MRI (DCE-MRI) was performed using gadoterate meglumine (Gd-DOTA, Dotarem ® ). Visualization of the retroplacental clear space, a marker of normal placentation, was judged by a trained radiologist. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated for both single and averaged acquisitions. Images were reviewed by a radiologist and scored for the visualization of placental features. Contrast-enhanced CT (CE-CT) imaging using a liposomal CT agent was performed for confirmation of the MR findings. Transplacental transport of liposomal-Gd was evaluated by post-mortem elemental analysis of tissues. Ex-vivo studies in perfused human placentae from normal, GDM, and IUGR pregnancies evaluated the transport of liposomal agent across the human placental barrier. Post-contrast T1w images acquired with liposomal-Gd demonstrated significantly higher SNR (p = 0.0002) in the placenta compared to pre-contrast images (28.0 ± 4.7 vs. 6.9 ± 1.8). No significant differences (p = 0.39) were noted between SNR in pre-contrast and post-contrast liposomal-Gd images of the amniotic fluid, indicating absence of transplacental passage of the agent. The placental margins were significantly (p < 0.001) better visualized on post-contrast liposomal-Gd images. DCE-MRI with the conventional Gd agent demonstrated retrograde opacification of the placenta from fetal edge to the myometrium, consistent with the anatomy of the rat placenta. However, no consistent and reproducible visualization of the retroplacental space was demonstrated on the conventional Gd-enhanced images. The retroplacental space was only visualized on post-contrast T1w images acquired using the liposomal agent (SNR = 15.5 ± 3.4) as a sharply defined, hypo-enhanced interface. The retroplacental space was also visible as a similar hypo-enhancing interface on CE-CT images acquired using a liposomal CT contrast agent. Tissue analysis demonstrated undetectably low transplacental permeation of liposomal-Gd, and was confirmed by lack of permeation through a perfused human placental model. Contrast-enhanced T1w-MRI performed using liposomal-Gd enabled clear visualization of placental margins and delineation of the retroplacental space from the rest of the placenta; the space is undetectable on non-contrast imaging and on post-contrast T1w images acquired using a conventional, clinically approved Gd chelate contrast agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Comparison of Oral Contrast-Enhanced Transabdominal Ultrasound Imaging With Transverse Contrast-Enhanced Computed Tomography in Preoperative Tumor Staging of Advanced Gastric Carcinoma.

    PubMed

    He, Xuemei; Sun, Jing; Huang, Xiaoling; Zeng, Chun; Ge, Yinggang; Zhang, Jun; Wu, Jingxian

    2017-12-01

    This study assessed the diagnostic performance of transabdominal oral contrast-enhanced ultrasound (US) imaging for preoperative tumor staging of advanced gastric carcinoma by comparing it with transverse contrast-enhanced computed tomography (CT). This retrospective study included 42 patients with advanced gastric cancer who underwent laparoscopy, radical surgery, or palliative surgery because of serious complications and had a body mass index of less than 25 kg/m 2 . A cereal-based oral contrast agent was used for transabdominal oral contrast-enhanced US. Retrospective analyses were conducted using preoperative tumor staging data acquired by either transabdominal oral contrast-enhanced US or transverse contrast-enhanced CT. Both contrast-enhanced US and contrast-enhanced CT examinations were reviewed by 2 experienced radiologists independently for preoperative tumor staging according to the seventh edition of the TNM classification. The accuracy, sensitivity, and specificity were calculated by comparing the results of contrast-enhanced US and contrast-enhanced CT with pathologic findings. The overall accuracies of the imaging modalities were compared by the McNemar test. No significant difference was noted in the overall accuracy of transabdominal oral contrast-enhanced US (86% [36 of 42]) and transverse contrast-enhanced CT (83% [35 of 42] P > .999). For stage T2 to T4 gastric cancer, the accuracies of transabdominal oral contrast-enhanced US were 88%, 86%, and 98%, respectively, and those of transverse contrast-enhanced CT were 93%, 83%, and 90%. The overall accuracy of transabdominal oral contrast-enhanced US was comparable with that of transverse contrast-enhanced CT for preoperative tumor staging of advanced gastric cancer. © 2017 by the American Institute of Ultrasound in Medicine.

  17. Computational multispectral video imaging [Invited].

    PubMed

    Wang, Peng; Menon, Rajesh

    2018-01-01

    Multispectral imagers reveal information unperceivable to humans and conventional cameras. Here, we demonstrate a compact single-shot multispectral video-imaging camera by placing a micro-structured diffractive filter in close proximity to the image sensor. The diffractive filter converts spectral information to a spatial code on the sensor pixels. Following a calibration step, this code can be inverted via regularization-based linear algebra to compute the multispectral image. We experimentally demonstrated spectral resolution of 9.6 nm within the visible band (430-718 nm). We further show that the spatial resolution is enhanced by over 30% compared with the case without the diffractive filter. We also demonstrate Vis-IR imaging with the same sensor. Because no absorptive color filters are utilized, sensitivity is preserved as well. Finally, the diffractive filters can be easily manufactured using optical lithography and replication techniques.

  18. IR sensitivity enhancement of CMOS Image Sensor with diffractive light trapping pixels.

    PubMed

    Yokogawa, Sozo; Oshiyama, Itaru; Ikeda, Harumi; Ebiko, Yoshiki; Hirano, Tomoyuki; Saito, Suguru; Oinoue, Takashi; Hagimoto, Yoshiya; Iwamoto, Hayato

    2017-06-19

    We report on the IR sensitivity enhancement of back-illuminated CMOS Image Sensor (BI-CIS) with 2-dimensional diffractive inverted pyramid array structure (IPA) on crystalline silicon (c-Si) and deep trench isolation (DTI). FDTD simulations of semi-infinite thick c-Si having 2D IPAs on its surface whose pitches over 400 nm shows more than 30% improvement of light absorption at λ = 850 nm and the maximum enhancement of 43% with the 540 nm pitch at the wavelength is confirmed. A prototype BI-CIS sample with pixel size of 1.2 μm square containing 400 nm pitch IPAs shows 80% sensitivity enhancement at λ = 850 nm compared to the reference sample with flat surface. This is due to diffraction with the IPA and total reflection at the pixel boundary. The NIR images taken by the demo camera equip with a C-mount lens show 75% sensitivity enhancement in the λ = 700-1200 nm wavelength range with negligible spatial resolution degradation. Light trapping CIS pixel technology promises to improve NIR sensitivity and appears to be applicable to many different image sensor applications including security camera, personal authentication, and range finding Time-of-Flight camera with IR illuminations.

  19. VEGFR2-Targeted Ultrasound Imaging Agent Enhances the Detection of Ovarian Tumors at Early Stage in Laying Hens, a Preclinical Model of Spontaneous Ovarian Cancer.

    PubMed

    Barua, Animesh; Yellapa, Aparna; Bahr, Janice M; Machado, Sergio A; Bitterman, Pincas; Basu, Sanjib; Sharma, Sameer; Abramowicz, Jacques S

    2015-07-01

    Tumor-associated neoangiogenesis (TAN) is an early event in ovarian cancer (OVCA) development. Increased expression of vascular endothelial growth factor receptor 2 (VEGFR2) by TAN vessels presents a potential target for early detection by ultrasound imaging. The goal of this study was to examine the suitability of VEGFR2-targeted ultrasound contrast agents in detecting spontaneous OVCA in laying hens. Effects of VEGFR2-targeted contrast agents in enhancing the intensity of ultrasound imaging from spontaneous ovarian tumors in hens were examined in a cross-sectional study. Enhancement in the intensity of ultrasound imaging was determined before and after injection of VEGFR2-targeted contrast agents. All ultrasound images were digitally stored and analyzed off-line. Following scanning, ovarian tissues were collected and processed for histology and detection of VEGFR2-expressing microvessels. Enhancement in visualization of ovarian morphology was detected by gray-scale imaging following injection of VEGFR2-targeted contrast agents. Compared with pre-contrast, contrast imaging enhanced the intensities of ultrasound imaging significantly (p < 0.0001) irrespective of the pathological status of ovaries. In contrast to normal hens, the intensity of ultrasound imaging was significantly (p < 0.0001) higher in hens with early stage OVCA and increased further in hens with late stage OVCA. Higher intensities of ultrasound imaging in hens with OVCA were positively correlated with increased (p < 0.0001) frequencies of VEGFR2-expressing microvessels. The results of this study suggest that VEGFR2-targeted contrast agents enhance the visualization of spontaneous ovarian tumors in hens at early and late stages of OVCA. The laying hen may be a suitable model to test new imaging agents and develop targeted therapeutics. © The Author(s) 2014.

  20. Theranostic gold-magnetite hybrid nanoparticles for MRI-guided radiosensitization.

    PubMed

    Maniglio, D; Benetti, F; Minati, L; Jovicich, J; Valentini, A; Speranza, G; Migliaresi, C

    2018-08-03

    The main limitation of drug-enhanced radiotherapy concerns the difficulty to evaluate the effectiveness of cancer targeting after drug administration hindering the standardization of therapies based on current radiosensitizing compounds. The challenge regards the development of systems able to combine imaging and radiotherapy enhancement in order to perform highly reliable cancer theragnosis. For these reasons, gold-magnetite hybrid nanoparticles (H-NPs) are proposed as innovative theranostic nanotools for imaging-guided radiosensitization in cancer treatment. In this work we propose a novel method for the synthesis of hydrophilic and superparamagnetic Tween20-stabilized gold-magnetite H-NPs. Morphology and chemical composition of nanoparticles were assessed by transmission electron microscopy, x-ray diffraction analysis and ion-coupled plasma optical emission spectroscopy. Colloidal stability and magnetic properties of nanoparticles were determined by dynamic light scattering and magnetometry. The potentialities of H-NPs for magnetic resonance imaging were studied using a human 4T-MRI scanner. Nanoparticles were proven to induce concentration-dependent contrast enhancement in T2*-weighted MR-images. The cytotoxicity, the cellular uptake and the radiosensitization activity of H-NPs were investigated in human osteosarcoma MG63 cell cultures and murine 3T3 fibroblasts, using specific bioassays and laser scanning confocal microscopy. H-NPs did not exhibit significant toxicity and were demonstrated to be internalized by cells. A significant x-ray enhancement at specific H-NPs exposure concentrations was evidenced on MG63 cell line.

  1. Angularly-selective transmission imaging in a scanning electron microscope.

    PubMed

    Holm, Jason; Keller, Robert R

    2016-08-01

    This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed. Published by Elsevier B.V.

  2. Techniques for High-contrast Imaging in Multi-star Systems. II. Multi-star Wavefront Control

    NASA Astrophysics Data System (ADS)

    Sirbu, D.; Thomas, S.; Belikov, R.; Bendek, E.

    2017-11-01

    Direct imaging of exoplanets represents a challenge for astronomical instrumentation due to the high-contrast ratio and small angular separation between the host star and the faint planet. Multi-star systems pose additional challenges for coronagraphic instruments due to the diffraction and aberration leakage caused by companion stars. Consequently, many scientifically valuable multi-star systems are excluded from direct imaging target lists for exoplanet surveys and characterization missions. Multi-star Wavefront Control (MSWC) is a technique that uses a coronagraphic instrument’s deformable mirror (DM) to create high-contrast regions in the focal plane in the presence of multiple stars. MSWC uses “non-redundant” modes on the DM to independently control speckles from each star in the dark zone. Our previous paper also introduced the Super-Nyquist wavefront control technique, which uses a diffraction grating to generate high-contrast regions beyond the Nyquist limit (nominal region correctable by the DM). These two techniques can be combined as MSWC-s to generate high-contrast regions for multi-star systems at wide (Super-Nyquist) angular separations, while MSWC-0 refers to close (Sub-Nyquist) angular separations. As a case study, a high-contrast wavefront control simulation that applies these techniques shows that the habitable region of the Alpha Centauri system can be imaged with a small aperture at 8× {10}-9 mean raw contrast in 10% broadband light in one-sided dark holes from 1.6-5.5 λ/D. Another case study using a larger 2.4 m aperture telescope such as the Wide-Field Infrared Survey Telescope uses these techniques to image the habitable zone of Alpha Centauri at 3.2× {10}-9 mean raw contrast in monochromatic light.

  3. Improved wrist pannus volume measurement from contrast-enhanced MRI in rheumatoid arthritis using shuffle transform.

    PubMed

    Xanthopoulos, Emily; Hutchinson, Charles E; Adams, Judith E; Bruce, Ian N; Nash, Anthony F P; Holmes, Andrew P; Taylor, Christopher J; Waterton, John C

    2007-01-01

    Contrast-enhanced MRI is of value in assessing rheumatoid pannus in the hand, but the images are not always easy to quantitate. To develop and evaluate an improved measurement of volume of enhancing pannus (VEP) in the hand in human rheumatoid arthritis (RA). MR images of the hand and wrist were obtained for 14 patients with RA at 0, 1 and 13 weeks. Volume of enhancing pannus was measured on images created by subtracting precontrast T1-weighted images from contrast-enhanced T1-weighted images using a shuffle transformation technique. Maximum intensity projection (MIP) and 3D volume rendering of the images were used as a guide to identify the pannus and any contrast-enhanced veins. Visualisation of pannus was much improved following the shuffle transform. Between 0 weeks and 1 week, the mean value of the within-subject coefficient of variation (CoV) was 0.13 and the estimated total CoV was 0.15. There was no evidence of significant increased variability within the 13-week interval for the complete sample of patients. Volume of enhancing pannus can be measured reproducibly in the rheumatoid hand using 3D contrast-enhanced MRI and shuffle transform.

  4. Diffraction contrast as a sensitive indicator of femtosecond sub-nanoscale motion in ultrafast transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Cremons, Daniel R.; Schliep, Karl B.; Flannigan, David J.

    2013-09-01

    With ultrafast transmission electron microscopy (UTEM), access can be gained to the spatiotemporal scales required to directly visualize rapid, non-equilibrium structural dynamics of materials. This is achieved by operating a transmission electron microscope (TEM) in a stroboscopic pump-probe fashion by photoelectrically generating coherent, well-timed electron packets in the gun region of the TEM. These probe photoelectrons are accelerated down the TEM column where they travel through the specimen before reaching a standard, commercially-available CCD detector. A second laser pulse is used to excite (pump) the specimen in situ. Structural changes are visualized by varying the arrival time of the pump laser pulse relative to the probe electron packet at the specimen. Here, we discuss how ultrafast nanoscale motions of crystalline materials can be visualized and precisely quantified using diffraction contrast in UTEM. Because diffraction contrast sensitively depends upon both crystal lattice orientation as well as incoming electron wavevector, minor spatial/directional variations in either will produce dynamic and often complex patterns in real-space images. This is because sections of the crystalline material that satisfy the Laue conditions may be heterogeneously distributed such that electron scattering vectors vary over nanoscale regions. Thus, minor changes in either crystal grain orientation, as occurs during specimen tilting, warping, or anisotropic expansion, or in the electron wavevector result in dramatic changes in the observed diffraction contrast. In this way, dynamic contrast patterns observed in UTEM images can be used as sensitive indicators of ultrafast specimen motion. Further, these motions can be spatiotemporally mapped such that direction and amplitude can be determined.

  5. Human body region enhancement method based on Kinect infrared imaging

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Fan, Yubo; Song, Xiaowei; Cai, Wenjing

    2016-10-01

    To effectively improve the low contrast of human body region in the infrared images, a combing method of several enhancement methods is utilized to enhance the human body region. Firstly, for the infrared images acquired by Kinect, in order to improve the overall contrast of the infrared images, an Optimal Contrast-Tone Mapping (OCTM) method with multi-iterations is applied to balance the contrast of low-luminosity infrared images. Secondly, to enhance the human body region better, a Level Set algorithm is employed to improve the contour edges of human body region. Finally, to further improve the human body region in infrared images, Laplacian Pyramid decomposition is adopted to enhance the contour-improved human body region. Meanwhile, the background area without human body region is processed by bilateral filtering to improve the overall effect. With theoretical analysis and experimental verification, the results show that the proposed method could effectively enhance the human body region of such infrared images.

  6. Characteristic MRI findings in hyperglycaemia-induced seizures: diagnostic value of contrast-enhanced fluid-attenuated inversion recovery imaging.

    PubMed

    Lee, E J; Kim, K K; Lee, E K; Lee, J E

    2016-12-01

    To describe characteristic magnetic resonance imaging (MRI) abnormalities in hyperglycaemia-induced seizures, and evaluate the diagnostic value of contrast-enhanced fluid-attenuated inversion recovery (FLAIR) imaging. Possible underlying mechanisms of this condition are also discussed. Eleven patients with hyperglycaemia-induced seizures and MRI abnormalities were retrospectively studied. Clinical manifestations, laboratory findings, MRI findings, and clinical outcomes were analysed. All patients, except one, presented with focal seizures, simple or complex partial seizures, or negative motor seizures. All patients had long-standing uncontrolled diabetes mellitus. The MRI abnormalities observed acutely were focal subcortical hypointensities on T2-weighted imaging and FLAIR imaging in all patients with overlying cortical gyral T2 hyperintensities in five. Focal overlying cortical or leptomeningeal enhancement on contrast-enhanced T1-weighted imaging or contrast-enhanced FLAIR imaging was observed in all patients. Contrast-enhanced FLAIR imaging was superior to contrast-enhanced T1-weighted imaging for detecting characteristic cortical or leptomeningeal enhancement. Diffusion-weighted imaging showed mildly restricted diffusion in four of five patients with cortical gyral T2 hyperintensity. In nine patients, the lesions were localised in the parietal or parieto-occipital lobes. The other two patients showed localised precentral gyral lesions. After treatment, the neurological symptoms, including the seizures, improved in all patients. On clinical recovery, the subcortical T2 hypointensity, gyral or leptomeningeal enhancement, and overlying cortical T2 hyperintensities resolved. Recognition of these radiological abnormalities in patients with hyperglycaemia-induced seizures is important in restricting unwarranted investigations and initiating early therapy. These patients generally have a good prognosis. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  7. Improvements in Diagnostic Accuracy with Quantitative Dynamic Contrast-Enhanced MRI

    DTIC Science & Technology

    2011-12-01

    Magnetic   Resonance   Imaging  during  the  Menstrual  Cylce:  Perfusion   Imaging  Signal   Enhanceent,  and  Influence  of...acquisition of quantitative images displaying the concentration of contrast media as well as MRI -detectable proton density. To date 21 patients have...truly  quantitative   images  of  a  dynamic  contrast-­‐enhanced  (DCE)   MRI  of  the

  8. X-Ray Phase Imaging for Breast Cancer Detection

    DTIC Science & Technology

    2011-09-01

    the inline phase contrast imaging has good potential of greatly enhanc - ing the detection sensitivity and reducing radiation doses involved in the...the edge- enhancement generated by phase- contrast is generally useful for imaging the wrap, however, such edge- enhancements may lead interpretation...Kotre and I. P. Birch, “Phase contrast enhancement of x-ray mam- mography: A design study,” Phys. Med. Biol. 44, 2853–2866 (1999). 6F. Arfelli et al

  9. Contrast-dependent saturation adjustment for outdoor image enhancement.

    PubMed

    Wang, Shuhang; Cho, Woon; Jang, Jinbeum; Abidi, Mongi A; Paik, Joonki

    2017-01-01

    Outdoor images captured in bad-weather conditions usually have poor intensity contrast and color saturation since the light arriving at the camera is severely scattered or attenuated. The task of improving image quality in poor conditions remains a challenge. Existing methods of image quality improvement are usually effective for a small group of images but often fail to produce satisfactory results for a broader variety of images. In this paper, we propose an image enhancement method, which makes it applicable to enhance outdoor images by using content-adaptive contrast improvement as well as contrast-dependent saturation adjustment. The main contribution of this work is twofold: (1) we propose the content-adaptive histogram equalization based on the human visual system to improve the intensity contrast; and (2) we introduce a simple yet effective prior for adjusting the color saturation depending on the intensity contrast. The proposed method is tested with different kinds of images, compared with eight state-of-the-art methods: four enhancement methods and four haze removal methods. Experimental results show the proposed method can more effectively improve the visibility and preserve the naturalness of the images, as opposed to the compared methods.

  10. An Adaptive Image Enhancement Technique by Combining Cuckoo Search and Particle Swarm Optimization Algorithm

    PubMed Central

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928

  11. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    PubMed

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  12. Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chun-Yueh; Chang, Wei-Tse; Chen, Yi-Sheng

    2016-03-15

    In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This workmore » demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.« less

  13. Identification of residual breast carcinoma following neoadjuvant chemotherapy: diffusion-weighted imaging--comparison with contrast-enhanced MR imaging and pathologic findings.

    PubMed

    Woodhams, Reiko; Kakita, Satoko; Hata, Hirofumi; Iwabuchi, Keiichi; Kuranami, Masaru; Gautam, Shiva; Hatabu, Hiroto; Kan, Shinichi; Mountford, Carolyn

    2010-02-01

    To compare the capability of diffusion-weighted (DW) and contrast material-enhanced magnetic resonance (MR) imaging to provide diagnostic information on residual breast cancers following neoadjuvant chemotherapy and to assess apparent diffusion coefficients (ADCs) of the carcinoma prior to neoadjuvant chemotherapy to determine if the method could help predict response to chemotherapy. Institutional review board approval and informed consent were obtained. Three hundred ninety-eight patients underwent MR imaging of the breast, including DW MR (b values, 0 and 1500 sec/mm(2)) and contrast-enhanced MR imaging. Of these, the contralateral breast in 73 women was used as a control. Seventy-two patients with 73 lesions with malignant disease were treated by using neoadjuvant chemotherapy and were examined for residual disease following therapy. Three were excluded because of prolonged intervals between final MR imaging and surgery. Thus, 69 patients (70 lesions) with DW and contrast-enhanced MR imaging results were compared with postoperative histopathologic findings. The ADCs of the carcinoma prior to neoadjuvant chemotherapy were calculated for each patient, and those with complete response and residual disease were compared. The accuracy for depicting residual tumor was 96% for DW MR imaging, compared with an accuracy of 89% for contrast-enhanced MR imaging (P = .06). There was no significant difference in prechemotherapy ADCs between pathologic complete response cases and those with residual disease. DW MR imaging had at least as good of accuracy as did contrast-enhanced MR imaging for monitoring neoadjuvant chemotherapy. The ADCs prior to chemotherapy did not predict response to chemotherapy. The use of DW imaging to visualize residual breast cancer without the need for contrast medium could be advantageous in women with impaired renal function. (c) RSNA, 2010

  14. Biological applications of near-field scanning optical microscopy

    NASA Astrophysics Data System (ADS)

    Moers, Marco H. P.; Ruiter, A. G. T.; Jalocha, Alain; van Hulst, Niko F.; Kalle, W. H. J.; Wiegant, J. C. A. G.; Raap, A. K.

    1995-09-01

    Near-field Scanning Optical Microscopy (NSOM) is a true optical microscopic technique allowing fluorescence, absorption, reflection and polarization contrast with the additional advantage of nanometer lateral resolution, unlimited by diffraction and operation at ambient conditions. NSOM based on metal coated adiabatically tapered fibers, combined with shear force feedback and operated in illumination mode, has proven to be the most powerful NSOM arrangement, because of its true localization of the optical interaction, its various optical contrast possibilities and its sensitivity down to the single molecular level. In this paper applications of `aperture' NSOM to Fluorescence In Situ Hybridization of human metaphase chromosomes are presented, where the localized fluorescence allows to identify specific DNA sequences. All images are accompanied by the simultaneously acquired force image, enabling direct comparison of the optical contrast with the sample topography on nanometer scale, far beyond the diffraction limit. Thus the unique combination of high resolution, specific optical contrast and ambient operation offers many new direction possibilities in biological studies.

  15. A Comparative Study on Preprocessing Techniques in Diabetic Retinopathy Retinal Images: Illumination Correction and Contrast Enhancement

    PubMed Central

    Rasta, Seyed Hossein; Partovi, Mahsa Eisazadeh; Seyedarabi, Hadi; Javadzadeh, Alireza

    2015-01-01

    To investigate the effect of preprocessing techniques including contrast enhancement and illumination correction on retinal image quality, a comparative study was carried out. We studied and implemented a few illumination correction and contrast enhancement techniques on color retinal images to find out the best technique for optimum image enhancement. To compare and choose the best illumination correction technique we analyzed the corrected red and green components of color retinal images statistically and visually. The two contrast enhancement techniques were analyzed using a vessel segmentation algorithm by calculating the sensitivity and specificity. The statistical evaluation of the illumination correction techniques were carried out by calculating the coefficients of variation. The dividing method using the median filter to estimate background illumination showed the lowest Coefficients of variations in the red component. The quotient and homomorphic filtering methods after the dividing method presented good results based on their low Coefficients of variations. The contrast limited adaptive histogram equalization increased the sensitivity of the vessel segmentation algorithm up to 5% in the same amount of accuracy. The contrast limited adaptive histogram equalization technique has a higher sensitivity than the polynomial transformation operator as a contrast enhancement technique for vessel segmentation. Three techniques including the dividing method using the median filter to estimate background, quotient based and homomorphic filtering were found as the effective illumination correction techniques based on a statistical evaluation. Applying the local contrast enhancement technique, such as CLAHE, for fundus images presented good potentials in enhancing the vasculature segmentation. PMID:25709940

  16. Hyper-spectral imaging in scanning-confocal-fluorescence microscopy using a novel broadband diffractive optic

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Ebeling, Carl G.; Gerton, Jordan; Menon, Rajesh

    In this paper, we demonstrate hyper-spectral imaging of fluorescent microspheres in a scanning-confocal-fluorescence microscope by spatially dispersing the spectra using a novel broadband diffractive optic, and applying a nonlinear optimization technique to extract the full-incident spectra. This broadband diffractive optic has a designed optical efficiency of over 90% across the entire visible spectrum. We used this technique to create two-color images of two fluorophores and also extracted their emission spectra with good fidelity. This method can be extended to image both spatially and spectrally overlapping fluorescent samples. Full control in the number of emission spectra and the feasibility of enhanced imaging speed are demonstrated as well.

  17. Study of quality perception in medical images based on comparison of contrast enhancement techniques in mammographic images

    NASA Astrophysics Data System (ADS)

    Matheus, B.; Verçosa, L. B.; Barufaldi, B.; Schiabel, H.

    2014-03-01

    With the absolute prevalence of digital images in mammography several new tools became available for radiologist; such as CAD schemes, digital zoom and contrast alteration. This work focuses in contrast variation and how the radiologist reacts to these changes when asked to evaluated image quality. Three contrast enhancing techniques were used in this study: conventional equalization, CCB Correction [1] - a digitization correction - and value subtraction. A set of 100 images was used in tests from some available online mammographic databases. The tests consisted of the presentation of all four versions of an image (original plus the three contrast enhanced images) to the specialist, requested to rank each one from the best up to worst quality for diagnosis. Analysis of results has demonstrated that CCB Correction [1] produced better images in almost all cases. Equalization, which mathematically produces a better contrast, was considered the worst for mammography image quality enhancement in the majority of cases (69.7%). The value subtraction procedure produced images considered better than the original in 84% of cases. Tests indicate that, for the radiologist's perception, it seems more important to guaranty full visualization of nuances than a high contrast image. Another result observed is that the "ideal" scanner curve does not yield the best result for a mammographic image. The important contrast range is the middle of the histogram, where nodules and masses need to be seen and clearly distinguished.

  18. A review on brightness preserving contrast enhancement methods for digital image

    NASA Astrophysics Data System (ADS)

    Rahman, Md Arifur; Liu, Shilong; Li, Ruowei; Wu, Hongkun; Liu, San Chi; Jahan, Mahmuda Rawnak; Kwok, Ngaiming

    2018-04-01

    Image enhancement is an imperative step for many vision based applications. For image contrast enhancement, popular methods adopt the principle of spreading the captured intensities throughout the allowed dynamic range according to predefined distributions. However, these algorithms take little or no consideration into account of maintaining the mean brightness of the original scene, which is of paramount importance to carry the true scene illumination characteristics to the viewer. Though there have been significant amount of reviews on contrast enhancement methods published, updated review on overall brightness preserving image enhancement methods is still scarce. In this paper, a detailed survey is performed on those particular methods that specifically aims to maintain the overall scene illumination characteristics while enhancing the digital image.

  19. Transmission Electron Microscopy of Single Wall Carbon Nanotube/Polymer Nanocomposites: A First-Principles Study

    NASA Technical Reports Server (NTRS)

    Sola, Francisco; Xia, Zhenhai; Lebrion-Colon, Marisabel; Meador, Michael A.

    2012-01-01

    The physics of HRTEM image formation and electron diffraction of SWCNT in a polymer matrix were investigated theoretically on the basis of the multislice method, and the optics of a FEG Super TWIN Philips CM 200 TEM operated at 80 kV. The effect of nanocomposite thickness on both image contrast and typical electron diffraction reflections of nanofillers were explored. The implications of the results on the experimental applicability to study dispersion, chirality and diameter of nanofillers are discussed.

  20. Visual performance-based image enhancement methodology: an investigation of contrast enhancement algorithms

    NASA Astrophysics Data System (ADS)

    Neriani, Kelly E.; Herbranson, Travis J.; Reis, George A.; Pinkus, Alan R.; Goodyear, Charles D.

    2006-05-01

    While vast numbers of image enhancing algorithms have already been developed, the majority of these algorithms have not been assessed in terms of their visual performance-enhancing effects using militarily relevant scenarios. The goal of this research was to apply a visual performance-based assessment methodology to evaluate six algorithms that were specifically designed to enhance the contrast of digital images. The image enhancing algorithms used in this study included three different histogram equalization algorithms, the Autolevels function, the Recursive Rational Filter technique described in Marsi, Ramponi, and Carrato1 and the multiscale Retinex algorithm described in Rahman, Jobson and Woodell2. The methodology used in the assessment has been developed to acquire objective human visual performance data as a means of evaluating the contrast enhancement algorithms. Objective performance metrics, response time and error rate, were used to compare algorithm enhanced images versus two baseline conditions, original non-enhanced images and contrast-degraded images. Observers completed a visual search task using a spatial-forcedchoice paradigm. Observers searched images for a target (a military vehicle) hidden among foliage and then indicated in which quadrant of the screen the target was located. Response time and percent correct were measured for each observer. Results of the study and future directions are discussed.

  1. The NN-explore Exoplanet Stellar Speckle Imager: Instrument Description and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Scott, Nicholas J.; Howell, Steve B.; Horch, Elliott P.; Everett, Mark E.

    2018-05-01

    A new speckle and wide-field imaging instrument for the WIYN telescope called NN-EXPLORE Exoplanet Stellar Speckle Imager (NESSI) is described. NESSI offers simultaneous two-color diffraction-limited imaging and wide-field traditional imaging for validation and characterization of transit and precision RV exoplanet studies. Many exoplanet targets will come from the NASA K2 and Transiting Exoplanet Survey Satellite (TESS) missions. NESSI is capable of resolving close binaries at sub-arcsecond separations down to the diffraction limit and >6 mag contrast difference in the visible band on targets as faint as 14th mag. Preliminary results from the instrument commissioning at WIYN and demonstrations of the instrument’s capabilities are presented.

  2. Micro- and nano-imaging at the diamond beamline I13L-imaging and coherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rau, C., E-mail: Christoph.rau@diamond.ac.uk; University of Manchester, School of Materials Grosvenor St., Manchester, M1 7HS; Northwestern University School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611-3008

    2016-07-27

    The Diamond Beamline I13L is dedicated to imaging on the micron- and nano-lengthscale, operating in the energy range between 6 and 30 keV. For this purpose two independent stations have been built. The imaging branch is fully operational for micro-tomography and in-line phase contrast imaging with micrometer resolution. Currently a full-field microscope providing 50nm spatial resolution over a field of view of 100 µm is being tested. On the coherence branch, coherent diffraction imaging techniques such as ptychography and coherent X-ray Bragg diffraction are currently developed. The beamline contains a number of unique features. The machine layout has been modifiedmore » to the so-called mini-beta scheme, providing significantly increased flux from the two canted undulators. New instrumental designs such as a robot arm for the detector in diffraction experiments have been employed. The imaging branch is operated in collaboration with Manchester University, called therefore the Diamond-Manchester Branchline.« less

  3. A psychophysical comparison of two methods for adaptive histogram equalization.

    PubMed

    Zimmerman, J B; Cousins, S B; Hartzell, K M; Frisse, M E; Kahn, M G

    1989-05-01

    Adaptive histogram equalization (AHE) is a method for adaptive contrast enhancement of digital images. It is an automatic, reproducible method for the simultaneous viewing of contrast within a digital image with a large dynamic range. Recent experiments have shown that in specific cases, there is no significant difference in the ability of AHE and linear intensity windowing to display gray-scale contrast. More recently, a variant of AHE which limits the allowed contrast enhancement of the image has been proposed. This contrast-limited adaptive histogram equalization (CLAHE) produces images in which the noise content of an image is not excessively enhanced, but in which sufficient contrast is provided for the visualization of structures within the image. Images processed with CLAHE have a more natural appearance and facilitate the comparison of different areas of an image. However, the reduced contrast enhancement of CLAHE may hinder the ability of an observer to detect the presence of some significant gray-scale contrast. In this report, a psychophysical observer experiment was performed to determine if there is a significant difference in the ability of AHE and CLAHE to depict gray-scale contrast. Observers were presented with computed tomography (CT) images of the chest processed with AHE and CLAHE. Subtle artificial lesions were introduced into some images. The observers were asked to rate their confidence regarding the presence of the lesions; this rating-scale data was analyzed using receiver operating characteristic (ROC) curve techniques. These ROC curves were compared for significant differences in the observers' performances. In this report, no difference was found in the abilities of AHE and CLAHE to depict contrast information.

  4. Acoustic fingerprints of photoacoustic contrast agents for molecular imaging

    NASA Astrophysics Data System (ADS)

    McDonald, Michael A.; Jankovic, Ladislav; Shahzad, Khalid; Burcher, Michael; Li, King C. P.

    2007-02-01

    Protein nanospheres capable of frequency controlled oscillation in response to laser stimulation are presented as contrast agents for photoacoustic imaging. Incident laser energy absorbed by dye-labeled protein nanospheres causes thermoelastically generated sound production. Plotted A-line graphs reveal a distinctive morphology and greater than 2 orders of magnitude increase in signal amplitude subsequent to converting labeled proteins into nanospheres. Evidence of nonlinearity and enhancement of ultrasound backscatter indicate a potential use in contrast-enhanced harmonic imaging. Photoacoustic and ultrasound imaging of protein nanospheres in phantom vessels show enhanced contrast at low concentration and clear delineation of the phantom vessel wall.

  5. Chemical imaging analysis of the brain with X-ray methods

    NASA Astrophysics Data System (ADS)

    Collingwood, Joanna F.; Adams, Freddy

    2017-04-01

    Cells employ various metal and metalloid ions to augment the structure and the function of proteins and to assist with vital biological processes. In the brain they mediate biochemical processes, and disrupted metabolism of metals may be a contributing factor in neurodegenerative disorders. In this tutorial review we will discuss the particular role of X-ray methods for elemental imaging analysis of accumulated metal species and metal-containing compounds in biological materials, in the context of post-mortem brain tissue. X-rays have the advantage that they have a short wavelength and can penetrate through a thick biological sample. Many of the X-ray microscopy techniques that provide the greatest sensitivity and specificity for trace metal concentrations in biological materials are emerging at synchrotron X-ray facilities. Here, the extremely high flux available across a wide range of soft and hard X-rays, combined with state-of-the-art focusing techniques and ultra-sensitive detectors, makes it viable to undertake direct imaging of a number of elements in brain tissue. The different methods for synchrotron imaging of metals in brain tissues at regional, cellular, and sub-cellular spatial resolution are discussed. Methods covered include X-ray fluorescence for elemental imaging, X-ray absorption spectrometry for speciation imaging, X-ray diffraction for structural imaging, phase contrast for enhanced contrast imaging and scanning transmission X-ray microscopy for spectromicroscopy. Two- and three-dimensional (confocal and tomographic) imaging methods are considered as well as the correlation of X-ray microscopy with other imaging tools.

  6. Cryogenic X-Ray Diffraction Microscopy for Biological Samples

    NASA Astrophysics Data System (ADS)

    Lima, Enju; Wiegart, Lutz; Pernot, Petra; Howells, Malcolm; Timmins, Joanna; Zontone, Federico; Madsen, Anders

    2009-11-01

    X-ray diffraction microscopy (XDM) is well suited for nondestructive, high-resolution biological imaging, especially for thick samples, with the high penetration power of x rays and without limitations imposed by a lens. We developed nonvacuum, cryogenic (cryo-) XDM with hard x rays at 8 keV and report the first frozen-hydrated imaging by XDM. By preserving samples in amorphous ice, the risk of artifacts associated with dehydration or chemical fixation is avoided, ensuring the imaging condition closest to their natural state. The reconstruction shows internal structures of intact D. radiodurans bacteria in their natural contrast.

  7. Comparison of the Diagnostic Accuracy of DSC- and Dynamic Contrast-Enhanced MRI in the Preoperative Grading of Astrocytomas.

    PubMed

    Nguyen, T B; Cron, G O; Perdrizet, K; Bezzina, K; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Sinclair, J; Thornhill, R E; Foottit, C; Zanette, B; Cameron, I G

    2015-11-01

    Dynamic contrast-enhanced MR imaging parameters can be biased by poor measurement of the vascular input function. We have compared the diagnostic accuracy of dynamic contrast-enhanced MR imaging by using a phase-derived vascular input function and "bookend" T1 measurements with DSC MR imaging for preoperative grading of astrocytomas. This prospective study included 48 patients with a new pathologic diagnosis of an astrocytoma. Preoperative MR imaging was performed at 3T, which included 2 injections of 5-mL gadobutrol for dynamic contrast-enhanced and DSC MR imaging. During dynamic contrast-enhanced MR imaging, both magnitude and phase images were acquired to estimate plasma volume obtained from phase-derived vascular input function (Vp_Φ) and volume transfer constant obtained from phase-derived vascular input function (K(trans)_Φ) as well as plasma volume obtained from magnitude-derived vascular input function (Vp_SI) and volume transfer constant obtained from magnitude-derived vascular input function (K(trans)_SI). From DSC MR imaging, corrected relative CBV was computed. Four ROIs were placed over the solid part of the tumor, and the highest value among the ROIs was recorded. A Mann-Whitney U test was used to test for difference between grades. Diagnostic accuracy was assessed by using receiver operating characteristic analysis. Vp_ Φ and K(trans)_Φ values were lower for grade II compared with grade III astrocytomas (P < .05). Vp_SI and K(trans)_SI were not significantly different between grade II and grade III astrocytomas (P = .08-0.15). Relative CBV and dynamic contrast-enhanced MR imaging parameters except for K(trans)_SI were lower for grade III compared with grade IV (P ≤ .05). In differentiating low- and high-grade astrocytomas, we found no statistically significant difference in diagnostic accuracy between relative CBV and dynamic contrast-enhanced MR imaging parameters. In the preoperative grading of astrocytomas, the diagnostic accuracy of dynamic contrast-enhanced MR imaging parameters is similar to that of relative CBV. © 2015 by American Journal of Neuroradiology.

  8. Astrophysical targets of the Fresnel diffractive imager

    NASA Astrophysics Data System (ADS)

    Koechlin, L.; Deba, P.; Raksasataya, T.

    2017-11-01

    The Fresnel Diffractive imager is an innovative concept of distributed space telescope, for high resolution (milli arc-seconds) spectro-imaging in the IR, visible and UV domains. This paper presents its optical principle and the science that can be done on potential astrophysical targets. The novelty lies in the primary optics: a binary Fresnel array, akin to a binary Fresnel zone plate. The main interest of this approach is the relaxed manufacturing and positioning constraints. While having the resolution and imaging capabilities of lens or mirrors of equivalent size, no optical material is involved in the focusing process: just vacuum. A Fresnel array consists of millions void subapertures punched into a large and thin opaque membrane, that focus light by diffraction into a compact and highly contrasted image. The positioning law of the aperture edges drives the image quality and contrast. This optical concept allows larger and lighter apertures than solid state optics, aiming to high angular resolution and high dynamic range imaging, in particular for UV applications. Diffraction focusing implies very long focal distances, up to dozens of kilometers, which requires at least a two-vessel formation flying in space. The first spacecraft, "the Fresnel Array spacecraft", holds the large punched foil: the Fresnel Array. The second, the "Receiver spacecraft" holds the field optics and focal instrumentation. A chromatism correction feature enables moderately large (20%) relative wavebands, and fields of a few to a dozen arc seconds. This Fresnel imager is adapted to high contrast stellar environments: dust disks, close companions and (we hope) exoplanets. Specific to the particular grid-like pattern of the primary focusing zone plate, is the very high dynamic range achieved in the images, in the case of compact objects. Large stellar photospheres may also be mapped with Fresnel arrays of a few meters opertaing in the UV. Larger and more complex fields can be imaged with a lesser dynamic range: galactic or extragalactic, or at the opposite distance scale: small solar system bodies. This paper will briefly address the optical principle, and in more detail the astrophysical missions and targets proposed for a 4-meter class demonstrator: - Exoplanet imaging, Exoplanet spectroscopic analysis in the visible and UV, - Stellar environments, young stellar systems, disks, - Galactic clouds, astrochemistry, - IR observation of the galactic center, - Small objects of our solar system.

  9. Transmission/Scanning Transmission Electron Microscopy | Materials Science

    Science.gov Websites

    imaging such as high resolution TEM. Transmission electron diffraction patterns help to determine the microstructure of a material and its defects. Phase-contrast imaging or high-resolution (HR) TEM imaging gives high scattering angle can be collected to form high-resolution, chemically sensitive, atomic number (Z

  10. Ultrafast Bilateral DCE-MRI of the Breast with Conventional Fourier Sampling: Preliminary Evaluation of Semi-quantitative Analysis.

    PubMed

    Pineda, Federico D; Medved, Milica; Wang, Shiyang; Fan, Xiaobing; Schacht, David V; Sennett, Charlene; Oto, Aytekin; Newstead, Gillian M; Abe, Hiroyuki; Karczmar, Gregory S

    2016-09-01

    The study aimed to evaluate the feasibility and advantages of a combined high temporal and high spatial resolution protocol for dynamic contrast-enhanced magnetic resonance imaging of the breast. Twenty-three patients with enhancing lesions were imaged at 3T. The acquisition protocol consisted of a series of bilateral, fat-suppressed "ultrafast" acquisitions, with 6.9- to 9.9-second temporal resolution for the first minute following contrast injection, followed by four high spatial resolution acquisitions with 60- to 79.5-second temporal resolution. All images were acquired with standard uniform Fourier sampling. A filtering method was developed to reduce noise and detect significant enhancement in the high temporal resolution images. Time of arrival (TOA) was defined as the time at which each voxel first satisfied all the filter conditions, relative to the time of initial arterial enhancement. Ultrafast images improved visualization of the vasculature feeding and draining lesions. A small percentage of the entire field of view (<6%) enhanced significantly in the 30 seconds following contrast injection. Lesion conspicuity was highest in early ultrafast images, especially in cases with marked parenchymal enhancement. Although the sample size was relatively small, the average TOA for malignant lesions was significantly shorter than the TOA for benign lesions. Significant differences were also measured in other parameters descriptive of early contrast media uptake kinetics (P < 0.05). Ultrafast imaging in the first minute of dynamic contrast-enhanced magnetic resonance imaging of the breast has the potential to add valuable information on early contrast dynamics. Ultrafast imaging could allow radiologists to confidently identify lesions in the presence of marked background parenchymal enhancement. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  11. Design, Implementation, and Characterization of a Dedicated Breast Computed MammoTomography System for Enhanced Lesion Imaging

    DTIC Science & Technology

    2008-03-01

    dual view mammography with anticipated increased image contrast ; and (4) expectedly improved positive predictive value, especially for...ray source allows for reduced radiation dose as compared to standard dual-view mammography and additionally improves image contrast between soft...clear signal enhancing ~2cm diameter, detailed volume of tracer anterior to the chest wall which corresponded to that seen in the contrast enhanced

  12. [Contrast medium enhanced magnetic resonance tomography of liver metastases: positive versus negative contrast media].

    PubMed

    Hammerstingl, R M; Schwarz, W; Hochmuth, K; Staib-Sebler, E; Lorenz, M; Vogl, T J

    2001-01-01

    The development in oncologic liver surgery as well as modified interventional therapy strategies of the liver have resulted in improved diagnostic imaging. The evolution of contrast agents for MR imaging of the liver has proceeded along several different paths with the common goal of improving liver-lesion contrast. In MRI contrast agents act indirectly by their effects on relaxation times. Contrast agents used for hepatic MR imaging can be categorized in those that target the extracellular space, the hepatobiliary system, and the reticuloendothelial system. The first two result in a positive enhancement, the last one in a negative enhancement. Positive enhancers allow a better characterization of liver metastases using dynamic sequence protocols. Detection rate of liver metastases is increased using hepatobiliary contrast-enhanced MRI compared to unenhanced MRI. Negative enhancers, iron oxide particles, significantly increase tumor-to-liver contrast and allow detection of more lesions than other diagnostic methods. Iron-oxide enhanced MRI enables differential diagnosis of liver metastases comparing morphologic features using T2 and T1-weighted sequences.

  13. Development of a platform for co-registered ultrasound and MR contrast imaging in vivo

    NASA Astrophysics Data System (ADS)

    Chandrana, Chaitanya; Bevan, Peter; Hudson, John; Pang, Ian; Burns, Peter; Plewes, Donald; Chopra, Rajiv

    2011-02-01

    Imaging of the microvasculature is often performed using contrast agents in combination with either ultrasound (US) or magnetic resonance (MR) imaging. Contrast agents are used to enhance medical imaging by highlighting microvascular properties and function. Dynamic signal changes arising from the passage of contrast agents through the microvasculature can be used to characterize different pathologies; however, comparisons across modalities are difficult due to differences in the interactions of contrast agents with the microvasculature. Better knowledge of the relationship of contrast enhancement patterns with both modalities could enable better characterization of tissue microvasculature. We developed a co-registration platform for multi-modal US and MR imaging using clinical imaging systems in order to study the relationship between US and MR contrast enhancement. A preliminary validation study was performed in phantoms to determine the registration accuracy of the platform. In phantoms, the in-plane registration accuracy was measured to be 0.2 ± 0.2 and 0.3 ± 0.2 mm, in the lateral and axial directions, respectively. The out-of-plane registration accuracy was estimated to be 0.5 mm ±0.1. Co-registered US and MR imaging was performed in a rabbit model to evaluate contrast kinetics in different tissue types after bolus injections of US and MR contrast agents. The arrival time of the contrast agent in the plane of imaging was relatively similar for both modalities. We studied three different tissue types: muscle, large vessels and fat. In US, the temporal kinetics of signal enhancement were not strongly dependent on tissue type. In MR, however, due to the different amounts of agent extravasation in each tissue type, tissue-specific contrast kinetics were observed. This study demonstrates the feasibility of performing in vivo co-registered contrast US and MR imaging to study the relationships of the enhancement patterns with each modality.

  14. Contrast enhancement of subcutaneous blood vessel images by means of visible and near-infrared hyper-spectral imaging

    NASA Astrophysics Data System (ADS)

    Katrašnik, Jaka; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2009-02-01

    Visualization of subcutaneous veins is very difficult with the naked eye, but important for diagnosis of medical conditions and different medical procedures such as catheter insertion and blood withdrawal. Moreover, recent studies showed that the images of subcutaneous veins could be used for biometric identification. The majority of methods used for enhancing the contrast between the subcutaneous veins and surrounding tissue are based on simple imaging systems utilizing CMOS or CCD cameras with LED illumination capable of acquiring images from the near infrared spectral region, usually near 900 nm. However, such simplified imaging methods cannot exploit the full potential of the spectral information. In this paper, a new highly versatile method for enhancing the contrast of subcutaneous veins based on state-of-the-art high-resolution hyper-spectral imaging system utilizing the spectral region from 550 to 1700 nm is presented. First, a detailed analysis of the contrast between the subcutaneous veins and the surrounding tissue as a function of wavelength, for several different positions on the human arm, was performed in order to extract the spectral regions with the highest contrast. The highest contrast images were acquired at 1100 nm, however, combining the individual images from the extracted spectral regions by the proposed contrast enhancement method resulted in a single image with up to ten-fold better contrast. Therefore, the proposed method has proved to be a useful tool for visualization of subcutaneous veins.

  15. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.

    PubMed

    Gong, Enhao; Pauly, John M; Wintermark, Max; Zaharchuk, Greg

    2018-02-13

    There are concerns over gadolinium deposition from gadolinium-based contrast agents (GBCA) administration. To reduce gadolinium dose in contrast-enhanced brain MRI using a deep learning method. Retrospective, crossover. Sixty patients receiving clinically indicated contrast-enhanced brain MRI. 3D T 1 -weighted inversion-recovery prepped fast-spoiled-gradient-echo (IR-FSPGR) imaging was acquired at both 1.5T and 3T. In 60 brain MRI exams, the IR-FSPGR sequence was obtained under three conditions: precontrast, postcontrast images with 10% low-dose (0.01mmol/kg) and 100% full-dose (0.1 mmol/kg) of gadobenate dimeglumine. We trained a deep learning model using the first 10 cases (with mixed indications) to approximate full-dose images from the precontrast and low-dose images. Synthesized full-dose images were created using the trained model in two test sets: 20 patients with mixed indications and 30 patients with glioma. For both test sets, low-dose, true full-dose, and the synthesized full-dose postcontrast image sets were compared quantitatively using peak-signal-to-noise-ratios (PSNR) and structural-similarity-index (SSIM). For the test set comprised of 20 patients with mixed indications, two neuroradiologists scored blindly and independently for the three postcontrast image sets, evaluating image quality, motion-artifact suppression, and contrast enhancement compared with precontrast images. Results were assessed using paired t-tests and noninferiority tests. The proposed deep learning method yielded significant (n = 50, P < 0.001) improvements over the low-dose images (>5 dB PSNR gains and >11.0% SSIM). Ratings on image quality (n = 20, P = 0.003) and contrast enhancement (n = 20, P < 0.001) were significantly increased. Compared to true full-dose images, the synthesized full-dose images have a slight but not significant reduction in image quality (n = 20, P = 0.083) and contrast enhancement (n = 20, P = 0.068). Slightly better (n = 20, P = 0.039) motion-artifact suppression was noted in the synthesized images. The noninferiority test rejects the inferiority of the synthesized to true full-dose images for image quality (95% CI: -14-9%), artifacts suppression (95% CI: -5-20%), and contrast enhancement (95% CI: -13-6%). With the proposed deep learning method, gadolinium dose can be reduced 10-fold while preserving contrast information and avoiding significant image quality degradation. 3 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  16. Nano-Scale Structure of Twin Boundaries in Shocked Zircon from the Vredefort Impact Structure.

    NASA Astrophysics Data System (ADS)

    Sharp, T. G.; Cavosie, A. J.

    2017-12-01

    Shock deformation of zircon produces distinct microstructures that can be used as evidence of shock in natural samples. These deformation features include {112} twins that have been observed in naturally shocked samples from Vredefort and elsewhere [1-3]. Electron backscatter diffraction (EBSD) has shown that these twins are polysynthetic, generally < 1µm wide and have a 65°/<110> crystallographic relation to the host zircon [2]. The structure and composition of these twin boundaries, and their effects on element mobility have not been explored previously. Here we use high-resolution TEM to investigate the nano-structure of a {112} twin in a shocked zircon crystal from the 2.0 Ga Vredefort impact structure [3]. Focused-ion-beam lift-out techniques were used to prepare a TEM foil with a 1 µm wide {112}-twin lamella. The foil was characterized by TEM imaging and electron diffraction using a FEI CM200-FEG transmission electron microscope. Selected area diffraction from the {112}-twin boundary, along a <111> zone, showed no apparent evidence of twining. However, the domain boundaries displayed weak diffraction contrast in this orientation. High-resolution images show a 50-nm wide zone of heterogeneous structural disorder and locally amorphous domains along the twin boundaries that is inferred to be a localized metamict zone. The detailed lattice structure of the interface was not discernable because of this structural disorder. Diffraction and imaging along <021> confirms that the {112}-twin composition plane is a mirror plane. The crystallographic relations observed along <110> and <021> are consistent with the 65°/<110> twin structure previously determined from EBSD [2]. Enhanced metamict disorder suggests a higher concentration of actinides along the twin boundaries and implies actinide mobility near twin boundaries. [1] Moser et al, 2011 Can J Earth Sci. [2] Erickson et al. 2013 Am Min. [3] Cavosie et al. 2015 Geol.

  17. Novel medical image enhancement algorithms

    NASA Astrophysics Data System (ADS)

    Agaian, Sos; McClendon, Stephen A.

    2010-01-01

    In this paper, we present two novel medical image enhancement algorithms. The first, a global image enhancement algorithm, utilizes an alpha-trimmed mean filter as its backbone to sharpen images. The second algorithm uses a cascaded unsharp masking technique to separate the high frequency components of an image in order for them to be enhanced using a modified adaptive contrast enhancement algorithm. Experimental results from enhancing electron microscopy, radiological, CT scan and MRI scan images, using the MATLAB environment, are then compared to the original images as well as other enhancement methods, such as histogram equalization and two forms of adaptive contrast enhancement. An image processing scheme for electron microscopy images of Purkinje cells will also be implemented and utilized as a comparison tool to evaluate the performance of our algorithm.

  18. Development of a Tumor Histologic-Specific, Nano-Encapsulated Contrast for Enhancing Magnetic Resonance Imaging of Prostate Cancer

    DTIC Science & Technology

    2008-04-01

    Nano-Encapsulated Contrast for Enhancing Magnetic Resonance Imaging of Prostate Cancer PRINCIPAL INVESTIGATOR: Joel W. Slaton, M.D...2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Development of a Tumor Histologic-Specific, Nano-Encapsulated Contrast for Enhancing Magnetic...carry a contrast agent to human CaP cells growing in mice to enhance MR detection of cancer. Our work in the first year has focused on in vitro

  19. An inexpensive approach for bright-field and dark-field imaging by scanning transmission electron microscopy in scanning electron microscopy.

    PubMed

    Patel, Binay; Watanabe, Masashi

    2014-02-01

    Scanning transmission electron microscopy in scanning electron microscopy (STEM-in-SEM) is a convenient technique for soft materials characterization. Various specimen-holder geometries and detector arrangements have been used for bright-field (BF) STEM-in-SEM imaging. In this study, to further the characterization potential of STEM-IN-SEM, a new specimen holder has been developed to facilitate direct detection of BF signals and indirect detection of dark-field (DF) signals without the need for substantial instrument modification. DF imaging is conducted with the use of a gold (Au)-coated copper (Cu) plate attached to the specimen holder which directs highly scattered transmitted electrons to an off-axis yttrium-aluminum-garnet (YAG) detector. A hole in the copper plate allows for BF imaging with a transmission electron (TE) detector. The inclusion of an Au-coated Cu plate enhanced DF signal intensity. Experiments validating the acquisition of true DF signals revealed that atomic number (Z) contrast may be achieved for materials with large lattice spacing. However, materials with small lattice spacing still exhibit diffraction contrast effects in this approach. The calculated theoretical fine probe size is 1.8 nm. At 30 kV, in this indirect approach, DF spatial resolution is limited to 3.2 nm as confirmed experimentally.

  20. Scanning electron microscopy imaging of dislocations in bulk materials, using electron channeling contrast.

    PubMed

    Crimp, Martin A

    2006-05-01

    The imaging and characterization of dislocations is commonly carried out by thin foil transmission electron microscopy (TEM) using diffraction contrast imaging. However, the thin foil approach is limited by difficult sample preparation, thin foil artifacts, relatively small viewable areas, and constraints on carrying out in situ studies. Electron channeling imaging of electron channeling contrast imaging (ECCI) offers an alternative approach for imaging crystalline defects, including dislocations. Because ECCI is carried out with field emission gun scanning electron microscope (FEG-SEM) using bulk specimens, many of the limitations of TEM thin foil analysis are overcome. This paper outlines the development of electron channeling patterns and channeling imaging to the current state of the art. The experimental parameters and set up necessary to carry out routine channeling imaging are reviewed. A number of examples that illustrate some of the advantages of ECCI over thin foil TEM are presented along with a discussion of some of the limitations on carrying out channeling contrast analysis of defect structures. Copyright (c) 2006 Wiley-Liss, Inc.

  1. Automated segmentation of hepatic vessel trees in non-contrast x-ray CT images

    NASA Astrophysics Data System (ADS)

    Kawajiri, Suguru; Zhou, Xiangrong; Zhang, Xuejin; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kondo, Hiroshi; Kanematsu, Masayuki; Hoshi, Hiroaki

    2007-03-01

    Hepatic vessel trees are the key structures in the liver. Knowledge of the hepatic vessel trees is important for liver surgery planning and hepatic disease diagnosis such as portal hypertension. However, hepatic vessels cannot be easily distinguished from other liver tissues in non-contrast CT images. Automated segmentation of hepatic vessels in non-contrast CT images is a challenging issue. In this paper, an approach for automated segmentation of hepatic vessels trees in non-contrast X-ray CT images is proposed. Enhancement of hepatic vessels is performed using two techniques: (1) histogram transformation based on a Gaussian window function; (2) multi-scale line filtering based on eigenvalues of Hessian matrix. After the enhancement of hepatic vessels, candidate of hepatic vessels are extracted by thresholding. Small connected regions of size less than 100 voxels are considered as false-positives and are removed from the process. This approach is applied to 20 cases of non-contrast CT images. Hepatic vessel trees segmented from the contrast-enhanced CT images of the same patient are used as the ground truth in evaluating the performance of the proposed segmentation method. Results show that the proposed method can enhance and segment the hepatic vessel regions in non-contrast CT images correctly.

  2. Energy balance in apodized diffractive multifocal intaocular lenses

    NASA Astrophysics Data System (ADS)

    Alba-Bueno, Francisco; Vega, Fidel; Millán, María S.

    2011-08-01

    The energy distribution between the distance and near images formed in a model eye by three different apodized diffractive multifocal intraocular lenses (IOLs) is experimentally determined in an optical bench. The model eye has an artificial cornea with positive spherical aberration (SA) similar to human cornea. The level of SA upon the IOL, which is pupil size dependent, is controlled using a Hartmann-Shack wave sensor. The energy of the distance and near images as a function of the pupil size is experimentally obtained from image analysis. All three IOLs have the same base refractive power (20D) but different designs (aspheric, spherical) and add powers (+4.0 D, +3.0 D). The results show that in all the cases, the energy efficiency of the distance image decreases for large pupils, in contrast with the theoretical and simulated results that only consider the diffractive profile of the lens. As for the near image, since the diffractive zone responsible for the formation of this image has the same apodization factor in the spherical and aspheric lenses and the apertures involved are small (and so the level of SA), the results turn out to be similar for all the three IOL designs.

  3. Diffraction-Enhanced Computed Tomographic Imaging of Growing Piglet Joints by Using a Synchrotron Light Source

    PubMed Central

    Rhoades, Glendon W; Belev, George S; Chapman, L Dean; Wiebe, Sheldon P; Cooper, David M; Wong, Adelaine TF; Rosenberg, Alan M

    2015-01-01

    The objective of this project was to develop and test a new technology for imaging growing joints by means of diffraction-enhanced imaging (DEI) combined with CT and using a synchrotron radiation source. DEI–CT images of an explanted 4-wk-old piglet stifle joint were acquired by using a 40-keV beam. The series of scanned slices was later ‘stitched’ together, forming a 3D dataset. High-resolution DEI-CT images demonstrated fine detail within all joint structures and tissues. Striking detail of vasculature traversing between bone and cartilage, a characteristic of growing but not mature joints, was demonstrated. This report documents for the first time that DEI combined with CT and a synchrotron radiation source can generate more detailed images of intact, growing joints than can currently available conventional imaging modalities. PMID:26310464

  4. A detail enhancement and dynamic range adjustment algorithm for high dynamic range images

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Wang, Huachuang; Liang, Mingtao; Yu, Cong; Hu, Jinlong; Cheng, Hua

    2014-08-01

    Although high dynamic range (HDR) images contain large amounts of information, they have weak texture and low contrast. What's more, these images are difficult to be reproduced on low dynamic range displaying mediums. If much more information is to be acquired when these images are displayed on PCs, some specific transforms, such as compressing the dynamic range, enhancing the portions of little difference in original contrast and highlighting the texture details on the premise of keeping the parts of large contrast, are needed. To this ends, a multi-scale guided filter enhancement algorithm which derives from the single-scale guided filter based on the analysis of non-physical model is proposed in this paper. Firstly, this algorithm decomposes the original HDR images into base image and detail images of different scales, and then it adaptively selects a transform function which acts on the enhanced detail images and original images. By comparing the treatment effects of HDR images and low dynamic range (LDR) images of different scene features, it proves that this algorithm, on the basis of maintaining the hierarchy and texture details of images, not only improves the contrast and enhances the details of images, but also adjusts the dynamic range well. Thus, it is much suitable for human observation or analytical processing of machines.

  5. Simultaneous Assessment of Myocardial Perfusion, Wall Motion, and Deformation during Myocardial Contrast Echocardiography: A Feasibility Study.

    PubMed

    Zoppellaro, Giacomo; Venneri, Lucia; Khattar, Rajdeep S; Li, Wei; Senior, Roxy

    2016-06-01

    Ultrasound contrast agents may be used for the assessment of regional wall motion and myocardial perfusion, but are generally considered not suitable for deformation analysis. The aim of our study was to assess the feasibility of deformation imaging on contrast-enhanced images using a novel methodology. We prospectively enrolled 40 patients who underwent stress echocardiography with continuous intravenous infusion of SonoVue for the assessment of myocardial perfusion imaging with flash replenishment technique. We compared longitudinal strain (Lε) values, assessed with a vendor-independent software (2D CPA), on 68 resting contrast-enhanced and 68 resting noncontrast recordings. Strain analysis on contrast recordings was evaluated in the first cardiac cycles after the flash. Tracking of contrast images was deemed feasible in all subjects and in all views. Contrast administration improved image quality and increased the number of segments used for deformation analysis. Lε of noncontrast and contrast-enhanced images were statistically different (-18.8 ± 4.5% and -22.8 ± 5.4%, respectively; P < 0.001), but their correlation was good (ICC 0.65, 95%CI 0.42-0.78). Patients with resting wall-motion abnormalities showed lower Lε values on contrast recordings (-18.6 ± 6.0% vs. -24.2 ± 5.5%, respectively; P < 0.01). Intra-operator and inter-operator reproducibility was good for both noncontrast and contrast images with no statistical differences. Our study shows that deformation analysis on postflash contrast-enhanced images is feasible and reproducible. Therefore, it would be possible to perform a simultaneous evaluation of wall-motion abnormalities, volumes, ejection fraction, perfusion defects, and cardiac deformation on the same contrast recording. © 2016, Wiley Periodicals, Inc.

  6. Penetration Depth and Defect Image Contrast Formation in Grazing-Incidence X-ray Topography of 4H-SiC Wafers

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Guo, Jianqiu; Goue, Ouloide Yannick; Kim, Jun Gyu; Raghothamachar, Balaji; Dudley, Michael; Chung, Gill; Sanchez, Edward; Manning, Ian

    2018-02-01

    Synchrotron x-ray topography in grazing-incidence geometry is useful for discerning defects at different depths below the crystal surface, particularly for 4H-SiC epitaxial wafers. However, the penetration depths measured from x-ray topographs are much larger than theoretical values. To interpret this discrepancy, we have simulated the topographic contrast of dislocations based on two of the most basic contrast formation mechanisms, viz. orientation and kinematical contrast. Orientation contrast considers merely displacement fields associated with dislocations, while kinematical contrast considers also diffraction volume, defined as the effective misorientation around dislocations and the rocking curve width for given diffraction vector. Ray-tracing simulation was carried out to visualize dislocation contrast for both models, taking into account photoelectric absorption of the x-ray beam inside the crystal. The results show that orientation contrast plays the key role in determining both the contrast and x-ray penetration depth for different types of dislocation.

  7. Reconstruction methods for phase-contrast tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raven, C.

    Phase contrast imaging with coherent x-rays can be distinguished in outline imaging and holography, depending on the wavelength {lambda}, the object size d and the object-to-detector distance r. When r << d{sup 2}{lambda}, phase contrast occurs only in regions where the refractive index fastly changes, i.e. at interfaces and edges in the sample. With increasing object-to-detector distance we come in the area of holographic imaging. The image contrast outside the shadow region of the object is due to interference of the direct, undiffracted beam and a beam diffracted by the object, or, in terms of holography, the interference of amore » reference wave with the object wave. Both, outline imaging and holography, offer the possibility to obtain three dimensional information of the sample in conjunction with a tomographic technique. But the data treatment and the kind of information one can obtain from the reconstruction is different.« less

  8. Method of Improved Fuzzy Contrast Combined Adaptive Threshold in NSCT for Medical Image Enhancement

    PubMed Central

    Yang, Jie; Kasabov, Nikola

    2017-01-01

    Noises and artifacts are introduced to medical images due to acquisition techniques and systems. This interference leads to low contrast and distortion in images, which not only impacts the effectiveness of the medical image but also seriously affects the clinical diagnoses. This paper proposes an algorithm for medical image enhancement based on the nonsubsampled contourlet transform (NSCT), which combines adaptive threshold and an improved fuzzy set. First, the original image is decomposed into the NSCT domain with a low-frequency subband and several high-frequency subbands. Then, a linear transformation is adopted for the coefficients of the low-frequency component. An adaptive threshold method is used for the removal of high-frequency image noise. Finally, the improved fuzzy set is used to enhance the global contrast and the Laplace operator is used to enhance the details of the medical images. Experiments and simulation results show that the proposed method is superior to existing methods of image noise removal, improves the contrast of the image significantly, and obtains a better visual effect. PMID:28744464

  9. Multiscale image contrast amplification (MUSICA)

    NASA Astrophysics Data System (ADS)

    Vuylsteke, Pieter; Schoeters, Emile P.

    1994-05-01

    This article presents a novel approach to the problem of detail contrast enhancement, based on multiresolution representation of the original image. The image is decomposed into a weighted sum of smooth, localized, 2D basis functions at multiple scales. Each transform coefficient represents the amount of local detail at some specific scale and at a specific position in the image. Detail contrast is enhanced by non-linear amplification of the transform coefficients. An inverse transform is then applied to the modified coefficients. This yields a uniformly contrast- enhanced image without artefacts. The MUSICA-algorithm is being applied routinely to computed radiography images of chest, skull, spine, shoulder, pelvis, extremities, and abdomen examinations, with excellent acceptance. It is useful for a wide range of applications in the medical, graphical, and industrial area.

  10. Readout-segmented multi-shot diffusion-weighted MRI of the knee joint in patients with juvenile idiopathic arthritis.

    PubMed

    Sauer, Alexander; Li, Mengxia; Holl-Wieden, Annette; Pabst, Thomas; Neubauer, Henning

    2017-10-12

    Diffusion-weighted MRI has been proposed as a new technique for imaging synovitis without intravenous contrast application. We investigated diagnostic utility of multi-shot readout-segmented diffusion-weighted MRI (multi-shot DWI) for synovial imaging of the knee joint in patients with juvenile idiopathic arthritis (JIA). Thirty-two consecutive patients with confirmed or suspected JIA (21 girls, median age 13 years) underwent routine 1.5 T MRI with contrast-enhanced T1w imaging (contrast-enhanced MRI) and with multi-shot DWI (RESOLVE, b-values 0-50 and 800 s/mm 2 ). Contrast-enhanced MRI, representing the diagnostic standard, and diffusion-weighted images at b = 800 s/mm 2 were separately rated by three independent blinded readers at different levels of expertise for the presence and the degree of synovitis on a modified 5-item Likert scale along with the level of subjective diagnostic confidence. Fourteen (44%) patients had active synovitis and joint effusion, nine (28%) patients showed mild synovial enhancement not qualifying for arthritis and another nine (28%) patients had no synovial signal alterations on contrast-enhanced imaging. Ratings by the 1st reader on contrast-enhanced MRI and on DWI showed substantial agreement (κ = 0.74). Inter-observer-agreement was high for diagnosing, or ruling out, active arthritis of the knee joint on contrast-enhanced MRI and on DWI, showing full agreement between 1st and 2nd reader and disagreement in one case (3%) between 1st and 3rd reader. In contrast, ratings in cases of absent vs. little synovial inflammation were markedly inconsistent on DWI. Diagnostic confidence was lower on DWI, compared to contrast-enhanced imaging. Multi-shot DWI of the knee joint is feasible in routine imaging and reliably diagnoses, or rules out, active arthritis of the knee joint in paediatric patients without the need of gadolinium-based i.v. contrast injection. Possibly due to "T2w shine-through" artifacts, DWI does not reliably differentiate non-inflamed joints from knee joints with mild synovial irritation.

  11. Local reconstruction in computed tomography of diffraction enhanced imaging

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Feng; Zhang, Li; Kang, Ke-Jun; Chen, Zhi-Qiang; Zhu, Pei-Ping; Yuan, Qing-Xi; Huang, Wan-Xia

    2007-07-01

    Computed tomography of diffraction enhanced imaging (DEI-CT) based on synchrotron radiation source has extremely high sensitivity of weakly absorbing low-Z samples in medical and biological fields. The authors propose a modified backprojection filtration(BPF)-type algorithm based on PI-line segments to reconstruct region of interest from truncated refraction-angle projection data in DEI-CT. The distribution of refractive index decrement in the sample can be directly estimated from its reconstruction images, which has been proved by experiments at the Beijing Synchrotron Radiation Facility. The algorithm paves the way for local reconstruction of large-size samples by the use of DEI-CT with small field of view based on synchrotron radiation source.

  12. Multi-scale Morphological Image Enhancement of Chest Radiographs by a Hybrid Scheme.

    PubMed

    Alavijeh, Fatemeh Shahsavari; Mahdavi-Nasab, Homayoun

    2015-01-01

    Chest radiography is a common diagnostic imaging test, which contains an enormous amount of information about a patient. However, its interpretation is highly challenging. The accuracy of the diagnostic process is greatly influenced by image processing algorithms; hence enhancement of the images is indispensable in order to improve visibility of the details. This paper aims at improving radiograph parameters such as contrast, sharpness, noise level, and brightness to enhance chest radiographs, making use of a triangulation method. Here, contrast limited adaptive histogram equalization technique and noise suppression are simultaneously performed in wavelet domain in a new scheme, followed by morphological top-hat and bottom-hat filtering. A unique implementation of morphological filters allows for adjustment of the image brightness and significant enhancement of the contrast. The proposed method is tested on chest radiographs from Japanese Society of Radiological Technology database. The results are compared with conventional enhancement techniques such as histogram equalization, contrast limited adaptive histogram equalization, Retinex, and some recently proposed methods to show its strengths. The experimental results reveal that the proposed method can remarkably improve the image contrast while keeping the sensitive chest tissue information so that radiologists might have a more precise interpretation.

  13. Multi-scale Morphological Image Enhancement of Chest Radiographs by a Hybrid Scheme

    PubMed Central

    Alavijeh, Fatemeh Shahsavari; Mahdavi-Nasab, Homayoun

    2015-01-01

    Chest radiography is a common diagnostic imaging test, which contains an enormous amount of information about a patient. However, its interpretation is highly challenging. The accuracy of the diagnostic process is greatly influenced by image processing algorithms; hence enhancement of the images is indispensable in order to improve visibility of the details. This paper aims at improving radiograph parameters such as contrast, sharpness, noise level, and brightness to enhance chest radiographs, making use of a triangulation method. Here, contrast limited adaptive histogram equalization technique and noise suppression are simultaneously performed in wavelet domain in a new scheme, followed by morphological top-hat and bottom-hat filtering. A unique implementation of morphological filters allows for adjustment of the image brightness and significant enhancement of the contrast. The proposed method is tested on chest radiographs from Japanese Society of Radiological Technology database. The results are compared with conventional enhancement techniques such as histogram equalization, contrast limited adaptive histogram equalization, Retinex, and some recently proposed methods to show its strengths. The experimental results reveal that the proposed method can remarkably improve the image contrast while keeping the sensitive chest tissue information so that radiologists might have a more precise interpretation. PMID:25709942

  14. X-Ray Phase Imaging for Breast Cancer Detection

    DTIC Science & Technology

    2012-09-01

    the Gerchberg-Saxton algorithm in the Fresnel diffraction regime, and is much more robust against image noise than the TIE-based method. For details...developed efficient coding with the software modules for the image registration, flat-filed correction , and phase retrievals. In addition, we...X, Liu H. 2010. Performance analysis of the attenuation-partition based iterative phase retrieval algorithm for in-line phase-contrast imaging

  15. Dual-energy contrast-enhanced spectral mammography (CESM).

    PubMed

    Daniaux, Martin; De Zordo, Tobias; Santner, Wolfram; Amort, Birgit; Koppelstätter, Florian; Jaschke, Werner; Dromain, Clarisse; Oberaigner, Willi; Hubalek, Michael; Marth, Christian

    2015-10-01

    Dual-energy contrast-enhanced mammography is one of the latest developments in breast care. Imaging with contrast agents in breast cancer was already known from previous magnetic resonance imaging and computed tomography studies. However, high costs, limited availability-or high radiation dose-led to the development of contrast-enhanced spectral mammography (CESM). We reviewed the current literature, present our experience, discuss the advantages and drawbacks of CESM and look at the future of this innovative technique.

  16. Active extravasation of gadolinium-based contrast agent into the subdural space following lumbar puncture.

    PubMed

    Kothari, Pranay D; Hanser, Evelyn M; Wang, Harrison; Farid, Nikdokht

    2016-01-01

    A 38year-old male presented with cauda equina syndrome following multiple lumbar puncture attempts. Lumbar spine magnetic resonance imaging (MRI) showed a subdural hematoma and an area of apparent contrast enhancement in the spinal canal on sagittal post-contrast images. Axial post-contrast images obtained seven minutes later demonstrated an increase in size and change in shape of the region of apparent contrast enhancement, indicating active extravasation of the contrast agent. This is the first reported case of active extravasation of gadolinium-based contrast agent in the spine. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Controllable synthesis of a novel magnetic core-shell nanoparticle for dual-modal imaging and pH-responsive drug delivery

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Zhang, Cheng; Wang, Yingxi; Li, Liu; Li, Ling; Whittaker, Andrew K.

    2017-12-01

    In this study, novel magnetic core-shell nanoparticles Fe3O4@La-BTC/GO have been synthesized by the layer-by-layer self-assembly (LBL) method and further modified by attachment of amino-modified PEG chains. The nanoparticles were thoroughly characterized by x-ray diffraction, FTIR, scanning electron microscopy and transmission electron microscopy. The core-shell structure was shown to be controlled by the LBL method. The drug loading of doxorubicin (DOX) within the Fe3O4@La-BTC/GO-PEG nanoparticles with different numbers of deposited layers was investigated. It was found that DOX loading increased with increasing number of metal organic framework coating layers, indicating that the drug loading can be controlled through the controllable LBL method. Cytotoxicity assays indicated that the Fe3O4@La-BTC/GO-PEG nanoparticles were biocompatible. The DOX was released rapidly at pH 3.8 and pH 5.8, but at pH 7.4 the rate and extent of release was greatly attenuated. The nanoparticles therefore demonstrate an excellent pH-triggered drug release. In addition, the particles could be tracked by magnetic resonance imaging (MRI) and fluorescence optical imaging (FOI). A clear dose-dependent contrast enhancement in T 2-weighted MR images and fluorescence images indicate the potential of these nanoparticles as dual-mode MRI/FOI contrast agents.

  18. Enhanced renal image contrast by ethanol fixation in phase-contrast X-ray computed tomography.

    PubMed

    Shirai, Ryota; Kunii, Takuya; Yoneyama, Akio; Ooizumi, Takahito; Maruyama, Hiroko; Lwin, Thet Thet; Hyodo, Kazuyuki; Takeda, Tohoru

    2014-07-01

    Phase-contrast X-ray imaging using a crystal X-ray interferometer can depict the fine structures of biological objects without the use of a contrast agent. To obtain higher image contrast, fixation techniques have been examined with 100% ethanol and the commonly used 10% formalin, since ethanol causes increased density differences against background due to its physical properties and greater dehydration of soft tissue. Histological comparison was also performed. A phase-contrast X-ray system was used, fitted with a two-crystal X-ray interferometer at 35 keV X-ray energy. Fine structures, including cortex, tubules in the medulla, and the vessels of ethanol-fixed kidney could be visualized more clearly than that of formalin-fixed tissues. In the optical microscopic images, shrinkage of soft tissue and decreased luminal space were observed in ethanol-fixed kidney; and this change was significantly shown in the cortex and outer stripe of the outer medulla. The ethanol fixation technique enhances image contrast by approximately 2.7-3.2 times in the cortex and the outer stripe of the outer medulla; the effect of shrinkage and the physical effect of ethanol cause an increment of approximately 78% and 22%, respectively. Thus, the ethanol-fixation technique enables the image contrast to be enhanced in phase-contrast X-ray imaging.

  19. Evaluation of intraaxial enhancing brain tumors on magnetic resonance imaging: intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine for visualization and assessment, and implications for surgical intervention.

    PubMed

    Kuhn, Matthew J; Picozzi, Piero; Maldjian, Joseph A; Schmalfuss, Ilona M; Maravilla, Kenneth R; Bowen, Brian C; Wippold, Franz J; Runge, Val M; Knopp, Michael V; Wolansky, Leo J; Gustafsson, Lars; Essig, Marco; Anzalone, Nicoletta

    2007-04-01

    The goal in this article was to compare 0.1 mmol/kg doses of gadobenate dimeglumine (Gd-BOPTA) and gadopentetate dimeglumine, also known as gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), for enhanced magnetic resonance (MR) imaging of intraaxial brain tumors. Eighty-four patients with either intraaxial glioma (47 patients) or metastasis (37 patients) underwent two MR imaging examinations at 1.5 tesla, one with Gd-BOPTA as the contrast agent and the other with Gd-DTPA. The interval between fully randomized contrast medium administrations was 2 to 7 days. The T1-weighted spin echo and T2-weighted fast spin echo images were acquired before administration of contrast agents and T1-weighted spin echo images were obtained after the agents were administered. Acquisition parameters and postinjection acquisition times were identical for the two examinations in each patient. Three experienced readers working in a fully blinded fashion independently evaluated all images for degree and quality of available information (lesion contrast enhancement, lesion border delineation, definition of disease extent, visualization of the lesion's internal structures, global diagnostic preference) and quantitative enhancement (that is, the extent of lesion enhancement after contrast agent administration compared with that seen before its administration [hereafter referred to as percent enhancement], lesion/brain ratio, and contrast/noise ratio). Differences were tested with the Wilcoxon signed-rank test. Reader agreement was assessed using kappa statistics. Significantly better diagnostic information/imaging performance (p < 0.0001, all readers) was obtained with Gd-BOPTA for all visualization end points. Global preference for images obtained with Gd-BOPTA was expressed for 42 (50%), 52 (61.9%), and 56 (66.7%) of 84 patients (readers 1, 2, and 3, respectively) compared with images obtained with Gd-DTPA contrast in four (4.8%), six (7.1%), and three (3.6%) of 84 patients. Similar differences were noted for all other visualization end points. Significantly greater quantitative contrast enhancement (p < 0.04) was noted after administration of Gd-BOPTA. Reader agreement was good (kappa > 0.4). Lesion visualization, delineation, definition, and contrast enhancement are significantly better after administration of 0.1 mmol/kg Gd-BOPTA, potentially allowing better surgical planning and follow up and improved disease management.

  20. Spectromicroscopy and coherent diffraction imaging: focus on energy materials applications.

    PubMed

    Hitchcock, Adam P; Toney, Michael F

    2014-09-01

    Current and future capabilities of X-ray spectromicroscopy are discussed based on coherence-limited imaging methods which will benefit from the dramatic increase in brightness expected from a diffraction-limited storage ring (DLSR). The methods discussed include advanced coherent diffraction techniques and nanoprobe-based real-space imaging using Fresnel zone plates or other diffractive optics whose performance is affected by the degree of coherence. The capabilities of current systems, improvements which can be expected, and some of the important scientific themes which will be impacted are described, with focus on energy materials applications. Potential performance improvements of these techniques based on anticipated DLSR performance are estimated. Several examples of energy sciences research problems which are out of reach of current instrumentation, but which might be solved with the enhanced DLSR performance, are discussed.

  1. Noise properties and task-based evaluation of diffraction-enhanced imaging

    PubMed Central

    Brankov, Jovan G.; Saiz-Herranz, Alejandro; Wernick, Miles N.

    2014-01-01

    Abstract. Diffraction-enhanced imaging (DEI) is an emerging x-ray imaging method that simultaneously yields x-ray attenuation and refraction images and holds great promise for soft-tissue imaging. The DEI has been mainly studied using synchrotron sources, but efforts have been made to transition the technology to more practical implementations using conventional x-ray sources. The main technical challenge of this transition lies in the relatively lower x-ray flux obtained from conventional sources, leading to photon-limited data contaminated by Poisson noise. Several issues that must be understood in order to design and optimize DEI imaging systems with respect to noise performance are addressed. Specifically, we: (a) develop equations describing the noise properties of DEI images, (b) derive the conditions under which the DEI algorithm is statistically optimal, (c) characterize the imaging performance that can be obtained as measured by task-based metrics, and (d) consider image-processing steps that may be employed to mitigate noise effects. PMID:26158056

  2. High Energy Resolution Hyperspectral X-Ray Imaging for Low-Dose Contrast-Enhanced Digital Mammography.

    PubMed

    Pani, Silvia; Saifuddin, Sarene C; Ferreira, Filipa I M; Henthorn, Nicholas; Seller, Paul; Sellin, Paul J; Stratmann, Philipp; Veale, Matthew C; Wilson, Matthew D; Cernik, Robert J

    2017-09-01

    Contrast-enhanced digital mammography (CEDM) is an alternative to conventional X-ray mammography for imaging dense breasts. However, conventional approaches to CEDM require a double exposure of the patient, implying higher dose, and risk of incorrect image registration due to motion artifacts. A novel approach is presented, based on hyperspectral imaging, where a detector combining positional and high-resolution spectral information (in this case based on Cadmium Telluride) is used. This allows simultaneous acquisition of the two images required for CEDM. The approach was tested on a custom breast-equivalent phantom containing iodinated contrast agent (Niopam 150®). Two algorithms were used to obtain images of the contrast agent distribution: K-edge subtraction (KES), providing images of the distribution of the contrast agent with the background structures removed, and a dual-energy (DE) algorithm, providing an iodine-equivalent image and a water-equivalent image. The high energy resolution of the detector allowed the selection of two close-by energies, maximising the signal in KES images, and enhancing the visibility of details with the low surface concentration of contrast agent. DE performed consistently better than KES in terms of contrast-to-noise ratio of the details; moreover, it allowed a correct reconstruction of the surface concentration of the contrast agent in the iodine image. Comparison with CEDM with a conventional detector proved the superior performance of hyperspectral CEDM in terms of the image quality/dose tradeoff.

  3. Gadolinium-enhanced MR images of the growing piglet skeleton: ionic versus nonionic contrast agent.

    PubMed

    Menezes, Nina M; Olear, Elizabeth A; Li, Xiaoming; Connolly, Susan A; Zurakowski, David; Foley, Mary; Shapiro, Frederic; Jaramillo, Diego

    2006-05-01

    To determine whether there are differences in the distribution of ionic and nonionic gadolinium-based contrast agents by evaluating contrast enhancement of the physis, epiphyseal cartilage, secondary ossification center, and metaphysis in the knees of normal piglets. Following approval from the Subcommittee on Research Animal Care, knees of 12 3-week-old piglets were imaged at 3-T magnetic resonance (MR) imaging after intravenous injection of gadoteridol (nonionic contrast agent; n = 6) or gadopentetate dimeglumine (ionic contrast agent; n = 6). Early enhancement evaluation with gradient-echo MR imaging was quantified and compared (Student t test) by means of enhancement ratios. Distribution of contrast material was assessed and compared (Student t test) by means of T1 measurements obtained before and at three 15-minute intervals after contrast agent administration. The relative visibility of the physis, epiphyseal cartilage, secondary ossification center, and metaphysis was qualitatively assessed by two observers and compared (Wilcoxon signed rank test). Differences in matrix content and cellularity that might explain the imaging findings were studied at histologic evaluation. Enhancement ratios were significantly higher for gadoteridol than for gadopentetate dimeglumine in the physis, epiphyseal cartilage, and secondary ossification center (P < .05). After contrast agent administration, T1 values decreased sharply for both agents-but more so for gadoteridol. Additionally, there was less variability in T1 values across structures with this contrast agent. Gadoteridol resulted in greater visibility of the physis, while gadopentetate dimeglumine resulted in greater contrast between the physis and metaphysis (P < .05). The results suggest different roles for the two gadolinium-based contrast agents: The nonionic contrast medium is better suited for evaluating perfusion and anatomic definition in the immature skeleton, while the ionic contrast medium is better for evaluating cartilage fixed-charge density. (c) RSNA, 2006.

  4. Ultrasonic imaging of materials under unconventional circumstances

    NASA Astrophysics Data System (ADS)

    Declercq, Nico Felicien; McKeon, Peter; Slah, Yaacoubi; Liu, Jingfei; Shaw, Anurupa

    2015-03-01

    This paper reflects the contents of the plenary talk given by Nico Felicien Declercq. "Ultrasonic Imaging of materials" covers a wide technological area with main purpose to look at and to peek inside materials. In an ideal world one would manage to examine materials like a clairvoyant. Fortunately this is impossible hence nature has offered sufficient challenges to mankind to provoke curiosity and to develop science and technology. Here we focus on the appearance of certain undesired physical effects that prohibit direct imaging of materials in ultrasonic C-scans. Furthermore we try to make use of these effects to obtain indirect images of materials and therefore make a virtue of necessity. First we return to one of the oldest quests in the progress of mankind: how thick is ice? Our ancestors must have faced this question early on during migration to Northern Europe and to the America's and Asia. If a physicist or engineer is not provided with helpful tools such as a drill or a device based on ultrasound, it is difficult to determine the ice thickness. Guided waves, similar to those used for nondestructive testing of thin plates in structural health monitoring can be used in combination with the human ear to determine the thickness of ice. To continue with plates, if an image of its interior is desired high frequency ultrasonic pulses can be applied. It is known by the physicist that the resolution depends on the wavelength and that high frequencies usually result in undesirably high damping effects inhibiting deep penetration into the material. To the more practical oriented engineer it is known that it is advantageous to polish surfaces before examination because scattering and diffraction of sound lowers the image resolution. Random scatterers cause some blurriness but cooperating scatters, causing coherent diffraction effects similar to the effects that cause DVD's to show rainbow patterns under sunlight, can cause spooky images and erroneous measurements of material properties. However when properly understood, diffraction effects, for instance if one has no other options but to work with frequencies that are fortuitously very effectively diffracted by the surface structure of a material under investigation, can be used to obtain high contract images or to obtain information that would normally be hidden from standard C-scan techniques. Similar contrast enhancement is also obtained for oblique C-scans of composites.

  5. Ultrasonic imaging of materials under unconventional circumstances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Declercq, Nico Felicien, E-mail: declercqdepatin@gatech.edu; McKeon, Peter, E-mail: declercqdepatin@gatech.edu; Liu, Jingfei

    2015-03-31

    This paper reflects the contents of the plenary talk given by Nico Felicien Declercq. “Ultrasonic Imaging of materials” covers a wide technological area with main purpose to look at and to peek inside materials. In an ideal world one would manage to examine materials like a clairvoyant. Fortunately this is impossible hence nature has offered sufficient challenges to mankind to provoke curiosity and to develop science and technology. Here we focus on the appearance of certain undesired physical effects that prohibit direct imaging of materials in ultrasonic C-scans. Furthermore we try to make use of these effects to obtain indirectmore » images of materials and therefore make a virtue of necessity. First we return to one of the oldest quests in the progress of mankind: how thick is ice? Our ancestors must have faced this question early on during migration to Northern Europe and to the America’s and Asia. If a physicist or engineer is not provided with helpful tools such as a drill or a device based on ultrasound, it is difficult to determine the ice thickness. Guided waves, similar to those used for nondestructive testing of thin plates in structural health monitoring can be used in combination with the human ear to determine the thickness of ice. To continue with plates, if an image of its interior is desired high frequency ultrasonic pulses can be applied. It is known by the physicist that the resolution depends on the wavelength and that high frequencies usually result in undesirably high damping effects inhibiting deep penetration into the material. To the more practical oriented engineer it is known that it is advantageous to polish surfaces before examination because scattering and diffraction of sound lowers the image resolution. Random scatterers cause some blurriness but cooperating scatters, causing coherent diffraction effects similar to the effects that cause DVD’s to show rainbow patterns under sunlight, can cause spooky images and erroneous measurements of material properties. However when properly understood, diffraction effects, for instance if one has no other options but to work with frequencies that are fortuitously very effectively diffracted by the surface structure of a material under investigation, can be used to obtain high contract images or to obtain information that would normally be hidden from standard C-scan techniques. Similar contrast enhancement is also obtained for oblique C-scans of composites.« less

  6. Perceptual Contrast Enhancement with Dynamic Range Adjustment

    PubMed Central

    Zhang, Hong; Li, Yuecheng; Chen, Hao; Yuan, Ding; Sun, Mingui

    2013-01-01

    Recent years, although great efforts have been made to improve its performance, few Histogram equalization (HE) methods take human visual perception (HVP) into account explicitly. The human visual system (HVS) is more sensitive to edges than brightness. This paper proposes to take use of this nature intuitively and develops a perceptual contrast enhancement approach with dynamic range adjustment through histogram modification. The use of perceptual contrast connects the image enhancement problem with the HVS. To pre-condition the input image before the HE procedure is implemented, a perceptual contrast map (PCM) is constructed based on the modified Difference of Gaussian (DOG) algorithm. As a result, the contrast of the image is sharpened and high frequency noise is suppressed. A modified Clipped Histogram Equalization (CHE) is also developed which improves visual quality by automatically detecting the dynamic range of the image with improved perceptual contrast. Experimental results show that the new HE algorithm outperforms several state-of-the-art algorithms in improving perceptual contrast and enhancing details. In addition, the new algorithm is simple to implement, making it suitable for real-time applications. PMID:24339452

  7. Breaking the acoustic diffraction barrier with localization optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís.; Razansky, Daniel

    2018-02-01

    Diffraction causes blurring of high-resolution features in images and has been traditionally associated to the resolution limit in light microscopy and other imaging modalities. The resolution of an imaging system can be generally assessed via its point spread function, corresponding to the image acquired from a point source. However, the precision in determining the position of an isolated source can greatly exceed the diffraction limit. By combining the estimated positions of multiple sources, localization-based imaging has resulted in groundbreaking methods such as super-resolution fluorescence optical microscopy and has also enabled ultrasound imaging of microvascular structures with unprecedented spatial resolution in deep tissues. Herein, we introduce localization optoacoustic tomography (LOT) and discuss on the prospects of using localization imaging principles in optoacoustic imaging. LOT was experimentally implemented by real-time imaging of flowing particles in 3D with a recently-developed volumetric optoacoustic tomography system. Provided the particles were separated by a distance larger than the diffraction-limited resolution, their individual locations could be accurately determined in each frame of the acquired image sequence and the localization image was formed by superimposing a set of points corresponding to the localized positions of the absorbers. The presented results demonstrate that LOT can significantly enhance the well-established advantages of optoacoustic imaging by breaking the acoustic diffraction barrier in deep tissues and mitigating artifacts due to limited-view tomographic acquisitions.

  8. A new method for fusion, denoising and enhancement of x-ray images retrieved from Talbot-Lau grating interferometry.

    PubMed

    Scholkmann, Felix; Revol, Vincent; Kaufmann, Rolf; Baronowski, Heidrun; Kottler, Christian

    2014-03-21

    This paper introduces a new image denoising, fusion and enhancement framework for combining and optimal visualization of x-ray attenuation contrast (AC), differential phase contrast (DPC) and dark-field contrast (DFC) images retrieved from x-ray Talbot-Lau grating interferometry. The new image fusion framework comprises three steps: (i) denoising each input image (AC, DPC and DFC) through adaptive Wiener filtering, (ii) performing a two-step image fusion process based on the shift-invariant wavelet transform, i.e. first fusing the AC with the DPC image and then fusing the resulting image with the DFC image, and finally (iii) enhancing the fused image to obtain a final image using adaptive histogram equalization, adaptive sharpening and contrast optimization. Application examples are presented for two biological objects (a human tooth and a cherry) and the proposed method is compared to two recently published AC/DPC/DFC image processing techniques. In conclusion, the new framework for the processing of AC, DPC and DFC allows the most relevant features of all three images to be combined in one image while reducing the noise and enhancing adaptively the relevant image features. The newly developed framework may be used in technical and medical applications.

  9. Method to improve cancerous lesion detection sensitivity in a dedicated dual-head scintimammography system

    DOEpatents

    Kieper, Douglas Arthur [Seattle, WA; Majewski, Stanislaw [Morgantown, WV; Welch, Benjamin L [Hampton, VA

    2012-07-03

    An improved method for enhancing the contrast between background and lesion areas of a breast undergoing dual-head scintimammographic examination comprising: 1) acquiring a pair of digital images from a pair of small FOV or mini gamma cameras compressing the breast under examination from opposing sides; 2) inverting one of the pair of images to align or co-register with the other of the images to obtain co-registered pixel values; 3) normalizing the pair of images pixel-by-pixel by dividing pixel values from each of the two acquired images and the co-registered image by the average count per pixel in the entire breast area of the corresponding detector; and 4) multiplying the number of counts in each pixel by the value obtained in step 3 to produce a normalization enhanced two dimensional contrast map. This enhanced (increased contrast) contrast map enhances the visibility of minor local increases (uptakes) of activity over the background and therefore improves lesion detection sensitivity, especially of small lesions.

  10. Method to improve cancerous lesion detection sensitivity in a dedicated dual-head scintimammography system

    DOEpatents

    Kieper, Douglas Arthur [Newport News, VA; Majewski, Stanislaw [Yorktown, VA; Welch, Benjamin L [Hampton, VA

    2008-10-28

    An improved method for enhancing the contrast between background and lesion areas of a breast undergoing dual-head scintimammographic examination comprising: 1) acquiring a pair of digital images from a pair of small FOV or mini gamma cameras compressing the breast under examination from opposing sides; 2) inverting one of the pair of images to align or co-register with the other of the images to obtain co-registered pixel values; 3) normalizing the pair of images pixel-by-pixel by dividing pixel values from each of the two acquired images and the co-registered image by the average count per pixel in the entire breast area of the corresponding detector; and 4) multiplying the number of counts in each pixel by the value obtained in step 3 to produce a normalization enhanced two dimensional contrast map. This enhanced (increased contrast) contrast map enhances the visibility of minor local increases (uptakes) of activity over the background and therefore improves lesion detection sensitivity, especially of small lesions.

  11. Cell segmentation in phase contrast microscopy images via semi-supervised classification over optics-related features.

    PubMed

    Su, Hang; Yin, Zhaozheng; Huh, Seungil; Kanade, Takeo

    2013-10-01

    Phase-contrast microscopy is one of the most common and convenient imaging modalities to observe long-term multi-cellular processes, which generates images by the interference of lights passing through transparent specimens and background medium with different retarded phases. Despite many years of study, computer-aided phase contrast microscopy analysis on cell behavior is challenged by image qualities and artifacts caused by phase contrast optics. Addressing the unsolved challenges, the authors propose (1) a phase contrast microscopy image restoration method that produces phase retardation features, which are intrinsic features of phase contrast microscopy, and (2) a semi-supervised learning based algorithm for cell segmentation, which is a fundamental task for various cell behavior analysis. Specifically, the image formation process of phase contrast microscopy images is first computationally modeled with a dictionary of diffraction patterns; as a result, each pixel of a phase contrast microscopy image is represented by a linear combination of the bases, which we call phase retardation features. Images are then partitioned into phase-homogeneous atoms by clustering neighboring pixels with similar phase retardation features. Consequently, cell segmentation is performed via a semi-supervised classification technique over the phase-homogeneous atoms. Experiments demonstrate that the proposed approach produces quality segmentation of individual cells and outperforms previous approaches. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Resolution enhancement by extrapolation of coherent diffraction images: a quantitative study on the limits and a numerical study of nonbinary and phase objects.

    PubMed

    Latychevskaia, T; Chushkin, Y; Fink, H-W

    2016-10-01

    In coherent diffractive imaging, the resolution of the reconstructed object is limited by the numerical aperture of the experimental setup. We present here a theoretical and numerical study for achieving super-resolution by postextrapolation of coherent diffraction images, such as diffraction patterns or holograms. We demonstrate that a diffraction pattern can unambiguously be extrapolated from only a fraction of the entire pattern and that the ratio of the extrapolated signal to the originally available signal is linearly proportional to the oversampling ratio. Although there could be in principle other methods to achieve extrapolation, we devote our discussion to employing iterative phase retrieval methods and demonstrate their limits. We present two numerical studies; namely, the extrapolation of diffraction patterns of nonbinary and that of phase objects together with a discussion of the optimal extrapolation procedure. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  13. Dual-energy contrast-enhanced digital mammography (DE-CEDM): optimization on digital subtraction with practical x-ray low/high-energy spectra

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Jing, Zhenxue; Smith, Andrew P.; Parikh, Samir; Parisky, Yuri

    2006-03-01

    Dual-energy contrast enhanced digital mammography (DE-CEDM), which is based upon the digital subtraction of low/high-energy image pairs acquired before/after the administration of contrast agents, may provide physicians physiologic and morphologic information of breast lesions and help characterize their probability of malignancy. This paper proposes to use only one pair of post-contrast low / high-energy images to obtain digitally subtracted dual-energy contrast-enhanced images with an optimal weighting factor deduced from simulated characteristics of the imaging chain. Based upon our previous CEDM framework, quantitative characteristics of the materials and imaging components in the x-ray imaging chain, including x-ray tube (tungsten) spectrum, filters, breast tissues / lesions, contrast agents (non-ionized iodine solution), and selenium detector, were systemically modeled. Using the base-material (polyethylene-PMMA) decomposition method based on entrance low / high-energy x-ray spectra and breast thickness, the optimal weighting factor was calculated to cancel the contrast between fatty and glandular tissues while enhancing the contrast of iodized lesions. By contrast, previous work determined the optimal weighting factor through either a calibration step or through acquisition of a pre-contrast low/high-energy image pair. Computer simulations were conducted to determine weighting factors, lesions' contrast signal values, and dose levels as functions of x-ray techniques and breast thicknesses. Phantom and clinical feasibility studies were performed on a modified Selenia full field digital mammography system to verify the proposed method and computer-simulated results. The resultant conclusions from the computer simulations and phantom/clinical feasibility studies will be used in the upcoming clinical study.

  14. Contrast image formation based on thermodynamic approach and surface laser oxidation process for optoelectronic read-out system

    NASA Astrophysics Data System (ADS)

    Scherbak, Aleksandr; Yulmetova, Olga

    2018-05-01

    A pulsed fiber laser with the wavelength 1.06 μm was used to treat titanium nitride film deposited on beryllium substrates in the air with intensities below an ablation threshold to provide oxide formation. Laser oxidation results were predicted by the chemical thermodynamic method and confirmed by experimental techniques (X-ray diffraction). The developed technology of contrast image formation is intended to be used for optoelectronic read-out system.

  15. Contrast-Enhanced Image of Bellicia Crater

    NASA Image and Video Library

    2013-11-06

    In this contrast-enhanced infrared image of Bellicia Crater on the giant asteroid Vesta, scientists from NASA Dawn mission can see signs of the mineral olivine. Olivine was not expected to be found at Bellicia.

  16. Morphological rational operator for contrast enhancement.

    PubMed

    Peregrina-Barreto, Hayde; Herrera-Navarro, Ana M; Morales-Hernández, Luis A; Terol-Villalobos, Iván R

    2011-03-01

    Contrast enhancement is an important task in image processing that is commonly used as a preprocessing step to improve the images for other tasks such as segmentation. However, some methods for contrast improvement that work well in low-contrast regions affect good contrast regions as well. This occurs due to the fact that some elements may vanish. A method focused on images with different luminance conditions is introduced in the present work. The proposed method is based on morphological transformations by reconstruction and rational operations, which, altogether, allow a more accurate contrast enhancement resulting in regions that are in harmony with their environment. Furthermore, due to the properties of these morphological transformations, the creation of new elements on the image is avoided. The processing is carried out on luminance values in the u'v'Y color space, which avoids the creation of new colors. As a result of the previous considerations, the proposed method keeps the natural color appearance of the image.

  17. Nonlinear plasmonic imaging techniques and their biological applications

    NASA Astrophysics Data System (ADS)

    Deka, Gitanjal; Sun, Chi-Kuang; Fujita, Katsumasa; Chu, Shi-Wei

    2017-01-01

    Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics), as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.

  18. Local adaptive contrast enhancement for color images

    NASA Astrophysics Data System (ADS)

    Dijk, Judith; den Hollander, Richard J. M.; Schavemaker, John G. M.; Schutte, Klamer

    2007-04-01

    A camera or display usually has a smaller dynamic range than the human eye. For this reason, objects that can be detected by the naked eye may not be visible in recorded images. Lighting is here an important factor; improper local lighting impairs visibility of details or even entire objects. When a human is observing a scene with different kinds of lighting, such as shadows, he will need to see details in both the dark and light parts of the scene. For grey value images such as IR imagery, algorithms have been developed in which the local contrast of the image is enhanced using local adaptive techniques. In this paper, we present how such algorithms can be adapted so that details in color images are enhanced while color information is retained. We propose to apply the contrast enhancement on color images by applying a grey value contrast enhancement algorithm to the luminance channel of the color signal. The color coordinates of the signal will remain the same. Care is taken that the saturation change is not too high. Gamut mapping is performed so that the output can be displayed on a monitor. The proposed technique can for instance be used by operators monitoring movements of people in order to detect suspicious behavior. To do this effectively, specific individuals should both be easy to recognize and track. This requires optimal local contrast, and is sometimes much helped by color when tracking a person with colored clothes. In such applications, enhanced local contrast in color images leads to more effective monitoring.

  19. Kinetic Analysis of Benign and Malignant Breast Lesions With Ultrafast Dynamic Contrast-Enhanced MRI: Comparison With Standard Kinetic Assessment.

    PubMed

    Abe, Hiroyuki; Mori, Naoko; Tsuchiya, Keiko; Schacht, David V; Pineda, Federico D; Jiang, Yulei; Karczmar, Gregory S

    2016-11-01

    The purposes of this study were to evaluate diagnostic parameters measured with ultrafast MRI acquisition and with standard acquisition and to compare diagnostic utility for differentiating benign from malignant lesions. Ultrafast acquisition is a high-temporal-resolution (7 seconds) imaging technique for obtaining 3D whole-breast images. The dynamic contrast-enhanced 3-T MRI protocol consists of an unenhanced standard and an ultrafast acquisition that includes eight contrast-enhanced ultrafast images and four standard images. Retrospective assessment was performed for 60 patients with 33 malignant and 29 benign lesions. A computer-aided detection system was used to obtain initial enhancement rate and signal enhancement ratio (SER) by means of identification of a voxel showing the highest signal intensity in the first phase of standard imaging. From the same voxel, the enhancement rate at each time point of the ultrafast acquisition and the AUC of the kinetic curve from zero to each time point of ultrafast imaging were obtained. There was a statistically significant difference between benign and malignant lesions in enhancement rate and kinetic AUC for ultrafast imaging and also in initial enhancement rate and SER for standard imaging. ROC analysis showed no significant differences between enhancement rate in ultrafast imaging and SER or initial enhancement rate in standard imaging. Ultrafast imaging is useful for discriminating benign from malignant lesions. The differential utility of ultrafast imaging is comparable to that of standard kinetic assessment in a shorter study time.

  20. Clinical performance of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced pediatric abdominal MR angiography

    PubMed Central

    Yousaf, Ufra; Hsiao, Albert; Cheng, Joseph Y.; Alley, Marcus T.; Lustig, Michael; Pauly, John M.; Vasanawala, Shreyas S.

    2015-01-01

    Background Pediatric contrast-enhanced MR angiography is often limited by respiration, other patient motion and compromised spatiotemporal resolution. Objective To determine the reliability of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast enhanced MR angiography method for depicting abdominal arterial anatomy in young children. Materials and methods With IRB approval and informed consent, we retrospectively identified 27 consecutive children (16 males and 11 females; mean age: 3.8 years, range: 14 days to 8.4 years) referred for contrast enhanced MR angiography at our institution, who had undergone free-breathing spatiotemporally accelerated time-resolved contrast enhanced MR angiography studies. An radio-frequency-spoiled gradient echo sequence with Cartesian variable density k-space sampling and radial view ordering, intrinsic motion navigation and intermittent fat suppression was developed. Images were reconstructed with soft-gated parallel imaging locally low-rank method to achieve both motion correction and high spatiotemporal resolution. Quality of delineation of 13 abdominal arteries in the reconstructed images was assessed independently by two radiologists on a five-point scale. Ninety-five percent confidence intervals of the proportion of diagnostically adequate cases were calculated. Interobserver agreements were also analyzed. Results Eleven out of 13 arteries achieved acceptable image quality (mean score range: 3.9–5.0) for both readers. Fair to substantial interobserver agreement was reached on nine arteries. Conclusion Free-breathing spatiotemporally accelerated 3-D time-resolved contrast enhanced MR angiography frequently yields diagnostic image quality for most abdominal arteries for pediatric contrast enhanced MR angiography. PMID:26040509

  1. Quantitative characterization of edge enhancement in phase contrast x-ray imaging.

    PubMed

    Monnin, P; Bulling, S; Hoszowska, J; Valley, J F; Meuli, R; Verdun, F R

    2004-06-01

    The aim of this study was to model the edge enhancement effect in in-line holography phase contrast imaging. A simple analytical approach was used to quantify refraction and interference contrasts in terms of beam energy and imaging geometry. The model was applied to predict the peak intensity and frequency of the edge enhancement for images of cylindrical fibers. The calculations were compared with measurements, and the relationship between the spatial resolution of the detector and the amplitude of the phase contrast signal was investigated. Calculations using the analytical model were in good agreement with experimental results for nylon, aluminum and copper wires of 50 to 240 microm diameter, and with numerical simulations based on Fresnel-Kirchhoff theory. A relationship between the defocusing distance and the pixel size of the image detector was established. This analytical model is a useful tool for optimizing imaging parameters in phase contrast in-line holography, including defocusing distance, detector resolution and beam energy.

  2. Dehazed Image Quality Assessment by Haze-Line Theory

    NASA Astrophysics Data System (ADS)

    Song, Yingchao; Luo, Haibo; Lu, Rongrong; Ma, Junkai

    2017-06-01

    Images captured in bad weather suffer from low contrast and faint color. Recently, plenty of dehazing algorithms have been proposed to enhance visibility and restore color. However, there is a lack of evaluation metrics to assess the performance of these algorithms or rate them. In this paper, an indicator of contrast enhancement is proposed basing on the newly proposed haze-line theory. The theory assumes that colors of a haze-free image are well approximated by a few hundred distinct colors, which form tight clusters in RGB space. The presence of haze makes each color cluster forms a line, which is named haze-line. By using these haze-lines, we assess performance of dehazing algorithms designed to enhance the contrast by measuring the inter-cluster deviations between different colors of dehazed image. Experimental results demonstrated that the proposed Color Contrast (CC) index correlates well with human judgments of image contrast taken in a subjective test on various scene of dehazed images and performs better than state-of-the-art metrics.

  3. Rapid misfit dislocation characterization in heteroepitaxial III-V/Si thin films by electron channeling contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carnevale, Santino D.; Deitz, Julia I.; Carlin, John A.

    Electron channeling contrast imaging (ECCI) is used to characterize misfit dislocations in heteroepitaxial layers of GaP grown on Si(100) substrates. Electron channeling patterns serve as a guide to tilt and rotate sample orientation so that imaging can occur under specific diffraction conditions. This leads to the selective contrast of misfit dislocations depending on imaging conditions, confirmed by dynamical simulations, similar to using standard invisibility criteria in transmission electron microscopy (TEM). The onset and evolution of misfit dislocations in GaP films with varying thicknesses (30 to 250 nm) are studied. This application simultaneously reveals interesting information about misfit dislocations in GaP/Si layersmore » and demonstrates a specific measurement for which ECCI is preferable versus traditional plan-view TEM.« less

  4. TECHNIQUES FOR HIGH-CONTRAST IMAGING IN MULTI-STAR SYSTEMS. I. SUPER-NYQUIST WAVEFRONT CONTROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, S.; Belikov, R.; Bendek, E.

    2015-09-01

    Direct imaging of extra-solar planets is now a reality with the deployment and commissioning of the first generation of specialized ground-based instruments (GPI, SPHERE, P1640, and SCExAO). These systems allow of planets 10{sup 7} times fainter than their host star. For space-based missions (EXCEDE, EXO-C, EXO-S, WFIRST), various teams have demonstrated laboratory contrasts reaching 10{sup −10} within a few diffraction limits from the star. However, all of these current and future systems are designed to detect faint planets around a single host star, while most non-M-dwarf stars such as Alpha Centauri belong to multi-star systems. Direct imaging around binaries/multiple systemsmore » at a level of contrast allowing detection of Earth-like planets is challenging because the region of interest is contaminated by the host star's companion in addition to the host itself. Generally, the light leakage is caused by both diffraction and aberrations in the system. Moreover, the region of interest usually falls outside the correcting zone of the deformable mirror (DM) with respect to the companion. Until now, it has been thought that removing the light of a companion star is too challenging, leading to the exclusion of many binary systems from target lists of direct imaging coronographic missions. In this paper, we will show new techniques for high-contrast imaging of planets around multi-star systems and detail the Super-Nyquist Wavefront Control (SNWC) method, which allows wavefront errors to be controlled beyond the nominal control region of the DM. Our simulations have demonstrated that, with SNWC, raw contrasts of at least 5 × 10{sup −9} in a 10% bandwidth are possible.« less

  5. Contrast-enhanced digital mammography (CEDM): imaging modeling, computer simulations, and phantom study

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Jing, Zhenxue; Smith, Andrew

    2005-04-01

    Contrast enhanced digital mammography (CEDM), which is based upon the analysis of a series of x-ray projection images acquired before/after the administration of contrast agents, may provide physicians critical physiologic and morphologic information of breast lesions to determine the malignancy of lesions. This paper proposes to combine the kinetic analysis (KA) of contrast agent uptake/washout process and the dual-energy (DE) contrast enhancement together to formulate a hybrid contrast enhanced breast-imaging framework. The quantitative characteristics of materials and imaging components in the x-ray imaging chain, including x-ray tube (tungsten) spectrum, filter, breast tissues/lesions, contrast agents (non-ionized iodine solution), and selenium detector, were systematically modeled. The contrast-noise-ration (CNR) of iodinated lesions and mean absorbed glandular dose were estimated mathematically. The x-ray techniques optimization was conducted through a series of computer simulations to find the optimal tube voltage, filter thickness, and exposure levels for various breast thicknesses, breast density, and detectable contrast agent concentration levels in terms of detection efficiency (CNR2/dose). A phantom study was performed on a modified Selenia full field digital mammography system to verify the simulated results. The dose level was comparable to the dose in diagnostic mode (less than 4 mGy for an average 4.2 cm compressed breast). The results from the computer simulations and phantom study are being used to optimize an ongoing clinical study.

  6. An optimization model for infrared image enhancement method based on p-q norm constrained by saliency value

    NASA Astrophysics Data System (ADS)

    Fan, Fan; Ma, Yong; Dai, Xiaobing; Mei, Xiaoguang

    2018-04-01

    Infrared image enhancement is an important and necessary task in the infrared imaging system. In this paper, by defining the contrast in terms of the area between adjacent non-zero histogram, a novel analytical model is proposed to enlarge the areas so that the contrast can be increased. In addition, the analytical model is regularized by a penalty term based on the saliency value to enhance the salient regions as well. Thus, both of the whole images and salient regions can be enhanced, and the rank consistency can be preserved. The comparisons on 8-bit images show that the proposed method can enhance the infrared images with more details.

  7. Crystallographic features related to a van der Waals coupling in the layered chalcogenide FePS{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murayama, Chisato; Okabe, Momoko; Fukuda, Koichiro

    We investigated the crystallographic structure of FePS{sub 3} with a layered structure using transmission electron microscopy and powder X-ray diffraction. We found that FePS{sub 3} forms a rotational twin structure with the common axis along the c*-axis. The high-resolution transmission electron microscopy images revealed that the twin boundaries were positioned at the van der Waals gaps between the layers. The narrow bands of dark contrast were observed in the bright-field transmission electron microscopy images below the antiferromagnetic transition temperature, T{sub N} ≈ 120 K. Low-temperature X-ray diffraction showed a lattice distortion; the a- and b-axes shortened and lengthened, respectively, as the temperature decreasedmore » below T{sub N.} We propose that the narrow bands of dark contrast observed in the bright-field transmission electron microscopy images are caused by the directional lattice distortion with respect to each micro-twin variant in the antiferromagnetic phase.« less

  8. Combined Dynamic Contrast Enhanced Liver MRI and MRA Using Interleaved Variable Density Sampling

    PubMed Central

    Rahimi, Mahdi Salmani; Korosec, Frank R.; Wang, Kang; Holmes, James H.; Motosugi, Utaroh; Bannas, Peter; Reeder, Scott B.

    2014-01-01

    Purpose To develop and evaluate a method for volumetric contrast-enhanced MR imaging of the liver, with high spatial and temporal resolutions, for combined dynamic imaging and MR angiography using a single injection of contrast. Methods An interleaved variable density (IVD) undersampling pattern was implemented in combination with a real-time-triggered, time-resolved, dual-echo 3D spoiled gradient echo sequence. Parallel imaging autocalibration lines were acquired only once during the first time-frame. Imaging was performed in ten subjects with focal nodular hyperplasia (FNH) and compared with their clinical MRI. The angiographic phase of the proposed method was compared to a dedicated MR angiogram acquired during a second injection of contrast. Results A total of 21 FNH, 3 cavernous hemangiomas, and 109 arterial segments were visualized in 10 subjects. The temporally-resolved images depicted the characteristic arterial enhancement pattern of the lesions with a 4 s update rate. Images were graded as having significantly higher quality compared to the clinical MRI. Angiograms produced from the IVD method provided non-inferior diagnostic assessment compared to the dedicated MRA. Conclusion Using an undersampled IVD imaging method, we have demonstrated the feasibility of obtaining high spatial and temporal resolution dynamic contrast-enhanced imaging and simultaneous MRA of the liver. PMID:24639130

  9. Contrast enhancement of mail piece images

    NASA Astrophysics Data System (ADS)

    Shin, Yong-Chul; Sridhar, Ramalingam; Demjanenko, Victor; Palumbo, Paul W.; Hull, Jonathan J.

    1992-08-01

    A New approach to contrast enhancement of mail piece images is presented. The contrast enhancement is used as a preprocessing step in the real-time address block location (RT-ABL) system. The RT-ABL system processes a stream of mail piece images and locates destination address blocks. Most of the mail pieces (classified into letters) show high contrast between background and foreground. As an extreme case, however, the seasonal greeting cards usually use colored envelopes which results in reduced contrast osured by an error rate by using a linear distributed associative memory (DAM). The DAM is trained to recognize the spectra of three classes of images: with high, medium, and low OCR error rates. The DAM is not forced to make a classification every time. It is allowed to reject as unknown a spectrum presented that does not closely resemble any that has been stored in the DAM. The DAM was fairly accurate with noisy images but conservative (i.e., rejected several text images as unknowns) when there was little ground and foreground degradations without affecting the nondegraded images. This approach provides local enhancement which adapts to local features. In order to simplify the computation of A and (sigma) , dynamic programming technique is used. Implementation details, performance, and the results on test images are presented in this paper.

  10. A multiresolution processing method for contrast enhancement in portal imaging.

    PubMed

    Gonzalez-Lopez, Antonio

    2018-06-18

    Portal images have a unique feature among the imaging modalities used in radiotherapy: they provide direct visualization of the irradiated volumes. However, contrast and spatial resolution are strongly limited due to the high energy of the radiation sources. Because of this, imaging modalities using x-ray energy beams have gained importance in the verification of patient positioning, replacing portal imaging. The purpose of this work was to develop a method for the enhancement of local contrast in portal images. The method operates in the subbands of a wavelet decomposition of the image, re-scaling them in such a way that coefficients in the high and medium resolution subbands are amplified, an approach totally different of those operating on the image histogram, widely used nowadays. Portal images of an anthropomorphic phantom were acquired in an electronic portal imaging device (EPID). Then, different re-scaling strategies were investigated, studying the effects of the scaling parameters on the enhanced images. Also, the effect of using different types of transforms was studied. Finally, the implemented methods were combined with histogram equalization methods like the contrast limited adaptive histogram equalization (CLAHE), and these combinations were compared. Uniform amplification of the detail subbands shows the best results in contrast enhancement. On the other hand, linear re-escalation of the high resolution subbands increases the visibility of fine detail of the images, at the expense of an increase in noise levels. Also, since processing is applied only to detail subbands, not to the approximation, the mean gray level of the image is minimally modified and no further display adjustments are required. It is shown that re-escalation of the detail subbands of portal images can be used as an efficient method for the enhancement of both, the local contrast and the resolution of these images. © 2018 Institute of Physics and Engineering in Medicine.

  11. X-ray Diffraction and Multi-Frame Phase Contrast Imaging Diagnostics for IMPULSE at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iverson, Adam; Carlson, Carl; Young, Jason

    2013-07-08

    The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSEmore » experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.« less

  12. Generalized image contrast enhancement technique based on the Heinemann contrast discrimination model

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Nodine, Calvin F.

    1996-07-01

    This paper presents a generalized image contrast enhancement technique, which equalizes the perceived brightness distribution based on the Heinemann contrast discrimination model. It is based on the mathematically proven existence of a unique solution to a nonlinear equation, and is formulated with easily tunable parameters. The model uses a two-step log-log representation of luminance contrast between targets and surround in a luminous background setting. The algorithm consists of two nonlinear gray scale mapping functions that have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of the gray-level distribution of the given image, and can be uniquely determined once the previous three are set. Tests have been carried out to demonstrate the effectiveness of the algorithm for increasing the overall contrast of radiology images. The traditional histogram equalization can be reinterpreted as an image enhancement technique based on the knowledge of human contrast perception. In fact, it is a special case of the proposed algorithm.

  13. Inherent Contrast in Magnetic Resonance Imaging and the Potential for Contrast Enhancement

    PubMed Central

    Brasch, Robert C.

    1985-01-01

    Magnetic resonance (MR) imaging is emerging as a powerful new diagnostic tool valued for its apparent lack of adverse effects. The excellent inherent contrast between biologic tissues and fluids afforded by MR imaging is one of the foremost characteristics of this technique and depends on physicochemical properties such as hydrogen density and T1 and T2 relaxation rates, on magnetic field strength and on operator-chosen factors for acquiring the MR imaging signal. Pharmaceutical contrast-enhancing agents shorten the MR imaging process and improve sensitivity and diagnostic accuracy. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 8.Figure 9.Figure 10.Figure 11. PMID:2992172

  14. Generalized image contrast enhancement technique based on Heinemann contrast discrimination model

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Nodine, Calvin F.

    1994-03-01

    This paper presents a generalized image contrast enhancement technique which equalizes perceived brightness based on the Heinemann contrast discrimination model. This is a modified algorithm which presents an improvement over the previous study by Mokrane in its mathematically proven existence of a unique solution and in its easily tunable parameterization. The model uses a log-log representation of contrast luminosity between targets and the surround in a fixed luminosity background setting. The algorithm consists of two nonlinear gray-scale mapping functions which have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of gray scale distribution of the image, and can be uniquely determined once the previous three are given. Tests have been carried out to examine the effectiveness of the algorithm for increasing the overall contrast of images. It can be demonstrated that the generalized algorithm provides better contrast enhancement than histogram equalization. In fact, the histogram equalization technique is a special case of the proposed mapping.

  15. Bragg projection ptychography on niobium phase domains

    NASA Astrophysics Data System (ADS)

    Burdet, Nicolas; Shi, Xiaowen; Clark, Jesse N.; Huang, Xiaojing; Harder, Ross; Robinson, Ian

    2017-07-01

    Bragg projection ptychography (BPP) is a coherent x-ray diffraction imaging technique which combines the strengths of scanning microscopy with the phase contrast of x-ray ptychography. Here we apply it for high resolution imaging of the phase-shifted crystalline domains associated with epitaxial growth. The advantages of BPP are that the spatial extent of the sample is arbitrary, it is nondestructive, and it gives potentially diffraction limited spatial resolution. Here we demonstrate the application of BPP for revealing the domain structure caused by epitaxial misfit in a nanostructured metallic thin film. Experimental coherent diffraction data were collected from a niobium thin film, epitaxially grown on a sapphire substrate as the beam was scanned across the sample. The data were analyzed by BPP using a carefully selected combination of refinement procedures. The resulting image shows a close packed array of epitaxial domains, shifted with respect to each other due to misfit between the film and its substrate.

  16. Reducing Error Rates for Iris Image using higher Contrast in Normalization process

    NASA Astrophysics Data System (ADS)

    Aminu Ghali, Abdulrahman; Jamel, Sapiee; Abubakar Pindar, Zahraddeen; Hasssan Disina, Abdulkadir; Mat Daris, Mustafa

    2017-08-01

    Iris recognition system is the most secured, and faster means of identification and authentication. However, iris recognition system suffers a setback from blurring, low contrast and illumination due to low quality image which compromises the accuracy of the system. The acceptance or rejection rates of verified user depend solely on the quality of the image. In many cases, iris recognition system with low image contrast could falsely accept or reject user. Therefore this paper adopts Histogram Equalization Technique to address the problem of False Rejection Rate (FRR) and False Acceptance Rate (FAR) by enhancing the contrast of the iris image. A histogram equalization technique enhances the image quality and neutralizes the low contrast of the image at normalization stage. The experimental result shows that Histogram Equalization Technique has reduced FRR and FAR compared to the existing techniques.

  17. Application of automatic threshold in dynamic target recognition with low contrast

    NASA Astrophysics Data System (ADS)

    Miao, Hua; Guo, Xiaoming; Chen, Yu

    2014-11-01

    Hybrid photoelectric joint transform correlator can realize automatic real-time recognition with high precision through the combination of optical devices and electronic devices. When recognizing targets with low contrast using photoelectric joint transform correlator, because of the difference of attitude, brightness and grayscale between target and template, only four to five frames of dynamic targets can be recognized without any processing. CCD camera is used to capture the dynamic target images and the capturing speed of CCD is 25 frames per second. Automatic threshold has many advantages like fast processing speed, effectively shielding noise interference, enhancing diffraction energy of useful information and better reserving outline of target and template, so this method plays a very important role in target recognition with optical correlation method. However, the automatic obtained threshold by program can not achieve the best recognition results for dynamic targets. The reason is that outline information is broken to some extent. Optimal threshold is obtained by manual intervention in most cases. Aiming at the characteristics of dynamic targets, the processing program of improved automatic threshold is finished by multiplying OTSU threshold of target and template by scale coefficient of the processed image, and combining with mathematical morphology. The optimal threshold can be achieved automatically by improved automatic threshold processing for dynamic low contrast target images. The recognition rate of dynamic targets is improved through decreased background noise effect and increased correlation information. A series of dynamic tank images with the speed about 70 km/h are adapted as target images. The 1st frame of this series of tanks can correlate only with the 3rd frame without any processing. Through OTSU threshold, the 80th frame can be recognized. By automatic threshold processing of the joint images, this number can be increased to 89 frames. Experimental results show that the improved automatic threshold processing has special application value for the recognition of dynamic target with low contrast.

  18. Contrast-enhanced Magnetic Resonance Imaging of Pelvic Bone Metastases at 3.0 T: Comparison Between 3-dimensional T1-weighted CAIPIRINHA-VIBE Sequence and 2-dimensional T1-weighted Turbo Spin-Echo Sequence.

    PubMed

    Yoon, Min A; Hong, Suk-Joo; Lee, Kyu-Chong; Lee, Chang Hee

    2018-06-12

    This study aimed to compare 3-dimensional T1-weighted gradient-echo sequence (CAIPIRINHA-volumetric interpolated breath-hold examination [VIBE]) with 2-dimensional T1-weighted turbo spin-echo sequence for contrast-enhanced magnetic resonance imaging (MRI) of pelvic bone metastases at 3.0 T. Thirty-one contrast-enhanced MRIs of pelvic bone metastases were included. Two contrast-enhanced sequences were evaluated for the following parameters: overall image quality, sharpness of pelvic bone, iliac vessel clarity, artifact severity, and conspicuity and edge sharpness of the smallest metastases. Quantitative analysis was performed by calculating signal-to-noise ratio and contrast-to-noise ratio of the smallest metastases. Significant differences between the 2 sequences were assessed. CAIPIRINHA-VIBE had higher scores for overall image quality, pelvic bone sharpness, iliac vessel clarity, and edge sharpness of the metastatic lesions, and had less artifacts (all P < 0.05). There was no significant difference in conspicuity, signal-to-noise ratio, or contrast-to-noise ratio of the smallest metastases (P > 0.05). Our results suggest that CAIPIRINHA-VIBE may be superior to turbo spin-echo for contrast-enhanced MRI of pelvic bone metastases at 3.0 T.

  19. Contrast-enhanced harmonic ultrasound imaging in ablation therapy for primary hepatocellular carcinoma.

    PubMed

    Minami, Yasunori; Kudo, Masatoshi

    2009-12-31

    The success rate of percutaneous radiofrequency (RF) ablation for hepatocellular carcinoma (HCC) depends on correct targeting via an imaging technique. However, RF electrode insertion is not completely accurate for residual HCC nodules because B-mode ultrasound (US), color Doppler, and power Doppler US findings cannot adequately differentiate between treated and viable residual tumor tissue. Electrode insertion is also difficult when we must identify the true HCC nodule among many large regenerated nodules in cirrhotic liver. Two breakthroughs in the field of US technology, harmonic imaging and the development of second-generation contrast agents, have recently been described and have demonstrated the potential to dramatically broaden the scope of US diagnosis of hepatic lesions. Contrast-enhanced harmonic US imaging with an intravenous contrast agent can evaluate small hypervascular HCC even when B-mode US cannot adequately characterize tumor. Therefore, contrast-enhanced harmonic US can facilitate RF ablation electrode placement in hypervascular HCC, which is poorly depicted by B-mode US. The use of contrast-enhanced harmonic US in ablation therapy for liver cancer is an efficient approach.

  20. Applications of Real Space Crystallography in Characterization of Dislocations in Geological Materials in a Scanning Electron Microscope (SEM)

    NASA Astrophysics Data System (ADS)

    Kaboli, S.; Burnley, P. C.

    2017-12-01

    Imaging and characterization of defects in crystalline materials is of significant importance in various disciplines including geoscience, materials science, and applied physics. Linear defects such as dislocations and planar defects such as twins and stacking faults, strongly influence many of the properties of crystalline materials and also reflect the conditions and degree of deformation. Dislocations have been conventionally imaged in thin foils in a transmission electron microscope (TEM). Since the development of field emission scanning electron microscopes (FE-SEM) with high gun brightness and small spot size, extensive efforts have been dedicated to the imaging and characterization of dislocations in semi-conductors using electron channeling contrast imaging (ECCI) in the SEM. The obvious advantages of using SEM over TEM include easier and non-destructive sample preparation and a large field of view enabling statistical examination of the density and distribution of dislocations and other defects. In this contribution, we extend this technique to geological materials and introduce the Real Space Crystallography methodology for imaging and complete characterization of dislocations based on bend contour contrast obtained by ECCI in FE-SEM. Bend contours map out the distortion in the crystal lattice across a deformed grain. The contrast of dislocations is maximum in the vicinity of bend contours where crystal planes diffract at small and positive deviations from the Bragg positions (as defined by Bragg's law of electron diffraction). Imaging is performed in a commercial FE-SEM equipped with a standard silicon photodiode backscattered (BSE) detector and an electron backscatter diffraction (EBSD) system for crystal orientation measurements. We demonstrate the practice of this technique in characterization of a number of geological materials in particular quartz, forsterite olivine and corundum, experimentally deformed at high pressure-temperature conditions. This new approach in microstructure characterization of deformed geologic materials in FE-SEM, without the use of etching or decoration techniques, has valuable applications to both experimentally deformed and naturally deformed specimens.

  1. Development of Bifunctional Gadolinium-Labeled Superparamagnetic Nanoparticles (Gd-MnMEIO) for In Vivo MR Imaging of the Liver in an Animal Model.

    PubMed

    Kuo, Yu-Ting; Chen, Chiao-Yun; Liu, Gin-Chung; Wang, Yun-Ming

    2016-01-01

    Liver tumors are common and imaging methods, particularly magnetic resonance imaging (MRI), play an important role in their non-invasive diagnosis. Previous studies have shown that detection of liver tumors can be improved by injection of two different MR contrast agents. Here, we developed a new contrast agent, Gd-manganese-doped magnetism-engineered iron oxide (Gd-MnMEIO), with enhancement effects on both T1- and T2-weighted MR images of the liver. A 3.0T clinical MR scanner equipped with transmit/receiver coil for mouse was used to obtain both T1-weighted spoiled gradient-echo and T2-weighted fast spin-echo axial images of the liver before and after intravenous contrast agent injection into Balb/c mice with and without tumors. After pre-contrast scanning, six mice per group were intravenously injected with 0.1 mmol/kg Gd-MnMEIO, or the control agents, i.e., Gd-DTPA or SPIO. The scanning time points for T1-weighted images were 0.5, 5, 10, 15, 20, 25, and 30 min after contrast administration. The post-enhanced T2-weighted images were then acquired immediately after T1-weighted acquisition. We found that T1-weighted images were positively enhanced by both Gd-DTPA and Gd-MnMEIO and negatively enhanced by SPIO. The enhancement by both Gd-DTPA and Gd-MnMEIO peaked at 0.5 min and gradually declined thereafter. Gd-MnMEIO (like Gd-DTPA) enhanced T1-weighted images and (like SPIO) T2-weighted images. Marked vascular enhancement was clearly visible on dynamic T1-weighted images with Gd-MnMEIO. In addition, the T2 signal was significantly decreased at 30 min after administration of Gd-MnMEIO. Whereas the effects of Gd-MnMEIO and SPIO on T2-weighted images were similar (p = 0.5824), those of Gd-MnMEIO and Gd-DTPA differed, with Gd-MnMEIO having a significant T2 contrast effect (p = 0.0086). Our study confirms the feasibility of synthesizing an MR contrast agent with both T1 and T2 shortening effects and using such an agent in vivo. This agent enables tumor detection and characterization in single liver MRI sections.

  2. Colloidal graphite/graphene nanostructures using collagen showing enhanced thermal conductivity.

    PubMed

    Bhattacharya, Soumya; Dhar, Purbarun; Das, Sarit K; Ganguly, Ranjan; Webster, Thomas J; Nayar, Suprabha

    2014-01-01

    In the present study, the exfoliation of natural graphite (GR) directly to colloidal GR/graphene (G) nanostructures using collagen (CL) was studied as a safe and scalable process, akin to numerous natural processes and hence can be termed "biomimetic". Although the exfoliation and functionalization takes place in just 1 day, it takes about 7 days for the nano GR/G flakes to stabilize. The predominantly aromatic residues of the triple helical CL forms its own special micro and nanoarchitecture in acetic acid dispersions. This, with the help of hydrophobic and electrostatic forces, interacts with GR and breaks it down to nanostructures, forming a stable colloidal dispersion. Surface enhanced Raman spectroscopy, X-ray diffraction, photoluminescence, fluorescence, and X-ray photoelectron spectroscopy of the colloid show the interaction between GR and CL on day 1 and 7. Differential interference contrast images in the liquid state clearly reveal how the GR flakes are entrapped in the CL fibrils, with a corresponding fluorescence image showing the intercalation of CL within GR. Atomic force microscopy of graphene-collagen coated on glass substrates shows an average flake size of 350 nm, and the hexagonal diffraction pattern and thickness contours of the G flakes from transmission electron microscopy confirm ≤ five layers of G. Thermal conductivity of the colloid shows an approximate 17% enhancement for a volume fraction of less than approximately 0.00005 of G. Thus, through the use of CL, this new material and process may improve the use of G in terms of biocompatibility for numerous medical applications that currently employ G, such as internally controlled drug-delivery assisted thermal ablation of carcinoma cells.

  3. Colloidal graphite/graphene nanostructures using collagen showing enhanced thermal conductivity

    PubMed Central

    Bhattacharya, Soumya; Dhar, Purbarun; Das, Sarit K; Ganguly, Ranjan; Webster, Thomas J; Nayar, Suprabha

    2014-01-01

    In the present study, the exfoliation of natural graphite (GR) directly to colloidal GR/graphene (G) nanostructures using collagen (CL) was studied as a safe and scalable process, akin to numerous natural processes and hence can be termed “biomimetic”. Although the exfoliation and functionalization takes place in just 1 day, it takes about 7 days for the nano GR/G flakes to stabilize. The predominantly aromatic residues of the triple helical CL forms its own special micro and nanoarchitecture in acetic acid dispersions. This, with the help of hydrophobic and electrostatic forces, interacts with GR and breaks it down to nanostructures, forming a stable colloidal dispersion. Surface enhanced Raman spectroscopy, X-ray diffraction, photoluminescence, fluorescence, and X-ray photoelectron spectroscopy of the colloid show the interaction between GR and CL on day 1 and 7. Differential interference contrast images in the liquid state clearly reveal how the GR flakes are entrapped in the CL fibrils, with a corresponding fluorescence image showing the intercalation of CL within GR. Atomic force microscopy of graphene-collagen coated on glass substrates shows an average flake size of 350 nm, and the hexagonal diffraction pattern and thickness contours of the G flakes from transmission electron microscopy confirm ≤ five layers of G. Thermal conductivity of the colloid shows an approximate 17% enhancement for a volume fraction of less than approximately 0.00005 of G. Thus, through the use of CL, this new material and process may improve the use of G in terms of biocompatibility for numerous medical applications that currently employ G, such as internally controlled drug-delivery assisted thermal ablation of carcinoma cells. PMID:24648728

  4. Bragg projection ptychography on niobium phase domain

    DOE PAGES

    Burdet, Nicolas; Shi, Xiaowen; Huang, Xiaojing; ...

    2016-08-10

    Here, we demonstrate that the highly sensitive phase-contrast properties of Bragg coherent diffraction measurements combined with the translational diversity of ptychography can provide a Bragg “dark field” imaging method capable of revealing the finger print of domain structure in metallic thin films. Experimental diffraction data was taken from a epitaxially grown niobium metallic thin film on sapphire; and analyzed with the help of a careful combination of implemented refinement mechanisms.

  5. Modeling super-resolution SERS using a T-matrix method to elucidate molecule-nanoparticle coupling and the origins of localization errors

    NASA Astrophysics Data System (ADS)

    Heaps, Charles W.; Schatz, George C.

    2017-06-01

    A computational method to model diffraction-limited images from super-resolution surface-enhanced Raman scattering microscopy is introduced. Despite significant experimental progress in plasmon-based super-resolution imaging, theoretical predictions of the diffraction limited images remain a challenge. The method is used to calculate localization errors and image intensities for a single spherical gold nanoparticle-molecule system. The light scattering is calculated using a modification of generalized Mie (T-matrix) theory with a point dipole source and diffraction limited images are calculated using vectorial diffraction theory. The calculation produces the multipole expansion for each emitter and the coherent superposition of all fields. Imaging the constituent fields in addition to the total field provides new insight into the strong coupling between the molecule and the nanoparticle. Regardless of whether the molecular dipole moment is oriented parallel or perpendicular to the nanoparticle surface, the anisotropic excitation distorts the center of the nanoparticle as measured by the point spread function by approximately fifty percent of the particle radius toward to the molecule. Inspection of the nanoparticle multipoles reveals that distortion arises from a weak quadrupole resonance interfering with the dipole field in the nanoparticle. When the nanoparticle-molecule fields are in-phase, the distorted nanoparticle field dominates the observed image. When out-of-phase, the nanoparticle and molecule are of comparable intensity and interference between the two emitters dominates the observed image. The method is also applied to different wavelengths and particle radii. At off-resonant wavelengths, the method predicts images closer to the molecule not because of relative intensities but because of greater distortion in the nanoparticle. The method is a promising approach to improving the understanding of plasmon-enhanced super-resolution experiments.

  6. On-axis programmable microscope using liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    García-Martínez, Pascuala; Martínez, José Luís.; Moreno, Ignacio

    2017-06-01

    Spatial light modulators (SLM) are currently used in many applications in optical microscopy and imaging. One of the most promising methods is the use of liquid crystal displays (LCD) as programmable phase diffractive optical elements (DOE) placed in the Fourier plane giving access to the spatial frequencies which can be phased shifted individually, allowing to emulate a wealth of contrast enhancing methods for both amplitude and phase samples. We use phase and polarization modulation of LCD to implement an on-axis microscope optical system. The LCD used are Hamamatsu liquid crystal on silicon (LCOS) SLM free of flicker, thus showing a full profit of the SLM space bandwidth, as opposed to optical systems in the literature forced to work off-axis due to the strong zero-order component. Taking benefits of the phase modulation of the LCOS we have implemented different microscopic imaging operations, such as high-pass and low-pass filtering in parallel using programmable blazed gratings. Moreover, we are able to control polarization modulation to display two orthogonal linear state of polarization images than can be subtracted or added by changing the period of the blazed grating. In that sense, Differential Interference Contrast (DIC) microscopy can be easily done by generating two images exploiting the polarization splitting properties when a blazed grating is displayed in the SLM. Biological microscopy samples are also used.

  7. Learning a No-Reference Quality Assessment Model of Enhanced Images With Big Data.

    PubMed

    Gu, Ke; Tao, Dacheng; Qiao, Jun-Fei; Lin, Weisi

    2018-04-01

    In this paper, we investigate into the problem of image quality assessment (IQA) and enhancement via machine learning. This issue has long attracted a wide range of attention in computational intelligence and image processing communities, since, for many practical applications, e.g., object detection and recognition, raw images are usually needed to be appropriately enhanced to raise the visual quality (e.g., visibility and contrast). In fact, proper enhancement can noticeably improve the quality of input images, even better than originally captured images, which are generally thought to be of the best quality. In this paper, we present two most important contributions. The first contribution is to develop a new no-reference (NR) IQA model. Given an image, our quality measure first extracts 17 features through analysis of contrast, sharpness, brightness and more, and then yields a measure of visual quality using a regression module, which is learned with big-data training samples that are much bigger than the size of relevant image data sets. The results of experiments on nine data sets validate the superiority and efficiency of our blind metric compared with typical state-of-the-art full-reference, reduced-reference and NA IQA methods. The second contribution is that a robust image enhancement framework is established based on quality optimization. For an input image, by the guidance of the proposed NR-IQA measure, we conduct histogram modification to successively rectify image brightness and contrast to a proper level. Thorough tests demonstrate that our framework can well enhance natural images, low-contrast images, low-light images, and dehazed images. The source code will be released at https://sites.google.com/site/guke198701/publications.

  8. Contrast Media for X-ray and Magnetic Resonance Imaging: Development, Current Status and Future Perspectives.

    PubMed

    Frenzel, Thomas; Lawaczeck, Rüdiger; Taupitz, Matthias; Jost, Gregor; Lohrke, Jessica; Sieber, Martin A; Pietsch, Hubertus

    2015-09-01

    Over the last 120 years, the extensive advances in medical imaging allowed enhanced diagnosis and therapy of many diseases and thereby improved the quality of life of many patient generations. From the beginning, all technical solutions and imaging procedures were combined with dedicated pharmaceutical developments of contrast media, to further enhance the visualization of morphology and physiology. This symbiosis of imaging hardware and contrast media development was of high importance for the development of modern clinical radiology. Today, all available clinically approved contrast media fulfill the highest requirements for clinical safety and efficacy. All new concepts to increase the efficacy of contrast media have also to consider the high clinical safety standards and cost of goods of current marketed contrast media. Nevertheless, diagnostic imaging will contribute significantly to the progresses in medicine, and new contrast media developments are mandatory to address the medical needs of the future.

  9. Coherent diffraction imaging of non-isolated object with apodized illumination.

    PubMed

    Khakurel, Krishna P; Kimura, Takashi; Joti, Yasumasa; Matsuyama, Satoshi; Yamauchi, Kazuto; Nishino, Yoshinori

    2015-11-02

    Coherent diffraction imaging (CDI) is an established lensless imaging method widely used at the x-ray regime applicable to the imaging of non-periodic materials. Conventional CDI can practically image isolated objects only, which hinders the broader application of the method. We present the imaging of non-isolated objects by employing recently proposed "non-scanning" apodized-illumination CDI at an optical wavelength. We realized isolated apodized illumination with a specially designed optical configuration and succeeded in imaging phase objects as well as amplitude objects. The non-scanning nature of the method is important particularly in imaging live cells and tissues, where fast imaging is required for non-isolated objects, and is an advantage over ptychography. We believe that our result of phase contrast imaging at an optical wavelength can be extended to the quantitative phase imaging of cells and tissues. The method also provides the feasibility of the lensless single-shot imaging of extended objects with x-ray free-electron lasers.

  10. Contrast enhanced liver MRI in patients with primary sclerosing cholangitis: inverse appearance of focal confluent fibrosis on delayed phase MR images with hepatocyte specific versus extracellular gadolinium based contrast agents.

    PubMed

    Husarik, Daniela B; Gupta, Rajan T; Ringe, Kristina I; Boll, Daniel T; Merkle, Elmar M

    2011-12-01

    To assess the enhancement pattern of focal confluent fibrosis (FCF) on contrast-enhanced hepatic magnetic resonance imaging (MRI) using hepatocyte-specific (Gd-EOB-DTPA) and extracellular (ECA) gadolinium-based contrast agents in patients with primary sclerosing cholangitis (PSC). After institutional review board approval, 10 patients with PSC (6 male, 4 female; 33-61 years) with 13 FCF were included in this retrospective study. All patients had a Gd-EOB-DTPA-enhanced liver MRI exam, and a comparison ECA-enhanced MRI. On each T1-weighted dynamic dataset, the signal intensity (SI) of FCF and the surrounding liver as well as the paraspinal muscle (M) were measured. In the Gd-EOB-DTPA group, hepatocyte phase images were also included. SI FCF/SI M, SI liver/SI M, and [(SI liver - SI FCF)/SI liver] were compared between the different contrast agents for each dynamic phase using the paired Student's t-test. There was no significant difference in SI FCF/SI M in all imaging phases. SI liver/SI M was significantly higher for the Gd-EOB-DTPA group in the delayed phase (P < .001), whereas there was no significant difference in all other imaging phases. In the Gd-EOB-DTPA group, mean [(SI liver - SI FCF)/SI liver] were as follows (values for ECA group in parentheses): unenhanced phase: 0.26 (0.26); arterial phase: 0.01 (-0.31); portal venous phase (PVP): -0.05 (-0.26); delayed phase (DP): 0.14 (-0.54); and hepatocyte phase: 0.26. Differences were significant for the DP (P < .001). On delayed phase MR images the FCF-to-liver contrast is reversed with the lesions appearing hyperintense on ECA enhanced images and hypointense on Gd-EOB-DTPA-enhanced images. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  11. Brightness-preserving fuzzy contrast enhancement scheme for the detection and classification of diabetic retinopathy disease.

    PubMed

    Datta, Niladri Sekhar; Dutta, Himadri Sekhar; Majumder, Koushik

    2016-01-01

    The contrast enhancement of retinal image plays a vital role for the detection of microaneurysms (MAs), which are an early sign of diabetic retinopathy disease. A retinal image contrast enhancement method has been presented to improve the MA detection technique. The success rate on low-contrast noisy retinal image analysis shows the importance of the proposed method. Overall, 587 retinal input images are tested for performance analysis. The average sensitivity and specificity are obtained as 95.94% and 99.21%, respectively. The area under curve is found as 0.932 for the receiver operating characteristics analysis. The classifications of diabetic retinopathy disease are also performed here. The experimental results show that the overall MA detection method performs better than the current state-of-the-art MA detection algorithms.

  12. Quantitative investigation of the edge enhancement in in-line phase contrast projections and tomosynthesis provided by distributing microbubbles on the interface between two tissues: a phantom study

    NASA Astrophysics Data System (ADS)

    Wu, Di; Donovan Wong, Molly; Li, Yuhua; Fajardo, Laurie; Zheng, Bin; Wu, Xizeng; Liu, Hong

    2017-12-01

    The objective of this study was to quantitatively investigate the ability to distribute microbubbles along the interface between two tissues, in an effort to improve the edge and/or boundary features in phase contrast imaging. The experiments were conducted by employing a custom designed tissue simulating phantom, which also simulated a clinical condition where the ligand-targeted microbubbles are self-aggregated on the endothelium of blood vessels surrounding malignant cells. Four different concentrations of microbubble suspensions were injected into the phantom: 0%, 0.1%, 0.2%, and 0.4%. A time delay of 5 min was implemented before image acquisition to allow the microbubbles to become distributed at the interface between the acrylic and the cavity simulating a blood vessel segment. For comparison purposes, images were acquired using three system configurations for both projection and tomosynthesis imaging with a fixed radiation dose delivery: conventional low-energy contact mode, low-energy in-line phase contrast and high-energy in-line phase contrast. The resultant images illustrate the edge feature enhancements in the in-line phase contrast imaging mode when the microbubble concentration is extremely low. The quantitative edge-enhancement-to-noise ratio calculations not only agree with the direct image observations, but also indicate that the edge feature enhancement can be improved by increasing the microbubble concentration. In addition, high-energy in-line phase contrast imaging provided better performance in detecting low-concentration microbubble distributions.

  13. Correcting speckle contrast at small speckle size to enhance signal to noise ratio for laser speckle contrast imaging.

    PubMed

    Qiu, Jianjun; Li, Yangyang; Huang, Qin; Wang, Yang; Li, Pengcheng

    2013-11-18

    In laser speckle contrast imaging, it was usually suggested that speckle size should exceed two camera pixels to eliminate the spatial averaging effect. In this work, we show the benefit of enhancing signal to noise ratio by correcting the speckle contrast at small speckle size. Through simulations and experiments, we demonstrated that local speckle contrast, even at speckle size much smaller than one pixel size, can be corrected through dividing the original speckle contrast by the static speckle contrast. Moreover, we show a 50% higher signal to noise ratio of the speckle contrast image at speckle size below 0.5 pixel size than that at speckle size of two pixels. These results indicate the possibility of selecting a relatively large aperture to simultaneously ensure sufficient light intensity and high accuracy and signal to noise ratio, making the laser speckle contrast imaging more flexible.

  14. Contrast-enhanced T1-weighted fluid-attenuated inversion-recovery BLADE magnetic resonance imaging of the brain: an alternative to spin-echo technique for detection of brain lesions in the unsedated pediatric patient?

    PubMed

    Alibek, Sedat; Adamietz, Boris; Cavallaro, Alexander; Stemmer, Alto; Anders, Katharina; Kramer, Manuel; Bautz, Werner; Staatz, Gundula

    2008-08-01

    We compared contrast-enhanced T1-weighted magnetic resonance (MR) imaging of the brain using different types of data acquisition techniques: periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER, BLADE) imaging versus standard k-space sampling (conventional spin-echo pulse sequence) in the unsedated pediatric patient with focus on artifact reduction, overall image quality, and lesion detectability. Forty-eight pediatric patients (aged 3 months to 18 years) were scanned with a clinical 1.5-T whole body MR scanner. Cross-sectional contrast-enhanced T1-weighted spin-echo sequence was compared to a T1-weighted dark-fluid fluid-attenuated inversion-recovery (FLAIR) BLADE sequence for qualitative and quantitative criteria (image artifacts, image quality, lesion detectability) by two experienced radiologists. Imaging protocols were matched for imaging parameters. Reader agreement was assessed using the exact Bowker test. BLADE images showed significantly less pulsation and motion artifacts than the standard T1-weighted spin-echo sequence scan. BLADE images showed statistically significant lower signal-to-noise ratio but higher contrast-to-noise ratios with superior gray-white matter contrast. All lesions were demonstrated on FLAIR BLADE imaging, and one false-positive lesion was visible in spin-echo sequence images. BLADE MR imaging at 1.5 T is applicable for central nervous system imaging of the unsedated pediatric patient, reduces motion and pulsation artifacts, and minimizes the need for sedation or general anesthesia without loss of relevant diagnostic information.

  15. The Future of Contrast-Enhanced Mammography.

    PubMed

    Covington, Matthew F; Pizzitola, Victor J; Lorans, Roxanne; Pockaj, Barbara A; Northfelt, Donald W; Appleton, Catherine M; Patel, Bhavika K

    2018-02-01

    The purpose of this article is to discuss facilitators of and barriers to future implementation of contrast-enhanced mammography (CEM) in the United States. CEM provides low-energy 2D mammographic images analogous to digital mammography and contrast-enhanced recombined images that allow assessment of neovascularity similar to that offered by MRI. The utilization of CEM in the United States is currently low but could increase rapidly given the many potential indications for its clinical use.

  16. Liver enhancement in healthy dogs after gadoxetic acid administration during dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Borusewicz, P; Stańczyk, E; Kubiak, K; Spużak, J; Glińska-Suchocka, K; Jankowski, M; Nicpoń, J; Podgórski, P

    2018-05-01

    Dynamic contrast enhanced (DCE)-magnetic resonance imaging (MRI) consists of acquisition of native baseline images, followed by a series of acquisitions performed during and after administration of a contrast medium. DCE-MRI, in conjunction with hepatobiliary-specific contrast media, such as gadoxetic acid (GD-EOB-DTPA), allows for precise characterisation of the enhancement pattern of the hepatic parenchyma following administration of the contrast agent. The aim of the study was to assess the pattern of temporal resolution contrast enhancement of the hepatic parenchyma following administration of GD-EOB-DTPA and to determine the optimal time window for post-contrast assessment of the liver. The study was carried out on eight healthy beagle dogs. MRI was performed using a 1.5T scanner. The imaging protocol included T1 weighted (T1-W) gradient echo (GRE), T2 weighted (T2-W) turbo spin echo (TSE) and dynamic T1-W GRE sequences. The dynamic T1-W sequence was performed using single 10mm thick slices. Regions of interest (ROIs) were chosen and the signal intensity curves were calculated for quantitative image analysis. The mean time to peak for all dogs was 26min. The plateau phase lasted on average 21min. A gradual decrease in the signal intensity of the hepatic parenchyma was observed in all dogs. A DCE-MRI enhancement pattern of the hepatic parenchyma was evident in dogs following the administration of a GD-EOB-DTPA, establishing baseline data for an optimal time window between 26 and 41min after administration of the contrast agent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Diagnostic accuracy of contrast-enhanced computed tomography and contrast-enhanced magnetic resonance imaging of small renal masses in real practice: sensitivity and specificity according to subjective radiologic interpretation.

    PubMed

    Kim, Jae Heon; Sun, Hwa Yeon; Hwang, Jiyoung; Hong, Seong Sook; Cho, Yong Jin; Doo, Seung Whan; Yang, Won Jae; Song, Yun Seob

    2016-10-12

    The aim of this study was to investigate the diagnostic accuracy of contrast-enhanced computed tomography (CT) and contrast-enhanced magnetic resonance imaging (MRI) of small renal masses in real practice. Contrast-enhanced CT and MRI were performed between February 2008 and February 2013 on 68 patients who had suspected small (≤4 cm) renal cell carcinoma (RCC) based on ultrasonographic measurements. CT and MRI radiographs were reviewed, and the findings of small renal masses were re-categorized into five dichotomized scales by the same two radiologists who had interpreted the original images. Receiver operating characteristics curve analysis was performed, and sensitivity and specificity were determined. Among the 68 patients, 60 (88.2 %) had RCC and eight had benign disease. The diagnostic accuracy rates of contrast-enhanced CT and MRI were 79.41 and 88.23 %, respectively. Diagnostic accuracy was greater when using contrast-enhanced MRI because too many masses (67.6 %) were characterized as "4 (probably solid cancer) or 5 (definitely solid cancer)." The sensitivity of contrast-enhanced CT and MRI for predicting RCC were 79.7 and 88.1 %, respectively. The specificities of contrast-enhanced CT and MRI for predicting RCC were 44.4 and 33.3 %, respectively. Fourteen diagnoses (20.5 %) were missed or inconsistent compared with the final pathological diagnoses. One appropriate nephroureterectomy and five unnecessary percutaneous biopsies were performed for RCC. Seven unnecessary partial nephrectomies were performed for benign disease. Although contrast-enhanced CT and MRI showed high sensitivity for detecting small renal masses, specificity remained low.

  18. Frequency Resolved Nanoscale Chemical Imaging of 4,4'-Dimercaptostilbene on Silver

    DOE PAGES

    El-Khoury, Patrick Z.; Ueltschi, Tyler W.; Mifflin, Amanda L.; ...

    2014-11-26

    Non-resonant tip-enhanced Raman images of 4,4'-dimercaptostilbene on silver reveal that different vibrational resonances of the reporter are selectively enhanced at different sites on the metal substrate. Sequentially recorded images track molecular diffusion within the diffraction-limited laser spot which illuminates the substrate. In effect, the recorded time resolved (Δt = 10 s) pixelated images (25 nm x 8 cm-1) broadcast molecule-local field interactions which take place on much finer scales.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Khoury, Patrick Z.; Ueltschi, Tyler W.; Mifflin, Amanda L.

    Non-resonant tip-enhanced Raman images of 4,4'-dimercaptostilbene on silver reveal that different vibrational resonances of the reporter are selectively enhanced at different sites on the metal substrate. Sequentially recorded images track molecular diffusion within the diffraction-limited laser spot which illuminates the substrate. In effect, the recorded time resolved (Δt = 10 s) pixelated images (25 nm x 8 cm-1) broadcast molecule-local field interactions which take place on much finer scales.

  20. Clinical performance of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced pediatric abdominal MR angiography.

    PubMed

    Zhang, Tao; Yousaf, Ufra; Hsiao, Albert; Cheng, Joseph Y; Alley, Marcus T; Lustig, Michael; Pauly, John M; Vasanawala, Shreyas S

    2015-10-01

    Pediatric contrast-enhanced MR angiography is often limited by respiration, other patient motion and compromised spatiotemporal resolution. To determine the reliability of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced MR angiography method for depicting abdominal arterial anatomy in young children. With IRB approval and informed consent, we retrospectively identified 27 consecutive children (16 males and 11 females; mean age: 3.8 years, range: 14 days to 8.4 years) referred for contrast-enhanced MR angiography at our institution, who had undergone free-breathing spatiotemporally accelerated time-resolved contrast-enhanced MR angiography studies. A radio-frequency-spoiled gradient echo sequence with Cartesian variable density k-space sampling and radial view ordering, intrinsic motion navigation and intermittent fat suppression was developed. Images were reconstructed with soft-gated parallel imaging locally low-rank method to achieve both motion correction and high spatiotemporal resolution. Quality of delineation of 13 abdominal arteries in the reconstructed images was assessed independently by two radiologists on a five-point scale. Ninety-five percent confidence intervals of the proportion of diagnostically adequate cases were calculated. Interobserver agreements were also analyzed. Eleven out of 13 arteries achieved acceptable image quality (mean score range: 3.9-5.0) for both readers. Fair to substantial interobserver agreement was reached on nine arteries. Free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced MR angiography frequently yields diagnostic image quality for most abdominal arteries in young children.

  1. Photo-induced ultrasound microscopy for photo-acoustic imaging of non-absorbing specimens

    NASA Astrophysics Data System (ADS)

    Tcarenkova, Elena; Koho, Sami V.; Hänninen, Pekka E.

    2017-08-01

    Photo-Acoustic Microscopy (PAM) has raised high interest in in-vivo imaging due to its ability to preserve the near-diffraction limited spatial resolution of optical microscopes, whilst extending the penetration depth to the mm-range. Another advantage of PAM is that it is a label-free technique - any substance that absorbs PAM excitation laser light can be viewed. However, not all sample structures desired to be observed absorb sufficiently to provide contrast for imaging. This work describes a novel imaging method that makes it possible to visualize optically transparent samples that lack intrinsic photo-acoustic contrast, without the addition of contrast agents. A thin, strongly light absorbing layer next to sample is used to generate a strong ultrasonic signal. This signal, when recorded from opposite side, contains ultrasonic transmission information of the sample and thus the method can be used to obtain an ultrasound transmission image on any PAM.

  2. SU-D-207-01: Markerless Respiratory Motion Tracking with Contrast Enhanced Thoracic Cone Beam CT Projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, M; Yuan, Y; Rosenzweig, K

    2015-06-15

    Purpose: To develop a novel technique to enhance the image contrast of clinical cone beam CT projections and extract respiratory signals based on anatomical motion using the modified Amsterdam Shroud (AS) method to benefit image guided radiation therapy. Methods: Thoracic cone beam CT projections acquired prior to treatment were preprocessed to increase their contrast for better respiratory signal extraction. Air intensity on raw images was firstly estimated and then applied to correct the projections to generate new attenuation images that were subsequently improved with deeper anatomy feature enhancement through taking logarithm operation, derivative along superior-inferior direction, respectively. All pixels onmore » individual post-processed two dimensional images were horizontally summed to one column and all projections were combined side by side to create an AS image from which patient’s respiratory signal was extracted. The impact of gantry rotation on the breathing signal rendering was also investigated. Ten projection image sets from five lung cancer patients acquired with the Varian Onboard Imager on 21iX Clinac (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Results: Application of the air correction on raw projections showed that more than an order of magnitude of contrast enhancement was achievable. The typical contrast on the raw projections is around 0.02 while that on attenuation images could greater than 0.5. Clear and stable breathing signal can be reliably extracted from the new images while the uncorrected projection sets failed to yield clear signals most of the time. Conclusion: Anatomy feature plays a key role in yielding breathing signal from the projection images using the AS technique. The air correction process facilitated the contrast enhancement significantly and attenuation images thus obtained provides a practical solution to obtaining markerless breathing motion tracking.« less

  3. Do we need gadolinium-based contrast medium for brain magnetic resonance imaging in children?

    PubMed

    Dünger, Dennis; Krause, Matthias; Gräfe, Daniel; Merkenschlager, Andreas; Roth, Christian; Sorge, Ina

    2018-06-01

    Brain imaging is the most common examination in pediatric magnetic resonance imaging (MRI), often combined with the use of a gadolinium-based contrast medium. The application of gadolinium-based contrast medium poses some risk. There is limited evidence of the benefits of contrast medium in pediatric brain imaging. To assess the diagnostic gain of contrast-enhanced sequences in brain MRI when the unenhanced sequences are normal. We retrospectively assessed 6,683 brain MR examinations using contrast medium in children younger than 16 years in the pediatric radiology department of the University Hospital Leipzig to determine whether contrast-enhanced sequences delivered additional, clinically relevant information to pre-contrast sequences. All examinations were executed using a 1.5-T or a 3-T system. In 8 of 3,003 (95% confidence interval 0.12-0.52%) unenhanced normal brain examinations, a relevant additional finding was detected when contrast medium was administered. Contrast enhancement led to a change in diagnosis in only one of these cases. Children with a normal pre-contrast brain MRI rarely benefit from contrast medium application. Comparing these results to the risks and disadvantages of a routine gadolinium application, there is substantiated numerical evidence for avoiding routine administration of gadolinium in a pre-contrast normal MRI examination.

  4. Folate receptor targeted, rare-earth oxide nanocrystals for bi-modal fluorescence and magnetic imaging of cancer cells.

    PubMed

    Setua, Sonali; Menon, Deepthy; Asok, Adersh; Nair, Shantikumar; Koyakutty, Manzoor

    2010-02-01

    Targeted cancer imaging using rare-earth oxide nanocrystals, free from heavy metals (Cd, Se, Te, Hg and Pb), showing bright red-fluorescence and magnetic resonance imaging (MRI) is presented. Y(2)O(3) nanocrystals (YO NC) doped in situ with fluorescent (Eu(3+)) and paramagnetic (Gd(3+)) impurities and conjugated with a potential cancer targeting ligand, folic acid (FA), were prepared using an all-aqueous wet-chemical process. Structural, optical and magnetic properties of these multifunctional nanocrystals were investigated by X-ray diffraction, electron microscopy, photoluminescence and magnetization studies. Highly monodisperse nanocrystals of size approximately 20 nm with cubic bixbyite crystal structure showed bright red-fluorescence when doped with Eu(3+). Co-doping with Gd(3+) and mild air drying resulted significantly enhanced fluorescence quantum efficiency of approximately 60% together with paramagnetic functionality, enabling T(1)-weighted MR contrast with approximately 5 times higher spin-lattice relaxivity compared to the clinically used Gd(3+) contrast agent. Cytotoxicity and reactive oxygen stress studies show no toxicity by YO NC in both normal and cancer cells up to higher doses of 500 microm and longer incubation time, 48h. Cancer targeting capability of FA conjugated NCs was demonstrated on folate receptor positive (FR+) human nasopharyngeal carcinoma cells (KB) with FR depressed KB (FRd) and FR negative (FR-) lung cancer cells A549 as controls. Fluorescence microscopy and flow-cytometry data show highly specific binding and cellular uptake of large concentration of FA conjugated NCs on FR+ve cells compared to the controls. Thus, the present study reveals, unique bi-modal contrast imaging capability, non-toxicity and cancer targeting capability of multiple impurities doped rare-earth oxide nanocrystals that can find promising application in molecular imaging.

  5. High Resolution X-Ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement

    DTIC Science & Technology

    2005-06-01

    Ultrasonics Symp 1319 (1999). 17. Sarvazyan, A. P. Shear Wave Elasticity Imaging: A New Ultrasonic Technology of Medical Diagnostics. Ultrasound in...samples using acoustically modulated X-ray phase contrast imaging. 15. SUBJECT TERMS x-ray, ultrasound, phase contrast, imaging, elastography 16...x-rays, phase contrast imaging is based on phase changes as x-rays traverse a body resulting in wave interference that result in intensity changes in

  6. A Case Study in High Contrast Coronagraph for Planet Discovery: The Eclipse Concept and Support Laboratory Experience

    NASA Technical Reports Server (NTRS)

    Trauger, John T.

    2005-01-01

    Eclipse is a proposed NASA Discovery mission to perform a sensitive imaging survey of nearby planetary systems, including a survey for jovian-sized planets orbiting Sun-like stars to distances of 15 pc. We outline the science objectives of the Eclipse mission and review recent developments in the key enabling technologies. Eclipse is a space telescope concept for high-contrast visible-wavelength imaging and spectrophotometry. Its design incorporates a telescope with an unobscured aperture of 1.8 meters, a coronographic camera for suppression of diffracted light, and precise active wavefront correction for the suppression of scattered background light. For reference, Eclipse is designed to reduce the diffracted and scattered starlight between 0.33 and 1.5 arcseconds from the star by three orders of magnitude compared to any HST instrument. The Eclipse mission provides precursor science exploration and technology experience in support of NASA's Terrestrial Planet Finder (TPF) program.

  7. Solid State Research

    DTIC Science & Technology

    1997-11-15

    Vll LIST OF ILLUSTRATIONS (Continued) Figure page No. 3-2 Representative trace from the imaging interferometric end point system of etched...of Nomarski contrast microscopy. Double-crystal x-ray diffraction (DCXD) was used to measure the degree of lattice mismatch Aa/a to GaSb substrates...was increased further, however, Nomarski contrast microscopy revealed surface texture which increases with V/m ratio. These results are similar to

  8. Size effect of Au/PAMAM contrast agent on CT imaging of reticuloendothelial system and tumor tissue

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Jian; Liu, Ransheng; Zhang, Aixu; Yuan, Zhiyong

    2016-09-01

    Polyamidoamine (PAMAM)-entrapped Au nanoparticles were synthesized with distinct sizes to figure out the size effect of Au-based contrast agent on CT imaging of passively targeted tissues. Au/PAMAM nanoparticles were first synthesized with narrow distribution of particles size of 22.2 ± 3.1, 54.2 ± 3.7, and 104.9 ± 4.7 nm in diameters. Size effect leads no significant difference on X-ray attenuation when Au/PAMAM was ≤0.05 mol/L. For CT imaging of a tumor model, small Au/PAMAM were more easily internalized via endocytosis in the liver, leading to more obviously enhanced contrast. Similarly, contrast agents with small sizes were more effective in tumor imaging because of the enhanced permeability and retention effect. Overall, the particle size of Au/PAMAM heavily affected the efficiency of CT enhancement in imaging RES and tumors.

  9. Vascular applications of contrast-enhanced ultrasound imaging.

    PubMed

    Mehta, Kunal S; Lee, Jake J; Taha, Ashraf G; Avgerinos, Efthymios; Chaer, Rabih A

    2017-07-01

    Contrast-enhanced ultrasound (CEUS) imaging is a powerful noninvasive modality offering numerous potential diagnostic and therapeutic applications in vascular medicine. CEUS imaging uses microbubble contrast agents composed of an encapsulating shell surrounding a gaseous core. These microbubbles act as nearly perfect intravascular reflectors of ultrasound energy and may be used to enhance the overall contrast and quality of ultrasound images. The purpose of this narrative review is to survey the current literature regarding CEUS imaging and discuss its diagnostic and therapeutic roles in current vascular and selected nonvascular applications. The PubMed, MEDLINE, and Embase databases were searched until July 2016 using the PubMed and Ovid Web-based search engines. The search terms used included contrast-enhanced, microbubble, ultrasound, carotid, aneurysm, and arterial. The diagnostic and therapeutic utility of CEUS imaging has grown exponentially, particularly in the realms of extracranial carotid arterial disease, aortic disease, and peripheral arterial disease. Studies have demonstrated that CEUS imaging is diagnostically superior to conventional ultrasound imaging in identifying vessel irregularities and measuring neovascularization to assess plaque vulnerability and end-muscle perfusion. Groups have begun to use microbubbles as agents in therapeutic applications for targeted drug and gene therapy delivery as well as for the enhancement of sonothrombolysis. The emerging technology of microbubbles and CEUS imaging holds considerable promise for cardiovascular medicine and cancer therapy given its diagnostic and therapeutic utility. Overall, with proper training and credentialing of technicians, the clinical implications are innumerable as microbubble technology is rapidly bursting onto the scene of cardiovascular medicine. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  10. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells

    PubMed Central

    Rodriguez, Jose A.; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L.; Raines, Kevin S.; Pryor Jr, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J.; Miao, Jianwei

    2015-01-01

    A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres. PMID:26306199

  11. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells

    DOE PAGES

    Rodriguez, Jose A.; Xu, Rui; Chen, Chien -Chun; ...

    2015-09-01

    Here, a structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 Kev X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and themore » three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. Finally, it is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.« less

  12. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells.

    PubMed

    Rodriguez, Jose A; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L; Raines, Kevin S; Pryor, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J; Miao, Jianwei

    2015-09-01

    A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.

  13. A comparison of visual statistics for the image enhancement of FORESITE aerial images with those of major image classes

    NASA Astrophysics Data System (ADS)

    Jobson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.; Hines, Glenn D.

    2006-05-01

    Aerial images from the Follow-On Radar, Enhanced and Synthetic Vision Systems Integration Technology Evaluation (FORESITE) flight tests with the NASA Langley Research Center's research Boeing 757 were acquired during severe haze and haze/mixed clouds visibility conditions. These images were enhanced using the Visual Servo (VS) process that makes use of the Multiscale Retinex. The images were then quantified with visual quality metrics used internally within the VS. One of these metrics, the Visual Contrast Measure, has been computed for hundreds of FORESITE images, and for major classes of imaging-terrestrial (consumer), orbital Earth observations, orbital Mars surface imaging, NOAA aerial photographs, and underwater imaging. The metric quantifies both the degree of visual impairment of the original, un-enhanced images as well as the degree of visibility improvement achieved by the enhancement process. The large aggregate data exhibits trends relating to degree of atmospheric visibility attenuation, and its impact on the limits of enhancement performance for the various image classes. Overall results support the idea that in most cases that do not involve extreme reduction in visibility, large gains in visual contrast are routinely achieved by VS processing. Additionally, for very poor visibility imaging, lesser, but still substantial, gains in visual contrast are also routinely achieved. Further, the data suggest that these visual quality metrics can be used as external standalone metrics for establishing performance parameters.

  14. A Comparison of Visual Statistics for the Image Enhancement of FORESITE Aerial Images with Those of Major Image Classes

    NASA Technical Reports Server (NTRS)

    Johnson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.; Hines, Glenn D.

    2006-01-01

    Aerial images from the Follow-On Radar, Enhanced and Synthetic Vision Systems Integration Technology Evaluation (FORESITE) flight tests with the NASA Langley Research Center's research Boeing 757 were acquired during severe haze and haze/mixed clouds visibility conditions. These images were enhanced using the Visual Servo (VS) process that makes use of the Multiscale Retinex. The images were then quantified with visual quality metrics used internally with the VS. One of these metrics, the Visual Contrast Measure, has been computed for hundreds of FORESITE images, and for major classes of imaging--terrestrial (consumer), orbital Earth observations, orbital Mars surface imaging, NOAA aerial photographs, and underwater imaging. The metric quantifies both the degree of visual impairment of the original, un-enhanced images as well as the degree of visibility improvement achieved by the enhancement process. The large aggregate data exhibits trends relating to degree of atmospheric visibility attenuation, and its impact on limits of enhancement performance for the various image classes. Overall results support the idea that in most cases that do not involve extreme reduction in visibility, large gains in visual contrast are routinely achieved by VS processing. Additionally, for very poor visibility imaging, lesser, but still substantial, gains in visual contrast are also routinely achieved. Further, the data suggest that these visual quality metrics can be used as external standalone metrics for establishing performance parameters.

  15. SU-E-J-16: Automatic Image Contrast Enhancement Based On Automatic Parameter Optimization for Radiation Therapy Setup Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, J; Washington University in St Louis, St Louis, MO; Li, H. Harlod

    Purpose: In RT patient setup 2D images, tissues often cannot be seen well due to the lack of image contrast. Contrast enhancement features provided by image reviewing software, e.g. Mosaiq and ARIA, require manual selection of the image processing filters and parameters thus inefficient and cannot be automated. In this work, we developed a novel method to automatically enhance the 2D RT image contrast to allow automatic verification of patient daily setups as a prerequisite step of automatic patient safety assurance. Methods: The new method is based on contrast limited adaptive histogram equalization (CLAHE) and high-pass filtering algorithms. The mostmore » important innovation is to automatically select the optimal parameters by optimizing the image contrast. The image processing procedure includes the following steps: 1) background and noise removal, 2) hi-pass filtering by subtracting the Gaussian smoothed Result, and 3) histogram equalization using CLAHE algorithm. Three parameters were determined through an iterative optimization which was based on the interior-point constrained optimization algorithm: the Gaussian smoothing weighting factor, the CLAHE algorithm block size and clip limiting parameters. The goal of the optimization is to maximize the entropy of the processed Result. Results: A total 42 RT images were processed. The results were visually evaluated by RT physicians and physicists. About 48% of the images processed by the new method were ranked as excellent. In comparison, only 29% and 18% of the images processed by the basic CLAHE algorithm and by the basic window level adjustment process, were ranked as excellent. Conclusion: This new image contrast enhancement method is robust and automatic, and is able to significantly outperform the basic CLAHE algorithm and the manual window-level adjustment process that are currently used in clinical 2D image review software tools.« less

  16. Physics-based approach to color image enhancement in poor visibility conditions.

    PubMed

    Tan, K K; Oakley, J P

    2001-10-01

    Degradation of images by the atmosphere is a familiar problem. For example, when terrain is imaged from a forward-looking airborne camera, the atmosphere degradation causes a loss in both contrast and color information. Enhancement of such images is a difficult task because of the complexity in restoring both the luminance and the chrominance while maintaining good color fidelity. One particular problem is the fact that the level of contrast loss depends strongly on wavelength. A novel method is presented for the enhancement of color images. This method is based on the underlying physics of the degradation process, and the parameters required for enhancement are estimated from the image itself.

  17. Experimentally enhanced model-based deconvolution of propagation-based phase-contrast data

    NASA Astrophysics Data System (ADS)

    Pichotka, M.; Palma, K.; Hasn, S.; Jakubek, J.; Vavrik, D.

    2016-12-01

    In recent years phase-contrast has become a much investigated modality in radiographic imaging. The radiographic setups employed in phase-contrast imaging are typically rather costly and complex, e.g. high performance Talbot-Laue interferometers operated at synchrotron light sources. In-line phase-contrast imaging states the most pedestrian approach towards phase-contrast enhancement. Utilizing small angle deflection within the imaged sample and the entailed interference of the deflected and un-deflected beam during spatial propagation, in-line phase-contrast imaging only requires a well collimated X-ray source with a high contrast & high resolution detector. Employing high magnification the above conditions are intrinsically fulfilled in cone-beam micro-tomography. As opposed of 2D imaging, where contrast enhancement is generally considered beneficial, in tomographic modalities the in-line phase-contrast effect can be quite a nuisance since it renders the inverse problem posed by tomographic reconstruction inconsistent, thus causing reconstruction artifacts. We present an experimentally enhanced model-based approach to disentangle absorption and in-line phase-contrast. The approach employs comparison of transmission data to a system model computed iteratively on-line. By comparison of the forward model to absorption data acquired in continuous rotation strong local deviations of the data residual are successively identified as likely candidates for in-line phase-contrast. By inducing minimal vibrations (few mrad) to the sample around the peaks of such deviations the transmission signal can be decomposed into a constant absorptive fraction and an oscillating signal caused by phase-contrast which again allows to generate separate maps for absorption and phase-contrast. The contributions of phase-contrast and the corresponding artifacts are subsequently removed from the tomographic dataset. In principle, if a 3D handling of the sample is available, this method also allows to track discontinuities throughout the volume and therefore states a powerful tool in 3D defectoscopy.

  18. Dynamic X-ray diffraction imaging of the ferroelectric response in bismuth ferrite

    DOE PAGES

    Laanait, Nouamane; Saenrang, Wittawat; Zhou, Hua; ...

    2017-03-21

    In this study, X-ray diffraction imaging is rapidly emerging as a powerful technique by which one can capture the local structure of crystalline materials at the nano- and meso-scale. Here, we present investigations of the dynamic structure of epitaxial monodomain BiFeO 3 thin-films using a novel full-field Bragg diffraction imaging modality. By taking advantage of the depth penetration of hard X-rays and their exquisite sensitivity to the atomic structure, we imaged in situ and in operando, the electric field-driven structural responses of buried BiFeO 3 epitaxial thin-films in micro-capacitor devices, with sub-100 nm lateral resolution. These imaging investigations were carriedmore » out at acquisition frame rates that reached up to 20 Hz and data transfer rates of 40 MB/s, while accessing diffraction contrast that is sensitive to the entire three-dimensional unit cell configuration. We mined these large datasets for material responses by employing matrix decomposition techniques, such as independent component analysis. We found that this statistical approach allows the extraction of the salient physical properties of the ferroelectric response of the material, such as coercive fields and transient spatiotemporal modulations in their piezoelectric response, and also facilitates their decoupling from extrinsic sources that are instrument specific.« less

  19. X-Ray Diffraction and Imaging Study of Imperfections of Crystallized Lysozyme with Coherent X-Rays

    NASA Technical Reports Server (NTRS)

    Hu, Zheng-Wei; Chu, Y. S.; Lai, B.; Cai, Z.; Thomas, B. R.; Chernov, A. A.

    2003-01-01

    Phase-sensitive x-ray diffraction imaging and high angular-resolution diffraction combined with phase contrast radiographic imaging are employed to characterize defects and perfection of a uniformly grown tetragonal lysozyme crystal in symmetric Laue case. The fill width at half-maximum (FWHM) of a 4 4 0 rocking curve measured from the original crystal is approximately 16.7 arcseconds, and defects, which include point defects, line defects, and microscopic domains, have been clearly observed in the diffraction images of the crystal. The observed line defects carry distinct dislocation features running approximately along the <110> growth front, and they have been found to originate mostly at a central growth area and occasionally at outer growth regions. Individual point defects trapped at a crystal nucleus are resolved in the images of high sensitivity to defects. Slow dehydration has led to the broadening of the 4 4 0 rocking curve by a factor of approximately 2.4. A significant change of the defect structure and configuration with drying has been revealed, which suggests the dehydration induced migration and evolution of dislocations and lattice rearrangements to reduce overall strain energy. The sufficient details of the observed defects shed light upon perfection, nucleation and growth, and properties of protein crystals.

  20. Application of low dose radiation and low concentration contrast media in enhanced CT scans in children with congenital heart disease.

    PubMed

    Liu, Zhimin; Song, Lei; Yu, Tong; Gao, Jun; Zhang, Qifeng; Jiang, Ling; Liu, Yong; Peng, Yun

    2016-09-01

    The aim of this study was to explore the feasibility of using low dose radiation and low concentration contrast media in enhanced CT examinations in children with congenital heart disease. Ninety patients with congenital heart disease were randomly divided into three groups of 30 patients each who underwent contrast-enhanced cardiac scans on a Discovery CT750 HD scanner. Group A received 270 mg I/mL iodixanol, and group B received 320 mg I/mL iodixanol contrast media and was scanned with prospective ECG triggering mode. Group C received 320 mg I/mL iodixanol and was scanned with conventional retrospective ECG gating mode. The same weight-based contrast injection protocol was used for all three groups. Images were reconstructed using a 30% adaptive statistical iterative reconstruction (ASIR) algorithm and a 50% ASIR in groups A and B and a 30% ASIR in group C. The subjective and objective image quality evaluations, diagnostic accuracies, radiation doses and amounts of contrast media in the three groups were measured and compared. All images in the three groups met the diagnostic requirements, with the same diagnostic accuracy and image quality scores greater than 3 in a 4-point scoring system. However, ventricular enhancement and the objective noise, signal-to-noise ratio, contrast-to-noise ratio and subjective image quality scores in group C were better than those in groups A and B (all P<.001). The effective radiation dose in groups A and B was 84% lower than that in group C (P<.001); group A received the lowest contrast dose (14% lower than that of groups B and C). Enhanced CT scan images with low dose radiation and low concentration contrast media can meet the diagnostic requirements for examining children with congenital heart disease while reducing the potential risk of radiation damage and contrast-induced nephropathy. © 2016 John Wiley & Sons Ltd.

  1. SU-F-I-45: An Automated Technique to Measure Image Contrast in Clinical CT Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, J; Abadi, E; Meng, B

    Purpose: To develop and validate an automated technique for measuring image contrast in chest computed tomography (CT) exams. Methods: An automated computer algorithm was developed to measure the distribution of Hounsfield units (HUs) inside four major organs: the lungs, liver, aorta, and bones. These organs were first segmented or identified using computer vision and image processing techniques. Regions of interest (ROIs) were automatically placed inside the lungs, liver, and aorta and histograms of the HUs inside the ROIs were constructed. The mean and standard deviation of each histogram were computed for each CT dataset. Comparison of the mean and standardmore » deviation of the HUs in the different organs provides different contrast values. The ROI for the bones is simply the segmentation mask of the bones. Since the histogram for bones does not follow a Gaussian distribution, the 25th and 75th percentile were computed instead of the mean. The sensitivity and accuracy of the algorithm was investigated by comparing the automated measurements with manual measurements. Fifteen contrast enhanced and fifteen non-contrast enhanced chest CT clinical datasets were examined in the validation procedure. Results: The algorithm successfully measured the histograms of the four organs in both contrast and non-contrast enhanced chest CT exams. The automated measurements were in agreement with manual measurements. The algorithm has sufficient sensitivity as indicated by the near unity slope of the automated versus manual measurement plots. Furthermore, the algorithm has sufficient accuracy as indicated by the high coefficient of determination, R2, values ranging from 0.879 to 0.998. Conclusion: Patient-specific image contrast can be measured from clinical datasets. The algorithm can be run on both contrast enhanced and non-enhanced clinical datasets. The method can be applied to automatically assess the contrast characteristics of clinical chest CT images and quantify dependencies that may not be captured in phantom data.« less

  2. Significance of diffusion weighted imaging (DWI) as an improving factor in contrast enhanced magnetic resonance imaging (MRI) enterography in evaluation of patients with Crohn's disease.

    PubMed

    Imširović, Bilal; Zerem, Enver; Efendić, Alma; Mekić Abazović, Alma; Zerem, Omar; Djedović, Muhamed

    2018-08-01

    Aim To determine capabilities and potential of contrast enhanced magnetic resonance imaging (MRI) enterography in order to establish the diagnosis and to evaluate severity and activity of intestinal inflammation. Methods Fifty-five patients with suspicion for presence of Crohn's disease were evaluated. All patients underwent contrast enhanced MRI enterography and diffusion weighted imaging (DWI), and subsequently endoscopic examination or surgical treatment. Four parameters were analysed: thickening of the bowel wall, and presence of abscess, fistula and lymphadenopathy. Results Comparing results of DWI and contrast enhanced MRI enterography a significant difference between results given through diffusion and histopathological test was found, e.g. a significant difference between results obtained through diffusion and MRI enterography was found. MRI enterography sensitiveness for bowel wall thickening was 97.7% and specificity 70%, whilst DWI sensitivity for bowel wall thickening was 84% and specificity 100%. The diagnostics of abscess and fistula showed no significant difference between DWI and MRI, while in lymphadenopathy significant difference between contrast enhanced MRI enterography and DWI was found. Conclusion Contrast enhanced MRI enterography in combination with DWI allows for excellent evaluation of disease activity, but also problems or complications following it. The examination can be repeated, controlled, and it can contribute to monitoring of patients with this disease. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  3. Atomic resolution Z-contrast imaging and energy loss spectroscopy of carbon nanotubes and bundles

    NASA Astrophysics Data System (ADS)

    Lupini, A. R.; Chisholm, M. F.; Puretzky, A. A.; Eres, G.; Melechko, A. V.; Schaaff, G.; Lowndes, D. H.; Geohegan, D. B.; Schittenhelm, H.; Pennycook, S. J.; Wang, Y.; Smalley, R. E.

    2002-03-01

    Single-wall carbon nanotubes and bundles were studied by a combination of techniques, including conventional imaging and diffraction, atomic resolution Z-contrast imaging in an aberration corrected STEM and electron energy loss spectroscopy (EELS). EELS is ideally suited for the analysis of carbon based structures because of the ability to distinguish between the different forms, specifically nanotubes, graphite, amorphous carbon and diamond. Numerous attempts were made to synthesize crystals of single walled carbon nanotubes, using both solution and vapor deposition of precursor structures directly onto TEM grids for in-situ annealing. The range of structures produced will be discussed.

  4. The phase-contrast imaging instrument at the matter in extreme conditions endstation at LCLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagler, Bob; Schropp, Andreas; Galtier, Eric C.

    2016-10-07

    Here, we describe the phase-contrast imaging instrument at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source. The instrument can image phenomena with a spatial resolution of a few hundreds of nanometers and at the same time reveal the atomic structure through X-ray diffraction, with a temporal resolution better than 100 fs. It was specifically designed for studies relevant to high-energy-density science and can monitor, e.g., shock fronts, phase transitions, or void collapses. This versatile instrument was commissioned last year and is now available to the MEC user community.

  5. Regularized Reconstruction of Dynamic Contrast-Enhanced MR Images for Evaluation of Breast Lesions

    DTIC Science & Technology

    2011-01-01

    Magnetic resonance imaging contrast-enhanced relaxometry of breast tumors: an MRI multicenter investigation concerning 100 patients,” Mag. Res. Im., vol...The overall goal of this project was to develop, implement, and evaluate methods for im- proving image quality in dynamic magnetic resonance imaging ...Olafsson, H. R. Shi, and D. C. Noll, “Toeplitz-based iterative image reconstruction for MRI with correction for magnetic field inhomogeneity,” IEEE

  6. Characteristics and Echogenicity of Clinical Ultrasound Contrast Agents: An In Vitro and In Vivo Comparison Study.

    PubMed

    Hyvelin, Jean-Marc; Gaud, Emmanuel; Costa, Maria; Helbert, Alexandre; Bussat, Philippe; Bettinger, Thierry; Frinking, Peter

    2017-05-01

    To compare physicochemical characteristics and in vitro and in vivo contrast-enhanced ultrasound imaging performance of 3 commercially available ultrasound contrast agents: SonoVue (Bracco Imaging SpA, Colleretto Giacosa, Italy; also marketed as Lumason in the USA), Definity (Lantheus Medical Imaging, North Billerica, MA) and Optison (GE Healthcare AS, Oslo, Norway). Physicochemical characteristics were measured with a Multisizer Coulter Counter (Beckman Coulter, Fullerton, CA). Two ultrasound systems (Aplio 500; Toshiba Medical Systems Corp, Tochigi-ken, Japan; and Logiq E9; GE Healthcare, Little Chalfont, England) were used with different transducers. Contrast enhancement was measured in vitro by dose-ranging measurements using a custom-built beaker setup; in vivo imaging performances were compared in pigs (heart and liver) and rabbits (liver). Quantitative analyses were performed with VueBox quantification software (Bracco Suisse SA, Plan-les-Ouates, Switzerland). Measured physicochemical characteristics were in agreement with those provided by the manufacturers. In vitro data demonstrated that the performance of SonoVue was similar to or better than that of Definity but superior to Optison (normalized scattered power 2- to 10-fold higher with SonoVue). Similar results were obtained in vivo, although the duration of enhancement in the pig heart was longer for SonoVue compared to Definity, and quantitative analysis revealed higher enhancement for SonoVue (1.5-fold increase). For liver imaging, SonoVue and Definity showed similar contrast enhancement and duration of enhancement, but compared to Optison, both peak enhancement and duration of enhancement were superior for SonoVue (up to 2-fold increase). Imaging performance of SonoVue was similar to or slightly better than that of Definity, but it was superior to Optison for the conditions used in this study. © 2017 by the American Institute of Ultrasound in Medicine.

  7. Contrast agents in dynamic contrast-enhanced magnetic resonance imaging

    PubMed Central

    Yan, Yuling; Sun, Xilin; Shen, Baozhong

    2017-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive method to assess angiogenesis, which is widely used in clinical applications including diagnosis, monitoring therapy response and prognosis estimation in cancer patients. Contrast agents play a crucial role in DCE-MRI and should be carefully selected in order to improve accuracy in DCE-MRI examination. Over the past decades, there was much progress in the development of optimal contrast agents in DCE-MRI. In this review, we describe the recent research advances in this field and discuss properties of contrast agents, as well as their advantages and disadvantages. Finally, we discuss the research perspectives for improving this promising imaging method. PMID:28415647

  8. A software platform for phase contrast x-ray breast imaging research.

    PubMed

    Bliznakova, K; Russo, P; Mettivier, G; Requardt, H; Popov, P; Bravin, A; Buliev, I

    2015-06-01

    To present and validate a computer-based simulation platform dedicated for phase contrast x-ray breast imaging research. The software platform, developed at the Technical University of Varna on the basis of a previously validated x-ray imaging software simulator, comprises modules for object creation and for x-ray image formation. These modules were updated to take into account the refractive index for phase contrast imaging as well as implementation of the Fresnel-Kirchhoff diffraction theory of the propagating x-ray waves. Projection images are generated in an in-line acquisition geometry. To test and validate the platform, several phantoms differing in their complexity were constructed and imaged at 25 keV and 60 keV at the beamline ID17 of the European Synchrotron Radiation Facility. The software platform was used to design computational phantoms that mimic those used in the experimental study and to generate x-ray images in absorption and phase contrast modes. The visual and quantitative results of the validation process showed an overall good correlation between simulated and experimental images and show the potential of this platform for research in phase contrast x-ray imaging of the breast. The application of the platform is demonstrated in a feasibility study for phase contrast images of complex inhomogeneous and anthropomorphic breast phantoms, compared to x-ray images generated in absorption mode. The improved visibility of mammographic structures suggests further investigation and optimisation of phase contrast x-ray breast imaging, especially when abnormalities are present. The software platform can be exploited also for educational purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Dual-contrast agent photon-counting computed tomography of the heart: initial experience.

    PubMed

    Symons, Rolf; Cork, Tyler E; Lakshmanan, Manu N; Evers, Robert; Davies-Venn, Cynthia; Rice, Kelly A; Thomas, Marvin L; Liu, Chia-Ying; Kappler, Steffen; Ulzheimer, Stefan; Sandfort, Veit; Bluemke, David A; Pourmorteza, Amir

    2017-08-01

    To determine the feasibility of dual-contrast agent imaging of the heart using photon-counting detector (PCD) computed tomography (CT) to simultaneously assess both first-pass and late enhancement of the myocardium. An occlusion-reperfusion canine model of myocardial infarction was used. Gadolinium-based contrast was injected 10 min prior to PCD CT. Iodinated contrast was infused immediately prior to PCD CT, thus capturing late gadolinium enhancement as well as first-pass iodine enhancement. Gadolinium and iodine maps were calculated using a linear material decomposition technique and compared to single-energy (conventional) images. PCD images were compared to in vivo and ex vivo magnetic resonance imaging (MRI) and histology. For infarct versus remote myocardium, contrast-to-noise ratio (CNR) was maximal on late enhancement gadolinium maps (CNR 9.0 ± 0.8, 6.6 ± 0.7, and 0.4 ± 0.4, p < 0.001 for gadolinium maps, single-energy images, and iodine maps, respectively). For infarct versus blood pool, CNR was maximum for iodine maps (CNR 11.8 ± 1.3, 3.8 ± 1.0, and 1.3 ± 0.4, p < 0.001 for iodine maps, gadolinium maps, and single-energy images, respectively). Combined first-pass iodine and late gadolinium maps allowed quantitative separation of blood pool, scar, and remote myocardium. MRI and histology analysis confirmed accurate PCD CT delineation of scar. Simultaneous multi-contrast agent cardiac imaging is feasible with photon-counting detector CT. These initial proof-of-concept results may provide incentives to develop new k-edge contrast agents, to investigate possible interactions between multiple simultaneously administered contrast agents, and to ultimately bring them to clinical practice.

  10. Identifying the association between contrast enhancement pattern, surgical resection, and prognosis in anaplastic glioma patients.

    PubMed

    Wang, Yinyan; Wang, Kai; Wang, Jiangfei; Li, Shaowu; Ma, Jun; Dai, Jianping; Jiang, Tao

    2016-04-01

    Contrast enhancement observable on magnetic resonance (MR) images reflects the destructive features of malignant gliomas. This study aimed to investigate the relationship between radiologic patterns of tumor enhancement, extent of resection, and prognosis in patients with anaplastic gliomas (AGs). Clinical data from 268 patients with histologically confirmed AGs were retrospectively analyzed. Contrast enhancement patterns were classified based on preoperative T1-contrast MR images. Univariate and multivariate analyses were performed to evaluate the prognostic value of MR enhancement patterns on progression-free survival (PFS) and overall survival (OS). The pattern of tumor contrast enhancement was associated with the extent of surgical resection in AGs. A gross total resection was more likely to be achieved for AGs with focal enhancement than those with diffuse (p = 0.001) or ring-like (p = 0.024) enhancement. Additionally, patients with focal-enhanced AGs had a significantly longer PFS and OS than those with diffuse (log-rank, p = 0.025 and p = 0.031, respectively) or ring-like (log-rank, p = 0.008 and p = 0.011, respectively) enhanced AGs. Furthermore, multivariate analysis identified the pattern of tumor enhancement as a significant predictor of PFS (p = 0.016, hazard ratio [HR] = 1.485) and OS (p = 0.030, HR = 1.446). Our results suggested that the contrast enhancement pattern on preoperative MR images was associated with the extent of resection and predictive of survival outcomes in AG patients.

  11. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    PubMed Central

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-01-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544

  12. Contrast-enhanced endoscopic ultrasonography: advance and current status

    PubMed Central

    2014-01-01

    Endoscopic ultrasonography (EUS) technology has undergone a great deal of progress along with the color and power Doppler imaging, three-dimensional imaging, electronic scanning, tissue harmonic imaging, and elastography, and one of the most important developments is the ability to acquire contrast-enhanced images. The blood flow in small vessels and the parenchymal microvasculature of the target lesion can be observed non-invasively by contrast-enhanced EUS (CE-EUS). Through a hemodynamic analysis, CE-EUS permits the diagnosis of various gastrointestinal diseases and differential diagnoses between benign and malignant tumors. Recently, mechanical innovations and the development of contrast agents have increased the use of CE-EUS in the diagnostic field, as well as for the assessment of the efficacy of therapeutic agents. The advances in and the current status of CE-EUS are discussed in this review. PMID:25038805

  13. Contrast medium usage reduction in abdominal computed tomography by using high-iodinated concentration contrast medium

    NASA Astrophysics Data System (ADS)

    Suwannasri, A.; Kaewlai, R.; Asavaphatiboon, S.

    2016-03-01

    This study was to determine if administration of a low volume high-concentration iodinated contrast medium can preserve image quality in comparison with regular-concentration intravenous contrast medium in patient undergoing contrast-enhancement abdominal computed tomography (CT). Eighty-four patients were randomly divided into 3 groups of similar iodine delivery rate; A: 1.2 cc/kg of iomeprol-400, B: 1.0 cc/kg of iomeprol-400 and C: 1.5 cc/kg of ioversol-350. Contrast enhancement of the liver parenchyma, pancreas and aorta was quantitatively measured in Hounsfield units and qualitative assessed by a radiologist. T-test was used to evaluate contrast enhancement, and Chi-square test was used to evaluate qualitative image assessment, at significance level of 0.05 with 95% confidence intervals. There were no statistically significant differences in contrast enhancement of liver parenchyma and pancreas between group A and group C in both quantitative and qualitative analyses. Group C showed superior vascular enhancement to group A and B on quantitative analysis.

  14. Laser Speckle Contrast Imaging: theory, instrumentation and applications.

    PubMed

    Senarathna, Janaka; Rege, Abhishek; Li, Nan; Thakor, Nitish V

    2013-01-01

    Laser Speckle Contrast Imaging (LSCI) is a wide field of view, non scanning optical technique for observing blood flow. Speckles are produced when coherent light scattered back from biological tissue is diffracted through the limiting aperture of focusing optics. Mobile scatterers cause the speckle pattern to blur; a model can be constructed by inversely relating the degree of blur, termed speckle contrast to the scatterer speed. In tissue, red blood cells are the main source of moving scatterers. Therefore, blood flow acts as a virtual contrast agent, outlining blood vessels. The spatial resolution (~10 μm) and temporal resolution (10 ms to 10 s) of LSCI can be tailored to the application. Restricted by the penetration depth of light, LSCI can only visualize superficial blood flow. Additionally, due to its non scanning nature, LSCI is unable to provide depth resolved images. The simple setup and non-dependence on exogenous contrast agents have made LSCI a popular tool for studying vascular structure and blood flow dynamics. We discuss the theory and practice of LSCI and critically analyze its merit in major areas of application such as retinal imaging, imaging of skin perfusion as well as imaging of neurophysiology.

  15. Local ablation therapy with contrast-enhanced ultrasonography for hepatocellular carcinoma: a practical review

    PubMed Central

    Kim, Tae Kyoung; Khalili, Korosh; Jang, Hyun-Jung

    2015-01-01

    A successful program for local ablation therapy for hepatocellular carcinoma (HCC) requires extensive imaging support for diagnosis and localization of HCC, imaging guidance for the ablation procedures, and post-treatment monitoring. Contrast-enhanced ultrasonography (CEUS) has several advantages over computed tomography/magnetic resonance imaging (CT/MRI), including real-time imaging capability, sensitive detection of arterial-phase hypervascularity and washout, no renal excretion, no ionizing radiation, repeatability, excellent patient compliance, and relatively low cost. CEUS is useful for image guidance for isoechoic lesions. While contrast-enhanced CT/MRI is the standard method for the diagnosis of HCC and post-ablation monitoring, CEUS is useful when CT/MRI findings are indeterminate or CT/MRI is contraindicated. This article provides a practical review of the role of CEUS in imaging algorithms for pre- and post-ablation therapy for HCC. PMID:26169081

  16. Birefringent coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Karpov, Dmitry; dos Santos Rolo, Tomy; Rich, Hannah; Kryuchkov, Yuriy; Kiefer, Boris; Fohtung, E.

    2016-10-01

    Directional dependence of the index of refraction contains a wealth of information about anisotropic optical properties in semiconducting and insulating materials. Here we present a novel high-resolution lens-less technique that uses birefringence as a contrast mechanism to map the index of refraction and dielectric permittivity in optically anisotropic materials. We applied this approach successfully to a liquid crystal polymer film using polarized light from helium neon laser. This approach is scalable to imaging with diffraction-limited resolution, a prospect rapidly becoming a reality in view of emergent brilliant X-ray sources. Applications of this novel imaging technique are in disruptive technologies, including novel electronic devices, in which both charge and spin carry information as in multiferroic materials and photonic materials such as light modulators and optical storage.

  17. Cuckoo search algorithm based satellite image contrast and brightness enhancement using DWT-SVD.

    PubMed

    Bhandari, A K; Soni, V; Kumar, A; Singh, G K

    2014-07-01

    This paper presents a new contrast enhancement approach which is based on Cuckoo Search (CS) algorithm and DWT-SVD for quality improvement of the low contrast satellite images. The input image is decomposed into the four frequency subbands through Discrete Wavelet Transform (DWT), and CS algorithm used to optimize each subband of DWT and then obtains the singular value matrix of the low-low thresholded subband image and finally, it reconstructs the enhanced image by applying IDWT. The singular value matrix employed intensity information of the particular image, and any modification in the singular values changes the intensity of the given image. The experimental results show superiority of the proposed method performance in terms of PSNR, MSE, Mean and Standard Deviation over conventional and state-of-the-art techniques. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Dynamic Contrast-Enhanced Magnetic Resonance Imaging Reveals Stress-Induced Angiogenesis in MCF7 Human Breast Tumors

    NASA Astrophysics Data System (ADS)

    Furman-Haran, Edna; Margalit, Raanan; Grobgeld, Dov; Degani, Hadassa

    1996-06-01

    The mechanism of contrast enhancement of tumors using magnetic resonance imaging was investigated in MCF7 human breast cancer implanted in nude mice. Dynamic contrast-enhanced images recorded at high spatial resolution were analyzed by an image analysis method based on a physiological model, which included the blood circulation, the tumor, the remaining tissues, and clearance via the kidneys. This analysis enabled us to map in rapidly enhancing regions within the tumor, the capillary permeability factor (capillary permeability times surface area per voxel volume) and the fraction of leakage space. Correlation of these maps with T2-weighted spin echo images, with histopathology, and with immunohistochemical staining of endothelial cells demonstrated the presence of dense permeable microcapillaries in the tumor periphery and in intratumoral regions that surrounded necrotic loci. The high leakage from the intratumoral permeable capillaries indicated an induction of a specific angiogenic process associated with stress conditions that cause necrosis. This induction was augmented in tumors responding to tamoxifen treatment. Determination of the distribution and extent of this stress-induced angiogenic activity by contrast-enhanced MRI might be of diagnostic and of prognostic value.

  19. Image contrast enhancement based on a local standard deviation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Dah-Chung; Wu, Wen-Rong

    1996-12-31

    The adaptive contrast enhancement (ACE) algorithm is a widely used image enhancement method, which needs a contrast gain to adjust high frequency components of an image. In the literature, the gain is usually inversely proportional to the local standard deviation (LSD) or is a constant. But these cause two problems in practical applications, i.e., noise overenhancement and ringing artifact. In this paper a new gain is developed based on Hunt`s Gaussian image model to prevent the two defects. The new gain is a nonlinear function of LSD and has the desired characteristic emphasizing the LSD regions in which details aremore » concentrated. We have applied the new ACE algorithm to chest x-ray images and the simulations show the effectiveness of the proposed algorithm.« less

  20. Magnetic resonance angiography: current status and future directions

    PubMed Central

    2011-01-01

    With recent improvement in hardware and software techniques, magnetic resonance angiography (MRA) has undergone significant changes in technique and approach. The advent of 3.0 T magnets has allowed reduction in exogenous contrast dose without compromising overall image quality. The use of novel intravascular contrast agents substantially increases the image windows and decreases contrast dose. Additionally, the lower risk and cost in non-contrast enhanced (NCE) MRA has sparked renewed interest in these methods. This article discusses the current state of both contrast-enhanced (CE) and NCE-MRA. New CE-MRA methods take advantage of dose reduction at 3.0 T, novel contrast agents, and parallel imaging methods. The risks of gadolinium-based contrast media, and the NCE-MRA methods of time-of-flight, steady-state free precession, and phase contrast are discussed. PMID:21388544

  1. Synthesis of nanostructured barium phosphate and its application in micro-computed tomography of mouse brain vessels in ex vivo

    NASA Astrophysics Data System (ADS)

    Zhu, Bangshang; Yuan, Falei; Yuan, Xiaoya; Bo, Yang; Wang, Yongting; Yang, Guo-Yuan; Drummen, Gregor P. C.; Zhu, Xinyuan

    2014-02-01

    Micro-computed tomography (micro-CT) is a powerful tool for visualizing the vascular systems of tissues, organs, or entire small animals. Vascular contrast agents play a vital role in micro-CT imaging in order to obtain clear and high-quality images. In this study, a new kind of nanostructured barium phosphate was fabricated and used as a contrast agent for ex vivo micro-CT imaging of blood vessels in the mouse brain. Nanostructured barium phosphate was synthesized through a simple wet precipitation method using Ba(NO3)2, and (NH4)2HPO4 as starting materials. The physiochemical properties of barium phosphate were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and thermal analysis. Furthermore, the impact of the produced nanostructures on cell viability was evaluated via the MTT assay, which generally showed low to moderate cytotoxicity. Finally, the animal test images demonstrated that the use of nanostructured barium phosphate as a contrast agent in Micro-CT imaging produced sharp images with excellent contrast. Both major vessels and the microvasculature were clearly observable in the imaged mouse brain. Overall, the results indicate that nanostructured barium phosphate is a potential and useful vascular contrast agent for micro-CT imaging.

  2. Acoustic fingerprints of dye-labeled protein submicrosphere photoacoustic contrast agents

    NASA Astrophysics Data System (ADS)

    McDonald, Michael A.; Jankovic, Ladislav; Shahzad, Khalid; Burcher, Michael; Li, King C. P.

    2009-05-01

    Dye-labeled protein microspheres, submicron in size and capable of producing thermoelastically generated ultrasound in response to laser stimulation, are presented as contrast agents for photoacoustic imaging. Incident laser energy absorbed by fluorescein isothiocyanate (FITC)-labeled elastin submicrospheres results in thermoelastically generated sound production. Plotted A-line graphs reveal a distinctive morphology and a greater than two orders of magnitude increase in signal amplitude subsequent to converting FITC elastin into submicrospheres (despite a four orders of magnitude decrease in concentration). Evidence of nonlinearity and enhancement of ultrasound backscatter indicate a potential use in contrast-enhanced harmonic imaging. Photoacoustic and ultrasound imaging of FITC-elastin submicrospheres in a water-filled phantom vessel shows enhanced contrast at low concentration and clear delineation of the phantom vessel wall.

  3. Effects of contour enhancement on low-vision preference and visual search.

    PubMed

    Satgunam, Premnandhini; Woods, Russell L; Luo, Gang; Bronstad, P Matthew; Reynolds, Zachary; Ramachandra, Chaithanya; Mel, Bartlett W; Peli, Eli

    2012-09-01

    To determine whether image enhancement improves visual search performance and whether enhanced images were also preferred by subjects with vision impairment. Subjects (n = 24) with vision impairment (vision: 20/52 to 20/240) completed visual search and preference tasks for 150 static images that were enhanced to increase object contours' visual saliency. Subjects were divided into two groups and were shown three enhancement levels. Original and medium enhancements were shown to both groups. High enhancement was shown to group 1, and low enhancement was shown to group 2. For search, subjects pointed to an object that matched a search target displayed at the top left of the screen. An "integrated search performance" measure (area under the curve of cumulative correct response rate over search time) quantified performance. For preference, subjects indicated the preferred side when viewing the same image with different enhancement levels on side-by-side high-definition televisions. Contour enhancement did not improve performance in the visual search task. Group 1 subjects significantly (p < 0.001) rejected the High enhancement, and showed no preference for medium enhancement over the original images. Group 2 subjects significantly preferred (p < 0.001) both the medium and the low enhancement levels over original. Contrast sensitivity was correlated with both preference and performance; subjects with worse contrast sensitivity performed worse in the search task (ρ = 0.77, p < 0.001) and preferred more enhancement (ρ = -0.47, p = 0.02). No correlation between visual search performance and enhancement preference was found. However, a small group of subjects (n = 6) in a narrow range of mid-contrast sensitivity performed better with the enhancement, and most (n = 5) also preferred the enhancement. Preferences for image enhancement can be dissociated from search performance in people with vision impairment. Further investigations are needed to study the relationships between preference and performance for a narrow range of mid-contrast sensitivity where a beneficial effect of enhancement may exist.

  4. SU-F-J-71: Improving CT Quality for Radiation Therapy Planning and Delivery Guidance Using a Non-Linear Contrast Enhancement Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noid, G; Tai, A; Li, X

    2016-06-15

    Purpose: Advanced image post-processing techniques which enhance soft-tissue contrast in CT have not been widely employed for RT planning or delivery guidance. The purpose of this work is to assess the soft-tissue contrast enhancement from non-linear contrast enhancing filters and its impact in RT. The contrast enhancement reduces patient alignment uncertainties. Methods: Non-linear contrast enhancing methods, such as Best Contrast (Siemens), amplify small differences in X-ray attenuation between two adjacent structure without significantly increasing noise. Best Contrast (BC) separates a CT into two frequency bands. The low frequency band is modified by a non-linear scaling function before recombination with themore » high frequency band. CT data collected using a CT-on-rails (Definition AS Open, Siemens) during daily CT-guided RT for 6 prostate cancer patients and an image quality phantom (The Phantom Laboratory) were analyzed. Images acquired with a standard protocol (120 kVp, 0.6 pitch, 18 mGy CTDIvol) were processed before comparison to the unaltered images. Contrast and noise were measured in the the phantom. Inter-observer variation was assessed by placing prostate contours on the 12 CT study sets, 6 enhanced and 6 unaltered, in a blinded study involving 8 observers. Results: The phantom data demonstrate that BC increased the contrast between the 1.0% supra-slice element and the background substrate by 46.5 HU while noise increased by only 2.3 HU. Thus the contrast to noise ratio increased from 1.28 to 6.71. Furthermore, the variation in centroid position of the prostate contours was decreased from 1.3±0.4 mm to 0.8±0.3 mm. Thus the CTV-to-PTV margin was reduced by 1.1 mm. The uncertainty in delineation of the prostate/rectum edge decreased by 0.5 mm. Conclusion: As demonstrated in phantom and patient scans the BC filter accentuates soft-tissue contrast. This enhancement leads to reduced inter-observer variation, which should improve RT planning and delivery. Supported by Siemens.« less

  5. High-contrast imaging with an arbitrary aperture: active correction of aperture discontinuities

    NASA Astrophysics Data System (ADS)

    Pueyo, Laurent; Norman, Colin; Soummer, Rémi; Perrin, Marshall; N'Diaye, Mamadou; Choquet, Elodie

    2013-09-01

    We present a new method to achieve high-contrast images using segmented and/or on-axis telescopes. Our approach relies on using two sequential Deformable Mirrors to compensate for the large amplitude excursions in the telescope aperture due to secondary support structures and/or segment gaps. In this configuration the parameter landscape of Deformable Mirror Surfaces that yield high contrast Point Spread Functions is not linear, and non-linear methods are needed to find the true minimum in the optimization topology. We solve the highly non-linear Monge-Ampere equation that is the fundamental equation describing the physics of phase induced amplitude modulation. We determine the optimum configuration for our two sequential Deformable Mirror system and show that high-throughput and high contrast solutions can be achieved using realistic surface deformations that are accessible using existing technologies. We name this process Active Compensation of Aperture Discontinuities (ACAD). We show that for geometries similar to JWST, ACAD can attain at least 10-7 in contrast and an order of magnitude higher for future Extremely Large Telescopes, even when the pupil features a missing segment" . We show that the converging non-linear mappings resulting from our Deformable Mirror shapes actually damp near-field diffraction artifacts in the vicinity of the discontinuities. Thus ACAD actually lowers the chromatic ringing due to diffraction by segment gaps and strut's while not amplifying the diffraction at the aperture edges beyond the Fresnel regime and illustrate the broadband properties of ACAD in the case of the pupil configuration corresponding to the Astrophysics Focused Telescope Assets. Since details about these telescopes are not yet available to the broader astronomical community, our test case is based on a geometry mimicking the actual one, to the best of our knowledge.

  6. Contrast-enhanced intravascular ultrasound pulse sequences for bandwidth-limited transducers.

    PubMed

    Maresca, David; Renaud, Guillaume; van Soest, Gijs; Li, Xiang; Zhou, Qifa; Shung, K Kirk; de Jong, Nico; van der Steen, Antonius F W

    2013-04-01

    We demonstrate two methods for vasa vasorum imaging using contrast-enhanced intravascular ultrasound, which can be performed using commercial catheters. Plaque neovascularization was recognized as an independent marker of coronary artery plaque vulnerability. IVUS-based methods to image the microvessels available to date require high bandwidth (-6 dB relative frequency bandwidth >70%), which are not routinely available commercially. We explored the potential of ultraharmonic imaging and chirp reversal imaging for vasa vasorum imaging. In vitro recordings were performed on a tissue-mimicking phantom using a commercial ultrasound contrast agent and a transducer with a center frequency of 34 MHz and a -6 dB relative bandwidth of 56%. Acoustic peak pressures <500 kPa were used. A tissue-mimicking phantom with channels down to 200 μm in diameter was successfully imaged by the two contrast detection sequences while the smallest channel stayed invisible in conventional intravascular ultrasound images. Ultraharmonic imaging provided the best contrast agent detection. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. All rights reserved.

  7. What is the underestimation of radiation dose to the pediatric thyroid gland from contrast enhanced CT, if contrast medium uptake is not taken into account?

    PubMed

    Perisinakis, Kostas; Pouli, Styliani; Tzedakis, Antonis; Spanakis, Kostas; Hatzidakis, Adam; Raissaki, Maria; Damilakis, John

    2018-05-01

    To assess the underestimation of radiation dose to the thyroid of children undergoing contrast enhanced CT if contrast medium uptake is not taken into account. 161 pediatric head, head & neck and chest CT examinations were retrospectively studied to identify those involving pre- and post-contrast imaging and thyroid inclusion in imaged volume. CT density of thyroid tissue in HU was measured in non-enhanced (NECT) and corresponding contrast-enhanced CT (CECT) images. Resulting CT number increase (ΔHU) was recorded for each patient and corresponded to a % w/w iodine concentration. The relation of %w/w iodine concentration to %dose increase induced by iodinated contrast uptake was derived by Monte Carlo simulation experiments. The thyroid gland was visible in 11 chest and 3 neck CT examinations involving both pre- and post-contrast imaging. The %w/w concentration of iodine in the thyroid tissue at the time of CECT acquisition was found to be 0.13%-0.58% w/w (mean = 0.26%). The %increase of dose to thyroid tissue was found to be linearly correlated to%w/w iodine uptake. The increase in radiation dose to thyroid due to contrast uptake ranged from 12% to 44%, with a mean value of 23%. The radiation dose to the pediatric thyroid from CECT exposure may be underestimated by up to 44% if contrast medium uptake is not taken into account. Meticulous demarcation of imaged volume in pediatric chest CT examinations is imperative to avoid unnecessary direct exposure of thyroid, especially in CT examinations following intravenous administration of contrast medium. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. [Contrast-enhanced ultrasound (CEUS) and image fusion for procedures of liver interventions].

    PubMed

    Jung, E M; Clevert, D A

    2018-06-01

    Contrast-enhanced ultrasound (CEUS) is becoming increasingly important for the detection and characterization of malignant liver lesions and allows percutaneous treatment when surgery is not possible. Contrast-enhanced ultrasound image fusion with computed tomography (CT) and magnetic resonance imaging (MRI) opens up further options for the targeted investigation of a modified tumor treatment. Ultrasound image fusion offers the potential for real-time imaging and can be combined with other cross-sectional imaging techniques as well as CEUS. With the implementation of ultrasound contrast agents and image fusion, ultrasound has been improved in the detection and characterization of liver lesions in comparison to other cross-sectional imaging techniques. In addition, this method can also be used for intervention procedures. The success rate of fusion-guided biopsies or CEUS-guided tumor ablation lies between 80 and 100% in the literature. Ultrasound-guided image fusion using CT or MRI data, in combination with CEUS, can facilitate diagnosis and therapy follow-up after liver interventions. In addition to the primary applications of image fusion in the diagnosis and treatment of liver lesions, further useful indications can be integrated into daily work. These include, for example, intraoperative and vascular applications as well applications in other organ systems.

  9. Mesh-based phase contrast Fourier transform imaging

    NASA Astrophysics Data System (ADS)

    Tahir, Sajjad; Bashir, Sajid; MacDonald, C. A.; Petruccelli, Jonathan C.

    2017-04-01

    Traditional x-ray radiography is limited by low attenuation contrast in materials of low electron density. Phase contrast imaging offers the potential to improve the contrast between such materials, but due to the requirements on the spatial coherence of the x-ray beam, practical implementation of such systems with tabletop (i.e. non-synchrotron) sources has been limited. One phase imaging technique employs multiple fine-pitched gratings. However, the strict manufacturing tolerances and precise alignment requirements have limited the widespread adoption of grating-based techniques. In this work, we have investigated a recently developed technique that utilizes a single grid of much coarser pitch. Our system consisted of a low power 100 μm spot Mo source, a CCD with 22 μm pixel pitch, and either a focused mammography linear grid or a stainless steel woven mesh. Phase is extracted from a single image by windowing and comparing data localized about harmonics of the mesh in the Fourier domain. The effects on the diffraction phase contrast and scattering amplitude images of varying grid types and periods, and of varying the width of the window function used to separate the harmonics were investigated. Using the wire mesh, derivatives of the phase along two orthogonal directions were obtained and combined to form improved phase contrast images.

  10. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Renaud, G.; Bosch, J. G.; ten Kate, G. L.; Shamdasani, V.; Entrekin, R.; de Jong, N.; van der Steen, A. F. W.

    2012-11-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image.

  11. Contrast-enhanced ultrasound imaging of active bleeding associated with hepatic and splenic trauma.

    PubMed

    Lv, F; Tang, J; Luo, Y; Li, Z; Meng, X; Zhu, Z; Li, T

    2011-10-01

    The aim of this study was to evaluate contrast-enhanced ultrasound (CEUS) imaging of active bleeding from hepatic and splenic trauma. Three hundred and ninety-two patients with liver or/and spleen trauma (179 liver and 217 spleen injuries), who underwent CEUS examinations following contrast-enhanced computed tomography (CT), were enrolled in this retrospective study over a period of >4 years. CEUS detected contrast medium extravasation or pooling in 16% (63/396) of liver or spleen lesions in 61 patients, which was confirmed by contrast-enhanced CT. Special attention was paid to observing the presence, location, and characteristics of the extravasated or pooled contrast medium. The CEUS detection rate for active bleeding was not different from that of contrast-enhanced CT (p=0.333). Information from surgery, minimally invasive treatment and conservative treatment was used as reference standard, and the sensitivities of the two techniques were not different (p=0.122). Of 63 lesions in 61 patients, CEUS showed that 74.6% (47/63) (21 liver lesions and 26 spleen lesions) presented contrast medium extravasation or pooling, both in the organ and out the capsule, in 14.3% (9/63) and only outside the capsule in 11.1% (7/63). CEUS imaging of active bleeding from hepatic and splenic trauma presented various characteristics, and the sizes and shapes of the active bleeding due to contrast medium extravasation or pooling were variable. CEUS can show the active bleeding associated with hepatic and splenic trauma with various imaging characteristics, thus making it possible to diagnose active bleeding using CEUS.

  12. Investigation of self-adaptive LED surgical lighting based on entropy contrast enhancing method

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Wang, Huihui; Zhang, Yaqin; Shen, Junfei; Wu, Rengmao; Zheng, Zhenrong; Li, Haifeng; Liu, Xu

    2014-05-01

    Investigation was performed to explore the possibility of enhancing contrast by varying the spectral distribution (SPD) of the surgical lighting. The illumination scenes with different SPDs were generated by the combination of a self-adaptive white light optimization method and the LED ceiling system, the images of biological sample are taken by a CCD camera and then processed by an 'Entropy' based contrast evaluation model which is proposed specific for surgery occasion. Compared with the neutral white LED based and traditional algorithm based image enhancing methods, the illumination based enhancing method turns out a better performance in contrast enhancing and improves the average contrast value about 9% and 6%, respectively. This low cost method is simple, practicable, and thus may provide an alternative solution for the expensive visual facility medical instruments.

  13. Development of variable-magnification X-ray Bragg optics.

    PubMed

    Hirano, Keiichi; Yamashita, Yoshiki; Takahashi, Yumiko; Sugiyama, Hiroshi

    2015-07-01

    A novel X-ray Bragg optics is proposed for variable-magnification of an X-ray beam. This X-ray Bragg optics is composed of two magnifiers in a crossed arrangement, and the magnification factor, M, is controlled through the azimuth angle of each magnifier. The basic properties of the X-ray optics such as the magnification factor, image transformation matrix and intrinsic acceptance angle are described based on the dynamical theory of X-ray diffraction. The feasibility of the variable-magnification X-ray Bragg optics was verified at the vertical-wiggler beamline BL-14B of the Photon Factory. For X-ray Bragg magnifiers, Si(220) crystals with an asymmetric angle of 14° were used. The magnification factor was calculated to be tunable between 0.1 and 10.0 at a wavelength of 0.112 nm. At various magnification factors (M ≥ 1.0), X-ray images of a nylon mesh were observed with an air-cooled X-ray CCD camera. Image deformation caused by the optics could be corrected by using a 2 × 2 transformation matrix and bilinear interpolation method. Not only absorption-contrast but also edge-contrast due to Fresnel diffraction was observed in the magnified images.

  14. Research on properties of an infrared imaging diffractive element

    NASA Astrophysics Data System (ADS)

    Rachoń, M.; Wegrzyńska, K.; Doch, M.; Kołodziejczyk, A.; Siemion, A.; Suszek, J.; Kakarenko, K.; Sypek, M.

    2014-09-01

    Novel thermovision imaging systems having high efficiency require very sophisticated optical components. This paper describes the diffractive optical elements which are designed for the wavelengths between 8 and 14 μm for the application in the FLIR cameras. In the current paper the authors present phase only diffractive elements manufactured in the etched gallium arsenide. Due to the simplicity of the manufacturing process only binary phase elements were designed and manufactured. Such solution exhibits huge chromatic aberration. Moreover, the performance of such elements is rather poor, which is caused by two factors. The first one is the limited diffraction efficiency (c.a. 40%) of binary phase structures. The second problem lies in the Fresnel losses coming from the reflection from the two surfaces (around 50%). Performance of this structures is limited and the imaging contrast is poor. However, such structures can be used for relatively cheap practical testing of the new ideas. For example this solution is sufficient for point spread function (PSF) measurements. Different diffractive elements were compared. The first one was the equivalent of the lens designed on the basis of the paraxial approximation. For the second designing process, the non-paraxial approach was used. It was due to the fact that f/# was equal to 1. For the non-paraxial designing the focal spot is smaller and better focused. Moreover, binary phase structures suffer from huge chromatic aberrations. Finally, it is presented that non-paraxially designed optical element imaging with extended depth of focus (light-sword) can suppress chromatic aberration and therefore it creates the image not only in the image plane.

  15. Broadband X-ray edge-enhancement imaging of a boron fibre on lithium fluoride thin film detector

    NASA Astrophysics Data System (ADS)

    Nichelatti, E.; Bonfigli, F.; Vincenti, M. A.; Cecilia, A.; Vagovič, P.; Baumbach, T.; Montereali, R. M.

    2016-10-01

    The white beam (∼6-80 keV) available at the TopoTomo X-ray beamline of the ANKA synchrotron facility (KIT, Karlsruhe, Germany) was used to perform edge-enhancement imaging tests on lithium fluoride radiation detectors. The diffracted X-ray image of a microscopic boron fibre, consisting of tungsten wire wrapped by boron cladding, was projected onto lithium fluoride thin films placed at several distances, from contact to 1 m . X-ray photons cause the local formation of primary and aggregate colour centres in lithium fluoride; these latter, once illuminated under blue light, luminesce forming visible-light patterns-acquired by a confocal laser scanning microscope-that reproduce the intensity of the X-ray diffracted images. The tests demonstrated the excellent performances of lithium fluoride films as radiation detectors at the investigated photon energies. The experimental results are here discussed and compared with those calculated with a model that takes into account all the processes that concern image formation, storing and readout.

  16. Fuzzy entropy thresholding and multi-scale morphological approach for microscopic image enhancement

    NASA Astrophysics Data System (ADS)

    Zhou, Jiancan; Li, Yuexiang; Shen, Linlin

    2017-07-01

    Microscopic images provide lots of useful information for modern diagnosis and biological research. However, due to the unstable lighting condition during image capturing, two main problems, i.e., high-level noises and low image contrast, occurred in the generated cell images. In this paper, a simple but efficient enhancement framework is proposed to address the problems. The framework removes image noises using a hybrid method based on wavelet transform and fuzzy-entropy, and enhances the image contrast with an adaptive morphological approach. Experiments on real cell dataset were made to assess the performance of proposed framework. The experimental results demonstrate that our proposed enhancement framework increases the cell tracking accuracy to an average of 74.49%, which outperforms the benchmark algorithm, i.e., 46.18%.

  17. Diffraction in neutron imaging-A review

    NASA Astrophysics Data System (ADS)

    Woracek, Robin; Santisteban, Javier; Fedrigo, Anna; Strobl, Markus

    2018-01-01

    Neutron imaging is a highly successful experimental technique ever since adequate neutron sources were available. In general, neutron imaging is performed with a wide wavelength spectrum for best flux conditions in transmission geometry. Neutrons provide outstanding features in the penetration of many structural materials, which often makes them more suited for bulk sample studies than other forms of radiation, often in particular as they are also highly sensitive to some light elements, especially Hydrogen. In contrast to neutron scattering applications, imaging resolves macroscopic structures, nowadays down to, in the best case, below 10 micrometre, directly in real space. However, since more than a decade there is a growing number of techniques and applications in neutron imaging that - supported by powerful neutron sources - are taking advantage of wavelength resolved measurements. In this review we summarize and discuss this outstanding development and how wavelength resolved transmission neutron imaging is successfully exploiting diffraction mechanisms to access crystal structure information in the Angstrom regime, which conventionally is probed in reciprocal space by diffraction techniques. In particular the combination of information gained in real space and on crystallographic length scales makes this neutron imaging technique a valuable tool for a wide range of new applications, while it also qualifies neutron imaging to fully profit from the new generation of powerful pulsed neutron sources.

  18. Multipass holographic interferometer improves image resolution

    NASA Technical Reports Server (NTRS)

    Brooks, R. E.; Heflinger, L. O.

    1970-01-01

    Multipass holographic interferometer forms a hologram of high diffraction efficiency, and hence provides a bright and high contrast interferogram. It is used to study any effect which changes the index of refraction and to study surface deformations of a flat reflecting surface.

  19. Hadamard-Encoded Multipulses for Contrast-Enhanced Ultrasound Imaging.

    PubMed

    Gong, Ping; Song, Pengfei; Chen, Shigao

    2017-11-01

    The development of contrast-enhanced ultrasound (CEUS) imaging offers great opportunities for new ultrasound clinical applications such as myocardial perfusion imaging and abdominal lesion characterization. In CEUS imaging, the contrast agents (i.e., microbubbles) are utilized to improve the contrast between blood and tissue based on their high nonlinearity under low ultrasound pressure. In this paper, we propose a new CEUS pulse sequence by combining Hadamard-encoded multipulses (HEM) with fundamental frequency bandpass filter (i.e., filter centered on transmit frequency). HEM consecutively emits multipulses encoded by a second-order Hadamard matrix in each of the two transmission events (i.e., pulse-echo events), as opposed to conventional CEUS methods which emit individual pulses in two separate transmission events (i.e., pulse inversion (PI), amplitude modulation (AM), and PIAM). In HEM imaging, the microbubble responses can be improved by the longer transmit pulse, and the tissue harmonics can be suppressed by the fundamental frequency filter, leading to significantly improved contrast-to-tissue ratio (CTR) and signal-to-noise ratio (SNR). In addition, the fast polarity change between consecutive coded pulse emissions excites strong nonlinear microbubble echoes, further enhancing the CEUS image quality. The spatial resolution of HEM image is compromised as compared to other microbubble imaging methods due to the longer transmit pulses and the lower imaging frequency (i.e., fundamental frequency). However, the resolution loss was shown to be negligible and could be offset by the significantly enhanced CTR, SNR, and penetration depth. These properties of HEM can potentially facilitate robust CEUS imaging for many clinical applications, especially for deep abdominal organs and heart.

  20. Phase conjugate digital inline holography (PCDIH)

    DOE PAGES

    Guildenbecher, Daniel Robert; Hoffmeister, Kathryn N. Gabet; Kunzler, William Marley; ...

    2018-01-12

    We report digital inline holography (DIH) provides instantaneous three-dimensional (3D) measurements of diffracting objects; however, phase disturbances in the beam path can distort the imaging. In this Letter, a phase conjugate digital inline holography (PCDIH) configuration is proposed for removal of phase disturbances. Brillouin-enhanced four-wave mixing produces a phase conjugate signal that back propagates along the DIH beam path. Finally, the results demonstrate the removal of distortions caused by gas-phase shocks to recover 3D images of diffracting objects.

  1. Phase conjugate digital inline holography (PCDIH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guildenbecher, Daniel Robert; Hoffmeister, Kathryn N. Gabet; Kunzler, William Marley

    We report digital inline holography (DIH) provides instantaneous three-dimensional (3D) measurements of diffracting objects; however, phase disturbances in the beam path can distort the imaging. In this Letter, a phase conjugate digital inline holography (PCDIH) configuration is proposed for removal of phase disturbances. Brillouin-enhanced four-wave mixing produces a phase conjugate signal that back propagates along the DIH beam path. Finally, the results demonstrate the removal of distortions caused by gas-phase shocks to recover 3D images of diffracting objects.

  2. Multi-wavelength speckle reduction for laser pico-projectors using diffractive optics

    NASA Astrophysics Data System (ADS)

    Thomas, Weston H.

    Personal electronic devices, such as cell phones and tablets, continue to decrease in size while the number of features and add-ons keep increasing. One particular feature of great interest is an integrated projector system. Laser pico-projectors have been considered, but the technology has not been developed enough to warrant integration. With new advancements in diode technology and MEMS devices, laser-based projection is currently being advanced for pico-projectors. A primary problem encountered when using a pico-projector is coherent interference known as speckle. Laser speckle can lead to eye irritation and headaches after prolonged viewing. Diffractive optical elements known as diffusers have been examined as a means to lower speckle contrast. Diffusers are often rotated to achieve temporal averaging of the spatial phase pattern provided by diffuser surface. While diffusers are unable to completely eliminate speckle, they can be utilized to decrease the resultant contrast to provide a more visually acceptable image. This dissertation measures the reduction in speckle contrast achievable through the use of diffractive diffusers. A theoretical Fourier optics model is used to provide the diffuser's stationary and in-motion performance in terms of the resultant contrast level. Contrast measurements of two diffractive diffusers are calculated theoretically and compared with experimental results. In addition, a novel binary diffuser design based on Hadamard matrices will be presented. Using two static in-line Hadamard diffusers eliminates the need for rotation or vibration of the diffuser for temporal averaging. Two Hadamard diffusers were fabricated and contrast values were subsequently measured, showing good agreement with theory and simulated values. Monochromatic speckle contrast values of 0.40 were achieved using the Hadamard diffusers. Finally, color laser projection devices require the use of red, green, and blue laser sources; therefore, using a monochromatic diffractive diffuser may not optimal for color speckle contrast reduction. A simulation of the Hadamard diffusers is conducted to determine the optimum spacing between the two diffusers for polychromatic speckle reduction. Experimental measured results are presented using the optimal spacing of Hadamard diffusers for RGB color speckle reduction, showing 60% reduction in contrast.

  3. Super-resolution atomic force photoactivated microscopy of biological samples (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Kim, Hyemin; Shin, Seungjun; Doh, Junsang; Kim, Chulhong

    2017-03-01

    Optical microscopy (OM) and photoacoustic microscopy (PAM) have previously been used to image the optical absorption of intercellular features of biological cells. However, the optical diffraction limit ( 200 nm) makes it difficult for these modalities to image nanoscale inner cell structures and the distribution of internal cell components. Although super-resolution fluorescence microscopy, such as stimulated emission depletion microscopy (STED) and stochastic optical reconstruction microscopy (STORM), has successfully performed nanoscale biological imaging, these modalities require the use of exogenous fluorescence agents, which are unfavorable for biological samples. Our newly developed atomic force photoactivated microscopy (AFPM) can provide optical absorption images with nanoscale lateral resolution without any exogenous contrast agents. AFPM combines conventional atomic force microscopy (AFM) and an optical excitation system, and simultaneously provides multiple contrasts, such as the topography and magnitude of optical absorption. AFPM can detect the intrinsic optical absorption of samples with 8 nm lateral resolution, easily overcoming the diffraction limit. Using the label-free AFPM system, we have successfully imaged the optical absorption properties of a single melanoma cell (B16F10) and a rosette leaf epidermal cell of Arabidopsis (ecotype Columbia (Col-0)) with nanoscale lateral resolution. The remarkable images show the melanosome distribution of a melanoma cell and the biological structures of a plant cell. AFPM provides superior imaging of optical absorption with a nanoscale lateral resolution, and it promises to become widely used in biological and chemical research.

  4. Tolerance of brightness and contrast adjustments on chronic apical abscess and apical granuloma interpretation

    NASA Astrophysics Data System (ADS)

    Purnamasari, L.; Iskandar, H. H. B.; Makes, B. N.

    2017-08-01

    In digitized radiography techniques, adjusting the image enhancement can improve the subjective image quality by optimizing the brightness and contrast for diagnostic needs. To determine the value range of image enhancement (brightness and contrast) on chronic apical abscess and apical granuloma interpretation. 30 periapical radiographs that diagnosed chronic apical abscess and 30 that diagnosed apical granuloma were adjusted by changing brightness and contrast values. The value range of brightness and contrast adjustment that can be tolerated in radiographic interpretations of chronic apical abscess and apical granuloma spans from -10 to +10. Brightness and contrast adjustments on digital radiographs do not affect the radiographic interpretation of chronic apical abscess and apical granuloma if conducted within the value range.

  5. Video enhancement workbench: an operational real-time video image processing system

    NASA Astrophysics Data System (ADS)

    Yool, Stephen R.; Van Vactor, David L.; Smedley, Kirk G.

    1993-01-01

    Video image sequences can be exploited in real-time, giving analysts rapid access to information for military or criminal investigations. Video-rate dynamic range adjustment subdues fluctuations in image intensity, thereby assisting discrimination of small or low- contrast objects. Contrast-regulated unsharp masking enhances differentially shadowed or otherwise low-contrast image regions. Real-time removal of localized hotspots, when combined with automatic histogram equalization, may enhance resolution of objects directly adjacent. In video imagery corrupted by zero-mean noise, real-time frame averaging can assist resolution and location of small or low-contrast objects. To maximize analyst efficiency, lengthy video sequences can be screened automatically for low-frequency, high-magnitude events. Combined zoom, roam, and automatic dynamic range adjustment permit rapid analysis of facial features captured by video cameras recording crimes in progress. When trying to resolve small objects in murky seawater, stereo video places the moving imagery in an optimal setting for human interpretation.

  6. Adaptive image contrast enhancement using generalizations of histogram equalization.

    PubMed

    Stark, J A

    2000-01-01

    This paper proposes a scheme for adaptive image-contrast enhancement based on a generalization of histogram equalization (HE). HE is a useful technique for improving image contrast, but its effect is too severe for many purposes. However, dramatically different results can be obtained with relatively minor modifications. A concise description of adaptive HE is set out, and this framework is used in a discussion of past suggestions for variations on HE. A key feature of this formalism is a "cumulation function," which is used to generate a grey level mapping from the local histogram. By choosing alternative forms of cumulation function one can achieve a wide variety of effects. A specific form is proposed. Through the variation of one or two parameters, the resulting process can produce a range of degrees of contrast enhancement, at one extreme leaving the image unchanged, at another yielding full adaptive equalization.

  7. Development of low-dose photon-counting contrast-enhanced tomosynthesis with spectral imaging.

    PubMed

    Schmitzberger, Florian F; Fallenberg, Eva Maria; Lawaczeck, Rüdiger; Hemmendorff, Magnus; Moa, Elin; Danielsson, Mats; Bick, Ulrich; Diekmann, Susanne; Pöllinger, Alexander; Engelken, Florian J; Diekmann, Felix

    2011-05-01

    To demonstrate the feasibility of low-dose photon-counting tomosynthesis in combination with a contrast agent (contrast material-enhanced tomographic mammography) for the differentiation of breast cancer. All studies were approved by the institutional review board, and all patients provided written informed consent. A phantom model with wells of iodinated contrast material (3 mg of iodine per milliliter) 1, 2, 5, 10, and 15 mm in diameter was assessed. Nine patients with malignant lesions and one with a high-risk lesion (atypical papilloma) were included (all women; mean age, 60.7 years). A multislit photon-counting tomosynthesis system was utilized (spectral imaging) to produce both low- and high-energy tomographic data (below and above the k edge of iodine, respectively) in a single scan, which allowed for dual-energy visualization of iodine. Images were obtained prior to contrast material administration and 120 and 480 seconds after contrast material administration. Four readers independently assessed the images along with conventional mammograms, ultrasonographic images, and magnetic resonance images. Glandular dose was estimated. Contrast agent was visible in the phantom model with simulated spherical tumor diameters as small as 5 mm. The average glandular dose was measured as 0.42 mGy per complete spectral imaging tomosynthesis scan of one breast. Because there were three time points (prior to contrast medium administration and 120 and 480 seconds after contrast medium administration), this resulted in a total dose of 1.26 mGy for the whole procedure in the breast with the abnormality. Seven of 10 cases were categorized as Breast Imaging Reporting and Data System score of 4 or higher by all four readers when reviewing spectral images in combination with mammograms. One lesion near the chest wall was not captured on the spectral image because of a positioning problem. The use of contrast-enhanced tomographic mammography has been demonstrated successfully in patients with promising diagnostic benefit. Further studies are necessary to fully assess diagnostic sensitivity and specificity. RSNA, 2011

  8. Contrast enhancement of bite mark images using the grayscale mixer in ACR in Photoshop®.

    PubMed

    Evans, Sam; Noorbhai, Suzanne; Lawson, Zoe; Stacey-Jones, Seren; Carabott, Romina

    2013-05-01

    Enhanced images may improve bite mark edge definition, assisting forensic analysis. Current contrast enhancement involves color extraction, viewing layered images by channel. A novel technique, producing a single enhanced image using the grayscale mix panel within Adobe Camera Raw®, has been developed and assessed here, allowing adjustments of multiple color channels simultaneously. Stage 1 measured RGB values in 72 versions of a color chart image; eight sliders in Photoshop® were adjusted at 25% intervals, all corresponding colors affected. Stage 2 used a bite mark image, and found only red, orange, and yellow sliders had discernable effects. Stage 3 assessed modality preference between color, grayscale, and enhanced images; on average, the 22 survey participants chose the enhanced image as better defined for nine out of 10 bite marks. The study has shown potential benefits for this new technique. However, further research is needed before use in the analysis of bite marks. © 2013 American Academy of Forensic Sciences.

  9. Diagnostic Accuracy of Dynamic Contrast Enhanced Magnetic Resonance Imaging in Characterizing Lung Masses

    PubMed Central

    Inan, Nagihan; Arslan, Arzu; Donmez, Muhammed; Sarisoy, Hasan Tahsin

    2016-01-01

    Background Imaging plays a critical role not only in the detection, but also in the characterization of lung masses as benign or malignant. Objectives To determine the diagnostic accuracy of dynamic magnetic resonance imaging (MRI) in the differential diagnosis of benign and malignant lung masses. Patients and Methods Ninety-four masses were included in this prospective study. Five dynamic series of T1-weighted spoiled gradient echo (FFE) images were obtained, followed by a T1-weighted FFE sequence in the late phase (5th minutes). Contrast enhancement patterns in the early (25th second) and late (5th minute) phase images were evaluated. For the quantitative evaluation, signal intensity (SI)-time curves were obtained and the maximum relative enhancement, wash-in rate, and time-to-peak enhancement of masses in both groups were calculated. Results The early phase contrast enhancement patterns were homogeneous in 78.2% of the benign masses, while heterogeneous in 74.4% of the malignant tumors. On the late phase images, 70.8% of the benign masses showed homogeneous enhancement, while most of the malignant masses showed heterogeneous enhancement (82.4%). During the first pass, the maximum relative enhancement and wash-in rate values of malignant masses were significantly higher than those of the benign masses (P = 0.03 and 0.04, respectively). The cutoff value at 15% yielded a sensitivity of 85.4%, specificity of 61.2%, and positive predictive value of 68.7% for the maximum relative enhancement. Conclusion Contrast enhancement patterns and SI-time curve analysis of MRI are helpful in the differential diagnosis of benign and malignant lung masses. PMID:27703654

  10. Application of gold nanoparticles as contrast agents in confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Lemelle, A.; Veksler, B.; Kozhevnikov, I. S.; Akchurin, G. G.; Piletsky, S. A.; Meglinski, I.

    2009-01-01

    Confocal laser scanning microscopy (CLSM) is a modern high-resolution optical technique providing detailed image of tissue structure with high (down to microns) spatial resolution. Aiming at a concurrent improvement of imaging depth and image quality the CLSM requires the use of contrast agents. Commonly employed fluorescent contrast agents, such as fluorescent dyes and proteins, suffer from toxicity, photo-bleaching and overlapping with the tissues autofluorescence. Gold nanoparticles are potentially highly attractive to be applied as a contrast agent since they are not subject to photo-bleaching and can target biochemical cells markers associated with the specific diseases. In current report we consider the applicability of gold nano-spheres as a contrast agent to enhance quality of CLSM images of skin tissues in vitro versus the application of optical clearing agent, such as glycerol. The enhancement of CLSM image contrast was observed with an application of gold nano-spheres diffused within the skin tissues. We show that optical clearing agents such as a glycerol provide better CLSM image contrast than gold nano-spheres.

  11. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    NASA Astrophysics Data System (ADS)

    Allec, N.; Abbaszadeh, S.; Karim, K. S.

    2011-09-01

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml-1 in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  12. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors.

    PubMed

    Allec, N; Abbaszadeh, S; Karim, K S

    2011-09-21

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml(-1) in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  13. The Use of Confocal Photoluminescence Microscopy for Determination of Defect Densities in Various 2-6 Semiconductors

    DTIC Science & Technology

    2014-03-11

    optical configuration that significantly enhances both lateral and depth resolution and returns crisp PL images 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...that significantly enhances both lateral and depth resolution and returns crisp PL images with high contrast. This technique revolutionized fluorescent...resolution and returns crisp PL images with high contrast. This technique revolutionized fluorescent imaging in biology, and has the potential to

  14. Weight-adapted iodinated contrast media administration in abdomino-pelvic CT: Can image quality be maintained?

    PubMed

    Perrin, E; Jackson, M; Grant, R; Lloyd, C; Chinaka, F; Goh, V

    2018-02-01

    In many centres, a fixed method of contrast-media administration is used for CT regardless of patient body habitus. The aim of this trial was to assess contrast enhancement of the aorta, portal vein, liver and spleen during abdomino-pelvic CT imaging using a weight-adapted contrast media protocol compared to the current fixed dose method. Thirty-nine oncology patients, who had previously undergone CT abdomino-pelvic imaging at the institution using a fixed contrast media dose, were prospectively imaged using a weight-adapted contrast media dose (1.4 ml/kg). The two sets of images were assessed for contrast enhancement levels (HU) at locations in the liver, aorta, portal vein and spleen during portal-venous enhancement phase. The t-test was used to compare the difference in results using a non-inferiority margin of 10 HU. When the contrast dose was tailored to patient weight, contrast enhancement levels were shown to be non-inferior to the fixed dose method (liver p < 0.001; portal vein p = 0.003; aorta p = 0.001; spleen p = 0.001). As a group, patients received a total contrast dose reduction of 165 ml using the weight-adapted method compared to the fixed dose method, with a mean cost per patient of £6.81 and £7.19 respectively. Using a weight-adapted method of contrast media administration was shown to be non-inferior to a fixed dose method of contrast media administration. Patients weighing 76 kg, or less, received a lower contrast dose which may have associated cost savings. A weight-adapted contrast media protocol should be implemented for portal-venous phase abdomino-pelvic CT for oncology patients with adequate renal function (>70 ml/min/1.73 m 2 ). Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  15. In vitro near-infrared imaging of occlusal dental caries using a germanium-enhanced CMOS camera

    NASA Astrophysics Data System (ADS)

    Lee, Chulsung; Darling, Cynthia L.; Fried, Daniel

    2010-02-01

    The high transparency of dental enamel in the near-infrared (NIR) at 1310-nm can be exploited for imaging dental caries without the use of ionizing radiation. The objective of this study was to determine whether the lesion contrast derived from NIR transillumination can be used to estimate lesion severity. Another aim was to compare the performance of a new Ge enhanced complementary metal-oxide-semiconductor (CMOS) based NIR imaging camera with the InGaAs focal plane array (FPA). Extracted human teeth (n=52) with natural occlusal caries were imaged with both cameras at 1310-nm and the image contrast between sound and carious regions was calculated. After NIR imaging, teeth were sectioned and examined using more established methods, namely polarized light microscopy (PLM) and transverse microradiography (TMR) to calculate lesion severity. Lesions were then classified into 4 categories according to the lesion severity. Lesion contrast increased significantly with lesion severity for both cameras (p<0.05). The Ge enhanced CMOS camera equipped with the larger array and smaller pixels yielded higher contrast values compared with the smaller InGaAs FPA (p<0.01). Results demonstrate that NIR lesion contrast can be used to estimate lesion severity.

  16. In vitro near-infrared imaging of occlusal dental caries using germanium enhanced CMOS camera.

    PubMed

    Lee, Chulsung; Darling, Cynthia L; Fried, Daniel

    2010-03-01

    The high transparency of dental enamel in the near-infrared (NIR) at 1310-nm can be exploited for imaging dental caries without the use of ionizing radiation. The objective of this study was to determine whether the lesion contrast derived from NIR transillumination can be used to estimate lesion severity. Another aim was to compare the performance of a new Ge enhanced complementary metal-oxide-semiconductor (CMOS) based NIR imaging camera with the InGaAs focal plane array (FPA). Extracted human teeth (n=52) with natural occlusal caries were imaged with both cameras at 1310-nm and the image contrast between sound and carious regions was calculated. After NIR imaging, teeth were sectioned and examined using more established methods, namely polarized light microscopy (PLM) and transverse microradiography (TMR) to calculate lesion severity. Lesions were then classified into 4 categories according to the lesion severity. Lesion contrast increased significantly with lesion severity for both cameras (p<0.05). The Ge enhanced CMOS camera equipped with the larger array and smaller pixels yielded higher contrast values compared with the smaller InGaAs FPA (p<0.01). Results demonstrate that NIR lesion contrast can be used to estimate lesion severity.

  17. 2D and 3D registration methods for dual-energy contrast-enhanced digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Lau, Kristen C.; Roth, Susan; Maidment, Andrew D. A.

    2014-03-01

    Contrast-enhanced digital breast tomosynthesis (CE-DBT) uses an iodinated contrast agent to image the threedimensional breast vasculature. The University of Pennsylvania is conducting a CE-DBT clinical study in patients with known breast cancers. The breast is compressed continuously and imaged at four time points (1 pre-contrast; 3 postcontrast). A hybrid subtraction scheme is proposed. First, dual-energy (DE) images are obtained by a weighted logarithmic subtraction of the high-energy and low-energy image pairs. Then, post-contrast DE images are subtracted from the pre-contrast DE image. This hybrid temporal subtraction of DE images is performed to analyze iodine uptake, but suffers from motion artifacts. Employing image registration further helps to correct for motion, enhancing the evaluation of vascular kinetics. Registration using ANTS (Advanced Normalization Tools) is performed in an iterative manner. Mutual information optimization first corrects large-scale motions. Normalized cross-correlation optimization then iteratively corrects fine-scale misalignment. Two methods have been evaluated: a 2D method using a slice-by-slice approach, and a 3D method using a volumetric approach to account for out-of-plane breast motion. Our results demonstrate that iterative registration qualitatively improves with each iteration (five iterations total). Motion artifacts near the edge of the breast are corrected effectively and structures within the breast (e.g. blood vessels, surgical clip) are better visualized. Statistical and clinical evaluations of registration accuracy in the CE-DBT images are ongoing.

  18. Evaluation of treatment response after chemoembolisation (TACE) in hepatocellular carcinoma using real time image fusion of contrast-enhanced ultrasound (CEUS) and computed tomography (CT)--preliminary results.

    PubMed

    Wobser, Hella; Wiest, Reiner; Salzberger, Bernd; Wohlgemuth, Walter Alexander; Stroszczynski, Christian; Jung, Ernst-Michael

    2014-01-01

    To evaluate treatment response of hepatocellular carcinoma (HCC) after transarterial chemoembolization (TACE) with a new real-time imaging fusion technique of contrast-enhanced ultrasound (CEUS) with multi-slice detection computed tomography (CT) in comparison to conventional post-interventional follow-up. 40 patients with HCC (26 male, ages 46-81 years) were evaluated 24 hours after TACE using CEUS with ultrasound volume navigation and image fusion with CT compared to non-enhanced CT and follow-up contrast-enhanced CT after 6-8 weeks. Reduction of tumor vascularization to less than 25% was regarded as "successful" treatment, whereas reduction to levels >25% was considered as "partial" treatment response. Homogenous lipiodol retention was regarded as successful treatment in non-enhanced CT. Post-interventional image fusion of CEUS with CT was feasible in all 40 patients. In 24 patients (24/40), post-interventional image fusion with CEUS revealed residual tumor vascularity, that was confirmed by contrast-enhanced CT 6-8 weeks later in 24/24 patients. In 16 patients (16/40), post-interventional image fusion with CEUS demonstrated successful treatment, but follow-up CT detected residual viable tumor (6/16). Non-enhanced CT did not identify any case of treatment failure. Image fusion with CEUS assessed treatment efficacy with a specificity of 100%, sensitivity of 80% and a positive predictive value of 1 (negative predictive value 0.63). Image fusion of CEUS with CT allows a reliable, highly specific post-interventional evaluation of embolization response with good sensitivity without any further radiation exposure. It can detect residual viable tumor at early state, resulting in a close patient monitoring or re-therapy.

  19. Optimal MRI sequence for identifying occlusion location in acute stroke: which value of time-resolved contrast-enhanced MRA?

    PubMed

    Le Bras, A; Raoult, H; Ferré, J-C; Ronzière, T; Gauvrit, J-Y

    2015-06-01

    Identifying occlusion location is crucial for determining the optimal therapeutic strategy during the acute phase of ischemic stroke. The purpose of this study was to assess the diagnostic efficacy of MR imaging, including conventional sequences plus time-resolved contrast-enhanced MRA in comparison with DSA for identifying arterial occlusion location. Thirty-two patients with 34 occlusion levels referred for thrombectomy during acute cerebral stroke events were consecutively included from August 2010 to December 2012. Before thrombectomy, we performed 3T MR imaging, including conventional 3D-TOF and gradient-echo T2 sequences, along with time-resolved contrast-enhanced MRA of the extra- and intracranial arteries. The 3D-TOF, gradient-echo T2, and time-resolved contrast-enhanced MRA results were consensually assessed by 2 neuroradiologists and compared with prethrombectomy DSA results in terms of occlusion location. The Wilcoxon test was used for statistical analysis to compare MR imaging sequences with DSA, and the κ coefficient was used to determine intermodality agreement. The occlusion level on the 3D-TOF and gradient-echo T2 images differed significantly from that of DSA (P < .001 and P = .002, respectively), while no significant difference was observed between DSA and time-resolved contrast-enhanced MRA (P = .125). κ coefficients for intermodality agreement with DSA (95% CI, percentage agreement) were 0.43 (0.3%-0.6; 62%), 0.32 (0.2%-0.5; 56%), and 0.81 (0.6%-1.0; 88%) for 3D-TOF, gradient-echo T2, and time-resolved contrast-enhanced MRA, respectively. The time-resolved contrast-enhanced MRA sequence proved reliable for identifying occlusion location in acute stroke with performance superior to that of 3D-TOF and gradient-echo T2 sequences. © 2015 by American Journal of Neuroradiology.

  20. Multiphase contrast medium injection for optimization of computed tomographic coronary angiography.

    PubMed

    Budoff, Matthew Jay; Shinbane, Jerold S; Child, Janis; Carson, Sivi; Chau, Alex; Liu, Stephen H; Mao, SongShou

    2006-02-01

    Electron beam angiography is a minimally invasive imaging technique. Adequate vascular opacification throughout the study remains a critical issue for image quality. We hypothesized that vascular image opacification and uniformity of vascular enhancement between slices can be improved using multiphase contrast medium injection protocols. We enrolled 244 consecutive patients who were randomized to three different injection protocols: single-phase contrast medium injection (Group 1), dual-phase contrast medium injection with each phase at a different injection rate (Group 2), and a three-phase injection with two phases of contrast medium injection followed by a saline injection phase (Group 3). Parameters measured were aortic opacification based on Hounsfield units and uniformity of aortic enhancement at predetermined slices (locations from top [level 1] to base [level 60]). In Group 1, contrast opacification differed across seven predetermined locations (scan levels: 1st versus 60th, P < .05), demonstrating significant nonuniformity. In Group 2, there was more uniform vascular enhancement, with no significant differences between the first 50 slices (P > .05). In Group 3, there was greater uniformity of vascular enhancement and higher mean Hounsfield units value across all 60 images, from the aortic root to the base of the heart (P < .05). The three-phase injection protocol improved vascular opacification at the base of the heart, as well as uniformity of arterial enhancement throughout the study.

  1. Micro-CT Based Experimental Liver Imaging Using a Nanoparticulate Contrast Agent: A Longitudinal Study in Mice

    PubMed Central

    Boll, Hanne; Nittka, Stefanie; Doyon, Fabian; Neumaier, Michael; Marx, Alexander; Kramer, Martin; Groden, Christoph; Brockmann, Marc A.

    2011-01-01

    Background Micro-CT imaging of liver disease in mice relies on high soft tissue contrast to detect small lesions like liver metastases. Purpose of this study was to characterize the localization and time course of contrast enhancement of a nanoparticular alkaline earth metal-based contrast agent (VISCOVER ExiTron nano) developed for small animal liver CT imaging. Methodology ExiTron nano 6000 and ExiTron nano 12000, formulated for liver/spleen imaging and angiography, respectively, were intravenously injected in C57BL/6J-mice. The distribution and time course of contrast enhancement were analysed by repeated micro-CT up to 6 months. Finally, mice developing liver metastases after intrasplenic injection of colon carcinoma cells underwent longitudinal micro-CT imaging after a single injection of ExiTron nano. Principal Findings After a single injection of ExiTron nano the contrast of liver and spleen peaked after 4–8 hours, lasted up to several months and was tolerated well by all mice. In addition, strong contrast enhancement of abdominal and mediastinal lymph nodes and the adrenal glands was observed. Within the first two hours after injection, particularly ExiTron nano 12000 provided pronounced contrast for imaging of vascular structures. ExiTron nano facilitated detection of liver metastases and provided sufficient contrast for longitudinal observation of tumor development over weeks. Conclusions The nanoparticulate contrast agents ExiTron nano 6000 and 12000 provide strong contrast of the liver, spleen, lymph nodes and adrenal glands up to weeks, hereby allowing longitudinal monitoring of pathological processes of these organs in small animals, with ExiTron nano 12000 being particularly optimized for angiography due to its very high initial vessel contrast. PMID:21984939

  2. Regularized Reconstruction of Dynamic Contrast-Enhanced MR Images for Evaluation of Breast Lesions

    DTIC Science & Technology

    2010-09-01

    resonance imaging . We focus specifically on dynamic contrast-enhanced (DCE) imaging of breast cancer patients. The fundamental challenge in dynamic MRI is...Venkatesan, Magnetic resonance imaging : Physical principles and sequence design, Wiley, New York, 1999. 14 [7] P. S. Tofts and A. G. Kermode, “Measurement...10, no. 3, pp. 223–32, Sept. 1999. [12] D. C. Noll, D. G. Nishimura, and A. Macovski, “Homodyne detection in magnetic resonance imaging ,” IEEE Trans

  3. Contrast-Enhanced Magnetic Resonance Imaging of Gastric Emptying and Motility in Rats.

    PubMed

    Lu, Kun-Han; Cao, Jiayue; Oleson, Steven Thomas; Powley, Terry L; Liu, Zhongming

    2017-11-01

    The assessment of gastric emptying and motility in humans and animals typically requires radioactive imaging or invasive measurements. Here, we developed a robust strategy to image and characterize gastric emptying and motility in rats based on contrast-enhanced magnetic resonance imaging (MRI) and computer-assisted image processing. The animals were trained to naturally consume a gadolinium-labeled dietgel while bypassing any need for oral gavage. Following this test meal, the animals were scanned under low-dose anesthesia for high-resolution T1-weighted MRI in 7 Tesla, visualizing the time-varying distribution of the meal with greatly enhanced contrast against non-gastrointestinal (GI) tissues. Such contrast-enhanced images not only depicted the gastric anatomy, but also captured and quantified stomach emptying, intestinal filling, antral contraction, and intestinal absorption with fully automated image processing. Over four postingestion hours, the stomach emptied by 27%, largely attributed to the emptying of the forestomach rather than the corpus and the antrum, and most notable during the first 30 min. Stomach emptying was accompanied by intestinal filling for the first 2 h, whereas afterward intestinal absorption was observable as cumulative contrast enhancement in the renal medulla. The antral contraction was captured as a peristaltic wave propagating from the proximal to distal antrum. The frequency, velocity, and amplitude of the antral contraction were on average 6.34 ± 0.07 contractions per minute, 0.67 ± 0.01 mm/s, and 30.58 ± 1.03%, respectively. These results demonstrate an optimized MRI-based strategy to assess gastric emptying and motility in healthy rats, paving the way for using this technique to understand GI diseases, or test new therapeutics in rat models.The assessment of gastric emptying and motility in humans and animals typically requires radioactive imaging or invasive measurements. Here, we developed a robust strategy to image and characterize gastric emptying and motility in rats based on contrast-enhanced magnetic resonance imaging (MRI) and computer-assisted image processing. The animals were trained to naturally consume a gadolinium-labeled dietgel while bypassing any need for oral gavage. Following this test meal, the animals were scanned under low-dose anesthesia for high-resolution T1-weighted MRI in 7 Tesla, visualizing the time-varying distribution of the meal with greatly enhanced contrast against non-gastrointestinal (GI) tissues. Such contrast-enhanced images not only depicted the gastric anatomy, but also captured and quantified stomach emptying, intestinal filling, antral contraction, and intestinal absorption with fully automated image processing. Over four postingestion hours, the stomach emptied by 27%, largely attributed to the emptying of the forestomach rather than the corpus and the antrum, and most notable during the first 30 min. Stomach emptying was accompanied by intestinal filling for the first 2 h, whereas afterward intestinal absorption was observable as cumulative contrast enhancement in the renal medulla. The antral contraction was captured as a peristaltic wave propagating from the proximal to distal antrum. The frequency, velocity, and amplitude of the antral contraction were on average 6.34 ± 0.07 contractions per minute, 0.67 ± 0.01 mm/s, and 30.58 ± 1.03%, respectively. These results demonstrate an optimized MRI-based strategy to assess gastric emptying and motility in healthy rats, paving the way for using this technique to understand GI diseases, or test new therapeutics in rat models.

  4. Diffraction analysis of customized illumination technique

    NASA Astrophysics Data System (ADS)

    Lim, Chang-Moon; Kim, Seo-Min; Eom, Tae-Seung; Moon, Seung Chan; Shin, Ki S.

    2004-05-01

    Various enhancement techniques such as alternating PSM, chrome-less phase lithography, double exposure, etc. have been considered as driving forces to lead the production k1 factor towards below 0.35. Among them, a layer specific optimization of illumination mode, so-called customized illumination technique receives deep attentions from lithographers recently. A new approach for illumination customization based on diffraction spectrum analysis is suggested in this paper. Illumination pupil is divided into various diffraction domains by comparing the similarity of the confined diffraction spectrum. Singular imaging property of individual diffraction domain makes it easier to build and understand the customized illumination shape. By comparing the goodness of image in each domain, it was possible to achieve the customized shape of illumination. With the help from this technique, it was found that the layout change would not gives the change in the shape of customized illumination mode.

  5. High-resolution light microscopy of nanoforms

    NASA Astrophysics Data System (ADS)

    Vodyanoy, Vitaly; Pustovyy, Oleg; Vainrub, Arnold

    2007-09-01

    We developed a high resolution light imaging system. Diffraction gratings with 100 nm width lines as well as less than 100 nm size features of different-shaped objects are clearly visible on a calibrated microscope test slide (Vainrub et al., Optics Letters, 2006, 31, 2855). The two-point resolution increase results from a known narrowing of the central diffraction peak for the annular aperture. Better visibility and advanced contrast of the smallest features in the image are due to enhancement of high spatial frequencies in the optical transfer function. The imaging system is portable, low energy, and battery operated. It has been adapted to use in both transmitting and reflecting light. It is particularly applicable for motile nanoform systems where structure and functions can be depicted in real time. We have isolated micrometer and submicrometer particles, termed proteons, from human and animal blood. Proteons form by reversible seeded aggregation of proteins around proteon nucleating centers (PNCs). PNCs are comprised of 1-2nm metallic nanoclusters containing 40-300 atoms. Proteons are capable of spontaneous assembling into higher nanoform systems assuming structure of complicated topology. The arrangement of complex proteon system mimics the structure of a small biological cell. It has structures that imitate membrane and nucleolus or nuclei. Some of these nanoforms are motile. They interact and divide. Complex nanoform systems can spontaneously reduce to simple proteons. The physical properties of these nanoforms could shed some light on the properties of early life forms or forms at extreme conditions.

  6. Garnet film rotator applied in polarizing microscope for domain image modulation (abstract)

    NASA Astrophysics Data System (ADS)

    Wakabayashi, K.; Numata, T.; Inokuchi, S.

    1991-04-01

    A garnet film polarization rotator placed before the analyzer in a polarizing microscope was investigated to obtain the difference image of a positive and a negative one of magnetic domain in real time along with an image processor. In the difference image, a nonmagnetic image can be reduced and hence the weak magnetic contrast enhanced. Theoretical calculation of S/N and contrast C of the domain image as a function of the rotation shows they take maxima at the rotation angle of 2.6° and 0.1°, respectively, with the extinction ratio of e=4×10-6 of a polarizing microscope. Thus, since the thickness of the garnet film required is 1 μm or so, the absorption by the garnet rotator does not bring a serious problem even in a visible region for the domain observation. The optimum rotation of the rotator for a high quality observation was obtained by a quantitative study of images obtained experimentally as well as by a visual evaluation. A magnetically unsaturated garnet film with perpendicular magnetization (i.e., multidomain) was employed as a rotator, in which the polarization rotation angle θm of the undeflected beam with respect to the light diffraction could be continuously varied by an applied magnetic field. The dependences of S/N and C on θm were measured, resulting in a well agreement between the measured and the calculated. The visually best image was obtained at θm=0.5° which made the product of S/N and C maximum. The domain image of the Kerr rotation angle of θk=0.22° was observed in S/N=47 dB and C=0.4 when Ar+ laser (λ=515 nm) of tenths of a watt was employed as a light source. Since the domain image with 47 dB S/N does not need an image summation for a noise reduction, a garnet film rotator makes it possible to invert the contrast of a domain image in a real time for an improved domain observation.

  7. Threefold rotational symmetry in hexagonally shaped core-shell (In,Ga)As/GaAs nanowires revealed by coherent X-ray diffraction imaging.

    PubMed

    Davtyan, Arman; Krause, Thilo; Kriegner, Dominik; Al-Hassan, Ali; Bahrami, Danial; Mostafavi Kashani, Seyed Mohammad; Lewis, Ryan B; Küpers, Hanno; Tahraoui, Abbes; Geelhaar, Lutz; Hanke, Michael; Leake, Steven John; Loffeld, Otmar; Pietsch, Ullrich

    2017-06-01

    Coherent X-ray diffraction imaging at symmetric hhh Bragg reflections was used to resolve the structure of GaAs/In 0.15 Ga 0.85 As/GaAs core-shell-shell nanowires grown on a silicon (111) substrate. Diffraction amplitudes in the vicinity of GaAs 111 and GaAs 333 reflections were used to reconstruct the lost phase information. It is demonstrated that the structure of the core-shell-shell nanowire can be identified by means of phase contrast. Interestingly, it is found that both scattered intensity in the (111) plane and the reconstructed scattering phase show an additional threefold symmetry superimposed with the shape function of the investigated hexagonal nanowires. In order to find the origin of this threefold symmetry, elasticity calculations were performed using the finite element method and subsequent kinematic diffraction simulations. These suggest that a non-hexagonal (In,Ga)As shell covering the hexagonal GaAs core might be responsible for the observation.

  8. X-ray computed tomography imaging of a tumor with high sensitivity using gold nanoparticles conjugated to a cancer-specific antibody via polyethylene glycol chains on their surface

    NASA Astrophysics Data System (ADS)

    Nakagawa, Tomohiko; Gonda, Kohsuke; Kamei, Takashi; Cong, Liman; Hamada, Yoh; Kitamura, Narufumi; Tada, Hiroshi; Ishida, Takanori; Aimiya, Takuji; Furusawa, Naoko; Nakano, Yasushi; Ohuchi, Noriaki

    2016-01-01

    Contrast agents are often used to enhance the contrast of X-ray computed tomography (CT) imaging of tumors to improve diagnostic accuracy. However, because the iodine-based contrast agents currently used in hospitals are of low molecular weight, the agent is rapidly excreted from the kidney or moves to extravascular tissues through the capillary vessels, depending on its concentration gradient. This leads to nonspecific enhancement of contrast images for tissues. Here, we created gold (Au) nanoparticles as a new contrast agent to specifically image tumors with CT using an enhanced permeability and retention (EPR) effect. Au has a higher X-ray absorption coefficient than does iodine. Au nanoparticles were supported with polyethylene glycol (PEG) chains on their surface to increase the blood retention and were conjugated with a cancer-specific antibody via terminal PEG chains. The developed Au nanoparticles were injected into tumor-bearing mice, and the distribution of Au was examined with CT imaging, transmission electron microscopy, and elemental analysis using inductively coupled plasma optical emission spectrometry. The results show that specific localization of the developed Au nanoparticles in the tumor is affected by a slight difference in particle size and enhanced by the conjugation of a specific antibody against the tumor.

  9. Design and validation of a mathematical breast phantom for contrast-enhanced digital mammography

    NASA Astrophysics Data System (ADS)

    Hill, Melissa L.; Mainprize, James G.; Jong, Roberta A.; Yaffe, Martin J.

    2011-03-01

    In contrast-enhanced digital mammography (CEDM) an iodinated contrast agent is employed to increase lesion contrast and to provide tissue functional information. Here, we present the details of a software phantom that can be used as a tool for the simulation of CEDM images, and compare the degree of anatomic noise present in images simulated using the phantom to that associated with breast parenchyma in clinical CEDM images. Such a phantom could be useful for multiparametric investigations including characterization of CEDM imaging performance and system optimization. The phantom has a realistic mammographic appearance based on a clustered lumpy background and models contrast agent uptake according to breast tissue physiology. Fifty unique phantoms were generated and used to simulate regions of interest (ROI) of pre-contrast images and logarithmically subtracted CEDM images using monoenergetic ray tracing. Power law exponents, β, were used as a measure of anatomic noise and were determined using a linear least-squares fit to log-log plots of the square of the modulus of radially averaged image power spectra versus spatial frequency. The power spectra for ROI selected from regions of normal parenchyma in 10 pairs of clinical CEDM pre-contrast and subtracted images were also measured for comparison with the simulated images. There was good agreement between the measured β in the simulated CEDM images and the clinical images. The values of β were consistently lower for the logarithmically subtracted CEDM images compared to the pre-contrast images, indicating that the subtraction process reduced anatomical noise.

  10. Research on respiratory motion correction method based on liver contrast-enhanced ultrasound images of single mode

    NASA Astrophysics Data System (ADS)

    Zhang, Ji; Li, Tao; Zheng, Shiqiang; Li, Yiyong

    2015-03-01

    To reduce the effects of respiratory motion in the quantitative analysis based on liver contrast-enhanced ultrasound (CEUS) image sequencesof single mode. The image gating method and the iterative registration method using model image were adopted to register liver contrast-enhanced ultrasound image sequences of single mode. The feasibility of the proposed respiratory motion correction method was explored preliminarily using 10 hepatocellular carcinomas CEUS cases. The positions of the lesions in the time series of 2D ultrasound images after correction were visually evaluated. Before and after correction, the quality of the weighted sum of transit time (WSTT) parametric images were also compared, in terms of the accuracy and spatial resolution. For the corrected and uncorrected sequences, their mean deviation values (mDVs) of time-intensity curve (TIC) fitting derived from CEUS sequences were measured. After the correction, the positions of the lesions in the time series of 2D ultrasound images were almost invariant. In contrast, the lesions in the uncorrected images all shifted noticeably. The quality of the WSTT parametric maps derived from liver CEUS image sequences were improved more greatly. Moreover, the mDVs of TIC fitting derived from CEUS sequences after the correction decreased by an average of 48.48+/-42.15. The proposed correction method could improve the accuracy of quantitative analysis based on liver CEUS image sequences of single mode, which would help in enhancing the differential diagnosis efficiency of liver tumors.

  11. Anti-EpCAM scFv gadolinium chelate: a novel targeted MRI contrast agent for imaging of colorectal cancer.

    PubMed

    Khantasup, Kannika; Saiviroonporn, Pairash; Jarussophon, Suwatchai; Chantima, Warangkana; Dharakul, Tararaj

    2018-05-08

    The development of targeted contrast agents for magnetic resonance imaging (MRI) facilitates enhanced cancer imaging and more accurate diagnosis. In the present study, a novel contrast agent was developed by conjugating anti-EpCAM humanized scFv with gadolinium chelate to achieve target specificity. The material design strategy involved site-specific conjugation of the chelating agent to scFv. The scFv monomer was linked to maleimide-DTPA via unpaired cysteine at the scFv C-terminus, followed by chelation with gadolinium (Gd). Successful scFv-DTPA conjugation was achieved at 1:10 molar ratio of scFv to maleimide-DTPA at pH 6.5. The developed anti-EpCAM-Gd-DTPA MRI contrast agent was evaluated for cell targeting ability, in vitro serum stability, cell cytotoxicity, relaxivity, and MR contrast enhancement. A high level of targeting efficacy of anti-EpCAM-Gd-DTPA to an EpCAM-overexpressing HT29 colorectal cell was demonstrated by confocal microscopy. Good stability of the contrast agent was obtained and no cytotoxicity was observed in HT29 cells after 48 h incubation with 25-100 µM of Gd. Favorable imaging was obtained using anti-EpCAM-Gd-DTPA, including 1.8-fold enhanced relaxivity compared with Gd-DTPA, and MR contrast enhancement observed after binding to HT29. The potential benefit of this contrast agent for in vivo MR imaging of colorectal cancer, as well as other EpCAM positive cancers, is suggested and warrants further investigation.

  12. Magnetic resonance imaging of blood-brain barrier permeability in ischemic stroke using diffusion-weighted arterial spin labeling in rats.

    PubMed

    Tiwari, Yash V; Lu, Jianfei; Shen, Qiang; Cerqueira, Bianca; Duong, Timothy Q

    2017-08-01

    Diffusion-weighted arterial spin labeling magnetic resonance imaging has recently been proposed to quantify the rate of water exchange (K w ) across the blood-brain barrier in humans. This study aimed to evaluate the blood-brain barrier disruption in transient (60 min) ischemic stroke using K w magnetic resonance imaging with cross-validation by dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology in the same rats. The major findings were: (i) at 90 min after stroke (30 min after reperfusion), group K w magnetic resonance imaging data showed no significant blood-brain barrier permeability changes, although a few animals showed slightly abnormal K w . Dynamic contrast-enhanced magnetic resonance imaging confirmed this finding in the same animals. (ii) At two days after stroke, K w magnetic resonance imaging revealed significant blood-brain barrier disruption. Regions with abnormal K w showed substantial overlap with regions of hyperintense T 2 (vasogenic edema) and hyperperfusion. Dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology confirmed these findings in the same animals. The K w values in the normal contralesional hemisphere and the ipsilesional ischemic core two days after stroke were: 363 ± 17 and 261 ± 18 min -1 , respectively (P < 0.05, n = 9). K w magnetic resonance imaging is sensitive to blood-brain barrier permeability changes in stroke, consistent with dynamic contrast-enhanced magnetic resonance imaging and Evans blue extravasation. K w magnetic resonance imaging offers advantages over existing techniques because contrast agent is not needed and repeated measurements can be made for longitudinal monitoring or averaging.

  13. The Usefulness of MR Imaging of the Temporal Bone in the Evaluation of Patients with Facial and Audiovestibular Dysfunction

    PubMed Central

    Park, Sang Uk; Cho, Young Kuk; Lim, Myung Kwan; Kim, Won Hong; Suh, Chang Hae; Lee, Seung Chul

    2002-01-01

    Objective To evaluate the clinical utility of MR imaging of the temporal bone in patients with facial and audiovestibular dysfunction with particular emphasis on the importance of contrast enhancement. Materials and Methods We retrospectively reviewed the MR images of 179 patients [72 men, 107 women; average age, 44 (range, 1-77) years] who presented with peripheral facial palsy (n=15), audiometrically proven sensorineural hearing loss (n=104), vertigo (n=109), or tinnitus (n=92). Positive MR imaging findings possibly responsible for the patients clinical manifestations were categorized according to the anatomic sites and presumed etiologies of the lesions. We also assessed the utility of contrast-enhanced MR imaging by analyzing its contribution to the demonstration of lesions which would otherwise not have been apparent. All MR images were interpreted by two neuroradiologists, who reached their conclusions by consensus. Results MR images demonstrated positive findings, thought to account for the presenting symptoms, in 78 (44%) of 179 patients, including 15 (100%) of 15 with peripheral facial palsy, 43 (41%) of 104 with sensorineural hearing loss, 40 (37%) of 109 with vertigo, and 39 (42%) of 92 with tinnitus. Thirty (38%) of those 78 patients had lesions that could be confidently recognized only at contrast-enhanced MR imaging. Conclusion Even though its use led to positive findings in less than half of these patients, MR imaging of the temporal bone is a useful diagnostic procedure in the evaluation of those with facial and audiovestibular dysfunction. Because it was only at contrast-enhanced MR imaging that a significant number of patients showed positive imaging findings which explained their clinical manifestations, the use of contrast material is highly recommended. PMID:11919474

  14. Optical imaging beyond the diffraction limit by SNEM: effects of AFM tip modifications with thiol monolayers on imaging quality.

    PubMed

    Cumurcu, Aysegul; Diaz, Jordi; Lindsay, Ian D; de Beer, Sissi; Duvigneau, Joost; Schön, Peter; Julius Vancso, G

    2015-03-01

    Tip-enhanced nanoscale optical imaging techniques such as apertureless scanning near-field optical microscopy (a-SNOM) and scanning near-field ellipsometric microscopy (SNEM) applications can suffer from a steady degradation in performance due to adhesion of atmospheric contaminants to the metal coated tip. Here, we demonstrate that a self-assembled monolayer (SAM) of ethanethiol (EtSH) is an effective means of protecting gold-coated atomic force microscopy (AFM) probe tips from accumulation of surface contaminants during prolonged exposure to ambient air. The period over which they yield consistent and reproducible results for scanning near-field ellipsometric microscopy (SNEM) imaging is thus extended. SNEM optical images of a microphase separated polystyrene-block-poly (methylmethacrylate) (PS-b-PMMA) diblock copolymer film, which were captured with bare and SAM-protected gold-coated AFM probes, both immediately after coating and following five days of storage in ambient air, were compared. During this period the intensity of the optical signals from the untreated gold tip fell by 66%, while those from the SAM protected tip fell by 14%. Additionally, gold coated AFM probe tips were modified with various lengths of alkanethiols to measure the change in intensity variation in the optical images with SAM layer thickness. The experimental results were compared to point dipole model calculations. While a SAM of 1-dodecanethiol (DoSH) was found to strongly suppress field enhancement we find that it can be locally removed from the tip apex by deforming the molecules under load, restoring SNEM image contrast. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Chain of evidence generation for contrast enhancement in digital image forensics

    NASA Astrophysics Data System (ADS)

    Battiato, Sebastiano; Messina, Giuseppe; Strano, Daniela

    2010-01-01

    The quality of the images obtained by digital cameras has improved a lot since digital cameras early days. Unfortunately, it is not unusual in image forensics to find wrongly exposed pictures. This is mainly due to obsolete techniques or old technologies, but also due to backlight conditions. To extrapolate some invisible details a stretching of the image contrast is obviously required. The forensics rules to produce evidences require a complete documentation of the processing steps, enabling the replication of the entire process. The automation of enhancement techniques is thus quite difficult and needs to be carefully documented. This work presents an automatic procedure to find contrast enhancement settings, allowing both image correction and automatic scripting generation. The technique is based on a preprocessing step which extracts the features of the image and selects correction parameters. The parameters are thus saved through a JavaScript code that is used in the second step of the approach to correct the image. The generated script is Adobe Photoshop compliant (which is largely used in image forensics analysis) thus permitting the replication of the enhancement steps. Experiments on a dataset of images are also reported showing the effectiveness of the proposed methodology.

  16. Widely accessible method for superresolution fluorescence imaging of living systems

    PubMed Central

    Dedecker, Peter; Mo, Gary C. H.; Dertinger, Thomas; Zhang, Jin

    2012-01-01

    Superresolution fluorescence microscopy overcomes the diffraction resolution barrier and allows the molecular intricacies of life to be revealed with greatly enhanced detail. However, many current superresolution techniques still face limitations and their implementation is typically associated with a steep learning curve. Patterned illumination-based superresolution techniques [e.g., stimulated emission depletion (STED), reversible optically-linear fluorescence transitions (RESOLFT), and saturated structured illumination microscopy (SSIM)] require specialized equipment, whereas single-molecule–based approaches [e.g., stochastic optical reconstruction microscopy (STORM), photo-activation localization microscopy (PALM), and fluorescence-PALM (F-PALM)] involve repetitive single-molecule localization, which requires its own set of expertise and is also temporally demanding. Here we present a superresolution fluorescence imaging method, photochromic stochastic optical fluctuation imaging (pcSOFI). In this method, irradiating a reversibly photoswitching fluorescent protein at an appropriate wavelength produces robust single-molecule intensity fluctuations, from which a superresolution picture can be extracted by a statistical analysis of the fluctuations in each pixel as a function of time, as previously demonstrated in SOFI. This method, which uses off-the-shelf equipment, genetically encodable labels, and simple and rapid data acquisition, is capable of providing two- to threefold-enhanced spatial resolution, significant background rejection, markedly improved contrast, and favorable temporal resolution in living cells. Furthermore, both 3D and multicolor imaging are readily achievable. Because of its ease of use and high performance, we anticipate that pcSOFI will prove an attractive approach for superresolution imaging. PMID:22711840

  17. Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI.

    PubMed

    Bauman, Grzegorz; Puderbach, Michael; Deimling, Michael; Jellus, Vladimir; Chefd'hotel, Christophe; Dinkel, Julien; Hintze, Christian; Kauczor, Hans-Ulrich; Schad, Lothar R

    2009-09-01

    Assessment of regional lung perfusion and ventilation has significant clinical value for the diagnosis and follow-up of pulmonary diseases. In this work a new method of non-contrast-enhanced functional lung MRI (not dependent on intravenous or inhalative contrast agents) is proposed. A two-dimensional (2D) true fast imaging with steady precession (TrueFISP) pulse sequence (TR/TE = 1.9 ms/0.8 ms, acquisition time [TA] = 112 ms/image) was implemented on a 1.5T whole-body MR scanner. The imaging protocol comprised sets of 198 lung images acquired with an imaging rate of 3.33 images/s in coronal and sagittal view. No electrocardiogram (ECG) or respiratory triggering was used. A nonrigid image registration algorithm was applied to compensate for respiratory motion. Rapid data acquisition allowed observing intensity changes in corresponding lung areas with respect to the cardiac and respiratory frequencies. After a Fourier analysis along the time domain, two spectral lines corresponding to both frequencies were used to calculate the perfusion- and ventilation-weighted images. The described method was applied in preliminary studies on volunteers and patients showing clinical relevance to obtain non-contrast-enhanced perfusion and ventilation data.

  18. Diffraction enhanced kinetic depth X-ray imaging

    NASA Astrophysics Data System (ADS)

    Dicken, A.

    An increasing number of fields would benefit from a single analytical probe that can characterise bulk objects that vary in morphology and/or material composition. These fields include security screening, medicine and material science. In this study the X-ray region is shown to be an effective probe for the characterisation of materials. The most prominent analytical techniques that utilise X-radiation are reviewed. The study then focuses on methods of amalgamating the three dimensional power of kinetic depth X-ray (KDFX) imaging with the materials discrimination of angular dispersive X-ray diffraction (ADXRD), thus providing KDEX with a much needed material specific counterpart. A knowledge of the sample position is essential for the correct interpretation of diffraction signatures. Two different sensor geometries (i.e. circumferential and linear) that are able to collect end interpret multiple unknown material diffraction patterns and attribute them to their respective loci within an inspection volume are investigated. The circumferential and linear detector geometries are hypothesised, simulated and then tested in an experimental setting with the later demonstrating a greater ability at discerning between mixed diffraction patterns produced by differing materials. Factors known to confound the linear diffraction method such as sample thickness and radiation energy have been explored and quantified with a possible means of mitigation being identified (i.e. via increasing the sample to detector distance). A series of diffraction patterns (following the linear diffraction approach) were obtained from a single phantom object that was simultaneously interrogated via KDEX imaging. Areas containing diffraction signatures matched from a threat library have been highlighted in the KDEX imagery via colour encoding and match index is inferred by intensity. This union is the first example of its kind and is called diffraction enhanced KDEX imagery. Finally an additional source of information obtained from object disparity is explored as an alternative means of calculating sample loci. This offers a greater level of integration between these two complimentary techniques as object disparity could be used to reinforce the results produced by the linear diffraction geometry.

  19. High-resolution contrast-enhanced optical coherence tomography in mice retinae

    NASA Astrophysics Data System (ADS)

    Sen, Debasish; SoRelle, Elliott D.; Liba, Orly; Dalal, Roopa; Paulus, Yannis M.; Kim, Tae-Wan; Moshfeghi, Darius M.; de la Zerda, Adam

    2016-06-01

    Optical coherence tomography (OCT) is a noninvasive interferometric imaging modality providing anatomical information at depths of millimeters and a resolution of micrometers. Conventional OCT images limit our knowledge to anatomical structures alone, without any contrast enhancement. Therefore, here we have, for the first time, optimized an OCT-based contrast-enhanced imaging system for imaging single cells and blood vessels in vivo inside the living mouse retina at subnanomolar sensitivity. We used bioconjugated gold nanorods (GNRs) as exogenous OCT contrast agents. Specifically, we used anti-mouse CD45 coated GNRs to label mouse leukocytes and mPEG-coated GNRs to determine sensitivity of GNR detection in vivo inside mice retinae. We corroborated OCT observations with hyperspectral dark-field microscopy of formalin-fixed histological sections. Our results show that mouse leukocytes that otherwise do not produce OCT contrast can be labeled with GNRs leading to significant OCT intensity equivalent to a 0.5 nM GNR solution. Furthermore, GNRs injected intravenously can be detected inside retinal blood vessels at a sensitivity of ˜0.5 nM, and GNR-labeled cells injected intravenously can be detected inside retinal capillaries by enhanced OCT contrast. We envision the unprecedented resolution and sensitivity of functionalized GNRs coupled with OCT to be adopted for longitudinal studies of retinal disorders.

  20. Contrast-enhanced and targeted ultrasound.

    PubMed

    Postema, Michiel; Gilja, Odd Helge

    2011-01-07

    Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested.

  1. Contrast-enhanced and targeted ultrasound

    PubMed Central

    Postema, Michiel; Gilja, Odd Helge

    2011-01-01

    Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested. PMID:21218081

  2. Gadolinium chloride as a contrast agent for imaging wood composite components by magnetic resonance

    Treesearch

    Thomas L. Eberhardt; Chi-Leung So; Andrea Protti; Po-Wah So

    2009-01-01

    Although paramagnetic contrast agents have an established track record in medical uses of magnetic resonance imaging (MRI), only recently has a contrast agent been used for enhancing MRI images of solid wood specimens. Expanding on this concept, wood veneers were treated with a gadolinium-based contrast agent and used in a model system comprising three-ply plywood...

  3. Contrast-enhanced endoscopic ultrasonography in digestive diseases.

    PubMed

    Hirooka, Yoshiki; Itoh, Akihiro; Kawashima, Hiroki; Ohno, Eizaburo; Itoh, Yuya; Nakamura, Yosuke; Hiramatsu, Takeshi; Sugimoto, Hiroyuki; Sumi, Hajime; Hayashi, Daijiro; Ohmiya, Naoki; Miyahara, Ryoji; Nakamura, Masanao; Funasaka, Kohei; Ishigami, Masatoshi; Katano, Yoshiaki; Goto, Hidemi

    2012-10-01

    Contrast-enhanced endoscopic ultrasonography (CE-EUS) was introduced in the early 1990s. The concept of the injection of carbon dioxide microbubbles into the hepatic artery as a contrast material (enhanced ultrasonography) led to "endoscopic ultrasonographic angiography". After the arrival of the first-generation contrast agent, high-frequency (12 MHz) EUS brought about the enhancement of EUS images in the diagnosis of pancreatico-biliary diseases, upper gastrointestinal (GI) cancer, and submucosal tumors. The electronic scanning endosonoscope with both radial and linear probes enabled the use of high-end ultrasound machines and depicted the enhancement of both color/power Doppler flow-based imaging and harmonic-based imaging using second-generation contrast agents. Many reports have described the usefulness of the differential diagnosis of pancreatic diseases and other abdominal lesions. Quantitative evaluation of CE-EUS images was an objective method of diagnosis using the time-intensity curve (TIC), but it was limited to the region of interest. Recently developed Inflow Time Mapping™ can be generated from stored clips and used to display the pattern of signal enhancement with time after injection, offering temporal difference of contrast agents and improved tumor characterization. On the other hand, three-dimensional CE-EUS images added new information to the literature, but lacked positional information. Three-dimensional CE-EUS with accurate positional information is awaited. To date, most reports have been related to pancreatic lesions or lymph nodes. Hemodynamic analysis might be of use for diseases in other organs: upper GI cancer diagnosis, submucosal tumors, and biliary disorders, and it might also provide functional information. Studies of CE-EUS in diseases in many other organs will increase in the near future.

  4. FDG-Avid Portal Vein Tumor Thrombosis from Hepatocellular Carcinoma in Contrast-Enhanced FDG PET/CT

    PubMed Central

    Nguyen, Xuan Canh; Nguyen, Dinh Song Huy; Ngo, Van Tan; Maurea, Simone

    2015-01-01

    Objective(s): In this study, we aimed to describe the characteristics of portal vein tumor thrombosis (PVTT), complicating hepatocellular carcinoma (HCC) in contrast-enhanced FDG PET/CT scan. Methods: In this retrospective study, 9 HCC patients with FDG-avid PVTT were diagnosed by contrast-enhanced fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT), which is a combination of dynamic liver CT scan, multiphase imaging, and whole-body PET scan. PET and CT DICOM images of patients were imported into the PET/CT imaging system for the re-analysis of contrast enhancement and FDG uptake in thrombus, the diameter of the involved portal vein, and characteristics of liver tumors and metastasis. Results: Two patients with previously untreated HCC and 7 cases with previously treated HCC had FDG-avid PVTT in contrast-enhanced FDG PET/CT scan. During the arterial phase of CT scan, portal vein thrombus showed contrast enhancement in 8 out of 9 patients (88.9%). PET scan showed an increased linear FDG uptake along the thrombosed portal vein in all patients. The mean greatest diameter of thrombosed portal veins was 1.8 ± 0.2 cm, which was significantly greater than that observed in normal portal veins (P<0.001). FDG uptake level in portal vein thrombus was significantly higher than that of blood pool in the reference normal portal vein (P=0.001). PVTT was caused by the direct extension of liver tumors. All patients had visible FDG-avid liver tumors in contrast-enhanced images. Five out of 9 patients (55.6%) had no extrahepatic metastasis, 3 cases (33.3%) had metastasis of regional lymph nodes, and 1 case (11.1%) presented with distant metastasis. The median estimated survival time of patients was 5 months. Conclusion: The intraluminal filling defect consistent with thrombous within the portal vein, expansion of the involved portal vein, contrast enhancement, and linear increased FDG uptake of the thrombus extended from liver tumor are findings of FDG-avid PVTT from HCC in contrast-enhanced FDG PET/CT. PMID:27408876

  5. Imaging-related medications: a class overview

    PubMed Central

    2007-01-01

    Imaging-related medications (contrast agents) are commonly utilized to improve visualization of radiographic, computed tomography (CT), and magnetic resonance (MR) images. While traditional medications are used specifically for their pharmacological actions, the ideal imaging agent provides enhanced contrast with little biological interaction. The radiopaque agents, barium sulfate and iodinated contrast agents, confer “contrast” to x-ray films by their physical ability to directly absorb x-rays. Gadolinium-based MR agents enhance visualization of tissues when exposed to a magnetic field. Ferrous-ferric oxide–based paramagnetic agents provide negative contrast for MR liver studies. This article provides an overview of clinically relevant information for the imaging-related medications commonly in use. It reviews the safety improvements in new generations of drugs; risk factors and precautions for the reduction of severe adverse reactions (i.e., extravasation, contrast-induced nephropathy, metformin-induced lactic acidosis, and nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis); and the significance of diligent patient screening before contrast exposure and appropriate monitoring after exposure. PMID:17948119

  6. Image contrast enhancement of Ni/YSZ anode during the slice-and-view process in FIB-SEM.

    PubMed

    Liu, Shu-Sheng; Takayama, Akiko; Matsumura, Syo; Koyama, Michihisa

    2016-03-01

    Focused ion beam-scanning electron microscopy (FIB-SEM) is a widely used and easily operational equipment for three-dimensional reconstruction with flexible analysis volume. It has been using successfully and increasingly in the field of solid oxide fuel cell. However, the phase contrast of the SEM images is indistinct in many cases, which will bring difficulties to the image processing. Herein, the phase contrast of a conventional Ni/yttria stabilized zirconia anode is tuned in an FIB-SEM with In-Lens secondary electron (SE) and backscattered electron detectors. Two accessories, tungsten probe and carbon nozzle, are inserted during the observation. The former has no influence on the contrast. When the carbon nozzle is inserted, best and distinct contrast can be obtained by In-Lens SE detector. This method is novel for contrast enhancement. Phase segmentation of the image can be automatically performed. The related mechanism for different images is discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  7. Nanoscale imaging with table-top coherent extreme ultraviolet source based on high harmonic generation

    NASA Astrophysics Data System (ADS)

    Ba Dinh, Khuong; Le, Hoang Vu; Hannaford, Peter; Van Dao, Lap

    2017-08-01

    A table-top coherent diffractive imaging experiment on a sample with biological-like characteristics using a focused narrow-bandwidth high harmonic source around 30 nm is performed. An approach involving a beam stop and a new reconstruction algorithm to enhance the quality of reconstructed the image is described.

  8. Effects of empty bins on image upscaling in capsule endoscopy

    NASA Astrophysics Data System (ADS)

    Rukundo, Olivier

    2017-07-01

    This paper presents a preliminary study of the effect of empty bins on image upscaling in capsule endoscopy. The presented study was conducted based on results of existing contrast enhancement and interpolation methods. A low contrast enhancement method based on pixels consecutiveness and modified bilinear weighting scheme has been developed to distinguish between necessary empty bins and unnecessary empty bins in the effort to minimize the number of empty bins in the input image, before further processing. Linear interpolation methods have been used for upscaling input images with stretched histograms. Upscaling error differences and similarity indices between pairs of interpolation methods have been quantified using the mean squared error and feature similarity index techniques. Simulation results demonstrated more promising effects using the developed method than other contrast enhancement methods mentioned.

  9. Rigorous diffraction analysis using geometrical theory of diffraction for future mask technology

    NASA Astrophysics Data System (ADS)

    Chua, Gek S.; Tay, Cho J.; Quan, Chenggen; Lin, Qunying

    2004-05-01

    Advanced lithographic techniques such as phase shift masks (PSM) and optical proximity correction (OPC) result in a more complex mask design and technology. In contrast to the binary masks, which have only transparent and nontransparent regions, phase shift masks also take into consideration transparent features with a different optical thickness and a modified phase of the transmitted light. PSM are well-known to show prominent diffraction effects, which cannot be described by the assumption of an infinitely thin mask (Kirchhoff approach) that is used in many commercial photolithography simulators. A correct prediction of sidelobe printability, process windows and linearity of OPC masks require the application of rigorous diffraction theory. The problem of aerial image intensity imbalance through focus with alternating Phase Shift Masks (altPSMs) is performed and compared between a time-domain finite-difference (TDFD) algorithm (TEMPEST) and Geometrical theory of diffraction (GTD). Using GTD, with the solution to the canonical problems, we obtained a relationship between the edge on the mask and the disturbance in image space. The main interest is to develop useful formulations that can be readily applied to solve rigorous diffraction for future mask technology. Analysis of rigorous diffraction effects for altPSMs using GTD approach will be discussed.

  10. Dynamic contrast-enhanced breast MRI at 7 Tesla utilizing a single-loop coil: a feasibility trial.

    PubMed

    Umutlu, Lale; Maderwald, Stefan; Kraff, Oliver; Theysohn, Jens M; Kuemmel, Sherko; Hauth, Elke A; Forsting, Michael; Antoch, Gerald; Ladd, Mark E; Quick, Harald H; Lauenstein, Thomas C

    2010-08-01

    The aim of this study was to assess the feasibility of dynamic contrast-enhanced ultra-high-field breast imaging at 7 Tesla. A total of 15 subjects, including 5 patients with histologically proven breast cancer, were examined on a 7 Tesla whole-body magnetic resonance imaging system using a unilateral linearly polarized single-loop coil. Subjects were placed in prone position on a biopsy support system, with the coil placed directly below the region of interest. The examination protocol included the following sequences: 1) T2-weighted turbo spin echo sequence; 2) six dynamic T1-weighted spoiled gradient-echo sequences; and 3) subtraction imaging. Contrast-enhanced T1-weighted imaging at 7 Tesla could be obtained at high spatial resolution with short acquisition times, providing good image accuracy and a conclusively good delineation of small anatomical and pathological structures. T2-weighted imaging could be obtained with high spatial resolution at adequate acquisition times. Because of coil limitations, four high-field magnetic resonance examinations showed decreased diagnostic value. This first scientific approach of dynamic contrast-enhanced breast magnetic resonance imaging at 7 Tesla demonstrates the complexity of ultra-high-field breast magnetic resonance imaging and countenances the implementation of further advanced bilateral coil concepts to circumvent current limitations from the coil and ultra-high-field magnetic strength. 2010 AUR. Published by Elsevier Inc. All rights reserved.

  11. Effects of Optical-density and Phase Dispersion of an Imperfect Band-limited Occulting Mask on the Broadband Performance of a TPF Coronagraph

    NASA Technical Reports Server (NTRS)

    Sidiek, Erkin; Balasubramanian, Kunjithapatham

    2007-01-01

    Practical image-plane occulting masks required by high-contrast imaging systems such as the TPF-Coronagraph introduce phase errors into the transmitting beam., or, equivalently, diffracts the residual starlight into the area of the final image plane used for detecting exo-planets. Our group at JPL has recently proposed spatially Profiled metal masks that can be designed to have zero parasitic phase at the center wavelength of the incoming broadband light with small amounts of' 00 and phase dispersions at other wavelengths. Work is currently underway to design. fabricate and characterize such image-plane masks. In order to gain some understanding on the behaviors of these new imperfect band-limited occulting masks and clarify how such masks utilizing different metals or alloys compare with each other, we carried out some modeling and simulations on the contrast performance of the high-contrast imaging testbed (HCIT) at .JPL. In this paper we describe the details of our simulations and present our results.

  12. Lower-upper-threshold correlation for underwater range-gated imaging self-adaptive enhancement.

    PubMed

    Sun, Liang; Wang, Xinwei; Liu, Xiaoquan; Ren, Pengdao; Lei, Pingshun; He, Jun; Fan, Songtao; Zhou, Yan; Liu, Yuliang

    2016-10-10

    In underwater range-gated imaging (URGI), enhancement of low-brightness and low-contrast images is critical for human observation. Traditional histogram equalizations over-enhance images, with the result of details being lost. To compress over-enhancement, a lower-upper-threshold correlation method is proposed for underwater range-gated imaging self-adaptive enhancement based on double-plateau histogram equalization. The lower threshold determines image details and compresses over-enhancement. It is correlated with the upper threshold. First, the upper threshold is updated by searching for the local maximum in real time, and then the lower threshold is calculated by the upper threshold and the number of nonzero units selected from a filtered histogram. With this method, the backgrounds of underwater images are constrained with enhanced details. Finally, the proof experiments are performed. Peak signal-to-noise-ratio, variance, contrast, and human visual properties are used to evaluate the objective quality of the global and regions of interest images. The evaluation results demonstrate that the proposed method adaptively selects the proper upper and lower thresholds under different conditions. The proposed method contributes to URGI with effective image enhancement for human eyes.

  13. Segmentation of knee MRI using structure enhanced local phase filtering

    NASA Astrophysics Data System (ADS)

    Lim, Mikhiel; Hacihaliloglu, Ilker

    2016-03-01

    The segmentation of bone surfaces from magnetic resonance imaging (MRI) data has applications in the quanti- tative measurement of knee osteoarthritis, surgery planning for patient specific total knee arthroplasty and its subsequent fabrication of artificial implants. However, due to the problems associated with MRI imaging such as low contrast between bone and surrounding tissues, noise, bias fields, and the partial volume effect, segmentation of bone surfaces continues to be a challenging operation. In this paper, a new framework is presented for the enhancement of knee MRI scans prior to segmentation in order to obtain high contrast bone images. During the first stage, a new contrast enhanced relative total variation (RTV) regularization method is used in order to remove textural noise from the bone structures and surrounding soft tissue interface. This salient bone edge information is further enhanced using a sparse gradient counting method based on L0 gradient minimization, which globally controls how many non-zero gradients are resulted in order to approximate prominent bone structures in a structure-sparsity-management manner. The last stage of the framework involves incorporation of local phase bone boundary information in order to provide an intensity invariant enhancement of contrast between the bone and surrounding soft tissue. The enhanced images are segmented using a fast random walker algorithm. Validation against expert segmentation was performed on 10 clinical knee MRI images, and achieved a mean dice similarity coefficient (DSC) of 0.975.

  14. Linear-constraint wavefront control for exoplanet coronagraphic imaging systems

    NASA Astrophysics Data System (ADS)

    Sun, He; Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Vanderbei, Robert J.; Groff, Tyler Dean

    2017-01-01

    A coronagraph is a leading technology for achieving high-contrast imaging of exoplanets in a space telescope. It uses a system of several masks to modify the diffraction and achieve extremely high contrast in the image plane around target stars. However, coronagraphic imaging systems are very sensitive to optical aberrations, so wavefront correction using deformable mirrors (DMs) is necessary to avoid contrast degradation in the image plane. Electric field conjugation (EFC) and Stroke minimization (SM) are two primary high-contrast wavefront controllers explored in the past decade. EFC minimizes the average contrast in the search areas while regularizing the strength of the control inputs. Stroke minimization calculates the minimum DM commands under the constraint that a target average contrast is achieved. Recently in the High Contrast Imaging Lab at Princeton University (HCIL), a new linear-constraint wavefront controller based on stroke minimization was developed and demonstrated using numerical simulation. Instead of only constraining the average contrast over the entire search area, the new controller constrains the electric field of each single pixel using linear programming, which could led to significant increases in speed of the wavefront correction and also create more uniform dark holes. As a follow-up of this work, another linear-constraint controller modified from EFC is demonstrated theoretically and numerically and the lab verification of the linear-constraint controllers is reported. Based on the simulation and lab results, the pros and cons of linear-constraint controllers are carefully compared with EFC and stroke minimization.

  15. A fiber-compatible spectrally encoded imaging system using a 45° tilted fiber grating

    NASA Astrophysics Data System (ADS)

    Wang, Guoqing; Wang, Chao; Yan, Zhijun; Zhang, Lin

    2016-04-01

    We propose and demonstrate, for the first time to our best knowledge, the use of a 45° tilted fiber grating (TFG) as an infiber lateral diffraction element in an efficient and fiber-compatible spectrally encoded imaging (SEI) system. Under proper polarization control, the TFG has significantly enhanced diffraction efficiency (93.5%) due to strong tilted reflection. Our conceptually new fiber-topics-based design eliminates the need for bulky and lossy free-space diffraction gratings, significantly reduces the volume and cost of the imaging system, improves energy efficiency, and increases system stability. As a proof-of-principle experiment, we use the proposed system to perform an one dimensional (1D) line scan imaging of a customer-designed three-slot sample and the results show that the constructed image matches well with the actual sample. The angular dispersion of the 45° TFG is measured to be 0.054°/nm and the lateral resolution of the SEI system is measured to be 28 μm in our experiment.

  16. Imaging model for the scintillator and its application to digital radiography image enhancement.

    PubMed

    Wang, Qian; Zhu, Yining; Li, Hongwei

    2015-12-28

    Digital Radiography (DR) images obtained by OCD-based (optical coupling detector) Micro-CT system usually suffer from low contrast. In this paper, a mathematical model is proposed to describe the image formation process in scintillator. By solving the correlative inverse problem, the quality of DR images is improved, i.e. higher contrast and spatial resolution. By analyzing the radiative transfer process of visible light in scintillator, scattering is recognized as the main factor leading to low contrast. Moreover, involved blurring effect is also concerned and described as point spread function (PSF). Based on these physical processes, the scintillator imaging model is then established. When solving the inverse problem, pre-correction to the intensity of x-rays, dark channel prior based haze removing technique, and an effective blind deblurring approach are employed. Experiments on a variety of DR images show that the proposed approach could improve the contrast of DR images dramatically as well as eliminate the blurring vision effectively. Compared with traditional contrast enhancement methods, such as CLAHE, our method could preserve the relative absorption values well.

  17. Automatic image equalization and contrast enhancement using Gaussian mixture modeling.

    PubMed

    Celik, Turgay; Tjahjadi, Tardi

    2012-01-01

    In this paper, we propose an adaptive image equalization algorithm that automatically enhances the contrast in an input image. The algorithm uses the Gaussian mixture model to model the image gray-level distribution, and the intersection points of the Gaussian components in the model are used to partition the dynamic range of the image into input gray-level intervals. The contrast equalized image is generated by transforming the pixels' gray levels in each input interval to the appropriate output gray-level interval according to the dominant Gaussian component and the cumulative distribution function of the input interval. To take account of the hypothesis that homogeneous regions in the image represent homogeneous silences (or set of Gaussian components) in the image histogram, the Gaussian components with small variances are weighted with smaller values than the Gaussian components with larger variances, and the gray-level distribution is also used to weight the components in the mapping of the input interval to the output interval. Experimental results show that the proposed algorithm produces better or comparable enhanced images than several state-of-the-art algorithms. Unlike the other algorithms, the proposed algorithm is free of parameter setting for a given dynamic range of the enhanced image and can be applied to a wide range of image types.

  18. Evaluation of low-energy contrast-enhanced spectral mammography images by comparing them to full-field digital mammography using EUREF image quality criteria.

    PubMed

    Lalji, U C; Jeukens, C R L P N; Houben, I; Nelemans, P J; van Engen, R E; van Wylick, E; Beets-Tan, R G H; Wildberger, J E; Paulis, L E; Lobbes, M B I

    2015-10-01

    Contrast-enhanced spectral mammography (CESM) examination results in a low-energy (LE) and contrast-enhanced image. The LE appears similar to a full-field digital mammogram (FFDM). Our aim was to evaluate LE CESM image quality by comparing it to FFDM using criteria defined by the European Reference Organization for Quality Assured Breast Screening and Diagnostic Services (EUREF). A total of 147 cases with both FFDM and LE images were independently scored by two experienced radiologists using these (20) EUREF criteria. Contrast detail measurements were performed using a dedicated phantom. Differences in image quality scores, average glandular dose, and contrast detail measurements between LE and FFDM were tested for statistical significance. No significant differences in image quality scores were observed between LE and FFDM images for 17 out of 20 criteria. LE scored significantly lower on one criterion regarding the sharpness of the pectoral muscle (p < 0.001), and significantly better on two criteria on the visualization of micro-calcifications (p = 0.02 and p = 0.034). Dose and contrast detail measurements did not reveal any physical explanation for these observed differences. Low-energy CESM images are non-inferior to FFDM images. From this perspective FFDM can be omitted in patients with an indication for CESM. • Low-energy CESM images are non-inferior to FFDM images. • Micro-calcifications are significantly more visible on LE CESM than on FFDM. • There is no physical explanation for this improved visibility of micro-calcifications. • There is no need for an extra FFDM when CESM is indicated.

  19. Balance Contrast Enhancement using piecewise linear stretching

    NASA Astrophysics Data System (ADS)

    Rahavan, R. V.; Govil, R. C.

    1993-04-01

    Balance Contrast Enhancement is one of the techniques employed to produce color composites with increased color contrast. It equalizes the three images used for color composition in range and mean. This results in a color composite with large variation in hue. Here, it is shown that piecewise linear stretching can be used for performing the Balance Contrast Enhancement. In comparison with the Balance Contrast Enhancement Technique using parabolic segment as transfer function (BCETP), the method presented here is algorithmically simple, constraint-free and produces comparable results.

  20. Biodegradable double-targeted PTX-mPEG-PLGA nanoparticles for ultrasound contrast enhanced imaging and antitumor therapy in vitro.

    PubMed

    Ma, Jing; Shen, Ming; Xu, Chang Song; Sun, Ying; Duan, You Rong; Du, Lian Fang

    2016-11-29

    A porous-structure nano-scale ultrasound contrast agent (UCA) was made of monomethoxypoly (ethylene glycol)-poly (lactic-co-glycolic acid) (mPEG-PLGA), and modified by double-targeted antibody: anti-carcinoembryonic antigen (CEA) and anti-carbohydrate antigen 19-9 (CA19-9), as a double-targeted nanoparticles (NPs). Anti-tumor drug paclitaxel (PTX) was encapsulated in the double-targeted nanoparticles (NPs). The morphor and release curve were characterized. We verified a certain anticancer effect of PTX-NPs through cytotoxicity experiments. The cell uptake result showed much more NPs may be facilitated to ingress the cells or tissues with ultrasound (US) or ultrasound targeted microbubble destruction (UTMD) transient sonoporation in vitro. Ultrasound contrast-enhanced images in vitro and in vivo were investigated. Compared with SonoVue, the NPs prolonged imaging time in rabbit kidneys and tumor of nude mice, which make it possible to further enhance anti-tumor effects by extending retention time in the tumor region. The novel double-targeted NPs with the function of ultrasound contrast enhanced imaging and anti-tumor therapy can be a promising way in clinic.

  1. Quantification of traumatic meningeal injury using dynamic contrast enhanced (DCE) fluid-attenuated inversion recovery (FLAIR) imaging

    NASA Astrophysics Data System (ADS)

    Castro, Marcelo A.; Williford, Joshua P.; Cota, Martin R.; MacLaren, Judy M.; Dardzinski, Bernard J.; Latour, Lawrence L.; Pham, Dzung L.; Butman, John A.

    2016-03-01

    Traumatic meningeal injury is a novel imaging marker of traumatic brain injury, which appears as enhancement of the dura on post-contrast T2-weighted FLAIR images, and is likely associated with inflammation of the meninges. Dynamic Contrast Enhanced MRI provides a better discrimination of abnormally perfused regions. A method to properly identify those regions is presented. Images of seventeen patients scanned within 96 hours of head injury with positive traumatic meningeal injury were normalized and aligned. The difference between the pre- and last post-contrast acquisitions was segmented and voxels in the higher class were spatially clustered. Spatial and morphological descriptors were used to identify the regions of enhancement: a) centroid; b) distance to the brain mask from external voxels; c) distance from internal voxels; d) size; e) shape. The method properly identified thirteen regions among all patients. The method failed in one case due to the presence of a large brain lesion that altered the mask boundaries. Most false detections were correctly rejected resulting in a sensitivity and specificity of 92.9% and 93.6%, respectively.

  2. Use of contrast media in computed tomography and magnetic resonance imaging in horses: Techniques, adverse events and opportunities.

    PubMed

    Nelson, B B; Goodrich, L R; Barrett, M F; Grinstaff, M W; Kawcak, C E

    2017-07-01

    The use of contrast media in computed tomography (CT) and magnetic resonance imaging (MRI) is increasing in horses. These contrast-enhanced imaging techniques provide improved tissue delineation and evaluation, thereby expanding diagnostic capabilities. While generally considered safe, not all contrast media exhibit the same safety profiles. The safety of contrast media use and descriptions of adverse events occurring in horses are sparsely reported. This review summarises the reported evidence of contrast media use and adverse events that occur in horses, with added contribution from other veterinary species and studies in man for comparison. This comprehensive data set empowers equine clinicians to develop use and monitoring strategies when working with contrast media. Finally, it summarises the current state-of-the-art and highlights the potential applications of contrast-enhanced CT and MRI for assessment of diseased or injured equine tissues, as well as (patho)physiological processes. © 2017 EVJ Ltd.

  3. High potential of Mn-doped ZnS nanoparticles with different dopant concentrations as novel MRI contrast agents: synthesis and in vitro relaxivity studies

    NASA Astrophysics Data System (ADS)

    Jahanbin, Tania; Gaceur, Meriem; Gros-Dagnac, Hélène; Benderbous, Soraya; Merah, Souad Ammar

    2015-06-01

    Over several decades, metal-doped quantum dots (QDs) with core-shell structure have been studied as dual probes: fluorescence and magnetic resonance imaging (MRI) probes (Dixit et al., Mater Lett 63(30):2669-2671, 2009). However, metal-doped nanoparticles, in which the majority of metal ions are close to the surface, can affect their efficacy as MRI contrast agents (CAs). In this context, herein the high potential of synthesized Mn-doped ZnS QDs via polyol method as imaging probe is demonstrated. The mean diameters of QDs were measured via transmission electron microscopy (TEM) and X-ray diffraction (XRD). Optical and magnetic properties of MnZnS nanoparticles were characterized using fluorescence spectroscopy and super quanducting interference devices magnetometer and electron paramagnetic resonance system, respectively. T1- and T2-weighted images of nanoparticles in aqueous solution were acquired from spin-echo sequences at 3 T. From TEM images and XRD spectra of the prepared nanoparticles, it is observed that the average diameter of particles does not significantly change with Mn dopant content ( 1.6-1.9 nm). All three samples exhibit broad blue emission under UV light excitation. According to the MRI studies, MnZnS nanoparticles generate strong T1 contrast enhancement (bright T1-weighted images) at the low concentration (<0.1 mM). The MnZnS nanoparticles exhibit the high longitudinal ( r 1) relaxivity that increases from 20.34 to 75.5 mM-1 s-1 with the Mn dopant contents varying between 10 and 30 %. Strong signal intensity on T1-weighted images and high r 1 with {r2 }/{r_{1 }} ≈ 1 can demonstrate the high potential of the synthesized Mn:ZnS nanoparticles, which can serve as an effective T1 CA.

  4. Whole-body MRI including diffusion-weighted MRI compared with 5-HTP PET/CT in the detection of neuroendocrine tumors

    PubMed Central

    Carlbom, Lina; Caballero-Corbalán, José; Granberg, Dan; Sörensen, Jens; Eriksson, Barbro; Ahlström, Håkan

    2017-01-01

    Aim We wanted to explore if whole-body magnetic resonance imaging (MRI) including diffusion-weighted (DW) and liver-specific contrast agent-enhanced imaging could be valuable in lesion detection of neuroendocrine tumors (NET). [11C]-5-Hydroxytryptophan positron emission tomography/computed tomography (5-HTP PET/CT) was used for comparison. Materials and methods Twenty-one patients with NET were investigated with whole-body MRI, including DW imaging (DWI) and contrast-enhanced imaging of the liver, and whole-body 5-HTP PET/CT. Seven additional patients underwent upper abdomen MRI including DWI, liver-specific contrast agent-enhanced imaging, and 5-HTP PET/CT. Results There was a patient-based concordance of 61% and a lesion-based concordance of 53% between the modalities. MRI showed good concordance with PET in detecting bone metastases but was less sensitive in detecting metastases in mediastinal lymph nodes. MRI detected more liver metastases than 5-HTP PET/CT. Conclusion Whole-body MRI with DWI did not detect all NET lesions found with whole-body 5-HTP PET/CT. Our findings indicate that MRI of the liver including liver-specific contrast agent-enhanced imaging and DWI could be a useful complement to whole-body 5-HTP PET/CT. PMID:27894208

  5. High Resolution Ultrasound Superharmonic Perfusion Imaging: In Vivo Feasibility and Quantification of Dynamic Contrast-Enhanced Acoustic Angiography.

    PubMed

    Lindsey, Brooks D; Shelton, Sarah E; Martin, K Heath; Ozgun, Kathryn A; Rojas, Juan D; Foster, F Stuart; Dayton, Paul A

    2017-04-01

    Mapping blood perfusion quantitatively allows localization of abnormal physiology and can improve understanding of disease progression. Dynamic contrast-enhanced ultrasound is a low-cost, real-time technique for imaging perfusion dynamics with microbubble contrast agents. Previously, we have demonstrated another contrast agent-specific ultrasound imaging technique, acoustic angiography, which forms static anatomical images of the superharmonic signal produced by microbubbles. In this work, we seek to determine whether acoustic angiography can be utilized for high resolution perfusion imaging in vivo by examining the effect of acquisition rate on superharmonic imaging at low flow rates and demonstrating the feasibility of dynamic contrast-enhanced superharmonic perfusion imaging for the first time. Results in the chorioallantoic membrane model indicate that frame rate and frame averaging do not affect the measured diameter of individual vessels observed, but that frame rate does influence the detection of vessels near and below the resolution limit. The highest number of resolvable vessels was observed at an intermediate frame rate of 3 Hz using a mechanically-steered prototype transducer. We also demonstrate the feasibility of quantitatively mapping perfusion rate in 2D in a mouse model with spatial resolution of ~100 μm. This type of imaging could provide non-invasive, high resolution quantification of microvascular function at penetration depths of several centimeters.

  6. Improved image reconstruction of low-resolution multichannel phase contrast angiography

    PubMed Central

    P. Krishnan, Akshara; Joy, Ajin; Paul, Joseph Suresh

    2016-01-01

    Abstract. In low-resolution phase contrast magnetic resonance angiography, the maximum intensity projected channel images will be blurred with consequent loss of vascular details. The channel images are enhanced using a stabilized deblurring filter, applied to each channel prior to combining the individual channel images. The stabilized deblurring is obtained by the addition of a nonlocal regularization term to the reverse heat equation, referred to as nonlocally stabilized reverse diffusion filter. Unlike reverse diffusion filter, which is highly unstable and blows up noise, nonlocal stabilization enhances intensity projected parallel images uniformly. Application to multichannel vessel enhancement is illustrated using both volunteer data and simulated multichannel angiograms. Robustness of the filter applied to volunteer datasets is shown using statistically validated improvement in flow quantification. Improved performance in terms of preserving vascular structures and phased array reconstruction in both simulated and real data is demonstrated using structureness measure and contrast ratio. PMID:26835501

  7. MR contrast media for myocardial viability, microvascular integrity and perfusion.

    PubMed

    Saeed, M; Wendland, M F; Watzinger, N; Akbari, H; Higgins, C B

    2000-06-01

    Cardiovascular imaging requires an appreciation of rapidly evolving MR imaging sequences as well as careful utilization of intravascular, extracellular and intracellular MR contrast media. At the present time, clinical studies are restricted to the use of extracellular MR contrast media. MR imaging has the potential to noninvasively measure multiple parameters of the cardiovascular system in a single imaging session. Recent advances in fast and ultrafast MR imaging have considerably enhanced the capability of this technique, beyond the assessment of left ventricular wall motion and morphology into visualization of the coronary arteries and measurement of blood flow. During the course of the last several years, multiple strategies for imaging viable myocardium have been developed and validated using MR contrast media. Contrast enhanced dynamic MR imaging provides information regarding microvascular integrity and perfusion. Because these information can be provided noninvasively by MR imaging, repeated measurements can be performed in longitudinal studies to monitor the progression or regression of myocardial injury. Similar studies are needed to examine the effects of newly developed cardioprotective therapeutics. Development of suitable intravascular MR contrast medium may be essential for visualization of the coronary arteries and interventional therapies. MR imaging may emerge as one-stop-shop for evaluating the heart and coronary system. This capability will make MR imaging cost-effective in the first decade of this millennium.

  8. Experimental characterization of a direct conversion amorphous selenium detector with thicker conversion layer for dual-energy contrast-enhanced breast imaging.

    PubMed

    Scaduto, David A; Tousignant, Olivier; Zhao, Wei

    2017-08-01

    Dual-energy contrast-enhanced imaging is being investigated as a tool to identify and localize angiogenesis in the breast, a possible indicator of malignant tumors. This imaging technique requires that x-ray images are acquired at energies above the k-shell binding energy of an appropriate radiocontrast agent. Iodinated contrast agents are commonly used for vascular imaging, and require x-ray energies greater than 33 keV. Conventional direct conversion amorphous selenium (a-Se) flat-panel imagers for digital mammography show suboptimal absorption efficiencies at these higher energies. We use spatial-frequency domain image quality metrics to evaluate the performance of a prototype direct conversion flat-panel imager with a thicker a-Se layer, specifically fabricated for dual-energy contrast-enhanced breast imaging. Imaging performance was evaluated in a prototype digital breast tomosynthesis (DBT) system. The spatial resolution, noise characteristics, detective quantum efficiency, and temporal performance of the detector were evaluated for dual-energy imaging for both conventional full-field digital mammography (FFDM) and DBT. The zero-frequency detective quantum efficiency of the prototype detector is improved by approximately 20% over the conventional detector for higher energy beams required for imaging with iodinated contrast agents. The effect of oblique entry of x-rays on spatial resolution does increase with increasing photoconductor thickness, specifically for the most oblique views of a DBT scan. Degradation of spatial resolution due to focal spot motion was also observed. Temporal performance was found to be comparable to conventional mammographic detectors. Increasing the a-Se thickness in direct conversion flat-panel imagers results in better performance for dual-energy contrast-enhanced breast imaging. The reduction in spatial resolution due to oblique entry of x-rays is appreciable in the most extreme clinically relevant cases, but may not profoundly affect reconstructed images due to the algorithms and filters employed. Degradation to projection domain spatial resolution is thus outweighed by the improvement in detective quantum efficiency for high-energy x-rays. © 2017 American Association of Physicists in Medicine.

  9. Simultaneous acquisition sequence for improved hepatic pharmacokinetics quantification accuracy (SAHA) for dynamic contrast-enhanced MRI of liver.

    PubMed

    Ning, Jia; Sun, Yongliang; Xie, Sheng; Zhang, Bida; Huang, Feng; Koken, Peter; Smink, Jouke; Yuan, Chun; Chen, Huijun

    2018-05-01

    To propose a simultaneous acquisition sequence for improved hepatic pharmacokinetics quantification accuracy (SAHA) method for liver dynamic contrast-enhanced MRI. The proposed SAHA simultaneously acquired high temporal-resolution 2D images for vascular input function extraction using Cartesian sampling and 3D large-coverage high spatial-resolution liver dynamic contrast-enhanced images using golden angle stack-of-stars acquisition in an interleaved way. Simulations were conducted to investigate the accuracy of SAHA in pharmacokinetic analysis. A healthy volunteer and three patients with cirrhosis or hepatocellular carcinoma were included in the study to investigate the feasibility of SAHA in vivo. Simulation studies showed that SAHA can provide closer results to the true values and lower root mean square error of estimated pharmacokinetic parameters in all of the tested scenarios. The in vivo scans of subjects provided fair image quality of both 2D images for arterial input function and portal venous input function and 3D whole liver images. The in vivo fitting results showed that the perfusion parameters of healthy liver were significantly different from those of cirrhotic liver and HCC. The proposed SAHA can provide improved accuracy in pharmacokinetic modeling and is feasible in human liver dynamic contrast-enhanced MRI, suggesting that SAHA is a potential tool for liver dynamic contrast-enhanced MRI. Magn Reson Med 79:2629-2641, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Enhanced Positive-Contrast Visualization of Paramagnetic Contrast Agents Using Phase Images

    PubMed Central

    Mills, Parker H.; Ahrens, Eric T.

    2009-01-01

    Iron oxide–based MRI contrast agents are increasingly being used to noninvasively track cells, target molecular epitopes, and monitor gene expression in vivo. Detecting regions of contrast agent accumulation can be challenging if resulting contrast is subtle relative to endogenous tissue hypointensities. A postprocessing method is presented that yields enhanced positive-contrast images from the phase map associated with T2*-weighted MRI data. As examples, the method was applied to an agarose gel phantom doped with superparamagnetic iron-oxide nanoparticles and in vivo and ex vivo mouse brains inoculated with recombinant viruses delivering transgenes that induce overexpression of paramagnetic ferritin. Overall, this approach generates images that exhibit a 1- to 8-fold improvement in contrast-to-noise ratio in regions where paramagnetic agents are present compared to conventional magnitude images. This approach can be used in conjunction with conventional T2* pulse sequences, requires no prescans or increased scan time, and can be applied retrospectively to previously acquired data. PMID:19780169

  11. Contrast Enhanced Spectral Mammography: A Review.

    PubMed

    Patel, Bhavika K; Lobbes, M B I; Lewin, John

    2018-02-01

    Contrast-enhanced spectral mammography (CESM) provides low-energy 2D mammographic images comparable to standard digital mammography and a post-contrast recombined image to assess tumor neovascularity similar to magnetic resonance imaging (MRI). The utilization of CESM in the United States is currently low but could increase rapidly given many potential indications for clinical use. This article discusses historical background and literature review of indications and diagnostic accuracy of CESM to date. CESM is a growing technique for breast cancer detection and diagnosis that has levels of sensitivity and specificity on par with contrast-enhanced breast MRI. Because of its similar performance and ease of implementation, CESM is being adopted for multiple indications previously reserved for MRI, such as problem-solving, disease extent in newly diagnosed patients, and evaluating the treatment response of neoadjuvant chemotherapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Content-aware dark image enhancement through channel division.

    PubMed

    Rivera, Adin Ramirez; Ryu, Byungyong; Chae, Oksam

    2012-09-01

    The current contrast enhancement algorithms occasionally result in artifacts, overenhancement, and unnatural effects in the processed images. These drawbacks increase for images taken under poor illumination conditions. In this paper, we propose a content-aware algorithm that enhances dark images, sharpens edges, reveals details in textured regions, and preserves the smoothness of flat regions. The algorithm produces an ad hoc transformation for each image, adapting the mapping functions to each image's characteristics to produce the maximum enhancement. We analyze the contrast of the image in the boundary and textured regions, and group the information with common characteristics. These groups model the relations within the image, from which we extract the transformation functions. The results are then adaptively mixed, by considering the human vision system characteristics, to boost the details in the image. Results show that the algorithm can automatically process a wide range of images-e.g., mixed shadow and bright areas, outdoor and indoor lighting, and face images-without introducing artifacts, which is an improvement over many existing methods.

  13. Polarization-resolved second-harmonic generation microscopy as a method to visualize protein-crystal domains

    PubMed Central

    DeWalt, Emma L.; Begue, Victoria J.; Ronau, Judith A.; Sullivan, Shane Z.; Das, Chittaranjan; Simpson, Garth J.

    2013-01-01

    Polarization-resolved second-harmonic generation (PR-SHG) microscopy is described and applied to identify the presence of multiple crystallographic domains within protein-crystal conglomerates, which was confirmed by synchrotron X-ray diffraction. Principal component analysis (PCA) of PR-SHG images resulted in principal component 2 (PC2) images with areas of contrasting negative and positive values for conglomerated crystals and PC2 images exhibiting uniformly positive or uniformly negative values for single crystals. Qualitative assessment of PC2 images allowed the identification of domains of different internal ordering within protein-crystal samples as well as differentiation between multi-domain conglomerated crystals and single crystals. PR-SHG assessments of crystalline domains were in good agreement with spatially resolved synchrotron X-ray diffraction measurements. These results have implications for improving the productive throughput of protein structure determination through early identification of multi-domain crystals. PMID:23275165

  14. Electron backscatter diffraction as a domain analysis technique in BiFeO(3)-PbTiO(3) single crystals.

    PubMed

    Burnett, T L; Comyn, T P; Merson, E; Bell, A J; Mingard, K; Hegarty, T; Cain, M

    2008-05-01

    xBiFeO(3)-(1-x)PbTiO(3) single crystals were grown via a flux method for a range of compositions. Presented here is a study of the domain configuration in the 0.5BiFeO(3)-0.5PbTiO(3) composition using electron backscatter diffraction to demonstrate the ability of the technique to map ferroelastic domain structures at the micron and submicron scale. The micron-scale domains exhibit an angle of approximately 85 degrees between each variant, indicative of a ferroelastic domain wall in a tetragonal system with a spontaneous strain, c/a - 1 of 0.10, in excellent agreement with the lattice parameters derived from x-ray diffraction. Contrast seen in forescatter images is attributed to variations in the direction of the electrical polarization vector, providing images of ferroelectric domain patterns.

  15. Imaging findings of mimickers of hepatocellular carcinoma

    PubMed Central

    Lee, Eunchae; Jang, Hyun-Jung

    2015-01-01

    Radiological imaging plays a crucial role in the diagnosis of hepatocellular carcinoma (HCC) as the noninvasive diagnosis of HCC in high-risk patients by typical imaging findings alone is widely adopted in major practice guidelines for HCC. While imaging techniques have markedly improved in detecting small liver lesions, they often detect incidental benign liver lesions and non-hepatocellular malignancy that can be misdiagnosed as HCC. The most common mimicker of HCC in cirrhotic liver is nontumorous arterioportal shunts that are seen as focal hypervascular liver lesions on dynamic contrast-enhanced cross-sectional imaging. Rapidly enhancing hemangiomas can be easily misdiagnosed as HCC especially on MR imaging with liver-specific contrast agent. Focal inflammatory liver lesions mimic HCC by demonstrating arterial-phase hypervascularity and subsequent washout on dynamic contrast-enhanced imaging. It is important to recognize the suggestive imaging findings for intrahepatic cholangiocarcinoma (CC) as the management of CC is largely different from that of HCC. There are other benign mimickers of HCC such as angiomyolipomas and focal nodular hyperplasia-like nodules. Recognition of their typical imaging findings can reduce false-positive HCC diagnosis. PMID:26770920

  16. The Past, Present, and Future of Image-Enhanced Endoscopy

    PubMed Central

    Jang, Jae-Young

    2015-01-01

    Despite the remarkable progress recently made to enhance the resolution of white-light endoscopy, detection, and diagnosis of premalignant lesions, such as adenomas and subtle early-stage cancers, remains a great challenge. As for example, although chromoendoscopy, such as endoscopy using indigo carmine, is useful for the early diagnosis of subtle lesions, the technique presents various disadvantages ranging from the time required for spray application of the dye and suctioning of excess dye to the increased difficulty in identifying lesions in the presence of severe inflammation and obstruction of visual field due to the pooling of solution in depressed-type lesions. To overcome these diagnostic problems associated with chromoendoscopy, research has focused on the development of endoscopes based on new optical technologies. Several types of image-enhanced endoscopy methods have recently been presented. In particular, image-enhanced endoscopy has emerged as a new paradigm for the diagnosis of gastrointestinal disorders. Image-enhanced endoscopes provide high-contrast images of lesions by means of optical or electronic technologies, including the contrast enhancement of the mucosal surface and of blood vessels. Chromoendoscopy, narrow-band imaging, i-SCAN, and flexible spectral imaging color enhancement are representative examples of image-enhanced endoscopy discussed in this paper. PMID:26668791

  17. Diagnostic efficacy of contrast-enhanced sonography by combined qualitative and quantitative analysis in breast lesions: a comparative study with magnetic resonance imaging.

    PubMed

    Wang, Lin; Du, Jing; Li, Feng-Hua; Fang, Hua; Hua, Jia; Wan, Cai-Feng

    2013-10-01

    The purpose of this study was to evaluate the diagnostic efficacy of contrast-enhanced sonography for differentiation of breast lesions by combined qualitative and quantitative analyses in comparison to magnetic resonance imaging (MRI). Fifty-six patients with American College of Radiology Breast Imaging Reporting and Data System category 3 to 5 breast lesions on conventional sonography were evaluated by contrast-enhanced sonography and MRI. A comparative analysis of diagnostic results between contrast-enhanced sonography and MRI was conducted in light of the pathologic findings. Pathologic analysis showed 26 benign and 30 malignant lesions. The predominant enhancement patterns of the benign lesions on contrast-enhanced sonography were homogeneous, centrifugal, and isoenhancement or hypoenhancement, whereas the patterns of the malignant lesions were mainly heterogeneous, centripetal, and hyperenhancement. The detection rates for perfusion defects and peripheral radial vessels in the malignant group were much higher than those in the benign group (P < .05). As to quantitative analysis, statistically significant differences were found in peak and time-to-peak values between the groups (P < .05). With pathologic findings as the reference standard, the sensitivity, specificity, and accuracy of contrast-enhanced sonography and MRI were 90.0%, 92.3%, 91.1% and 96.7%, 88.5%, and 92.9%, respectively. The two methods had a concordant rate of 87.5% (49 of 56), and the concordance test gave a value of κ = 0.75, indicating that there was high concordance in breast lesion assessment between the two diagnostic modalities. Contrast-enhanced sonography provided typical enhancement patterns and valuable quantitative parameters, which showed good agreement with MRI in diagnostic efficacy and may potentially improve characterization of breast lesions.

  18. Full field vertical scanning in short coherence digital holographic microscope.

    PubMed

    Monemahghdoust, Zahra; Montfort, Frederic; Cuche, Etienne; Emery, Yves; Depeursinge, Christian; Moser, Christophe

    2013-05-20

    In Digital holography Microscopes (DHM) implemented in the so-called "off axis" configuration, the object and reference wave fronts are not co-planar but form an angle of a few degrees. This results into two main drawbacks. First, the contrast of the interference is not uniform spatially when the light source has low coherence. The interference contrast is optimal along a line, but decreases when moving away from it, resulting in a lower image quality. Second, the non-coplanarity between the coherence plane of both wavefronts impacts the coherence vertical scanning measurement mode: when the optical path difference between the signal and the reference beam is changed, the region of maximum interference contrast shifts laterally in the plane of the objective. This results in more complex calculations to extract the topography of the sample and requires scanning over a much larger vertical range, leading to a longer measurement time. We have previously shown that by placing a volume diffractive optical element (VDOE) in the reference arm, the wavefront can be made coplanar with the object wavefront and the image plane of the microscope objective, resulting in a uniform and optimal interferogram. In this paper, we demonstrate a vertical scanning speed improvement by an order of magnitude. Noise in the phase and intensity images caused by scattering and non-uniform diffraction in the VDOE is analyzed quantitatively. Five VDOEs were fabricated with an identical procedure. We observe that VDOEs introduce a small intensity non-uniformity in the reference beam which results in a 20% noise increase in the extracted phase image as compared to the noise in extracted phase image when the VDOE is removed. However, the VDOE has no impact on the temporal noise measured from extracted phase images.

  19. Contrast enhanced imaging with a stationary digital breast tomosynthesis system

    NASA Astrophysics Data System (ADS)

    Puett, Connor; Calliste, Jabari; Wu, Gongting; Inscoe, Christina R.; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping

    2017-03-01

    Digital breast tomosynthesis (DBT) captures some depth information and thereby improves the conspicuity of breast lesions, compared to standard mammography. Using contrast during DBT may also help distinguish malignant from benign sites. However, adequate visualization of the low iodine signal requires a subtraction step to remove background signal and increase lesion contrast. Additionally, attention to factors that limit contrast, including scatter, noise, and artifact, are important during the image acquisition and post-acquisition processing steps. Stationary DBT (sDBT) is an emerging technology that offers a higher spatial and temporal resolution than conventional DBT. This phantom-based study explored contrast-enhanced sDBT (CE sDBT) across a range of clinically-appropriate iodine concentrations, lesion sizes, and breast thicknesses. The protocol included an effective scatter correction method and an iterative reconstruction technique that is unique to the sDBT system. The study demonstrated the ability of this CE sDBT system to collect projection images adequate for both temporal subtraction (TS) and dual-energy subtraction (DES). Additionally, the reconstruction approach preserved the improved contrast-to-noise ratio (CNR) achieved in the subtraction step. Finally, scatter correction increased the iodine signal and CNR of iodine-containing regions in projection views and reconstructed image slices during both TS and DES. These findings support the ongoing study of sDBT as a potentially useful tool for contrast-enhanced breast imaging and also highlight the significant effect that scatter has on image quality during DBT.

  20. Study of the inhibition effect of thiazone on muscle optical clearing

    NASA Astrophysics Data System (ADS)

    Jin, Xiaowei; Deng, Zhichao; Wang, Jin; Ye, Qing; Mei, Jianchun; Zhou, Wenyuan; Zhang, Chunping; Tian, Jianguo

    2016-10-01

    We investigated the effect of thiazone, a widely used penetration enhancer, on in vitro porcine skin and muscle tissue by single-integrating sphere technique during optical clearing (OC) treatment. The results showed that thiazone induced an increase on the total transmittance of skin which led to a reduction in that of muscle in the spectral range from 400 to 800 nm. Small particles crystalized out from the thiazone-treated muscle were observed by microscopy imaging. With the help of x-ray diffraction measurement, we ascertained that the crystal was a single-crystal of thiazone, which mainly induced an increase of the scattering. Contrast transmittance measurements carried on the mixture of water, thizaone-propylene glycol solution showed that the free water in muscle could be the main reason for the thiazone crystallization. Therefore, during OC treatment of thiazone, the remarkable effect on skin and the noticeable inhibition effect on subcutaneous muscle tissue after penetrating into the skin should be considered. The experimental results provide such a reference for the choice of penetration enhancer.

  1. Biological imaging by soft X-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Shapiro, David

    We have developed a microscope for soft x-ray diffraction imaging of dry or frozen hydrated biological specimens. This lensless imaging system does not suffer from the resolution or specimen thickness limitations that other short wavelength microscopes experience. The microscope, currently situated at beamline 9.0.1 of the Advanced Light Source, can collect diffraction data to 12 nm resolution with 750 eV photons and 17 nm resolution with 520 eV photons. The specimen can be rotated with a precision goniometer through an angle of 160 degrees allowing for the collection of nearly complete three-dimensional diffraction data. The microscope is fully computer controlled through a graphical user interface and a scripting language automates the collection of both two-dimensional and three-dimensional data. Diffraction data from a freeze-dried dwarf yeast cell, Saccharomyces cerevisiae carrying the CLN3-1 mutation, was collected to 12 run resolution from 8 specimen orientations spanning a total rotation of 8 degrees. The diffraction data was phased using the difference map algorithm and the reconstructions provide real space images of the cell to 30 nm resolution from each of the orientations. The agreement of the different reconstructions provides confidence in the recovered, and previously unknown, structure and indicates the three dimensionality of the cell. This work represents the first imaging of the natural complex refractive contrast from a whole unstained cell by the diffraction microscopy method and has achieved a resolution superior to lens based x-ray tomographic reconstructions of similar specimens. Studies of the effects of exposure to large radiation doses were also carried out. It was determined that the freeze-dried cell suffers from an initial collapse, which is followed by a uniform, but slow, shrinkage. This structural damage to the cell is not accompanied by a diminished ability to see small features in the specimen. Preliminary measurements on frozen-hydrated yeast indicate that the frozen specimens do not exhibit these changes even with doses as high as 5 x 109 Gray.

  2. Adaptive windowing in contrast-enhanced intravascular ultrasound imaging

    PubMed Central

    Lindsey, Brooks D.; Martin, K. Heath; Jiang, Xiaoning; Dayton, Paul A.

    2016-01-01

    Intravascular ultrasound (IVUS) is one of the most commonly-used interventional imaging techniques and has seen recent innovations which attempt to characterize the risk posed by atherosclerotic plaques. One such development is the use of microbubble contrast agents to image vasa vasorum, fine vessels which supply oxygen and nutrients to the walls of coronary arteries and typically have diameters less than 200 µm. The degree of vasa vasorum neovascularization within plaques is positively correlated with plaque vulnerability. Having recently presented a prototype dual-frequency transducer for contrast agent-specific intravascular imaging, here we describe signal processing approaches based on minimum variance (MV) beamforming and the phase coherence factor (PCF) for improving the spatial resolution and contrast-to-tissue ratio (CTR) in IVUS imaging. These approaches are examined through simulations, phantom studies, ex vivo studies in porcine arteries, and in vivo studies in chicken embryos. In phantom studies, PCF processing improved CTR by a mean of 4.2 dB, while combined MV and PCF processing improved spatial resolution by 41.7%. Improvements of 2.2 dB in CTR and 37.2% in resolution were observed in vivo. Applying these processing strategies can enhance image quality in conventional B-mode IVUS or in contrast-enhanced IVUS, where signal-to-noise ratio is relatively low and resolution is at a premium. PMID:27161022

  3. A scheme for lensless X-ray microscopy combining coherent diffraction imaging and differential corner holography.

    PubMed

    Capotondi, F; Pedersoli, E; Kiskinova, M; Martin, A V; Barthelmess, M; Chapman, H N

    2012-10-22

    We successfully use the corners of a common silicon nitride supporting window in lensless X-ray microscopy as extended references in differential holography to obtain a real space hologram of the illuminated object. Moreover, we combine this method with the iterative phasing techniques of coherent diffraction imaging to enhance the spatial resolution on the reconstructed object, and overcome the problem of missing areas in the collected data due to the presence of a beam stop, achieving a resolution close to 85 nm.

  4. The effect of Sr and Bi on the Si(100) surface oxidation - Auger electron spectroscopy, low energy electron diffraction, and X-ray photoelectron spectroscopy study

    NASA Technical Reports Server (NTRS)

    Fan, W. C.; Mesarwi, A.; Ignatiev, A.

    1990-01-01

    The effect of Sr and Bi on the oxidation of the Si(100) surface has been studied by Auger electron spectroscopy, low electron diffraction, and X-ray photoelectron spectroscopy. A dramatic enhancement, by a factor of 10, of the Si oxidation has been observed for Si(100) with a Sr overlayer. The SR-enhanced Si oxidation has been studied as a function of O2 exposure and Sr coverage. In contrast to the oxidation promotion of Sr on Si, it has been also observed that a Bi overlayer on Si(100) reduced Si oxidation significantly. Sr adsorption on the Si(100) with a Bi overlayer enhances Si oxidation only at Sr coverage of greater than 0.3 ML.

  5. Task-based strategy for optimized contrast enhanced breast imaging: analysis of six imaging techniques for mammography and tomosynthesis

    NASA Astrophysics Data System (ADS)

    Ikejimba, Lynda; Kiarashi, Nooshin; Lin, Yuan; Chen, Baiyu; Ghate, Sujata V.; Zerhouni, Moustafa; Samei, Ehsan; Lo, Joseph Y.

    2012-03-01

    Digital breast tomosynthesis (DBT) is a novel x-ray imaging technique that provides 3D structural information of the breast. In contrast to 2D mammography, DBT minimizes tissue overlap potentially improving cancer detection and reducing number of unnecessary recalls. The addition of a contrast agent to DBT and mammography for lesion enhancement has the benefit of providing functional information of a lesion, as lesion contrast uptake and washout patterns may help differentiate between benign and malignant tumors. This study used a task-based method to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: contrast enhanced mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Imaging performance was characterized using a detectability index d', derived from the system task transfer function (TTF), an imaging task, iodine contrast, and the noise power spectrum (NPS). The task modeled a 5 mm lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d' was generated as a function of dose and iodine concentration. In general, higher dose gave higher d', but for the lowest iodine concentration and lowest dose, dual energy subtraction tomosynthesis and temporal subtraction tomosynthesis demonstrated the highest performance.

  6. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  7. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  8. Clinical study of contrast-enhanced digital mammography and the evaluation of blood and lymphatic microvessel density

    PubMed Central

    Cruz-Bastida, Juan P; Rosado-Méndez, Iván M; Villaseñor-Navarro, Yolanda; Pérez-Ponce, Héctor; Galván, Héctor A; Trujillo-Zamudio, Flavio E; Sánchez-Suárez, Patricia; Benítez-Bribiesca, Luis

    2016-01-01

    Objective: To correlate image parameters in contrast-enhanced digital mammography (CEDM) with blood and lymphatic microvessel density (MVD). Methods: 18 Breast Imaging-Reporting and Data System (BI-RADS)-4 to BI-RADS-5 patients were subjected to CEDM. Craniocaudal views were acquired, two views (low and high energy) before iodine contrast medium (CM) injection and four views (high energy) 1–5 min afterwards. Processing included registration and two subtraction modalities, traditional single-energy temporal (high-energy) and “dual-energy temporal with a matrix”, proposed to improve lesion conspicuity. Images were calibrated into iodine thickness, and iodine uptake, contrast, time–intensity and time–contrast kinetic curves were quantified. Image indicators were compared with MVD evaluated by anti-CD105 and anti-podoplanin (D2-40) immunohistochemistry. Results: 11 lesions were cancerous and 7 were benign. CEDM subtraction strongly increased conspicuity of lesions enhanced by iodine uptake. A strong correlation was observed between lymphatic vessels and blood vessels; all benign lesions had <30 blood microvessels per field, and all cancers had more than this value. MVD showed no correlation with iodine uptake, nor with contrast. The most frequent curve was early uptake followed by plateau for uptake and contrast in benign and malignant lesions. The positive-predictive value of uptake dynamics was 73% and that of contrast was 64%. Conclusion: CEDM increased lesion visibility and showed additional features compared with conventional mammography. Lack of correlation between image parameters and MVD is probably due to tumour tissue heterogeneity, mammography projective nature and/or dependence of extracellular iodine irrigation on tissue composition. Advances in knowledge: Quantitative analysis of CEDM images was performed. Image parameters and MVD showed no correlation. Probably, this is indication of the complex dependence of CM perfusion on tumour microenvironment. PMID:27376457

  9. Cardiovascular Magnetic Resonance Imaging of Myocardial Infarction, Viability, and Cardiomyopathies

    PubMed Central

    West, Amy M.; Kramer, Christopher M.

    2010-01-01

    Cardiovascular magnetic resonance provides the opportunity for a truly comprehensive evaluation of patients with a history of MI, with regards to characterizing the extent of disease, impact on LV function and degree of viable myocardium. The use of contrast-enhanced CMR for first-pass perfusion and late gadolinium enhancement is a powerful technique for delineating areas of myocardial ischemia and infarction. Using a combination of T2-weighted and contrast-enhanced CMR images, information about the acuity of an infarct can be obtained. There is an extensive amount of literature using contrast-enhanced CMR to predict myocardial functional recovery with revascularization in patients with ischemic cardiomyopathies. In addition, CMR imaging in patients with cardiomyopathies can distinguish between ischemic and non-ischemic etiologies, with the ability to further characterize the underlying pathology for non-ischemic cardiomyopathies. PMID:20197150

  10. In vivo white light and contrast-enhanced vital-dye fluorescence imaging of Barrett's-related neoplasia in a single-endoscopic insertion

    NASA Astrophysics Data System (ADS)

    Tang, Yubo; Carns, Jennifer; Polydorides, Alexandros D.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca R.

    2016-08-01

    A modular video endoscope is developed to enable both white light imaging (WLI) and vital-dye fluorescence imaging (VFI) in a single-endoscopic insertion for the early detection of cancer in Barrett's esophagus (BE). We demonstrate that VFI can be achieved in conjunction with white light endoscopy, where appropriate white balance is used to correct for the presence of the emission filter. In VFI mode, a contrast enhancement feature is implemented in real time to further highlight glandular patterns in BE and related malignancies without introducing artifacts. In a pilot study, we demonstrate accurate correlation of images in two widefield modalities, with representative images showing the disruption and effacement of glandular architecture associated with cancer development in BE. VFI images of these alterations exhibit enhanced contrast when compared to WLI. Results suggest that the usefulness of VFI in the detection of BE-related neoplasia should be further evaluated in future in vivo studies.

  11. Adaptive sigmoid function bihistogram equalization for image contrast enhancement

    NASA Astrophysics Data System (ADS)

    Arriaga-Garcia, Edgar F.; Sanchez-Yanez, Raul E.; Ruiz-Pinales, Jose; Garcia-Hernandez, Ma. de Guadalupe

    2015-09-01

    Contrast enhancement plays a key role in a wide range of applications including consumer electronic applications, such as video surveillance, digital cameras, and televisions. The main goal of contrast enhancement is to increase the quality of images. However, most state-of-the-art methods induce different types of distortion such as intensity shift, wash-out, noise, intensity burn-out, and intensity saturation. In addition, in consumer electronics, simple and fast methods are required in order to be implemented in real time. A bihistogram equalization method based on adaptive sigmoid functions is proposed. It consists of splitting the image histogram into two parts that are equalized independently by using adaptive sigmoid functions. In order to preserve the mean brightness of the input image, the parameter of the sigmoid functions is chosen to minimize the absolute mean brightness metric. Experiments on the Berkeley database have shown that the proposed method improves the quality of images and preserves their mean brightness. An application to improve the colorfulness of images is also presented.

  12. Diffraction Seismic Imaging of the Chalk Group Reservoir Rocks

    NASA Astrophysics Data System (ADS)

    Montazeri, M.; Fomel, S.; Nielsen, L.

    2016-12-01

    In this study we investigate seismic diffracted waves instead of seismic reflected waves, which are usually much stronger and carry most of the information regarding subsurface structures. The goal of this study is to improve imaging of small subsurface features such as faults and fractures. Moreover, we focus on the Chalk Group, which contains important groundwater resources onshore and oil and gas reservoirs in the Danish sector of the North Sea. Finding optimum seismic velocity models for the Chalk Group and estimating high-quality stacked sections with conventional processing methods are challenging tasks. Here, we try to filter out as much as possible of undesired arrivals before stacking the seismic data. Further, a plane-wave destruction method is applied on the seismic stack in order to dampen the reflection events and thereby enhance the visibility of the diffraction events. After this initial processing, we estimate the optimum migration velocity using diffraction events in order to obtain a better resolution stack. The results from this study demonstrate how diffraction imaging can be used as an additional tool for improving the images of small-scale features in the Chalk Group reservoir, in particular faults and fractures. Moreover, we discuss the potential of applying this approach in future studies focused on such reservoirs.

  13. HCIT Contrast Performance Sensitivity Studies: Simulation Versus Experiment

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Shaklan, Stuart; Krist, John; Cady, Eric J.; Kern, Brian; Balasubramanian, Kunjithapatham

    2013-01-01

    Using NASA's High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory, we have experimentally investigated the sensitivity of dark hole contrast in a Lyot coronagraph for the following factors: 1) Lateral and longitudinal translation of an occulting mask; 2) An opaque spot on the occulting mask; 3) Sizes of the controlled dark hole area. Also, we compared the measured results with simulations obtained using both MACOS (Modeling and Analysis for Controlled Optical Systems) and PROPER optical analysis programs with full three-dimensional near-field diffraction analysis to model HCIT's optical train and coronagraph.

  14. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution

    DOE PAGES

    Pennycook, Timothy J.; Lupini, Andrew R.; Yang, Hao; ...

    2014-10-15

    In this paper, we demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phasemore » contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. In conclusion, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe.« less

  15. Optimization of subcutaneous vein contrast enhancement

    NASA Astrophysics Data System (ADS)

    Zeman, Herbert D.; Lovhoiden, Gunnar; Deshmukh, Harshal

    2000-05-01

    A technique for enhancing the contrast of subcutaneous veins has been demonstrated. This techniques uses a near IR light source and one or more IR sensitive CCD TV cameras to produce a contrast enhanced image of the subcutaneous veins. This video image of the veins is projected back onto the patient's skin using a n LCD video projector. The use of an IR transmitting filter in front of the video cameras prevents any positive feedback from the visible light from the video projector from causing instabilities in the projected image. The demonstration contrast enhancing illuminator has been tested on adults and children, both Caucasian and African-American, and it enhances veins quite well in all cases. The most difficult cases are those where significant deposits of subcutaneous fat are present which make the veins invisible under normal room illumination. Recent attempts to see through fat using different IR wavelength bands and both linearly and circularly polarized light were unsuccessful. The key to seeing through fat turns out to be a very diffuse source of RI light. Results on adult and pediatric subjects are shown with this new IR light source.

  16. Correlation of Tumor Immunohistochemistry with Dynamic Contrast-Enhanced and DSC-MRI Parameters in Patients with Gliomas.

    PubMed

    Nguyen, T B; Cron, G O; Bezzina, K; Perdrizet, K; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Thornhill, R E; Zanette, B; Cameron, I G

    2016-12-01

    Tumor CBV is a prognostic and predictive marker for patients with gliomas. Tumor CBV can be measured noninvasively with different MR imaging techniques; however, it is not clear which of these techniques most closely reflects histologically-measured tumor CBV. Our aim was to investigate the correlations between dynamic contrast-enhanced and DSC-MR imaging parameters and immunohistochemistry in patients with gliomas. Forty-three patients with a new diagnosis of glioma underwent a preoperative MR imaging examination with dynamic contrast-enhanced and DSC sequences. Unnormalized and normalized cerebral blood volume was obtained from DSC MR imaging. Two sets of plasma volume and volume transfer constant maps were obtained from dynamic contrast-enhanced MR imaging. Plasma volume obtained from the phase-derived vascular input function and bookend T1 mapping (Vp_Φ) and volume transfer constant obtained from phase-derived vascular input function and bookend T1 mapping (K trans _Φ) were determined. Plasma volume obtained from magnitude-derived vascular input function (Vp_SI) and volume transfer constant obtained from magnitude-derived vascular input function (K trans _SI) were acquired, without T1 mapping. Using CD34 staining, we measured microvessel density and microvessel area within 3 representative areas of the resected tumor specimen. The Mann-Whitney U test was used to test for differences according to grade and degree of enhancement. The Spearman correlation was performed to determine the relationship between dynamic contrast-enhanced and DSC parameters and histopathologic measurements. Microvessel area, microvessel density, dynamic contrast-enhanced, and DSC-MR imaging parameters varied according to the grade and degree of enhancement (P < .05). A strong correlation was found between microvessel area and Vp_Φ and between microvessel area and unnormalized blood volume (r s ≥ 0.61). A moderate correlation was found between microvessel area and normalized blood volume, microvessel area and Vp_SI, microvessel area and K trans _Φ, microvessel area and K trans _SI, microvessel density and Vp_Φ, microvessel density and unnormalized blood volume, and microvessel density and normalized blood volume (0.44 ≤ r s ≤ 0.57). A weaker correlation was found between microvessel density and K trans _Φ and between microvessel density and K trans _SI (r s ≤ 0.41). With dynamic contrast-enhanced MR imaging, use of a phase-derived vascular input function and bookend T1 mapping improves the correlation between immunohistochemistry and plasma volume, but not between immunohistochemistry and the volume transfer constant. With DSC-MR imaging, normalization of tumor CBV could decrease the correlation with microvessel area. © 2016 by American Journal of Neuroradiology.

  17. Optimization of a double inversion recovery sequence for noninvasive synovium imaging of joint effusion in the knee.

    PubMed

    Jahng, Geon-Ho; Jin, Wook; Yang, Dal Mo; Ryu, Kyung Nam

    2011-05-01

    We wanted to optimize a double inversion recovery (DIR) sequence to image joint effusion regions of the knee, especially intracapsular or intrasynovial imaging in the suprapatellar bursa and patellofemoral joint space. Computer simulations were performed to determine the optimum inversion times (TI) for suppressing both fat and water signals, and a DIR sequence was optimized based on the simulations for distinguishing synovitis from fluid. In vivo studies were also performed on individuals who showed joint effusion on routine knee MR images to demonstrate the feasibility of using the DIR sequence with a 3T whole-body MR scanner. To compare intracapsular or intrasynovial signals on the DIR images, intermediate density-weighted images and/or post-enhanced T1-weighted images were acquired. The timings to enhance the synovial contrast from the fluid components were TI1 = 2830 ms and TI2 = 254 ms for suppressing the water and fat signals, respectively. Improved contrast for the intrasynovial area in the knees was observed with the DIR turbo spin-echo pulse sequence compared to the intermediate density-weighted sequence. Imaging contrast obtained noninvasively with the DIR sequence was similar to that of the post-enhanced T1-weighted sequence. The DIR sequence may be useful for delineating synovium without using contrast materials.

  18. High-contrast Imager for Complex Aperture Telescopes (HICAT): II. Design overview and first light results

    NASA Astrophysics Data System (ADS)

    N'Diaye, Mamadou; Choquet, Elodie; Egron, Sylvain; Pueyo, Laurent; Leboulleux, Lucie; Levecq, Olivier; Perrin, Marshall D.; Elliot, Erin; Wallace, J. Kent; Hugot, Emmanuel; Marcos, Michel; Ferrari, Marc; Long, Chris A.; Anderson, Rachel; DiFelice, Audrey; Soummer, Rémi

    2014-08-01

    We present a new high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. The testbed was designed to enable a wide range of studies of the effects of such telescope geometries, with primary mirror segmentation, central obstruction, and spiders. The associated diffraction features in the point spread function make high-contrast imaging more challenging. In particular the testbed will be compatible with both AFTA-like and ATLAST-like aperture shapes, respectively on-axis monolithic, and on-axis segmented telescopes. The testbed optical design was developed using a novel approach to define the layout and surface error requirements to minimize amplitude­ induced errors at the target contrast level performance. In this communication we compare the as-built surface errors for each optic to their specifications based on end-to-end Fresnel modelling of the testbed. We also report on the testbed optical and optomechanical alignment performance, coronagraph design and manufacturing, and preliminary first light results.

  19. Simulation of the modulation transfer function dependent on the partial Fourier fraction in dynamic contrast enhancement magnetic resonance imaging.

    PubMed

    Takatsu, Yasuo; Ueyama, Tsuyoshi; Miyati, Tosiaki; Yamamura, Kenichirou

    2016-12-01

    The image characteristics in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) depend on the partial Fourier fraction and contrast medium concentration. These characteristics were assessed and the modulation transfer function (MTF) was calculated by computer simulation. A digital phantom was created from signal intensity data acquired at different contrast medium concentrations on a breast model. The frequency images [created by fast Fourier transform (FFT)] were divided into 512 parts and rearranged to form a new image. The inverse FFT of this image yielded the MTF. From the reference data, three linear models (low, medium, and high) and three exponential models (slow, medium, and rapid) of the signal intensity were created. Smaller partial Fourier fractions, and higher gradients in the linear models, corresponded to faster MTF decline. The MTF more gradually decreased in the exponential models than in the linear models. The MTF, which reflects the image characteristics in DCE-MRI, was more degraded as the partial Fourier fraction decreased.

  20. Comparison of post-contrast 3D-T1-MPRAGE, 3D-T1-SPACE and 3D-T2-FLAIR MR images in evaluation of meningeal abnormalities at 3-T MRI.

    PubMed

    Jeevanandham, Balaji; Kalyanpur, Tejas; Gupta, Prashant; Cherian, Mathew

    2017-06-01

    This study was to assess the usefulness of newer three-dimensional (3D)-T 1 sampling perfection with application optimized contrast using different flip-angle evolutions (SPACE) and 3D-T 2 fluid-attenuated inversion recovery (FLAIR) sequences in evaluation of meningeal abnormalities. 78 patients who presented with high suspicion of meningeal abnormalities were evaluated using post-contrast 3D-T 2 -FLAIR, 3D-T 1 magnetization-prepared rapid gradient-echo (MPRAGE) and 3D-T 1 -SPACE sequences. The images were evaluated independently by two radiologists for cortical gyral, sulcal space, basal cisterns and dural enhancement. The diagnoses were confirmed by further investigations including histopathology. Post-contrast 3D-T 1 -SPACE and 3D-T 2 -FLAIR images yielded significantly more information than MPRAGE images (p < 0.05 for both SPACE and FLAIR images) in detection of meningeal abnormalities. SPACE images best demonstrated abnormalities in dural and sulcal spaces, whereas FLAIR was useful for basal cisterns enhancement. Both SPACE and FLAIR performed equally well in detection of gyral enhancement. In all 10 patients, where both SPACE and T 2 -FLAIR images failed to demonstrate any abnormality, further analysis was also negative. The 3D-T 1 -SPACE sequence best demonstrated abnormalities in dural and sulcal spaces, whereas FLAIR was useful for abnormalities in basal cisterns. Both SPACE and FLAIR performed holds good for detection of gyral enhancement. Post-contrast SPACE and FLAIR sequences are superior to the MPRAGE sequence for evaluation of meningeal abnormalities and when used in combination have the maximum sensitivity for leptomeningeal abnormalities. The negative-predictive value is nearly 100%, where no leptomeningeal abnormality was detected on these sequences. Advances in knowledge: Post-contrast 3D-T 1 -SPACE and 3D-T 2 -FLAIR images are more useful than 3D-T 1 -MPRAGE images in evaluation of meningeal abnormalities.

  1. Tumor characterization in small animals using magnetic resonance-guided dynamic contrast enhanced diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Lin, Yuting; Thayer, Dave; Nalcioglu, Orhan; Gulsen, Gultekin

    2011-10-01

    We present a magnetic resonance (MR)-guided near-infrared dynamic contrast enhanced diffuse optical tomography (DCE-DOT) system for characterization of tumors using an optical contrast agent (ICG) and a MR contrast agent [Gd-diethylenetriaminepentaacetic acid (DTPA)] in a rat model. Both ICG and Gd-DTPA are injected and monitored simultaneously using a combined MRI-DOT system, resulting in accurate co-registration between two imaging modalities. Fisher rats bearing R3230 breast tumor are imaged using this hybrid system. For the first time, enhancement kinetics of the exogenous contrast ICG is recovered from the DCE-DOT data using MR anatomical a priori information. As tumors grow, they undergo necrosis and the tissue transforms from viable to necrotic. The results show that the physiological changes between viable and necrotic tissue can be differentiated more accurately based on the ICG enhancement kinetics when MR anatomical information is utilized.

  2. Multimodal Spectral Imaging of Cells Using a Transmission Diffraction Grating on a Light Microscope

    PubMed Central

    Isailovic, Dragan; Xu, Yang; Copus, Tyler; Saraswat, Suraj; Nauli, Surya M.

    2011-01-01

    A multimodal methodology for spectral imaging of cells is presented. The spectral imaging setup uses a transmission diffraction grating on a light microscope to concurrently record spectral images of cells and cellular organelles by fluorescence, darkfield, brightfield, and differential interference contrast (DIC) spectral microscopy. Initially, the setup was applied for fluorescence spectral imaging of yeast and mammalian cells labeled with multiple fluorophores. Fluorescence signals originating from fluorescently labeled biomolecules in cells were collected through triple or single filter cubes, separated by the grating, and imaged using a charge-coupled device (CCD) camera. Cellular components such as nuclei, cytoskeleton, and mitochondria were spatially separated by the fluorescence spectra of the fluorophores present in them, providing detailed multi-colored spectral images of cells. Additionally, the grating-based spectral microscope enabled measurement of scattering and absorption spectra of unlabeled cells and stained tissue sections using darkfield and brightfield or DIC spectral microscopy, respectively. The presented spectral imaging methodology provides a readily affordable approach for multimodal spectral characterization of biological cells and other specimens. PMID:21639978

  3. Bariatric CT Imaging: Challenges and Solutions.

    PubMed

    Fursevich, Dzmitry M; LiMarzi, Gary M; O'Dell, Matthew C; Hernandez, Manuel A; Sensakovic, William F

    2016-01-01

    The obesity epidemic in the adult and pediatric populations affects all aspects of health care, including diagnostic imaging. With the increasing prevalence of obese and morbidly obese patients, bariatric computed tomographic (CT) imaging is becoming common in day-to-day radiology practice, and a basic understanding of the unique problems that bariatric patients pose to the imaging community is crucial in any setting. Because larger patients may not fit into conventional scanners, having a CT scanner with an adequate table load limit, a large gantry aperture, a large scan field of view, and a high-power generator is a prerequisite for bariatric imaging. Iterative reconstruction methods, high tube current, and high tube voltage can reduce the image noise that is frequently seen in bariatric CT images. Truncation artifacts, cropping artifacts, and ring artifacts frequently complicate the interpretation of CT images of larger patients. If recognized, these artifacts can be easily reduced by using the proper CT equipment, scan acquisition parameters, and postprocessing options. Lastly, because of complex contrast material dynamics, contrast material-enhanced studies of bariatric patients require special attention. Understanding how the rate of injection, the scan timing, and the total mass of iodine affect vascular and parenchymal enhancement will help to optimize contrast-enhanced studies in the bariatric population. This article familiarizes the reader with the challenges that are frequently encountered at CT imaging of bariatric patients, beginning with equipment selection and ending with a review of the most commonly encountered obesity-related artifacts and the technical considerations in the acquisition of contrast-enhanced images. (©)RSNA, 2016.

  4. Analysis of FIB-induced damage by electron channelling contrast imaging in the SEM.

    PubMed

    Gutierrez-Urrutia, Ivan

    2017-01-01

    We have investigated the Ga + ion-damage effect induced by focused ion beam (FIB) milling in a [001] single crystal of a 316 L stainless steel by the electron channelling contrast imaging (ECCI) technique. The influence of FIB milling on the characteristic electron channelling contrast of surface dislocations was analysed. The ECCI approach provides sound estimation of the damage depth produced by FIB milling. For comparison purposes, we have also studied the same milled surface by a conventional electron backscatter diffraction (EBSD) approach. We observe that the ECCI approach provides further insight into the Ga + ion-damage phenomenon than the EBSD technique by direct imaging of FIB artefacts in the scanning electron microscope. We envisage that the ECCI technique may be a convenient tool to optimize the FIB milling settings in applications where the surface crystal defect content is relevant. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  5. Comparison of fundamental and wideband harmonic contrast imaging of liver tumors.

    PubMed

    Forsberg, F; Liu, J B; Chiou, H J; Rawool, N M; Parker, L; Goldberg, B B

    2000-03-01

    Wideband harmonic imaging (with phase inversion for improved tissue suppression) was compared to fundamental imaging in vivo. Four woodchucks with naturally occurring liver tumors were injected with Imagent (Alliance Pharmaceutical Corp., San Diego, CA). Randomized combinations of dose (0.05, 0.2 and 0.4 ml/kg) and acoustic output power (AO; 5, 25 and 63% or MI < or = 0.9) were imaged in gray scale using a Sonoline Elegra scanner (Siemens Medical Systems, Issaquah, WA). Tumor vascularity, conspicuity and contrast enhancement were rated by three independent observers. Imagent produced marked tumor enhancement and improved depiction of neovascularity at all dosages and AO settings in both modes. Tumor vascularity and enhancement correlated with mode, dose and AO (P < 0.002). Fundamental imaging produced more enhancement (P < 0.05), but tumor vascularity and conspicuity were best appreciated in harmonic mode (P < 0.05). Under the conditions studied here, the best approach was wideband harmonic imaging with 0.2 ml/kg of Imagent at an AO of 25%.

  6. Enhancing Tabletop X-Ray Phase Contrast Imaging with Nano-Fabrication

    PubMed Central

    Miao, Houxun; Gomella, Andrew A.; Harmon, Katherine J.; Bennett, Eric E.; Chedid, Nicholas; Znati, Sami; Panna, Alireza; Foster, Barbara A.; Bhandarkar, Priya; Wen, Han

    2015-01-01

    X-ray phase-contrast imaging is a promising approach for improving soft-tissue contrast and lowering radiation dose in biomedical applications. While current tabletop imaging systems adapt to common x-ray tubes and large-area detectors by employing absorptive elements such as absorption gratings or monolithic crystals to filter the beam, we developed nanometric phase gratings which enable tabletop x-ray far-field interferometry with only phase-shifting elements, leading to a substantial enhancement in the performance of phase contrast imaging. In a general sense the method transfers the demands on the spatial coherence of the x-ray source and the detector resolution to the feature size of x-ray phase masks. We demonstrate its capabilities in hard x-ray imaging experiments at a fraction of clinical dose levels and present comparisons with the existing Talbot-Lau interferometer and with conventional digital radiography. PMID:26315891

  7. Speckle-field digital holographic microscopy.

    PubMed

    Park, YongKeun; Choi, Wonshik; Yaqoob, Zahid; Dasari, Ramachandra; Badizadegan, Kamran; Feld, Michael S

    2009-07-20

    The use of coherent light in conventional holographic phase microscopy (HPM) poses three major drawbacks: poor spatial resolution, weak depth sectioning, and fixed pattern noise due to unwanted diffraction. Here, we report a technique which can overcome these drawbacks, but maintains the advantage of phase microscopy - high contrast live cell imaging and 3D imaging. A speckle beam of a complex spatial pattern is used for illumination to reduce fixed pattern noise and to improve optical sectioning capability. By recording of the electric field of speckle, we demonstrate high contrast 3D live cell imaging without the need for axial scanning - neither objective lens nor sample stage. This technique has great potential in studying biological samples with improved sensitivity, resolution and optical sectioning capability.

  8. Engineering of Nanoscale Contrast Agents for Optical Coherence Tomography.

    PubMed

    Gordon, Andrew Y; Jayagopal, Ashwath

    2014-01-30

    Optical coherence tomography has emerged as valuable imaging modalityin ophthalmology and other fields by enabling high-resolution three-dimensional imaging of tissue. In this paper, we review recent progress in the field of contrast-enhanced optical coherence tomography (OCT). We discuss exogenous and endogenous sources of OCT contrast, focusing on their use with standard OCT systems as well as emerging OCT-based imaging modalities. We include advances in the processing of OCT data that generate improved tissue contrast, including spectroscopic OCT (SOCT), as well as work utilizing secondary light sources and/or detection mechanisms to create and detect enhanced contrast, including photothermal OCT (PTOCT) and photoacoustic OCT (PAOCT). Finally, we conclude with a discussion of the translational potential of these developments as well as barriers to their clinical use.

  9. Micro-optics for simultaneous multi-spectral imaging applied to chemical/biological and IED detection

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele

    2012-06-01

    Using diffractive micro-lenses configured in an array and placed in close proximity to the focal plane array will enable a small compact simultaneous multispectral imaging camera. This approach can be applied to spectral regions from the ultraviolet (UV) to the long-wave infrared (LWIR). The number of simultaneously imaged spectral bands is determined by the number of individually configured diffractive optical micro-lenses (lenslet) in the array. Each lenslet images at a different wavelength determined by the blaze and set at the time of manufacturing based on application. In addition, modulation of the focal length of the lenslet array with piezoelectric or electro-static actuation will enable spectral band fill-in allowing hyperspectral imaging. Using the lenslet array with dual-band detectors will increase the number of simultaneous spectral images by a factor of two when utilizing multiple diffraction orders. Configurations and concept designs will be presented for detection application for biological/chemical agents, buried IED's and reconnaissance. The simultaneous detection of multiple spectral images in a single frame of data enhances the image processing capability by eliminating temporal differences between colors and enabling a handheld instrument that is insensitive to motion.

  10. Real-time 3-dimensional contrast-enhanced ultrasound in detecting hemorrhage of blunt renal trauma.

    PubMed

    Xu, Rui-Xue; Li, Ye-Kuo; Li, Ting; Wang, Sha-Sha; Yuan, Gui-Zhong; Zhou, Qun-Fang; Zheng, Hai-Rong; Yan, Fei

    2013-10-01

    The objective of this study is to evaluate the diagnostic value of real-time 3-dimensional contrast-enhanced ultrasound in the hemorrhage of blunt renal trauma. Eighteen healthy New Zealand white rabbits were randomly divided into 3 groups. Blunt renal trauma was performed on each group by using minitype striker. Ultrasonography, color Doppler flow imaging, and contrast-enhanced 2-dimensional and real-time 3-dimensional ultrasound were applied before and after the strike. The time to shock and blood pressure were subjected to statistical analysis. Then, a comparative study of ultrasound and pathology was carried out. All the struck kidneys were traumatic. In the ultrasonography, free fluid was found under the renal capsule. In the color Doppler flow imaging, active hemorrhage was not identified. In 2-dimensional contrast-enhanced ultrasound, active hemorrhage of the damaged kidney was characterized. Real-time 3-dimensional contrast-enhanced ultrasound showed a real-time and stereoscopic ongoing bleeding of the injured kidney. The wider the hemorrhage area in 4-dimensional contrast-enhanced ultrasound was, the faster the blood pressure decreased. Real-time 3-dimensional contrast-enhanced ultrasound is a promising noninvasive tool for stereoscopically and vividly detecting ongoing hemorrhage of blunt renal trauma in real time. © 2013.

  11. Intratympanic Iodine Contrast Injection Diffuses Across the Round Window Membrane Allowing for Perilymphatic CT Volume Acquisition Imaging

    PubMed Central

    Abt, Nicholas B.; Lehar, Mohamed; Guajardo, Carolina Trevino; Penninger, Richard T.; Ward, Bryan K.; Pearl, Monica S.; Carey, John P.

    2016-01-01

    Hypothesis Whether the RWM is permeable to iodine-based contrast agents (IBCA) is unknown; therefore, our goal was to determine if IBCAs could diffuse through the RWM using CT volume acquisition imaging. Introduction Imaging of hydrops in the living human ear has attracted recent interest. Intratympanic (IT) injection has shown gadolinium's ability to diffuse through the round window membrane (RWM), enhancing the perilymphatic space. Methods Four unfixed human cadaver temporal bones underwent intratympanic IBCA injection using three sequentially studied methods. The first method was direct IT injection. The second method used direct RWM visualization via tympanomeatal flap for IBCA-soaked absorbable gelatin pledget placement. In the third method, the middle ear was filled with contrast after flap elevation. Volume acquisition CT images were obtained immediately post-exposure, and at 1, 6, and 24 hour intervals. Post-processing was accomplished using color ramping and subtraction imaging. Results Following the third method, positive RWM and perilymphatic enhancement were seen with endolymph sparing. Gray scale and color ramp multiplanar reconstructions displayed increased signal within the cochlea compared to pre-contrast imaging. The cochlea was measured for attenuation differences compared to pure water, revealing a pre-injection average of −1,103 HU and a post-injection average of 338 HU. Subtraction imaging shows enhancement remaining within the cochlear space, Eustachian tube, middle ear epithelial lining, and mastoid. Conclusions Iohexol iodine contrast is able to diffuse across the RWM. Volume acquisition CT imaging was able to detect perilymphatic enhancement at 0.5mm slice thickness. The clinical application of IBCA IT injection appears promising but requires further safety studies. PMID:26859543

  12. A novel image enhancement algorithm based on stationary wavelet transform for infrared thermography to the de-bonding defect in solid rocket motors

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Zhang, Wei; Yan, Shaoze

    2015-10-01

    In this paper, a multi-scale image enhancement algorithm based on low-passing filtering and nonlinear transformation is proposed for infrared testing image of the de-bonding defect in solid propellant rocket motors. Infrared testing images with high-level noise and low contrast are foundations for identifying defects and calculating the defects size. In order to improve quality of the infrared image, according to distribution properties of the detection image, within framework of stationary wavelet transform, the approximation coefficients at suitable decomposition level is processed by index low-passing filtering by using Fourier transform, after that, the nonlinear transformation is applied to further process the figure to improve the picture contrast. To verify validity of the algorithm, the image enhancement algorithm is applied to infrared testing pictures of two specimens with de-bonding defect. Therein, one specimen is made of a type of high-strength steel, and the other is a type of carbon fiber composite. As the result shown, in the images processed by the image enhancement algorithm presented in the paper, most of noises are eliminated, and contrast between defect areas and normal area is improved greatly; in addition, by using the binary picture of the processed figure, the continuous defect edges can be extracted, all of which show the validity of the algorithm. The paper provides a well-performing image enhancement algorithm for the infrared thermography.

  13. Dynamic Contrast-Enhanced Ultrasound Identifies Microcirculatory Alterations in Sepsis-Induced Acute Kidney Injury.

    PubMed

    Lima, Alexandre; van Rooij, Tom; Ergin, Bulent; Sorelli, Michele; Ince, Yasin; Specht, Patricia A C; Mik, Egbert G; Bocchi, Leonardo; Kooiman, Klazina; de Jong, Nico; Ince, Can

    2018-05-15

    We developed quantitative methods to analyze microbubble kinetics based on renal contrast-enhanced ultrasound imaging combined with measurements of sublingual microcirculation on a fixed area to quantify early microvascular alterations in sepsis-induced acute kidney injury. Prospective controlled animal experiment study. Hospital-affiliated animal research institution. Fifteen female pigs. The animals were instrumented with a renal artery flow probe after surgically exposing the kidney. Nine animals were given IV infusion of lipopolysaccharide to induce septic shock, and six were used as controls. Contrast-enhanced ultrasound imaging was performed on the kidney before, during, and after having induced shock. Sublingual microcirculation was measured continuously using the Cytocam on the same spot. Contrast-enhanced ultrasound effectively allowed us to develop new analytical methods to measure dynamic variations in renal microvascular perfusion during shock and resuscitation. Renal microvascular hypoperfusion was quantified by decreased peak enhancement and an increased ratio of the final plateau intensity to peak enhancement. Reduced intrarenal blood flow could be estimated by measuring the microbubble transit times between the interlobar arteries and capillary vessels in the renal cortex. Sublingual microcirculation measured using the Cytocam in a fixed area showed decreased functional capillary density associated with plugged sublingual capillary vessels that persisted during and after fluid resuscitation. In our lipopolysaccharide model, with resuscitation targeted at blood pressure, the contrast-enhanced ultrasound imaging can identify renal microvascular alterations by showing prolonged contrast enhancement in microcirculation during shock, worsened by resuscitation with fluids. Concomitant analysis of sublingual microcirculation mirrored those observed in the renal microcirculation.

  14. LCC demons with divergence term for liver MRI motion correction

    NASA Astrophysics Data System (ADS)

    Oh, Jihun; Martin, Diego; Skrinjar, Oskar

    2010-03-01

    Contrast-enhanced liver MR image sequences acquired at multiple times before and after contrast administration have been shown to be critically important for the diagnosis and monitoring of liver tumors and may be used for the quantification of liver inflammation and fibrosis. However, over multiple acquisitions, the liver moves and deforms due to patient and respiratory motion. In order to analyze contrast agent uptake one first needs to correct for liver motion. In this paper we present a method for the motion correction of dynamic contrastenhanced liver MR images. For this purpose we use a modified version of the Local Correlation Coefficient (LCC) Demons non-rigid registration method. Since the liver is nearly incompressible its displacement field has small divergence. For this reason we add a divergence term to the energy that is minimized in the LCC Demons method. We applied the method to four sequences of contrast-enhanced liver MR images. Each sequence had a pre-contrast scan and seven post-contrast scans. For each post-contrast scan we corrected for the liver motion relative to the pre-contrast scan. Quantitative evaluation showed that the proposed method improved the liver alignment relative to the non-corrected and translation-corrected scans and visual inspection showed no visible misalignment of the motion corrected contrast-enhanced scans and pre-contrast scan.

  15. Particle swarm optimization-based local entropy weighted histogram equalization for infrared image enhancement

    NASA Astrophysics Data System (ADS)

    Wan, Minjie; Gu, Guohua; Qian, Weixian; Ren, Kan; Chen, Qian; Maldague, Xavier

    2018-06-01

    Infrared image enhancement plays a significant role in intelligent urban surveillance systems for smart city applications. Unlike existing methods only exaggerating the global contrast, we propose a particle swam optimization-based local entropy weighted histogram equalization which involves the enhancement of both local details and fore-and background contrast. First of all, a novel local entropy weighted histogram depicting the distribution of detail information is calculated based on a modified hyperbolic tangent function. Then, the histogram is divided into two parts via a threshold maximizing the inter-class variance in order to improve the contrasts of foreground and background, respectively. To avoid over-enhancement and noise amplification, double plateau thresholds of the presented histogram are formulated by means of particle swarm optimization algorithm. Lastly, each sub-image is equalized independently according to the constrained sub-local entropy weighted histogram. Comparative experiments implemented on real infrared images prove that our algorithm outperforms other state-of-the-art methods in terms of both visual and quantized evaluations.

  16. Review of dynamic contrast-enhanced MRI: Technical aspects and applications in the musculoskeletal system.

    PubMed

    Sujlana, Parvinder; Skrok, Jan; Fayad, Laura M

    2018-04-01

    Although postcontrast imaging has been used for many years in musculoskeletal imaging, dynamic contrast enhanced (DCE) MRI is not routinely used in many centers around the world. Unlike conventional contrast-enhanced sequences, DCE-MRI allows the evaluation of the temporal pattern of enhancement in the musculoskeletal system, perhaps best known for its use in oncologic applications (such as differentiating benign from malignant tumors, evaluating for treatment response after neoadjuvant chemotherapy, and differentiating postsurgical changes from residual tumor). However, DCE-MRI can also be used to evaluate inflammatory processes such as Charcot foot and synovitis, and evaluate bone perfusion in entities like Legg Calve Perthes disease and arthritis. Finally, vascular abnormalities and associated complications may be better characterized with DCE-MRI than conventional imaging. The goal of this article is to review the applications and technical aspects of DCE-MRI in the musculoskeletal system. 5 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:875-890. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Correction of Non-Linear Propagation Artifact in Contrast-Enhanced Ultrasound Imaging of Carotid Arteries: Methods and in Vitro Evaluation.

    PubMed

    Yildiz, Yesna O; Eckersley, Robert J; Senior, Roxy; Lim, Adrian K P; Cosgrove, David; Tang, Meng-Xing

    2015-07-01

    Non-linear propagation of ultrasound creates artifacts in contrast-enhanced ultrasound images that significantly affect both qualitative and quantitative assessments of tissue perfusion. This article describes the development and evaluation of a new algorithm to correct for this artifact. The correction is a post-processing method that estimates and removes non-linear artifact in the contrast-specific image using the simultaneously acquired B-mode image data. The method is evaluated on carotid artery flow phantoms with large and small vessels containing microbubbles of various concentrations at different acoustic pressures. The algorithm significantly reduces non-linear artifacts while maintaining the contrast signal from bubbles to increase the contrast-to-tissue ratio by up to 11 dB. Contrast signal from a small vessel 600 μm in diameter buried in tissue artifacts before correction was recovered after the correction. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Non-invasive Photoacoustic and Fluorescence Sentinel Lymph Node Identification using Dye-loaded Perfluorocarbon Nanoparticles

    PubMed Central

    Akers, Walter J.; Kim, Chulhong; Berezin, Mikhail; Guo, Kevin; Fuhrhop, Ralph; Lanza, Gregory M.; Fischer, Georg M.; Daltrozzo, Ewald; Zumbusch, Andreas; Cai, Xin; Wang, Lihong V.; Achilefu, Samuel

    2010-01-01

    The contrast mechanisms used for photoacoustic tomography (PAT) and fluorescence imaging differ in subtle but significant ways. Design of contrast agents for each or both modalities requires an understanding of the spectral characteristics as well as intra- and intermolecular interactions that occur during formulation. We found that fluorescence quenching that occurs in the formulation of near infrared (NIR) fluorescent dyes in nanoparticles results in enhanced contrast for PAT. The ability of the new PAT method to utilize strongly absorbing chromophores for signal generation allowed us to convert a highly fluorescent dye into an exceptionally high PA contrast material. Spectroscopic characterization of the developed NIR dye-loaded perfluorocarbon-based nanoparticles for combined fluorescence and PA imaging revealed distinct dye-dependent photophysical behavior. We demonstrate that the enhanced contrast allows detection of regional lymph nodes of rats in vivo with time-domain optical and photoacoustic imaging methods. The results further show that the use of fluorescence lifetime (FLT) imaging, which is less dependent on fluorescence intensity, provides a strategic approach to bridge the disparate contrast reporting mechanisms of fluorescence and PA imaging methods. PMID:21171567

  19. Contrast and harmonic imaging improves accuracy and efficiency of novice readers for dobutamine stress echocardiography

    NASA Technical Reports Server (NTRS)

    Vlassak, Irmien; Rubin, David N.; Odabashian, Jill A.; Garcia, Mario J.; King, Lisa M.; Lin, Steve S.; Drinko, Jeanne K.; Morehead, Annitta J.; Prior, David L.; Asher, Craig R.; hide

    2002-01-01

    BACKGROUND: Newer contrast agents as well as tissue harmonic imaging enhance left ventricular (LV) endocardial border delineation, and therefore, improve LV wall-motion analysis. Interpretation of dobutamine stress echocardiography is observer-dependent and requires experience. This study was performed to evaluate whether these new imaging modalities would improve endocardial visualization and enhance accuracy and efficiency of the inexperienced reader interpreting dobutamine stress echocardiography. METHODS AND RESULTS: Twenty-nine consecutive patients with known or suspected coronary artery disease underwent dobutamine stress echocardiography. Both fundamental (2.5 MHZ) and harmonic (1.7 and 3.5 MHZ) mode images were obtained in four standard views at rest and at peak stress during a standard dobutamine infusion stress protocol. Following the noncontrast images, Optison was administered intravenously in bolus (0.5-3.0 ml), and fundamental and harmonic images were obtained. The dobutamine echocardiography studies were reviewed by one experienced and one inexperienced echocardiographer. LV segments were graded for image quality and function. Time for interpretation also was recorded. Contrast with harmonic imaging improved the diagnostic concordance of the novice reader to the expert reader by 7.1%, 7.5%, and 12.6% (P < 0.001) as compared with harmonic imaging, fundamental imaging, and fundamental imaging with contrast, respectively. For the novice reader, reading time was reduced by 47%, 55%, and 58% (P < 0.005) as compared with the time needed for fundamental, fundamental contrast, and harmonic modes, respectively. With harmonic imaging, the image quality score was 4.6% higher (P < 0.001) than for fundamental imaging. Image quality scores were not significantly different for noncontrast and contrast images. CONCLUSION: Harmonic imaging with contrast significantly improves the accuracy and efficiency of the novice dobutamine stress echocardiography reader. The use of harmonic imaging reduces the frequency of nondiagnostic wall segments.

  20. Non-Enhanced MR Imaging of Cerebral Arteriovenous Malformations at 7 Tesla.

    PubMed

    Wrede, Karsten H; Dammann, Philipp; Johst, Sören; Mönninghoff, Christoph; Schlamann, Marc; Maderwald, Stefan; Sandalcioglu, I Erol; Ladd, Mark E; Forsting, Michael; Sure, Ulrich; Umutlu, Lale

    2016-03-01

    To evaluate prospectively 7 Tesla time-of-flight (TOF) magnetic resonance angiography (MRA) and 7 Tesla non-contrast-enhanced magnetization-prepared rapid acquisition gradient-echo (MPRAGE) for delineation of intracerebral arteriovenous malformations (AVMs) in comparison to 1.5 Tesla TOF MRA and digital subtraction angiography (DSA). Twenty patients with single or multifocal AVMs were enrolled in this trial. The study protocol comprised 1.5 and 7 Tesla TOF MRA and 7 Tesla non-contrast-enhanced MPRAGE sequences. All patients underwent an additional four-vessel 3D DSA. Image analysis of the following five AVM features was performed individually by two radiologists on a five-point scale: nidus, feeder(s), draining vein(s), relationship to adjacent vessels, and overall image quality and presence of artefacts. A total of 21 intracerebral AVMs were detected. Both sequences at 7 Tesla were rated superior over 1.5 Tesla TOF MRA in the assessment of all considered AVM features. Image quality at 7 Tesla was comparable with DSA considering both sequences. Inter-observer accordance was good to excellent for the majority of ratings. This study demonstrates excellent image quality for depiction of intracerebral AVMs using non-contrast-enhanced 7 Tesla MRA, comparable with DSA. Assessment of untreated AVMs is a promising clinical application of ultra-high-field MRA. • Non-contrast-enhanced 7 Tesla MRA demonstrates excellent image quality for intracerebral AVM depiction. • Image quality at 7 Tesla was comparable with DSA considering both sequences. • Assessment of intracerebral AVMs is a promising clinical application of ultra-high-field MRA.

  1. In vivo differentiation of complementary contrast media at dual-energy CT.

    PubMed

    Mongan, John; Rathnayake, Samira; Fu, Yanjun; Wang, Runtang; Jones, Ella F; Gao, Dong-Wei; Yeh, Benjamin M

    2012-10-01

    To evaluate the feasibility of using a commercially available clinical dual-energy computed tomographic (CT) scanner to differentiate the in vivo enhancement due to two simultaneously administered contrast media with complementary x-ray attenuation ratios. Approval from the institutional animal care and use committee was obtained, and National Institutes of Health guidelines for the care and use of laboratory animals were observed. Dual-energy CT was performed in a set of iodine and tungsten solution phantoms and in a rabbit in which iodinated intravenous and bismuth subsalicylate oral contrast media were administered. In addition, a second rabbit was studied after intravenous administration of iodinated and tungsten cluster contrast media. Images were processed to produce virtual monochromatic images that simulated the appearance of conventional single-energy scans, as well as material decomposition images that separate the attenuation due to each contrast medium. Clear separation of each of the contrast media pairs was seen in the phantom and in both in vivo animal models. Separation of bowel lumen from vascular contrast medium allowed visualization of bowel wall enhancement that was obscured by intraluminal bowel contrast medium on conventional CT scans. Separation of two vascular contrast media in different vascular phases enabled acquisition of a perfectly coregistered CT angiogram and venous phase-enhanced CT scan simultaneously in a single examination. Commercially available clinical dual-energy CT scanners can help differentiate the enhancement of selected pairs of complementary contrast media in vivo. © RSNA, 2012.

  2. In Vivo Differentiation of Complementary Contrast Media at Dual-Energy CT

    PubMed Central

    Mongan, John; Rathnayake, Samira; Fu, Yanjun; Wang, Runtang; Jones, Ella F.; Gao, Dong-Wei

    2012-01-01

    Purpose: To evaluate the feasibility of using a commercially available clinical dual-energy computed tomographic (CT) scanner to differentiate the in vivo enhancement due to two simultaneously administered contrast media with complementary x-ray attenuation ratios. Materials and Methods: Approval from the institutional animal care and use committee was obtained, and National Institutes of Health guidelines for the care and use of laboratory animals were observed. Dual-energy CT was performed in a set of iodine and tungsten solution phantoms and in a rabbit in which iodinated intravenous and bismuth subsalicylate oral contrast media were administered. In addition, a second rabbit was studied after intravenous administration of iodinated and tungsten cluster contrast media. Images were processed to produce virtual monochromatic images that simulated the appearance of conventional single-energy scans, as well as material decomposition images that separate the attenuation due to each contrast medium. Results: Clear separation of each of the contrast media pairs was seen in the phantom and in both in vivo animal models. Separation of bowel lumen from vascular contrast medium allowed visualization of bowel wall enhancement that was obscured by intraluminal bowel contrast medium on conventional CT scans. Separation of two vascular contrast media in different vascular phases enabled acquisition of a perfectly coregistered CT angiogram and venous phase–enhanced CT scan simultaneously in a single examination. Conclusion: Commercially available clinical dual-energy CT scanners can help differentiate the enhancement of selected pairs of complementary contrast media in vivo. © RSNA, 2012 PMID:22778447

  3. Assessment of mass detection performance in contrast enhanced digital mammography

    NASA Astrophysics Data System (ADS)

    Carton, Ann-Katherine; de Carvalho, Pablo M.; Li, Zhijin; Dromain, Clarisse; Muller, Serge

    2015-03-01

    We address the detectability of contrast-agent enhancing masses for contrast-agent enhanced spectral mammography (CESM), a dual-energy technique providing functional projection images of breast tissue perfusion and vascularity using simulated CESM images. First, the realism of simulated CESM images from anthropomorphic breast software phantoms generated with a software X-ray imaging platform was validated. Breast texture was characterized by power-law coefficients calculated in data sets of real clinical and simulated images. We also performed a 2-alternative forced choice (2-AFC) psychophysical experiment whereby simulated and real images were presented side-by-side to an experienced radiologist to test if real images could be distinguished from the simulated images. It was found that texture in our simulated CESM images has a fairly realistic appearance. Next, the relative performance of human readers and previously developed mathematical observers was assessed for the detection of iodine-enhancing mass lesions containing different contrast agent concentrations. A four alternative-forced-choice (4 AFC) task was designed; the task for the model and human observer was to detect which one of the four simulated DE recombined images contained an iodineenhancing mass. Our results showed that the NPW and NPWE models largely outperform human performance. After introduction of an internal noise component, both observers approached human performance. The CHO observer performs slightly worse than the average human observer. There is still work to be done in improving model observers as predictors of human-observer performance. Larger trials could also improve our test statistics. We hope that in the future, this framework of software breast phantoms, virtual image acquisition and processing, and mathematical observers can be beneficial to optimize CESM imaging techniques.

  4. Volumetric Contrast-Enhanced Ultrasound Imaging to Assess Early Response to Apoptosis-Inducing Anti–Death Receptor 5 Antibody Therapy in a Breast Cancer Animal Model

    PubMed Central

    Hoyt, Kenneth; Sorace, Anna; Saini, Reshu

    2013-01-01

    Objectives The objective of this study was to determine whether volumetric contrast-enhanced ultrasound (US) imaging could detect early tumor response to anti–death receptor 5 antibody (TRA-8) therapy alone or in combination with chemotherapy in a preclinical triple-negative breast cancer animal model. Methods Animal experiments had Institutional Animal Care and Use Committee approval. Thirty breast tumor–bearing mice were administered Abraxane (paclitaxel; Celgene Corporation, Summit, NJ), TRA-8, TRA-8 + Abraxane, or saline as a control on days 0, 3, 7, 10, 14, and 17. Volumetric contrast-enhanced US imaging was performed on days 0, 1, 3, and 7 before dosing. Changes in parametric maps of tumor perfusion were compared with the tumor volume and immunohistologic findings. Results Therapeutic efficacy was detected within 7 days after drug administration using parametric volumetric contrast-enhanced US imaging. Decreased tumor perfusion was observed in both the TRA-8-alone– and TRA-8 + Abraxane–dosed animals compared to control tumors (P = .17; P = .001, respectively). The reduction in perfusion observed in the TRA-8 + Abraxane group was matched with a corresponding regression in tumor size over the same period. Survival curves illustrate that the combination of TRA-8 + Abraxane improves drug efficacy compared to the same drugs administered alone. Immunohistologic analysis revealed increased levels of apoptotic activity in the TRA-8-dosed tumors, confirming enhanced antitumor effects. Conclusions Preliminary results are encouraging, and volumetric contrast-enhanced US-based tumor perfusion imaging may prove clinically feasible for detecting and monitoring the early antitumor effects in response to combination TRA-8 + Abraxane therapy. PMID:23091246

  5. Differences in Signal Intensity and Enhancement on MR Images of the Perivascular Spaces in the Basal Ganglia versus Those in White Matter.

    PubMed

    Naganawa, Shinji; Nakane, Toshiki; Kawai, Hisashi; Taoka, Toshiaki

    2018-01-18

    To elucidate differences between the perivascular space (PVS) in the basal ganglia (BG) versus that found in white matter (WM) using heavily T 2 -weighted FLAIR (hT 2 -FL) in terms of 1) signal intensity on non-contrast enhanced images, and 2) the degree of contrast enhancement by intravenous single dose administration of gadolinium based contrast agent (IV-SD-GBCA). Eight healthy men and 13 patients with suspected endolymphatic hydrops were included. No subjects had renal insufficiency. All subjects received IV-SD-GBCA. MR cisternography (MRC) and hT 2 -FL images were obtained prior to and 4 h after IV-SD-GBCA. The signal intensity of the PVS in the BG, subinsular WM, and the cerebrospinal fluid (CSF) in Ambient cistern (CSF AC ) and CSF in Sylvian fissure (CSF Syl ) was measured as well as that of the thalamus. The signal intensity ratio (SIR) was calculated by dividing the intensity by that of the thalamus. We used 5% as a threshold to determine the significance of the statistical test. In the pre-contrast scan, the SIR of the PVS in WM (Mean ± standard deviation, 1.83 ± 0.46) was significantly higher than that of the PVS in the BG (1.05 ± 0.154), CSF Syl (1.03 ± 0.15) and the CSF AC (0.97 ± 0.29). There was no significant difference between the SIR of the PVS in the BG compared to the CSF AC and CSF Syl . For the evaluation of the contrast enhancement effect, significant enhancement was observed in the PVS in the BG, the CSF AC and the CSF Syl compared to the pre-contrast scan. No significant contrast enhancement was observed in the PVS in WM. The signal intensity difference between the PVS in the BG versus WM on pre-contrast images suggests that the fluid composition might be different between these PVSs. The difference in the contrast enhancement between the PVSs in the BG versus WM suggests a difference in drainage function.

  6. Optical clearing of skin enhanced with hyaluronic acid for increased contrast of optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Liopo, Anton; Su, Richard; Tsyboulski, Dmitri A.; Oraevsky, Alexander A.

    2016-08-01

    Enhanced delivery of optical clearing agents (OCA) through skin may improve sensitivity of optical and optoacoustic (OA) methods of imaging, sensing, and monitoring. This report describes a two-step method for enhancement of light penetration through skin. Here, we demonstrate that topical application of hyaluronic acid (HA) improves skin penetration of hydrophilic and lipophilic OCA and thus enhances their performance. We examined the OC effect of 100% polyethylene and polypropylene glycols (PPGs) and their mixture after pretreatment by HA, and demonstrated significant increase in efficiency of light penetration through skin. Increased light transmission resulted in a significant increase of OA image contrast in vitro. Topical pretreatment of skin for about 30 min with 0.5% HA in aqueous solution offers effective delivery of low molecular weight OCA such as a mixture of PPG-425 and polyethylene glycol (PEG)-400. The developed approach of pretreatment by HA prior to application of clearing agents (PEG and PPG) resulted in a ˜47-fold increase in transmission of red and near-infrared light and significantly enhanced contrast of OA images.

  7. Complete penile corporeal septation: evaluation with contrast enhanced US.

    PubMed

    Bertolotto, Michele; Bucci, Stefano; Quaia, Emilio; Coss, Matteo; Liguori, Giovanni

    2008-01-01

    Complete penile corporeal septation is a rare malformation in which the corpora cavernosa are completely isolated. We describe a new method to reach the diagnosis of this malformation using contrast enhanced US. Two patients with complete penile corporeal septation underwent color Doppler and contrast enhanced US after bilateral cavernosal injection of 10 microg prostaglandin E1. Contrast enhanced US was performed using a contrast specific software (Contrast-Tuned imaging, EsaOte, Genoa, Italy) and a linear transducer designed to evaluate superficial structures. Microbubbles of SonoVue (Bracco, Milan, Italy) were injected in one corpus cavernosum. After cavernosal injection of microbubbles no adverse events were observed. Contrast enhanced US showed unilateral enhancement of the corpus cavernosum in which microbubbles were injected. Cavernosography confirmed unilateral corporeal opacification. Contrast enhanced US can be used effectively to diagnose complete penile corporeal septation.

  8. Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST-AFTA

    NASA Technical Reports Server (NTRS)

    Gong, Qian; Mcelwain, Michael; Greeley, Bradford; Grammer, Bryan; Marx, Catherine; Memarsadeghi, Nargess; Stapelfeldt, Karl; Hilton, George; Sayson, Jorge Llop; Perrin, Marshall; hide

    2015-01-01

    Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) is a lenslet array based integral field spectrometer (IFS) designed for high contrast imaging of extrasolar planets. PISCES will be used to advance the technology readiness of the high contrast IFS baselined on the Wide-Field InfraRed Survey Telescope/Astrophysics Focused Telescope Assets (WFIRST-AFTA) coronagraph instrument. PISCES will be integrated into the high contrast imaging testbed (HCIT) at the Jet Propulsion Laboratory (JPL) and will work with both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC) configurations. We discuss why the lenslet array based IFS was selected for PISCES. We present the PISCES optical design, including the similarities and differences of lenslet based IFSs to normal spectrometers, the trade-off between a refractive design and reflective design, as well as the specific function of our pinhole mask on the back surface of the lenslet array to reduce the diffraction from the edge of the lenslets. The optical analysis, alignment plan, and mechanical design of the instrument will be discussed.

  9. Electric Field Reconstruction in the Image Plane of a High-Contrast Coronagraph Using a Set of Pinholes around the Lyot Plane

    NASA Technical Reports Server (NTRS)

    Giveona, Amir; Shaklan, Stuart; Kern, Brian; Noecker, Charley; Kendrick, Steve; Wallace, Kent

    2012-01-01

    In a setup similar to the self coherent camera, we have added a set of pinholes in the diffraction ring of the Lyot plane in a high-contrast stellar Lyot coronagraph. We describe a novel complex electric field reconstruction from image plane intensity measurements consisting of light in the coronagraph's dark hole interfering with light from the pinholes. The image plane field is modified by letting light through one pinhole at a time. In addition to estimation of the field at the science camera, this method allows for self-calibration of the probes by letting light through the pinholes in various permutations while blocking the main Lyot opening. We present results of estimation and calibration from the High Contrast Imaging Testbed along with a comparison to the pair-wise deformable mirror diversity based estimation technique. Tests are carried out in narrow-band light and over a composite 10% bandpass.

  10. Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography.

    PubMed

    Baruchel, J; Cloetens, P; Härtwig, J; Ludwig, W; Mancini, L; Pernot, P; Schlenker, M

    2000-05-01

    Several hard X-rays imaging techniques greatly benefit from the coherence of the beams delivered by the modern synchrotron radiation sources. This is illustrated with examples recorded on the 'long' (145 m) ID19 'imaging' beamline of the ESRF. Phase imaging is directly related to the small angular size of the source as seen from one point of the sample ('effective divergence' approximately microradians). When using the ;propagation' technique, phase radiography and tomography are instrumentally very simple. They are often used in the 'edge detection' regime, where the jumps of density are clearly observed. The in situ damage assessment of micro-heterogeneous materials is one example of the many applications. Recently a more quantitative approach has been developed, which provides a three-dimensional density mapping of the sample ('holotomography'). The combination of diffraction topography and phase-contrast imaging constitutes a powerful tool. The observation of holes of discrete sizes in quasicrystals, and the investigation of poled ferroelectric materials, result from this combination.

  11. Interactive MR image guidance for neurosurgical and minimally invasive procedures

    NASA Astrophysics Data System (ADS)

    Wong, Terence Z.; Schwartz, Richard B.; Pergolizzi, Richard S., Jr.; Black, Peter M.; Kacher, Daniel F.; Morrison, Paul R.; Jolesz, Ferenc A.

    1999-05-01

    Advantages of MR imaging for guidance of minimally invasive procedures include exceptional soft tissue contrast, intrinsic multiplanar imaging capability, and absence of exposure to ionizing radiation. Specialized imaging sequences are available and under development which can further enhance diagnosis and therapy. Flow-sensitive imaging techniques can be used to identify vascular structures. Temperature-sensitive imaging is possible which can provide interactive feedback prior to, during, and following the delivery of thermal energy. Functional MR imaging and dynamic contrast-enhanced MRI sequences can provide additional information for guidance in neurosurgical applications. Functional MR allows mapping of eloquent areas in the brain, so that these areas may be avoided during therapy. Dynamic contrast enhancement techniques can be useful for distinguishing active tumor from tumor necrosis caused by previous radiation therapy. An open-configuration 0.5T MRI system (GE Signa SP) developed at Brigham and Women's Hospital in collaboration with General Electric Medical Systems is described. Interactive navigation systems have been integrated into the MRI system. The imaging system is sited in an operating room environment, and used for image guided neurosurgical procedures (biopsies and tumor excision), as well as minimally invasive thermal therapies. Examples of MR imaging guidance, navigational techniques, and clinical applications are presented.

  12. Nondestructive assessment of the severity of occlusal caries lesions with near-infrared imaging at 1310 nm.

    PubMed

    Lee, Chulsung; Lee, Dustin; Darling, Cynthia L; Fried, Daniel

    2010-01-01

    The high transparency of dental enamel in the near-infrared (NIR) at 1310 nm can be exploited for imaging dental caries without the use of ionizing radiation. The objective of this study is to determine whether the lesion contrast derived from NIR imaging in both transmission and reflectance can be used to estimate lesion severity. Two NIR imaging detector technologies are investigated: a new Ge-enhanced complementary metal-oxide-semiconductor (CMOS)-based NIR imaging camera, and an InGaAs focal plane array (FPA). Natural occlusal caries lesions are imaged with both cameras at 1310 nm, and the image contrast between sound and carious regions is calculated. After NIR imaging, teeth are sectioned and examined using polarized light microscopy (PLM) and transverse microradiography (TMR) to determine lesion severity. Lesions are then classified into four categories according to lesion severity. Lesion contrast increases significantly with lesion severity for both cameras (p<0.05). The Ge-enhanced CMOS camera equipped with the larger array and smaller pixels yields higher contrast values compared with the smaller InGaAs FPA (p<0.01). Results demonstrate that NIR lesion contrast can be used to estimate lesion severity.

  13. Nondestructive assessment of the severity of occlusal caries lesions with near-infrared imaging at 1310 nm

    PubMed Central

    Lee, Chulsung; Lee, Dustin; Darling, Cynthia L.; Fried, Daniel

    2010-01-01

    The high transparency of dental enamel in the near-infrared (NIR) at 1310 nm can be exploited for imaging dental caries without the use of ionizing radiation. The objective of this study is to determine whether the lesion contrast derived from NIR imaging in both transmission and reflectance can be used to estimate lesion severity. Two NIR imaging detector technologies are investigated: a new Ge-enhanced complementary metal-oxide-semiconductor (CMOS)-based NIR imaging camera, and an InGaAs focal plane array (FPA). Natural occlusal caries lesions are imaged with both cameras at 1310 nm, and the image contrast between sound and carious regions is calculated. After NIR imaging, teeth are sectioned and examined using polarized light microscopy (PLM) and transverse microradiography (TMR) to determine lesion severity. Lesions are then classified into four categories according to lesion severity. Lesion contrast increases significantly with lesion severity for both cameras (p<0.05). The Ge-enhanced CMOS camera equipped with the larger array and smaller pixels yields higher contrast values compared with the smaller InGaAs FPA (p<0.01). Results demonstrate that NIR lesion contrast can be used to estimate lesion severity. PMID:20799842

  14. Nondestructive assessment of the severity of occlusal caries lesions with near-infrared imaging at 1310 nm

    NASA Astrophysics Data System (ADS)

    Lee, Chulsung; Lee, Dustin; Darling, Cynthia L.; Fried, Daniel

    2010-07-01

    The high transparency of dental enamel in the near-infrared (NIR) at 1310 nm can be exploited for imaging dental caries without the use of ionizing radiation. The objective of this study is to determine whether the lesion contrast derived from NIR imaging in both transmission and reflectance can be used to estimate lesion severity. Two NIR imaging detector technologies are investigated: a new Ge-enhanced complementary metal-oxide-semiconductor (CMOS)-based NIR imaging camera, and an InGaAs focal plane array (FPA). Natural occlusal caries lesions are imaged with both cameras at 1310 nm, and the image contrast between sound and carious regions is calculated. After NIR imaging, teeth are sectioned and examined using polarized light microscopy (PLM) and transverse microradiography (TMR) to determine lesion severity. Lesions are then classified into four categories according to lesion severity. Lesion contrast increases significantly with lesion severity for both cameras (p<0.05). The Ge-enhanced CMOS camera equipped with the larger array and smaller pixels yields higher contrast values compared with the smaller InGaAs FPA (p<0.01). Results demonstrate that NIR lesion contrast can be used to estimate lesion severity.

  15. Resonance surface plasmon spectroscopy by tunable enhanced light transmission through nanostructured gratings and thin films

    NASA Astrophysics Data System (ADS)

    Yeh, Wei-Hsun

    Surface plasmon resonance (SPR) is a powerful tool in probing interfacial events in that any changes of effective refractive index in the interface directly impact the behavior of surface plasmons, an electromagnetic wave, travelling along the interface. Surface plasmons (SPs) are generated only if the momemtum of incident light matches that of SPs in the interface. This thesis focuses on tuning the behavior of SPs by changing the topology of diffraction gratings, monitoring the thickness of thin films by diffraction gratings, and use of dispersion images to analyze complex optical responses of SPs through diffraction gratings. Chapter 1 covers the background/principle of SPR, comprehensive literature review, sensor applications, control of SPR spectral responses, and sensitivity of SPR. In Chapter 2, we illustrate a chirped grating with varying surface topology along its spatial position. We demonstrated that the features of nanostructure such as pitch and amplitude significantly impact the behavior of enhanced transmission. In addition, we also illustrate the sensing application of chirped grating and the results indicate that the chirped grating is a sensitive and information rich SPR platform. In chapter 3, we used a commercial DVD diffraction grating as a SPR coupler. A camera-mounted microscope with Bertrend lens attachment is used to observe the enhanced transmission. We demonstrate that this system can monitor the SPR responses and track the thickness of a silicon monoxide film without using a spectrophotometer. Surface plasmons are a result of collective oscillation of free electrons in the metal/dielectric interface. Thus, the interaction of SPs with delocalized electrons from molecular resonance is complex. In chapter 4, we perform both experimental and simulation works to address this complex interaction. Detailed examination and analysis show nontypical SPR responses. For p-polarized light, a branch of dispersion curve and quenching of SPs in the Q band of zinc phthalocyanine are observed. For both p- and s-polarized light, additional waveguided modes are observed and the wavelength from different guided modes are dispersed. Diffraction gratings can provide complicated optical information about SPs. Both front side (air/metal) and back side (metal/substrate) provide SPR signals simultaneously. In chapter 5, we use dispersion images to analyze the complicated optical responses of SPR from an asymmetrical diffraction grating consisting of three layers (air/gold/polycarbonate). We illustrate that clear identification of SPR responses from several diffraction orders at front side and back side can be achieved by the use of dispersion images. Theoretical prediction and experimental results show consistency. We also show that only the behavior of SPs from the front side is impacted by the deposition of Langmuir-Blodgett dielectric films. In chapter 6, we construct a diffraction grating that has a fixed pitch and several amplitudes on its surface by using interference lithography. The purpose of this work is to examine how the amplitude impacts the behavior of transmission peaks. Different amplitudes are successfully fabricated by varying development time in the lithography process. We observed that largest (optimized) enhanced transmission peak shows as the amplitude approach a critical value. Transmission is not maximized below or beyond a critical amplitude. We also found that transmission enhancements are strongly affected by the diffraction efficiencies. A maximum enhancement is observed as diffraction efficiency is largest where amplitude reaches the critical value. The experimental results are then compared to the simulation. (Abstract shortened by UMI.)

  16. Electron ptychographic phase imaging of light elements in crystalline materials using Wigner distribution deconvolution

    DOE PAGES

    Yang, Hao; MacLaren, Ian; Jones, Lewys; ...

    2017-04-01

    Recent development in fast pixelated detector technology has allowed a two dimensional diffraction pattern to be recorded at every probe position of a two dimensional raster scan in a scanning transmission electron microscope (STEM), forming an information-rich four dimensional (4D) dataset. Electron ptychography has been shown to enable efficient coherent phase imaging of weakly scattering objects from a 4D dataset recorded using a focused electron probe, which is optimised for simultaneous incoherent Z-contrast imaging and spectroscopy in STEM. Thus coherent phase contrast and incoherent Z-contrast imaging modes can be efficiently combined to provide a good sensitivity of both light andmore » heavy elements at atomic resolution. Here, we explore the application of electron ptychography for atomic resolution imaging of strongly scattering crystalline specimens, and present experiments on imaging crystalline specimens including samples containing defects, under dynamical channelling conditions using an aberration corrected microscope. A ptychographic reconstruction method called Wigner distribution deconvolution (WDD) was implemented. Our experimental results and simulation results suggest that ptychography provides a readily interpretable phase image and great sensitivity for imaging light elements at atomic resolution in relatively thin crystalline materials.« less

  17. [Non-contrast time-resolved magnetic resonance angiography combining high resolution multiple phase echo planar imaging based signal targeting and alternating radiofrequency contrast inherent inflow enhanced multi phase angiography combining spatial resolution echo planar imaging based signal targeting and alternating radiofrequency in intracranial arteries].

    PubMed

    Nakamura, Masanobu; Yoneyama, Masami; Tabuchi, Takashi; Takemura, Atsushi; Obara, Makoto; Sawano, Seishi

    2012-01-01

    Detailed information on anatomy and hemodynamics in cerebrovascular disorders such as AVM and Moyamoya disease is mandatory for defined diagnosis and treatment planning. Arterial spin labeling technique has come to be applied to magnetic resonance angiography (MRA) and perfusion imaging in recent years. However, those non-contrast techniques are mostly limited to single frame images. Recently we have proposed a non-contrast time-resolved MRA technique termed contrast inherent inflow enhanced multi phase angiography combining spatial resolution echo planar imaging based signal targeting and alternating radiofrequency (CINEMA-STAR). CINEMA-STAR can extract the blood flow in the major intracranial arteries at an interval of 70 ms and thus permits us to observe vascular construction in full by preparing MIP images of axial acquisitions with high spatial resolution. This preliminary study demonstrates the usefulness of the CINEMA-STAR technique in evaluating the cerebral vasculature.

  18. Comparison of SPECT/CT, MRI and CT in diagnosis of skull base bone invasion in nasopharyngeal carcinoma.

    PubMed

    Zhang, Shu-xu; Han, Peng-hui; Zhang, Guo-qian; Wang, Rui-hao; Ge, Yong-bin; Ren, Zhi-gang; Li, Jian-sheng; Fu, Wen-hai

    2014-01-01

    Early detection of skull base invasion in nasopharyngeal carcinoma (NPC) is crucial for correct staging, assessing treatment response and contouring the tumor target in radiotherapy planning, as well as improving the patient's prognosis. To compare the diagnostic efficacy of single photon emission computed tomography/computed tomography (SPECT/CT) imaging, magnetic resonance imaging (MRI) and computed tomography (CT) for the detection of skull base invasion in NPC. Sixty untreated patients with histologically proven NPC underwent SPECT/CT imaging, contrast-enhanced MRI and CT. Of the 60 patients, 30 had skull base invasion confirmed by the final results of contrast-enhanced MRI, CT and six-month follow-up imaging (MRI and CT). The diagnostic efficacy of the three imaging modalities in detecting skull base invasion was evaluated. The rates of positive findings of skull base invasion for SPECT/CT, MRI and CT were 53.3%, 48.3% and 33.3%, respectively. The sensitivity, specificity and accuracy were 93.3%, 86.7% and 90.0% for SPECT/CT fusion imaging, 96.7%, 100.0% and 98.3% for contrast-enhanced MRI, and 66.7%, 100.0% and 83.3% for contrast-enhanced CT. MRI showed the best performance for the diagnosis of skull base invasion in nasopharyngeal carcinoma, followed closely by SPECT/CT. SPECT/CT had poorer specificity than that of both MRI and CT, while CT had the lowest sensitivity.

  19. Single-energy non-contrast hepatic steatosis criteria applied to virtual non-contrast images: is it still highly specific and positively predictive?

    PubMed

    Haji-Momenian, S; Parkinson, W; Khati, N; Brindle, K; Earls, J; Zeman, R K

    2018-06-01

    To determine the sensitivity, specificity, and predictive values of single-energy non-contrast hepatic steatosis criteria on dual-energy virtual non-contrast (VNC) images. Forty-eight computed tomography (CT) examinations, which included single-energy non-contrast (TNC) and contrast-enhanced dual-energy CT angiography (CTA) of the abdomen, were enrolled. VNC images were reconstructed from the CTA. Region of interest (ROI) attenuations were measured in the right and left hepatic lobes, spleen, and aorta on TNC and VNC images. The right and left hepatic lobes were treated as separate samples. Steatosis was diagnosed based on TNC liver attenuation of ≤40 HU or liver attenuation index (LAI) of ≤-10 HU, which are extremely specific and predictive for moderate to severe steatosis. The sensitivity, specificity, and predictive values of VNC images for steatosis were calculated. VNC-TNC deviations were correlated with aortic enhancement and patient water equivalent diameter (PWED). Thirty-two liver ROIs met steatosis criteria based on TNC attenuation; VNC attenuation had sensitivity, specificity, and a positive predictive value of 66.7%, 100%, and 100%, respectively. Twenty-one liver ROIs met steatosis criteria based on TNC LAI. VNC LAI had sensitivity, specificity, and positive predictive values of 61.9%, 90.7%, and 65%, respectively. Hepatic and splenic VNC-TNC deviations did not correlate with one another (R 2 =0.08), aortic enhancement (R 2 <0.06) or PWED (R 2 <0.09). Non-contrast hepatic attenuation criteria is extremely specific and positively predictive for moderate to severe steatosis on VNC reconstructions from the arterial phase. Hepatic attenuation performs better than LAI criteria. VNC deviations are independent of aortic enhancement and PWED. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  20. The detectability of brain metastases using contrast-enhanced spin-echo or gradient-echo images: a systematic review and meta-analysis.

    PubMed

    Suh, Chong Hyun; Jung, Seung Chai; Kim, Kyung Won; Pyo, Junhee

    2016-09-01

    This study aimed to compare the detectability of brain metastases using contrast-enhanced spin-echo (SE) and gradient-echo (GRE) T1-weighted images. The Ovid-MEDLINE and EMBASE databases were searched for studies on the detectability of brain metastases using contrast-enhanced SE or GRE images. The pooled proportions for the detectability of brain metastases were assessed using random-effects modeling. Heterogeneity among studies was determined using χ (2) statistics for the pooled estimates and the inconsistency index, I (2) . To overcome heterogeneity, subgroup analyses according to slice thickness and lesion size were performed. A total of eight eligible studies, which included a sample size of 252 patients and 1413 brain metastases, were included. The detectability of brain metastases using SE images (89.2 %) was higher than using GRE images (81.6 %; adjusted 84.0 %), but this difference was not statistically significant (p = 0.2385). In subgroup analysis of studies with 1-mm-thick slices and small metastases (<5 mm in diameter), 3-dimensional (3D) SE images demonstrated a higher detectability in comparison to 3D GRE images (93.7 % vs 73.1 % in 1-mm-thick slices; 89.5 % vs 59.4 % for small metastases) (p < 0.0001). Although both SE or GRE images are acceptable for detecting brain metastases, contrast-enhanced 3D SE images using 1-mm-thick slices are preferred for detecting brain metastases, especially small lesions (<5 mm in diameter).

  1. Fundamentals of quantitative dynamic contrast-enhanced MR imaging.

    PubMed

    Paldino, Michael J; Barboriak, Daniel P

    2009-05-01

    Quantitative analysis of dynamic contrast-enhanced MR imaging (DCE-MR imaging) has the power to provide information regarding physiologic characteristics of the microvasculature and is, therefore, of great potential value to the practice of oncology. In particular, these techniques could have a significant impact on the development of novel anticancer therapies as a promising biomarker of drug activity. Standardization of DCE-MR imaging acquisition and analysis to provide more reproducible measures of tumor vessel physiology is of crucial importance to realize this potential. The purpose of this article is to review the pathophysiologic basis and technical aspects of DCE-MR imaging techniques.

  2. Rational Variety Mapping for Contrast-Enhanced Nonlinear Unsupervised Segmentation of Multispectral Images of Unstained Specimen

    PubMed Central

    Kopriva, Ivica; Hadžija, Mirko; Popović Hadžija, Marijana; Korolija, Marina; Cichocki, Andrzej

    2011-01-01

    A methodology is proposed for nonlinear contrast-enhanced unsupervised segmentation of multispectral (color) microscopy images of principally unstained specimens. The methodology exploits spectral diversity and spatial sparseness to find anatomical differences between materials (cells, nuclei, and background) present in the image. It consists of rth-order rational variety mapping (RVM) followed by matrix/tensor factorization. Sparseness constraint implies duality between nonlinear unsupervised segmentation and multiclass pattern assignment problems. Classes not linearly separable in the original input space become separable with high probability in the higher-dimensional mapped space. Hence, RVM mapping has two advantages: it takes implicitly into account nonlinearities present in the image (ie, they are not required to be known) and it increases spectral diversity (ie, contrast) between materials, due to increased dimensionality of the mapped space. This is expected to improve performance of systems for automated classification and analysis of microscopic histopathological images. The methodology was validated using RVM of the second and third orders of the experimental multispectral microscopy images of unstained sciatic nerve fibers (nervus ischiadicus) and of unstained white pulp in the spleen tissue, compared with a manually defined ground truth labeled by two trained pathophysiologists. The methodology can also be useful for additional contrast enhancement of images of stained specimens. PMID:21708116

  3. Comparison of Low-Dose Higher-Relaxivity and Standard-Dose Lower-Relaxivity Contrast Media for Delayed-Enhancement MRI: A Blinded Randomized Crossover Study.

    PubMed

    Cheong, Benjamin Y C; Duran, Cihan; Preventza, Ourania A; Muthupillai, Raja

    2015-09-01

    The gadolinium-based MRI contrast agent gadobenate dimeglumine has nearly twice the MR relaxivity of gadopentetate dimeglumine at 1.5 T. The purpose of this study was to determine whether a lower dose (0.1 mmol/kg) of gadobenate dimeglumine can be used to obtain delayed-enhancement MR images comparable to those obtained with a standard dose (0.2 mmol/kg) of gadopentetate dimeglumine. In this blinded randomized crossover study, 20 patients with known myocardial infarction underwent two separate delayed-enhancement MRI examinations after receiving 0.1 mmol/kg gadobenate dimeglumine and 0.2 mmol/kg gadopentetate dimeglumine (random administration). The conspicuity of lesion enhancement 5, 10, and 20 minutes after contrast administration was quantified as relative enhancement ratio (RER). With either gadolinium-based contrast agent, damaged myocardium had higher signal intensity than normal remote myocardium (RER > 4) on delayed-enhancement MR images, and the blood RER declined over time after contrast administration. The blood RER was not significantly higher for gadobenate dimeglumine than for gadopentetate dimeglumine at 5 and 10 minutes. Nevertheless, there was a larger reduction in blood RER for gadobenate dimeglumine than for gadopentetate dimeglumine between 5 and 10 minutes and between 10 and 20 minutes. The volumes of enhancement were similar for gadobenate dimeglumine (13.6 ± 8.8 cm(3)) and gadopentetate dimeglumine (13.5 ± 8.9 cm(3)) (p = 0.98). The mean difference in Bland-Altman analysis for delayed-enhancement volume between the agents was 0.1 cm(3). Qualitatively and quantitatively, delayed-enhancement MR images of ischemic myocardium obtained with 0.1 mmol/kg gadobenate dimeglumine are comparable to those obtained with 0.2 mmol/kg gadopentetate dimeglumine 5, 10, and 20 minutes after contrast administration.

  4. Complex adaptation-based LDR image rendering for 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Hak; Kwon, Hyuk-Ju; Sohng, Kyu-Ik

    2014-07-01

    A low-dynamic tone-compression technique is developed for realistic image rendering that can make three-dimensional (3D) images similar to realistic scenes by overcoming brightness dimming in the 3D display mode. The 3D surround provides varying conditions for image quality, illuminant adaptation, contrast, gamma, color, sharpness, and so on. In general, gain/offset adjustment, gamma compensation, and histogram equalization have performed well in contrast compression; however, as a result of signal saturation and clipping effects, image details are removed and information is lost on bright and dark areas. Thus, an enhanced image mapping technique is proposed based on space-varying image compression. The performance of contrast compression is enhanced with complex adaptation in a 3D viewing surround combining global and local adaptation. Evaluating local image rendering in view of tone and color expression, noise reduction, and edge compensation confirms that the proposed 3D image-mapping model can compensate for the loss of image quality in the 3D mode.

  5. Advanced Image Enhancement Method for Distant Vessels and Structures in Capsule Endoscopy

    PubMed Central

    Pedersen, Marius

    2017-01-01

    This paper proposes an advanced method for contrast enhancement of capsule endoscopic images, with the main objective to obtain sufficient information about the vessels and structures in more distant (or darker) parts of capsule endoscopic images. The proposed method (PM) combines two algorithms for the enhancement of darker and brighter areas of capsule endoscopic images, respectively. The half-unit weighted-bilinear algorithm (HWB) proposed in our previous work is used to enhance darker areas according to the darker map content of its HSV's component V. Enhancement of brighter areas is achieved thanks to the novel threshold weighted-bilinear algorithm (TWB) developed to avoid overexposure and enlargement of specular highlight spots while preserving the hue, in such areas. The TWB performs enhancement operations following a gradual increment of the brightness of the brighter map content of its HSV's component V. In other words, the TWB decreases its averaged weights as the intensity content of the component V increases. Extensive experimental demonstrations were conducted, and, based on evaluation of the reference and PM enhanced images, a gastroenterologist (Ø.H.) concluded that the PM enhanced images were the best ones based on the information about the vessels, contrast in the images, and the view or visibility of the structures in more distant parts of the capsule endoscopy images. PMID:29225668

  6. A high throughput liquid crystal light shutter for unpolarized light using polymer polarization gratings

    NASA Astrophysics Data System (ADS)

    Komanduri, Ravi K.; Lawler, Kris F.; Escuti, Michael J.

    2011-05-01

    We report on a broadband, diffractive, light shutter with the ability to modulate unpolarized light. This polarizer-free approach employs a conventional liquid crystal (LC) switch, combined with broadband Polarization Gratings (PGs) formed with polymer LC materials. The thin-film PGs act as diffractive polarizing beam-splitters, while the LC switch operates on both orthogonal polarization states simultaneously. As an initial experimental proof-of- concept for unpolarized light with +/-7° aperture, we utilize a commercial twisted-nematic LC switch and our own polymer PGs to achieve a peak transmittance of 80% and peak contrast ratio of 230:1. We characterize the optoelectronic performance, discuss the limitations, and evaluate its use in potential nonmechanical shutter applications (imaging and non-imaging).

  7. Morphological rational multi-scale algorithm for color contrast enhancement

    NASA Astrophysics Data System (ADS)

    Peregrina-Barreto, Hayde; Terol-Villalobos, Iván R.

    2010-01-01

    Contrast enhancement main goal consists on improving the image visual appearance but also it is used for providing a transformed image in order to segment it. In mathematical morphology several works have been derived from the framework theory for contrast enhancement proposed by Meyer and Serra. However, when working with images with a wide range of scene brightness, as for example when strong highlights and deep shadows appear in the same image, the proposed morphological methods do not allow the enhancement. In this work, a rational multi-scale method, which uses a class of morphological connected filters called filters by reconstruction, is proposed. Granulometry is used by finding the more accurate scales for filters and with the aim of avoiding the use of other little significant scales. The CIE-u'v'Y' space was used to introduce our results since it takes into account the Weber's Law and by avoiding the creation of new colors it permits to modify the luminance values without affecting the hue. The luminance component ('Y) is enhanced separately using the proposed method, next it is used for enhancing the chromatic components (u', v') by means of the center of gravity law of color mixing.

  8. Liver DCE-MRI Registration in Manifold Space Based on Robust Principal Component Analysis.

    PubMed

    Feng, Qianjin; Zhou, Yujia; Li, Xueli; Mei, Yingjie; Lu, Zhentai; Zhang, Yu; Feng, Yanqiu; Liu, Yaqin; Yang, Wei; Chen, Wufan

    2016-09-29

    A technical challenge in the registration of dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging in the liver is intensity variations caused by contrast agents. Such variations lead to the failure of the traditional intensity-based registration method. To address this problem, a manifold-based registration framework for liver DCE-MR time series is proposed. We assume that liver DCE-MR time series are located on a low-dimensional manifold and determine intrinsic similarities between frames. Based on the obtained manifold, the large deformation of two dissimilar images can be decomposed into a series of small deformations between adjacent images on the manifold through gradual deformation of each frame to the template image along the geodesic path. Furthermore, manifold construction is important in automating the selection of the template image, which is an approximation of the geodesic mean. Robust principal component analysis is performed to separate motion components from intensity changes induced by contrast agents; the components caused by motion are used to guide registration in eliminating the effect of contrast enhancement. Visual inspection and quantitative assessment are further performed on clinical dataset registration. Experiments show that the proposed method effectively reduces movements while preserving the topology of contrast-enhancing structures and provides improved registration performance.

  9. Potential Cost Savings of Contrast-Enhanced Digital Mammography.

    PubMed

    Patel, Bhavika K; Gray, Richard J; Pockaj, Barbara A

    2017-06-01

    The purpose of this article is to discuss whether the sensitivity and specificity of contrast-enhanced digital mammography (CEDM) render it a viable diagnostic alternative to breast MRI. That CEDM couples low-energy images (comparable to the diagnostic quality of standard mammography) and subtracted contrast-enhanced mammograms make it a cost-effective modality and a realistic substitute for the more costly breast MRI.

  10. The application of paramagnetic contrast-based T2 effect to 3D heavily T2W high-resolution MR imaging of the brachial plexus and its branches.

    PubMed

    Wang, Lixia; Niu, Yanfeng; Kong, Xiangquan; Yu, Qun; Kong, Xiangchuang; Lv, Yinzhang; Shi, Heshui; Li, Chungao; Wu, Wenjun; Wang, Bing; Liu, Dingxi

    2016-03-01

    To introduce a new 3D magnetic resonance neurography (MRN) method involving a paramagnetic contrast-based T2 effect coupled with an advanced 3D heavily T2W SPACE-STIR high resolution imaging sequence that would enhance the contrast between nervous tissue and surrounding tissues. Thirty subjects (average age, 39.6±17.0 years; 18 male and 12 female) were enrolled, including three patients with brachial plexopathy and 27 healthy volunteers. Subjective scores from two neuroradiologists, evaluating noncontrast MRN (cMRN) and 3D SPACE-STIR contrast enhanced MRN (ceMRN) 3D data using a 3-point scoring system, were compared using Wilcoxon signed-rank test. Contrast-to-noise ratios (CNRs), SNRs, and contrast ratios within the brachial plexus on cMRN vs. ceMRN MIP and source images were also compared using the paired t-test. The average score for cMRN (0.77±0.43) was significantly lower than ceMRN (1.73±0.45) (p<0.001). Lower nerve vs. vein CNRs were found on cMRN vs. ceMRN, respectively (p<0.001 for both source and MIP images). All nerve-to-surrounding tissue contrast ratios (i.e., fat, muscle, veins, and bone) were higher for ceMRN compared with cMRN for both source and MIP images (all p<0.05). The improved 3D visualization of the brachial plexus and its branches, using this new contrast-enhanced MRN method, can provide high resolution imaging which may be of significant value in the assessment of brachial plexopathy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging.

    PubMed

    Montazel, Jean-Luc; Divine, Marine; Lepage, Eric; Kobeiter, Hicham; Breil, Stephane; Rahmouni, Alain

    2003-12-01

    To determine the patterns of dynamic enhancement of normal spinal bone marrow in adults at gadolinium-enhanced magnetic resonance (MR) imaging and the changes that occur with aging. Dynamic contrast material-enhanced MR imaging of the thoracolumbar spine was performed in 71 patients. The maximum percentage of enhancement (Emax), enhancement slope, and enhancement washout were determined from bone marrow enhancement time curves (ETCs). The bone marrow signal intensity on T1-weighted spin-echo MR images was qualitatively classified into three grade categories. Quantitative ETC values were correlated with patient age and bone marrow fat content grade. Statistical analysis included mean t test comparison, analysis of variance, and regression analysis of the correlations between age and quantitative MR parameters. Emax, slope, and washout varied widely among the patients. Emax values were obtained within 1 minute after contrast material injection and ranged from 0% to 430%. Emax values were significantly higher in patients younger than 40 years than in those aged 40 years or older (P <.001). These values decreased with increasing age in a logarithmic relationship (r = 0.71). Emax values decreased as fat content increased, but some overlap among the fat content grades was noted. Analysis of variance revealed that Emax was significantly related to age (younger than 40 years vs 40 years or older) (P <.001) and fat content grade (P <.001) but not significantly related to sex. Dynamic contrast-enhanced MR imaging patterns of normal spinal bone marrow are dependent mainly on patient age and fat content.

  12. A Eu(II)-Containing Cryptate as a Redox Sensor in Magnetic Resonance Imaging of Living Tissue.

    PubMed

    Ekanger, Levi A; Polin, Lisa A; Shen, Yimin; Haacke, E Mark; Martin, Philip D; Allen, Matthew J

    2015-11-23

    The Eu(II) ion rivals Gd(III) in its ability to enhance contrast in magnetic resonance imaging. However, all reported Eu(II)-based complexes have been studied in vitro largely because the tendency of Eu(II) to oxidize to Eu(III) has been viewed as a major obstacle to in vivo imaging. Herein, we present solid- and solution-phase characterization of a Eu(II)-containing cryptate and the first in vivo use of Eu(II) to provide contrast enhancement. The results indicate that between one and two water molecules are coordinated to the Eu(II) core upon dissolution. We also demonstrate that Eu(II)-based contrast enhancement can be observed for hours in a mouse. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. GADOLINIUM(Gd)-BASED and Ion Oxide Nanoparticle Contrast Agents for Pre-Clinical and Clinical Magnetic Resonance Imaging (mri) Research

    NASA Astrophysics Data System (ADS)

    Ng, Thian C.

    2012-06-01

    It is known that one strength of MRI is its excellent soft tissue discrimination. It naturally provides sufficient contrast between the structural differences of normal and pathological tissues, their spatial extent and progression. However, to further extend its applications and enhance even more contrast for clinical studies, various Gadolinium (Gd)-based contrast agents have been developed for different organs (brain strokes, cancer, cardio-MRI, etc). These Gd-based contrast agents are paramagnetic compounds that have strong T1-effect for enhancing the contrast between tissue types. Gd-contrast can also enhance magnetic resonance angiography (CE-MRA) for studying stenosis and for measuring perfusion, vascular susceptibility, interstitial space, etc. Another class of contrast agents makes use of ferrite iron oxide nanoparticles (including Superparamagnetic Ion Oxide (SPIO) and Ultrasmall Superparamagnetic Iron Oxide (USPIO)). These nanoparticles have superior magnetic susceptibility effect and produce a drop in signal, namely in T2*-weighted images, useful for the determination of lymph nodes metastases, angiogenesis and arteriosclerosis plaques.

  14. Laser-driven powerful kHz hard x-ray source

    NASA Astrophysics Data System (ADS)

    Li, Minghua; Huang, Kai; Chen, Liming; Yan, Wenchao; Tao, Mengze; Zhao, Jiarui; Ma, Yong; Li, Yifei; Zhang, Jie

    2017-08-01

    A powerful hard x-ray source based on laser plasma interaction is developed. By introducing the kHz, 800 nm pulses onto a rotating molybdenum (Mo) disk target, intense Mo Kα x-rays are emitted with suppressed bremsstrahlung background. Results obtained with different laser intensities suggest that the dominant absorption mechanism responsible for the high conversion efficiency is vacuum heating (VH). The high degree of spatial coherence is verified. With the high average flux and a source size comparable to the laser focus spot, absorption contrast imaging and phase contrast imaging are carried out to test the imaging capability of the source. Not only useful for imaging application, this compact x-ray source is also holding great potential for ultrafast x-ray diffraction (XRD) due to the intrinsic merits such as femtosecond pulse duration and natural synchronization with the driving laser pulses.

  15. Investigation of optimal parameters for penalized maximum-likelihood reconstruction applied to iodinated contrast-enhanced breast CT

    NASA Astrophysics Data System (ADS)

    Makeev, Andrey; Ikejimba, Lynda; Lo, Joseph Y.; Glick, Stephen J.

    2016-03-01

    Although digital mammography has reduced breast cancer mortality by approximately 30%, sensitivity and specificity are still far from perfect. In particular, the performance of mammography is especially limited for women with dense breast tissue. Two out of every three biopsies performed in the U.S. are unnecessary, thereby resulting in increased patient anxiety, pain, and possible complications. One promising tomographic breast imaging method that has recently been approved by the FDA is dedicated breast computed tomography (BCT). However, visualizing lesions with BCT can still be challenging for women with dense breast tissue due to the minimal contrast for lesions surrounded by fibroglandular tissue. In recent years there has been renewed interest in improving lesion conspicuity in x-ray breast imaging by administration of an iodinated contrast agent. Due to the fully 3-D imaging nature of BCT, as well as sub-optimal contrast enhancement while the breast is under compression with mammography and breast tomosynthesis, dedicated BCT of the uncompressed breast is likely to offer the best solution for injected contrast-enhanced x-ray breast imaging. It is well known that use of statistically-based iterative reconstruction in CT results in improved image quality at lower radiation dose. Here we investigate possible improvements in image reconstruction for BCT, by optimizing free regularization parameter in method of maximum likelihood and comparing its performance with clinical cone-beam filtered backprojection (FBP) algorithm.

  16. Evaluation of contrast-enhanced power Doppler imaging for measuring blood flow

    NASA Astrophysics Data System (ADS)

    Ansaloni, Sara; Arger, Peter H.; Cary, Ted W.; Sehgal, Chandra M.

    2005-04-01

    Power Doppler ultrasound enhanced by microbubble contrast agent has been used to image tissue vascularity and blood flow for the assessment of antivascular therapies. We have proposed a multigating technique that measures bubble concentration as a function of ultrasound exposure for deriving tumor blood flow and vascularity.1 Techniques using ultrasound contrast agent are known to be sensitive to the choice of imaging parameters like mechanical index and tissue attenuation. In this paper, the roles of mechanical index (MI) and tissue attenuation were evaluated experimentally in a rubber tubing flow phantom connected to a mixing chamber and a variable speed pump. The contrast was injected in the mixing chamber and the flow rate was measured using power Doppler imaging. The measurements were repeated at different MIs (0.1 to 1.3), and at different levels of attenuation, obtained with solutions of glycerol-water (10-20%). True flow was measured by collecting liquid flowing out of the phantom over a fixed duration. At low MI (<0.5), the grayscale and Doppler signal were weak, making these images unsuitable for analysis. At higher MI (> 0.8), there was a well-defined enhancement by contrast agent resulting in reproducible flow measurements at variable MIs. A balance between the number of bubbles destroyed and the echo they generate must be achieved for optimal imaging. The increased attenuation of ultrasound by the overlying medium did not influence the flow measurements.

  17. Adaptive windowing in contrast-enhanced intravascular ultrasound imaging.

    PubMed

    Lindsey, Brooks D; Martin, K Heath; Jiang, Xiaoning; Dayton, Paul A

    2016-08-01

    Intravascular ultrasound (IVUS) is one of the most commonly-used interventional imaging techniques and has seen recent innovations which attempt to characterize the risk posed by atherosclerotic plaques. One such development is the use of microbubble contrast agents to image vasa vasorum, fine vessels which supply oxygen and nutrients to the walls of coronary arteries and typically have diameters less than 200μm. The degree of vasa vasorum neovascularization within plaques is positively correlated with plaque vulnerability. Having recently presented a prototype dual-frequency transducer for contrast agent-specific intravascular imaging, here we describe signal processing approaches based on minimum variance (MV) beamforming and the phase coherence factor (PCF) for improving the spatial resolution and contrast-to-tissue ratio (CTR) in IVUS imaging. These approaches are examined through simulations, phantom studies, ex vivo studies in porcine arteries, and in vivo studies in chicken embryos. In phantom studies, PCF processing improved CTR by a mean of 4.2dB, while combined MV and PCF processing improved spatial resolution by 41.7%. Improvements of 2.2dB in CTR and 37.2% in resolution were observed in vivo. Applying these processing strategies can enhance image quality in conventional B-mode IVUS or in contrast-enhanced IVUS, where signal-to-noise ratio is relatively low and resolution is at a premium. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Image enhancement for on-site X-ray nondestructive inspection of reinforced concrete structures.

    PubMed

    Pei, Cuixiang; Wu, Wenjing; Ueaska, Mitsuru

    2016-11-22

    The use of portable and high-energy X-ray system can provide a very promising approach for on-site nondestructive inspection of inner steel reinforcement of concrete structures. However, the noise properties and contrast of the radiographic images for thick concrete structures do often not meet the demands. To enhance the images, we present a simple and effective method for noise reduction based on a combined curvelet-wavelet transform and local contrast enhancement based on neighborhood operation. To investigate the performance of this method for our X-ray system, we have performed several experiments with using simulated and experimental data. With comparing to other traditional methods, it shows that the proposed image enhancement method has a better performance and can significantly improve the inspection performance for reinforced concrete structures.

  19. Local contrast-enhanced MR images via high dynamic range processing.

    PubMed

    Chandra, Shekhar S; Engstrom, Craig; Fripp, Jurgen; Neubert, Ales; Jin, Jin; Walker, Duncan; Salvado, Olivier; Ho, Charles; Crozier, Stuart

    2018-09-01

    To develop a local contrast-enhancing and feature-preserving high dynamic range (HDR) image processing algorithm for multichannel and multisequence MR images of multiple body regions and tissues, and to evaluate its performance for structure visualization, bias field (correction) mitigation, and automated tissue segmentation. A multiscale-shape and detail-enhancement HDR-MRI algorithm is applied to data sets of multichannel and multisequence MR images of the brain, knee, breast, and hip. In multisequence 3T hip images, agreement between automatic cartilage segmentations and corresponding synthesized HDR-MRI series were computed for mean voxel overlap established from manual segmentations for a series of cases. Qualitative comparisons between the developed HDR-MRI and standard synthesis methods were performed on multichannel 7T brain and knee data, and multisequence 3T breast and knee data. The synthesized HDR-MRI series provided excellent enhancement of fine-scale structure from multiple scales and contrasts, while substantially reducing bias field effects in 7T brain gradient echo, T 1 and T 2 breast images and 7T knee multichannel images. Evaluation of the HDR-MRI approach on 3T hip multisequence images showed superior outcomes for automatic cartilage segmentations with respect to manual segmentation, particularly around regions with hyperintense synovial fluid, across a set of 3D sequences. The successful combination of multichannel/sequence MR images into a single-fused HDR-MR image format provided consolidated visualization of tissues within 1 omnibus image, enhanced definition of thin, complex anatomical structures in the presence of variable or hyperintense signals, and improved tissue (cartilage) segmentation outcomes. © 2018 International Society for Magnetic Resonance in Medicine.

  20. Shape Effects in Nanoparticle-Based Imaging Agents

    NASA Astrophysics Data System (ADS)

    Culver, Kayla Shani Brook

    At the nanoscale, material properties become highly size and shape dependent. These properties can be manipulated and exploited for a variety of biomedical applications, including sensing, drug delivery, diagnostics, and imaging. In particular, nanoparticles of different materials, sizes and shapes have been developed as high-performance contrast agents for optical, electron, and medical imaging. In this thesis, I focus on gold nanoparticles because they are widely used as contrast agents in multiple types of imaging modalities. Additionally, the surface of gold can be readily functionalized with ligands and the structure of the particles can be manipulated to modulate their performance as imaging agents. The properties of nanoparticles can generate contrast directly. For example, the light scattering properties of gold particles can be visualized in optical microscopy, the high electron density of gold produces contrast in electron microscopy, and the x-ray absorption properties of gold can be detected in medical x-ray and computed tomography imaging. Alternatively, the properties of the nanomaterial can be exploited to modulate the signal produced by other molecules that are bound to the particle surface. The light emission of molecular fluorophores can be quenched or dramatically increased by coupling to the optical field enhancements of gold nanoparticles, and the performance of gadolinium (Gd(III))-based magnetic resonance imaging (MRI) contrast agents can be increased by coupling to the rotational motion of nanoparticles. In this dissertation, I focus specifically on how the structure of star-shaped gold particles (nanostars) can be exploited as single-particle optical probes and to dramatically enhance the relaxivity of Gd(III) bound to the surface. Differential interference contrast (DIC) is a type of wide-field diffraction-limited optical microscopy that is commonly used by biologists to image cells without labels. Here, I demonstrate the DIC can be used to characterize complex nanoscale structural features and spectral properties of gold nanostars. Specifically, by evaluating the DIC contrast and image patterns of single nanostars, I distinguished between flat and 3D geometries, identified nanostars with 4-fold symmetry, and determined nanostar orientation. Additionally, in multi-wavelength DIC imaging, an inversion in the contrast could be used to indicate the localized surface plasmon resonance of nanostars with 1 and 2 branches. Next, I used DIC to track the rotational and translational dynamics of functionalized nanostars interacting with live cell membranes. The DNA aptamer ligand on the nanostars specifically targets the transmembrane receptor HER2. I tracked single nanoconstructs over long time scales (˜ 20 minutes per particle, > 80 minutes total) with high temporal resolution (4 fps) and found that analysis of the DIC contrast fluctuations could be used to identify multiple modes of rotational behavior on the cell membrane. I developed MATLAB programs to track the moving nanoconstructs in a dynamic background environment and set up a customized live-cell perfusion chamber that is compatible with the bulky high numerical aperture optics. The combination of the environmental control in the chamber and the low light levels required to visualize single nanostars make this technique optimal for long-term tracking of single nanoconstructs in viable cells. Although nanoparticle size is well-known to influence the relaxivity of Gd(III)-based MRI contrast agents that are attached to the surface, the role of nanoparticle shape was previously unknown. Recently, we discovered that the relaxivity of Gd(III)-conjugated DNA bound to nanostars was three-fold higher than that of analogous spherical nanoconstructs. The relaxivities reached enhancements that were beyond limits that could be explained theoretically by size effects alone. We found that the extremely large enhancements could be explained by elongated water residence times in the second coordination sphere. Here, we investigated in detail how the complex structure of the nanostars mediates these effects. By sorting the nanostars by shape, we found that relaxivity increases with increasing branch number. Thus, we hypothesize that the confinement of the Gd(III)-DNA in the regions of negative surface curvature between branches creates a dense hydrophilic environment that promotes relaxation of second-sphere water molecules. These results demonstrate that shape is a new parameter that can be tuned in the optimization of nanoparticle-based T1 MRI contrast agents. It is important to characterize the potential toxicity of nanomaterials that are intended for use in biomedical applications. Thus, I evaluated the in vivo biodistribution and acute toxicity in rats of gold nanostars functionalized with DNA. As expected for nanoparticles of this size (˜50 nm) and surface charge (negative), the primary clearance mechanism was through the liver and spleen. Importantly, even at the highest dose, no signs of acute toxicity were observed based on hematology, clinical chemistry, and histology, indicating that DNA-coated gold nanostars are highly biocompatible. Additionally, I exploited the high contrast of gold in electron microscopy to track the fate of the nanoconstructs within organs ex vivo. In the liver, the nanoconstructs were sequestered in lysosomes of Kupffer cells. The electron microscopy analysis also indicated that the branched structure of the nanostars was intact even after 2 weeks in the liver, which is important for shape-dependent applications.

Top