Comment on Sub-15 nm Hard X-Ray Focusing with a New Total-Reflection Zone Plate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, Eliot D
2011-01-01
Takano et al. report the focusing of 10-keV X-rays to a size of 14.4 nm using a total-reflection zone plate (TRZP). This focal size is at the diffraction limit for the optic's aperture. This would be a noteworthy result, since the TRZP was fabricated using conventional lithography techniques. Alternative nanofocusing optics require more demanding fabrication methods. However, as I will discuss in this Comment, the intensity distribution presented by Takano et al. (Fig. 4 of ref. 1) is more consistent with the random speckle pattern produced by the scattering of a coherent incident beam by a distorted optic than withmore » a diffraction-limited focus. When interpreted in this manner, the true focal spot size is {approx}70 nm: 5 times the diffraction limit. When a coherent photon beam illuminates an optic containing randomly distributed regions which introduce different phase shifts, the scattered diffraction pattern consists of a speckle pattern. Each speckle will be diffraction-limited: the peak width of a single speckle depends entirely on the source coherence and gives no information about the optic. The envelope of the speckle distribution corresponds to the focal spot which would be observed using incoherent illumination. The width of this envelope is due to the finite size of the coherently-diffracting domains produced by slope and position errors in the optic. The focal intensity distribution in Fig. 4 of ref. 1 indeed contains a diffraction-limited peak, but this peak contains only a fraction of the power in the focused, and forms part of a distribution of sharp peaks with an envelope {approx}70 nm in width, just as expected for a speckle pattern. At the 4mm focal distance, the 70 nm width corresponds to a slope error of 18 {micro}rad. To reach the 14 nm diffraction limit, the slope error must be reduced to 3 {micro}rad. Takano et al. have identified a likely source of this error: warping due to stress as a result of zone deposition. It will be interesting to see whether the use of a more rigid substrate gives improved results.« less
Parallel processing of embossing dies with ultrafast lasers
NASA Astrophysics Data System (ADS)
Jarczynski, Manfred; Mitra, Thomas; Brüning, Stephan; Du, Keming; Jenke, Gerald
2018-02-01
Functionalization of surfaces equips products and components with new features like hydrophilic behavior, adjustable gloss level, light management properties, etc. Small feature sizes demand diffraction-limited spots and adapted fluence for different materials. Through the availability of high power fast repeating ultrashort pulsed lasers and efficient optical processing heads delivering diffraction-limited small spot size of around 10μm it is feasible to achieve fluences higher than an adequate patterning requires. Hence, parallel processing is becoming of interest to increase the throughput and allow mass production of micro machined surfaces. The first step on the roadmap of parallel processing for cylinder embossing dies was realized with an eight- spot processing head based on ns-fiber laser with passive optical beam splitting, individual spot switching by acousto optical modulation and an advanced imaging. Patterning of cylindrical embossing dies shows a high efficiency of nearby 80%, diffraction-limited and equally spaced spots with pitches down to 25μm achieved by a compression using cascaded prism arrays. Due to the nanoseconds laser pulses the ablation shows the typical surrounding material deposition of a hot process. In the next step the processing head was adapted to a picosecond-laser source and the 500W fiber laser was replaced by an ultrashort pulsed laser with 300W, 12ps and a repetition frequency of up to 6MHz. This paper presents details about the processing head design and the analysis of ablation rates and patterns on steel, copper and brass dies. Furthermore, it gives an outlook on scaling the parallel processing head from eight to 16 individually switched beamlets to increase processing throughput and optimized utilization of the available ultrashort pulsed laser energy.
Hirose, Makoto; Shimomura, Kei; Suzuki, Akihiro; Burdet, Nicolas; Takahashi, Yukio
2016-05-30
The sample size must be less than the diffraction-limited focal spot size of the incident beam in single-shot coherent X-ray diffraction imaging (CXDI) based on a diffract-before-destruction scheme using X-ray free electron lasers (XFELs). This is currently a major limitation preventing its wider applications. We here propose multiple defocused CXDI, in which isolated objects are sequentially illuminated with a divergent beam larger than the objects and the coherent diffraction pattern of each object is recorded. This method can simultaneously reconstruct both objects and a probe from the coherent X-ray diffraction patterns without any a priori knowledge. We performed a computer simulation of the prposed method and then successfully demonstrated it in a proof-of-principle experiment at SPring-8. The prposed method allows us to not only observe broad samples but also characterize focused XFEL beams.
Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths
Yuan, Guanghui; Rogers, Edward T. F.; Roy, Tapashree; Adamo, Giorgio; Shen, Zexiang; Zheludev, Nikolay I.
2014-01-01
Planar optical lenses are fundamental elements of miniaturized photonic devices. However, conventional planar optical lenses are constrained by the diffraction limit in the optical far-field due to the band-limited wavevectors supported by free-space and loss of high-spatial-frequency evanescent components. As inspired by Einstein's radiation ‘needle stick', electromagnetic energy can be delivered into an arbitrarily small solid angle. Such sub-diffraction optical needles have been numerically investigated using diffractive optical elements (DOEs) together with specially polarized optical beams, but experimental demonstration is extremely difficult due to the bulky size of DOEs and the required alignment precision. Planar super-oscillatory lenses (SOLs) were proposed to overcome these constraints and demonstrated that sub-diffraction focal spots can actually be formed without any evanescent waves, making far-field, label-free super-resolution imaging possible. Here we extend the super-oscillation concept into the vectorial-field regime to work with circularly polarized light, and experimentally demonstrate, for the first time, a circularly polarized optical needle with sub-diffraction transverse spot size (0.45λ) and axial long depth of focus (DOF) of 15λ using a planar SOL at a violet wavelength of 405 nm. This sub-diffraction circularly polarized optical needle has potential applications in circular dichroism spectroscopy, super-resolution imaging, high-density optical storage, heat-assisted magnetic recording, nano-manufacturing and nano-metrology. PMID:25208611
Liang, Yaoyao; Liu, Hongzhan; Wang, Faqiang; Meng, Hongyun; Guo, Jianping; Li, Jinfeng; Wei, Zhongchao
2018-04-28
Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Previous metasurfaces have been limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Here we report a polarization-insensitive, high-contrast transmissive metasurface composed of crystalline titanium dioxide pillars in the form of metalens at the wavelength of 633 nm. The focal spots are as small as 0.54 λ d , which is very close to the optical diffraction limit of 0.5 λ d . The simulation focusing efficiency is up to 88.5%. A rigorous method for metalens design, the phase realization mechanism and the trade-off between high efficiency and small spot size (or large numerical aperture) are discussed. Besides, the metalenses can work well with an imaging point source up to ±15° off axis. The proposed design is relatively systematic and can be applied to various applications such as visible imaging, ranging and sensing systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Jingsong, E-mail: weijingsong@siom.ac.cn; Wang, Rui; University of Chinese Academy of Sciences, Beijing 100049
In this work, the resolving limit of maskless direct laser writing is overcome by cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion, where the nonlinear reverse saturation absorption can induce the formation of below diffraction-limited energy absorption spot, and the thermal diffusion manipulation can make the heat quantity at the central region of energy absorption spot propagate along the thin film thickness direction. The temperature at the central region of energy absorption spot transiently reaches up to melting point and realizes nanolithography. The sample “glass substrate/AgInSbTe” is prepared, where AgInSbTe is taken as nonlinear reverse saturation absorption thinmore » film. The below diffraction-limited energy absorption spot is simulated theoretically and verified experimentally by near-field spot scanning method. The “glass substrate/Al/AgInSbTe” sample is prepared, where the Al is used as thermal conductive layer to manipulate the thermal diffusion channel because the thermal diffusivity coefficient of Al is much larger than that of AgInSbTe. The direct laser writing is conducted by a setup with a laser wavelength of 650 nm and a converging lens of NA=0.85, the lithographic marks with a size of about 100 nm are obtained, and the size is only about 1/10 the incident focused spot. The experimental results indicate that the cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion is a good method to realize nanolithography in maskless direct laser writing with visible light.« less
Shan, Mingguang; Tan, Jiubin
2007-12-10
A theoretical model is established using Rayleigh-Sommerfeld diffraction theory to describe the diffraction focusing characteristics of low F-number diffractive optical elements with continuous relief fabricated by laser direct writing, and continuous-relief diffractive optical elements with a design wavelength of 441.6nm and a F-number of F/4 are fabricated and measured to verify the validity of the diffraction focusing model. The measurements made indicate that the spot size is 1.75mum and the diffraction efficiency is 70.7% at the design wavelength, which coincide well with the theoretical results: a spot size of 1.66mum and a diffraction efficiency of 71.2%.
Correlating sampling and intensity statistics in nanoparticle diffraction experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Öztürk, Hande; Yan, Hanfei; Hill, John P.
2015-07-28
It is shown in a previous article [Öztürk, Yan, Hill & Noyan (2014).J. Appl. Cryst.47, 1016–1025] that the sampling statistics of diffracting particle populations within a polycrystalline ensemble depended on the size of the constituent crystallites: broad X-ray peak breadths enabled some nano-sized particles to contribute more than one diffraction spot to Debye–Scherrer rings. Here it is shown that the equations proposed by Alexander, Klug & Kummer [J. Appl. Phys.(1948),19, 742–753] (AKK) to link diffracting particle and diffracted intensity statistics are not applicable if the constituent crystallites of the powder are below 10 nm. In this size range, (i) themore » one-to-one correspondence between diffracting particles and Laue spots assumed in the AKK analysis is not satisfied, and (ii) the crystallographic correlation between Laue spots originating from the same grain invalidates the assumption that all diffracting plane normals are randomly oriented and uncorrelated. Such correlation produces unexpected results in the selection of diffracting grains. For example, three or more Laue spots from a given grain for a particular reflection can only be observed at certain wavelengths. In addition, correcting the diffracted intensity values by the traditional Lorentz term, 1/cos θ, to compensate for the variation of particles sampled within a reflection band does not maintain fidelity to the number of poles contributing to the diffracted signal. A new term, cos θ B/cos θ, corrects this problem.« less
On the relative intensity of Poisson’s spot
NASA Astrophysics Data System (ADS)
Reisinger, T.; Leufke, P. M.; Gleiter, H.; Hahn, H.
2017-03-01
The Fresnel diffraction phenomenon referred to as Poisson’s spot or spot of Arago has, beside its historical significance, become relevant in a number of fields. Among them are for example fundamental tests of the super-position principle in the transition from quantum to classical physics and the search for extra-solar planets using star shades. Poisson’s spot refers to the positive on-axis wave interference in the shadow of any spherical or circular obstacle. While the spot’s intensity is equal to the undisturbed field in the plane wave picture, its intensity in general depends on a number of factors, namely the size and wavelength of the source, the size and surface corrugation of the diffraction obstacle, and the distances between source, obstacle and detector. The intensity can be calculated by solving the Fresnel-Kirchhoff diffraction integral numerically, which however tends to be computationally expensive. We have therefore devised an analytical model for the on-axis intensity of Poisson’s spot relative to the intensity of the undisturbed wave field and successfully validated it both using a simple light diffraction setup and numerical methods. The model will be useful for optimizing future Poisson-spot matter-wave diffraction experiments and determining under what experimental conditions the spot can be observed.
Superfocusing of mutimode semiconductor lasers and light-emitting diodes
NASA Astrophysics Data System (ADS)
Sokolovskii, G. S.; Dudelev, V. V.; Losev, S. N.; Deryagin, A. G.; Kuchinskii, V. I.; Sibbett, W.; Rafailov, E. U.
2012-05-01
The problem of focusing multimode radiation of high-power semiconductor lasers and light-emitting diodes (LEDs) has been studied. In these sources, low spatial quality of the output beam determines theoretical limit of the focal spot size (one to two orders of magnitude exceeding the diffraction limit), thus restricting the possibility of increasing power density and creating optical field gradients that are necessary in many practical applications. In order to overcome this limitation, we have developed a method of superfocusing of multimode radiation with the aid of interference. It is shown that, using this method, the focal spot size of high-power semiconductor lasers and LEDs can be reduced to a level unachievable by means of traditional focusing. An approach to exceed the theoretical limit of power density for focusing of radiation with high propagation parameter M 2 is proposed.
Liu, Chong; Ji, Lailin; Yang, Lin; Zhao, Dongfeng; Zhang, Yanfeng; Liu, Dong; Zhu, Baoqiang; Lin, Zunqi
2016-04-01
In order to obtain the intensity distribution of a 351 nm focal spot and smoothing by spectral dispersion (SSD) focal plane profile of a SGII-upgraded facility, a type of off-axis imaging system with three spherical mirrors, suitable for a finite distance source point to be imaged near the diffraction limit has been designed. The quality factor of the image system is 1.6 times of the diffraction limit tested by a 1053 nm point source. Because of the absence of a 351 nm point source, we can use a Collins diffraction imaging integral with respect to λ=351 nm, corresponding to a quality factor that is 3.8 times the diffraction limit at 351 nm. The calibration results show that at least the range of ±10 mrad of view field angle and ±50 mm along the axial direction around the optimum object distance can be satisfied with near diffraction limited image that is consistent with the design value. Using this image system, the No. 2 beam of the SGII-upgraded facility has been tested. The test result of the focal spot of final optics assembly (FOA) at 351 nm indicates that about 80% of energy is encompassed in 14.1 times the diffraction limit, while the output energy of the No. 2 beam is 908 J at 1053 nm. According to convolution theorem, the true value of a 351 nm focal spot of FOA is about 12 times the diffraction limit because of the influence of the quality factor. Further experimental studies indicate that the RMS value along the smoothing direction is less than 15.98% in the SSD spot test experiment. Computer simulations show that the quality factor of the image system used in the experiment has almost no effect on the SSD focal spot test. The image system can remarkably distort the SSD focal spot distribution under the circumstance of the quality factor 15 times worse than the diffraction limit. The distorted image shows a steep slope in the contour of the SSD focal spot along the smoothing direction that otherwise has a relatively flat top region around the focal spot center.
2016-01-13
the laser beam spot. High-intensity laser irradiation expends the ions quickly in the vicinity of laser beam spot, and the resulting lack of metal...only in a narrow band within the laser beam profile, feature sizes can be below the diffraction limit of light. The mechanism of two-photon...femtosecond laser beam is focused into a photo-reactive resin containing a mixture of monomer and metal salt. A photoinitiator is excited by the
Super-focusing of center-covered engineered microsphere.
Wu, Mengxue; Chen, Rui; Soh, Jiahao; Shen, Yue; Jiao, Lishi; Wu, Jianfeng; Chen, Xudong; Ji, Rong; Hong, Minghui
2016-08-16
Engineered microsphere possesses the advantage of strong light manipulation at sub-wavelength scale and emerges as a promising candidate to shrink the focal spot size. Here we demonstrated a center-covered engineered microsphere which can adjust the transverse component of the incident beam and achieve a sharp photonic nanojet. Modification of the beam width and working distance of the photonic nanojet were achieved by tuning the cover ratio of the engineered microsphere, leading to a sharp spot size which exceeded the optical diffraction limit. At a wavelength of 633 nm, a focal spot of 245 nm (0.387 λ) was achieved experimentally under plane wave illumination. Strong localized field with Bessel-like distribution was demonstrated by employing the linearly polarized beam and a center-covered mask being engineered on the microsphere.
Super-focusing of center-covered engineered microsphere
Wu, Mengxue; Chen, Rui; Soh, Jiahao; Shen, Yue; Jiao, Lishi; Wu, Jianfeng; Chen, Xudong; Ji, Rong; Hong, Minghui
2016-01-01
Engineered microsphere possesses the advantage of strong light manipulation at sub-wavelength scale and emerges as a promising candidate to shrink the focal spot size. Here we demonstrated a center-covered engineered microsphere which can adjust the transverse component of the incident beam and achieve a sharp photonic nanojet. Modification of the beam width and working distance of the photonic nanojet were achieved by tuning the cover ratio of the engineered microsphere, leading to a sharp spot size which exceeded the optical diffraction limit. At a wavelength of 633 nm, a focal spot of 245 nm (0.387 λ) was achieved experimentally under plane wave illumination. Strong localized field with Bessel-like distribution was demonstrated by employing the linearly polarized beam and a center-covered mask being engineered on the microsphere. PMID:27528093
Correlating Sampling and Intensity Statistics in Nanoparticle Diffraction Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozturk, Hande; Yan, Hanfei; Hill, John P.
2015-08-01
In this article, [Öztürk, Yan, Hill & Noyan (2014). J. Appl. Cryst. 47, 1016-1025] it was shown that the sampling statistics of diffracting particle populations within a polycrystalline ensemble depended on the size of the constituent crystallites: broad X-ray peak breadths enabled some nano-sized particles to contribute more than one diffraction spot to Debye-Scherrer rings. Here it is shown that the equations proposed by Alexander, Klug & Kummer [J. Appl. Phys. (1948), 19, 742-753] (AKK) to link diffracting particle and diffracted intensity statistics are not applicable if the constituent crystallites of the powder are below 10 nm. In this sizemore » range, (i) the one-to-one correspondence between diffracting particles and Laue spots assumed in the AKK analysis is not satisfied, and (ii) the crystallographic correlation between Laue spots originating from the same grain invalidates the assumption that all diffracting plane normals are randomly oriented and uncorrelated. Such correlation produces unexpected results in the selection of diffracting grains. Three or more Laue spots from a given grain for a particular reflection can only be observed at certain wavelengths. In addition, correcting the diffracted intensity values by the traditional Lorentz term, 1/cos [theta], to compensate for the variation of particles sampled within a reflection band does not maintain fidelity to the number of poles contributing to the diffracted signal. A new term, cos [theta]B/cos [theta], corrects this problem.« less
Schmitt, Thorsten; de Groot, Frank M F; Rubensson, Jan Erik
2014-09-01
The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned.
Dark zone in the centre of the Arago-Poisson diffraction spot of a helical laser beam
NASA Astrophysics Data System (ADS)
Emile, O.; Voisin, A.; Niemiec, R.; Viaris de Lesegno, B.; Pruvost, L.; Ropars, G.; Emile, J.; Brousseau, C.
2013-03-01
We report on the diffraction of non-zero Laguerre Gaussian laser beams by an opaque disk. We observe a tiny circular dark zone at the centre of the usual Arago-Poisson diffraction bright spot. For such non-diffracting dark hollow beams, we have measured diameters as small as 20 μm on distances of the order of ten metres, without focalization. Diameters depend on the diffracting object size and on the topological charge of the input Laguerre Gaussian beam. These results are in good agreement with theoretical considerations. Potential applications are then discussed.
High-energy cryo x-ray nano-imaging at the ID16A beamline of ESRF
NASA Astrophysics Data System (ADS)
da Silva, Julio C.; Pacureanu, Alexandra; Yang, Yang; Fus, Florin; Hubert, Maxime; Bloch, Leonid; Salome, Murielle; Bohic, Sylvain; Cloetens, Peter
2017-09-01
The ID16A beamline at ESRF offers unique capabilities for X-ray nano-imaging, and currently produces the worlds brightest high energy diffraction-limited nanofocus. Such a nanoprobe was designed for quantitative characterization of the morphology and the elemental composition of specimens at both room and cryogenic temperatures. Billions of photons per second can be delivered in a diffraction-limited focus spot size down to 13 nm. Coherent X-ray imaging techniques, as magnified holographic-tomography and ptychographic-tomography, are implemented as well as X-ray fluorescence nanoscopy. We will show the latest developments in coherent and spectroscopic X-ray nanoimaging implemented at the ID16A beamline
Compensation of X-ray mirror shape-errors using refractive optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawhney, Kawal, E-mail: Kawal.sawhney@diamond.ac.uk; Laundy, David; Pape, Ian
2016-08-01
Focusing of X-rays to nanometre scale focal spots requires high precision X-ray optics. For nano-focusing mirrors, height errors in the mirror surface retard or advance the X-ray wavefront and after propagation to the focal plane, this distortion of the wavefront causes blurring of the focus resulting in a limit on the spatial resolution. We describe here the implementation of a method for correcting the wavefront that is applied before a focusing mirror using custom-designed refracting structures which locally cancel out the wavefront distortion from the mirror. We demonstrate in measurements on a synchrotron radiation beamline a reduction in the sizemore » of the focal spot of a characterized test mirror by a factor of greater than 10 times. This technique could be used to correct existing synchrotron beamline focusing and nanofocusing optics providing a highly stable wavefront with low distortion for obtaining smaller focus sizes. This method could also correct multilayer or focusing crystal optics allowing larger numerical apertures to be used in order to reduce the diffraction limited focal spot size.« less
Schmitt, Thorsten; de Groot, Frank M. F.; Rubensson, Jan-Erik
2014-01-01
The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned. PMID:25177995
Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens
Dennis, Brian S.; Czaplewski, David A.; Haftel, Michael I.; ...
2015-08-12
Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron- and focused-ion- beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-couplermore » slits.« less
Three-dimensional electron diffraction of plant light-harvesting complex
Wang, Da Neng; Kühlbrandt, Werner
1992-01-01
Electron diffraction patterns of two-dimensional crystals of light-harvesting chlorophyll a/b-protein complex (LHC-II) from photosynthetic membranes of pea chloroplasts, tilted at different angles up to 60°, were collected to 3.2 Å resolution at -125°C. The reflection intensities were merged into a three-dimensional data set. The Friedel R-factor and the merging R-factor were 21.8 and 27.6%, respectively. Specimen flatness and crystal size were critical for recording electron diffraction patterns from crystals at high tilts. The principal sources of experimental error were attributed to limitations of the number of unit cells contributing to an electron diffraction pattern, and to the critical electron dose. The distribution of strong diffraction spots indicated that the three-dimensional structure of LHC-II is less regular than that of other known membrane proteins and is not dominated by a particular feature of secondary structure. ImagesFIGURE 1FIGURE 2 PMID:19431817
Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, Brian S.; Czaplewski, David A.; Haftel, Michael I.
2015-01-01
Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron-and focused-ion-beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-coupler slits. (C)more » 2015 Optical Society of America« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahk, Seung-Whan; Dorrer, Christophe; Bromage, Jake
Two-dimensional chromatic aberrations are characterized by a single-shot scheme based on a simultaneous measurement of chromatically diversified focal spots. The chromatic diversity is introduced by a 2-D grating with holographic defocus terms. The chromatic aberrations in the beam are either subtracted or added by the additional known chromatic aberrations in the grating, depending on the diffraction order. By analyzing the asymmetry in the size of diffracted focal spots, input beam chromatic aberrations can be deduced. Theoretical discussions and experimental results are also presented.
NASA Astrophysics Data System (ADS)
Dostovalov, A. V.; Korolkov, V. P.; Babin, S. A.
2017-01-01
The formation of thermochemical laser-induced periodic surface structures (TLIPSS) on 400-nm Ti films deposited onto a glass substrate is investigated under irradiation by a femtosecond laser with a wavelength of 1026 nm, pulse duration of 232 fs, repetition rate of 200 kHz, and with different spot sizes of 4-21 μm. The optimal fluence for TLIPSS formation reduces monotonously with increasing the spot diameter in the range. It is found that the standard deviation of the TLIPSS period depends significantly on the beam size and reaches approximately 2% when the beam diameter is in the range of 10-21 μm. In addition to TLIPSS formation with the main period slightly smaller than the laser wavelength, an effect of TLIPSS spatial frequency doubling is detected. The optical properties of TLIPSS (reflection spectrum and diffraction efficiency at different incident angles and polarizations) are investigated and compared with theoretical ones to give a basis for the development of an optical inspecting method. The refractive index and absorption coefficient of oxidized ridges of the TLIPSS are theoretically estimated by simulation of the experimental reflection spectrum in the zeroth diffraction order.
Lyubimov, Artem Y; Uervirojnangkoorn, Monarin; Zeldin, Oliver B; Brewster, Aaron S; Murray, Thomas D; Sauter, Nicholas K; Berger, James M; Weis, William I; Brunger, Axel T
2016-06-01
Serial femtosecond crystallography (SFX) uses an X-ray free-electron laser to extract diffraction data from crystals not amenable to conventional X-ray light sources owing to their small size or radiation sensitivity. However, a limitation of SFX is the high variability of the diffraction images that are obtained. As a result, it is often difficult to determine optimal indexing and integration parameters for the individual diffraction images. Presented here is a software package, called IOTA , which uses a grid-search technique to determine optimal spot-finding parameters that can in turn affect the success of indexing and the quality of integration on an image-by-image basis. Integration results can be filtered using a priori information about the Bravais lattice and unit-cell dimensions and analyzed for unit-cell isomorphism, facilitating an improvement in subsequent data-processing steps.
Chromatic diversity: a new approach for characterizing spatiotemporal coupling of ultrashort pulses.
Bahk, Seung-Whan; Dorrer, Christophe; Bromage, Jake
2018-04-02
Two-dimensional chromatic aberrations are characterized by a single-shot scheme based on a simultaneous measurement of chromatically diversified focal spots. The chromatic diversity is introduced by a 2-D grating with holographic defocus terms. The chromatic aberrations in the beam are either subtracted or added by the additional known chromatic aberrations in the grating, depending on the diffraction order. By analyzing the asymmetry in the size of diffracted focal spots, input beam chromatic aberrations can be deduced. Theoretical discussions and experimental results are presented.
Chromatic diversity: a new approach for characterizing spatiotemporal coupling of ultrashort pulses
Bahk, Seung-Whan; Dorrer, Christophe; Bromage, Jake
2018-01-01
Two-dimensional chromatic aberrations are characterized by a single-shot scheme based on a simultaneous measurement of chromatically diversified focal spots. The chromatic diversity is introduced by a 2-D grating with holographic defocus terms. The chromatic aberrations in the beam are either subtracted or added by the additional known chromatic aberrations in the grating, depending on the diffraction order. By analyzing the asymmetry in the size of diffracted focal spots, input beam chromatic aberrations can be deduced. Theoretical discussions and experimental results are also presented.
NASA Astrophysics Data System (ADS)
Tung, Yen-Chun; Chung, Ming-Han; Sung, I.-Hui; Lee, Chih-Kung
2014-03-01
Adopting optical technique to pursue micromachining must make a compromise between the focal spot sizes the depth of focus. The focal spot size determines the minimum features can be fabricated. On the other hand, the depth of focus influences the ease of alignment in positioning the fabrication light beam. A typical approach to bypass the diffraction limit is to adopt the near-field approach, which has spot size in the range of the optical fiber tip. However, the depth of focus of the emitted light beam will be limited to tens of nanometers in most cases, which posts a difficult challenge to control the distance between the optical fiber tip and the sample to be machined optically. More specifically, problems remained in this machining approach, which include issues such as residue induced by laser ablation tends to deposit near the optical fiber tip and leads to loss of coupling efficiency. We proposed a method based on illuminating femtosecond laser through a sub-wavelength annular aperture on metallic film so as to produce Bessel light beam of sub-wavelength while maintaining large depth of focus first. To further advance the ease of use in one such system, producing sub-wavelength annular aperture on a single mode optical fiber head with sub-wavelength focusing ability is detailed. It is shown that this method can be applied in material machining with an emphasis to produce high aspect ratio structure. Simulations and experimental results are presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brewster, Aaron S.; Sawaya, Michael R.; University of California, Los Angeles, CA 90095-1570
2015-02-01
Special methods are required to interpret sparse diffraction patterns collected from peptide crystals at X-ray free-electron lasers. Bragg spots can be indexed from composite-image powder rings, with crystal orientations then deduced from a very limited number of spot positions. Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of the Computational Crystallography Toolbox (cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data setmore » from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set of diffraction patterns with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 Å resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented.« less
Sub-wavelength Laser Nanopatterning using Droplet Lenses
NASA Astrophysics Data System (ADS)
Duocastella, Martí; Florian, Camilo; Serra, Pere; Diaspro, Alberto
2015-11-01
When a drop of liquid falls onto a screen, e.g. a cell phone, the pixels lying underneath appear magnified. This lensing effect is a combination of the curvature and refractive index of the liquid droplet. Here, the spontaneous formation of such lenses is exploited to overcome the diffraction limit of a conventional laser direct-writing system. In particular, micro-droplets are first laser-printed at user-defined locations on a surface and they are later used as lenses to focus the same laser beam. Under conditions described herein, nanopatterns can be obtained with a reduction in spot size primarily limited by the refractive index of the liquid. This all-optics approach is demonstrated by writing arbitrary patterns with a feature size around 280 nm, about one fourth of the processing wavelength.
The measurement of acoustic properties of limited size panels by use of a parametric source
NASA Astrophysics Data System (ADS)
Humphrey, V. F.
1985-01-01
A method of measuring the acoustic properties of limited size panels immersed in water, with a truncated parametric array used as the acoustic source, is described. The insertion loss and reflection loss of thin metallic panels, typically 0·45 m square, were measured at normal incidence by using this technique. Results were obtained for a wide range of frequencies (10 to 100 kHz) and were found to be in good agreement with the theoretical predictions for plane waves. Measurements were also made of the insertion loss of aluminium, Perspex and G.R.P. panels for angles of incidence up to 50°. The broad bandwidth available from the parametric source permitted detailed measurements to be made over a wide frequency range using a single transmitting transducer. The small spot sizes obtainable with the parametric source also helped to reduce the significance of diffraction from edges of the panel under test.
Manipulation of heat-diffusion channel in laser thermal lithography.
Wei, Jingsong; Wang, Yang; Wu, Yiqun
2014-12-29
Laser thermal lithography is a good alternative method for forming small pattern feature size by taking advantage of the structural-change threshold effect of thermal lithography materials. In this work, the heat-diffusion channels of laser thermal lithography are first analyzed, and then we propose to manipulate the heat-diffusion channels by inserting thermal conduction layers in between channels. Heat-flow direction can be changed from the in-plane to the out-of-plane of the thermal lithography layer, which causes the size of the structural-change threshold region to become much smaller than the focused laser spot itself; thus, nanoscale marks can be obtained. Samples designated as "glass substrate/thermal conduction layer/thermal lithography layer (100 nm)/thermal conduction layer" are designed and prepared. Chalcogenide phase-change materials are used as thermal lithography layer, and Si is used as thermal conduction layer to manipulate heat-diffusion channels. Laser thermal lithography experiments are conducted on a home-made high-speed rotation direct laser writing setup with 488 nm laser wavelength and 0.90 numerical aperture of converging lens. The writing marks with 50-60 nm size are successfully obtained. The mark size is only about 1/13 of the focused laser spot, which is far smaller than that of the light diffraction limit spot of the direct laser writing setup. This work is useful for nanoscale fabrication and lithography by exploiting the far-field focusing light system.
Absolute angular encoder based on optical diffraction
NASA Astrophysics Data System (ADS)
Wu, Jian; Zhou, Tingting; Yuan, Bo; Wang, Liqiang
2015-08-01
A new encoding method for absolute angular encoder based on optical diffraction was proposed in the present study. In this method, an encoder disc is specially designed that a series of elements are uniformly spaced in one circle and each element is consisted of four diffraction gratings, which are tilted in the directions of 30°, 60°, -60° and -30°, respectively. The disc is illuminated by a coherent light and the diffractive signals are received. The positions of diffractive spots are used for absolute encoding and their intensities are for subdivision, which is different from the traditional optical encoder based on transparent/opaque binary principle. Since the track's width in the disc is not limited in the diffraction pattern, it provides a new way to solve the contradiction between the size and resolution, which is good for minimization of encoder. According to the proposed principle, the diffraction pattern disc with a diameter of 40 mm was made by lithography in the glass substrate. A prototype of absolute angular encoder with a resolution of 20" was built up. Its maximum error was tested as 78" by comparing with a small angle measuring system based on laser beam deflection.
Design optimization of ultra-precise elliptical mirrors for hard x-ray nanofocusing at Nanoscopium
NASA Astrophysics Data System (ADS)
Kewish, Cameron M.; Polack, François; Signorato, Riccardo; Somogyi, Andrea
2013-09-01
The design and implementation of a pair of 100 mm-long grazing-incidence total-reflection mirrors for the hard X-ray beamline Nanoscopium at Synchrotron Soleil is presented. A vertically and horizontally nanofocusing mirror pair, oriented in Kirkpatrick-Baez geometry, has been designed and fabricated with the aim of creating a diffraction-limited high-intensity 5 - 20 keV beam with a focal spot size as small as 50 nm. We describe the design considerations, including wave-optical calculations of figures-of-merit that are relevant for spectromicroscopy, such as the focal spot size, depth of field and integrated intensity. The mechanical positioning tolerance in the pitch angle that is required to avoid introducing high-intensity features in the neighborhood of the focal spot is demonstrated with simulations to be of the order of microradians, becoming tighter for shorter focal lengths and therefore directly affecting all nanoprobe mirror systems. Metrology results for the completed mirrors are presented, showing that better than 1.5 °A-rms figure error has been achieved over the full mirror lengths with respect to the designed elliptical surfaces, with less than 60 nrad-rms slope errors.
NASA Astrophysics Data System (ADS)
Maser, Jörg; Shi, Xianbo; Reininger, Ruben; Lai, Barry; Vogt, Stefan
2016-12-01
Next-generation hard X-ray nanoprobe beamlines such as the In Situ Nanoprobe (ISN) beamline being planned at the Advanced Photon Source aim at providing very high spatial resolution while also enabling very high focused flux, to study complex materials and devices using fast, multidimensional imaging across many length scales. The ISN will use diffractive optics to focus X-rays with a bandpass of Δ E/ E = 10-4 into a focal spot of 20 nm or below. Reflective optics in Kirkpatrick-Baez geometry will be used to focus X-rays with a bandpass as large as Δ E/ E = 10-2 into a focal spot of 50 nm. Diffraction-limited focusing with reflective optics is achieved by spatial filtering and use of a very long, vertically focusing mirror. To quantify the performance of the ISN beamline, we have simulated the propagation of both partially and fully coherent wavefronts from the undulator source, through the ISN beamline and into the mirror-based focal spot. Simulations were carried out using the recently developed software " HYBRID."
Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance.
Song, Maowen; Wang, Changtao; Zhao, Zeyu; Pu, Mingbo; Liu, Ling; Zhang, Wei; Yu, Honglin; Luo, Xiangang
2016-01-21
The past decade has witnessed a great deal of optical systems designed for exceeding the Abbe's diffraction limit. Unfortunately, a deep subwavelength spot is obtained at the price of extremely short focal length, which is indeed a near-field diffraction limit that could rarely go beyond in the nanofocusing device. One method to mitigate such a problem is to set up a rapid oscillatory electromagnetic field that converges at the prescribed focus. However, abrupt modulation of phase and amplitude within a small fraction of a wavelength seems to be the main obstacle in the visible regime, aggravated by loss and plasmonic features that come into function. In this paper, we propose a periodically repeated ring-disk complementary structure to break the near-field diffraction limit via plasmonic Fano resonance, originating from the interference between the complex hybrid plasmon resonance and the continuum of propagating waves through the silver film. This plasmonic Fano resonance introduces a π phase jump in the adjacent channels and amplitude modulation to achieve radiationless electromagnetic interference. As a result, deep subwavelength spots as small as 0.0045λ(2) at 36 nm above the silver film have been numerically demonstrated. This plate holds promise for nanolithography, subdiffraction imaging and microscopy.
Advanced High Brilliance X-Ray Source
NASA Technical Reports Server (NTRS)
Gibson, Walter M.
1998-01-01
The possibility to dramatically increase the efficiency of laboratory based protein structure measurements through the use of polycapillary X-ray optics was investigated. This project initiated April 1, 1993 and concluded December 31, 1996 (including a no cost extension from June 31, 1996). This is a final report of the project. The basis for the project is the ability to collect X-rays from divergent electron bombardment laboratory X-ray sources and redirect them into quasiparallel or convergent (focused) beams. For example, a 0.1 radian (approx. 6 deg) portion of a divergent beam collected by a polycapillary collimator and transformed into a quasiparallel beam of 3 millradian (0.2 deg) could give a gain of 6(exp 2)/0.2(exp 2) x T for the intensity of a diffracted beam from a crystal with a 0.2 deg diffraction width. T is the transmission efficiency of the polycapillary diffraction optic, and for T=0.5, the gain would be 36/0.04 x O.5=45. In practice, the effective collection angle will depend on the source spot size, the input focal length of the optic (usually limited by the source spot-to-window distance on the x-ray tube) and the size of the crystal relative to the output diameter of the optic. The transmission efficiency, T, depends on the characteristics (fractional open area, surface roughness, shape and channel diameter) of the polycapillary optic and is typically in the range 0.2-0.4. These effects could substantially reduce the expected efficiency gain. During the course of this study, the possibility to use a weakly focused beam (0.5 deg convergence) was suggested which could give an additional 10-20 X efficiency gain for small samples . Weakly focused beams from double focusing mirrors are frequently used for macromolecular crystallography studies. Furthermore the crystals are typically oscillated by as much as 2 deg during each X-ray exposure in order to increase the reciprocal space (number of crystal planes) sampled and use of a slightly convergent beam could, in principle, provide a similar sampling benefit without oscillation. Although more problematic, because of complications in analyzing the diffraction patterns, it was also suggested that even more extreme beam convergence might be used to give another order of magnitude intensity gain and even smaller focused spot size which could make it possible to study smaller protein crystals than can be studied using standard laboratory based X-ray diffraction systems. This project represents the first systematic investigation of these possibilities. As initially proposed, the contract included requirements for design, purchase, evaluation and delivery of three polycapillary lenses to the Laboratory for Structural Biology at MSFC and demonstration of such optics at MSFC for selected protein crystal diffraction applications.
Focusing short-wavelength surface plasmons by a plasmonic mirror.
Ogut, Erdem; Yanik, Cenk; Kaya, Ismet Inonu; Ow-Yang, Cleva; Sendur, Kursat
2018-05-01
Emerging applications in nanotechnology, such as superresolution imaging, ultra-sensitive biomedical detection, and heat-assisted magnetic recording, require plasmonic devices that can generate intense optical spots beyond the diffraction limit. One of the important drawbacks of surface plasmon focusing structures is their complex design, which is significant for ease of integration with other nanostructures and fabrication at low cost. In this study, a planar plasmonic mirror without any nanoscale features is investigated that can focus surface plasmons to produce intense optical spots having lateral and vertical dimensions of λ/9.7 and λ/80, respectively. Intense optical spots beyond the diffraction limit were produced from the plasmonic parabolic mirror by exciting short-wavelength surface plasmons. The refractive index and numerical aperture of the plasmonic parabolic mirror were varied to excite short-wavelength surface plasmons. Finite-element method simulations of the plasmonic mirror and scanning near-field optical microscopy experiments have shown very good agreement.
Monolithic hybrid optics for focusing ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Fuchs, U.
2014-03-01
Almost any application of ultrashort laser pulses involves focusing them in order to reach high intensities and/or small spot sizes as needed for micro-machining or Femto-LASIK. Hence, it is indispensable to be able to understand pulse front distortion caused by real world optics. Focusing causes pulse front distortion due to aberrations, dispersion and diffraction. Thus, the spatio-temporal profile of ultrashort laser is altered, which increases automatically the pulse duration and the focusing spot. Consequently, the main advantage of having ultrashort laser pulses - pulse durations way below 100 fs - can be lost in that one last step of the experimental set-up by focusing them unfavorable. Since compensating for dispersion, aberration and diffraction effects is quite complicated and not always possible, we pursue a different approach. We present a specially designed monolithic hybrid optics comprising refraction and diffraction effects for tight spatial and temporal focusing of ultrashort laser pulses. Both aims can be put into practice by having a high numerical aperture (NA = 0.35) and low internal dispersion at the same time. The focusing properties are very promising, due to a design, which provides diffraction limited focusing for 100 nm bandwidth at 780 nm center wavelength. Thus, pulses with durations as short as 10 fs can be focused without pulse front distortion. The outstanding performance of this optics is shown in theory and experimentally. Above that, such focusing optics are easily adapted to their special purpose - changing the center wavelength, achromatic bandwidth or even correcting for focusing into material is possible.
A new nanoscale metastable iron phase in carbon steels
Liu, Tianwei; Zhang, Danxia; Liu, Qing; Zheng, Yanjun; Su, Yanjing; Zhao, Xinqing; Yin, Jiang; Song, Minghui; Ping, Dehai
2015-01-01
Metastable ω phase is common in body-centred cubic (bcc) metals and alloys, including high-alloying steels. Recent theoretical calculations also suggest that the ω structure may act as an intermediate phase for face-centred cubic (fcc)-to-bcc transformation. Thus far, the role of the ω phase played in fcc-bcc martensitic transformation in carbon steels has not been reported. In previous investigations on martensitic carbon steels, extra electron diffraction spots were frequently observed by transmission electron microscopy (TEM), and these spots were historically ascribed to the diffraction arising from either internal twins or carbides. In this paper, an intensive TEM investigation revealed that the extra spots are in fact attributed to the metastable ω phase in particle-like morphology with an overall size of several or dozens of nanometres. The strict orientation relationships between the ω phase and the ferrite matrix are in good agreement with those of the hexagonal (P6/mmm) ω phase in other bcc metals and alloys. The identification of the ω phase as well as the extra diffraction spots might provide a clue to help understand the physical mechanism of martensitic transformation in steels. PMID:26503890
Superoscillating electron wave functions with subdiffraction spots
NASA Astrophysics Data System (ADS)
Remez, Roei; Tsur, Yuval; Lu, Peng-Han; Tavabi, Amir H.; Dunin-Borkowski, Rafal E.; Arie, Ady
2017-03-01
Almost one and a half centuries ago, Abbe [Arch. Mikrosk. Anat. 9, 413 (1873), 10.1007/BF02956173] and shortly after Lord Rayleigh [Philos. Mag. Ser. 5 8, 261 (1879), 10.1080/14786447908639684] showed that, when an optical lens is illuminated by a plane wave, a diffraction-limited spot with radius 0.61 λ /sinα is obtained, where λ is the wavelength and α is the semiangle of the beam's convergence cone. However, spots with much smaller features can be obtained at the focal plane when the lens is illuminated by an appropriately structured beam. Whereas this concept is known for light beams, here, we show how to realize it for a massive-particle wave function, namely, a free electron. We experimentally demonstrate an electron central spot of radius 106 pm, which is more than two times smaller than the diffraction limit of the experimental setup used. In addition, we demonstrate that this central spot can be structured by adding orbital angular momentum to it. The resulting superoscillating vortex beam has a smaller dark core with respect to a regular vortex beam. This family of electron beams having hot spots with arbitrarily small features and tailored structures could be useful for studying electron-matter interactions with subatomic resolution.
Optics for coherent X-ray applications.
Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya
2014-09-01
Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed.
Maser, Jorg; Shi, Xianbo; Reininger, Ruben; ...
2016-02-22
Next-generation hard X-ray nanoprobe beamlines such as the In Situ Nanoprobe (ISN) beamline being planned at the Advanced Photon Source aim at providing very high spatial resolution while also enabling very high focused flux, to study complex materials and devices using fast, multidimensional imaging across many length scales. The ISN will use diffractive optics to focus X-rays with a bandpass of ΔE/E = 10 –4 into a focal spot of 20 nm or below. Reflective optics in Kirkpatrick-Baez geometry will be used to focus X-rays with a bandpass as large as ΔE/E = 10 –2 into a focal spot ofmore » 50 nm. Diffraction-limited focusing with reflective optics is achieved by spatial filtering and use of a very long, vertically focusing mirror. Furthermore, to quantify the performance of the ISN beamline, we have simulated the propagation of both partially and fully coherent wavefronts from the undulator source, through the ISN beamline and into the mirror-based focal spot. Simulations were carried out using the recently developed software “HYBRID.”« less
Continuous motion scan ptychography: Characterization for increased speed in coherent x-ray imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Nashed, Youssef S. G.; Chen, Si
Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object’s complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous “fly-scan” mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less
Continuous motion scan ptychography: Characterization for increased speed in coherent x-ray imaging
Deng, Junjing; Nashed, Youssef S. G.; Chen, Si; ...
2015-02-23
Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object’s complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous “fly-scan” mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less
Continuous motion scan ptychography: characterization for increased speed in coherent x-ray imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Nashed, Youssef S. G.; Chen, Si
2015-01-01
Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object's complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous "fly-scan" mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less
Continuous motion scan ptychography: characterization for increased speed in coherent x-ray imaging.
Deng, Junjing; Nashed, Youssef S G; Chen, Si; Phillips, Nicholas W; Peterka, Tom; Ross, Rob; Vogt, Stefan; Jacobsen, Chris; Vine, David J
2015-03-09
Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object's complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous "fly-scan" mode for ptychographic data collection in which the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.
Koshelev, Alexander; Munechika, Keiko; Cabrini, Stefano
2017-11-01
In this Letter, we present a design and simulations of the novel hybrid photonic-plasmonic near-field probe. Near-field optics is a unique imaging tool that provides optical images with resolution down to tens of nanometers. One of the main limitations of this technology is its low light sensitivity. The presented hybrid probe solves this problem by combining a campanile plasmonic probe with the photonic layer, consisting of the diffractive optic element (DOE). The DOE is designed to match the plasmonic field at the broad side of the campanile probe with the fiber mode. This makes it possible to optimize the size of the campanile tip to convert light efficiently into the hot spot. The simulations show that the hybrid probe is ∼540 times more efficient compared with the conventional campanile on average in the 600-900 nm spectral range.
Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance
NASA Astrophysics Data System (ADS)
Song, Maowen; Wang, Changtao; Zhao, Zeyu; Pu, Mingbo; Liu, Ling; Zhang, Wei; Yu, Honglin; Luo, Xiangang
2016-01-01
The past decade has witnessed a great deal of optical systems designed for exceeding the Abbe's diffraction limit. Unfortunately, a deep subwavelength spot is obtained at the price of extremely short focal length, which is indeed a near-field diffraction limit that could rarely go beyond in the nanofocusing device. One method to mitigate such a problem is to set up a rapid oscillatory electromagnetic field that converges at the prescribed focus. However, abrupt modulation of phase and amplitude within a small fraction of a wavelength seems to be the main obstacle in the visible regime, aggravated by loss and plasmonic features that come into function. In this paper, we propose a periodically repeated ring-disk complementary structure to break the near-field diffraction limit via plasmonic Fano resonance, originating from the interference between the complex hybrid plasmon resonance and the continuum of propagating waves through the silver film. This plasmonic Fano resonance introduces a π phase jump in the adjacent channels and amplitude modulation to achieve radiationless electromagnetic interference. As a result, deep subwavelength spots as small as 0.0045λ2 at 36 nm above the silver film have been numerically demonstrated. This plate holds promise for nanolithography, subdiffraction imaging and microscopy.The past decade has witnessed a great deal of optical systems designed for exceeding the Abbe's diffraction limit. Unfortunately, a deep subwavelength spot is obtained at the price of extremely short focal length, which is indeed a near-field diffraction limit that could rarely go beyond in the nanofocusing device. One method to mitigate such a problem is to set up a rapid oscillatory electromagnetic field that converges at the prescribed focus. However, abrupt modulation of phase and amplitude within a small fraction of a wavelength seems to be the main obstacle in the visible regime, aggravated by loss and plasmonic features that come into function. In this paper, we propose a periodically repeated ring-disk complementary structure to break the near-field diffraction limit via plasmonic Fano resonance, originating from the interference between the complex hybrid plasmon resonance and the continuum of propagating waves through the silver film. This plasmonic Fano resonance introduces a π phase jump in the adjacent channels and amplitude modulation to achieve radiationless electromagnetic interference. As a result, deep subwavelength spots as small as 0.0045λ2 at 36 nm above the silver film have been numerically demonstrated. This plate holds promise for nanolithography, subdiffraction imaging and microscopy. Electronic supplementary information (ESI) available: The plasmon hybridization modes have been analyzed. The transmittance, reflectance and absorbance have been plotted to have a better understanding of the coupling in a silver nanoring. The dependencies of the intensity enhancement on the total numbers of building blocks have been shown. See DOI: 10.1039/c5nr06504f
NASA Astrophysics Data System (ADS)
Zha, Yikun; Wei, Jingsong; Gan, Fuxi
2013-09-01
Maskless laser direct writing lithography has been applied in the fabrication of optical elements and electric-optical devices. With the development of technology, the feature size of the elements and devices is required to reduce down to nanoscale. Increasing the numerical aperture of converging lens and shortening the laser wavelength are good methods to obtain the small spot and reduce the feature size to nanoscale, while this will cause the reduction of the depth of focus. The reduction of depth of focus will lead to some difficulties in the focusing and tracking servo controlling during the high speed laser direct writing lithography. In this work, the combination of the diffractive optical elements and the nonlinear absorption inorganic resist thin films cannot only extend the depth of focus, but also reduce the feature size of the lithographic marks down to nanoscale. By using the five-zone annular phase-only binary pupil filter as the diffractive optical elements and AgInSbTe as the nonlinear absorption inorganic resist thin film, the depth of focus cannot only extend to 7.39 times that of the focused spot, but also reduce the lithographic feature size down to 54.6 nm. The ill-effect of sidelobe on the lithography is also eliminated by the nonlinear reverse saturable absorption and the phase change threshold lithographic characteristics.
50 Mb/s, 220-mW Laser-Array Transmitter
NASA Technical Reports Server (NTRS)
Cornwell, Donald M., Jr.
1992-01-01
Laser transmitter based on injection locking produces single-wavelength, diffraction-limited, single-lobe beam. Output stage is array of laser diodes producing non-diffraction-limited, multi-mode beam in absence of injection locking. Suitable for both free-space and optical-fiber communication systems. Because beam from transmitter focused to spot as small as 5 micrometers, devices usable for reading and writing optical disks at increased information densities. Application also in remote sensing and ranging.
Influence of fundamental mode fill factor on disk laser output power and laser beam quality
NASA Astrophysics Data System (ADS)
Cheng, Zhiyong; Yang, Zhuo; Shao, Xichun; Li, Wei; Zhu, Mengzhen
2017-11-01
An three-dimensional numerical model based on finite element method and Fox-Li method with angular spectrum diffraction theoy is developed to calculate the output power and power density distribution of Yb:YAG disk laser. We invest the influence of fundamental mode fill factor(the ratio of fundamental mode size and pump spot size) on the output power and laser beam quality. Due to aspherical aberration and soft aperture effect in laser disk, high beam quality can be achieve with relative lower efficiency. The highest output power of fundamental laser mode is influenced by the fundamental mode fill factor. Besides we find that optimal mode fill factor increase with pump spot size.
Duan, Junping; Zhu, Qiang; Qian, Kun; Guo, Hao; Zhang, Binzhen
2017-08-30
This work presents a multi-degrees-of-freedom motion parameter measurement method based on the use of cross-coupling diffraction gratings that were prepared on the two sides of a polydimethylsiloxane (PDMS) substrate using oxygen plasma processing technology. The laser beam that travels pass the cross-coupling optical grating would be diffracted into a two-dimensional spot array. The displacement and the gap size of the spot-array were functions of the movement of the laser source, as explained by the Fraunhofer diffraction effect. A 480 × 640 pixel charge-coupled device (CCD) was used to acquire images of the two-dimensional spot-array in real time. A proposed algorithm was then used to obtain the motion parameters. Using this method and the CCD described above, the resolutions of the displacement and the deflection angle were 0.18 μm and 0.0075 rad, respectively. Additionally, a CCD with a higher pixel count could improve the resolutions of the displacement and the deflection angle to sub-nanometer and micro-radian scales, respectively. Finally, the dynamic positions of hovering rotorcraft have been tracked and checked using the proposed method, which can be used to correct the craft's position and provide a method for aircraft stabilization in the sky.
NASA Astrophysics Data System (ADS)
Duan, Junping; Zhu, Qiang; Qian, Kun; Guo, Hao; Zhang, Binzhen
2017-08-01
This work presents a multi-degrees-of-freedom motion parameter measurement method based on the use of cross-coupling diffraction gratings that were prepared on the two sides of a polydimethylsiloxane (PDMS) substrate using oxygen plasma processing technology. The laser beam that travels pass the cross-coupling optical grating would be diffracted into a two-dimensional spot array. The displacement and the gap size of the spot-array were functions of the movement of the laser source, as explained by the Fraunhofer diffraction effect. A 480 × 640 pixel charge-coupled device (CCD) was used to acquire images of the two-dimensional spot-array in real time. A proposed algorithm was then used to obtain the motion parameters. Using this method and the CCD described above, the resolutions of the displacement and the deflection angle were 0.18 μm and 0.0075 rad, respectively. Additionally, a CCD with a higher pixel count could improve the resolutions of the displacement and the deflection angle to sub-nanometer and micro-radian scales, respectively. Finally, the dynamic positions of hovering rotorcraft have been tracked and checked using the proposed method, which can be used to correct the craft's position and provide a method for aircraft stabilization in the sky.
Guiding of Plasmons and Phonons in Complex Three Dimensional Structures
2013-01-01
typical sample. We employed X - ray diffraction (XRD) to measure the average grain size across the entire depth of the sample over spot sizes Figure...propagation distance L as the 1/e decay length of the field intensity along x ...as well as the network layout with subwavelegth gap size and internode distance on the order of the effective wavelength, a small 2 x 2 resonant
Field mappers for laser material processing
NASA Astrophysics Data System (ADS)
Blair, Paul; Currie, Matthew; Trela, Natalia; Baker, Howard J.; Murphy, Eoin; Walker, Duncan; McBride, Roy
2016-03-01
The native shape of the single-mode laser beam used for high power material processing applications is circular with a Gaussian intensity profile. Manufacturers are now demanding the ability to transform the intensity profile and shape to be compatible with a new generation of advanced processing applications that require much higher precision and control. We describe the design, fabrication and application of a dual-optic, beam-shaping system for single-mode laser sources, that transforms a Gaussian laser beam by remapping - hence field mapping - the intensity profile to create a wide variety of spot shapes including discs, donuts, XY separable and rotationally symmetric. The pair of optics transform the intensity distribution and subsequently flatten the phase of the beam, with spot sizes and depth of focus close to that of a diffraction limited beam. The field mapping approach to beam-shaping is a refractive solution that does not add speckle to the beam, making it ideal for use with single mode laser sources, moving beyond the limits of conventional field mapping in terms of spot size and achievable shapes. We describe a manufacturing process for refractive optics in fused silica that uses a freeform direct-write process that is especially suited for the fabrication of this type of freeform optic. The beam-shaper described above was manufactured in conventional UV-fused silica using this process. The fabrication process generates a smooth surface (<1nm RMS), leading to laser damage thresholds of greater than 100J/cm2, which is well matched to high power laser sources. Experimental verification of the dual-optic filed mapper is presented.
Solar-blind ultraviolet optical system design for missile warning
NASA Astrophysics Data System (ADS)
Chen, Yu; Huo, Furong; Zheng, Liqin
2015-03-01
Solar-blind region of Ultraviolet (UV) spectrum has very important application in military field. The spectrum range is from 240nm to 280nm, which can be applied to detect the tail flame from approaching missile. A solar-blind UV optical system is designed to detect the UV radiation, which is an energy system. iKon-L 936 from ANDOR company is selected as the UV detector, which has pixel size 13.5μm x 13.5 μm and active image area 27.6mm x 27.6 mm. CaF2 and F_silica are the chosen materials. The original structure is composed of 6 elements. To reduce the system structure and improve image quality, two aspheric surfaces and one diffractive optical element are adopted in this paper. After optimization and normalization, the designed system is composed of five elements with the maximum spot size 11.988μ m, which is less than the pixel size of the selected CCD detector. Application of aspheric surface and diffractive optical element makes each FOV have similar spot size, which shows the system almost meets the requirements of isoplanatic condition. If the focal length can be decreased, the FOV of the system can be enlarged further.
High spatial resolution with zoomable saw-tooth refractive lenses?
NASA Astrophysics Data System (ADS)
Jark, Werner
2011-09-01
Refractive x-ray lenses can be assembled from two opposing saw-tooth structures, when they are inclined with respect to each other and almost touch at one end. An incident plane wave will then traverse a varying number of triangular prisms, which direct the beam towards the optical axis and focus it. Optically speaking the plane wave traverses a parabolic lens profile, which is approximated by trapezoidal segments. The parabolic profile will focus ideally, when a lens can be discussed in the "thin lens" approximation. Now the saw-tooth refractive lens is found to be too "thick". The residual aberrations limit the focusing capability to just submicrometer focusing, significantly above the limit in diffraction limited focusing. It is shown that the aberrations can be removed by introducing a variation into the originally constant saw-tooth angle. After this modification the lens can be operated in the diffraction limited regime. Spot sizes even below 0.1 micrometer are then feasible. This performance in terms of spatial resolution is found to be limited to focusing to microspots and is not available, when the saw-tooth refractive lens is used in an imaging setup. In this case the spatial resolution deteriorates rapidly with increasing off axis distance of the object to be imaged.
NASA Astrophysics Data System (ADS)
Kamura, Yoshio; Imura, Kohei
2018-06-01
Optical recording on organic thin films with a high spatial resolution is promising for high-density optical memories, optical computing, and security systems. The spatial resolution of the optical recording is limited by the diffraction of light. Electrons can be focused to a nanometer-sized spot, providing the potential for achieving better resolution. In conventional electron-beam lithography, however, optical tuning of the fabricated structures is limited mostly to metals and semiconductors rather than organic materials. In this article, we report a fabrication method of luminescent organic architectures using a focused electron beam. We optimized the fabrication conditions of the electron beam to generate chemical species showing visible photoluminescence via two-photon near-infrared excitations. We utilized this fabrication method to draw nanoscale optical architectures on a polystyrene thin film.
Holographic Optical Elements as Scanning Lidar Telescopes
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.
2005-01-01
We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. For example, rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed and tested transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.
Nano-optical information storage induced by the nonlinear saturable absorption effect
NASA Astrophysics Data System (ADS)
Wei, Jingsong; Liu, Shuang; Geng, Yongyou; Wang, Yang; Li, Xiaoyi; Wu, Yiqun; Dun, Aihuan
2011-08-01
Nano-optical information storage is very important in meeting information technology requirements. However, obtaining nanometric optical information recording marks by the traditional optical method is difficult due to diffraction limit restrictions. In the current work, the nonlinear saturable absorption effect is used to generate a subwavelength optical spot and to induce nano-optical information recording and readout. Experimental results indicate that information marks below 100 nm are successfully recorded and read out by a high-density digital versatile disk dynamic testing system with a laser wavelength of 405 nm and a numerical aperture of 0.65. The minimum marks of 60 nm are realized, which is only about 1/12 of the diffraction-limited theoretical focusing spot. This physical scheme is very useful in promoting the development of optical information storage in the nanoscale field.
Optics for coherent X-ray applications
Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya
2014-01-01
Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed. PMID:25177986
Tight focusing properties of the azimuthal discrete phase modulated radially polarized LG11* beam
NASA Astrophysics Data System (ADS)
Zhao, Jiang; Li, Bo; Zhao, Heng; Hu, Yi; Wang, Wenjin; Wang, Youqing
2013-06-01
An novel method for generating an annual periodic optical chain by tight focusing the rotational symmetric π/0 phase plate modulated first order radially polarized Laguerre Gaussian (LG11*) beam with a high-NA lens is proposed. The optical chain is composed of either bright spots or dark spots. Vector diffraction numerical calculation method is employed to analyze the tight focus properties. The analyses indicate that the properties of the optical chains are closely related to the number of phase plate sectors, beam width of radially polarized LG11* beam and the numerical aperture of focusing lens. Furthermore, the average Full Width at Half Maximum (FWHM) of hollow dark spots or bright spots in optical chain is breaking the diffraction limit. These kinds of annular optical chains are expected to be applied in trapping or arranging multiple bar-like micro particles whose refractive index are either higher or lower than that of the ambient.
Canestrari, Niccolo; Chubar, Oleg; Reininger, Ruben
2014-09-01
X-ray beamlines in modern synchrotron radiation sources make extensive use of grazing-incidence reflective optics, in particular Kirkpatrick-Baez elliptical mirror systems. These systems can focus the incoming X-rays down to nanometer-scale spot sizes while maintaining relatively large acceptance apertures and high flux in the focused radiation spots. In low-emittance storage rings and in free-electron lasers such systems are used with partially or even nearly fully coherent X-ray beams and often target diffraction-limited resolution. Therefore, their accurate simulation and modeling has to be performed within the framework of wave optics. Here the implementation and benchmarking of a wave-optics method for the simulation of grazing-incidence mirrors based on the local stationary-phase approximation or, in other words, the local propagation of the radiation electric field along geometrical rays, is described. The proposed method is CPU-efficient and fully compatible with the numerical methods of Fourier optics. It has been implemented in the Synchrotron Radiation Workshop (SRW) computer code and extensively tested against the geometrical ray-tracing code SHADOW. The test simulations have been performed for cases without and with diffraction at mirror apertures, including cases where the grazing-incidence mirrors can be hardly approximated by ideal lenses. Good agreement between the SRW and SHADOW simulation results is observed in the cases without diffraction. The differences between the simulation results obtained by the two codes in diffraction-dominated cases for illumination with fully or partially coherent radiation are analyzed and interpreted. The application of the new method for the simulation of wavefront propagation through a high-resolution X-ray microspectroscopy beamline at the National Synchrotron Light Source II (Brookhaven National Laboratory, USA) is demonstrated.
New coding technique for computer generated holograms.
NASA Technical Reports Server (NTRS)
Haskell, R. E.; Culver, B. C.
1972-01-01
A coding technique is developed for recording computer generated holograms on a computer controlled CRT in which each resolution cell contains two beam spots of equal size and equal intensity. This provides a binary hologram in which only the position of the two dots is varied from cell to cell. The amplitude associated with each resolution cell is controlled by selectively diffracting unwanted light into a higher diffraction order. The recording of the holograms is fast and simple.
Viladot, D; Véron, M; Gemmi, M; Peiró, F; Portillo, J; Estradé, S; Mendoza, J; Llorca-Isern, N; Nicolopoulos, S
2013-10-01
A recently developed technique based on the transmission electron microscope, which makes use of electron beam precession together with spot diffraction pattern recognition now offers the possibility to acquire reliable orientation/phase maps with a spatial resolution down to 2 nm on a field emission gun transmission electron microscope. The technique may be described as precession-assisted crystal orientation mapping in the transmission electron microscope, precession-assisted crystal orientation mapping technique-transmission electron microscope, also known by its product name, ASTAR, and consists in scanning the precessed electron beam in nanoprobe mode over the specimen area, thus producing a collection of precession electron diffraction spot patterns, to be thereafter indexed automatically through template matching. We present a review on several application examples relative to the characterization of microstructure/microtexture of nanocrystalline metals, ceramics, nanoparticles, minerals and organics. The strengths and limitations of the technique are also discussed using several application examples. ©2013 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.
Coupling of laser energy into plasma channels
NASA Astrophysics Data System (ADS)
Dimitrov, D. A.; Giacone, R. E.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.
2007-04-01
Diffractive spreading of a laser pulse imposes severe limitations on the acceleration length and maximum electron energy in the laser wake field accelerator (LWFA). Optical guiding of a laser pulse via plasma channels can extend the laser-plasma interaction distance over many Rayleigh lengths. Energy efficient coupling of laser pulses into and through plasma channels is very important for optimal LWFA performance. Results from simulation parameter studies on channel guiding using the particle-in-cell (PIC) code VORPAL [C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004)] are presented and discussed. The effects that density ramp length and the position of the laser pulse focus have on coupling into channels are considered. Moreover, the effect of laser energy leakage out of the channel domain and the effects of tunneling ionization of a neutral gas on the guided laser pulse are also investigated. Power spectral diagnostics were developed and used to separate pump depletion from energy leakage. The results of these simulations show that increasing the density ramp length decreases the efficiency of coupling a laser pulse to a channel and increases the energy loss when the pulse is vacuum focused at the channel entrance. Then, large spot size oscillations result in increased energy leakage. To further analyze the coupling, a differential equation is derived for the laser spot size evolution in the plasma density ramp and channel profiles are simulated. From the numerical solution of this equation, the optimal spot size and location for coupling into a plasma channel with a density ramp are determined. This result is confirmed by the PIC simulations. They show that specifying a vacuum focus location of the pulse in front of the top of the density ramp leads to an actual focus at the top of the ramp due to plasma focusing, resulting in reduced spot size oscillations. In this case, the leakage is significantly reduced and is negligibly affected by ramp length, allowing for efficient use of channels with long ramps.
Accurately modeling Gaussian beam propagation in the context of Monte Carlo techniques
NASA Astrophysics Data System (ADS)
Hokr, Brett H.; Winblad, Aidan; Bixler, Joel N.; Elpers, Gabriel; Zollars, Byron; Scully, Marlan O.; Yakovlev, Vladislav V.; Thomas, Robert J.
2016-03-01
Monte Carlo simulations are widely considered to be the gold standard for studying the propagation of light in turbid media. However, traditional Monte Carlo methods fail to account for diffraction because they treat light as a particle. This results in converging beams focusing to a point instead of a diffraction limited spot, greatly effecting the accuracy of Monte Carlo simulations near the focal plane. Here, we present a technique capable of simulating a focusing beam in accordance to the rules of Gaussian optics, resulting in a diffraction limited focal spot. This technique can be easily implemented into any traditional Monte Carlo simulation allowing existing models to be converted to include accurate focusing geometries with minimal effort. We will present results for a focusing beam in a layered tissue model, demonstrating that for different scenarios the region of highest intensity, thus the greatest heating, can change from the surface to the focus. The ability to simulate accurate focusing geometries will greatly enhance the usefulness of Monte Carlo for countless applications, including studying laser tissue interactions in medical applications and light propagation through turbid media.
EPICS Controlled Collimator for Controlling Beam Sizes in HIPPO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Napolitano, Arthur Soriano; Vogel, Sven C.
2017-08-03
Controlling the beam spot size and shape in a diffraction experiment determines the probed sample volume. The HIPPO - High-Pressure-Preferred Orientation– neutron time-offlight diffractometer is located at the Lujan Neutron Scattering Center in Los Alamos National Laboratories. HIPPO characterizes microstructural parameters, such as phase composition, strains, grain size, or texture, of bulk (cm-sized) samples. In the current setup, the beam spot has a 10 mm diameter. Using a collimator, consisting of two pairs of neutron absorbing boron-nitride slabs, horizontal and vertical dimensions of a rectangular beam spot can be defined. Using the HIPPO robotic sample changer for sample motion, themore » collimator would enable scanning of e.g. cylindrical samples along the cylinder axis by probing slices of such samples. The project presented here describes implementation of such a collimator, in particular the motion control software. We utilized the EPICS (Experimental Physics Interface and Control System) software interface to integrate the collimator control into the HIPPO instrument control system. Using EPICS, commands are sent to commercial stepper motors that move the beam windows.« less
Fluorescence correlation spectroscopy diffusion laws in the presence of moving nanodomains
NASA Astrophysics Data System (ADS)
Šachl, Radek; Bergstrand, Jan; Widengren, Jerker; Hof, Martin
2016-03-01
It has been shown by means of simulations that spot variation fluorescence correlation spectroscopy (sv-FCS) can be used for the identification and, to some extent, also characterization of immobile lipid nanodomains in model as well as cellular plasma membranes. However, in these simulations, the nanodomains were assumed to be stationary, whereas they actually tend to move like the surrounding lipids. In the present study, we investigated how such domain movement influences the diffusion time/spot-size dependence observed in FCS experiments, usually referred to as ‘diffusion law’ analysis. We show that domain movement might mask the effects of the ‘anomalous’ diffusion characteristics of membrane lipids or proteins predicted for stationary domains, making it difficult to identify such moving nanodomains by sv-FCS. More specifically, our simulations indicate that (i) for domains moving up to a factor of 2.25 slower than the surrounding lipids, such impeded diffusion cannot be observed and the diffusion behaviour of the proteins or lipids is indistinguishable from that of freely diffusing molecules, i.e. nanodomains are not detected; (ii) impeded protein/lipid diffusion behaviour can be observed in experiments where the radii of the detection volume are similar in size to the domain radii, the domain diffusion is about 10 times slower than that of the lipids, and the probes show a high affinity to the domains; and (iii) presence of nanodomains can only be reliably detected by diffraction limited sv-FCS when the domains move very slowly (about 200 times slower than the lipid diffusion). As nanodomains are expected to be in the range of tens of nanometres and most probes show low affinities to such domains, sv-FCS is limited to stationary domains and/or STED-FCS. However, even for that latter technique, diffusing domains smaller than 50 nm in radius are hardly detectable by FCS diffusion time/spot-size dependencies.
Recent progress in X-ray optics at the ESRF
NASA Astrophysics Data System (ADS)
Freund, A.
2003-03-01
It is the task of x-ray optics to adapt the raw beam generated by modern sources such as synchrotron storage rings to a great variety of experimental requirements in terms of intensity, spot size, polarization and other parameters. The very high quality of synchrotron radiation (source size of a few microns and beam divergence of a few micro-radians) and the extreme x-ray flux (power of several hundred Watts in a few square mm) make this task quite difficult. In particular the heat load aspect is very important in the conditioning process of the brute x-ray power. Cryogenically cooled silicon crystals and water-cooled diamond crystals can presently fulfil this task, but limits will soon be reached and new schemes and materials must be envisioned. A major tendency of instrument improvement has a ways been to concentrate more photons into a smaller spot utilizing a whole variety of focusing devices such as Fresnel zone plates, refractive lenses and Systems based on bent surfaces, for example Kirkpatrick-Baez Systems. Apart from the resistance of the sample, the ultimate limits are determined by the source size and strength on one side, by materials properties, cooling, mounting and bending schemes on the other side, and fundamentally by the diffraction process. There is also the important aspect of coherence that can be both a nuisance and a blessing for the experiments, in particular for imaging techniques. Its conservation puts additional constraints on the quality of the optical elements. A review of recent progress in this field is given.
Synchrotron X-Ray Diffraction Analysis of Meteorites in Thin Section: Preliminary Results
NASA Technical Reports Server (NTRS)
Treiman, A. H.; Lanzirotti, A.; Xirouchakis, D.
2004-01-01
X-ray diffraction is the pre-eminent technique for mineral identification and structure determination, but is difficult to apply to grains in thin section, the standard meteorite preparation. Bright focused X-ray beams from synchrotrons have been used extensively in mineralogy and have been applied to extraterrestrial particles. The intensity and small spot size achievable in synchrotron X-ray beams makes them useful for study of materials in thin sections. Here, we describe Synchrotron X-ray Diffraction (SXRD) in thin section as done at the National Synchrotron Light Source, and cite examples of its value for studies of meteorites in thin section.
Challenges in quantitative crystallographic characterization of 3D thin films by ACOM-TEM.
Kobler, A; Kübel, C
2017-02-01
Automated crystal orientation mapping for transmission electron microscopy (ACOM-TEM) has become an easy to use method for the investigation of crystalline materials and complements other TEM methods by adding local crystallographic information over large areas. It fills the gap between high resolution electron microscopy and electron back scatter diffraction in terms of spatial resolution. Recent investigations showed that spot diffraction ACOM-TEM is a quantitative method with respect to sample parameters like grain size, twin density, orientation density and others. It can even be used in combination with in-situ tensile or thermal testing. However, there are limitations of the current method. In this paper we discuss some of the challenges and discuss solutions, e.g. we present an ambiguity filter that reduces the number of pixels with a '180° ambiguity problem'. For that an ACOM-TEM tilt series of nanocrystalline Pd thin films with overlapping crystallites was acquired and analyzed. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Panaro, Simone; Proietti Zaccaria, Remo; Toma, Andrea
2017-02-01
Spintronics and spin-based technology rely on the ultra-fast unbalance of the electronic spin population in quite localized spatial regions. However, as a matter of fact, the low susceptibility of conventional materials at high frequencies strongly limits these phenomena, rendering the efficiency of magnetically active devices insufficient for application purposes. Among the possible strategies which can be envisaged, plasmonics offers a direct approach to increase the effect of local electronic unbalancing processes. By confining and enhancing free radiation in nm-size spatial regions, plasmonic nano-assemblies have demonstrated to support very intense electric and magnetic hot-spots. In particular, very recent studies have proven the fine control of magnetic fields in Fano resonance condition. The near-field-induced out-of-phase oscillation of localized surface plasmons has manifested itself with the arising of magnetic sub-diffractive hot-spots. Here, we show how this effect can be further boosted in the mid-infrared regime via the introduction of higher order plasmonic modes. The investigated system, namely Moon Trimer Resonator (MTR), combines the high efficiency of a strongly coupled nano-assembly in Fano interferential condition with the elevated tunability of the quadrupolar resonance supported by a moon-like geometry. The fine control of the apical gap in this unique nanostructure, characterizes a plasmonic device able to tune its resonance without any consequence on the magnetic hot-spot size, thus enabling an efficient squeezing in the infrared.
Using harmonic oscillators to determine the spot size of Hermite-Gaussian laser beams
NASA Technical Reports Server (NTRS)
Steely, Sidney L.
1993-01-01
The similarity of the functional forms of quantum mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams is illustrated. This functional similarity provides a direct correlation to investigate the spot size of large-order mode Hermite-Gaussian laser beams. The classical limits of a corresponding two-dimensional harmonic oscillator provide a definition of the spot size of Hermite-Gaussian laser beams. The classical limits of the harmonic oscillator provide integration limits for the photon probability densities of the laser beam modes to determine the fraction of photons detected therein. Mathematica is used to integrate the probability densities for large-order beam modes and to illustrate the functional similarities. The probabilities of detecting photons within the classical limits of Hermite-Gaussian laser beams asymptotically approach unity in the limit of large-order modes, in agreement with the Correspondence Principle. The classical limits for large-order modes include all of the nodes for Hermite Gaussian laser beams; Sturm's theorem provides a direct proof.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, M; Beltran, C; Herman, M
Purpose: To investigate the influence of the minimum monitor unit (MU) on the quality of clinical treatment plans for scanned proton therapy. Methods: Delivery system characteristics limit the minimum number of protons that can be delivered per spot, resulting in a min-MU limit. Plan quality can be impacted by the min-MU limit. Two sites were used to investigate the impact of min-MU on treatment plans: pediatric brain tumor at a depth of 5-10 cm; a head and neck tumor at a depth of 1-20 cm. Three field intensity modulated spot scanning proton plans were created for each site with themore » following parameter variations: min-MU limit range of 0.0000-0.0060; and spot spacing range of 0.5-2.0σ of the nominal spot size at isocenter in water (σ=4mm in this work). Comparisons were based on target homogeneity and normal tissue sparing. Results: The increase of the min-MU with a fixed spot spacing decreases plan quality both in homogeneous target coverage and in the avoidance of critical structures. Both head and neck and pediatric brain plans show a 20% increase in relative dose for the hot spot in the CTV and 10% increase in key critical structures when comparing min-MU limits of 0.0000 and 0.0060 with a fixed spot spacing of 1σ. The DVHs of CTVs show min-MU limits of 0.0000 and 0.0010 produce similar plan quality and quality decreases as the min-MU limit increases beyond 0.0020. As spot spacing approaches 2σ, degradation in plan quality is observed when no min-MU limit is imposed. Conclusion: Given a fixed spot spacing of ≤ 1σ of the spot size in water, plan quality decreases as min- MU increases greater than 0.0020. The effect of min-MU should be taken into consideration while planning spot scanning proton therapy treatments to realize its full potential.« less
NASA Astrophysics Data System (ADS)
McBride, Emma Elizabeth; Seiboth, Frank; Cooper, Leora; Frost, Mungo; Goede, Sebastian; Harmand, Marion; Levitan, Abe; McGonegle, David; Miyanishi, Kohei; Ozaki, Norimasa; Roedel, Melanie; Sun, Peihao; Wark, Justin; Hastings, Jerry; Glenzer, Siegfried; Fletcher, Luke
2017-10-01
Here, we present the simultaneous combination of phase contrast imaging (PCI) techniques with in situ X-ray diffraction to investigate multiple-wave features in laser-driven shock-compressed germanium. Experiments were conducted at the Matter at Extreme Conditions end station at the LCLS, and measurements were made perpendicular to the shock propagation direction. PCI allows one to take femtosecond snapshots of magnified real-space images of shock waves as they progress though matter. X-ray diffraction perpendicular to the shock propagation direction provides the opportunity to isolate and identify different waves and determine the crystal structure unambiguously. Here, we combine these two powerful techniques simultaneously, by using the same Be lens setup to focus the fundamental beam at 8.2 keV to a size of 1.5 mm on target for PCI and the 3rd harmonic at 24.6 keV to a spot size of 2 um on target for diffraction.
Object-oriented wavefront correction in an asymmetric amplifying high-power laser system
NASA Astrophysics Data System (ADS)
Yang, Ying; Yuan, Qiang; Wang, Deen; Zhang, Xin; Dai, Wanjun; Hu, Dongxia; Xue, Qiao; Zhang, Xiaolu; Zhao, Junpu; Zeng, Fa; Wang, Shenzhen; Zhou, Wei; Zhu, Qihua; Zheng, Wanguo
2018-05-01
An object-oriented wavefront control method is proposed aiming for excellent near-field homogenization and far-field distribution in an asymmetric amplifying high-power laser system. By averaging the residual errors of the propagating beam, smaller pinholes could be employed on the spatial filters to improve the beam quality. With this wavefront correction system, the laser performance of the main amplifier system in the Shen Guang-III laser facility has been improved. The residual wavefront aberration at the position of each pinhole is below 2 µm (peak-to-valley). For each pinhole, 95% of the total laser energy is enclosed within a circle whose diameter is no more than six times the diffraction limit. At the output of the main laser system, the near-field modulation and contrast are 1.29% and 7.5%, respectively, and 95% of the 1ω (1053 nm) beam energy is contained within a 39.8 µrad circle (6.81 times the diffraction limit) under a laser fluence of 5.8 J cm-2. The measured 1ω focal spot size and near-field contrast are better than the design values of the Shen Guang-III laser facility.
A laser beam quality definition based on induced temperature rise.
Miller, Harold C
2012-12-17
Laser beam quality metrics like M(2) can be used to describe the spot sizes and propagation behavior of a wide variety of non-ideal laser beams. However, for beams that have been diffracted by limiting apertures in the near-field, or those with unusual near-field profiles, the conventional metrics can lead to an inconsistent or incomplete description of far-field performance. This paper motivates an alternative laser beam quality definition that can be used with any beam. The approach uses a consideration of the intrinsic ability of a laser beam profile to heat a material. Comparisons are made with conventional beam quality metrics. An analysis on an asymmetric Gaussian beam is used to establish a connection with the invariant beam propagation ratio.
30-lens interferometer for high energy x-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyubomirskiy, M., E-mail: lyubomir@esrf.fr; Snigireva, I., E-mail: irina@esrf.fr; Vaughan, G.
2016-07-27
We report a hard X-ray multilens interferometer consisting of 30 parallel compound refractive lenses. Under coherent illumination each CRL creates a diffraction limited focal spot - secondary source. An overlapping of coherent beams from these sources resulting in the interference pattern which has a rich longitudinal structure in accordance with the Talbot imaging formalism. The proposed interferometer was experimentally tested at ID11 ESRF beamline for the photon energies 32 keV and 65 keV. The fundamental and fractional Talbot images were recorded with the high resolution CCD camera. An effective source size in the order of 15 µm was determined frommore » the first Talbot image proving that the multilens interferometer can be used as a high resolution beam diagnostic tool.« less
Optical design of laser zoom projective lens with variable total track
NASA Astrophysics Data System (ADS)
He, Yulan; Xiao, Xiangguo; Lu, Feng; Li, Yuan; Han, Kunye; Wang, Nanxi; Qiang, Hua
2017-02-01
In order to project the laser command information to the proper distance , so a laser zoom projective lens with variable total track optical system is designed in the carrier-based aircraft landing system. By choosing the zoom structure, designing of initial structure with PW solution, correcting and balancing the aberration, a large variable total track with 35 × zoom is carried out. The size of image is invariable that is φ25m, the distance of projective image is variable from 100m to 3500m. Optical reverse design, the spot is less than 8μm, the MTF is near the diffraction limitation, the value of MTF is bigger than 0.4 at 50lp/mm.
Diffraction Revisited: Position of Diffraction Spots upon Rotation of a Transmission Grating
ERIC Educational Resources Information Center
Vollmer, Michael
2005-01-01
Diffraction gratings are often used in the laboratory to determine the wavelength of laser light. What happens to the spots on the screen if the grating is rotated in this set-up? The answer is nontrivial and instructive.
Features of Talbot effect on phase diffraction grating
NASA Astrophysics Data System (ADS)
Brazhnikov, Denis G.; Danko, Volodymyr P.; Kotov, Myhaylo M.; Kovalenko, Andriy V.
2018-01-01
The features of the Talbot effect using the phase diffraction gratings have been considered. A phase grating, unlike an amplitude grating, gives a constant light intensity in the observation plane at a distance multiple to half of the Talbot length ZT. In this case, the subject of interest consists in so-called fractional Talbot effect with the periodic intensity distribution observed in planes shifted from the position nZT/2 (the so-called Fresnel images). Binary phase diffraction gratings with varying phase steps have been investigated. Gratings were made photographically on holographic plates PFG-01. The phase shift was obtained by modulating the emulsion refraction index of the plates. Two types of gratings were used: a square grating with a fill factor of 0.5 and a checkerwise grating (square areas with a bigger and lower refractive index alternate in a checkerboard pattern). By the example of these gratings, the possibility of obtaining in the observation plane an image of a set of equidistant spots with a size smaller than the size of the phase-shifting elements of the grating (the so-called Talbot focusing) has been shown. Clear images of spots with a sufficient signal-to-noise ratio have been obtained for a square grating. Their period was equal to the period of the grating. For a grating with a checkerwise distribution of the refractive index, the spots have been located in positions corresponding to the centres of cells. In addition, the quality of the resulting pattern strongly depended on the magnitude of a grating phase step. As a result of the work, the possibility to obtain Talbot focusing has been shown and the use of this effect to wavefront investigation with a gradient sensor has been demonstrated.
Optimization of a constrained linear monochromator design for neutral atom beams.
Kaltenbacher, Thomas
2016-04-01
A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up - a Fresnel zone plate in combination with a pinhole aperture - in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. Copyright © 2016 Elsevier B.V. All rights reserved.
Kunz, Martin; Tamura, Nobumichi; Chen, Kai; MacDowell, Alastair A; Celestre, Richard S; Church, Matthew M; Fakra, Sirine; Domning, Edward E; Glossinger, James M; Kirschman, Jonathan L; Morrison, Gregory Y; Plate, Dave W; Smith, Brian V; Warwick, Tony; Yashchuk, Valeriy V; Padmore, Howard A; Ustundag, Ersan
2009-03-01
A new facility for microdiffraction strain measurements and microfluorescence mapping has been built on beamline 12.3.2 at the advanced light source of the Lawrence Berkeley National Laboratory. This beamline benefits from the hard x-radiation generated by a 6 T superconducting bending magnet (superbend). This provides a hard x-ray spectrum from 5 to 22 keV and a flux within a 1 microm spot of approximately 5x10(9) photons/s (0.1% bandwidth at 8 keV). The radiation is relayed from the superbend source to a focus in the experimental hutch by a toroidal mirror. The focus spot is tailored by two pairs of adjustable slits, which serve as secondary source point. Inside the lead hutch, a pair of Kirkpatrick-Baez (KB) mirrors placed in a vacuum tank refocuses the secondary slit source onto the sample position. A new KB-bending mechanism with active temperature stabilization allows for more reproducible and stable mirror bending and thus mirror focusing. Focus spots around 1 microm are routinely achieved and allow a variety of experiments, which have in common the need of spatial resolution. The effective spatial resolution (approximately 0.2 microm) is limited by a convolution of beam size, scan-stage resolution, and stage stability. A four-bounce monochromator consisting of two channel-cut Si(111) crystals placed between the secondary source and KB-mirrors allows for easy changes between white-beam and monochromatic experiments while maintaining a fixed beam position. High resolution stage scans are performed while recording a fluorescence emission signal or an x-ray diffraction signal coming from either a monochromatic or a white focused beam. The former allows for elemental mapping, whereas the latter is used to produce two-dimensional maps of crystal-phases, -orientation, -texture, and -strain/stress. Typically achieved strain resolution is in the order of 5x10(-5) strain units. Accurate sample positioning in the x-ray focus spot is achieved with a commercial laser-triangulation unit. A Si-drift detector serves as a high-energy-resolution (approximately 150 eV full width at half maximum) fluorescence detector. Fluorescence scans can be collected in continuous scan mode with up to 300 pixels/s scan speed. A charge coupled device area detector is utilized as diffraction detector. Diffraction can be performed in reflecting or transmitting geometry. Diffraction data are processed using XMAS, an in-house written software package for Laue and monochromatic microdiffraction analysis.
A novel DWDM method to design a 100-kW Laser
NASA Astrophysics Data System (ADS)
Basu, Santanu
2010-02-01
In this paper, I will present the design analysis of a novel concept that may be used to generate a diffraction-limited beam from an aperture so that as much as 450 kW of laser power can be efficiently deposited on a diffraction-limited spot at a range. The laser beam will be comprised of many closely spaced wavelength channels as in a DWDM. The technique relies on the ability of an angular dispersion amplifier to multiplex a large number of high power narrow frequency lasers, wavelengths of which may be as close as 0.4 nm.
Beamline 10.3.2 at ALS: a hard X-ray microprobe for environmental and materials sciences.
Marcus, Matthew A; MacDowell, Alastair A; Celestre, Richard; Manceau, Alain; Miller, Tom; Padmore, Howard A; Sublett, Robert E
2004-05-01
Beamline 10.3.2 at the ALS is a bend-magnet line designed mostly for work on environmental problems involving heavy-metal speciation and location. It offers a unique combination of X-ray fluorescence mapping, X-ray microspectroscopy and micro-X-ray diffraction. The optics allow the user to trade spot size for flux in a size range of 5-17 microm in an energy range of 3-17 keV. The focusing uses a Kirkpatrick-Baez mirror pair to image a variable-size virtual source onto the sample. Thus, the user can reduce the effective size of the source, thereby reducing the spot size on the sample, at the cost of flux. This decoupling from the actual source also allows for some independence from source motion. The X-ray fluorescence mapping is performed with a continuously scanning stage which avoids the time overhead incurred by step-and-repeat mapping schemes. The special features of this beamline are described, and some scientific results shown.
An investigation of phase transformation and crystallinity in laser surface modified H13 steel
NASA Astrophysics Data System (ADS)
Aqida, S. N.; Brabazon, D.; Naher, S.
2013-03-01
This paper presents a laser surface modification process of AISI H13 tool steel using 0.09, 0.2 and 0.4 mm size of laser spot with an aim to increase hardness properties. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). X-ray diffraction analysis (XRD) was conducted to measure crystallinity of the laser-modified surface. X-ray diffraction patterns of the samples were recorded using a Bruker D8 XRD system with Cu K α ( λ=1.5405 Å) radiation. The diffraction patterns were recorded in the 2 θ range of 20 to 80°. The hardness properties were tested at 981 mN force. The laser-modified surface exhibited reduced crystallinity compared to the un-processed samples. The presence of martensitic phase was detected in the samples processed using 0.4 mm spot size. Though there was reduced crystallinity, a high hardness was measured in the laser-modified surface. Hardness was increased more than 2.5 times compared to the as-received samples. These findings reveal the phase source of the hardening mechanism and grain composition in the laser-modified surface.
Three-dimensional Bragg coherent diffraction imaging of an extended ZnO crystal.
Huang, Xiaojing; Harder, Ross; Leake, Steven; Clark, Jesse; Robinson, Ian
2012-08-01
A complex three-dimensional quantitative image of an extended zinc oxide (ZnO) crystal has been obtained using Bragg coherent diffraction imaging integrated with ptychography. By scanning a 2.5 µm-long arm of a ZnO tetrapod across a 1.3 µm X-ray beam with fine step sizes while measuring a three-dimensional diffraction pattern at each scan spot, the three-dimensional electron density and projected displacement field of the entire crystal were recovered. The simultaneously reconstructed complex wavefront of the illumination combined with its coherence properties determined by a partial coherence analysis implemented in the reconstruction process provide a comprehensive characterization of the incident X-ray beam.
NASA Astrophysics Data System (ADS)
Raimondi, L.; Svetina, C.; Mahne, N.; Cocco, D.; Abrami, A.; De Marco, M.; Fava, C.; Gerusina, S.; Gobessi, R.; Capotondi, F.; Pedersoli, E.; Kiskinova, M.; De Ninno, G.; Zeitoun, P.; Dovillaire, G.; Lambert, G.; Boutu, W.; Merdji, H.; Gonzalez, A. I.; Gauthier, D.; Zangrando, M.
2013-05-01
FERMI@Elettra, the first seeded EUV-SXR free electron laser (FEL) facility located at Elettra Sincrotrone Trieste has been conceived to provide very short (10-100 fs) pulses with ultrahigh peak brightness and wavelengths from 100 nm to 4 nm. A section fully dedicated to the photon transport and analysis diagnostics, named PADReS, has already been installed and commissioned. Three of the beamlines, EIS-TIMEX, DiProI and LDM, installed after the PADReS section, are in advanced commissioning state and will accept the first users in December 2012. These beam lines employ active X-ray optics in order to focus the FEL beam as well as to perform a controlled beam-shaping at focus. Starting from mirror surface metrology characterization, it is difficult to predict the focal spot shape applying only methods based on geometrical optics such as the ray tracing. Within the geometrical optics approach one cannot take into account the diffraction effect from the optics edges, i.e. the aperture diffraction, and the impact of different surface spatial wavelengths to the spot size degradation. Both these effects are strongly dependent on the photon beam energy and mirror incident angles. We employed a method based on physical optics, which applies the Huygens-Fresnel principle to reflection (on which the WISE code is based). In this work we report the results of the first measurements of the focal spot in the DiProI beamline end-station and compare them to the predictions computed with Shadow code and WISE code, starting from the mirror surface profile characterization.
Robust reconstruction of time-resolved diffraction from ultrafast streak cameras
Badali, Daniel S.; Dwayne Miller, R. J.
2017-01-01
In conjunction with ultrafast diffraction, streak cameras offer an unprecedented opportunity for recording an entire molecular movie with a single probe pulse. This is an attractive alternative to conventional pump-probe experiments and opens the door to studying irreversible dynamics. However, due to the “smearing” of the diffraction pattern across the detector, the streaking technique has thus far been limited to simple mono-crystalline samples and extreme care has been taken to avoid overlapping diffraction spots. In this article, this limitation is addressed by developing a general theory of streaking of time-dependent diffraction patterns. Understanding the underlying physics of this process leads to the development of an algorithm based on Bayesian analysis to reconstruct the time evolution of the two-dimensional diffraction pattern from a single streaked image. It is demonstrated that this approach works on diffraction peaks that overlap when streaked, which not only removes the necessity of carefully choosing the streaking direction but also extends the streaking technique to be able to study polycrystalline samples and materials with complex crystalline structures. Furthermore, it is shown that the conventional analysis of streaked diffraction can lead to erroneous interpretations of the data. PMID:28653022
In Situ 3D Coherent X-ray Diffraction Imaging of Shock Experiments: Possible?
NASA Astrophysics Data System (ADS)
Barber, John
2011-03-01
In traditional coherent X-ray diffraction imaging (CXDI), a 2D or quasi-2D object is illuminated by a beam of coherent X-rays to produce a diffraction pattern, which is then manipulated via a process known as iterative phase retrieval to reconstruct an image of the original 2D sample. Recently, there have been dramatic advances in methods for performing fully 3D CXDI of a sample from a single diffraction pattern [Raines et al, Nature 463 214-7 (2010)], and these methods have been used to image samples tens of microns in size using soft X-rays. In this work, I explore the theoretical possibility of applying 3D CXDI techniques to the in situ imaging of the interaction between a shock front and a polycrystal, a far more stringent problem. A delicate trade-off is required between photon energy, spot size, imaging resolution, and the dimensions of the experimental setup. In this talk, I will outline the experimental and computational requirements for performing such an experiment, and I will present images and movies from simulations of one such hypothetical experiment, including both the time-resolved X-ray diffraction patterns and the time-resolved sample imagery.
Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression
NASA Astrophysics Data System (ADS)
Bowman, R.; D'Ambrosio, V.; Rubino, E.; Jedrkiewicz, O.; di Trapani, P.; Padgett, M. J.
2011-11-01
Spatial Light Modulators (SLMs) are a powerful tool in many optics laboratories, but due to the technology required for their fabrication, they are usually very expensive. Recently some inexpensive devices have been produced, however their phase shift range is less than 2π, leading to a loss of diffraction efficiency for the SLM. We show how to improve the first order diffraction efficiency of such an SLM by adjusting the blazing function, and obtain a 1.5 times increase in first order diffracted power. Even a perfect SLM with 2π phase throw can produce undesired effects in some situations; for example in holographic optical tweezers it is common to find unwanted "ghost spots" near to the array of first-order spots. Modulating the amplitude, by spatially modulating the blazing function, allows us to suppress the ghost spots. This increases the contrast between desired and unwanted spots by more than an order of magnitude.
Using refractive optics to broaden the focus of an X-ray mirror.
Laundy, David; Sawhney, Kawal; Dhamgaye, Vishal
2017-07-01
X-ray mirrors are widely used at synchrotron radiation sources for focusing X-rays into focal spots of size less than 1 µm. The ability of the beamline optics to change the size of this spot over a range up to tens of micrometres can be an advantage for many experiments such as X-ray microprobe and X-ray diffraction from micrometre-scale crystals. It is a requirement that the beam size change should be reproducible and it is often essential that the change should be rapid, for example taking less than 1 s, in order to allow high data collection rates at modern X-ray sources. In order to provide a controlled broadening of the focused spot of an X-ray mirror, a series of refractive optical elements have been fabricated and installed immediately before the mirror. By translation, a new refractive element is moved into the X-ray beam allowing a variation in the size of the focal spot in the focusing direction. Measurements using a set of prefabricated refractive structures with a test mirror showed that the focused beam size could be varied from less than 1 µm to over 10 µm for X-rays in the energy range 10-20 keV. As the optics is in-line with the X-ray beam, there is no effect on the centroid position of the focus. Accurate positioning of the refractive optics ensures reproducibility in the focused beam profile and no additional re-alignment of the optics is required.
Using refractive optics to broaden the focus of an X-ray mirror
Dhamgaye, Vishal
2017-01-01
X-ray mirrors are widely used at synchrotron radiation sources for focusing X-rays into focal spots of size less than 1 µm. The ability of the beamline optics to change the size of this spot over a range up to tens of micrometres can be an advantage for many experiments such as X-ray microprobe and X-ray diffraction from micrometre-scale crystals. It is a requirement that the beam size change should be reproducible and it is often essential that the change should be rapid, for example taking less than 1 s, in order to allow high data collection rates at modern X-ray sources. In order to provide a controlled broadening of the focused spot of an X-ray mirror, a series of refractive optical elements have been fabricated and installed immediately before the mirror. By translation, a new refractive element is moved into the X-ray beam allowing a variation in the size of the focal spot in the focusing direction. Measurements using a set of prefabricated refractive structures with a test mirror showed that the focused beam size could be varied from less than 1 µm to over 10 µm for X-rays in the energy range 10–20 keV. As the optics is in-line with the X-ray beam, there is no effect on the centroid position of the focus. Accurate positioning of the refractive optics ensures reproducibility in the focused beam profile and no additional re-alignment of the optics is required. PMID:28664880
Ecological and agricultural applications of synchrotron IR microscopy
NASA Astrophysics Data System (ADS)
Raab, T. K.; Vogel, J. P.
2004-10-01
The diffraction-limited spot size of synchrotron-based IR microscopes provides cell-specific, spectrochemical imaging of cleared leaf, stem and root tissues of the model genetic organism Arabidopsis thaliana, and mutant plants created either by T-DNA insertional inactivation or chemical mutagenesis. Spectra in the wavelength region from 6 to 12 μm provide chemical and physical information on the cell wall polysaccharides of mutants lacking particular biosynthetic enzymes ("Cellulose synthase-like" genes). In parallel experiments, synchrotron IR microscopy delineates the role of Arabidopsis cell wall enzymes as susceptibility factors to the fungus Erysiphe cichoracearum, a causative agent of powdery mildew disease. Three genes, pmr4, pmr5, and pmr6 have been characterized by these methods, and biochemical relations between two of the genes suggested by IR spectroscopy and multivariate statistical techniques could not have been inferred through classical molecular biology. In ecological experiments, live plants can also be imaged in small microcosms with mid-IR transmitting ZnSe windows. Small exudate molecules may be spatially mapped in relation to root architecture at diffraction-limited resolution, and the effect of microbial symbioses on the quantity and quality of exudates inferred. Synchrotron IR microscopy provides a useful adjunct to molecular biological methods and underground observatories in the ongoing assessment of the role of root-soil-microbe communication.
A Compact X-Ray System for Support of High Throughput Crystallography
NASA Technical Reports Server (NTRS)
Ciszak, Ewa; Gubarev, Mikhail; Gibson, Walter M.; Joy, Marshall K.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Standard x-ray systems for crystallography rely on massive generators coupled with optics that guide X-ray beams onto the crystal sample. Optics for single-crystal diffractometry include total reflection mirrors, polycapillary optics or graded multilayer monochromators. The benefit of using polycapillary optic is that it can collect x-rays over tile greatest solid angle, and thus most efficiently, utilize the greatest portion of X-rays emitted from the Source, The x-ray generator has to have a small anode spot, and thus its size and power requirements can be substantially reduced We present the design and results from the first high flux x-ray system for crystallography that combine's a microfocus X-ray generator (40microns FWHM Spot size at a power of 45 W) and a collimating, polycapillary optic. Diffraction data collected from small test crystals with cell dimensions up to 160A (lysozyme and thaumatin) are of high quality. For example, diffraction data collected from a lysozyme crystal at RT yielded R=5.0% for data extending to 1.70A. We compare these results with measurements taken from standard crystallographic systems. Our current microfocus X-ray diffraction system is attractive for supporting crystal growth research in the standard crystallography laboratory as well as in remote, automated crystal growth laboratory. Its small volume, light-weight, and low power requirements are sufficient to have it installed in unique environments, i.e.. on-board International Space Station.
High convergence efficiency design of flat Fresnel lens with large aperture
NASA Astrophysics Data System (ADS)
Ke, Jieyao; Zhao, Changming; Guan, Zhe
2018-01-01
This paper designed a circle-shaped Fresnel lens with large aperture as part of the solar pumped laser design project. The Fresnel lens designed in this paper simulate in size 1000mm×1000mm, focus length 1200mm and polymethyl methacrylate (PMMA) material in order to conduct high convergence efficiency. In the light of design requirement of concentric ring with same width of 0.3mm, this paper proposed an optimized Fresnel lens design based on previous sphere design and conduct light tracing simulation in Matlab. This paper also analyzed the effect of light spot size, light intensity distribution, optical efficiency under four conditions, monochromatic parallel light, parallel spectrum light, divergent monochromatic light and sunlight. Design by 550nm wavelength and under the condition of Fresnel reflection, the results indicated that the designed lens could convergent sunlight in diffraction limit of 11.8mm with a 78.7% optical efficiency, better than the sphere cutting design results of 30.4%.
Towards anti-causal Green's function for three-dimensional sub-diffraction focusing
NASA Astrophysics Data System (ADS)
Ma, Guancong; Fan, Xiying; Ma, Fuyin; de Rosny, Julien; Sheng, Ping; Fink, Mathias
2018-06-01
In causal physics, the causal Green's function describes the radiation of a point source. Its counterpart, the anti-causal Green's function, depicts a spherically converging wave. However, in free space, any converging wave must be followed by a diverging one. Their interference gives rise to the diffraction limit that constrains the smallest possible dimension of a wave's focal spot in free space, which is half the wavelength. Here, we show with three-dimensional acoustic experiments that we can realize a stand-alone anti-causal Green's function in a large portion of space up to a subwavelength distance from the focus point by introducing a near-perfect absorber for spherical waves at the focus. We build this subwavelength absorber based on membrane-type acoustic metamaterial, and experimentally demonstrate focusing of spherical waves beyond the diffraction limit.
Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging.
Evans, P G; Chahine, G; Grifone, R; Jacques, V L R; Spalenka, J W; Schülli, T U
2013-11-01
X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1-2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.
Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging
NASA Astrophysics Data System (ADS)
Evans, P. G.; Chahine, G.; Grifone, R.; Jacques, V. L. R.; Spalenka, J. W.; Schülli, T. U.
2013-11-01
X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1-2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.
Zhao, Huanhuan; Young, Ashley K; James, Bryony J
2018-04-01
This study aims to understand the bloom process in untempered chocolate by investigating the polymorphic transformation of cocoa butter and changes in chocolate surface. Cocoa mass with varying particle size distributions (PSD) were used to produce untempered model chocolate. Optical microscopy showed that during 25 d of storage, the chocolate surface gradually became honeycombed in appearance with dark spots surrounded by white sandy bloom areas. In conjunction with X-ray diffraction this indicates that the polymorphic transformation of form IV cocoa butter to more stable form V crystals caused the observed surface changes with the most significant changes occurring within 6 d. As bloom developed the surface whiteness increased, but the PSD of nonfat particles showed limited impact on the changes in whiteness. Moreover, scanning electron microscopy showed separated fat crystals on fat-rich dark spots and empty spaces between particles in bloom areas suggesting redistribution of fat in the chocolate matrix. The results reported in this work can facilitate the understanding of fat bloom formation in untempered chocolate with respect to the changes in microstructure and surface appearances. It also contributes to show the details of IV-to-V polymorphic transformation in the fat phase as time went by. © 2018 Institute of Food Technologists®.
Optical diffraction interpretation: an alternative to interferometers
NASA Astrophysics Data System (ADS)
Bouillet, S.; Audo, F.; Fréville, S.; Eupherte, L.; Rouyer, C.; Daurios, J.
2015-08-01
The Laser MégaJoule (LMJ) is a French high power laser project that requires thousands of large optical components. The wavefront performances of all those optics are critical to achieve the desired focal spot shape and to limit the hot spots that could damage the components. Fizeau interferometers and interferometric microscopes are the most commonly used tools to cover the whole range of interesting spatial frequencies. Anyway, in some particular cases like diffractive and/or coated and/or aspheric optics, an interferometric set-up becomes very expensive with the need to build a costly reference component or a specific to-the-wavelength designed interferometer. Despite the increasing spatial resolution of Fizeau interferometers, it may even not be enough, if you are trying to access the highest spatial frequencies of a transmitted wavefront for instance. The method we developed is based upon laser beam diffraction intermediate field measurements and their interpretation with a Fourier analysis and the Talbot effect theory. We demonstrated in previous papers that it is a credible alternative to classical methods. In this paper we go further by analyzing main error sources and discussing main practical difficulties.
Refractive optics to compensate x-ray mirror shape-errors
NASA Astrophysics Data System (ADS)
Laundy, David; Sawhney, Kawal; Dhamgaye, Vishal; Pape, Ian
2017-08-01
Elliptically profiled mirrors operating at glancing angle are frequently used at X-ray synchrotron sources to focus X-rays into sub-micrometer sized spots. Mirror figure error, defined as the height difference function between the actual mirror surface and the ideal elliptical profile, causes a perturbation of the X-ray wavefront for X- rays reflecting from the mirror. This perturbation, when propagated to the focal plane results in an increase in the size of the focused beam. At Diamond Light Source we are developing refractive optics that can be used to locally cancel out the wavefront distortion caused by figure error from nano-focusing elliptical mirrors. These optics could be used to correct existing optical components on synchrotron radiation beamlines in order to give focused X-ray beam sizes approaching the theoretical diffraction limit. We present our latest results showing measurement of the X-ray wavefront error after reflection from X-ray mirrors and the translation of the measured wavefront into a design for refractive optical elements for correction of the X-ray wavefront. We show measurement of the focused beam with and without the corrective optics inserted showing reduction in the size of the focus resulting from the correction to the wavefront.
NASA Astrophysics Data System (ADS)
Maru, Koichi; Abe, Yukio; Uetsuka, Hisato
2008-10-01
We demonstrated a compact and low-loss athermal arrayed-waveguide grating (AWG) module utilizing silica-based planar lightwave circuit (PLC) technology. Spot-size converters based on a vertical ridge-waveguide taper were integrated with a 2.5%-Δ athermal AWG to reduce the loss at chip-to-fiber interface. Spot-size converters based on a segmented core were formed around resin-filled trenches for athermalization formed in the slab to reduce the diffraction loss at the trenches. A 16-channel athermal AWG module with 100-GHz channel spacing was fabricated. The use of a 2.5%-Δ athermal chip with a single-side fiber array enabled a compact package of the size of 41.6×16.6×4.5 mm3. Athermal characteristics and a small insertion loss of 3.5-3.8 dB were obtained by virtue of low fiber-to-chip coupling loss and athermalization with low excess loss.
Imperfection and radiation damage in protein crystals studied with coherent radiation
Nave, Colin; Sutton, Geoff; Evans, Gwyndaf; Owen, Robin; Rau, Christoph; Robinson, Ian; Stuart, David Ian
2016-01-01
Fringes and speckles occur within diffraction spots when a crystal is illuminated with coherent radiation during X-ray diffraction. The additional information in these features provides insight into the imperfections in the crystal at the sub-micrometre scale. In addition, these features can provide more accurate intensity measurements (e.g. by model-based profile fitting), detwinning (by distinguishing the various components), phasing (by exploiting sampling of the molecular transform) and refinement (by distinguishing regions with different unit-cell parameters). In order to exploit these potential benefits, the features due to coherent diffraction have to be recorded and any change due to radiation damage properly modelled. Initial results from recording coherent diffraction at cryotemperatures from polyhedrin crystals of approximately 2 µm in size are described. These measurements allowed information about the type of crystal imperfections to be obtained at the sub-micrometre level, together with the changes due to radiation damage. PMID:26698068
NASA Astrophysics Data System (ADS)
Koenig, Karsten; Riemann, Iris; Krauss, Oliver; Fritzsche, Wolfgang
2002-04-01
Nanojoule and sub-nanojoule 80 MHz femtosecond laser pulses at 750-850 nm of a compact titanium:sapphire laser have been used for highly precise nanoprocessing of DNA as well as of intracellular and intratissue compartments. In particular, a mean power between 15 mW and 100 mW, 170 fs pulse width, submicron distance of illumination spots and microsecond beam dwell times on spots have been used for multiphoton- mediated nanoprocessing of human chromosomes, brain and ocular intrastromal tissue. By focusing the laser beam with high numerical aperture focusing optics of the laser scan system femt-O-cut and of modified multiphoton scanning microscopes to diffraction-limited spots and TW/cm2 light intensities, precise submicron holes and cuts have been processed by single spot exposure and line scans. A minimum FWHM cut size below 70 nm during the partial dissection of the human chromosome 3 was achieved. Complete chromosome dissection could be performed with FWHM cut sizes below 200 nm. Intracellular chromosome dissection was possible. Intratissue processing in depths of 50 - 100micrometers and deeper with a precision of about 1micrometers including cuts through a nuclei of a single intratissue cell without destructive photo-disruption effects to surrounding tissue layers have been demonstrated in brain and eye tissues. The femt-O-cut system includes a diagnostic system for optical tomography with submicron resolution based on multiphoton- excited autofluorescence imaging (MAI) and second harmonic generation. This system was used to localize the intracellular and intratissue targets and to control the effects of nanoprocessing. These studies show, that in contrast to conventional approaches of material processing with amplified femtosecond laser systems and (mu) J pulse energies, nanoprocessing of materials including biotissues can be performed with nJ and sub-nJ high repetition femtosecond laser pulses of turn-key compact lasers without collateral damage. Potential applications include highly precise cell and embryo surgery, gene diagnostics and gene therapy, intrastromal refractive surgery, cancer therapy and brain surgery.
Tailored semiconductors for high-harmonic optoelectronics
NASA Astrophysics Data System (ADS)
Sivis, Murat; Taucer, Marco; Vampa, Giulio; Johnston, Kyle; Staudte, André; Naumov, Andrei Yu.; Villeneuve, D. M.; Ropers, Claus; Corkum, P. B.
2017-07-01
The advent of high-harmonic generation in gases 30 years ago set the foundation for attosecond science and facilitated ultrafast spectroscopy in atoms, molecules, and solids. We explore high-harmonic generation in the solid state by means of nanostructured and ion-implanted semiconductors. We use wavelength-selective microscopic imaging to map enhanced harmonic emission and show that the generation medium and the driving field can be locally tailored in solids by modifying the chemical composition and morphology. This enables the control of high-harmonic technology within precisely engineered solid targets. We demonstrate customized high-harmonic wave fields with wavelengths down to 225 nanometers (ninth-harmonic order of 2-micrometer laser pulses) and present an integrated Fresnel zone plate target in silicon, which leads to diffraction-limited self-focusing of the generated harmonics down to 1-micrometer spot sizes.
Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays
Fan, Qingbin; Huo, Pengcheng; Wang, Daopeng; Liang, Yuzhang; Yan, Feng; Xu, Ting
2017-01-01
Conventional metasurface reflector-arrays based on metallic resonant nanoantenna to control the wavefront of light for focusing always suffer from strong ohmic loss at optical frequencies. Here, we overcome this challenge by constructing a non-resonant, hybrid dielectric-metal configuration consisting of TiO2 nanofins associated with an Ag reflector substrate that provides a broadband response and high polarization conversion efficiency in the visible range. A reflective flat lens based on this configuration shows an excellent focusing performance with the spot size close to the diffraction limit. Furthermore, by employing the superimposed phase distribution design to manipulate the wavefront of the reflected light, various functionalities, such as multifocal and achromatic focusing, are demonstrated for the flat lenses. Such a reflective flat lens will find various applications in visible light imaging and sensing systems. PMID:28332611
Slowing of Bessel light beam group velocity
NASA Astrophysics Data System (ADS)
Alfano, Robert R.; Nolan, Daniel A.
2016-02-01
Bessel light beams experience diffraction-limited propagation. A different basic spatial property of a Bessel beam is reported and investigated. It is shown a Bessel beam is a natural waveguide causing its group velocity can be subluminal (slower than the speed of light) when the optical frequency ω approaches a critical frequency ωc. A free space dispersion relation for a Bessel beam, the dependence of its wave number on its angular frequency, is developed from which the Bessel beam's subluminal group velocity is derived. It is shown under reasonable laboratory conditions that a Bessel light beam has associated parameters that allow slowing near a critical frequency. The application of Bessel beams with 1 μm spot size to slow down 100 ps to 200 ps over 1 cm length for a natural optical buffer in free space is presented.
Importing super-resolution imaging into nanoscale puzzles of materials dynamics
NASA Astrophysics Data System (ADS)
King, John; Tsang, Chi Hang Boyce; Wilson, William; Granick, Steve
2014-03-01
A limitation of the exciting recent advances in sub-diffraction microscopy is that they focus on imaging rather than dynamical changes. We are engaged in extending this technique beyond the usual biological applications to address materials problems instead. To this end, we employ stimulated emission depletion (STED) microscopy, which relies on selectively turning off fluorescence emitters through stimulated emission, allowing only a small subset of emitters to be detected, such that the excitation spot size can be downsized to tens of nanometers. By coupling the STED excitation scheme to fluorescence correlation spectroscopy (FCS), diffusive processes are studied with nanoscale resolution. Here, we demonstrate the benefits of such experimental capabilities in a diverse range of complex systems, ranging from the diffusion of nano-objects in crowded 3D environments to the study of polymer diffusion on 2D surfaces.
Improved crystal orientation and physical properties from single-shot XFEL stills
Sauter, Nicholas K.; Hattne, Johan; Brewster, Aaron S.; ...
2014-11-28
X-ray diffraction patterns from still crystals are inherently difficult to process because the crystal orientation is not uniquely determined by measuring the Bragg spot positions. Only one of the three rotational degrees of freedom is directly coupled to spot positions; the other two rotations move Bragg spots in and out of the reflecting condition but do not change the direction of the diffracted rays. This hinders the ability to recover accurate structure factors from experiments that are dependent on single-shot exposures, such as femtosecond diffract-and-destroy protocols at X-ray free-electron lasers (XFELs). Here, additional methods are introduced to optimally model themore » diffraction. The best orientation is obtained by requiring, for the brightest observed spots, that each reciprocal-lattice point be placed into the exact reflecting condition implied by Bragg's law with a minimal rotation. This approach reduces the experimental uncertainties in noisy XFEL data, improving the crystallographic R factors and sharpening anomalous differences that are near the level of the noise.« less
Improved crystal orientation and physical properties from single-shot XFEL stills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauter, Nicholas K.; Hattne, Johan; Brewster, Aaron S.
X-ray diffraction patterns from still crystals are inherently difficult to process because the crystal orientation is not uniquely determined by measuring the Bragg spot positions. Only one of the three rotational degrees of freedom is directly coupled to spot positions; the other two rotations move Bragg spots in and out of the reflecting condition but do not change the direction of the diffracted rays. This hinders the ability to recover accurate structure factors from experiments that are dependent on single-shot exposures, such as femtosecond diffract-and-destroy protocols at X-ray free-electron lasers (XFELs). Here, additional methods are introduced to optimally model themore » diffraction. The best orientation is obtained by requiring, for the brightest observed spots, that each reciprocal-lattice point be placed into the exact reflecting condition implied by Bragg's law with a minimal rotation. This approach reduces the experimental uncertainties in noisy XFEL data, improving the crystallographic R factors and sharpening anomalous differences that are near the level of the noise.« less
Li, Chufeng; Schmidt, Kevin; Spence, John C.
2015-01-01
We compare three schemes for time-resolved X-ray diffraction from protein nanocrystals using an X-ray free-electron laser. We find expressions for the errors in structure factor measurement using the Monte Carlo pump-probe method of data analysis with a liquid jet, the fixed sample pump-probe (goniometer) method (both diffract-and-destroy, and below the safe damage dose), and a proposed two-color method. Here, an optical pump pulse arrives between X-ray pulses of slightly different energies which hit the same nanocrystal, using a weak first X-ray pulse which does not damage the sample. (Radiation damage is outrun in the other cases.) This two-color method, in which separated Bragg spots are impressed on the same detector readout, eliminates stochastic fluctuations in crystal size, shape, and orientation and is found to require two orders of magnitude fewer diffraction patterns than the currently used Monte Carlo liquid jet method, for 1% accuracy. Expressions are given for errors in structure factor measurement for the four approaches, and detailed simulations provided for cathepsin B and IC3 crystals. While the error is independent of the number of shots for the dose-limited goniometer method, it falls off inversely as the square root of the number of shots for the two-color and Monte Carlo methods, with a much smaller pre-factor for the two-color mode, when the first shot is below the damage threshold. PMID:26798813
Vectorial diffraction properties of THz vortex Bessel beams.
Wu, Zhen; Wang, Xinke; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Ye, Jiasheng; Yu, Yue; Zhang, Yan
2018-01-22
A vortex Bessel beam combines the merits of an optical vortex and a Bessel beam, including a spiral wave front and a non-diffractive feature, which has immense application potentials in optical trapping, optical fabrication, optical communications, and so on. Here, linearly and circularly polarized vortex Bessel beams in the terahertz (THz) frequency range are generated by utilizing a THz quarter wave plate, a spiral phase plate, and Teflon axicons with different opening angles. Taking advantage of a THz focal-plane imaging system, vectorial diffraction properties of the THz vortex Bessel beams are comprehensively characterized and discussed, including the transverse (Ex, Ey) and longitudinal (Ez) polarization components. The experimental phenomena are accurately simulated by adopting the vectorial Rayleigh diffraction integral. By varying the opening angle of the axicon, the characteristic parameters of these THz vortex Bessel beams are exhibited and compared, including the light spot size, the diffraction-free range, and the phase evolution process. This work provides the precise experimental and theoretical bases for the comprehension and application of a THz vortex Bessel beam.
NASA Astrophysics Data System (ADS)
Deng, Shaoyong; Zhang, Shiqiang; He, Minbo; Zhang, Zheng; Guan, Xiaowei
2017-05-01
The positive-branch confocal unstable resonator with inhomogeneous gain medium was studied for the normal used high energy DF laser system. The fast changing process of the resonator's eigenmodes was coupled with the slow changing process of the thermal deformation of cavity mirrors. Influences of the thermal deformation of cavity mirrors to the outcoupled beam quality and transmission loss of high frequency components of high energy laser were computed. The simulations are done through programs compiled by MATLAB and GLAD software and the method of combination of finite elements and Fox-li iteration algorithm was used. Effects of thermal distortion, misaligned of cavity mirrors and inhomogeneous distribution of gain medium were introduced to simulate the real physical circumstances of laser cavity. The wavefront distribution and beam quality (including RMS of wavefront, power in the bucket, Strehl ratio, diffraction limit β, position of the beam spot center, spot size and intensity distribution in far-field ) of the distorted outcoupled beam were studied. The conclusions of the simulation agree with the experimental results. This work would supply references of wavefront correction range to the adaptive optics system of interior alleyway.
NASA Astrophysics Data System (ADS)
Mahato, Dip Narayan
This thesis includes x-ray experiments for medical and materials applications and the use of x-ray diffraction data in a first-principles study of electronic structures and hyperfine properties of chemical and biological systems. Polycapillary focusing lenses were used to collect divergent x rays emitted from conventional x-ray tubes and redirect them to form an intense focused beam. These lenses are routinely used in microbeam x-ray fluorescence analysis. In this thesis, their potential application to powder diffraction and focused beam orthovoltage cancer therapy has been investigated. In conventional x-ray therapy, very high energy (˜ MeV) beams are used, partly to reduce the skin dose. For any divergent beam, the dose is necessarily highest at the entry point, and decays exponentially into the tissue. To reduce the skin dose, high energy beams, which have long absorption lengths, are employed, and rotated about the patient to enter from different angles. This necessitates large expensive specialized equipment. A focused beam could concentrate the dose within the patient. Since this is inherently skin dose sparing, lower energy photons could be employed. A primary concern in applying focused beams to therapy is whether the focus would be maintained despite Compton scattering within the tissue. To investigate this, transmission and focal spot sizes as a function of photon energy of two polycapillary focusing lenses were measured. The effects of tissue-equivalent phantoms of different thicknesses on the focal spot size were studied. Scatter fraction and depth dose were calculated. For powder diffraction, the polycapillary optics provide clean Gaussian peaks, which result in angular resolution that is much smaller than the peak width due to the beam convergence. Powder diffraction (also called coherent scatter) without optics can also be used to distinguish between tissue types that, because they have different nanoscale structures, scatter at different angles. Measurements were performed on the development of coherent scatter imaging to provide tissue type information in mammography. Atomic coordinates from x-ray diffraction data were used to study the nuclear quadrupole interactions and nature of molecular binding in DNA/RNA nucleobases and molecular solid BF3 systems.
Improved crystal orientation and physical properties from single-shot XFEL stills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauter, Nicholas K., E-mail: nksauter@lbl.gov; Hattne, Johan; Brewster, Aaron S.
X-ray free-electron laser crystallography relies on the collection of still-shot diffraction patterns. New methods are developed for optimal modeling of the crystals’ orientations and mosaic block properties. X-ray diffraction patterns from still crystals are inherently difficult to process because the crystal orientation is not uniquely determined by measuring the Bragg spot positions. Only one of the three rotational degrees of freedom is directly coupled to spot positions; the other two rotations move Bragg spots in and out of the reflecting condition but do not change the direction of the diffracted rays. This hinders the ability to recover accurate structure factorsmore » from experiments that are dependent on single-shot exposures, such as femtosecond diffract-and-destroy protocols at X-ray free-electron lasers (XFELs). Here, additional methods are introduced to optimally model the diffraction. The best orientation is obtained by requiring, for the brightest observed spots, that each reciprocal-lattice point be placed into the exact reflecting condition implied by Bragg’s law with a minimal rotation. This approach reduces the experimental uncertainties in noisy XFEL data, improving the crystallographic R factors and sharpening anomalous differences that are near the level of the noise.« less
Multi-image acquisition-based distance sensor using agile laser spot beam.
Riza, Nabeel A; Amin, M Junaid
2014-09-01
We present a novel laser-based distance measurement technique that uses multiple-image-based spatial processing to enable distance measurements. Compared with the first-generation distance sensor using spatial processing, the modified sensor is no longer hindered by the classic Rayleigh axial resolution limit for the propagating laser beam at its minimum beam waist location. The proposed high-resolution distance sensor design uses an electronically controlled variable focus lens (ECVFL) in combination with an optical imaging device, such as a charged-coupled device (CCD), to produce and capture different laser spot size images on a target with these beam spot sizes different from the minimal spot size possible at this target distance. By exploiting the unique relationship of the target located spot sizes with the varying ECVFL focal length for each target distance, the proposed distance sensor can compute the target distance with a distance measurement resolution better than the axial resolution via the Rayleigh resolution criterion. Using a 30 mW 633 nm He-Ne laser coupled with an electromagnetically actuated liquid ECVFL, along with a 20 cm focal length bias lens, and using five spot images captured per target position by a CCD-based Nikon camera, a proof-of-concept proposed distance sensor is successfully implemented in the laboratory over target ranges from 10 to 100 cm with a demonstrated sub-cm axial resolution, which is better than the axial Rayleigh resolution limit at these target distances. Applications for the proposed potentially cost-effective distance sensor are diverse and include industrial inspection and measurement and 3D object shape mapping and imaging.
Instrumentation for Laue diffraction (invited)
NASA Astrophysics Data System (ADS)
Helliwell, J. R.; Harrop, S.; Habash, J.; Magorrian, B. G.; Allinson, N. M.; Gomez, D.; Helliwell, M.; Derewenda, Z.; Cruickshank, D. W. J.
1989-07-01
Single-crystal x-ray diffraction data can be measured very quickly in Laue geometry compared with monochromatic methods. Alternatively, this gain factor can be used instead to reduce the sample volume for a fixed exposure time. In the latter case especially, there is a critical need to control parasitic scatter in the Laue camera. The use of Laue geometry as a means of quantitative data acquisition required the solution of some fundamental problems. The so-called ``overlapping orders problem'' has been found not to be limiting. It can be shown that the bulk of the Laue spots are single order, provided dhkl<2dmin where dhkl is the interplanar spacing and dmin is the resolution limit of the data. In addition, empirical wavelength normalization is required. This can be achieved by using the symmetry of the diffraction pattern. The fact that different equivalents occur at different wavelengths means that the differences in these intensities can be used to establish the ``λ curve.'' Successful wavelength normalization to date has used a relatively broad-band pass. The multiplicity distribution is the histogram of the number of spots of a given order. This distribution is determined by the ratio λmax/λmin (λmax =maximum wavelength, λmin =minimum wavelength in the beam). λmax is determined by the use of any filters in the beamline. λmin is determined either by the spectral curve or a critical cutoff if a mirror is used. A mirror can be usefully introduced to enhance the multiplicity distribution in favor of single wavelength spots or to focus the white beam; so far only vertical focussing has been used. The detector options used to date have been photographic film, Fuji image plate (at Photon Factory)/Kodak storage phosphor (at Cornell) and charge coupled device (CCD) (at Daresbury). It is useful to consider the joint theoretical spatial and energy distribution of spots in defining the detector specification and geometry. To date, we have processed Laue film data successfully. The attraction of using the CCD, even to look at a small portion of the Laue pattern, is to view the diffraction in real time. This will allow tight control of parasitic scatter for microcrystal Laue diffraction and real-time monitoring for time-resolved work. We performed initial experiments using a direct detection CCD imager, and have obtained satisfactory diffraction data on a 40 ms time scale. Results of this work will be presented. In order to assess the efficacy of the Laue method for quantitative crystallography, we have used Laue data from the protein pea lectin and compared it in detail with monochromatic pea lectin data. To assess the use of a vertically focussing mirror, we have successfully used a mercury derivative protein crystal to yield isomorphous and anomalous differences suitable for phase determination. In both the pea lectin and mercury derivative cases, doublet Laue spots were deconvoluted. In the latter case, the data were used in a difference Fourier calculation which showed the mercury peak. Future developments and projections based on multipole sources are given.
Scalar limitations of diffractive optical elements
NASA Technical Reports Server (NTRS)
Johnson, Eric G.; Hochmuth, Diane; Moharam, M. G.; Pommet, Drew
1993-01-01
In this paper, scalar limitations of diffractive optic components are investigated using coupled wave analyses. Results are presented for linear phase gratings and fanout devices. In addition, a parametric curve is given which correlates feature size with scalar performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Juan; Beltran, Chris J., E-mail: beltran.chris@mayo.edu; Herman, Michael G.
Purpose: To quantitatively and systematically assess dosimetric effects induced by spot positioning error as a function of spot spacing (SS) on intensity-modulated proton therapy (IMPT) plan quality and to facilitate evaluation of safety tolerance limits on spot position. Methods: Spot position errors (PE) ranging from 1 to 2 mm were simulated. Simple plans were created on a water phantom, and IMPT plans were calculated on two pediatric patients with a brain tumor of 28 and 3 cc, respectively, using a commercial planning system. For the phantom, a uniform dose was delivered to targets located at different depths from 10 tomore » 20 cm with various field sizes from 2{sup 2} to 15{sup 2} cm{sup 2}. Two nominal spot sizes, 4.0 and 6.6 mm of 1 σ in water at isocenter, were used for treatment planning. The SS ranged from 0.5 σ to 1.5 σ, which is 2–6 mm for the small spot size and 3.3–9.9 mm for the large spot size. Various perturbation scenarios of a single spot error and systematic and random multiple spot errors were studied. To quantify the dosimetric effects, percent dose error (PDE) depth profiles and the value of percent dose error at the maximum dose difference (PDE [ΔDmax]) were used for evaluation. Results: A pair of hot and cold spots was created per spot shift. PDE[ΔDmax] is found to be a complex function of PE, SS, spot size, depth, and global spot distribution that can be well defined in simple models. For volumetric targets, the PDE [ΔDmax] is not noticeably affected by the change of field size or target volume within the studied ranges. In general, reducing SS decreased the dose error. For the facility studied, given a single spot error with a PE of 1.2 mm and for both spot sizes, a SS of 1σ resulted in a 2% maximum dose error; a SS larger than 1.25 σ substantially increased the dose error and its sensitivity to PE. A similar trend was observed in multiple spot errors (both systematic and random errors). Systematic PE can lead to noticeable hot spots along the field edges, which may be near critical structures. However, random PE showed minimal dose error. Conclusions: Dose error dependence for PE was quantitatively and systematically characterized and an analytic tool was built to simulate systematic and random errors for patient-specific IMPT. This information facilitates the determination of facility specific spot position error thresholds.« less
Stewart, James A.; Brookman, G.; Price, Patrick Michael; ...
2018-04-25
In this study, the evolution and characterization of single-isolated-ion-strikes are investigated by combining atomistic simulations with selected-area electron diffraction (SAED) patterns generated from these simulations. Five molecular dynamics simulations are performed for a single 20 keV primary knock-on atom in bulk crystalline Si. The resulting cascade damage is characterized in two complementary ways. First, the individual cascade events are conventionally quantified through the evolution of the number of defects and the atomic (volumetric) strain associated with these defect structures. These results show that (i) the radiation damage produced is consistent with the Norgett, Robinson, and Torrens model of damage productionmore » and (ii) there is a net positive volumetric strain associated with the cascade structures. Second, virtual SAED patterns are generated for the resulting cascade-damaged structures along several zone axes. The analysis of the corresponding diffraction patterns shows the SAED spots approximately doubling in size, on average, due to broadening induced by the defect structures. Furthermore, the SAED spots are observed to exhibit an average radial outward shift between 0.33% and 0.87% depending on the zone axis. Finally, this characterization approach, as utilized here, is a preliminary investigation in developing methodologies and opportunities to link experimental observations with atomistic simulations to elucidate microstructural damage states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, James A.; Brookman, G.; Price, Patrick Michael
In this study, the evolution and characterization of single-isolated-ion-strikes are investigated by combining atomistic simulations with selected-area electron diffraction (SAED) patterns generated from these simulations. Five molecular dynamics simulations are performed for a single 20 keV primary knock-on atom in bulk crystalline Si. The resulting cascade damage is characterized in two complementary ways. First, the individual cascade events are conventionally quantified through the evolution of the number of defects and the atomic (volumetric) strain associated with these defect structures. These results show that (i) the radiation damage produced is consistent with the Norgett, Robinson, and Torrens model of damage productionmore » and (ii) there is a net positive volumetric strain associated with the cascade structures. Second, virtual SAED patterns are generated for the resulting cascade-damaged structures along several zone axes. The analysis of the corresponding diffraction patterns shows the SAED spots approximately doubling in size, on average, due to broadening induced by the defect structures. Furthermore, the SAED spots are observed to exhibit an average radial outward shift between 0.33% and 0.87% depending on the zone axis. Finally, this characterization approach, as utilized here, is a preliminary investigation in developing methodologies and opportunities to link experimental observations with atomistic simulations to elucidate microstructural damage states.« less
NASA Astrophysics Data System (ADS)
Stewart, J. A.; Brookman, G.; Price, P.; Franco, M.; Ji, W.; Hattar, K.; Dingreville, R.
2018-04-01
The evolution and characterization of single-isolated-ion-strikes are investigated by combining atomistic simulations with selected-area electron diffraction (SAED) patterns generated from these simulations. Five molecular dynamics simulations are performed for a single 20 keV primary knock-on atom in bulk crystalline Si. The resulting cascade damage is characterized in two complementary ways. First, the individual cascade events are conventionally quantified through the evolution of the number of defects and the atomic (volumetric) strain associated with these defect structures. These results show that (i) the radiation damage produced is consistent with the Norgett, Robinson, and Torrens model of damage production and (ii) there is a net positive volumetric strain associated with the cascade structures. Second, virtual SAED patterns are generated for the resulting cascade-damaged structures along several zone axes. The analysis of the corresponding diffraction patterns shows the SAED spots approximately doubling in size, on average, due to broadening induced by the defect structures. Furthermore, the SAED spots are observed to exhibit an average radial outward shift between 0.33% and 0.87% depending on the zone axis. This characterization approach, as utilized here, is a preliminary investigation in developing methodologies and opportunities to link experimental observations with atomistic simulations to elucidate microstructural damage states.
The Scherrer equation and the dynamical theory of X-ray diffraction.
Muniz, Francisco Tiago Leitão; Miranda, Marcus Aurélio Ribeiro; Morilla Dos Santos, Cássio; Sasaki, José Marcos
2016-05-01
The Scherrer equation is a widely used tool to determine the crystallite size of polycrystalline samples. However, it is not clear if one can apply it to large crystallite sizes because its derivation is based on the kinematical theory of X-ray diffraction. For large and perfect crystals, it is more appropriate to use the dynamical theory of X-ray diffraction. Because of the appearance of polycrystalline materials with a high degree of crystalline perfection and large sizes, it is the authors' belief that it is important to establish the crystallite size limit for which the Scherrer equation can be applied. In this work, the diffraction peak profiles are calculated using the dynamical theory of X-ray diffraction for several Bragg reflections and crystallite sizes for Si, LaB6 and CeO2. The full width at half-maximum is then extracted and the crystallite size is computed using the Scherrer equation. It is shown that for crystals with linear absorption coefficients below 2117.3 cm(-1) the Scherrer equation is valid for crystallites with sizes up to 600 nm. It is also shown that as the size increases only the peaks at higher 2θ angles give good results, and if one uses peaks with 2θ > 60° the limit for use of the Scherrer equation would go up to 1 µm.
Mapping the continuous reciprocal space intensity distribution of X-ray serial crystallography.
Yefanov, Oleksandr; Gati, Cornelius; Bourenkov, Gleb; Kirian, Richard A; White, Thomas A; Spence, John C H; Chapman, Henry N; Barty, Anton
2014-07-17
Serial crystallography using X-ray free-electron lasers enables the collection of tens of thousands of measurements from an equal number of individual crystals, each of which can be smaller than 1 µm in size. This manuscript describes an alternative way of handling diffraction data recorded by serial femtosecond crystallography, by mapping the diffracted intensities into three-dimensional reciprocal space rather than integrating each image in two dimensions as in the classical approach. We call this procedure 'three-dimensional merging'. This procedure retains information about asymmetry in Bragg peaks and diffracted intensities between Bragg spots. This intensity distribution can be used to extract reflection intensities for structure determination and opens up novel avenues for post-refinement, while observed intensity between Bragg peaks and peak asymmetry are of potential use in novel direct phasing strategies.
Challenges for Synchrotron X-Ray Optics
NASA Astrophysics Data System (ADS)
Freund, Andreas K.
2002-12-01
It is the task of x-ray optics to adapt the raw beam generated by modern sources such as synchrotron storage rings to a great variety of experimental requirements in terms of intensity, spot size, polarization and other parameters. The very high quality of synchrotron radiation (source size of a few microns and beam divergence of a few micro-radians) and the extreme x-ray flux (power of several hundred Watts in a few square mm) make this task quite difficult. In particular the heat load aspect is very important in the conditioning process of the brute x-ray power to make it suitable for being used on the experimental stations. Cryogenically cooled silicon crystals and water-cooled diamond crystals can presently fulfill this task, but limits will soon be reached and new schemes and materials must be envisioned. A major tendency of instrument improvement has always been to concentrate more photons into a smaller spot utilizing a whole variety of focusing devices such as Fresnel zone plates, refractive lenses and systems based on bent surfaces, for example, Kirkpatrick-Baez systems. Apart from the resistance of the sample, the ultimate limits are determined by the source size and strength on one side, by materials properties, cooling, mounting and bending schemes on the other side, and fundamentally by the diffraction process. There is also the important aspect of coherence that can be both a nuisance and a blessing for the experiments, in particular for imaging techniques. Its conservation puts additional constraints on the quality of the optical elements. The overview of the present challenges includes the properties of present and also mentions aspects of future x-ray sources such as the "ultimate" storage ring and free electron lasers. These challenges range from the thermal performances of monochromators to the surface quality of mirrors, from coherence preservation of modern multilayers to short pulse preservation by crystals, and from micro- and nano-focusing techniques to the accuracy and stability of mechanical supports.
An experimental apparatus for diffraction-limited soft x-ray nano-focusing
NASA Astrophysics Data System (ADS)
Merthe, Daniel J.; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Yuan, Sheng; McKinney, Wayne R.; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory Y.; Rakawa, Senajith B.; Anderson, Erik; Smith, Brian V.; Domning, Edward E.; Warwick, Tony; Padmore, Howard
2011-09-01
Realizing the experimental potential of high-brightness, next generation synchrotron and free-electron laser light sources requires the development of reflecting x-ray optics capable of wavefront preservation and high-resolution nano-focusing. At the Advanced Light Source (ALS) beamline 5.3.1, we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for diffraction-limited Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of wavefront-sensing tests with increasing accuracy and sensitivity, including scanning-slit Hartmann tests, grating-based lateral shearing interferometry, and quantitative knife-edge testing. We describe the original experimental techniques and alignment methodology that have enabled us to optimally set a bendable KB mirror to achieve a focused, FWHM spot size of 150 nm, with 1 nm (1.24 keV) photons at 3.7 mrad numerical aperture. The predictions of wavefront measurement are confirmed by the knife-edge testing. The side-profiled elliptically bent mirror used in these one-dimensional focusing experiments was originally designed for a much different glancing angle and conjugate distances. Visible-light long-trace profilometry was used to pre-align the mirror before installation at the beamline. This work demonstrates that high-accuracy, at-wavelength wavefront-slope feedback can be used to optimize the pitch, roll, and mirror-bending forces in situ, using procedures that are deterministic and repeatable.
Femtosecond mega-electron-volt electron microdiffraction
Shen, X.; Li, R. K.; Lundstrom, U.; ...
2017-09-01
To understand and control the basic functions of physical, chemical and biological processes from micron to nano-meter scale, an instrument capable of visualizing transient structural changes of inhomogeneous materials with atomic spatial and temporal resolutions, is required. One such technique is femtosecond electron microdiffraction, in which a short electron pulse with femtosecond-scale duration is focused into a micron-scale spot and used to obtain diffraction images to resolve ultrafast structural dynamics over a localized crystalline domain. In this letter, we report the experimental demonstration of time-resolved mega-electron-volt electron microdiffraction which achieves a 5 μm root-mean-square (rms) beam size on the samplemore » and a 110 fs rms temporal resolution. Using pulses of 10k electrons at 4.2 MeV energy with a normalized emittance 3 nm-rad, we obtained high quality diffraction from a single 10 μm paraffin ( C 44 H 90) crystal. The phonon softening mode in optical-pumped polycrystalline Bi was also time-resolved, demonstrating the temporal resolution limits of the instrument. In conclusion, this new characterization capability will open many research opportunities in material and biological sciences.« less
Femtosecond mega-electron-volt electron microdiffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, X.; Li, R. K.; Lundstrom, U.
To understand and control the basic functions of physical, chemical and biological processes from micron to nano-meter scale, an instrument capable of visualizing transient structural changes of inhomogeneous materials with atomic spatial and temporal resolutions, is required. One such technique is femtosecond electron microdiffraction, in which a short electron pulse with femtosecond-scale duration is focused into a micron-scale spot and used to obtain diffraction images to resolve ultrafast structural dynamics over a localized crystalline domain. In this letter, we report the experimental demonstration of time-resolved mega-electron-volt electron microdiffraction which achieves a 5 μm root-mean-square (rms) beam size on the samplemore » and a 110 fs rms temporal resolution. Using pulses of 10k electrons at 4.2 MeV energy with a normalized emittance 3 nm-rad, we obtained high quality diffraction from a single 10 μm paraffin ( C 44 H 90) crystal. The phonon softening mode in optical-pumped polycrystalline Bi was also time-resolved, demonstrating the temporal resolution limits of the instrument. In conclusion, this new characterization capability will open many research opportunities in material and biological sciences.« less
Refraction limit of miniaturized optical systems: a ball-lens example.
Kim, Myun-Sik; Scharf, Toralf; Mühlig, Stefan; Fruhnert, Martin; Rockstuhl, Carsten; Bitterli, Roland; Noell, Wilfried; Voelkel, Reinhard; Herzig, Hans Peter
2016-04-04
We study experimentally and theoretically the electromagnetic field in amplitude and phase behind ball-lenses across a wide range of diameters, ranging from a millimeter scale down to a micrometer. Based on the observation, we study the transition between the refraction and diffraction regime. The former regime is dominated by observables for which it is sufficient to use a ray-optical picture for an explanation, e.g., a cusp catastrophe and caustics. A wave-optical picture, i.e. Mie theory, is required to explain the features, e.g., photonic nanojets, in the latter regime. The vanishing of the cusp catastrophe and the emergence of the photonic nanojet is here understood as the refraction limit. Three different criteria are used to identify the limit: focal length, spot size, and amount of cross-polarization generated in the scattering process. We identify at a wavelength of 642 nm and while considering ordinary glass as the ball-lens material, a diameter of approximately 10 µm as the refraction limit. With our study, we shed new light on the means necessary to describe micro-optical system. This is useful when designing optical devices for imaging or illumination.
Simulation and optimization of the SIRIUS IPE soft x-ray beamline
NASA Astrophysics Data System (ADS)
Meyer, Bernd C.; Rocha, Tulio C. R.; Luiz, Sergio A. L.; C. Pinto, Artur; Westfahl, Harry
2017-08-01
The soft X-ray beamline IPE is one of the first phase SIRIUS beamlines at the LNLS, Brazil. Divided into two branches, IPE is designed to perform ambient pressure X-ray photo-electron spectroscopy (AP-XPS) and high resolution resonant inelastic X-ray scattering (RIXS) for samples in operando/environmental conditions inside cells and liquid jets. The aim is to maximize the photon flux in the energy range 200-1400 eV generated by an elliptically polarizing undulator source (EPU) and focus it to a 1 μm vertical spot size at the RIXS station and 10 μm at the AP-XPS station. In order to achieve the required resolving power (40.000 at 930 eV) for RIXS both the dispersion properties of the plane grating monochromator (PGM) and the thermal deformation of the optical elements need special attention. The grating parameters were optimized with the REFLEC code to maximize the efficiency at the required resolution. Thermal deformation of the PGM plane mirror limits the possible range of cff parameters depending of the photon energy used. Hence, resolution of the PGM and thermal deformation effects define the boundary conditions of the optical concept and the simulations of the IPE beamline. We compare simulations performed by geometrical ray-tracing (SHADOW) and wave front propagation (SRW) and show that wave front diffraction effects (apertures, optical surface error profiles) has a small effect on the beam spot size and shape.
Kinetics of antigen binding to arrays of antibodies in different sized spots
NASA Technical Reports Server (NTRS)
Sapsford, K. E.; Liron, Z.; Shubin, Y. S.; Ligler, F. S.
2001-01-01
A fluorescence-based array biosensor has been developed which can measure the binding kinetics of an antigen to an immobilized antibody in real time. A patterned array of antibodies immobilized on the surface of a planar waveguide was used to capture a Cy5-labeled antigen present in a solution that was continuously flowed over the surface. The CCD image of the waveguide was monitored continuously for 25 min. The resulting exponential rise in fluorescence signal was determined by image analysis software and fitted to a reaction-limited kinetics model, giving a kf of 3.6 x 10(5) M(-1) s(-1). Different spot sizes were then patterned on the surface of the waveguide using either a PDMS flow cell or laser exposure, producing width sizes ranging from 80 to 1145 microm. It was demonstrated that under flow conditions, the reduction of spot size did not alter the association rate of the antigen with immobilized antibody; however, as the spot width decreased to < 200 nm, the signal intensity also decreased.
The frequency-dependent directivity of a planar fabry-perot polymer film ultrasound sensor.
Cox, Benjamin T; Beard, Paul C
2007-02-01
A model of the frequency-dependent directivity of a planar, optically-addressed, Fabry-Perot (FP), polymer film ultrasound sensor is described and validated against experimental directivity measurements made over a frequency range of 1 to 15 MHz and angles from normal incidence to 80 degrees. The model may be used, for example, as a predictive tool to improve sensor design, or to provide a noise-free response function that could be deconvolved from sound-field measurements in order to improve accuracy in high-frequency metrology and imaging applications. The specific question of whether effective element sizes as small as the optical-diffraction limit can be achieved was investigated. For a polymer film sensor with a FP cavity of thickness d, the minimum effective element radius was found to be about 0.9 d, and that an illumination spot radius of less than d/4 is required to achieve it.
Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink.
Wang, Kai; Schonbrun, Ethan; Steinvurzel, Paul; Crozier, Kenneth B
2011-09-13
Although optical tweezers based on far-fields have proven highly successful for manipulating objects larger than the wavelength of light, they face difficulties at the nanoscale because of the diffraction-limited focused spot size. This has motivated interest in trapping particles with plasmonic nanostructures, as they enable intense fields confined to sub-wavelength dimensions. A fundamental issue with plasmonics, however, is Ohmic loss, which results in the water, in which the trapping is performed, being heated and to thermal convection. Here we demonstrate the trapping and rotation of nanoparticles using a template-stripped plasmonic nanopillar incorporating a heat sink. Our simulations predict an ~100-fold reduction in heating compared with previous designs. We further demonstrate the stable trapping of polystyrene particles, as small as 110 nm in diameter, which can be rotated around the nanopillar actively, by manual rotation of the incident linear polarization, or passively, using circularly polarized illumination.
In situ wavefront correction and its application to micromanipulation
NASA Astrophysics Data System (ADS)
Čižmár, Tomáš; Mazilu, Michael; Dholakia, Kishan
2010-06-01
In any optical system, distortions to a propagating wavefront reduce the spatial coherence of a light field, making it increasingly difficult to obtain the theoretical diffraction-limited spot size. Such aberrations are severely detrimental to optimal performance in imaging, nanosurgery, nanofabrication and micromanipulation, as well as other techniques within modern microscopy. We present a generic method based on complex modulation for true in situ wavefront correction that allows compensation of all aberrations along the entire optical train. The power of the method is demonstrated for the field of micromanipulation, which is very sensitive to wavefront distortions. We present direct trapping with optimally focused laser light carrying power of a fraction of a milliwatt as well as the first trapping through highly turbid and diffusive media. This opens up new perspectives for optical micromanipulation in colloidal and biological physics and may be useful for various forms of advanced imaging.
Rotary encoding device using polygonal mirror with diffraction gratings on each facet
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
1993-01-01
A device for position encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a monochromatic light beam is directed towards the facets. The facets of the polygonal mirror each have a low line density diffraction grating to diffract the monochromatic light beam into a number of diffracted light beams such that a number of light spots are created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spots on the linear array detector means. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spots and to compute the position of the shaft based upon the data from the analog-to-digital converter.
Characterization of X80 and X100 Microalloyed Pipeline Steel Using Quantitative X-ray Diffraction
NASA Astrophysics Data System (ADS)
Wiskel, J. B.; Li, X.; Ivey, D. G.; Henein, H.
2018-06-01
Quantitative X-ray diffraction characterization of four (4) X80 and three (3) X100 microalloyed steels was undertaken. The effect of through-thickness position, processing parameters, and composition on the measured crystallite size, microstrain, and J index (relative magnitude of crystallographic texture) was determined. Microstructure analysis using optical microscopy, scanning electron microscopy, transmission electron microscopy, and electron-backscattered diffraction was also undertaken. The measured value of microstrain increased with increasing alloy content and decreasing cooling interrupt temperature. Microstructural features corresponding to crystallite size in the X80 steels were both above and below the detection limit for quantitative X-ray diffraction. The X100 steels consistently exhibited microstructure features below the crystallite size detection limit. The yield stress of each steel increased with increasing microstrain. The increase in microstrain from X80 to X100 is also associated with a change in microstructure from predominantly polygonal ferrite to bainitic ferrite.
Implications of the focal beam profile in serial femtosecond crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galli, Lorenzo; Chapman, Henry N.; Metcalf, Peter
The photon density profile of an X-ray free-electron laser (XFEL) beam at the focal position is a critical parameter for serial femtosecond crystallography (SFX), but is difficult to measure because of the destructive power of the beam. A novel high intensity radiation induced phasing method (HIRIP) has been proposed as a general experimental approach for protein structure determination, but has proved to be sensitive to variations of the X-ray intensity, with uniform incident fluence desired for best performance. Here we show that experimental SFX data collected at the nano-focus chamber of the Coherent X-ray Imaging end-station at the Linac Coherentmore » Light Source using crystals with a limited size distribution suggests an average profile of the X-ray beam that has a large variation of intensity. We propose a new method to improve the quality of high fluence data for HI-RIP, by identifying and removing diffraction patterns from crystals exposed to the low intensity region of the beam. The method requires crystals of average size comparable to the width of the focal spot.« less
NASA Technical Reports Server (NTRS)
Title, A. M.; Tarbell, T. D.; Acton, L; Duncan, D.; Simon, G. W.
1986-01-01
Initial results are presented on solar granulation, pores and sunspots from the white-light films obtained by the Solar Optical Universal Polarimeter (SOUP) instrument in Spacelab 2. Several hours of movies were taken at various disk and limb positions in quiet and active regions. The images are diffraction-limited at 0.5 arcsec resolution and are, of course, free of atmospheric seeing and distortion. Properties of the granulation in magnetic and nonmagnetic regions are compared and are found to differ significantly in size, rate of intensity variation, and lifetime. In quiet sun, on the order of fifty-percent of the area has at least one 'exploding granule' occurring in it during a 25-min period. Local correlation tracking has detected several types of transverse flows, including systematic outflow from the penumbral boundary of a spot, motion of penumbral filaments, and cellular flow patterns of supergranular and mesogranular size. Feature tracking has shown that, in the quiet sun, the average granule fragment has a velocity of about one kilometer/second.
Emittance Growth in the DARHT-II Linear Induction Accelerator
NASA Astrophysics Data System (ADS)
Ekdahl, Carl; Carlson, Carl A.; Frayer, Daniel K.; McCuistian, B. Trent; Mostrom, Christopher B.; Schulze, Martin E.; Thoma, Carsten H.
2017-11-01
The Dual-Axis Radiographic Hydrotest (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. Some of the possible causes for the emittance growth in the DARHT LIA have been investigated using particle-in-cell (PIC) codes, and are discussed in this article. The results suggest that the most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moteabbed, Maryam, E-mail: mmoteabbed@partners.org; Yock, Torunn I.; Depauw, Nicolas
Purpose: This study aimed to assess the clinical impact of spot size and the addition of apertures and range compensators on the treatment quality of pencil beam scanning (PBS) proton therapy and to define when PBS could improve on passive scattering proton therapy (PSPT). Methods and Materials: The patient cohort included 14 pediatric patients treated with PSPT. Six PBS plans were created and optimized for each patient using 3 spot sizes (∼12-, 5.4-, and 2.5-mm median sigma at isocenter for 90- to 230-MeV range) and adding apertures and compensators to plans with the 2 larger spots. Conformity and homogeneity indices,more » dose-volume histogram parameters, equivalent uniform dose (EUD), normal tissue complication probability (NTCP), and integral dose were quantified and compared with the respective PSPT plans. Results: The results clearly indicated that PBS with the largest spots does not necessarily offer a dosimetric or clinical advantage over PSPT. With comparable target coverage, the mean dose (D{sub mean}) to healthy organs was on average 6.3% larger than PSPT when using this spot size. However, adding apertures to plans with large spots improved the treatment quality by decreasing the average D{sub mean} and EUD by up to 8.6% and 3.2% of the prescribed dose, respectively. Decreasing the spot size further improved all plans, lowering the average D{sub mean} and EUD by up to 11.6% and 10.9% compared with PSPT, respectively, and eliminated the need for beam-shaping devices. The NTCP decreased with spot size and addition of apertures, with maximum reduction of 5.4% relative to PSPT. Conclusions: The added benefit of using PBS strongly depends on the delivery configurations. Facilities limited to large spot sizes (>∼8 mm median sigma at isocenter) are recommended to use apertures to reduce treatment-related toxicities, at least for complex and/or small tumors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, X; Grimes, J; Yu, L
Purpose: Focal spot blooming is an increase in the focal spot size at increased tube current and/or decreased tube potential. In this work, we evaluated the influence of tube current on the focal spot size at low kV for two CT systems, one of which used a tube designed to reduce blooming effects. Methods: A slit camera (10 micron slit) was used to measure focal spot size on two CT scanners from the same manufacturer (Siemens Somatom Force and Definition Flash) at 70 kV and low, medium and maximum tube currents, according to the capabilities of each system (Force: 100,more » 800 and 1300 mA; Flash: 100, 200 and 500 mA). Exposures were made with a stationary tube in service mode using a raised stand without table movement or flying focal spot technique. Focal spot size, nominally 0.8 and 1.2 mm, respectively, was measured parallel and perpendicular to the cathode-anode axis by calculating the full-width-at-half-maximum of the slit profile recording using computed radiographic plates. Results: Focal spot sizes perpendicular to the anode-cathode axis increased at the maximum mA by 5.7% on the Force and 39.1% on the Flash relative to that at the minimal mA, even though the mA was increased 13-fold on the Force and only 5- fold on the Flash. Focal spot size increased parallel to the anode-cathode axis by 70.4% on Force and 40.9% on Flash. Conclusion: For CT protocols using low kV, high mA is typically required. These protocols are relevant in children and smaller adults, and for dual-energy scanning. Technical measures to limit focal spot blooming are important in these settings to avoid reduced spatial resolution. The x-ray tube on a recently-introduced scanner appears to greatly reduce blooming effects, even at very high mA values. CHM has research support from Siemens Healthcare.« less
On the evolution of antiferromagnetic nanodomains in NiO thin films: A LEEM study
NASA Astrophysics Data System (ADS)
Das, Jayanta; Menon, Krishnakumar S. R.
2018-03-01
Fractional order (1/2, 0) spots appear in the electron diffraction from NiO/Ag(0 0 1) films due to exchange scattering of low energy electrons by the antiferromagnetically ordered surface Ni moments. Utilizing these beams, imaging of the nanosized surface magnetic domains were carried out employing the high spatial resolution (∼ 10 nm) of the Low Energy Electron Microscopy (LEEM) in the dark-field (DF) mode. While selected through a contrast aperture, the four magnetic reflections produced by the p (2 × 2) antiferromagnetic sub-lattice lead to the visualization of the different magnetic twin domains. The intensity variations of different twin domains were measured as a function of electron beam energies via domain resolved LEEM I-V plots. The surface Néel temperatures (TN) of the films were measured using the temperature dependence of these half-order spot intensities. Detailed morphological studies of the size and shape of these nanodomains and their evolution as a function of the film thickness have been carried out with the help of pair-correlation function and fractal analysis. The size, shape and distribution of these magnetic domains are modified significantly by the strain relaxation mechanism beyond the critical film thickness. A method to estimate the relative domain sizes from a quantitative measure of the half-order spot intensities is manifested well below TN .
Wei, Linlin; Sun, Shuaishuai; Guo, Cong; Li, Zhongwen; Sun, Kai; Liu, Yu; Lu, Wenjian; Sun, Yuping; Tian, Huanfang; Yang, Huaixin; Li, Jianqi
2017-01-01
Anisotropic lattice movements due to the difference between intralayer and interlayer bonding are observed in the layered transition-metal dichalcogenide 1T-TaSeTe following femtosecond laser pulse excitation. Our ultrafast electron diffraction investigations using 4D-transmission electron microscopy (4D-TEM) clearly reveal that the intensity of Bragg reflection spots often changes remarkably due to the dynamic diffraction effects and anisotropic lattice movement. Importantly, the temporal diffracted intensity from a specific crystallographic plane depends on the deviation parameter s, which is commonly used in the theoretical study of diffraction intensity. Herein, we report on lattice thermalization and structural oscillations in layered 1T-TaSeTe, analyzed by dynamic diffraction theory. Ultrafast alterations of satellite spots arising from the charge density wave in the present system are also briefly discussed. PMID:28470025
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauter, Nicholas K., E-mail: nksauter@lbl.gov; Hattne, Johan; Grosse-Kunstleve, Ralf W.
The Computational Crystallography Toolbox (cctbx) is a flexible software platform that has been used to develop high-throughput crystal-screening tools for both synchrotron sources and X-ray free-electron lasers. Plans for data-processing and visualization applications are discussed, and the benefits and limitations of using graphics-processing units are evaluated. Current pixel-array detectors produce diffraction images at extreme data rates (of up to 2 TB h{sup −1}) that make severe demands on computational resources. New multiprocessing frameworks are required to achieve rapid data analysis, as it is important to be able to inspect the data quickly in order to guide the experiment in realmore » time. By utilizing readily available web-serving tools that interact with the Python scripting language, it was possible to implement a high-throughput Bragg-spot analyzer (cctbx.spotfinder) that is presently in use at numerous synchrotron-radiation beamlines. Similarly, Python interoperability enabled the production of a new data-reduction package (cctbx.xfel) for serial femtosecond crystallography experiments at the Linac Coherent Light Source (LCLS). Future data-reduction efforts will need to focus on specialized problems such as the treatment of diffraction spots on interleaved lattices arising from multi-crystal specimens. In these challenging cases, accurate modeling of close-lying Bragg spots could benefit from the high-performance computing capabilities of graphics-processing units.« less
Poisson Spot with Magnetic Levitation
ERIC Educational Resources Information Center
Hoover, Matthew; Everhart, Michael; D'Arruda, Jose
2010-01-01
In this paper we describe a unique method for obtaining the famous Poisson spot without adding obstacles to the light path, which could interfere with the effect. A Poisson spot is the interference effect from parallel rays of light diffracting around a solid spherical object, creating a bright spot in the center of the shadow.
NASA Astrophysics Data System (ADS)
Arcidiacono, Carmelo; Ragazzoni, Roberto; Viotto, Valentina; Bergomi, Maria; Farinato, Jacopo; Magrin, Demetrio; Dima, Marco; Gullieuszik, Marco; Marafatto, Luca
2016-07-01
Dark wavefront sensing in its simplest and more crude form is a quad-cell with a round spot of dark ink acting as occulting disk at the center. This sensor exhibits fainter limiting magnitude than a conventional quad-cell, providing that the size of the occulting disk is slightly smaller than the size of the spot and smaller than the residual jitter movement in closed loop. We present simulations focusing a generic Adaptive Optics system using Natural Guide Stars to provide the tip-tilt signal. We consider a jitter spectrum of the residual correction including amplitudes exceeding the dark disk size.
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
1996-01-01
A device for position encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a monochromatic light beam is directed towards the facets. The facets of the polygonal mirror direct the light beam to a stand-alone low line density diffraction grating to diffract the monochromatic light beam into a number of diffracted light beams such that a number of light spots are created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spots on the linear array detector means. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spots and to compute the position of the shaft based upon the data from the analog-lo-digital converter.
Fabrication of Pt nanowires with a diffraction-unlimited feature size by high-threshold lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Li, E-mail: lil@cust.edu.cn, E-mail: wangz@cust.edu.cn, E-mail: kq-peng@bnu.edu.cn; Zhang, Ziang; Yu, Miao
2015-09-28
Although the nanoscale world can already be observed at a diffraction-unlimited resolution using far-field optical microscopy, to make the step from microscopy to lithography still requires a suitable photoresist material system. In this letter, we consider the threshold to be a region with a width characterized by the extreme feature size obtained using a Gaussian beam spot. By narrowing such a region through improvement of the threshold sensitization to intensity in a high-threshold material system, the minimal feature size becomes smaller. By using platinum as the negative photoresist, we demonstrate that high-threshold lithography can be used to fabricate nanowire arraysmore » with a scalable resolution along the axial direction of the linewidth from the micro- to the nanoscale using a nanosecond-pulsed laser source with a wavelength λ{sub 0} = 1064 nm. The minimal feature size is only several nanometers (sub λ{sub 0}/100). Compared with conventional polymer resist lithography, the advantages of high-threshold lithography are sharper pinpoints of laser intensity triggering the threshold response and also higher robustness allowing for large area exposure by a less-expensive nanosecond-pulsed laser.« less
Characterization of CVD micrometer-size diamond (abstract)
NASA Astrophysics Data System (ADS)
Ohsumi, K.; Hagiya, K.; Miyamoto, M.; Matsuda, J.; Ohmasa, M.
1989-07-01
In the field of material sciences, it has long been desired to develope the equipment to obtain crystallographic information of micrometer-size crystalline substances. Synchrotron radiation (SR) could be a candidate to deal with such a small specimen other than electron microscope. It seems more advantageous to utilize SR from the viewpoint that the processing of the diffraction data that has already been established for identification of the materials, structure analysis, and refinement. Even in the case of SR, special care should be taken for the measurement of very weak diffracted intensities. In the case not using SR, the size of 50 μm might be the limit for the specimen to be examined by the diffraction method. The diffracted intensity is proportional to the volume of the specimen, and that of micrometer-size crystal is estimated as 10-5 times of that of the limit mentioned above. The noise level of the experiment, therefore, should be as low as possible. If the noise level becomes negligibly small, the signal could be accumulated continually to the desired intensity level by adjusting measuring time. The experiment, for the purpose, should be carried out in vacuum with the stational crystal method and with very narrow collimated x-ray beams. The Laue method is employed by the above reason, as well as the fact that the intensity of each Bragg reflection on a reciprocal row passing through the origin of the reciprocal space is superposed with each other, which also intensifies a diffraction spot on the photographic plate. The Laue camera is set up at BL-4B of Photon Factory, sealed in vacuum and installed with a very narrow collimater. The development of the system has been performed to the level which several Bragg reflections of molybdenum single crystal with 0.8 μm in its diameter can be taken on the imaging plate for 50-min exposure with ring current from 128 to 125 mA. The origin of diamonds in meteorites has been a controversy as to whether they are formed from carbonaceous materials by impact shock or directly formed from vapor. Recent discovery of vapor-growth diamonds in carbonaceous chondrites has generated a renewed interest in the origin of ureilite diamonds. Two types of micrometer-size diamonds were prepared. One of them was grown under low pressure by chemical vapor deposition (CVD) from gaseous mixtures of H2 and CH4, and another was synthesized by shock effect (kindly offered by Nippon Oil & Fats Co., Ltd.) The micro-Laue method was applied to them in order to get information about their microstructures. Two characteristics are recognized in profiles of reflections themselves and in whole patterns of the Laue photographs. The reflections of CVD diamonds are elongated but symmetric in their profiles and are distributed regularly as they are indexed by the diamond lattice, while those of shock effect are also elongated and asymmetric, and are distributed at random as they cannot be indexed. The characteristics observed by the method may be useful to ascribe the origin to CVD or shock effect.
Yoon, Yong-Joong; Kim, Wan-Chin; Park, No-Cheol; Park, Kyoung-Su; Park, Young-Pil
2009-07-01
We analyzed the behavior of the electric field in a focal plane consisting of a solid immersion lens (SIL), an air gap, and a measurement sample for radially polarized illumination in SIL-based near-field optics with an annular aperture. The analysis was based on the Debye diffraction integral and multiple beam interference. For SIL-based near-field optics whose NA is higher than unity, radially polarized light generates a smaller beam spot on the bottom surface of a SIL than circularly polarized light; however, the beam spot on the measurement sample is broadened with a more dominant transverse electric field. By introducing an annular aperture technique, it is possible to decrease the effects of the transverse electric field, and therefore the size of the beam spot on the measurement sample can be small. This analysis could have various applications in near-field optical storage, near-field microscopy, lithography at ultrahigh resolution, and other applications that use SILs for high resolution.
Near-field microscopy with a microfabricated solid immersion lens
NASA Astrophysics Data System (ADS)
Fletcher, Daniel Alden
2001-07-01
Diffraction of focused light prevents optical microscopes from resolving features in air smaller than half the wavelength, λ Spatial resolution can be improved by passing light through a sub-wavelength metal aperture scanned close to a sample, but aperture-based probes suffer from low optical throughput, typically below 10-4. An alternate and more efficient technique is solid immersion microscopy in which light is focused through a high refractive index Solid Immersion Lens (SIL). This work describes the fabrication, modeling, and use of a microfabricated SIL to obtain spatial resolution better than the diffraction limit in air with high optical throughput for infrared applications. SILs on the order of 10 μm in diameter are fabricated from single-crystal silicon and integrated onto silicon cantilevers with tips for scanning. We measure a focused spot size of λ/5 with optical throughput better than 10-1 at a wavelength of λ = 9.3 μm. Spatial resolution is improved to λ/10 with metal apertures fabricated directly on the tip of the silicon SIL. Microlenses have reduced spherical aberration and better transparency than large lenses but cannot be made arbitrarily small and still focus. We model the advantages and limitations of focusing in lenses close to the wavelength in diameter using an extension of Mie theory. We also investigate a new contrast mechanism unique to microlenses resulting from the decrease in field-of-view with lens diameter. This technique is shown to achieve λ/4 spatial resolution. We explore applications of the microfabricated silicon SIL for high spatial resolution thermal microscopy and biological spectroscopy. Thermal radiation is collected through the SIL from a heated surface with spatial resolution four times better than that of a diffraction- limited infrared microscope. Using a Fourier-transform infrared spectrometer, we observe absorption peaks in bacteria cells positioned at the focus of the silicon SIL.
NASA Astrophysics Data System (ADS)
Chen, Wei; Xu, Yue; Zhang, Huaxin; Liu, Peng; Jiao, Guohua
2016-09-01
Laser scanners are critical components in material processing systems, such as welding, cutting, and drilling. To achieve high-accuracy processing, the laser spot size should be small and uniform in the entire objective flat field. However, traditional static focusing method using F-theta objective lens is limited by the narrow flat field. To overcome these limitations, a dynamic focusing unit consisting of two lenses is presented in this paper. The dual-lens system has a movable plano-concave lens and a fixed convex lens. As the location of the movable optical elements is changed, the focal length is shifted to keep a small focus spot in a broad flat processing filed. The optical parameters of the two elements are theoretical analyzed. The spot size is calculated to obtain the relationship between the moving length of first lens and the shift focus length of the system. Also, the Zemax model of the optical system is built up to verify the theoretical design and optimize the optical parameter. The proposed lenses are manufactured and a test system is built up to investigate their performances. The experimental results show the spot size is smaller than 450um in all the 500*500mm 2 filed with CO2 laser. Compared with the other dynamic focusing units, this design has fewer lenses and no focusing spot in the optical path. In addition, the focal length minimal changes with the shit of incident laser beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Khoury, Patrick Z.; Ueltschi, Tyler W.; Mifflin, Amanda L.
Non-resonant tip-enhanced Raman images of 4,4'-dimercaptostilbene on silver reveal that different vibrational resonances of the reporter are selectively enhanced at different sites on the metal substrate. Sequentially recorded images track molecular diffusion within the diffraction-limited laser spot which illuminates the substrate. In effect, the recorded time resolved (Δt = 10 s) pixelated images (25 nm x 8 cm-1) broadcast molecule-local field interactions which take place on much finer scales.
NASA Astrophysics Data System (ADS)
Niklas, M.; Henrich, M.; Jäkel, O.; Engelhardt, J.; Abdollahi, A.; Greilich, S.
2017-05-01
Fluorescent nuclear track detectors (FNTDs) allow for visualization of single-particle traversal in clinical ion beams. The point spread function of the confocal readout has so far hindered a more detailed characterization of the track spots—the ion’s characteristic signature left in the FNTD. Here we report on the readout of the FNTD by optical nanoscopy, namely stimulated emission depletion microscopy. It was firstly possible to visualize the track spots of carbon ions and protons beyond the diffraction limit of conventional light microscopy with a resolving power of approximately 80 nm (confocal: 320 nm). A clear discrimination of the spatial width, defined by the full width half maximum of track spots from particles (proton and carbon ions), with a linear energy transfer (LET) ranging from approximately 2-1016 keV µm-1 was possible. Results suggest that the width depends on LET but not on particle charge within the uncertainties. A discrimination of particle type by width thus does not seem possible (as well as with confocal microscopy). The increased resolution, however, could allow for refined determination of the cross-sectional area facing substantial energy deposition. This work could pave the way towards development of optical nanoscopy-based analysis of radiation-induced cellular response using cell-fluorescent ion track hybrid detectors.
NASA Astrophysics Data System (ADS)
Chen, Xuanze; Liu, Yujia; Yang, Xusan; Wang, Tingting; Alonas, Eric; Santangelo, Philip J.; Ren, Qiushi; Xi, Peng
2013-02-01
Fluorescent microscopy has become an essential tool to study biological molecules, pathways and events in living cells, tissues and animals. Meanwhile even the most advanced confocal microscopy can only yield optical resolution approaching Abbe diffraction limit of 200 nm. This is still larger than many subcellular structures, which are too small to be resolved in detail. These limitations have driven the development of super-resolution optical imaging methodologies over the past decade. In stimulated emission depletion (STED) microscopy, the excitation focus is overlapped by an intense doughnut-shaped spot to instantly de-excite markers from their fluorescent state to the ground state by stimulated emission. This effectively eliminates the periphery of the Point Spread Function (PSF), resulting in a narrower focal region, or super-resolution. Scanning a sharpened spot through the specimen renders images with sub-diffraction resolution. Multi-color STED imaging can present important structural and functional information for protein-protein interaction. In this work, we presented a two-color, synchronization-free STED microscopy with a Ti:Sapphire oscillator. The excitation wavelengths were 532nm and 635nm, respectively. With pump power of 4.6 W and sample irradiance of 310 mW, we achieved super-resolution as high as 71 nm. Human respiratory syncytial virus (hRSV) proteins were imaged with our two-color CW STED for co-localization analysis.
Darkfield microspectroscopy of nanostructures on silver tip-enhanced Raman scattering probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itoh, Tamitake, E-mail: tamitake-itou@aist.go.jp; Yamamoto, Yuko S., E-mail: yamayulab@gmail.com; Department of Chemistry, School of Science and Technology, Kagawa University, Takamatsu, Kagawa 761-0396
2016-01-11
We report an evaluation method employing darkfield microspectroscopy for silver probes used in tip-enhanced Raman scattering (TERS). By adjusting the darkfield illumination, the diffracted light from the probe outlines disappears and the diffracted light from the surface nanostructures and tips of the probes appears as colorful spots. Scanning electron microscopy reveals that the spectral variations in these spots reflect the shapes of the surface nanostructures. The tip curvatures correlate to the spectral maxima of their spots. Temporal color changes in the spots indicate the deterioration due to the oxidation of the silver surfaces. These results show that the proposed methodmore » is useful for in situ evaluation of plasmonic properties of TERS probes.« less
Limit characteristics of digital optoelectronic processor
NASA Astrophysics Data System (ADS)
Kolobrodov, V. G.; Tymchik, G. S.; Kolobrodov, M. S.
2018-01-01
In this article, the limiting characteristics of a digital optoelectronic processor are explored. The limits are defined by diffraction effects and a matrix structure of the devices for input and output of optical signals. The purpose of a present research is to optimize the parameters of the processor's components. The developed physical and mathematical model of DOEP allowed to establish the limit characteristics of the processor, restricted by diffraction effects and an array structure of the equipment for input and output of optical signals, as well as to optimize the parameters of the processor's components. The diameter of the entrance pupil of the Fourier lens is determined by the size of SLM and the pixel size of the modulator. To determine the spectral resolution, it is offered to use a concept of an optimum phase when the resolved diffraction maxima coincide with the pixel centers of the radiation detector.
Evidence for color fluctuations in hadrons from coherent nuclear diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frankfurt, L.; Miller, G.A.; Strikman, M.
A QCD-based treatment of projectile size fluctuations is used to compute inelastic diffractive cross sections [sigma][sub diff] for coherent hadron-nuclear processes. We find that fluctuations near the average size give the major contribution to the cross section with [lt] few % contribution from small size configurations. The computed values of [sigma][sub diff] are consistent with the limited available data. The importance of coherent diffraction studies for a wide range of projectiles for high energy Fermilab fixed target experiments is emphasized. The implications of these significant color fluctuations for relativistic heavy ion collisions are discussed.
NASA Astrophysics Data System (ADS)
Ganesan, A. R.; Arulmozhivarman, P.; Jesson, M.
2005-12-01
Accurate surface metrology and transmission characteristics measurements have become vital to certify the manufacturing excellence in the field of glass visors, windshields, menu boards and transportation industries. We report a simple, cost-effective and novel technique for the measurement of geometric aberrations in transparent materials such as glass sheets, Perspex, etc. The technique makes use of an array of spot pattern, we call the spot pattern test chart technique, in the diffraction limited imaging position having large field of view. Performance features include variable angular dynamic range and angular sensitivity. Transparent sheets as the intervening medium introduced in the line of sight, causing aberrations, are estimated in real time using the Zernike reconstruction method. Quantitative comparative analysis between a Shack-Hartmann wavefront sensor and the proposed new method is presented and the results are discussed.
Emittance Growth in the DARHT-II Linear Induction Accelerator
Ekdahl, Carl; Carlson, Carl A.; Frayer, Daniel K.; ...
2017-10-03
The dual-axis radiographic hydrodynamic test (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. On the DARHT-II LIA, we measure an emittance higher than predicted by theoretical simulations, and even though this accelerator produces submillimeter source spots, we are exploring ways to improve the emittance. Some of the possible causes for the discrepancy have been investigated using particle-in-cell codes. Finally,more » the simulations establish that the most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.« less
Emittance Growth in the DARHT-II Linear Induction Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl; Carlson, Carl A.; Frayer, Daniel K.
The dual-axis radiographic hydrodynamic test (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. On the DARHT-II LIA, we measure an emittance higher than predicted by theoretical simulations, and even though this accelerator produces submillimeter source spots, we are exploring ways to improve the emittance. Some of the possible causes for the discrepancy have been investigated using particle-in-cell codes. Finally,more » the simulations establish that the most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syh, J; Ding, X; Syh, J
2015-06-15
Purpose: An approved proton pencil beam scanning (PBS) treatment plan might not be able to deliver because of existed extremely low monitor unit per beam spot. A dual hybrid plan with higher efficiency of higher spot monitor unit and the efficacy of less number of energy layers were searched and optimized. The range of monitor unit threshold setting was investigated and the plan quality was evaluated by target dose conformity. Methods: Certain limitations and requirements need to be checks and tested before a nominal proton PBS treatment plan can be delivered. The plan needs to be met the machine characterization,more » specification in record and verification to deliver the beams. Minimal threshold of monitor unit, e.g. 0.02, per spot was set to filter the low counts and plan was re-computed. Further MU threshold increment was tested in sequence without sacrificing the plan quality. The number of energy layer was also alternated due to elimination of low count layer(s). Results: Minimal MU/spot threshold, spot spacing in each energy layer and total number of energy layer and the MU weighting of beam spots of each beam were evaluated. Plan optimization between increases of the spot MU (efficiency) and less energy layers of delivery (efficacy) was adjusted. 5% weighting limit of total monitor unit per beam was feasible. Scarce spreading of beam spots was not discouraging as long as target dose conformity within 3% criteria. Conclusion: Each spot size is equivalent to the relative dose in the beam delivery system. The energy layer is associated with the depth of the targeting tumor. Our work is crucial to maintain the best possible quality plan. To keep integrity of all intrinsic elements such as spot size, spot number, layer number and the carried weighting of spots in each layer is important in this study.« less
Radiation pressure acceleration: The factors limiting maximum attainable ion energy
Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...
2016-04-15
Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case,more » finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it transparent for radiation and effectively terminating the acceleration. The off-normal incidence of the laser on the target, due either to the experimental setup, or to the deformation of the target, will also lead to establishing a limit on maximum ion energy.« less
NASA Astrophysics Data System (ADS)
Kganyago, Mahlatse; Odindi, John; Adjorlolo, Clement; Mhangara, Paidamoyo
2018-05-01
Globally, there is paucity of accurate information on the spatial distribution and patch sizes of Invasive Alien Plants (IAPs) species. Such information is needed to aid optimisation of control mechanisms to prevent further spread of IAPs and minimize their impacts. Recent studies have shown the capability of very high spatial (<1 m) and spectral resolution (<10 nm) data for discriminating vegetation species. However, very high spatial resolution may introduce significant intra-species spectral variability and result in reduced mapping accuracy, while higher spectral resolution data are commonly limited to smaller areas, are costly and computationally expensive. Alternatively, medium and high spatial resolution data are available at low or no cost and have limitedly been evaluated for their potential in determining invasion patterns relevant for invasion ecology and aiding effective IAPs management. In this study medium and high resolution datasets from Landsat Operational Land Imager (OLI) and SPOT 6 sensors respectively, were evaluated for mapping the distribution and patch sizes of IAP, Parthenium hysterophorus in the savannah landscapes of KwaZulu-Natal, South Africa. Support Vector Machines (SVM) classifier was used for classification of both datasets. Results indicated that SPOT 6 had a higher overall accuracy (86%) than OLI (83%) in mapping P. hysterophorus. The study found larger distributions and patch sizes in OLI than in SPOT 6 as a result of possible P. hysterophorus expansion due to temporal differences between images and coarser pixels were insufficient to delineate gaps inside larger patches. On the other hand, SPOT 6 showed better capabilities of delineating gaps and boundaries of patches, hence had better estimates of distribution and patch sizes. Overall, the study showed that OLI may be suitable for mapping well-established patches for the purpose of large scale monitoring, while SPOT 6 can be used for mapping small patches and prioritising them for eradication to prevent further spread at a landscape scale.
The crime prevention value of hot spots policing.
Braga, Anthony A
2006-08-01
This paper reviews the available research evidence on the effectiveness of hot spots policing programs in reducing crime and disorder. The research identified five randomized controlled experiments and four non-equivalent control group quasi-experiments evaluating the effects of hot spots policing interventions on crime. Seven of nine selected evaluations reported noteworthy crime and disorder reductions. Meta-analyses of the randomized experiments revealed statistically significant mean effect sizes favoring hot spots policing interventions in reducing citizen calls for service in treatment places relative to control places. When immediate spatial displacement was measured, it was very limited and unintended crime prevention benefits were associated with the hot spots policing programs. The results of this review suggest that hot spots policing is an effective crime prevention strategy.
Evaluation of actual vs expected photodynamic therapy spot size.
Ranchod, Tushar M; Brucker, Alexander J; Liu, Chengcheng; Cukras, Catherine A; Hopkins, Tim B; Ying, Gui-Shuang
2009-05-01
To determine the accuracy of the photodynamic therapy (PDT) laser spot size on the retina as generated by 2 Food and Drug Administration (FDA)-approved lasers. Prospective observational case series. Fundus photographs were taken of 1 eye of each of 10 subjects with the WinStation 4000 fundus photography system (OIS; Ophthalmic Imaging Systems, Sacramento, California, USA); disc size was calculated using OIS software. Slit-lamp photographs were taken of the PDT laser spot focused on the retina adjacent to the optic disc, using various spot sizes in combination with 3 different contact lenses and 2 different lasers. Spot size at the retina was determined by measuring the ratio of disc diameter to spot diameter in Adobe Photoshop (San Jose, California, USA) and applying this ratio to the OIS disc measurements. Spot size at the retina averaged 87% of expected spot size for the Coherent Opal laser (Coherent Inc, Santa Clara, California, USA) and 104% of expected spot size for the Zeiss Visulas laser (Carl Zeiss Meditec Inc, Dublin, California, USA)(P = .002). Multivariate analysis demonstrated that percentage of expected spot size decreased with larger spot diameter (P = .01 for Coherent laser; P = .02 for Zeiss laser). PDT spot size at the retina appears to be consistently smaller than expected for the Coherent laser while the spot size was consistently within 10% of expected size for the Zeiss laser. The deviation from expected size increased with larger spot size using the Coherent laser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in, E-mail: sudheer.rrcat@gmail.com; Tiwari, P.; Srivastava, Himanshu
2016-07-28
The silver nanoparticle surface relief gratings of ∼10 μm period are fabricated using electron beam lithography on the silver halide film substrate. Morphological characterization of the gratings shows that the period, the shape, and the relief depth in the gratings are mainly dependent on the number of lines per frame, the spot size, and the accelerating voltage of electron beam raster in the SEM. Optical absorption of the silver nanoparticle gratings provides a broad localized surface plasmon resonance peak in the visible region, whereas the intensity of the peaks depends on the number density of silver nanoparticles in the gratings. Themore » maximum efficiency of ∼7.2% for first order diffraction is observed for the grating fabricated at 15 keV. The efficiency is peaking at 560 nm with ∼380 nm bandwidth. The measured profiles of the diffraction efficiency for the gratings are found in close agreement with the Raman-Nath diffraction theory. This technique provides a simple and efficient method for the fabrication of plasmonic nanoparticle grating structures with high diffraction efficiency having broad wavelength tuning.« less
NASA Astrophysics Data System (ADS)
Xia, Yong; Yin, Jianping
2005-03-01
We propose a new scheme to generate a focusing hollow beam (FHB) by use of an azimuthally distributed 2π-phase plate and a convergent thin lens. From the Fresnel diffraction theory, we calculate the intensity distributions of the FHB in free propagation space and study the relationship between the waist w0 of the incident Gaussian beam (or the focal length f of the lens) and the dark spot size (or the beam radius) at the focal point and the relationship between the maximum radial intensity of the FHB and the dark spot size (or the beam radius) at the focal point, respectively. Our study shows that the FHB can be used to cool and trap neutral atoms by intensity-gradient-induced Sisyphus cooling due to an extremely high intensity gradient of the FHB itself near the focal point, or to guide and focus a cold molecular beam. We also calculate the optical potential of the blue-detuned FHB for 85Rb atoms and find that in the focal plane, the smaller the dark spot size of the FHB is, the higher the optical potential is, and the greater the corresponding optimal detuning δ is; these qualities are beneficial to an atomic lens not only because it is profitable to obtain an atomic lens with a higher resolution, but also because it is helpful to reduce the spontaneous photon-scattering effect of atoms in the FHB.
Adaptive optics retinal imaging in the living mouse eye
Geng, Ying; Dubra, Alfredo; Yin, Lu; Merigan, William H.; Sharma, Robin; Libby, Richard T.; Williams, David R.
2012-01-01
Correction of the eye’s monochromatic aberrations using adaptive optics (AO) can improve the resolution of in vivo mouse retinal images [Biss et al., Opt. Lett. 32(6), 659 (2007) and Alt et al., Proc. SPIE 7550, 755019 (2010)], but previous attempts have been limited by poor spot quality in the Shack-Hartmann wavefront sensor (SHWS). Recent advances in mouse eye wavefront sensing using an adjustable focus beacon with an annular beam profile have improved the wavefront sensor spot quality [Geng et al., Biomed. Opt. Express 2(4), 717 (2011)], and we have incorporated them into a fluorescence adaptive optics scanning laser ophthalmoscope (AOSLO). The performance of the instrument was tested on the living mouse eye, and images of multiple retinal structures, including the photoreceptor mosaic, nerve fiber bundles, fine capillaries and fluorescently labeled ganglion cells were obtained. The in vivo transverse and axial resolutions of the fluorescence channel of the AOSLO were estimated from the full width half maximum (FWHM) of the line and point spread functions (LSF and PSF), and were found to be better than 0.79 μm ± 0.03 μm (STD)(45% wider than the diffraction limit) and 10.8 μm ± 0.7 μm (STD)(two times the diffraction limit), respectively. The axial positional accuracy was estimated to be 0.36 μm. This resolution and positional accuracy has allowed us to classify many ganglion cell types, such as bistratified ganglion cells, in vivo. PMID:22574260
Depth Of Modulation And Spot Size Selection In Bar-Code Laser Scanners
NASA Astrophysics Data System (ADS)
Barkan, Eric; Swartz, Jerome
1982-04-01
Many optical and electronic considerations enter into the selection of optical spot size in flying spot laser scanners of the type used in modern industrial and commerical environments. These include: the scale of the symbols to be read, optical background noise present in the symbol substrate, and factors relating to the characteristics of the signal processor. Many 'front ends' consist of a linear signal conditioner followed by nonlinear conditioning and digitizing circuitry. Although the nonlinear portions of the circuit can be difficult to characterize mathematically, it is frequently possible to at least give a minimum depth of modulation measure to yield a worst-case guarantee of adequate performance with respect to digitization accuracy. Depth of modulation actually delivered to the nonlinear circuitry will depend on scale, contrast, and noise content of the scanned symbol, as well as the characteristics of the linear conditioning circuitry (eg. transfer function and electronic noise). Time and frequency domain techniques are applied in order to estimate the effects of these factors in selecting a spot size for a given system environment. Results obtained include estimates of the effects of the linear front end transfer function on effective spot size and asymmetries which can affect digitization accuracy. Plots of convolution-computed modulation patterns and other important system properties are presented. Considerations are limited primarily to Gaussian spot profiles but also apply to more general cases. Attention is paid to realistic symbol models and to implications with respect to printing tolerances.
Impact of spot charge inaccuracies in IMPT treatments.
Kraan, Aafke C; Depauw, Nicolas; Clasie, Ben; Giunta, Marina; Madden, Tom; Kooy, Hanne M
2017-08-01
Spot charge is one parameter of pencil-beam scanning dose delivery system whose accuracy is typically high but whose required value has not been investigated. In this work we quantify the dose impact of spot charge inaccuracies on the dose distribution in patients. Knowing the effect of charge errors is relevant for conventional proton machines, as well as for new generation proton machines, where ensuring accurate charge may be challenging. Through perturbation of spot charge in treatment plans for seven patients and a phantom, we evaluated the dose impact of absolute (up to 5× 10 6 protons) and relative (up to 30%) charge errors. We investigated the dependence on beam width by studying scenarios with small, medium and large beam sizes. Treatment plan statistics included the Γ passing rate, dose-volume-histograms and dose differences. The allowable absolute charge error for small spot plans was about 2× 10 6 protons. Larger limits would be allowed if larger spots were used. For relative errors, the maximum allowable error size for small, medium and large spots was about 13%, 8% and 6% for small, medium and large spots, respectively. Dose distributions turned out to be surprisingly robust against random spot charge perturbation. Our study suggests that ensuring spot charge errors as small as 1-2% as is commonly aimed at in conventional proton therapy machines, is clinically not strictly needed. © 2017 American Association of Physicists in Medicine.
The Development of a Scanning Soft X-Ray Microscope.
NASA Astrophysics Data System (ADS)
Rarback, Harvey Miles
We have developed a scanning soft X-ray microscope, which can be used to image natural biological specimens at high resolution and with less damage than electron microscopy. The microscope focuses a monochromatic beam of synchrotron radiation to a nearly diffraction limited spot with the aid of a high resolution Fresnel zone plate, specially fabricated for us at the IBM Watson Research Center. The specimen at one atmosphere is mechanically scanned through the spot and the transmitted radiation is efficiently detected with a flow proportional counter. A computer forms a realtime transmission image of the specimen which is displayed on a color monitor. Our first generation optics have produced images of natural wet specimens at a resolution of 300 nm.
Brewster, Aaron S.; Sawaya, Michael R.; Rodriguez, Jose; ...
2015-01-23
Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of the Computational Crystallography Toolbox( cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data set from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set ofmore » diffraction patterns with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 Å resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented.« less
Eyeglass Large Aperture, Lightweight Space Optics FY2000 - FY2002 LDRD Strategic Initiative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyde, R
2003-02-10
A series of studies by the Air Force, the National Reconnaissance Office and NASA have identified the critical role played by large optics in fulfilling many of the space related missions of these agencies. Whether it is the Next Generation Space Telescope for NASA, high resolution imaging systems for NRO, or beam weaponry for the Air Force, the diameter of the primary optic is central to achieving high resolution (imaging) or a small spot size on target (lethality). While the detailed requirements differ for each application (high resolution imaging over the visible and near-infrared for earth observation, high damage thresholdmore » but single-wavelength operation for directed energy), the challenges of a large, lightweight primary optic which is space compatible and operates with high efficiency are the same. The advantage of such large optics to national surveillance applications is that it permits these observations to be carried-out with much greater effectiveness than with smaller optics. For laser weapons, the advantage is that it permits more tightly focused beams which can be leveraged into either greater effective range, reduced laser power, and/or smaller on-target spot-sizes; weapon systems can be made either much more effective or much less expensive. This application requires only single-wavelength capability, but places an emphasis upon robust, rapidly targetable optics. The advantages of large aperture optics to astronomy are that it increases the sensitivity and resolution with which we can view the universe. This can be utilized either for general purpose astronomy, allowing us to examine greater numbers of objects in more detail and at greater range, or it can enable the direct detection and detailed examination of extra-solar planets. This application requires large apertures (for both light-gathering and resolution reasons), with broad-band spectral capability, but does not emphasize either large fields-of-view or pointing agility. Despite differences in their requirements and implementations, the fundamental difficulty in utilizing large aperture optics is the same for all of these applications: It is extremely difficult to design large aperture space optics which are both optically precise and can meet the practical requirements for launch and deployment in space. At LLNL we have developed a new concept (Eyeglass) which uses large diffractive optics to solve both of these difficulties; greatly reducing both the mass and the tolerance requirements for large aperture optics. During previous LDRD-supported research, we developed this concept, built and tested broadband diffractive telescopes, and built 50 cm aperture diffraction-limited diffractive lenses (the largest in the world). This work is fully described in UCRL-ID-136262, Eyeglass: A Large Aperture Space Telescope. However, there is a large gap between optical proof-of-principle with sub-meter apertures, and actual 50 meter space telescopes. This gap is far too large (both in financial resources and in spacecraft expertise) to be filled internally at LLNL; implementation of large aperture diffractive space telescopes must be done externally using non-LLNL resources and expertise. While LLNL will never become the primary contractor and integrator for large space optical systems, our natural role is to enable these devices by developing the capability of producing very large diffractive optics. Accordingly, the purpose of the Large Aperture, Lightweight Space Optics Strategic Initiative was to develop the technology to fabricate large, lightweight diffractive lenses. The additional purpose of this Strategic Initiative was, of course, to demonstrate this lens-fabrication capability in a fashion compellingly enough to attract the external support necessary to continue along the path to full-scale space-based telescopes. During this 3 year effort (FY2000-FY2002) we have developed the capability of optically smoothing and diffractively-patterning thin meter-sized sheets of glass into lens panels. We have also developed alignment and seaming techniques which allow individual lens panels to be assembled together, forming a much larger, segmented, diffractive lens. The capabilities provided by this LDRD-supported developmental effort were then demonstrated by the fabrication and testing of a lightweight, 5 meter aperture, diffractive lens.« less
Experiments and simulation for 6061-T6 aluminum alloy resistance spot welded lap joints
NASA Astrophysics Data System (ADS)
Florea, Radu Stefanel
This comprehensive study is the first to quantify the fatigue performance, failure loads, and microstructure of resistance spot welding (RSW) in 6061-T6 aluminum (Al) alloy according to welding parameters and process sensitivity. The extensive experimental, theoretical and simulated analyses will provide a framework to optimize the welding of lightweight structures for more fuel-efficient automotive and military applications. The research was executed in four primary components. The first section involved using electron back scatter diffraction (EBSD) scanning, tensile testing, laser beam profilometry (LBP) measurements, and optical microscopy(OM) images to experimentally investigate failure loads and deformation of the Al-alloy resistance spot welded joints. Three welding conditions, as well as nugget and microstructure characteristics, were quantified according to predefined process parameters. Quasi-static tensile tests were used to characterize the failure loads in specimens based upon these same process parameters. Profilometer results showed that increasing the applied welding current deepened the weld imprints. The EBSD scans revealed the strong dependency between the grain sizes and orientation function on the process parameters. For the second section, the fatigue behavior of the RSW'ed joints was experimentally investigated. The process optimization included consideration of the forces, currents, and times for both the main weld and post-heating. Load control cyclic tests were conducted on single weld lap-shear joint coupons to characterize the fatigue behavior in spot welded specimens. Results demonstrate that welding parameters do indeed significantly affect the microstructure and fatigue performance for these welds. The third section comprised residual strains of resistance spot welded joints measured in three different directions, denoted as in-plane longitudinal, in-plane transversal, and normal, and captured on the fusion zone, heat affected zone and base metal of the joints. Neutron diffraction results showed residual stresses in the weld are approximately 40% lower than the yield strength of the parent material, with maximum variation occurring in the vertical position of the specimen because of the orientation of electrode clamping forces that produce a non-uniform solidification pattern. In the final section a theoretical continuum modeling framework for 6061-T6 aluminum resistance spot welded joints is presented.
Tailored semiconductors for high-harmonic optoelectronics.
Sivis, Murat; Taucer, Marco; Vampa, Giulio; Johnston, Kyle; Staudte, André; Naumov, Andrei Yu; Villeneuve, D M; Ropers, Claus; Corkum, P B
2017-07-21
The advent of high-harmonic generation in gases 30 years ago set the foundation for attosecond science and facilitated ultrafast spectroscopy in atoms, molecules, and solids. We explore high-harmonic generation in the solid state by means of nanostructured and ion-implanted semiconductors. We use wavelength-selective microscopic imaging to map enhanced harmonic emission and show that the generation medium and the driving field can be locally tailored in solids by modifying the chemical composition and morphology. This enables the control of high-harmonic technology within precisely engineered solid targets. We demonstrate customized high-harmonic wave fields with wavelengths down to 225 nanometers (ninth-harmonic order of 2-micrometer laser pulses) and present an integrated Fresnel zone plate target in silicon, which leads to diffraction-limited self-focusing of the generated harmonics down to 1-micrometer spot sizes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices
Wang, Danqing; Yang, Ankun; Wang, Weijia; ...
2017-07-10
Single band-edge states can trap light and function as high-quality optical feedback for microscale lasers and nanolasers. However, access to more than a single band-edge mode for nanolasing has not been possible because of limited cavity designs. Here, we describe how plasmonic superlattices-finite-arrays of nanoparticles (patches) grouped into microscale arrays-can support multiple band-edge modes capable of multi-modal nanolasing at programmed emission wavelengths and with large mode spacings. Different lasing modes show distinct input-output light behaviour and decay dynamics that can be tailored by nanoparticle size. By modelling the superlattice nanolasers with a four-level gain system and a time-domain approach, wemore » reveal that the accumulation of population inversion at plasmonic hot spots can be spatially modulated by the diffractive coupling order of the patches. Furthermore, we show that symmetry-broken superlattices can sustain switchable nanolasing between a single mode and multiple modes.« less
Terahertz imaging system based on a backward-wave oscillator.
Dobroiu, Adrian; Yamashita, Masatsugu; Ohshima, Yuichi N; Morita, Yasuyuki; Otani, Chiko; Kawase, Kodo
2004-10-20
We present an imaging system designed for use in the terahertz range. As the radiation source a backward-wave oscillator was chosen for its special features such as high output power, good wave-front quality, good stability, and wavelength tunability from 520 to 710 GHz. Detection is achieved with a pyroelectric sensor operated at room temperature. The alignment procedure for the optical elements is described, and several methods to reduce the etalon effect that are inherent in monochromatic sources are discussed. The terahertz spot size in the sample plane is 550 microm (nearly the diffraction limit), and the signal-to-noise ratio is 10,000:1; other characteristics were also measured and are presented in detail. A number of preliminary applications are also shown that cover various areas: nondestructive real-time testing for plastic tubes and packaging seals; biological terahertz imaging of fresh, frozen, or freeze-dried samples; paraffin-embedded specimens of cancer tissue; and measurement of the absorption coefficient of water by use of a wedge-shaped cell.
Dennison, Kaitlin; Ammons, S. Mark; Garrel, Vincent; ...
2016-06-26
AutoCAD, Zemax Optic Studio 15, and Interactive Data Language (IDL) with the Proper Library are used to computationally model and test a diffractive mask (DiM) suitable for use in the Gemini Multi-Conjugate Adaptive Optics System (GeMS) on the Gemini South Telescope. Systematic errors in telescope imagery are produced when the light travels through the adaptive optics system of the telescope. DiM is a transparent, flat optic with a pattern of miniscule dots lithographically applied to it. It is added ahead of the adaptive optics system in the telescope in order to produce diffraction spots that will encode systematic errors inmore » the optics after it. Once these errors are encoded, they can be corrected for. DiM will allow for more accurate measurements in astrometry and thus improve exoplanet detection. Furthermore, the mechanics and physical attributes of the DiM are modeled in AutoCAD. Zemax models the ray propagation of point sources of light through the telescope. IDL and Proper simulate the wavefront and image results of the telescope. Aberrations are added to the Zemax and IDL models to test how the diffraction spots from the DiM change in the final images. Based on the Zemax and IDL results, the diffraction spots are able to encode the systematic aberrations.« less
Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam
NASA Astrophysics Data System (ADS)
Lin, Han; Gu, Min
2013-02-01
Diffraction-limited non-Airy multifocal arrays are created by focusing a phase-modulated vortex beam through a high numerical-aperture objective. The modulated phase at the back aperture of the objective resulting from the superposition of two concentric phase-modulated vortex beams allows for the generation of a multifocal array of cylindrically polarized non-Airy patterns. Furthermore, we shift the spatial positions of the phase vortices to manipulate the intensity distribution at each focal spot, leading to the creation of a multifocal array of split-ring patterns. Our method is experimentally validated by generating the predicted phase modulation through a spatial light modulator. Consequently, the spatially shifted circularly polarized vortex beam adopted in a dynamic laser direct writing system facilitates the fabrication of a split-ring microstructure array in a polymer material by a single exposure of a femtosecond laser beam.
Fourier optics analysis of grating sensors with tilt errors.
Ferhanoglu, Onur; Toy, M Fatih; Urey, Hakan
2011-06-15
Dynamic diffraction gratings can be microfabricated with precision and offer extremely sensitive displacement measurements and light intensity modulation. The effect of pure translation of the moving part of the grating on diffracted order intensities is well known. This study focuses on the parameters that limit the intensity and the contrast of the interference. The effects of grating duty cycle, mirror reflectivities, sensor tilt and detector size are investigated using Fourier optics theory and Gaussian beam optics. Analytical findings reveal that fringe visibility becomes <0.3 when the optical path variation exceeds half the wavelength within the grating interferometer. The fringe visibility can be compensated by monitoring the interfering portion of the diffracted order light only through detector size reduction in the expense of optical power. Experiments were conducted with a grating interferometer that resulted in an eightfold increase in fringe visibility with reduced detector size, which is in agreement with theory. Findings show that diffraction grating readout principle is not limited to translating sensors but also can be used for sensors with tilt or other deflection modes.
Variable-spot ion beam figuring
NASA Astrophysics Data System (ADS)
Wu, Lixiang; Qiu, Keqiang; Fu, Shaojun
2016-03-01
This paper introduces a new scheme of ion beam figuring (IBF), or rather variable-spot IBF, which is conducted at a constant scanning velocity with variable-spot ion beam collimated by a variable diaphragm. It aims at improving the reachability and adaptation of the figuring process within the limits of machine dynamics by varying the ion beam spot size instead of the scanning velocity. In contrast to the dwell time algorithm in the conventional IBF, the variable-spot IBF adopts a new algorithm, which consists of the scan path programming and the trajectory optimization using pattern search. In this algorithm, instead of the dwell time, a new concept, integral etching time, is proposed to interpret the process of variable-spot IBF. We conducted simulations to verify its feasibility and practicality. The simulation results indicate the variable-spot IBF is a promising alternative to the conventional approach.
Fabrication and Operation of a Nano-Optical Conveyor Belt
Ryan, Jason; Zheng, Yuxin; Hansen, Paul; Hesselink, Lambertus
2015-01-01
The technique of using focused laser beams to trap and exert forces on small particles has enabled many pivotal discoveries in the nanoscale biological and physical sciences over the past few decades. The progress made in this field invites further study of even smaller systems and at a larger scale, with tools that could be distributed more easily and made more widely available. Unfortunately, the fundamental laws of diffraction limit the minimum size of the focal spot of a laser beam, which makes particles smaller than a half-wavelength in diameter hard to trap and generally prevents an operator from discriminating between particles which are closer together than one half-wavelength. This precludes the optical manipulation of many closely-spaced nanoparticles and limits the resolution of optical-mechanical systems. Furthermore, manipulation using focused beams requires beam-forming or steering optics, which can be very bulky and expensive. To address these limitations in the system scalability of conventional optical trapping our lab has devised an alternative technique which utilizes near-field optics to move particles across a chip. Instead of focusing laser beams in the far-field, the optical near field of plasmonic resonators produces the necessary local optical intensity enhancement to overcome the restrictions of diffraction and manipulate particles at higher resolution. Closely-spaced resonators produce strong optical traps which can be addressed to mediate the hand-off of particles from one to the next in a conveyor-belt-like fashion. Here, we describe how to design and produce a conveyor belt using a gold surface patterned with plasmonic C-shaped resonators and how to operate it with polarized laser light to achieve super-resolution nanoparticle manipulation and transport. The nano-optical conveyor belt chip can be produced using lithography techniques and easily packaged and distributed. PMID:26381708
Fabrication and Operation of a Nano-Optical Conveyor Belt.
Ryan, Jason; Zheng, Yuxin; Hansen, Paul; Hesselink, Lambertus
2015-08-26
The technique of using focused laser beams to trap and exert forces on small particles has enabled many pivotal discoveries in the nanoscale biological and physical sciences over the past few decades. The progress made in this field invites further study of even smaller systems and at a larger scale, with tools that could be distributed more easily and made more widely available. Unfortunately, the fundamental laws of diffraction limit the minimum size of the focal spot of a laser beam, which makes particles smaller than a half-wavelength in diameter hard to trap and generally prevents an operator from discriminating between particles which are closer together than one half-wavelength. This precludes the optical manipulation of many closely-spaced nanoparticles and limits the resolution of optical-mechanical systems. Furthermore, manipulation using focused beams requires beam-forming or steering optics, which can be very bulky and expensive. To address these limitations in the system scalability of conventional optical trapping our lab has devised an alternative technique which utilizes near-field optics to move particles across a chip. Instead of focusing laser beams in the far-field, the optical near field of plasmonic resonators produces the necessary local optical intensity enhancement to overcome the restrictions of diffraction and manipulate particles at higher resolution. Closely-spaced resonators produce strong optical traps which can be addressed to mediate the hand-off of particles from one to the next in a conveyor-belt-like fashion. Here, we describe how to design and produce a conveyor belt using a gold surface patterned with plasmonic C-shaped resonators and how to operate it with polarized laser light to achieve super-resolution nanoparticle manipulation and transport. The nano-optical conveyor belt chip can be produced using lithography techniques and easily packaged and distributed.
Theory of dispersive microlenses
NASA Technical Reports Server (NTRS)
Herman, B.; Gal, George
1993-01-01
A dispersive microlens is a miniature optical element which simultaneously focuses and disperses light. Arrays of dispersive mircolenses have potential applications in multicolor focal planes. They have a 100 percent optical fill factor and can focus light down to detectors of diffraction spot size, freeing up areas on the focal plane for on-chip analog signal processing. Use of dispersive microlenses allows inband color separation within a pixel and perfect scene registration. A dual-color separation has the potential for temperature discrimination. We discuss the design of dispersive microlenses and present sample results for efficient designs.
HCIT Contrast Performance Sensitivity Studies: Simulation Versus Experiment
NASA Technical Reports Server (NTRS)
Sidick, Erkin; Shaklan, Stuart; Krist, John; Cady, Eric J.; Kern, Brian; Balasubramanian, Kunjithapatham
2013-01-01
Using NASA's High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory, we have experimentally investigated the sensitivity of dark hole contrast in a Lyot coronagraph for the following factors: 1) Lateral and longitudinal translation of an occulting mask; 2) An opaque spot on the occulting mask; 3) Sizes of the controlled dark hole area. Also, we compared the measured results with simulations obtained using both MACOS (Modeling and Analysis for Controlled Optical Systems) and PROPER optical analysis programs with full three-dimensional near-field diffraction analysis to model HCIT's optical train and coronagraph.
Diffractive optics fabricated by direct write methods with an electron beam
NASA Technical Reports Server (NTRS)
Kress, Bernard; Zaleta, David; Daschner, Walter; Urquhart, Kris; Stein, Robert; Lee, Sing H.
1993-01-01
State-of-the-art diffractive optics are fabricated using e-beam lithography and dry etching techniques to achieve multilevel phase elements with very high diffraction efficiencies. One of the major challenges encountered in fabricating diffractive optics is the small feature size (e.g. for diffractive lenses with small f-number). It is not only the e-beam system which dictates the feature size limitations, but also the alignment systems (mask aligner) and the materials (e-beam and photo resists). In order to allow diffractive optics to be used in new optoelectronic systems, it is necessary not only to fabricate elements with small feature sizes but also to do so in an economical fashion. Since price of a multilevel diffractive optical element is closely related to the e-beam writing time and the number of etching steps, we need to decrease the writing time and etching steps without affecting the quality of the element. To do this one has to utilize the full potentials of the e-beam writing system. In this paper, we will present three diffractive optics fabrication techniques which will reduce the number of process steps, the writing time, and the overall fabrication time for multilevel phase diffractive optics.
Russ, M; Shankar, A; Setlur Nagesh, S V; Ionita, C N; Bednarek, D R; Rudin, S
2017-02-11
The high-resolution requirements for neuro-endovascular image-guided interventions (EIGIs) necessitate the use of a small focal-spot size; however, the maximum tube output limits for such small focal-spot sizes may not enable sufficient x-ray fluence after attenuation through the human head to support the desired image quality. This may necessitate the use of a larger focal spot, thus contributing to the overall reduction in resolution. A method for creating a higher-output small effective focal spot based on the line-focus principle has been demonstrated and characterized. By tilting the C-arm gantry, the anode-side of the x-ray field-of-view is accessible using a detector placed off-axis. This tilted central axis diminishes the resultant focal spot size in the anode-cathode direction by the tangent of the effective anode angle, allowing a medium focal spot to be used in place of a small focal spot with minimal losses in resolution but with increased tube output. Images were acquired of two different objects at the central axis, and with the C-arm tilted away from the central axis at 1° increments from 0°-7°. With standard collimation settings, only 6° was accessible, but using asymmetric extended collimation a maximum of 7° was accessed for enhanced comparisons. All objects were positioned perpendicular to the anode-cathode direction and images were compared qualitatively. The increasing advantage of the off-axis focal spots was quantitatively evidenced at each subsequent angle using the Generalized Measured-Relative Object Detectability metric (GM-ROD). This anode-tilt method is a simple and robust way of increasing tube output for a small field-of-view detector without diminishing the overall apparent resolution for neuro-EIGIs.
NASA Astrophysics Data System (ADS)
Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.
2017-03-01
The high-resolution requirements for neuro-endovascular image-guided interventions (EIGIs) necessitate the use of a small focal-spot size; however, the maximum tube output limits for such small focal-spot sizes may not enable sufficient x-ray fluence after attenuation through the human head to support the desired image quality. This may necessitate the use of a larger focal spot, thus contributing to the overall reduction in resolution. A method for creating a higher-output small effective focal spot based on the line-focus principle has been demonstrated and characterized. By tilting the C-arm gantry, the anode-side of the x-ray field-of-view is accessible using a detector placed off-axis. This tilted central axis diminishes the resultant focal spot size in the anode-cathode direction by the tangent of the effective anode angle, allowing a medium focal spot to be used in place of a small focal spot with minimal losses in resolution but with increased tube output. Images were acquired of two different objects at the central axis, and with the C-arm tilted away from the central axis at 1° increments from 0°-7°. With standard collimation settings, only 6° was accessible, but using asymmetric extended collimation a maximum of 7° was accessed for enhanced comparisons. All objects were positioned perpendicular to the anode-cathode direction and images were compared qualitatively. The increasing advantage of the off-axis focal spots was quantitatively evidenced at each subsequent angle using the Generalized Measured-Relative Object Detectability metric (GM-ROD). This anode-tilt method is a simple and robust way of increasing tube output for a small field-of-view detector without diminishing the overall apparent resolution for neuro-EIGIs.
Afshari, Aliakbar; Zeidler-Erdely, Patti C; McKinney, Walter; Chen, Bean T; Jackson, Mark; Schwegler-Berry, Diane; Friend, Sherri; Cumpston, Amy; Cumpston, Jared L; Leonard, H Donny; Meighan, Terence G; Frazer, David G; Antonini, James M
2014-10-01
Limited information exists regarding the health risks associated with inhaling aerosols that are generated during resistance spot welding of metals treated with adhesives. Toxicology studies evaluating spot welding aerosols are non-existent. A resistance spot welding aerosol generator and inhalation exposure system was developed. The system was designed by directing strips of sheet metal that were treated with an adhesive to two electrodes of a spot welder. Spot welds were made at a specified distance from each other by a computer-controlled welding gun in a fume collection chamber. Different target aerosol concentrations were maintained within the exposure chamber during a 4-h exposure period. In addition, the exposure system was run in two modes, spark and no spark, which resulted in different chemical profiles and particle size distributions. Complex aerosols were produced that contained both metal particulates and volatile organic compounds (VOCs). Size distribution of the particles was multi-modal. The majority of particles were chain-like agglomerates of ultrafine primary particles. The submicron mode of agglomerated particles accounted for the largest portion of particles in terms of particle number. Metal expulsion during spot welding caused the formation of larger, more spherical particles (spatter). These spatter particles appeared in the micron size mode and accounted for the greatest amount of particles in terms of mass. With this system, it is possible to examine potential mechanisms by which spot welding aerosols can affect health, as well as assess which component of the aerosol may be responsible for adverse health outcomes.
An engineered design of a diffractive mask for high precision astrometry
NASA Astrophysics Data System (ADS)
Dennison, Kaitlin; Ammons, S. Mark; Garrel, Vincent; Marin, Eduardo; Sivo, Gaetano; Bendek, Eduardo; Guyon, Oliver
2016-07-01
AutoCAD, Zemax Optic Studio 15, and Interactive Data Language (IDL) with the Proper Library are used to computationally model and test a diffractive mask (DiM) suitable for use in the Gemini Multi-Conjugate Adaptive Optics System (GeMS) on the Gemini South Telescope. Systematic errors in telescope imagery are produced when the light travels through the adaptive optics system of the telescope. DiM is a transparent, flat optic with a pattern of miniscule dots lithographically applied to it. It is added ahead of the adaptive optics system in the telescope in order to produce diffraction spots that will encode systematic errors in the optics after it. Once these errors are encoded, they can be corrected for. DiM will allow for more accurate measurements in astrometry and thus improve exoplanet detection. The mechanics and physical attributes of the DiM are modeled in AutoCAD. Zemax models the ray propagation of point sources of light through the telescope. IDL and Proper simulate the wavefront and image results of the telescope. Aberrations are added to the Zemax and IDL models to test how the diffraction spots from the DiM change in the final images. Based on the Zemax and IDL results, the diffraction spots are able to encode the systematic aberrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghica, C., E-mail: cghica@infim.ro; Negrea, R. F.; Nistor, L. C.
2014-07-14
In this paper, we analyze the structural distortions observed by transmission electron microscopy in thin epitaxial SrRuO{sub 3} layers used as bottom electrodes in multiferroic coatings onto SrTiO{sub 3} substrates for future multiferroic devices. Regardless of the nature and architecture of the multilayer oxides deposited on the top of the SrRuO{sub 3} thin films, selected area electron diffraction patterns systematically revealed the presence of faint diffraction spots appearing in forbidden positions for the SrRuO{sub 3} orthorhombic structure. High-resolution transmission electron microscopy (HRTEM) combined with Geometric Phase Analysis (GPA) evidenced the origin of these forbidden diffraction spots in the presence ofmore » structurally disordered nanometric domains in the SrRuO{sub 3} bottom layers, resulting from a strain-driven phase transformation. The local high compressive strain (−4% ÷ −5%) measured by GPA in the HRTEM images induces a local orthorhombic to monoclinic phase transition by a cooperative rotation of the RuO{sub 6} octahedra. A further confirmation of the origin of the forbidden diffraction spots comes from the simulated diffraction patterns obtained from a monoclinic disordered SrRuO{sub 3} structure.« less
A procedure to determine the planar integral spot dose values of proton pencil beam spots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, Aman; Sahoo, Narayan; Zhu, X. Ronald
2012-02-15
Purpose: Planar integral spot dose (PISD) of proton pencil beam spots (PPBSs) is a required input parameter for beam modeling in some treatment planning systems used in proton therapy clinics. The measurement of PISD by using commercially available large area ionization chambers, like the PTW Bragg peak chamber (BPC), can have large uncertainties due to the size limitation of these chambers. This paper reports the results of our study of a novel method to determine PISD values from the measured lateral dose profiles and peak dose of the PPBS. Methods: The PISDs of 72.5, 89.6, 146.9, 181.1, and 221.8 MeVmore » energy PPBSs were determined by area integration of their planar dose distributions at different depths in water. The lateral relative dose profiles of the PPBSs at selected depths were measured by using small volume ion chambers and were investigated for their angular anisotropies using Kodak XV films. The peak spot dose along the beam's central axis (D{sub 0}) was determined by placing a small volume ion chamber at the center of a broad field created by the superposition of spots at different locations. This method allows eliminating positioning uncertainties and the detector size effect that could occur when measuring it in single PPBS. The PISD was then calculated by integrating the measured lateral relative dose profiles for two different upper limits of integration and then multiplying it with corresponding D{sub 0}. The first limit of integration was set to radius of the BPC, namely 4.08 cm, giving PISD{sub RBPC}. The second limit was set to a value of the radial distance where the profile dose falls below 0.1% of the peak giving the PISD{sub full}. The calculated values of PISD{sub RBPC} obtained from area integration method were compared with the BPC measured values. Long tail dose correction factors (LTDCFs) were determined from the ratio of PISD{sub full}/PISD{sub RBPC} at different depths for PPBSs of different energies. Results: The spot profiles were found to have angular anisotropy. This anisotropy in PPBS dose distribution could be accounted in a reasonable approximate manner by taking the average of PISD values obtained using the in-line and cross-line profiles. The PISD{sub RBPC} values fall within 3.5% of those measured by BPC. Due to inherent dosimetry challenges associated with PPBS dosimetry, which can lead to large experimental uncertainties, such an agreement is considered to be satisfactory for validation purposes. The PISD{sub full} values show differences ranging from 1 to 11% from BPC measured values, which are mainly due to the size limitation of the BPC to account for the dose in the long tail regions of the spots extending beyond its 4.08 cm radius. The dose in long tail regions occur both for high energy beams such as 221.8 MeV PPBS due to the contributions of nuclear interactions products in the medium, and for low energy PPBS because of their larger spot sizes. The calculated LTDCF values agree within 1% with those determined by the Monte Carlo (MC) simulations. Conclusions: The area integration method to compute the PISD from PPBS lateral dose profiles is found to be useful both to determine the correction factors for the values measured by the BPC and to validate the results from MC simulations.« less
Structured illumination to spatially map chromatin motions.
Bonin, Keith; Smelser, Amanda; Moreno, Naike Salvador; Holzwarth, George; Wang, Kevin; Levy, Preston; Vidi, Pierre-Alexandre
2018-05-01
We describe a simple optical method that creates structured illumination of a photoactivatable probe and apply this method to characterize chromatin motions in nuclei of live cells. A laser beam coupled to a diffractive optical element at the back focal plane of an excitation objective generates an array of near diffraction-limited beamlets with FWHM of 340 ± 30 nm, which simultaneously photoactivate a 7 × 7 matrix pattern of GFP-labeled histones, with spots 1.70 μm apart. From the movements of the photoactivated spots, we map chromatin diffusion coefficients at multiple microdomains of the cell nucleus. The results show correlated motions of nearest chromatin microdomain neighbors, whereas chromatin movements are uncorrelated at the global scale of the nucleus. The method also reveals a DNA damage-dependent decrease in chromatin diffusion. The diffractive optical element instrumentation can be easily and cheaply implemented on commercial inverted fluorescence microscopes to analyze adherent cell culture models. A protocol to measure chromatin motions in nonadherent human hematopoietic stem and progenitor cells is also described. We anticipate that the method will contribute to the identification of the mechanisms regulating chromatin mobility, which influences most genomic processes and may underlie the biogenesis of genomic translocations associated with hematologic malignancies. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
A versatile genome-scale PCR-based pipeline for high-definition DNA FISH.
Bienko, Magda; Crosetto, Nicola; Teytelman, Leonid; Klemm, Sandy; Itzkovitz, Shalev; van Oudenaarden, Alexander
2013-02-01
We developed a cost-effective genome-scale PCR-based method for high-definition DNA FISH (HD-FISH). We visualized gene loci with diffraction-limited resolution, chromosomes as spot clusters and single genes together with transcripts by combining HD-FISH with single-molecule RNA FISH. We provide a database of over 4.3 million primer pairs targeting the human and mouse genomes that is readily usable for rapid and flexible generation of probes.
Frequency Resolved Nanoscale Chemical Imaging of 4,4'-Dimercaptostilbene on Silver
El-Khoury, Patrick Z.; Ueltschi, Tyler W.; Mifflin, Amanda L.; ...
2014-11-26
Non-resonant tip-enhanced Raman images of 4,4'-dimercaptostilbene on silver reveal that different vibrational resonances of the reporter are selectively enhanced at different sites on the metal substrate. Sequentially recorded images track molecular diffusion within the diffraction-limited laser spot which illuminates the substrate. In effect, the recorded time resolved (Δt = 10 s) pixelated images (25 nm x 8 cm-1) broadcast molecule-local field interactions which take place on much finer scales.
Characterization of photoacoustic sources in tissue using time domain measurements
NASA Astrophysics Data System (ADS)
Viator, John Andrew
Photoacoustic phenomenon in tissue and tissue phantoms is investigated with the particular goal of discrimination of diseased and healthy tissue. Propagation of broadband photoacoustic sources in tissue phantoms is studied with emphasis on attenuation, dispersion, and diffraction. Attenuation of photoacoustic waves induced by a circular laser spot on an absorber/air interface is modeled by the on-axis approximation of the acoustic field of a baffled piston source. Dispersion is studied in a diffraction free situation, where the disk of irradiation was created by a 5 mm laser spot on a 200 cm -1 solution. The genesis of diffraction in an absorbing solution was displayed by showing the merging of a boundary wave with a plane wave from a circular laser spot on an absorbing solution. Depth profiling of absorbing tissue phantoms and stained tissue was shown using a photoacoustic method. Acrylamide gels with layers of different optical absorption and stained elastin biomaterials were irradiated with stress confined laser pulses. The resulting acoustic waves were detected with a lithium niobate wideband acoustic transducer and processed in an algorithm to determine absorption coefficient as a function of depth. Spherical photoacoustic sources were generated in optically clear and turbid tissue phantoms. Propagation time and acoustic pulse duration were used to determine location and size, respectively. The photoacoustic sources were imaged using a multiplicative backprojection scheme. Image sources from acoustic boundaries were detected and dipole sources were detected and imaged. Finally an endoscopic photoacoustic probe was designed, built, and tested for use in determining treatment depth after palliative photodynamic therapy of esophageal cancer. The probe was less than 2.5 mm in diameter and consisted of a side firing 600 mum optical fiber to deliver laser energy and a 890 mum diameter, side viewing piezoelectric detector. The sensitivity of the probe was determined. The probe was also tested on coagulated and non-coagulated liver, ex vivo and on normally perfused and underperfused human skin, in vivo.
Hattori, Azusa N; Okamoto, Takeshi; Sadakuni, Shun; Murata, Junji; Oi, Hideo; Arima, Kenta; Sano, Yasuhisa; Hattori, Ken; Daimon, Hiroshi; Endo, Katsuyoshi; Yamauchi, Kazuto
2011-04-01
Monolayer and bilayer graphene films with a few hundred nm domain size were grown on ultraprecision figured 4H-SiC(0001) on-axis and 8 degrees -off surfaces by annealing in ultra-high vacuum. Using X-ray photoelectron spectroscopy (XPS), atomic force microscopy, reflection high-energy electron diffraction, low-energy electron diffraction (LEED), Raman spectroscopy, and scanning tunneling microscopy, we investigated the structure, number of graphene layers, and chemical bonding of the graphene surfaces. Moreover, the magnetic property of the monolayer graphene was studied using in-situ surface magneto-optic Kerr effect at 40 K. LEED spots intensity distribution and XPS spectra for monolayer and bilayer graphene films could become an obvious and accurate fingerprint for the determination of graphene film thickness on SiC surface.
Fabrication of wedged multilayer Laue lenses
Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; ...
2015-01-01
We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack.more » This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.« less
NASA Astrophysics Data System (ADS)
Mo, M. Z.; Shen, X.; Chen, Z.; Li, R. K.; Dunning, M.; Sokolowski-Tinten, K.; Zheng, Q.; Weathersby, S. P.; Reid, A. H.; Coffee, R.; Makasyuk, I.; Edstrom, S.; McCormick, D.; Jobe, K.; Hast, C.; Glenzer, S. H.; Wang, X.
2016-11-01
We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 μm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined. This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime.
Development of at-wavelength metrology for x-ray optics at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Yuan, Sheng
2010-07-09
The comprehensive realization of the exciting advantages of new third- and forth-generation synchrotron radiation light sources requires concomitant development of reflecting and diffractive x-ray optics capable of micro- and nano-focusing, brightness preservation, and super high resolution. The fabrication, tuning, and alignment of the optics are impossible without adequate metrology instrumentation, methods, and techniques. While the accuracy of ex situ optical metrology at the Advanced Light Source (ALS) has reached a state-of-the-art level, wavefront control on beamlines is often limited by environmental and systematic alignment factors, and inadequate in situ feedback. At ALS beamline 5.3.1, we are developing broadly applicable, high-accuracy,more » in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of tests with increasing accuracy and sensitivity. Geometric Hartmann tests, performed with a scanning illuminated sub-aperture determine the wavefront slope across the full mirror aperture. Shearing interferometry techniques use coherent illumination and provide higher sensitivity wavefront measurements. Combining these techniques with high precision optical metrology and experimental methods will enable us to provide in situ setting and alignment of bendable x-ray optics to realize diffraction-limited, sub 50 nm focusing at beamlines. We describe here details of the metrology beamline endstation, the x-ray beam diagnostic system, and original experimental techniques that have already allowed us to precisely set a bendable KB mirror to achieve a focused spot size of 150 nm.« less
Sub-diffraction Laser Synthesis of Silicon Nanowires
Mitchell, James I.; Zhou, Nan; Nam, Woongsik; Traverso, Luis M.; Xu, Xianfan
2014-01-01
We demonstrate synthesis of silicon nanowires of tens of nanometers via laser induced chemical vapor deposition. These nanowires with diameters as small as 60 nm are produced by the interference between incident laser radiation and surface scattered radiation within a diffraction limited spot, which causes spatially confined, periodic heating needed for high resolution chemical vapor deposition. By controlling the intensity and polarization direction of the incident radiation, multiple parallel nanowires can be simultaneously synthesized. The nanowires are produced on a dielectric substrate with controlled diameter, length, orientation, and the possibility of in-situ doping, and therefore are ready for device fabrication. Our method offers rapid one-step fabrication of nano-materials and devices unobtainable with previous CVD methods. PMID:24469704
Effects of higher order aberrations on beam shape in an optical recording system
NASA Technical Reports Server (NTRS)
Wang, Mark S.; Milster, Tom D.
1992-01-01
An unexpected irradiance pattern in the detector plane of an optical data storage system was observed. Through wavefront measurement and scalar diffraction modeling, it was discovered that the energy redistribution is due to residual third-order and fifth-order spherical aberration of the objective lens and cover-plate assembly. The amount of residual aberration is small, and the beam focused on the disk would be considered diffraction limited by several criteria. Since the detector is not in the focal plane, even this small amount of aberration has a significant effect on the energy distribution. We show that the energy redistribution can adversely affect focus error signals, which are responsible for maintaining sub-micron spot diameters on the spinning disk.
Microscale optical cryptography using a subdiffraction-limit optical key
NASA Astrophysics Data System (ADS)
Ogura, Yusuke; Aino, Masahiko; Tanida, Jun
2018-04-01
We present microscale optical cryptography using a subdiffraction-limit optical pattern, which is finer than the diffraction-limit size of the decrypting optical system, as a key and a substrate with a reflectance distribution as an encrypted image. Because of the subdiffraction-limit spatial coding, this method enables us to construct a secret image with the diffraction-limit resolution. Simulation and experimental results demonstrate, both qualitatively and quantitatively, that the secret image becomes recognizable when and only when the substrate is illuminated with the designed key pattern.
Correia-Ledo, Debby; Gibson, Kirsty F.; Dhawan, Anuj; Couture, Maxime; Vo-Dinh, Tuan; Graham, Duncan; Masson, Jean-Francois
2012-01-01
The increasing popularity of surface plasmon resonance (SPR) and surface enhanced Raman scattering (SERS) sensor design based on nanotriangle or nanohole arrays, and the possibility to manufacture substrates at the transition between these plasmonic substrates, makes them ideal candidates for the establishment of structure-property relationships. This work features near diffraction-limited Raman images and FDTD simulations of nanotriangle and nanohole arrays substrates, which clearly demonstrate that the localization of the hot spot on these SERS substrates is significantly influenced by the ratio of diameter/periodicity (D/P). The experimental and simulation data reveal that the hot spots are located around nanotriangles (D/P = 1), characteristic of localized SPR. Decreasing the D/P ratio to 0.75-0.7 led to the creation of nanohole arrays, which promoted the excitation of a propagating surface plasmon (SP) delocalized over the metal network. The optimal SERS intensity was consistently achieved at this transition from nanotriangles to nanoholes, for every periodicity (650 nm to 1.5 μm) and excitation wavelength (633 and 785 nm) investigated, despite the presence or absence of a plasmonic band near the laser excitation. Further decreasing the D/P ratio led to excitation of a localized SP located around the rim of nanohole arrays for D/P of 0.5-0.6, in agreement with previous reports. In addition, this manuscript provides the first evidence that the hot spots are positioned inside the hole for D/P of 0.4, with the center being the region of highest electric field and Raman intensity. The compelling experimental evidence and FDTD simulations offer an overall understanding of the plasmonic properties of nanohole arrays as SERS and SPR sensors, which is of significant value in advancing the diversity of applications from such surfaces. PMID:23977402
DOE Office of Scientific and Technical Information (OSTI.GOV)
Öztürk, Hande; Noyan, I. Cevdet
A rigorous study of sampling and intensity statistics applicable for a powder diffraction experiment as a function of crystallite size is presented. Our analysis yields approximate equations for the expected value, variance and standard deviations for both the number of diffracting grains and the corresponding diffracted intensity for a given Bragg peak. The classical formalism published in 1948 by Alexander, Klug & Kummer [J. Appl. Phys.(1948),19, 742–753] appears as a special case, limited to large crystallite sizes, here. It is observed that both the Lorentz probability expression and the statistics equations used in the classical formalism are inapplicable for nanocrystallinemore » powder samples.« less
Öztürk, Hande; Noyan, I. Cevdet
2017-08-24
A rigorous study of sampling and intensity statistics applicable for a powder diffraction experiment as a function of crystallite size is presented. Our analysis yields approximate equations for the expected value, variance and standard deviations for both the number of diffracting grains and the corresponding diffracted intensity for a given Bragg peak. The classical formalism published in 1948 by Alexander, Klug & Kummer [J. Appl. Phys.(1948),19, 742–753] appears as a special case, limited to large crystallite sizes, here. It is observed that both the Lorentz probability expression and the statistics equations used in the classical formalism are inapplicable for nanocrystallinemore » powder samples.« less
Laser spot size and beam profile studies for tissue welding applications
NASA Astrophysics Data System (ADS)
Fried, Nathaniel M.; Hung, Vincent C.; Walsh, Joseph T., Jr.
1999-06-01
We evaluated the effect of changes in laser spot size and beam profile on the thermal denaturation zone produced during laser skin welding. Our objective was to limit heating of the tissue surface, while creating enough thermal denaturation in the deeper layers of the dermis to produce full-thickness welds. Two-cm-long, full-thickness incisions were made on the backs of guinea pigs, in vivo. India ink was used as an absorber. Continuous-wave, 1.06-μm, Nd:YAG laser radiation was scanned over the incisions, producing approximately 100 ms pulses. Cooling times of 10.0 s between scans were used. Laser spot diameters of 1, 2, 4, and 6 mm were studied, with powers of 1, 4, 16, and 36 W, respectively. The irradiance remained constant at 127 W/cm2. 1, 2, and 4 mm diameter spots produced thermal denaturation to a depth of 570 +/- 100 μm, 970 +/- 210 μm, and 1470 +/- 190 μm, respectively. The 6-mm- diameter spot produced full-thickness welds (1900 μm), but also burns due to the high incident power. Monte Carlo simulations were also conducted, varying the laser spot diameter and beam profile. The simulations verified that an increase in laser spot diameter result in an increase in the penetration depth of radiation into the tissue.
Trapping force and optical lifting under focused evanescent wave illumination.
Ganic, Djenan; Gan, Xiaosong; Gu, Min
2004-11-01
A physical model is presented to understand and calculate trapping force exerted on a dielectric micro-particle under focused evanescent wave illumination. This model is based on our recent vectorial diffraction model by a high numerical aperture objective operating under the total internal condition. As a result, trapping force in a focused evanescent spot generated by both plane wave (TEM00) and doughnut beam (TEM*01) illumination is calculated, showing an agreement with the measured results. It is also revealed by this model that unlike optical trapping in the far-field region, optical axial trapping force in an evanescent focal spot increases linearly with the size of a trapped particle. This prediction shows that it is possible to overcome the force of gravity to lift a polystyrene particle of up to 800 nm in radius with a laser beam of power 10 microW.
Transmission X-ray scattering as a probe for complex liquid-surface structures
Fukuto, Masafumi; Yang, Lin; Nykypanchuk, Dmytro; ...
2016-01-28
The need for functional materials calls for increasing complexity in self-assembly systems. As a result, the ability to probe both local structure and heterogeneities, such as phase-coexistence and domain morphologies, has become increasingly important to controlling self-assembly processes, including those at liquid surfaces. The traditional X-ray scattering methods for liquid surfaces, such as specular reflectivity and grazing-incidence diffraction, are not well suited to spatially resolving lateral heterogeneities due to large illuminated footprint. A possible alternative approach is to use scanning transmission X-ray scattering to simultaneously probe local intermolecular structures and heterogeneous domain morphologies on liquid surfaces. To test the feasibilitymore » of this approach, transmission small- and wide-angle X-ray scattering (TSAXS/TWAXS) studies of Langmuir films formed on water meniscus against a vertically immersed hydrophilic Si substrate were recently carried out. First-order diffraction rings were observed in TSAXS patterns from a monolayer of hexagonally packed gold nanoparticles and in TWAXS patterns from a monolayer of fluorinated fatty acids, both as a Langmuir monolayer on water meniscus and as a Langmuir–Blodgett monolayer on the substrate. The patterns taken at multiple spots have been analyzed to extract the shape of the meniscus surface and the ordered-monolayer coverage as a function of spot position. These results, together with continual improvement in the brightness and spot size of X-ray beams available at synchrotron facilities, support the possibility of using scanning-probe TSAXS/TWAXS to characterize heterogeneous structures at liquid surfaces.« less
NASA Astrophysics Data System (ADS)
Krygowski, Thomas W.; Reyes, David; Rodgers, M. Steven; Smith, James H.; Warren, Mial E.; Sweatt, William C.; Blum-Spahn, Olga; Wendt, Joel R.; Asbill, Randolph E.
1999-09-01
In this work the design and initial fabrication results are reported for the components of a compact optical-MEMS laser scanning system. This system integrates a silicon MEMS laser scanner, a Vertical Cavity Surface Emitting Laser (VCSEL) and passive optical components. The MEMS scanner and VCSEL are mounted onto a fused silica substrate which serves as an optical interconnect between the devices. Two Diffractive Optical Elements (DOE's) are etched into the fused silica substrate to focus the VCSEL beam and increase the scan range. The silicon MEMS scanner consists of an actuator that continuously scans the position of a large polysilicon gold- coated shuttle containing a third DOE. Interferometric measurements show that the residual stress in the 50 micrometer X 1000 micrometer shuttle is extremely low, with a maximum deflection of only 0.18 micrometer over an 800 micrometer span for an unmetallized case and a deflection of 0.56 micrometer for the metallized case. A conservative estimate for the scan range is approximately plus or minus 4 degrees, with a spot size of about 0.5 mm, producing 50 resolvable spots. The basic system architecture, optical and MEMS design is reported in this paper, with an emphasis on the design and fabrication of the silicon MEMS scanner portion of the system.
Effects of laser beam propagation and saturation on the spatial shape of sodium laser guide stars.
Marc, Fabien; Guillet de Chatellus, Hugues; Pique, Jean-Paul
2009-03-30
The possibility to produce diffraction-limited images by large telescopes through Adaptive Optics is closely linked to the precision of measurement of the position of the guide star on the wavefront sensor. In the case of laser guide stars, many parameters can lead to a strong distortion on the shape of the LGS spot. Here we study the influence of both the saturation of the sodium layer excited by different types of lasers, the spatial quality of the laser mode at the ground and the influence of the atmospheric turbulence on the upward propagation of the laser beam. Both shape and intensity of the LGS spot are found to depend strongly on these three effects with important consequences on the precision on the wavefront analysis.
Adjustable Focus Optical Correction Lens (AFOCL)
NASA Technical Reports Server (NTRS)
Peters, Bruce R.
2001-01-01
This report describes the activities and accomplishments along with the status of the characterization of a PLZT-based Adjustable Focus Optical Correction Lens (AFOCL) test device. The activities described in this report were undertaken by members of the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) under NASA Contract NAS8-00188. The effort was led by Dr. Bruce Peters as the Principal Investigator and supported by Dr. Patrick Reardon, Ms. Deborah Bailey, and graduate student Mr. Jeremy Wong. The activities outlined for the first year of the contract were to identify vendors and procure a test device along with performing the initial optical characterization of the test device. This activity has been successfully executed and test results are available and preliminary information was published at the SPIE Photonics West Conference in San Jose, January 2001. The paper, "Preliminary investigation of an active PLZT lens," was well received and generated response with several questions from the audience. A PLZT test device has been commercially procured from an outside vendor: The University of California in San Diego (UCSD) in partnership with New Interconnect Packaging Technologies (NIPT) Inc. The device has been subjected to several tests to characterize the optical performance of the device at wavelengths of interest. The goal was to evaluate the AFOCL similar to a conventional lens and measure any optical aberrations present due to the PLZT material as a deviation in the size of the diffraction limited spot (blur), the presence of diffracted energy into higher orders surrounding the focused spot (a variation in Strehl), and/or a variation or spread in the location of the focused energy away from the optical axis (a bias towards optical wedge, spherical, comma, or other higher order aberrations). While data has been collected indicative of the imaging quality of the AFOCL test device, it was not possible to fully characterize the optical performance of the AFOCL alone because there were significant optical distortions due to fabrication related issues.
Evaporated As2S3 Luneburg lenses for LiNbO3:Ti optical waveguides
NASA Technical Reports Server (NTRS)
Busch, J. R.; Wood, V. E.; Kenan, R. P.; Verber, C. M.
1981-01-01
Luneburg lenses of good quality were formed on high index optical waveguides by evaporation of arsenic trisulfide glass through simple masks. Using only two thin circular aperture masks, lenses with focal spots of a few times the diffraction limited width at f/4 were obtained. These lenses were designed for and tested at both visible (633 nm) and infrared wavelengths. Procedures for the design, fabrication, and testing of lenses of this type are described.
Design of tracking and detecting lens system by diffractive optical method
NASA Astrophysics Data System (ADS)
Yang, Jiang; Qi, Bo; Ren, Ge; Zhou, Jianwei
2016-10-01
Many target-tracking applications require an optical system to acquire the target for tracking and identification. This paper describes a new detecting optical system that can provide automatic flying object detecting, tracking and measuring in visible band. The main feature of the detecting lens system is the combination of diffractive optics with traditional lens design by a technique was invented by Schupmann. Diffractive lens has great potential for developing the larger aperture and lightweight lens. First, the optical system scheme was described. Then the Schupmann achromatic principle with diffractive lens and corrective optics is introduced. According to the technical features and requirements of the optical imaging system for detecting and tracking, we designed a lens system with flat surface Fresnel lens and cancels the optical system chromatic aberration by another flat surface Fresnel lens with effective focal length of 1980mm, an F-Number of F/9.9 and a field of view of 2ωω = 14.2', spatial resolution of 46 lp/mm and a working wavelength range of 0.6 0.85um. At last, the system is compact and easy to fabricate and assembly, the diffuse spot size and MTF function and other analysis provide good performance.
Effects of spot parameters in pencil beam scanning treatment planning.
Kraan, Aafke Christine; Depauw, Nicolas; Clasie, Ben; Giunta, Marina; Madden, Tom; Kooy, Hanne M
2018-01-01
Spot size σ (in air at isocenter), interspot spacing d, and spot charge q influence dose delivery efficiency and plan quality in Intensity Modulated Proton Therapy (IMPT) treatment planning. The choice and range of parameters varies among different manufacturers. The goal of this work is to demonstrate the influence of the spot parameters on dose quality and delivery in IMPT treatment plans, to show their interdependence, and to make practitioners aware of the spot parameter values for a certain facility. Our study could help as a guideline to make the trade-off between treatment quality and time in existing PBS centers and in future systems. We created plans for seven patients and a phantom, with different tumor sites and volumes, and compared the effect of small-, medium-, and large-spot widths (σ = 2.5, 5, and 10 mm) and interspot distances (1σ, 1.5σ, and 1.75σ) on dose, spot charge, and treatment time. Moreover, we quantified how postplanning charge threshold cuts affect plan quality and the total number of spots to deliver, for different spot widths and interspot distances. We show the effect of a minimum charge (or MU) cutoff value for a given proton delivery system. Spot size had a strong influence on dose: larger spots resulted in more protons delivered outside the target region. We observed dose differences of 2-13 Gy (RBE) between 2.5 mm and 10 mm spots, where the amount of extra dose was due to dose penumbra around the target region. Interspot distance had little influence on dose quality for our patient group. Both parameters strongly influence spot charge in the plans and thus the possible impact of postplanning charge threshold cuts. If such charge thresholds are not included in the treatment planning system (TPS), it is important that the practitioner validates that a given combination of lower charge threshold, interspot spacing, and spot size does not result in a plan degradation. Low average spot charge occurs for small spots, small interspot distances, many beam directions, and low fractional dose values. The choice of spot parameters values is a trade-off between accelerator and beam line design, plan quality, and treatment efficiency. We recommend the use of small spot sizes for better organ-at-risk sparing and lateral interspot distances of 1.5σ to avoid long treatment times. We note that plan quality is influenced by the charge cutoff. Our results show that the charge cutoff can be sufficiently large (i.e., 10 6 protons) to accommodate limitations on beam delivery systems. It is, therefore, not necessary per se to include the charge cutoff in the treatment planning optimization such that Pareto navigation (e.g., as practiced at our institution) is not excluded and optimal plans can be obtained without, perhaps, a bias from the charge cutoff. We recommend that the impact of a minimum charge cut impact is carefully verified for the spot sizes and spot distances applied or that it is accommodated in the TPS. © 2017 American Association of Physicists in Medicine.
Back-streaming ion emission and beam focusing on high power linear induction accelerator
NASA Astrophysics Data System (ADS)
Zhu, Jun; Chen, Nan; Yu, Haijun; Jiang, Xiaoguo; Wang, Yuan; Dai, Wenhua; Gao, Feng; Wang, Minhong; Li, Jin; Shi, Jinshui
2011-08-01
Ions released from target surfaces by impact of a high intensity and current electron beam can be accelerated and trapped in the beam potential, and further destroy the beam focus. By solving the 2D Poisson equation, we found that the charge neutralization factor of the ions to the beam under space charge limited condition is 1/3, which is large enough to disrupt the spot size. Therefore, the ion emission at the target in a single-pulse beam/target system must be source limited. Experimental results on the time-resolved beam profile measurement have also proven that. A new focus scheme is proposed in this paper to focus the beam to a small spot size with the existence of back-streaming ions. We found that the focal spot will move upstream as the charge neutralization factor increases. By comparing the theoretical and experimental focal length of the Dragon-I accelerator (20 MeV, 2.5 kA, 60 ns flattop), we found that the average neutralization factor is about 5% in the beam/target system.
SHared Aperture Diffractive Optical Elements
NASA Technical Reports Server (NTRS)
Rallison, Richard D.; Pearson, Elroy
2004-01-01
All prototypes that can be delivered have been delivered and the quality of the 5 plex copies is good in spot aberration and size, in Bragg angle and in crosstalk but lacks required efficiency because of excessive scatter recorded in the master. The final 4 months of this contract were performed when conditions in the lab were too harsh to complete the extremely long exposures required while maintaining sufficient thermal stability. An improved master HOE will be shot and delivered when the weather is better. It will be a post contract activity at no extra charge to NASA made necessary by bad weather.
Dynamic diffraction artefacts in Bragg coherent diffractive imaging
Hu, Wen; Huang, Xiaojing; Yan, Hanfei
2018-02-01
This article reports a theoretical study on the reconstruction artefacts in Bragg coherent diffractive imaging caused by dynamical diffraction effects. It is shown that, unlike the absorption and refraction effects that can be corrected after reconstruction, dynamical diffraction effects have profound impacts on both the amplitude and the phase of the reconstructed complex object, causing strong artefacts. At the dynamical diffraction limit, the reconstructed shape is no longer correct, as a result of the strong extinction effect. Simulations for hemispherical particles of different sizes show the type, magnitude and extent of the dynamical diffraction artefacts, as well as the conditionsmore » under which they are negligible.« less
Dynamic diffraction artefacts in Bragg coherent diffractive imaging.
Hu, Wen; Huang, Xiaojing; Yan, Hanfei
2018-02-01
This article reports a theoretical study on the reconstruction artefacts in Bragg coherent diffractive imaging caused by dynamical diffraction effects. It is shown that, unlike the absorption and refraction effects that can be corrected after reconstruction, dynamical diffraction effects have profound impacts on both the amplitude and the phase of the reconstructed complex object, causing strong artefacts. At the dynamical diffraction limit, the reconstructed shape is no longer correct, as a result of the strong extinction effect. Simulations for hemispherical particles of different sizes show the type, magnitude and extent of the dynamical diffraction artefacts, as well as the conditions under which they are negligible.
Dynamic diffraction artefacts in Bragg coherent diffractive imaging
Yan, Hanfei
2018-01-01
This article reports a theoretical study on the reconstruction artefacts in Bragg coherent diffractive imaging caused by dynamical diffraction effects. It is shown that, unlike the absorption and refraction effects that can be corrected after reconstruction, dynamical diffraction effects have profound impacts on both the amplitude and the phase of the reconstructed complex object, causing strong artefacts. At the dynamical diffraction limit, the reconstructed shape is no longer correct, as a result of the strong extinction effect. Simulations for hemispherical particles of different sizes show the type, magnitude and extent of the dynamical diffraction artefacts, as well as the conditions under which they are negligible. PMID:29507549
Li, Yongmei; Liu, Yan; Zhang, Zutai; Zhuge, Ruishen; Ding, Ning; Tian, Yueming
2018-01-26
Ca-P spots modified zirconia by liquid precursor infiltration and the cell responses were investigated. Pre-sintered zirconia specimens were immersed in Ca-P precursor solution. After dense sintering, scanning electron microscopy showed Ca-P spots were formed on the zirconia and anchored with zirconia substrates. The distribution density was increased with the extension of immersion time. Energy dispersive spectrometer confirmed the stoichiometric Ca/P ratio was about 1.67. After hydrothermal treatment, Ca-P spots turned into rod crystals where diffraction peaks of tricalcium phosphate and hydroxyapatite were detected by X-ray diffraction, and Ca 2+ and PO 4 3- release decreased slightly (p>0.05). There was no significant decrease on three-point bending strength (p>0.05). Osteoblast-like MC3T3-E1 cells attached and spread well and showed higher proliferation on Ca-P spots modified zirconia (p<0.05), though its initial alkaline phosphatase activity was not significant high (p>0.05). In conclusion, Ca-P liquid precursor infiltration is a potential method to modify the zirconia ceramics for improving bioactivity.
Super-resolution study of polymer mobility fluctuations near c*.
King, John T; Yu, Changqian; Wilson, William L; Granick, Steve
2014-09-23
Nanoscale dynamic heterogeneities in synthetic polymer solutions are detected using super-resolution optical microscopy. To this end, we map concentration fluctuations in polystyrene-toluene solutions with spatial resolution below the diffraction limit, focusing on critical fluctuations near the polymer overlap concentration, c*. Two-photon super-resolution microscopy was adapted to be applicable in an organic solvent, and a home-built STED-FCS system with stimulated emission depletion (STED) was used to perform fluorescence correlation spectroscopy (FCS). The polystyrene serving as the tracer probe (670 kg mol(-1), radius of gyration RG ≈ 35 nm, end-labeled with a bodipy derivative chromophore) was dissolved in toluene at room temperature (good solvent) and mixed with matrix polystyrene (3,840 kg mol(-1), RG ≈ 97 nm, Mw/Mn = 1.04) whose concentration was varied from dilute to more than 10c*. Whereas for dilute solutions the intensity-intensity correlation function follows a single diffusion process, it splits starting at c* to imply an additional relaxation process provided that the experimental focal area does not greatly exceed the polymer blob size. We identify the slower mode as self-diffusion and the increasingly rapid mode as correlated segment fluctuations that reflect the cooperative diffusion coefficient, Dcoop. These real-space measurements find quantitative agreement between correlation lengths inferred from dynamic measurements and those from determining the limit below which diffusion coefficients are independent of spot size. This study is considered to illustrate the potential of importing into polymer science the techniques of super-resolution imaging.
Scanning X-ray diffraction on cardiac tissue: automatized data analysis and processing.
Nicolas, Jan David; Bernhardt, Marten; Markus, Andrea; Alves, Frauke; Burghammer, Manfred; Salditt, Tim
2017-11-01
A scanning X-ray diffraction study of cardiac tissue has been performed, covering the entire cross section of a mouse heart slice. To this end, moderate focusing by compound refractive lenses to micrometer spot size, continuous scanning, data acquisition by a fast single-photon-counting pixel detector, and fully automated analysis scripts have been combined. It was shown that a surprising amount of structural data can be harvested from such a scan, evaluating the local scattering intensity, interfilament spacing of the muscle tissue, the filament orientation, and the degree of anisotropy. The workflow of data analysis is described and a data analysis toolbox with example data for general use is provided. Since many cardiomyopathies rely on the structural integrity of the sarcomere, the contractile unit of cardiac muscle cells, the present study can be easily extended to characterize tissue from a diseased heart.
Daoud, Hazem; Floettmann, Klaus; Dwayne Miller, R. J.
2017-01-01
We present an RF gun design for single shot ultrafast electron diffraction experiments that can produce sub-100 fs high-charge electron bunches in the 130 keV energy range. Our simulations show that our proposed half-cell RF cavity is capable of producing 137 keV, 27 fs rms (60 fs FWHM), 106 electron bunches with an rms spot size of 276 μm and a transverse coherence length of 2.0 nm. The required operation power is 9.2 kW, significantly lower than conventional rf cavity designs and a key design feature. This electron source further relies on high electric field gradients at the cathode to simultaneously accelerate and compress the electron bunch to open up new space-time resolution domains for atomically resolved dynamics. PMID:28428973
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, M. Z., E-mail: mmo09@slac.stanford.edu; Shen, X.; Chen, Z.
We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 μm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined.more » This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, M. Z.; Shen, X.; Chen, Z.
We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 µm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined.more » This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime« less
Mo, M. Z.; Shen, X.; Chen, Z.; ...
2016-08-04
We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 µm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined.more » This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime« less
Throughput of diffraction-limited field optics systems for infrared and millimetric telescopes
NASA Technical Reports Server (NTRS)
Hildebrand, R. H.; Winston, R.
1982-01-01
Telescopes for submillimeter wavelengths have point spread functions some millimeters or centimeters in diameter, but the detectors may be only fractions of a millimeter in size. Thus a field aperture and collecting optics are needed. Optimizing the aperture by a calculation of the effects of diffraction on signal and resolution as a function of size of the collecting aperture is shown. Calculations are compared to experimental results from observations of Mars at submillimeter wavelengths.
Ibrahimi, Omar A; Kilmer, Suzanne L
2012-06-01
The long-pulsed diode (800-810-nm) laser is one of the most commonly used and effective lasers for hair removal. Limitations of currently available devices include a small treatment spot size, treatment-associated pain, and the need for skin cooling. To evaluate the long-term hair reduction capabilities of a long-pulsed diode laser with a large spot size and vacuum assisted suction. Thirty-five subjects were enrolled in a prospective, self-controlled, single-center study of axillary hair removal. The study consisted of three treatments using a long-pulsed diode laser with a large spot size and vacuum-assisted suction at 4- to 6-week intervals with follow-up visits 6 and 15 months after the last treatment. Hair clearance was quantified using macro hair-count photographs taken at baseline and at 6- and 15-month follow-up visits. Changes in hair thickness and color, levels of treatment-associated pain, and adverse events were additional study endpoints. There was statistically significant hair clearance at the 6 (54%) and 15-month (42%) follow-up visits. Remaining hairs were thinner and lighter at the 15-month follow-up visit, and the majority of subjects reported feeling up to mild to moderate pain during treatment without the use of pretreatment anesthesia or skin cooling. A long-pulsed diode laser with a large spot size and vacuum-assisted suction is safe and effective for long-term hair removal. This is the largest prospective study to evaluate long-term hair removal and the first to quantify decreases in hair thickness and darkness with treatment. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennison, Kaitlin; Ammons, S. Mark; Garrel, Vincent
AutoCAD, Zemax Optic Studio 15, and Interactive Data Language (IDL) with the Proper Library are used to computationally model and test a diffractive mask (DiM) suitable for use in the Gemini Multi-Conjugate Adaptive Optics System (GeMS) on the Gemini South Telescope. Systematic errors in telescope imagery are produced when the light travels through the adaptive optics system of the telescope. DiM is a transparent, flat optic with a pattern of miniscule dots lithographically applied to it. It is added ahead of the adaptive optics system in the telescope in order to produce diffraction spots that will encode systematic errors inmore » the optics after it. Once these errors are encoded, they can be corrected for. DiM will allow for more accurate measurements in astrometry and thus improve exoplanet detection. Furthermore, the mechanics and physical attributes of the DiM are modeled in AutoCAD. Zemax models the ray propagation of point sources of light through the telescope. IDL and Proper simulate the wavefront and image results of the telescope. Aberrations are added to the Zemax and IDL models to test how the diffraction spots from the DiM change in the final images. Based on the Zemax and IDL results, the diffraction spots are able to encode the systematic aberrations.« less
NASA Astrophysics Data System (ADS)
Plass, Richard; Marks, Laurence D.
1996-06-01
Room temperature gold depositions onto Si(111)-( 3 × 3) R30° Au surfaces with diffuse and sharp diffraction spots [Surf. Sci. 242 (1991) 73] (diffuse and sharp 3 × 3 Au hereafter) under UHV conditions has been monitored using transmission electron diffraction (TED). Both systems display an increase in surface structure diffraction spot intensities up to the completion of 1.0 monolayer (ML) after which the surface beams display an exponential decrease in intensity with coverage. The exponential decay rate decreases after roughly 1.33 ML. These results can be attributed to gold initially diffusing to and filling 3 × 3 Au gold trimer sites in vacancy type surface domain walls [Surf. Sci. 342 (1995) 233], then filling one of three possible sites on the 3 × 3 Au structure with essentially no surface diffusion, disrupting nearby gold trimers. Gold deposition onto the diffuse type structure caused the formation and expansion of satellite arcs around the strongest 3 × 3 beams similar to those seen by others [Surf. Sci. 242 (1991) 73; Jpn. J. Appl. Phys. 16 (1977) 891; J. Vac. Sci. Technol. A 10 (1992) 3486] at elevated temperatures while the sharp structure displayed only a modest shoulder formation near the strongest 3 × 3 beams.
Morphological changes in ultrafast laser ablation plumes with varying spot size.
Harilal, S S; Diwakar, P K; Polek, M P; Phillips, M C
2015-06-15
We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 μm. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present results clearly show that the morphological changes in the plume with spot size are independent of laser pulse width.
Coherent x-ray diffraction imaging with nanofocused illumination.
Schroer, C G; Boye, P; Feldkamp, J M; Patommel, J; Schropp, A; Schwab, A; Stephan, S; Burghammer, M; Schöder, S; Riekel, C
2008-08-29
Coherent x-ray diffraction imaging is an x-ray microscopy technique with the potential of reaching spatial resolutions well beyond the diffraction limits of x-ray microscopes based on optics. However, the available coherent dose at modern x-ray sources is limited, setting practical bounds on the spatial resolution of the technique. By focusing the available coherent flux onto the sample, the spatial resolution can be improved for radiation-hard specimens. A small gold particle (size <100 nm) was illuminated with a hard x-ray nanobeam (E=15.25 keV, beam dimensions approximately 100 x 100 nm2) and is reconstructed from its coherent diffraction pattern. A resolution of about 5 nm is achieved in 600 s exposure time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y; Giebeler, A; Mascia, A
Purpose: To quantitatively evaluate dosimetric consequence of spot size variations and validate beam-matching criteria for commissioning a pencil beam model for multiple treatment rooms. Methods: A planning study was first conducted by simulating spot size variations to systematically evaluate dosimetric impact of spot size variations in selected cases, which was used to establish the in-air spot size tolerance for beam matching specifications. A beam model in treatment planning system was created using in-air spot profiles acquired in one treatment room. These spot profiles were also acquired from another treatment room for assessing the actual spot size variations between the twomore » treatment rooms. We created twenty five test plans with targets of different sizes at different depths, and performed dose measurement along the entrance, proximal and distal target regions. The absolute doses at those locations were measured using ionization chambers at both treatment rooms, and were compared against the calculated doses by the beam model. Fifteen additional patient plans were also measured and included in our validation. Results: The beam model is relatively insensitive to spot size variations. With an average of less than 15% measured in-air spot size variations between two treatment rooms, the average dose difference was −0.15% with a standard deviation of 0.40% for 55 measurement points within target region; but the differences increased to 1.4%±1.1% in the entrance regions, which are more affected by in-air spot size variations. Overall, our single-room based beam model in the treatment planning system agreed with measurements in both rooms < 0.5% within the target region. For fifteen patient cases, the agreement was within 1%. Conclusion: We have demonstrated that dosimetrically equivalent machines can be established when in-air spot size variations are within 15% between the two treatment rooms.« less
Characterization of linear accelerator X-ray source size using a laminated beam-spot camera.
Yeboah, Collins
2011-05-10
A laminated beam-spot camera of length 20 cm and effective cross-sectional area 2.5 cm × 3 cm was designed and constructed for the measurement of X-ray beam-spot sizes on different models of Siemens accelerators. With the accelerator gantry at 180° and camera positioned on an accessory tray holder, an XV film placed in contact with the camera at the distal end of it detected those X-rays that were transmitted through the camera. The FWHM of the detected X-ray intensity profile in the gun-target (G-T) direction or the orthogonal A-B direction was used as a measure of the beam-spot size in that direction. Siemens Mevatron MXEs exhibited a beam-spot size of 1.7 ± 0.2 mm in both the in-plane and cross-plane directions for 6 MV photon beams. The beam-spot size observed for a Mevatron MDX-2 was larger by up to 1 mm, and also was different for the in-plane and cross-plane directions. For Siemens PRIMUS accelerators, the beam-spot size in the in-plane direction was found to fall in the range 2.0-2.2 ± 0.2 mm, whereas the beam-spot size in the cross-plane direction fell within 1.7-1.9 ± 0.2 mm for 6, 10, and 18 MV photon beams. Assessment of long-term stability of the beam-spot size shows the spot size remains fairly stable over time.
Study of Etching Pits in a Large-grain Single Cell Bulk Niobium Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xin; Ciovati, Gianluigi; Reece, Charles E.
2009-11-01
Performance of SRF cavities are limited by non-linear localized effects. The variation of local material characters between "hot" and "cold" spots is thus of intense interest. Such locations were identified in a BCP-etched large-grain single-cell cavity and removed for examination by high resolution electron microscopy (SEM), electron-back scattering diffraction microscopy (EBSD), optical microscopy, and 3D profilometry. Pits with clearly discernable crystal facets were observed in both "hotspot" and "coldspot" specimens. The pits were found in-grain, at bi-crystal boundaries, and on tri-crystal junctions. They are interpreted as etch pits induced by surface crystal defects (e.g. dislocations). All "coldspots" examined had qualitativelymore » low density of etching pits or very shallow tri-crystal boundary junction. EBSD revealed crystal structure surrounding the pits via crystal phase orientation mapping, while 3D profilometry gave information on the depth and size of the pits. In addition, a survey of the samples by energy dispersive X-ray analysis (EDX) did not show any significant contamination of the samples surface.« less
Blue laser diode (LD) and light emitting diode (LED) applications
NASA Astrophysics Data System (ADS)
Bergh, Arpad A.
2004-09-01
The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography.As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc.Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity.Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care.
NASA Astrophysics Data System (ADS)
Leakeas, Charles L.; Capehart, Shay R.; Bartell, Richard J.; Cusumano, Salvatore J.; Whiteley, Matthew R.
2011-06-01
Laser weapon systems comprised of tiled subapertures are rapidly emerging in importance in the directed energy community. Performance models of these laser weapon systems have been developed from numerical simulations of a high fidelity wave-optics code called WaveTrain which is developed by MZA Associates. System characteristics such as mutual coherence, differential jitter, and beam quality rms wavefront error are defined for a focused beam on the target. Engagement scenarios are defined for various platform and target altitudes, speeds, headings, and slant ranges along with the natural wind speed and heading. Inputs to the performance model include platform and target height and velocities, Fried coherence length, Rytov number, isoplanatic angle, thermal blooming distortion number, Greenwood and Tyler frequencies, and atmospheric transmission. The performance model fit is based on power-in-the-bucket (PIB) values against the PIB from the simulation results for the vacuum diffraction-limited spot size as the bucket. The goal is to develop robust performance models for aperture phase error, turbulence, and thermal blooming effects in tiled subaperture systems.
NASA Astrophysics Data System (ADS)
Park, Byullee; Lee, Hongki; Upputuri, Paul Kumar; Pramanik, Manojit; Kim, Donghyun; Kim, Chulhong
2018-02-01
Super-resolution microscopy has been increasingly important to delineate nanoscale biological structures or nanoparticles. With these increasing demands, several imaging modalities, including super-resolution fluorescence microscope (SRFM) and electron microscope (EM), have been developed and commercialized. These modalities achieve nanoscale resolution, however, SRFM cannot image without fluorescence, and sample preparation of EM is not suitable for biological specimens. To overcome those disadvantages, we have numerically studied the possibility of superresolution photoacoustic microscopy (SR-PAM) based on near-field localization of light. Photoacoustic (PA) signal is generally acquired based on optical absorption contrast; thus it requires no agents or pre-processing for the samples. The lateral resolution of the conventional photoacoustic microscopy is limited to 200 nm by diffraction limit, therefore reducing the lateral resolution is a major research impetus. Our approach to breaking resolution limit is to use laser pulses of extremely small spot size as a light source. In this research, we simulated the PA signal by constructing the three dimensional SR-PAM system environment using the k-Wave toolbox. As the light source, we simulated ultrashort light pulses using geometrical nanoaperture with near-field localization of surface plasmons. Through the PA simulation, we have successfully distinguish cuboids spaced 3 nm apart. In the near future, we will develop the SR-PAM and it will contribute to biomedical and material sciences.
Yu, Wenxin; Ying, Hanru; Chen, Yijie; Qiu, Yajing; Chen, Hui; Jin, Yunbo; Yang, Xi; Wang, Tianyou; Ma, Gang; Lin, Xiaoxi
2017-09-01
Pulsed dye laser (PDL) with 7 and 10 mm spot sizes is widely used on a regular basis for the treatment of port-wine stain (PWS). No studies have reported on the differences in efficacy outcomes resulting from the use of different laser spot sizes in the treatment of PWS by PDL. Thus, an in vivo investigation into the differences in safety and efficacy of treatment between two spot sizes (7 vs. 10 mm) of PWS by PDL was conducted. A total of 35 PWS patients underwent three treatment sessions by using a 595 nm wavelength PDL (Vbeam ® , Candela Corp) with two laser settings: (1) 7 mm spot size, radiant exposure of 12 J/cm 2 and (2) 10 mm spot size, radiant exposure of 10 J/cm 2 . Cryogen spray cooling and 1.5 msec pulse duration were applied. Therapeutic outcomes were evaluated by visual and chromametric evaluation 3 months after the final treatment. Average blanching rates were 34.03% and 36.51% at sites treated by PDL with 7 and 10 mm laser spot sizes, respectively (p < 0.05). On the basis of the laser setting, the therapeutic outcomes of PDL with 7 and 10 mm spot sizes were similar. PDL with a 10 mm laser spot size is more efficacious with lower radiant exposure than PDL with a 7 mm spot size; it can also reduce the treatment time.
Yuan, Baohong; Pei, Yanbo; Kandukuri, Jayanth
2013-01-01
Our recently developed ultrasound-switchable fluorescence (USF) imaging technique showed that it was feasible to conduct high-resolution fluorescence imaging in a centimeter-deep turbid medium. Because the spatial resolution of this technique highly depends on the ultrasound-induced temperature focal size (UTFS), minimization of UTFS becomes important for further improving the spatial resolution USF technique. In this study, we found that UTFS can be significantly reduced below the diffraction-limited acoustic intensity focal size via nonlinear acoustic effects and thermal confinement by appropriately controlling ultrasound power and exposure time, which can be potentially used for deep-tissue high-resolution imaging. PMID:23479498
Sub-diffraction limit resolution in microscopy
NASA Technical Reports Server (NTRS)
Cheng, Ming (Inventor); Chen, Weinong (Inventor)
2007-01-01
A method and apparatus for visualizing sub-micron size particles employs a polarizing microscope wherein a focused beam of polarized light is projected onto a target, and a portion of the illuminating light is blocked from reaching the specimen, whereby to produce a shadow region, and projecting diffracted light from the target onto the shadow region.
Morphological changes in ultrafast laser ablation plumes with varying spot size
Harilal, S. S.; Diwakar, P. K.; Polek, M. P.; ...
2015-06-04
We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 μm. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present resultsmore » clearly show that the morphological changes in the plume with spot size are independent of laser pulse width.« less
Damage threshold from large retinal spot size repetitive-pulse laser exposures.
Lund, Brian J; Lund, David J; Edsall, Peter R
2014-10-01
The retinal damage thresholds for large spot size, multiple-pulse exposures to a Q-switched, frequency doubled Nd:YAG laser (532 nm wavelength, 7 ns pulses) have been measured for 100 μm and 500 μm retinal irradiance diameters. The ED50, expressed as energy per pulse, varies only weakly with the number of pulses, n, for these extended spot sizes. The previously reported threshold for a multiple-pulse exposure for a 900 μm retinal spot size also shows the same weak dependence on the number of pulses. The multiple-pulse ED50 for an extended spot-size exposure does not follow the n dependence exhibited by small spot size exposures produced by a collimated beam. Curves derived by using probability-summation models provide a better fit to the data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khodabakhshi, F.; Kazeminezhad, M., E-mail: mkazemi@sharif.edu; Kokabi, A.H.
2012-07-15
Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to thesemore » subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.« less
Medjoubi, Kadda; Thompson, Andrew; Bérar, Jean-François; Clemens, Jean-Claude; Delpierre, Pierre; Da Silva, Paulo; Dinkespiler, Bernard; Fourme, Roger; Gourhant, Patrick; Guimaraes, Beatriz; Hustache, Stéphanie; Idir, Mourad; Itié, Jean-Paul; Legrand, Pierre; Menneglier, Claude; Mercere, Pascal; Picca, Frederic; Samama, Jean-Pierre
2012-05-01
The XPAD3S-CdTe, a CdTe photon-counting pixel array detector, has been used to measure the energy and the intensity of the white-beam diffraction from a lysozyme crystal. A method was developed to calibrate the detector in terms of energy, allowing incident photon energy measurement to high resolution (approximately 140 eV), opening up new possibilities in energy-resolved X-ray diffraction. In order to demonstrate this, Laue diffraction experiments were performed on the bending-magnet beamline METROLOGIE at Synchrotron SOLEIL. The X-ray energy spectra of diffracted spots were deduced from the indexed Laue patterns collected with an imaging-plate detector and then measured with both the XPAD3S-CdTe and the XPAD3S-Si, a silicon photon-counting pixel array detector. The predicted and measured energy of selected diffraction spots are in good agreement, demonstrating the reliability of the calibration method. These results open up the way to direct unit-cell parameter determination and the measurement of high-quality Laue data even at low resolution. Based on the success of these measurements, potential applications in X-ray diffraction opened up by this type of technology are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krygowski, Thomas W.; Reyes, David; Rodgers, M. Steven
1999-06-30
In this work the design and initial fabrication results are reported for the components of a compact optical-MEMS laser scanning system. This system integrates a silicon MEMS laser scanner, a Vertical Cavity Surface Emitting Laser (VCSEL) and passive optical components. The MEMS scanner and VCSEL are mounted onto a fused silica substrate which serves as an optical interconnect between the devices. Two Diffractive Optical Elements (DOEs) are etched into the fused silica substrate to focus the VCSEL beam and increase the scan range. The silicon MEMS scanner consists of an actuator that continuously scans the position of a large polysiliconmore » gold-coated shuttle containing a third DOE. Interferometric measurements show that the residual stress in the 500 {micro}m x 1000 {micro}m shuttle is extremely low, with a maximum deflection of only 0.18{micro}m over an 800 {micro}m span for an unmetallized case and a deflection of 0.56{micro}m for the metallized case. A conservative estimate for the scan range is {approximately}{+-}4{degree}, with a spot size of about 0.5 mm, producing 50 resolvable spots. The basic system architecture, optical and MEMS design is reported in this paper, with an emphasis on the design and fabrication of the silicon MEMS scanner portion of the system.« less
Wideband 1.064 micrometer detector evaluation. [for application to space laser communication systems
NASA Technical Reports Server (NTRS)
Green, S. I.
1977-01-01
Several types of communications detectors for use in a 400 Mbps 1.064 micrometer laser communication system were evaluated and characterized. The communication system Bit Error Rate (BER) performance was measured, and test results for the best detector of each type are summarized. The complete BER curves are presented. The 400 Mbps 1.064 micrometer communication system receiver test bed is described. The best performance levels which can be achieved by focusing the signal to diffraction limited spots on the photosensitive area are cited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagesh, S Setlur; Rana, R; Russ, M
Purpose: CMOS-based aSe detectors compared to CsI-TFT-based flat panels have the advantages of higher spatial sampling due to smaller pixel size and decreased blurring characteristic of direct rather than indirect detection. For systems with such detectors, the limiting factor degrading image resolution then becomes the focal-spot geometric unsharpness. This effect can seriously limit the use of such detectors in areas such as cone beam computed tomography, clinical fluoroscopy and angiography. In this work a technique to remove the effect of focal-spot blur is presented for a simulated aSe detector. Method: To simulate images from an aSe detector affected with focal-spotmore » blur, first a set of high-resolution images of a stent (FRED from Microvention, Inc.) were acquired using a 75µm pixel size Dexela-Perkin-Elmer detector and averaged to reduce quantum noise. Then the averaged image was blurred with a known Gaussian blur at two different magnifications to simulate an idealized focal spot. The blurred images were then deconvolved with a set of different Gaussian blurs to remove the effect of focal-spot blurring using a threshold-based, inverse-filtering method. Results: The blur was removed by deconvolving the images using a set of Gaussian functions for both magnifications. Selecting the correct function resulted in an image close to the original; however, selection of too wide a function would cause severe artifacts. Conclusion: Experimentally, focal-spot blur at different magnifications can be measured using a pin hole with a high resolution detector. This spread function can be used to deblur the input images that are acquired at corresponding magnifications to correct for the focal spot blur. For CBCT applications, the magnification of specific objects can be obtained using initial reconstructions then corrected for focal-spot blurring to improve resolution. Similarly, if object magnification can be determined such correction may be applied in fluoroscopy and angiography.« less
A fiber optic sensor for noncontact measurement of shaft speed, torque, and power
NASA Technical Reports Server (NTRS)
Madzsar, George C.
1990-01-01
A fiber optic sensor which enables noncontact measurement of the speed, torque and power of a rotating shaft was fabricated and tested. The sensor provides a direct measurement of shaft rotational speed and shaft angular twist, from which torque and power can be determined. Angles of twist between 0.005 and 10 degrees were measured. Sensor resolution is limited by the sampling rate of the analog to digital converter, while accuracy is dependent on the spot size of the focused beam on the shaft. Increasing the sampling rate improves measurement resolution, and decreasing the focused spot size increases accuracy. Digital processing allows for enhancement of an electronically or optically degraded signal.
A fiber optic sensor for noncontact measurement of shaft speed, torque and power
NASA Technical Reports Server (NTRS)
Madzsar, George C.
1990-01-01
A fiber optic sensor which enables noncontact measurement of the speed, torque and power of a rotating shaft was fabricated and tested. The sensor provides a direct measurement of shaft rotational speed and shaft angular twist, from which torque and power can be determined. Angles of twist between 0.005 and 10 degrees were measured. Sensor resolution is limited by the sampling rate of the analog to digital converter, while accuracy is dependent on the spot size of the focused beam on the shaft. Increasing the sampling rate improves measurement resolution, and decreasing the focused spot size increases accuracy. Digital processing allows for enhancement of an electronically or optically degraded signal.
Use of a miniature diamond-anvil cell in high-pressure single-crystal neutron Laue diffraction
Binns, Jack; Kamenev, Konstantin V.; McIntyre, Garry J.; Moggach, Stephen A.; Parsons, Simon
2016-01-01
The first high-pressure neutron diffraction study in a miniature diamond-anvil cell of a single crystal of size typical for X-ray diffraction is reported. This is made possible by modern Laue diffraction using a large solid-angle image-plate detector. An unexpected finding is that even reflections whose diffracted beams pass through the cell body are reliably observed, albeit with some attenuation. The cell body does limit the range of usable incident angles, but the crystallographic completeness for a high-symmetry unit cell is only slightly less than for a data collection without the cell. Data collections for two sizes of hexamine single crystals, with and without the pressure cell, and at 300 and 150 K, show that sample size and temperature are the most important factors that influence data quality. Despite the smaller crystal size and dominant parasitic scattering from the diamond-anvil cell, the data collected allow a full anisotropic refinement of hexamine with bond lengths and angles that agree with literature data within experimental error. This technique is shown to be suitable for low-symmetry crystals, and in these cases the transmission of diffracted beams through the cell body results in much higher completeness values than are possible with X-rays. The way is now open for joint X-ray and neutron studies on the same sample under identical conditions. PMID:27158503
Karulin, Alexey Y.; Karacsony, Kinga; Zhang, Wenji; Targoni, Oleg S.; Moldovan, Ioana; Dittrich, Marcus; Sundararaman, Srividya; Lehmann, Paul V.
2015-01-01
Each positive well in ELISPOT assays contains spots of variable sizes that can range from tens of micrometers up to a millimeter in diameter. Therefore, when it comes to counting these spots the decision on setting the lower and the upper spot size thresholds to discriminate between non-specific background noise, spots produced by individual T cells, and spots formed by T cell clusters is critical. If the spot sizes follow a known statistical distribution, precise predictions on minimal and maximal spot sizes, belonging to a given T cell population, can be made. We studied the size distributional properties of IFN-γ, IL-2, IL-4, IL-5 and IL-17 spots elicited in ELISPOT assays with PBMC from 172 healthy donors, upon stimulation with 32 individual viral peptides representing defined HLA Class I-restricted epitopes for CD8 cells, and with protein antigens of CMV and EBV activating CD4 cells. A total of 334 CD8 and 80 CD4 positive T cell responses were analyzed. In 99.7% of the test cases, spot size distributions followed Log Normal function. These data formally demonstrate that it is possible to establish objective, statistically validated parameters for counting T cell ELISPOTs. PMID:25612115
Green synthesis of Silver and Gold Nanoparticles for Enhanced catalytic and bactericidal activity
NASA Astrophysics Data System (ADS)
Naraginti, S.; Tiwari, N.; Sivakumar, A.
2017-11-01
A rapid one step green synthetic method using kiwi fruit extract was employed for preparation of silver and gold nanoparticles. The synthesized nanoparticles were successfully used as green catalysts for the reduction of 4-nitrophenol (4-NP) and methylene blue (MB). They also exhibited excellent antimicrobial activity against clinically isolated Pseudomonas aeruginosa (P.aeruginosa) and Staphylococcus aureus (S.aureus). It was noticed that with increase in concentration of the aqueous silver and gold solutions, particle size of the Ag and Au NPS showed increase as evidenced from UV-Visible spectroscopy and TEM micrograph. The method employed for the synthesis required only a few minutes for more than 90% formation of nanoparticles when the temperature was raised to 80°C. It was also noticed that the catalytic activity of nanoparticles depends upon the size of the particles. These nanoparticles were observed to be crystalline from the clear lattice fringes in the transmission electron microscopic (TEM) images, bright circular spots in the selected area electron diffraction (SAED) pattern and peaks in the X-ray diffraction (XRD) pattern. The Fourier-transform infrared (FTIR) spectrum indicated the presence of different functional groups in the biomolecule capping the nanoparticles.
Research of centroiding algorithms for extended and elongated spot of sodium laser guide star
NASA Astrophysics Data System (ADS)
Shao, Yayun; Zhang, Yudong; Wei, Kai
2016-10-01
Laser guide stars (LGSs) increase the sky coverage of astronomical adaptive optics systems. But spot array obtained by Shack-Hartmann wave front sensors (WFSs) turns extended and elongated, due to the thickness and size limitation of sodium LGS, which affects the accuracy of the wave front reconstruction algorithm. In this paper, we compared three different centroiding algorithms , the Center-of-Gravity (CoG), weighted CoG (WCoG) and Intensity Weighted Centroid (IWC), as well as those accuracies for various extended and elongated spots. In addition, we compared the reconstructed image data from those three algorithms with theoretical results, and proved that WCoG and IWC are the best wave front reconstruction algorithms for extended and elongated spot among all the algorithms.
NASA Technical Reports Server (NTRS)
Hapke, Bruce; DiMucci, Dominick; Nelson, Robert; Smythe, William
1996-01-01
Two different mechanisms, shadow-hiding and coherent backscatter, can cause a hot spot, or opposition effect, in the bidirectional reflectance of vegetation and soils. Because the two mechanisms sample different properties, it is important to know which one is primarily responsible in a given medium. This question can be answered by measuring the bidirectional reflectance in circularly polarized light. If the results of the limited experiments reported here can be extrapolated to a wider range of materials, it appears that the primary cause of the hot spot in most vegetation canopies and in moist, clumpy soils is shadow-hiding. However, in vegetation with large numbers of wavelength-sized structures, such as mosses, and in dry, fine-grained soils, the hot spot is dominated by coherent backscatter.
NASA Astrophysics Data System (ADS)
Lindberg, P. A. P.; Shen, Z.-X.; Wells, B. O.; Mitzi, D. B.; Lindau, I.
1988-12-01
The surface structure of Bi2Sr2CaCu2O(8+delta) has been studied using low-energy electron diffraction (LEED). Sharp diffraction spots indicative of a well-ordered surface are observed. The LEED patterns unequivocally show that this type of material preferentially cleaves along the a-b planes of the nearly tetragonal unit cell. A superstructure extending along one of the axes in the a-b plane (b) is found to have a periodicity of 27 + or - 0.5 A, in good agreement with earlier studies of the three-dimensional crystal structure. The superstructure at the surface is nonlocal in character and reflects the long-range superlattice of the bulk along the b axis. Intensity modulations of the diffraction spots oriented along the b axis are also reported and discussed in terms of the cell dimension of the unit cell along the b axis.
High resolution optical shaft encoder for motor speed control based on an optical disk pick-up
NASA Astrophysics Data System (ADS)
Yeh, Wei-Hung; Bletscher, Warren; Mansuripur, M.
1998-08-01
Using a three-beam optical pick-up from a compact disk player and a flexible, shaft-mounted diffraction grating, we obtain information about the rotation speed and angular position of the motor's spindle. This information may be used for feedback to the motor for smooth operation. Due to the small size of the focused spot and the built-in auto-focus mechanism of the optical head, the proposed encoder can achieve submicrometer resolution. With high resolution, reliable operation, and low-cost elements, the proposed method is suitable for rotary and linear motion control where accurate positioning of an object is required.
Research on properties of an infrared imaging diffractive element
NASA Astrophysics Data System (ADS)
Rachoń, M.; Wegrzyńska, K.; Doch, M.; Kołodziejczyk, A.; Siemion, A.; Suszek, J.; Kakarenko, K.; Sypek, M.
2014-09-01
Novel thermovision imaging systems having high efficiency require very sophisticated optical components. This paper describes the diffractive optical elements which are designed for the wavelengths between 8 and 14 μm for the application in the FLIR cameras. In the current paper the authors present phase only diffractive elements manufactured in the etched gallium arsenide. Due to the simplicity of the manufacturing process only binary phase elements were designed and manufactured. Such solution exhibits huge chromatic aberration. Moreover, the performance of such elements is rather poor, which is caused by two factors. The first one is the limited diffraction efficiency (c.a. 40%) of binary phase structures. The second problem lies in the Fresnel losses coming from the reflection from the two surfaces (around 50%). Performance of this structures is limited and the imaging contrast is poor. However, such structures can be used for relatively cheap practical testing of the new ideas. For example this solution is sufficient for point spread function (PSF) measurements. Different diffractive elements were compared. The first one was the equivalent of the lens designed on the basis of the paraxial approximation. For the second designing process, the non-paraxial approach was used. It was due to the fact that f/# was equal to 1. For the non-paraxial designing the focal spot is smaller and better focused. Moreover, binary phase structures suffer from huge chromatic aberrations. Finally, it is presented that non-paraxially designed optical element imaging with extended depth of focus (light-sword) can suppress chromatic aberration and therefore it creates the image not only in the image plane.
Haimovic, Adele; Brauer, Jeremy A; Cindy Bae, Yoon-Soo; Geronemus, Roy G
2016-05-01
Laser therapy in patients with skin of color is associated with an increased rate of complications. The 755-nm picosecond laser with the diffractive lens array (DLA) has been used for the treatment of scars, striae, and rejuvenation. By delivering high energy to focused areas, the DLA minimizes complications. This study explores the adverse events associated with treatment with the 755-nm picosecond laser with DLA in individuals with Fitzpatrick skin type IV to VI. A retrospective chart review of patients treated with the 755-nm picosecond laser with DLA with a standardized spot size of 6 mm, fluence of 0.71 J/cm(2), and pulse width of 750 to 850 picoseconds was performed. Standard clinical photographs were obtained before treatment and at follow-up. Treatment sites were assessed for dyspigmentation, erythema, edema, and herpetic lesions. A total of 56 patients with Fitzpatrick skin type IV to VI, atrophic and hypertrophic scars, and pigmented lesions or striae were included. Ten patients (17.9%) were lost to follow-up. Transient adverse events, most commonly erythema and hyperpigmentation, were reported after therapy; these resolved in all cases. Retrospective design is a limitation. The 755-nm picosecond laser with the DLA device may be a safe therapeutic alternative for unwanted scars, pigmented lesions, and striae in patients with skin of color. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
XFEL diffraction: Developing processing methods to optimize data quality
Sauter, Nicholas K.
2015-01-29
Serial crystallography, using either femtosecond X-ray pulses from free-electron laser sources or short synchrotron-radiation exposures, has the potential to reveal metalloprotein structural details while minimizing damage processes. However, deriving a self-consistent set of Bragg intensities from numerous still-crystal exposures remains a difficult problem, with optimal protocols likely to be quite different from those well established for rotation photography. Here several data processing issues unique to serial crystallography are examined. It is found that the limiting resolution differs for each shot, an effect that is likely to be due to both the sample heterogeneity and pulse-to-pulse variation in experimental conditions. Shotsmore » with lower resolution limits produce lower-quality models for predicting Bragg spot positions during the integration step. Also, still shots by their nature record only partial measurements of the Bragg intensity. An approximate model that corrects to the full-spot equivalent (with the simplifying assumption that the X-rays are monochromatic) brings the distribution of intensities closer to that expected from an ideal crystal, and improves the sharpness of anomalous difference Fourier peaks indicating metal positions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetzel, D.; Shi, Y; Reffner, J
This reports the first detection of chemical heterogeneity in octenyl succinic anhydride modified single starch granules using a Fourier transform infrared (FT-IR) microspectroscopical technique that combines diffraction-limited infrared microspectroscopy with a step size that is less than the mask projected spot size focused on the plane of the sample. The high spatial resolution was achieved with the combination of the application of a synchrotron infrared source and the confocal image plane masking system of the double-pass single-mask Continuum{reg_sign} infrared microscope. Starch from grains such as corn and wheat exists in granules. The size of the granules depends on the plantmore » producing the starch. Granules used in this study typically had a median size of 15 {micro}m. In the production of modified starch, an acid anhydride typically is reacted with OH groups of the starch polymer. The resulting esterification adds the ester carbonyl (1723 cm{sup -1}) organic functional group to the polymer and the hydrocarbon chain of the ester contributes to the CH{sub 2} stretching vibration to enhance the intensity of the 2927 cm{sup -1} band. Detection of the relative modifying population on a single granule was accomplished by ratioing the baseline adjusted peak area of the carbonyl functional group to that of a carbohydrate band. By stepping a confocally defined infrared beam as small as 5 {micro}m x 5 {micro}m across a starch granule 1 {micro}m at a time in both the x and y directions, the heterogeneity is detected with the highest possible spatial resolution.« less
Single cell isolation process with laser induced forward transfer.
Deng, Yu; Renaud, Philippe; Guo, Zhongning; Huang, Zhigang; Chen, Ying
2017-01-01
A viable single cell is crucial for studies of single cell biology. In this paper, laser-induced forward transfer (LIFT) was used to isolate individual cell with a closed chamber designed to avoid contamination and maintain humidity. Hela cells were used to study the impact of laser pulse energy, laser spot size, sacrificed layer thickness and working distance. The size distribution, number and proliferation ratio of separated cells were statistically evaluated. Glycerol was used to increase the viscosity of the medium and alginate were introduced to soften the landing process. The role of laser pulse energy, the spot size and the thickness of titanium in energy absorption in LIFT process was theoretically analyzed with Lambert-Beer and a thermal conductive model. After comprehensive analysis, mechanical damage was found to be the dominant factor affecting the size and proliferation ratio of the isolated cells. An orthogonal experiment was conducted, and the optimal conditions were determined as: laser pulse energy, 9 μJ; spot size, 60 μm; thickness of titanium, 12 nm; working distance, 700 μm;, glycerol, 2% and alginate depth, greater than 1 μm. With these conditions, along with continuous incubation, a single cell could be transferred by the LIFT with one shot, with limited effect on cell size and viability. LIFT conducted in a closed chamber under optimized condition is a promising method for reliably isolating single cells.
Liao, Yu-Yang; Chen, Yung-Tsan; Chen, Chien-Chun; Huang, Jian-Jang
2018-04-03
The sensitivity of traditional diffraction grating sensors is limited by the spatial resolution of the measurement setup. Thus, a large space is required to improve sensor performance. Here, we demonstrate a compact hexagonal photonic crystal (PhC) optical sensor with high sensitivity. PhCs are able to diffract optical beams to various angles in azimuthal space. The critical wavelength that satisfies the phase matching or becomes evanescent was used to benchmark the refractive index of a target analyte applied on a PhC sensor. Using a glucose solution as an example, our sensor demonstrated very high sensitivity and a low limit of detection. This shows that the diffraction mechanism of hexagonal photonic crystals can be used for sensors when compact size is a concern.
Husakou, A; Herrmann, J
2006-11-13
We evaluate the possibility to focus scanning light beams below the diffraction limit by using the combination of a nonlinear material with a Kerr-type nonlinearity or two-photon absorption to create seed evanescent components of the beam and a negative-refraction material to enhance them. Superfocusing to spots with a FWHM in the range of 0.2 lambda is theoretically predicted both in the context of the effective-medium theory and by the direct numerical solution of Maxwell equations for an inhomogeneous pho-tonic crystal. The evolution of the transverse spectrum and the dependence of superfocusing on the parameters of the negative-refraction material are also studied. We show that the use of a Kerr-type nonlinear layer for the creation of seed evanescent components yields focused spots with a higher intensity compared with those obtained by the application of a saturable absorber.
Optical fiber plasmonic lens for near-field focusing fabricated through focused ion beam
NASA Astrophysics Data System (ADS)
Sloyan, Karen; Melkonyan, Henrik; Moreira, Paulo; Dahlem, Marcus S.
2017-02-01
We report on numerical simulations and fabrication of an optical fiber plasmonic lens for near-field focusing applications. The plasmonic lens consists of an Archimedean spiral structure etched through a 100 nm-thick Au layer on the tip of a single-mode SM600 optical fiber operating at a wavelength of 632:8 nm. Three-dimensional finite-difference time-domain computations show that the relative electric field intensity of the focused spot increases 2:1 times when the number of turns increases from 2 to 12. Furthermore, a reduction of the intensity is observed when the initial inner radius is increased. The optimized plasmonic lens focuses light into a spot with a full-width at half-maximum of 182 nm, beyond the diffraction limit. The lens was fabricated by focused ion beam milling, with a 200nm slit width.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, TK
Purpose In proton beam configuration for spot scanning proton therapy (SSPT), one can define the spacing between spots and lines of scanning as a ratio of given spot size. If the spacing increases, the number of spots decreases which can potentially decrease scan time, and so can whole treatment time, and vice versa. However, if the spacing is too large, the uniformity of scanned field decreases. Also, the field uniformity can be affected by motion during SSPT beam delivery. In the present study, the interplay between spot/ line spacing and motion is investigated. Methods We used four Gaussian-shape spot sizesmore » with 0.5cm, 1.0cm, 1.5cm, and 2.0cm FWHM, three spot/line spacing that creates uniform field profile which are 1/3*FWHM, σ/3*FWHM and 2/3*FWHM, and three random motion amplitudes within, +/−0.3mm, +/−0.5mm, and +/−1.0mm. We planned with 2Gy uniform single layer of 10×10cm2 and 20×20cm2 fields. Then, mean dose within 80% area of given field size, contrubuting MU per each spot assuming 1cGy/MU calibration for all spot sizes, number of spots and uniformity were calculated. Results The plans with spot/line spacing equal to or smaller than 2/3*FWHM without motion create ∼100% uniformity. However, it was found that the uniformity decreases with increased spacing, and it is more pronounced with smaller spot sizes, but is not affected by scanned field sizes. Conclusion It was found that the motion during proton beam delivery can alter the dose uniformity and the amount of alteration changes with spot size which changes with energy and spot/line spacing. Currently, robust evaluation in TPS (e.g. Eclipse system) performs range uncertainty evaluation using isocenter shift and CT calibration error. Based on presented study, it is recommended to add interplay effect evaluation to robust evaluation process. For future study, the additional interplay between the energy layers and motion is expected to present volumetric effect.« less
NASA Astrophysics Data System (ADS)
Borets-Pervak, I. Yu; Vorob'ev, V. S.
1990-08-01
An analysis is made of the influence of the statistical scatter of the size of thermally insulated microdefects and of their number in the focusing spot on the threshold energies of plasma formation by microsecond laser pulses interacting with metal surfaces. The coordinates of the laser pulse intensity and the surface density of the laser energy are used in constructing plasma formation regions corresponding to different numbers of microdefects within the focusing spot area; the same coordinates are used to represent laser pulses. Various threshold and nonthreshold plasma formation mechanisms are discussed. The sizes of microdefects and their statistical characteristics deduced from limited experimental data provide a consistent description of the characteristics of plasma formation near polished and nonpolished surfaces.
NASA Astrophysics Data System (ADS)
Sivaramakrishnan, Anand; Lloyd, James P.
2005-11-01
In principle, suppression of on-axis stellar light by a coronagraph is easier on an unobscured aperture telescope than on one with an obscured aperture. Recent designs such as the apodized pupil Lyot coronagraph, the ``band-limited'' Lyot coronagraph, and several variants of phase-mask coronagraphs work best on unobscured circular aperture telescopes. These designs were developed to enable the discovery and characterization of nearby Jovian or even terrestrial exoplanets. All of today's major space-based and adaptive optics-equipped ground-based telescopes are obscured-aperture systems with a secondary mirror held in place by secondary support ``spider'' vanes. The presence of a secondary obscuration can be dealt with by ingenious coronagraph designs, but the spider vanes themselves cause diffracted light, which can hamper the search for Jovian exoplanets around nearby stars. We look at the problem of suppressing spider vane diffraction in Lyot coronagraphs, including apodized pupil and band-limited designs. We show how spider vane diffraction can be reduced drastically and in fact contained in the final coronagraphic image, within one resolution element of the geometric image of the focal plane mask's occulting spot. This makes adaptive optics coronagraphic searches for exojupiters possible with the next generation of adaptive optics systems being developed for 8-10 m class telescopes such as Gemini and the Very Large Telescopes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yaoyu; Li, Xiangping; Gu, Min, E-mail: mgu@swin.edu.au
2014-12-29
We apply an optical dual-beam approach to a metal-ion doped hybrid material to achieve nanofeatures beyond the optical diffraction limit. By spatially inhibiting the photoreduction and the photopolymerization, we realize a nano-line, consisting of polymer matrix and in-situ generated gold nanoparticles, with a lateral size of sub 100 nm, corresponding to a factor of 7 improvement compared to the diffraction limit. With the existence of gold nanoparticles, a plasmon enhanced super-resolution fabrication mechanism in the hybrid material is observed, which benefits in a further reduction in size of the fabricated feature. The demonstrated nanofeature in hybrid materials paves the way formore » realizing functional nanostructures.« less
Methodology and software to detect viral integration site hot-spots
2011-01-01
Background Modern gene therapy methods have limited control over where a therapeutic viral vector inserts into the host genome. Vector integration can activate local gene expression, which can cause cancer if the vector inserts near an oncogene. Viral integration hot-spots or 'common insertion sites' (CIS) are scrutinized to evaluate and predict patient safety. CIS are typically defined by a minimum density of insertions (such as 2-4 within a 30-100 kb region), which unfortunately depends on the total number of observed VIS. This is problematic for comparing hot-spot distributions across data sets and patients, where the VIS numbers may vary. Results We develop two new methods for defining hot-spots that are relatively independent of data set size. Both methods operate on distributions of VIS across consecutive 1 Mb 'bins' of the genome. The first method 'z-threshold' tallies the number of VIS per bin, converts these counts to z-scores, and applies a threshold to define high density bins. The second method 'BCP' applies a Bayesian change-point model to the z-scores to define hot-spots. The novel hot-spot methods are compared with a conventional CIS method using simulated data sets and data sets from five published human studies, including the X-linked ALD (adrenoleukodystrophy), CGD (chronic granulomatous disease) and SCID-X1 (X-linked severe combined immunodeficiency) trials. The BCP analysis of the human X-linked ALD data for two patients separately (774 and 1627 VIS) and combined (2401 VIS) resulted in 5-6 hot-spots covering 0.17-0.251% of the genome and containing 5.56-7.74% of the total VIS. In comparison, the CIS analysis resulted in 12-110 hot-spots covering 0.018-0.246% of the genome and containing 5.81-22.7% of the VIS, corresponding to a greater number of hot-spots as the data set size increased. Our hot-spot methods enable one to evaluate the extent of VIS clustering, and formally compare data sets in terms of hot-spot overlap. Finally, we show that the BCP hot-spots from the repopulating samples coincide with greater gene and CpG island density than the median genome density. Conclusions The z-threshold and BCP methods are useful for comparing hot-spot patterns across data sets of disparate sizes. The methodology and software provided here should enable one to study hot-spot conservation across a variety of VIS data sets and evaluate vector safety for gene therapy trials. PMID:21914224
Easy Demonstration of the Poisson Spot
ERIC Educational Resources Information Center
Gluck, Paul
2010-01-01
Many physics teachers have a set of slides of single, double and multiple slits to show their students the phenomena of interference and diffraction. Thomas Young's historic experiments with double slits were indeed a milestone in proving the wave nature of light. But another experiment, namely the Poisson spot, was also important historically and…
Balasubramaniam, Saranya C; Mohney, Brian G; Bang, Genie M; Link, Thomas P; Pulido, Jose S
2012-09-01
The purpose of this article is to demonstrate the utility of the large spot size (LSS) setting using a binocular laser indirect delivery system for peripheral ablation in children. One patient with bilateral retinopathy of prematurity received photocoagulation with standard spot size burns placed adjacently to LSS burns. Using a pixel analysis program called Image J on the Retcam picture, the areas of each retinal spot size were determined in units of pixels, giving a standard spot range of 805 to 1294 pixels and LSS range of 1699 to 2311 pixels. Additionally, fluence was calculated using theoretical retinal areas produced by each spot size: the standard spot setting was 462 mJ/mm2 and the LSS setting was 104 mJ/mm2. For eyes with retinopathy of prematurity, our study shows that LSS laser indirect delivery halves the number of spots required for treatment and reduces fluence by almost one-quarter, producing more uniform spots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, S. S.; Diwakar, P. K.; Polek, M. P.
We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 μm. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present resultsmore » clearly show that the morphological changes in the plume with spot size are independent of laser pulse width.« less
Spot size measurement of a flash-radiography source using the pinhole imaging method
NASA Astrophysics Data System (ADS)
Wang, Yi; Li, Qin; Chen, Nan; Cheng, Jin-Ming; Xie, Yu-Tong; Liu, Yun-Long; Long, Quan-Hong
2016-07-01
The spot size of the X-ray source is a key parameter of a flash-radiography facility, and is usually quoted as an evaluation of the resolving power. The pinhole imaging technique is applied to measure the spot size of the Dragon-I linear induction accelerator, by which a two-dimensional spatial distribution of the source spot is obtained. Experimental measurements are performed to measure the spot image when the transportation and focusing of the electron beam are tuned by adjusting the currents of solenoids in the downstream section. The spot size of full-width at half maximum and that defined from the spatial frequency at half peak value of the modulation transfer function are calculated and discussed.
WE-D-17A-01: A Dynamic Collimation System for Spot Scanned Proton Therapy: Conceptual Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyer, D; Hill, P; Wang, D
2014-06-15
Purpose: In the absence of a collimation system, the lateral penumbra in pencil beam scanning (PBS) proton therapy delivered at low energies is highly dependent on the spot size. This dependence, coupled with the fact that spot sizes increase with decreasing energy, reduces the benefit of the PBS technique for treating shallow tumors such as those found in the head and neck region. In order to overcome this limitation, a dynamic collimation system (DCS) was developed for sharpening the lateral penumbra of low energy proton therapy dose distributions delivered by PBS. Methods: The proposed DCS consists of two pairs ofmore » orthogonal trimmer blades which intercept the edges of the proton beam near the target edge in the beam's eye view. Each trimmer blade is capable of rapid motion in the direction perpendicular to the central beam axis by means of a linear motor, with maximum velocity and acceleration of 2.5 m/s and 19.6 m/s{sup 2}, respectively. Two-dimensional treatment plans were created both with and without the DCS for in-air spot sizes (σ-air) of 3, 5, 7, and 9 mm, representing a wide array of clinically available equipment. Results: In its current configuration, the snout of the DCS has outer dimensions of 22.6 × 22.6 cm{sup 2} and is capable of delivering a minimum treatment field size of 15 × 15 cm{sup 2}. Using off the shelf components, the constructed system would weigh less than 20 kg. The treatment plans created with the DCS yielded a reduction in the mean dose to normal tissue surrounding the target of 26.2–40.6% for spot sizes of 3–9 mm, respectively. Conclusion: The DCS can be integrated with current or future proton therapy equipment and we believe it will serve as a useful tool to further improve the next generation of proton therapy delivery.« less
NASA Astrophysics Data System (ADS)
Chen, Zewu
This thesis describes the experimental work in the fabrication of doubly-curved mica diffractors and their applications in monochromatic microprobe x-ray fluorescence analysis and wavelength dispersive spectrometry. Three-dimension focusing of x-rays can be achieved by diffraction from a doubly-curved diffractor. A Johann point-focusing mica diffractor was fabricated for focusing the Cu Kα1 radiation and characterized by using a microfocus x-ray source. The intensity of the focused beam was measured to be 1.01 × 108 photons/s at the focal spot. The spot size of the focused beam was measured by the knife edge scan method. A Cu Kα1 focal spot of 43 μm x 68 μm has been obtained. Monochromatic microprobe x-ray fluorescence (MMXRF) analysis was performed by using the focused Cu Kα1 radiation. The microfocus x-ray source was operated at 30 kV and 0.1 mA. MMXRF spectra of bulk specimens of GaAs, Si, ZnSe, Mg and 40 μm thick Muscovite were recorded with a Si(Li) energy dispersive detector. Exceptional high signal-to-background ratios were observed. Due to the low background, detection limits as low as 1.6 ppm were predicted for a measurement time of 500 s for bulk specimens. The detector background was determined by recording a spectrum from an Fe55 source and was found to be a significant contribution to the total observed background. A wavelength dispersive spectrometer was designed and constructed for the use in a JEOL transmission electron microscope. A logarithmic spiral of revolution diffractor was fabricated and used explored for measurement of Ca concentration in the TEM. Bench tests were carried out by using the microfocus x-ray source. Preliminary data of tests in the TEM indicated that the spectrometer may give better performance than EDS systems previously used.
Formation of multiple focal spots using a high NA lens with a complex spiral phase mask
NASA Astrophysics Data System (ADS)
Lalithambigai, K.; Anbarasan, P. M.; Rajesh, K. B.
2014-07-01
The formation of a transversally polarized beam by transmitting a tightly focused double-ring-shaped azimuthally polarized beam through a complex spiral phase mask and high numerical aperture lens is presented based on vector diffraction theory. The generation of transversally polarized focal spot segment splitting and multiple focal spots is illustrated numerically. Moreover, we found that a properly designed complex spiral phase mask can move the focal spots along the optical axis in the z direction. Therefore, one can achieve a focal segment of two, three or multiple completely transversely polarized focal spots, which finds applications in optical trapping and in material processing technologies.
Iterative simulated quenching for designing irregular-spot-array generators.
Gillet, J N; Sheng, Y
2000-07-10
We propose a novel, to our knowledge, algorithm of iterative simulated quenching with temperature rescaling for designing diffractive optical elements, based on an analogy between simulated annealing and statistical thermodynamics. The temperature is iteratively rescaled at the end of each quenching process according to ensemble statistics to bring the system back from a frozen imperfect state with a local minimum of energy to a dynamic state in a Boltzmann heat bath in thermal equilibrium at the rescaled temperature. The new algorithm achieves much lower cost function and reconstruction error and higher diffraction efficiency than conventional simulated annealing with a fast exponential cooling schedule and is easy to program. The algorithm is used to design binary-phase generators of large irregular spot arrays. The diffractive phase elements have trapezoidal apertures of varying heights, which fit ideal arbitrary-shaped apertures better than do trapezoidal apertures of fixed heights.
Rayleigh-Sommerfield Diffraction vs Fresnel-Kirchhoff, Fourier Propagation and Poisson's Spot
NASA Technical Reports Server (NTRS)
Lucke, Robert L.
2004-01-01
The boundary conditions imposed on the diffraction problem in order to obtain the Fresnel-Kirchhoff (FK) solution are well-known to be mathematically inconsistent and to be violated by the solution when the observation point is close to the diffracting screen 1-3. These problems are absent in the Rayleigh-Sommerfeld (RS) solution. The difference between RS and FK is in the inclination factor and is usually immaterial because the inclination factor is approximated by unity. But when this approximation is not valid, FK can lead to unacceptable answers. Calculating the on-axis intensity of Poisson s spot provides a critical test, a test passed by RS and failed by FK. FK fails because (a) convergence of the integral depends on how it is evaluated and (b) when the convergence problem is xed, the predicted amplitude at points near the obscuring disk is not consistent with the assumed boundary conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayoral-Astorga, L. A.; Gaspar-Armenta, J. A.; Ramos-Mendieta, F.
2016-04-15
We have studied numerically the diffraction of a surface plasmon polariton (SPP) when it encounters a wide multi-wavelength slit in conducting films. As a jump process a SPP is excited beyond the slit by wave scattering at the second slit edge. The exciting radiation is produced when the incident SPP collapses at the first slit edge. We have found that the transmitted SPP supports inherent and unavoidable interference with grazing scattered radiation; the spatial modulation extends to the fields in the diffraction region where a series of low intensity spots arises. We demonstrate that the SPP generated on the secondmore » slab depends on the frequency but not on the wave vector of the collapsed SPP; a SPP is transmitted even when the two metals forming the slit are different. The numerical results were obtained using the Finite Difference Time Domain (FDTD) method with a grid size λ/100.« less
Exploring transmission Kikuchi diffraction using a Timepix detector
NASA Astrophysics Data System (ADS)
Vespucci, S.; Winkelmann, A.; Mingard, K.; Maneuski, D.; O'Shea, V.; Trager-Cowan, C.
2017-02-01
Electron backscatter diffraction (EBSD) is a well-established scanning electron microscope (SEM)-based technique [1]. It allows the non-destructive mapping of the crystal structure, texture, crystal phase and strain with a spatial resolution of tens of nanometers. Conventionally this is performed by placing an electron sensitive screen, typically consisting of a phosphor screen combined with a charge coupled device (CCD) camera, in front of a specimen, usually tilted 70° to the normal of the exciting electron beam. Recently, a number of authors have shown that a significant increase in spatial resolution is achievable when Kikuchi diffraction patterns are acquired in transmission geometry; that is when diffraction patterns are generated by electrons transmitted through an electron-transparent, usually thinned, specimen. The resolution of this technique, called transmission Kikuchi diffraction (TKD), has been demonstrated to be better than 10 nm [2,3]. We have recently demonstrated the advantages of a direct electron detector, Timepix [4,5], for the acquisition of standard EBSD patterns [5]. In this article we will discuss the advantages of Timepix to perform TKD and for acquiring spot diffraction patterns and more generally for acquiring scanning transmission electron microscopy micrographs in the SEM. Particularly relevant for TKD, is its very compact size, which allows much more flexibility in the positioning of the detector in the SEM chamber. We will furthermore show recent results using Timepix as a virtual forward scatter detector, and will illustrate the information derivable on producing images through processing of data acquired from different areas of the detector. We will show results from samples ranging from gold nanoparticles to nitride semiconductor nanorods.
Electrophoretic build-up of multi nanoparticle array for a highly sensitive immunoassay
Han, Jin-Hee; Kim, Hee-Joo; Sudheendra, L.; Hass, Elizabeth A.; Gee, Shirley J.; Hammock, Bruce D.; Kennedy, Ian M.
2012-01-01
One of the challenges in shrinking immunoassays to smaller sizes is to immobilize the biological molecules to nanometer-scaled spots. To overcome this complication, we have employed a particle-based immunoassay to create a nanostructured platform with a regular array of sensing elements. The technique makes use of an electrophoretic particle entrapment system (EPES) to immobilize nanoparticles that are coated with biological reagents into wells using a very small trapping potential. To provide useful information for controlling the trapping force and optimal design of the nanoarray, electrophoretic trapping of a nanoparticle was modeled numerically. The trapping efficiency, defined as the fraction of wells occupied by a single particle, was 91%. The performance of the array was demonstrated with a competitive immunoassay for a small molecule analyte, 3-phenoxybenzoic acid (214.2 g mole−1). The limit of detection determined with a basic fluorescence microscope was 0.006 μg l−1 (30 pM); this represented a sixteen-fold improvement in sensitivity compared to a standard 96-well plate-based ELISA; the improvement was attributed to the small size of the sample volume and the presence of light diffraction among factors unique to this structure. The EPES/nanoarray system promises to offer a new standard in applications that require portable, point-of-care and real-time monitoring with high sensitivity. PMID:23021853
Postan, A
1987-03-01
The dynamics of a pulsed laser spot covering an optical aperture of a receiver is analyzed. This analysis includes the influence of diffraction, jitter, atmospheric absorption and scattering, and atmospheric turbulence. A simple expression for the probability of response of the receiver illuminated by the laser spot is derived. It is found that this probability would not always increase as the laser beam divergence decreases. Moreover, this probability has an optimum (maximum) with respect to the laser beam divergence or rather with respect to the diameter of the transmitting optics.
NASA Astrophysics Data System (ADS)
Robertson, J. Gordon; Bland-Hawthorn, Joss
2012-09-01
As telescopes get larger, the size of a seeing-limited spectrograph for a given resolving power becomes larger also, and for ELTs the size will be so great that high resolution instruments of simple design will be infeasible. Solutions include adaptive optics (but not providing full correction for short wavelengths) or image slicers (which give feasible but still large instruments). Here we develop the solution proposed by Bland-Hawthorn and Horton: the use of diffraction-limited spectrographs which are compact even for high resolving power. Their use is made possible by the photonic lantern, which splits a multi-mode optical fiber into a number of single-mode fibers. We describe preliminary designs for such spectrographs, at a resolving power of R ~ 50,000. While they are small and use relatively simple optics, the challenges are to accommodate the longest possible fiber slit (hence maximum number of single-mode fibers in one spectrograph) and to accept the beam from each fiber at a focal ratio considerably faster than for most spectrograph collimators, while maintaining diffraction-limited imaging quality. It is possible to obtain excellent performance despite these challenges. We also briefly consider the number of such spectrographs required, which can be reduced by full or partial adaptive optics correction, and/or moving towards longer wavelengths.
CARNAÚBA: The Coherent X-Ray Nanoprobe Beamline for the Brazilian Synchrotron SIRIUS/LNLS
NASA Astrophysics Data System (ADS)
Tolentino, Hélio C. N.; Soares, Márcio M.; Perez, Carlos A.; Vicentin, Flávio C.; Abdala, Dalton B.; Galante, Douglas; Teixeira, Verônica de C.; de Araújo, Douglas H. C.; Westfahl, Harry, Jr.
2017-06-01
The CARNAÚBA beamline is the tender-to-hard X-ray (2 - 15 keV) scanning nanoprobe planned for the 4th generation storage ring SIRIUS at the LNLS. CARNAÚBA uses an undulator source with vertical linear polarization in a low-beta straight section and grazing incidence-focusing mirrors to create a nanoprobe at 143 m from the source. The beamline optic is based on KB mirrors and provides high brilliance at an achromatic focal spot down to the diffraction limit diameter of ˜30 nm with a working distance of ˜6 cm. These characteristics are crucial for studying nanometric samples in experiments involving complex stages and environments. The CARNAÚBA beamline aims to perform raster scans using x-ray fluorescence, x-ray absorption spectroscopy, x-ray diffraction and coherent x-ray imaging techniques. Computed tomography will extend these methods to three dimensions.
Laser beam self-focusing in turbulent dissipative media.
Hafizi, B; Peñano, J R; Palastro, J P; Fischer, R P; DiComo, G
2017-01-15
A high-power laser beam propagating through a dielectric in the presence of fluctuations is subject to diffraction, dissipation, and optical Kerr nonlinearity. A method of moments was applied to a stochastic, nonlinear enveloped wave equation to analyze the evolution of the long-term spot radius. For propagation in atmospheric turbulence described by a Kolmogorov-von Kármán spectral density, the analysis was benchmarked against field experiments in the low-power limit and compared with simulation results in the high-power regime. Dissipation reduced the effect of self-focusing and led to chromatic aberration.
Low-cost Large Aperture Telescopes for Optical Communications
NASA Technical Reports Server (NTRS)
Hemmati, Hamid
2006-01-01
Low-cost, large-aperture optical receivers are required to form an affordable optical ground receiver network for laser communications. Among the ground receiver station's multiple subsystems, here, we only discuss the ongoing research activities aimed at reducing the cost of the large-size optics on the receiver. Experimental results of two different approaches for fabricating low-cost mirrors of wavefront quality on the order of 100-200X the diffraction limit are described. Laboratory-level effort are underway to improve the surface figure to better than 20X the diffraction limit.
2008-02-01
with atypical head anthropometry . A limited number of current users have anecdotally cited the TPL® as causing hot spots. Hot spots are defined as...6) is available in sizes: extra-extra-small (XXS), extra- small (XS), small(S), medium (M), large (L), and extra-large ( XL ). Each helmet is made up...head anthropometries than the small HGU-56/P. This is accomplished by 6 thickening the polystyrene energy-absorbing liners (EALs) in the XS and XXS
NASA Astrophysics Data System (ADS)
Roberts, N.; Cunningham, H.; Snell, A.; Newman, J.; Tikoff, B.; Chatzaras, V.; Walker, J. D.; Williams, R. T.
2017-12-01
There is currently no repository where a geologist can survey microstructural datasets that have been collected from a specific field area or deformation experiment. New development of the StraboSpot digital data system provides a such a repository as well as visualization and analysis tools. StraboSpot is a graph database that allows field geologists to share primary data and develop new types of scientific questions. The database can be accessed through: 1) a field-based mobile application that runs on iOS and Android mobile devices; and 2) a desktop system. We are expanding StraboSpot to include the handling of a variety of microstructural data types. Presented here is the detailed vocabulary and logic used for the input of microstructural data, and how this system operates with the anticipated workflow of users. Microstructural data include observations and interpretations from photomicrographs, scanning electron microscope images, electron backscatter diffraction, and transmission electron microscopy data. The workflow for importing microstructural data into StraboSpot is organized into the following tabs: Images, Mineralogy & Composition; Sedimentary; Igneous; Metamorphic; Fault Rocks; Grain size & configuration; Crystallographic Preferred Orientation; Reactions; Geochronology; Relationships; and Interpretations. Both the sample and the thin sections are also spots. For the sample spot, the user can specify whether a sample is experimental or natural; natural samples are inherently linked to their field context. For the thin section (sub-sample) spot, the user can select between different options for sample preparation, geometry, and methods. A universal framework for thin section orientation is given, which allows users to overlay different microscope images of the same area and keeps georeferenced orientation. We provide an example dataset of field and microstructural data from the Mt Edgar dome, a granitic complex in the Paleoarchean East Pilbara craton, Australia. StraboSpot provides a single place for georeferenced geologic data at every spatial scale, in which data are interconnected. Incorporating microstructural data into an open-access platform will give field and experimental geologists a library of microstructural data across a range of tectonic and experimental contexts.
Tierney, Emily P
2011-07-01
Fractional photothermolysis has been reported in the literature to improve pigmentary and textural changes associated with acne scarring. To review the literature for the treatment of acne scarring using nonablative fractional laser (NAFL) and ablative fractional laser (AFL) resurfacing. Review of the Medline literature evaluating NAFL and AFL for acne scarring. NAFL and AFL are safe and effective treatments for acne scarring. It is likely that the controlled, limited dermal heating of fractional resurfacing initiates a cascade of events in which normalization of the collagenesis-collagenolysis cycle occurs. We present the results of a patient treated using a novel dual-spot-size AFL device. Three months after the final treatment, the patient reported 75% improvement in acne scarring and 63% overall improvement in photoaging. Fractionated resurfacing for the treatment of acne scarring is associated with lesser risks of side effects of prolonged erythema and risks of delayed-onset dyspigmentation and scarring which complicate traditional ablative laser resurfacing approaches. We present herein preliminary data suggesting that a dual-spot-size AFL device presents novel advantages of improving texture and pigmentation in acne scarring and photoaging. © 2011 by the American Society for Dermatologic Surgery, Inc.
Yan, Hanfei; Huang, Xiaojing; Bouet, Nathalie; ...
2017-10-16
In this article, we discuss misalignment-induced aberrations in a pair of crossed multilayer Laue lenses used for achieving a nanometer-scale x-ray point focus. We thoroughly investigate the impacts of two most important contributions, the orthogonality and the separation distance between two lenses. We find that misalignment in the orthogonality results in astigmatism at 45º and other inclination angles when coupled with a separation distance error. Theoretical explanation and experimental verification are provided. We show that to achieve a diffraction-limited point focus, accurate alignment of the azimuthal angle is required to ensure orthogonality between two lenses, and the required accuracy ismore » scaled with the ratio of the focus size to the aperture size.« less
NASA Astrophysics Data System (ADS)
Yan, Yuan-Lin; Liu, Xin-Guo; Dai, Zhong-Ying; Ma, Yuan-Yuan; He, Peng-Bo; Shen, Guo-Sheng; Ji, Teng-Fei; Zhang, Hui; Li, Qiang
2017-09-01
The three-dimensional (3D) spot-scanning method is one of the most commonly used irradiation methods in charged particle beam radiotherapy. Generally, spot-scanning beam delivery utilizes the same size pencil beam to irradiate the tumor targets. Here we propose a spot-scanning beam delivery method with laterally- and longitudinally-mixed size pencil beams for heavy ion radiotherapy. This uses pencil beams with a bigger spot size in the lateral direction and wider mini spread-out Bragg peak (mini-SOBP) to irradiate the inner part of a target volume, and pencil beams with a smaller spot size in the lateral direction and narrower mini-SOBP to irradiate the peripheral part of the target volume. Instead of being controlled by the accelerator, the lateral size of the pencil beam was adjusted by inserting Ta scatterers in the beam delivery line. The longitudinal size of the pencil beam (i.e. the width of the mini-SOBP) was adjusted by tilting mini ridge filters along the beam direction. The new spot-scanning beam delivery using carbon ions was investigated theoretically and compared with traditional spot-scanning beam delivery. Our results show that the new spot-scanning beam delivery has smaller lateral penumbra, steeper distal dose fall-off and the dose homogeneity (1-standard deviation/mean) in the target volume is better than 95%. Supported by Key Project of National Natural Science Foundation of China (U1232207), National Key Technology Support Program of the Ministry of Science and Technology of China (2015BAI01B11), National Key Research and Development Program of the Ministry of Science and Technology of China (2016YFC0904602) and National Natural Science Foundation of China (11075191, 11205217, 11475231, 11505249)
NASA Astrophysics Data System (ADS)
Sampathkumar, Ashwin
2014-05-01
Conventional photoacoustic imaging (PAI) employs light pulses to produce a photoacoustic (PA) effect and detects the resulting acoustic waves using an ultrasound transducer acoustically coupled to the target tissue. The resolution of conventional PAI is limited by the sensitivity and bandwidth of the ultrasound transducer. We have developed an all-optical versatile PAI system for characterizing ex vivo and in vivo biological specimens. The system employs noncontact interferometric detection of the acoustic signals that overcomes limitations of conventional PAI. A 532-nm pump laser with a pulse duration of 5 ns excited the PA effect in tissue. Resulting acoustic waves produced surface displacements that were sensed using a 532-nm continuous-wave (CW) probe laser in a Michelson interferometer with a GHz bandwidth. The pump and probe beams were coaxially focused using a 50X objective giving a diffraction-limited spot size of 0.48 μm. The phase-encoded probe beam was demodulated using a homodyne interferometer. The detected time-domain signal was time reversed using k-space wave-propagation methods to produce a spatial distribution of PA sources in the target tissue. Performance was assessed using PA images of ex vivo rabbit lymph node specimens and human tooth samples. A minimum peak surface displacement sensitivity of 0.19 pm was measured. The all-optical PAI (AOPAI) system is well suited for assessment of retinal diseases, caries lesion detection, skin burns, section less histology and pressure or friction ulcers.
NASA Astrophysics Data System (ADS)
Maderitsch, A.; Smolek, S.; Wobrauschek, P.; Streli, C.; Takman, P.
2014-09-01
Total reflection X-ray spectroscopy (TXRF) is a powerful analytical technique for qualitative and quantitative analysis of trace and ultratrace elements in a sample with lower limits of detection (LLDs) of pg/g to ng/g in concentration and absolute high fg levels are attainable. Several X-ray sources, from low power (few W), 18 kW rotating anodes to synchrotron radiation, are in use for the excitation and lead accordingly to their photon flux delivered on the sample the detection limits specified. Not only the power, but also the brilliance and focal shape are of importance for TXRF. A microfocus of 50-100 μm spot size or the line focus of diffraction tubes is best suited. Excillum developed a new approach in the design of a source: the liquid metal jet anode. In this paper the results achieved with this source are described. A versatile TXRF spectrometer with vacuum chamber designed at Atominstitut was used for the experiments. A multilayer monochromator selecting the intensive Ga-Kα radiation was taken and the beam was collimated by 50 μm slits. Excellent results regarding geometric beam stability, high fluorescence intensities and low background were achieved leading to detection limits in the high fg range for Ni. A 100 mm2 silicon drift detector (SDD) collimated to 80 mm2 was used to collect the fluorescence radiation. The results from measurements on single element samples are presented.
Quantifying Spot Size Reduction of a 1.8 kA Electron Beam for Flash Radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burris-Mog, Trevor John; Moir, David C.
The spot size of Axis-I at the Dual Axis Radiographic Hydrodynamic Test facility was reduced by 15.5% by including a small diameter drift tube that acts to aperture the outer diameter of the electron beam. Comparing the measured values to both analytic calculations and results from a particle-in-cell model shows that one-third to one-half of the spot size reduction is due to a drop in beam emittance. We infer that one-half to two-thirds of the spot-size reduction is due to a reduction in beam-target interactions. Sources of emittance growth and the scaling of the final focal spot size with emittancemore » and solenoid aberrations are also presented.« less
Quantifying Spot Size Reduction of a 1.8 kA Electron Beam for Flash Radiography
Burris-Mog, Trevor John; Moir, David C.
2018-03-14
The spot size of Axis-I at the Dual Axis Radiographic Hydrodynamic Test facility was reduced by 15.5% by including a small diameter drift tube that acts to aperture the outer diameter of the electron beam. Comparing the measured values to both analytic calculations and results from a particle-in-cell model shows that one-third to one-half of the spot size reduction is due to a drop in beam emittance. We infer that one-half to two-thirds of the spot-size reduction is due to a reduction in beam-target interactions. Sources of emittance growth and the scaling of the final focal spot size with emittancemore » and solenoid aberrations are also presented.« less
Spot size dependence of laser accelerated protons in thin multi-ion foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Tung-Chang, E-mail: tcliu@umd.edu; Shao, Xi; Liu, Chuan-Sheng
2014-06-15
We present a numerical study of the effect of the laser spot size of a circularly polarized laser beam on the energy of quasi-monoenergetic protons in laser proton acceleration using a thin carbon-hydrogen foil. The used proton acceleration scheme is a combination of laser radiation pressure and shielded Coulomb repulsion due to the carbon ions. We observe that the spot size plays a crucial role in determining the net charge of the electron-shielded carbon ion foil and consequently the efficiency of proton acceleration. Using a laser pulse with fixed input energy and pulse length impinging on a carbon-hydrogen foil, amore » laser beam with smaller spot sizes can generate higher energy but fewer quasi-monoenergetic protons. We studied the scaling of the proton energy with respect to the laser spot size and obtained an optimal spot size for maximum proton energy flux. Using the optimal spot size, we can generate an 80 MeV quasi-monoenergetic proton beam containing more than 10{sup 8} protons using a laser beam with power 250 TW and energy 10 J and a target of thickness 0.15 wavelength and 49 critical density made of 90% carbon and 10% hydrogen.« less
Experimental comparison of various techniques for spot size measurement of high-energy X-ray
NASA Astrophysics Data System (ADS)
Wang, Yi; Li, Qin; Chen, Nan; Cheng, Jin-Ming; Li, Cheng-Gang; Li, Hong; Long, Quan-Hong; Shi, Jin-Shui; Deng, Jian-Jun
2016-08-01
In flash-radiography experiments, the quality of the acquired image strongly depends on the focal size of the X-ray source spot. A variety of techniques based on imaging of the pinhole, the slit and the rollbar are adopted to measure the focal spot size of the Dragon-I linear induction accelerator. The image of the pinhole provides a two-dimensional distribution of the X-ray spot, while those of the slit and the rollbar give a line-spread distribution and an edge-spread distribution, respectively. The spot size characterized by the full-width at half-maximum and that characterized by the LANL definition are calculated for comparison.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monteforte, Marianne; Estandarte, Ana K.; Chen, Bo
2016-06-23
High-energy X-ray Bragg coherent diffraction imaging (BCDI) is a well established synchrotron-based technique used to quantitatively reconstruct the three-dimensional morphology and strain distribution in nanocrystals. The BCDI technique has become a powerful analytical tool for quantitative investigations of nanocrystals, nanotubes, nanorods and more recently biological systems. BCDI has however typically failed for fine nanocrystals in sub-100?nm size regimes ? a size routinely achievable by chemical synthesis ? despite the spatial resolution of the BCDI technique being 20?30?nm. The limitations of this technique arise from the movement of nanocrystals under illumination by the highly coherent beam, which prevents full diffraction datamore » sets from being acquired. A solution is provided here to overcome this problem and extend the size limit of the BCDI technique, through the design of a novel stabilization method by embedding the fine nanocrystals into a silica matrix. Chemically synthesized FePt nanocrystals of maximum dimension 20?nm and AuPd nanocrystals in the size range 60?65?nm were investigated with BCDI measurement at beamline 34-ID-C of the APS, Argonne National Laboratory. Novel experimental methodologies to elucidate the presence of strain in fine nanocrystals are a necessary pre-requisite in order to better understand strain profiles in engineered nanocrystals for novel device development.« less
Monteforte, Marianne; Estandarte, Ana K; Chen, Bo; Harder, Ross; Huang, Michael H; Robinson, Ian K
2016-07-01
High-energy X-ray Bragg coherent diffraction imaging (BCDI) is a well established synchrotron-based technique used to quantitatively reconstruct the three-dimensional morphology and strain distribution in nanocrystals. The BCDI technique has become a powerful analytical tool for quantitative investigations of nanocrystals, nanotubes, nanorods and more recently biological systems. BCDI has however typically failed for fine nanocrystals in sub-100 nm size regimes - a size routinely achievable by chemical synthesis - despite the spatial resolution of the BCDI technique being 20-30 nm. The limitations of this technique arise from the movement of nanocrystals under illumination by the highly coherent beam, which prevents full diffraction data sets from being acquired. A solution is provided here to overcome this problem and extend the size limit of the BCDI technique, through the design of a novel stabilization method by embedding the fine nanocrystals into a silica matrix. Chemically synthesized FePt nanocrystals of maximum dimension 20 nm and AuPd nanocrystals in the size range 60-65 nm were investigated with BCDI measurement at beamline 34-ID-C of the APS, Argonne National Laboratory. Novel experimental methodologies to elucidate the presence of strain in fine nanocrystals are a necessary pre-requisite in order to better understand strain profiles in engineered nanocrystals for novel device development.
Impact of contact lens zone geometry and ocular optics on bifocal retinal image quality
Bradley, Arthur; Nam, Jayoung; Xu, Renfeng; Harman, Leslie; Thibos, Larry
2014-01-01
Purpose To examine the separate and combined influences of zone geometry, pupil size, diffraction, apodisation and spherical aberration on the optical performance of concentric zonal bifocals. Methods Zonal bifocal pupil functions representing eye + ophthalmic correction were defined by interleaving wavefronts from separate optical zones of the bifocal. A two-zone design (a central circular inner zone surrounded by an annular outer-zone which is bounded by the pupil) and a five-zone design (a central small circular zone surrounded by four concentric annuli) were configured with programmable zone geometry, wavefront phase and pupil transmission characteristics. Using computational methods, we examined the effects of diffraction, Stiles Crawford apodisation, pupil size and spherical aberration on optical transfer functions for different target distances. Results Apodisation alters the relative weighting of each zone, and thus the balance of near and distance optical quality. When spherical aberration is included, the effective distance correction, add power and image quality depend on zone-geometry and Stiles Crawford Effect apodisation. When the outer zone width is narrow, diffraction limits the available image contrast when focused, but as pupil dilates and outer zone width increases, aberrations will limit the best achievable image quality. With two-zone designs, balancing near and distance image quality is not achieved with equal area inner and outer zones. With significant levels of spherical aberration, multi-zone designs effectively become multifocals. Conclusion Wave optics and pupil varying ocular optics significantly affect the imaging capabilities of different optical zones of concentric bifocals. With two-zone bifocal designs, diffraction, pupil apodisation spherical aberration, and zone size influence both the effective add power and the pupil size required to balance near and distance image quality. Five-zone bifocal designs achieve a high degree of pupil size independence, and thus will provide more consistent performance as pupil size varies with light level and convergence amplitude. PMID:24588552
Single molecule fluorescence microscopy for ultra-sensitive RNA expression profiling
NASA Astrophysics Data System (ADS)
Hesse, Jan; Jacak, Jaroslaw; Regl, Gerhard; Eichberger, Thomas; Aberger, Fritz; Schlapak, Robert; Howorka, Stefan; Muresan, Leila; Frischauf, Anna-Maria; Schütz, Gerhard J.
2007-02-01
We developed a microarray analysis platform for ultra-sensitive RNA expression profiling of minute samples. It utilizes a novel scanning system for single molecule fluorescence detection on cm2 size samples in combination with specialized biochips, optimized for low autofluorescence and weak unspecific adsorption. 20 μg total RNA was extracted from 10 6 cells of a human keratinocyte cell line (HaCaT) and reversely transcribed in the presence of Alexa647-aha-dUTP. 1% of the resulting labeled cDNA was used for complex hybridization to a custom-made oligonucleotide microarray representing a set of 125 different genes. For low abundant genes, individual cDNA molecules hybridized to the microarray spots could be resolved. Single cDNA molecules hybridized to the chip surface appeared as diffraction limited features in the fluorescence images. The à trous wavelet method was utilized for localization and counting of the separated cDNA signals. Subsequently, the degree of labeling of the localized cDNA molecules was determined by brightness analysis for the different genes. Variations by factors up to 6 were found, which in conventional microarray analysis would result in a misrepresentation of the relative abundance of mRNAs.
NASA Astrophysics Data System (ADS)
Clayburn, Nathan; Dreiling, Joan; McCarter, James; Ryan, Dominic; Poelker, Matt; Gay, Timothy
2012-06-01
GaAs photocathodes produce spin polarized electron beams when illuminated with circularly polarized light with photon energy approximately equal to the bandgap energy [1, 2]. A typical polarization value obtained with bulk GaAs and conventional circularly polarized light is 35%. This study investigated the spin polarization of electron beams emitted from GaAs illuminated with ``twisted light,'' an expression that describes a beam of light having orbital angular momentum (OAM). In the experiment, 790nm laser light was focused to a near diffraction-limited spot size on the surface of the GaAs photocathode to determine if OAM might couple to valence band electron spin mediated by the GaAs lattice. Our polarization measurements using a compact retarding-field micro-Mott polarimeter [3] have established an upper bound on the polarization of the emitted electron beam of 2.5%. [4pt] [1] D.T. Pierce, F. Meier, P. Zurcher, Appl. Phys. Lett. 26 670 (1975).[0pt] [2] C.K. Sinclair, et al., PRSTAB 10 023501 (2007).[0pt] [3] J.L. McCarter, M.L. Stutzman, K.W. Trantham, T.G. Anderson, A.M. Cook, and T.J. Gay Nucl. Instrum. and Meth. A (2010).
17 CFR 150.5 - Exchange-set speculative position limits.
Code of Federal Regulations, 2012 CFR
2012-04-01
... contracts, the spot month limit level must be no greater than one-quarter of the estimated spot month... spot month limit level must be no greater than necessary to minimize the potential for manipulation or... delivery contracts, the spot month limit level must be no greater than one-quarter of the estimated spot...
17 CFR 150.5 - Exchange-set speculative position limits.
Code of Federal Regulations, 2013 CFR
2013-04-01
... contracts, the spot month limit level must be no greater than one-quarter of the estimated spot month... spot month limit level must be no greater than necessary to minimize the potential for manipulation or... delivery contracts, the spot month limit level must be no greater than one-quarter of the estimated spot...
17 CFR 150.5 - Exchange-set speculative position limits.
Code of Federal Regulations, 2011 CFR
2011-04-01
... contracts, the spot month limit level must be no greater than one-quarter of the estimated spot month... spot month limit level must be no greater than necessary to minimize the potential for manipulation or... delivery contracts, the spot month limit level must be no greater than one-quarter of the estimated spot...
17 CFR 150.5 - Exchange-set speculative position limits.
Code of Federal Regulations, 2010 CFR
2010-04-01
... contracts, the spot month limit level must be no greater than one-quarter of the estimated spot month... spot month limit level must be no greater than necessary to minimize the potential for manipulation or... delivery contracts, the spot month limit level must be no greater than one-quarter of the estimated spot...
Spot diameters for scanning photorefractive keratectomy: a comparative study
NASA Astrophysics Data System (ADS)
Manns, Fabrice; Parel, Jean-Marie A.
1998-06-01
Purpose: The purpose of this study was to compare with computer simulations the duration, smoothness and accuracy of scanning photo-refractive keratectomy with spot diameters ranging from 0.2 to 1 mm. Methods: We calculated the number of pulses per diopter of flattening for spot sizes varying from 0.2 to 1 mm. We also computed the corneal shape after the correction of 4 diopters of myopia and 4 diopters of astigmatism with a 6 mm ablation zone and a spot size of 0.4 mm with 600 mJ/cm2 peak radiant exposure and 0.8 mm with 300 mJ/cm2 peak radiant exposure. The accuracy and smoothness of the ablations were compared. Results: The repetition rate required to produce corrections of myopia with a 6 mm ablation zone in a duration of 5 s per diopter is on the order of 1 kHz for spot sizes smaller than 0.5 mm, and of 100 Hz for spot sizes larger than 0.5 mm. The accuracy and smoothness after the correction of myopia and astigmatism with small and large spot sizes were not significantly different. Conclusions: This study seems to indicate that there is no theoretical advantage for using either smaller spots with higher radiant exposures or larger spots with lower radiant exposures. However, at fixed radiant exposure, treatments with smaller spots require a larger duration of surgery but provide a better accuracy for the correction of astigmatism.
New Python-based methods for data processing
Sauter, Nicholas K.; Hattne, Johan; Grosse-Kunstleve, Ralf W.; Echols, Nathaniel
2013-01-01
Current pixel-array detectors produce diffraction images at extreme data rates (of up to 2 TB h−1) that make severe demands on computational resources. New multiprocessing frameworks are required to achieve rapid data analysis, as it is important to be able to inspect the data quickly in order to guide the experiment in real time. By utilizing readily available web-serving tools that interact with the Python scripting language, it was possible to implement a high-throughput Bragg-spot analyzer (cctbx.spotfinder) that is presently in use at numerous synchrotron-radiation beamlines. Similarly, Python interoperability enabled the production of a new data-reduction package (cctbx.xfel) for serial femtosecond crystallography experiments at the Linac Coherent Light Source (LCLS). Future data-reduction efforts will need to focus on specialized problems such as the treatment of diffraction spots on interleaved lattices arising from multi-crystal specimens. In these challenging cases, accurate modeling of close-lying Bragg spots could benefit from the high-performance computing capabilities of graphics-processing units. PMID:23793153
Li, James C. M.; Chu, Sungnee G.
1980-01-01
A hemispherical Laue camera comprises a crystal sample mount for positioning a sample to be analyzed at the center of sphere of a hemispherical, X-radiation sensitive film cassette, a collimator, a stationary or rotating sample mount and a set of standard spherical projection spheres. X-radiation generated from an external source is directed through the collimator to impinge onto the single crystal sample on the stationary mount. The diffracted beam is recorded on the hemispherical X-radiation sensitive film mounted inside the hemispherical film cassette in either transmission or back-reflection geometry. The distances travelled by X-radiation diffracted from the crystal to the hemispherical film are the same for all crystal planes which satisfy Bragg's Law. The recorded diffraction spots or Laue spots on the film thereby preserve both the symmetry information of the crystal structure and the relative intensities which are directly related to the relative structure factors of the crystal orientations. The diffraction pattern on the exposed film is compared with the known diffraction pattern on one of the standard spherical projection spheres for a specific crystal structure to determine the orientation of the crystal sample. By replacing the stationary sample support with a rotating sample mount, the hemispherical Laue camera can be used for crystal structure determination in a manner previously provided in conventional Debye-Scherrer cameras.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W; Ding, X; Hu, Y
Purpose: To investigate how spot size and spacing affect plan quality, especially, plan robustness and the impact of interplay effect, of robustly-optimized intensity-modulated proton therapy (IMPT) plans for lung cancer. Methods: Two robustly-optimized IMPT plans were created for 10 lung cancer patients: (1) one for a proton beam with in-air energy dependent large spot size at isocenter (σ: 5–15 mm) and spacing (1.53σ); (2) the other for a proton beam with small spot size (σ: 2–6 mm) and spacing (5 mm). Both plans were generated on the average CTs with internal-gross-tumor-volume density overridden to irradiate internal target volume (ITV). Themore » root-mean-square-dose volume histograms (RVH) measured the sensitivity of the dose to uncertainties, and the areas under RVH curves were used to evaluate plan robustness. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Patient anatomy voxels were mapped from phase to phase via deformable image registration to score doses. Dose-volume-histogram indices including ITV coverage, homogeneity, and organs-at-risk (OAR) sparing were compared using Student-t test. Results: Compared to large spots, small spots resulted in significantly better OAR sparing with comparable ITV coverage and homogeneity in the nominal plan. Plan robustness was comparable for ITV and most OARs. With interplay effect considered, significantly better OAR sparing with comparable ITV coverage and homogeneity is observed using smaller spots. Conclusion: Robust optimization with smaller spots significantly improves OAR sparing with comparable plan robustness and similar impact of interplay effect compare to larger spots. Small spot size requires the use of larger number of spots, which gives optimizer more freedom to render a plan more robust. The ratio between spot size and spacing was found to be more relevant to determine plan robustness and the impact of interplay effect than spot size alone. This research was supported by the National Cancer Institute Career Developmental Award K25CA168984, by the Fraternal Order of Eagles Cancer Research Fund Career Development Award, by The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research, by Mayo Arizona State University Seed Grant, and by The Kemper Marley Foundation.« less
Impact of range shifter material on proton pencil beam spot characteristics.
Shen, Jiajian; Liu, Wei; Anand, Aman; Stoker, Joshua B; Ding, Xiaoning; Fatyga, Mirek; Herman, Michael G; Bues, Martin
2015-03-01
To quantitatively investigate the effect of range shifter materials on single-spot characteristics of a proton pencil beam. An analytic approximation for multiple Coulomb scattering ("differential Moliere" formula) was adopted to calculate spot sizes of proton spot scanning beams impinging on a range shifter. The calculations cover a range of delivery parameters: six range shifter materials (acrylonitrile butadiene styrene, Lexan, Lucite, polyethylene, polystyrene, and wax) and water as reference material, proton beam energies ranging from 75 to 200 MeV, range shifter thicknesses of 4.5 and 7.0 g/cm(2), and range shifter positions from 5 to 50 cm. The analytic method was validated by comparing calculation results with the measurements reported in the literature. Relative to a water-equivalent reference, the spot size distal to a wax or polyethylene range shifter is 15% smaller, while the spot size distal to a range shifter made of Lexan or Lucite is about 6% smaller. The relative spot size variations are nearly independent of beam energy and range shifter thickness and decrease with smaller air gaps. Among the six material investigated, wax and polyethylene are desirable range shifter materials when the spot size is kept small. Lexan and Lucite are the desirable range shifter materials when the scattering power is kept similar to water.
Characterisation of flash X-ray source generated by Kali-1000 Pulse Power System
NASA Astrophysics Data System (ADS)
Satyanarayana, N.; Durga Prasada Rao, A.; Mittal, K. C.
2016-02-01
The electron beam-driven Rod Pinch Diode (RPD) is presently fielded on KALI-1000 Pulse Power System at Bhabha Atomic Research Centre, Visakhapatnam and is a leading candidate for future flash X-ray radiographic sources. The diode is capable of producing less than 2-mm radiation spot sizes and greater than 350 milli rads of dose measured at 1 m from the X-ray source. KALI-1000 Pulse Power Source is capable of delivering up to 600 kV using a Tesla Transformer with Demineralized Insulated Transmission Line (DITL), the diode typically operates between 250-330 kV . Since the radiation dose has a power-law dependence on diode voltage, this limits the dose production on KALI-1000 system. Radiation dose with angular variation is measured using thermoluminescent detectors (TLD's) and the X-ray spot size is measured using pin hole arrangement with image plate (IP) to obtain the time-integrated source profile as well as a time-resolved spot diagnostic. An X-ray pinhole camera was used to pick out where the energetic e-beam connects to the anode. Ideally the diode should function such that the radiation is emitted from the tip. The camera was mounted perpendicular to the machine's axis to view the radiation from the tip. Comparison of the spot sizes of the X-ray sources obtained by the pin hole and rolled edge arrangements was carried and results obtained by both the techniques are with in ± 10% of the average values.
The tight focusing properties of Laguerre-Gaussian-correlated Schell-model beams
NASA Astrophysics Data System (ADS)
Xu, Hua-Feng; Zhang, Zhou; Qu, Jun; Huang, Wei
2016-08-01
Based on the Richards-Wolf vectorial diffraction theory, the tight focusing properties, including the intensity distribution, the degree of polarization and the degree of coherence, of the Laguerre-Gaussian-correlated Schell-model (LGSM) beams through a high-numerical-aperture (NA) focusing system are investigated in detail. It is found that the LGSM beam exhibits some extraordinary focusing properties, which is quite different from that of the GSM beam, and the tight focusing properties are closely related to the initial spatial coherence ? and the mode order n. The LGSM beam can form an elliptical focal spot, a circular focal spot or a doughnut-shaped dark hollow beam at the focal plane by choosing a suitable value of the initial spatial coherence ?, and the central dark size of the dark hollow beam increases with the increase of the mode order n. In addition, the influences of the initial spatial coherence ? and the mode order n on the degree of polarization and the degree of coherence are also analysed in detail, respectively. Our results may find applications in optical trapping.
Grassberger, Clemens; Dowdell, Stephen; Lomax, Antony; Sharp, Greg; Shackleford, James; Choi, Noah; Willers, Henning; Paganetti, Harald
2013-01-01
Purpose Quantify the impact of respiratory motion on the treatment of lung tumors with spot scanning proton therapy. Methods and Materials 4D Monte Carlo simulations were used to assess the interplay effect, which results from relative motion of the tumor and the proton beam, on the dose distribution in the patient. Ten patients with varying tumor sizes (2.6-82.3cc) and motion amplitudes (3-30mm) were included in the study. We investigated the impact of the spot size, which varies between proton facilities, and studied single fractions and conventionally fractionated treatments. The following metrics were used in the analysis: minimum/maximum/mean dose, target dose homogeneity and 2-year local control rate (2y-LC). Results Respiratory motion reduces the target dose homogeneity, with the largest effects observed for the highest motion amplitudes. Smaller spot sizes (σ≈3mm) are inherently more sensitive to motion, decreasing target dose homogeneity on average by a factor ~2.8 compared to a larger spot size (σ≈13mm). Using a smaller spot size to treat a tumor with 30mm motion amplitude reduces the minimum dose to 44.7% of the prescribed dose, decreasing modeled 2y-LC from 87.0% to 2.7%, assuming a single fraction. Conventional fractionation partly mitigates this reduction, yielding a 2y-LC of 71.6%. For the large spot size, conventional fractionation increases target dose homogeneity and prevents a deterioration of 2y-LC for all patients. No correlation with tumor volume is observed. The effect on the normal lung dose distribution is minimal: observed changes in mean lung dose and lung V20 are <0.6Gy(RBE) and <1.7% respectively. Conclusions For the patients in this study, 2y-LC could be preserved in the presence of interplay using a large spot size and conventional fractionation. For treatments employing smaller spot sizes and/or in the delivery of single fractions, interplay effects can lead to significant deterioration of the dose distribution and lower 2y-LC. PMID:23462423
Stratified Diffractive Optic Approach for Creating High Efficiency Gratings
NASA Technical Reports Server (NTRS)
Chambers, Diana M.; Nordin, Gregory P.
1998-01-01
Gratings with high efficiency in a single diffracted order can be realized with both volume holographic and diffractive optical elements. However, each method has limitations that restrict the applications in which they can be used. For example, high efficiency volume holographic gratings require an appropriate combination of thickness and permittivity modulation throughout the bulk of the material. Possible combinations of those two characteristics are limited by properties of currently available materials, thus restricting the range of applications for volume holographic gratings. Efficiency of a diffractive optic grating is dependent on its approximation of an ideal analog profile using discrete features. The size of constituent features and, consequently, the number that can be used within a required grating period restricts the applications in which diffractive optic gratings can be used. These limitations imply that there are applications which cannot be addressed by either technology. In this paper we propose to address a number of applications in this category with a new method of creating high efficiency gratings which we call stratified diffractive optic gratings. In this approach diffractive optic techniques are used to create an optical structure that emulates volume grating behavior. To illustrate the stratified diffractive optic grating concept we consider a specific application, a scanner for a space-based coherent wind lidar, with requirements that would be difficult to meet by either volume holographic or diffractive optic methods. The lidar instrument design specifies a transmissive scanner element with the input beam normally incident and the exiting beam deflected at a fixed angle from the optical axis. The element will be rotated about the optical axis to produce a conical scan pattern. The wavelength of the incident beam is 2.06 microns and the required deflection angle is 30 degrees, implying a grating period of approximately 4 microns. Creating a high efficiency volume grating with these parameters would require a grating thickness that cannot be attained with current photosensitive materials. For a diffractive optic grating, the number of binary steps necessary to produce high efficiency combined with the grating period requires feature sizes and alignment tolerances that are also unattainable with current techniques. Rotation of the grating and integration into a space-based lidar system impose the additional requirements that it be insensitive to polarization orientation, that its mass be minimized and that it be able to withstand launch and space environments.
NASA Astrophysics Data System (ADS)
Adavallan, K.; Krishnakumar, N.
2014-06-01
Gold nanoparticles (Au-NPs) were synthesized at room temperature using Morus alba (mulberry) leaf extract as reducing and stabilizing agent. The development of plant mediated synthesis of nanoparticles is gaining importance due to its simplicity, low cost, non-toxicity, eco-friendliness, long term stability and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au-NPs. The formation and morphology of biosynthesized nanoparticles are investigated with the help of UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) techniques. Au-NPs formation was screened by UV-Vis spectroscopy through color conversion due to surface plasmon resonance band at 538 nm for Au-NPs. DLS studies revealed that the average size of Au-NPs was 50 nm. TEM studies showed the particles to be nearly spherical with few irregular shapes and particle size ranges 15-53 nm. The AFM image clearly shows the surface morphology of the well-dispersed Au-NPs with less than 50 nm. The high crystallinity of nanoparticles is evident from bright circular spots in the selected area electron diffraction (SAED) pattern. X-ray diffraction pattern showed high purity and face-centered cubic structure of Au-NPs. The FT-IR results indicate the presence of different functional groups present in the biomolecule capping the nanoparticles. Further, biosynthesized Au-NPs show strong zone of inhibition against Vibrio cholera (gram-negative) and Staphylococcus aureus (gram-positive) whereas, chemically synthesized Au-NPs and mulberry leaf extract exhibit a fair zone of inhibition.
Babinet’s principle for scalar complex objects in the far field
NASA Astrophysics Data System (ADS)
Rodriguez-Zurita, G.; Rickenstorff, C.; Pastrana-Sánchez, R.; Vázquez-Castillo, J. F.; Robledo-Sanchez, C.; Meneses-Fabian, C.; Toto-Arellano, N. I.
2014-10-01
Babinet’s principle is briefly reviewed, especially regarding the zeroth diffraction order of the far field diffraction pattern associated with a given aperture. The pattern is basically described by the squared modulus of the Fourier transform of its amplitude distribution (scalar case). In this paper, complementary objects are defined with respect to complex values and not only with respect to unity in order to include phase objects and phase modulation. It is shown that the difference in complementary patterns can be sometimes a bright spot at the zero order location as is widely known, but also, it can be a gray spot or even a dark one. Conditions of occurrence for each case are given as well as some numerical and experimental examples.
Inverse-designed stretchable metalens with tunable focal distance
NASA Astrophysics Data System (ADS)
Callewaert, Francois; Velev, Vesselin; Jiang, Shizhou; Sahakian, Alan Varteres; Kumar, Prem; Aydin, Koray
2018-02-01
In this paper, we present an inverse-designed 3D-printed all-dielectric stretchable millimeter wave metalens with a tunable focal distance. A computational inverse-design method is used to design a flat metalens made of disconnected polymer building blocks with complex shapes, as opposed to conventional monolithic lenses. The proposed metalens provides better performance than a conventional Fresnel lens, using lesser amount of material and enabling larger focal distance tunability. The metalens is fabricated using a commercial 3D-printer and attached to a stretchable platform. Measurements and simulations show that the focal distance can be tuned by a factor of 4 with a stretching factor of only 75%, a nearly diffraction-limited focal spot, and with a 70% relative focusing efficiency, defined as the ratio between power focused in the focal spot and power going through the focal plane. The proposed platform can be extended for design and fabrication of multiple electromagnetic devices working from visible to microwave radiation depending on scaling of the devices.
Concept of a photon-counting camera based on a diffraction-addressed Gray-code mask
NASA Astrophysics Data System (ADS)
Morel, Sébastien
2004-09-01
A new concept of photon counting camera for fast and low-light-level imaging applications is introduced. The possible spectrum covered by this camera ranges from visible light to gamma rays, depending on the device used to transform an incoming photon into a burst of visible photons (photo-event spot) localized in an (x,y) image plane. It is actually an evolution of the existing "PAPA" (Precision Analog Photon Address) Camera that was designed for visible photons. This improvement comes from a simplified optics. The new camera transforms, by diffraction, each photo-event spot from an image intensifier or a scintillator into a cross-shaped pattern, which is projected onto a specific Gray code mask. The photo-event position is then extracted from the signal given by an array of avalanche photodiodes (or photomultiplier tubes, alternatively) downstream of the mask. After a detailed explanation of this camera concept that we have called "DIAMICON" (DIffraction Addressed Mask ICONographer), we briefly discuss about technical solutions to build such a camera.
Survival and home-range size of Northern Spotted Owls in southwestern Oregon
Schilling, Jason W.; Dugger, Katie M.; Anthony, Robert G.
2013-01-01
In the Klamath province of southwestern Oregon, Northern Spotted Owls (Strix occidentalis caurina) occur in complex, productive forests that historically supported frequent fires of variable severity. However, little is known about the relationships between Spotted Owl survival and home-range size and the characteristics of fire-prone, mixed-conifer forests of the Klamath province. Thus, the objectives of this study were to estimate monthly survival rates and home-range size in relation to habitat characteristics for Northern Spotted Owls in southwestern Oregon. Home-range size and survival of 15 Northern Spotted Owls was monitored using radiotelemetry in the Ashland Ranger District of the Rogue River–Siskiyou National Forest from September 2006 to October 2008. Habitat classes within Spotted Owl home ranges were characterized using a remote-sensed vegetation map of the study area. Estimates of monthly survival ranged from 0.89 to 1.0 and were positively correlated with the number of late-seral habitat patches and the amount of edge, and negatively correlated with the mean nearest neighbor distance between late-seral habitats. Annual home-range size varied from to 189 to 894 ha ( x = 576; SE = 75), with little difference between breeding and nonbreeding home ranges. Breeding-season home-range size increased with the amount of hard edge, and the amount of old and mature forest combined. Core area, annual and nonbreeding season home-range sizes all increased with increased amounts of hard edge, suggesting that increased fragmentation is associated with larger core and home-range sizes. Although no effect of the amount of late-seral stage forest on either survival or home-range size was detected, these results are the first to concurrently demonstrate increased forest fragmentation with decreased survival and increased home-range size of Northern Spotted Owls.
Wavefront control of high-power laser beams in the National Ignition Facility (NIF)
NASA Astrophysics Data System (ADS)
Zacharias, Richard A.; Bliss, Erlan S.; Winters, Scott; Sacks, Richard A.; Feldman, Mark; Grey, Andrew; Koch, Jeffrey A.; Stolz, Christopher J.; Toeppen, John S.; Van Atta, Lewis; Woods, Bruce W.
2000-04-01
The use of lasers as the driver for inertial confinement fusion and weapons physics experiments is based on their ability to produce high-energy short pulses in a beam with low divergence. Indeed, the focusability of high quality laser beams far exceeds alternate technologies and is a major factor in the rationale for building high power lasers for such applications. The National Ignition Facility (NIF) is a large, 192-beam, high-power laser facility under construction at the Lawrence Livermore National Laboratory for fusion and weapons physics experiments. Its uncorrected minimum focal spot size is limited by laser system aberrations. The NIF includes a Wavefront Control System to correct these aberrations to yield a focal spot small enough for its applications. Sources of aberrations to be corrected include prompt pump-induced distortions in the laser amplifiers, previous-shot thermal distortions, beam off-axis effects, and gravity, mounting, and coating-induced optic distortions. Aberrations from gas density variations and optic-manufacturing figure errors are also partially corrected. This paper provides an overview of the NIF Wavefront Control System and describes the target spot size performance improvement it affords. It describes provisions made to accommodate the NIF's high fluence (laser beam and flashlamp), large wavefront correction range, wavefront temporal bandwidth, temperature and humidity variations, cleanliness requirements, and exception handling requirements (e.g. wavefront out-of-limits conditions).
Brockhauser, Sandor; Svensson, Olof; Bowler, Matthew W; Nanao, Max; Gordon, Elspeth; Leal, Ricardo M F; Popov, Alexander; Gerring, Matthew; McCarthy, Andrew A; Gotz, Andy
2012-08-01
The automation of beam delivery, sample handling and data analysis, together with increasing photon flux, diminishing focal spot size and the appearance of fast-readout detectors on synchrotron beamlines, have changed the way that many macromolecular crystallography experiments are planned and executed. Screening for the best diffracting crystal, or even the best diffracting part of a selected crystal, has been enabled by the development of microfocus beams, precise goniometers and fast-readout detectors that all require rapid feedback from the initial processing of images in order to be effective. All of these advances require the coupling of data feedback to the experimental control system and depend on immediate online data-analysis results during the experiment. To facilitate this, a Data Analysis WorkBench (DAWB) for the flexible creation of complex automated protocols has been developed. Here, example workflows designed and implemented using DAWB are presented for enhanced multi-step crystal characterizations, experiments involving crystal reorientation with kappa goniometers, crystal-burning experiments for empirically determining the radiation sensitivity of a crystal system and the application of mesh scans to find the best location of a crystal to obtain the highest diffraction quality. Beamline users interact with the prepared workflows through a specific brick within the beamline-control GUI MXCuBE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xingwen; Wei, Wenfu; Wu, Jian
2013-06-28
Laser produced copper plasmas of different spot sizes in air were investigated using fast photography and optical emission spectroscopy (OES). The laser energy was 33 mJ. There were dramatic changes in the plasma plume expansion into the ambient air when spot sizes changed from {approx}0.1 mm to {approx}0.6 mm. A stream-like structure and a hemispherical structure were, respectively, observed. It appeared that the same spot size resulted in similar expansion dynamics no matter whether the target was located in the front of or behind the focal point, although laser-induced air breakdown sometimes occurred in the latter case. Plasma plume frontmore » positions agree well with the classic blast wave model for the large spot-size cases, while an unexpected stagnation of {approx}80 ns occurred after the laser pulse ends for the small spot size cases. This stagnation can be understood in terms of the evolution of enhanced plasma shielding effects near the plasma front. Axial distributions of plasma components by OES revealed a good confinement effect. Electron number densities were estimated and interpreted using the recorded Intensified Charge Coupled Device (ICCD) images.« less
Optical diffraction by the microstructure of the wing of a moth
NASA Astrophysics Data System (ADS)
Brink, D. J.; Smit, J. E.; Lee, M. E.; Möller, A.
1995-09-01
On the wing of the moth Trichoplusia orichalcea a prominent, apparently highly reflective, golden spot can be seen. Scales from this area of the wing exhibit a regular microstructure resembling a submicrometer herringbone pattern. We show that a diffraction process from this structure is responsible for the observed optical properties, such as directionality, brightness variations, polarization, and color.
Plasmonic direct writing lithography with a macroscopical contact probe
NASA Astrophysics Data System (ADS)
Huang, Yuerong; Liu, Ling; Wang, Changtao; Chen, Weidong; Liu, Yunyue; Li, Ling
2018-05-01
In this work, we design a plasmonic direct writing lithography system with a macroscopical contact probe to achieve nanometer scale spots. The probe with bowtie-shaped aperture array adopts spring hinge and beam deflection method (BDM) to realize near-field lithography. Lithography results show that a macroscopical plasmonic contact probe can achieve a patterning resolution of around 75 nm at 365 nm wavelength, and demonstrate that the lithography system is promising for practical applications due to beyond the diffraction limit, low cost, and simplification of system configuration. CST calculations provide a guide for the design of recording structure and the arrangement of placing polarizer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goeke, R.; Farnsworth, A.V.; Neumann, C.C.
1996-06-01
This report discusses a novel fabrication process to produce nearly perfect optics. The process utilizes vacuum deposition techniques to optimally modify polished optical substrate surfaces. The surface figure, i.e. contour of a polished optical element, is improved by differentially filling in the low spots on the surface using flux from a physical vapor deposition source through an appropriate mask. The process is expected to enable the manufacture of diffraction-limited optical systems for the UV, extreme UV, and soft X-ray spectral regions, which would have great impact on photolithography and astronomy. This same technique may also reduce the fabrication cost ofmore » visible region optics with aspheric surfaces.« less
Poisson-Spot Intensity Reduction with a Partially-Transparent Petal-Shaped Optical Mask
NASA Technical Reports Server (NTRS)
Shiri, Shahram; Wasylkiwskyj, Wasyl
2013-01-01
The presence of Poisson's spot, also known as the spot of Arago, formed along the optical axis in the geometrical shadow behind an obstruction, has been known since the 18th century. The presence of this spot can best be described as the consequence of constructive interference of light waves diffracted on the edge of the obstruction where its central position can··be determined by the symmetry of the object More recently, the elimination of this spot has received attention in the fields of particle physics, high-energy lasers, astronomy and lithography. In this paper, we introduce a novel, partially transparent petaled mask shape that suppresses the bright spot by up to 10 orders of magnitude in intensity, with powerful applications to many of the above fields. The optimization technique formulated in this design can identify mask shapes having partial transparency only near the petal tips.
Demography of Northern Spotted Owls in southwestern Oregon
Zabel, Cynthia J.; Salmons, Susan E.; Forsman, Eric D.; DeStefano, Stephen; Raphael, Martin G.; Gutierrez, R.J.
1996-01-01
Northern Spotted Owls (Strix occidentalis caurina) are associated with lower elevation, commercially valuable, late-successional coniferous forests in the Pacific Northwest. Meta-analyses of demographic parameters indicate that Northern Spotted Owl populations are declining throughout their range (Anderson and Burnham 1992, Burnham et al. this volume). Recent research has attempted to determine whether management activities have affected the viability of Spotted Owl populations, and results have led to development of conservation plans for the species (Dawson et al. 1987, Thomas et al. 1990, Murphy and Noon 1992, USDI 1992, Thomas et al. 1993b).In the Recovery Plan for the Northern Spotted Owl (USDI 1992b) threats to the species were identified as small population sizes, declining populations, limited amounts of habitat, continued loss and fragmentation of habitat, geographically isolated populations, and predation and competition from other avian species. Weather and fire are natural processes that also may affect reproductive success of Spotted Owls. Weather may be a factor in the high annual variability in fecundity of Spotted Owls, as has been suggested for other predatory bird species (Newton, 1979, 1986). However, these factors have not been addressed in previous studies of Spotted Owls.Our objectives were to estimate survival, fecundity, and annual rates of population change (l) for resident, territorial female Spotted Owls at two study areas in the coastal mountains of southwestern Oregon. We tested if the amount of rainfall was correlated with reproduction of Spotted Owls. While surveying for Spotted Owls, we documented the increased presence of Barred Owls (Strix varia), a potential competitor of Spotted Owls.
Automated translating beam profiler for in situ laser beam spot-size and focal position measurements
NASA Astrophysics Data System (ADS)
Keaveney, James
2018-03-01
We present a simple and convenient, high-resolution solution for automated laser-beam profiling with axial translation. The device is based on a Raspberry Pi computer, Pi Noir CMOS camera, stepper motor, and commercial translation stage. We also provide software to run the device. The CMOS sensor is sensitive over a large wavelength range between 300 and 1100 nm and can be translated over 25 mm along the beam axis. The sensor head can be reversed without changing its axial position, allowing for a quantitative estimate of beam overlap with counter-propagating laser beams. Although not limited to this application, the intended use for this device is the automated measurement of the focal position and spot-size of a Gaussian laser beam. We present example data of one such measurement to illustrate device performance.
Keaveney, James
2018-03-01
We present a simple and convenient, high-resolution solution for automated laser-beam profiling with axial translation. The device is based on a Raspberry Pi computer, Pi Noir CMOS camera, stepper motor, and commercial translation stage. We also provide software to run the device. The CMOS sensor is sensitive over a large wavelength range between 300 and 1100 nm and can be translated over 25 mm along the beam axis. The sensor head can be reversed without changing its axial position, allowing for a quantitative estimate of beam overlap with counter-propagating laser beams. Although not limited to this application, the intended use for this device is the automated measurement of the focal position and spot-size of a Gaussian laser beam. We present example data of one such measurement to illustrate device performance.
XeCl excimer laser with new prism resonator configurations and its performance characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benerji, N. S., E-mail: nsb@rrcat.gov.in, E-mail: bsingh@rrcat.gov.in; Singh, A.; Varshnay, N.
2015-07-15
New resonator cavity configurations, namely, the prism resonator and unstable prism resonator, are demonstrated for the first time in an excimer (XeCl) laser with interesting and novel results. High misalignment tolerance ∼50 mrad is achieved with considerably reduced beam divergence of less than ∼1 mrad without reduction in output power capabilities of the laser. The misalignment tolerance of ∼50 mrad is a dramatic improvement of ∼25 times compared to ∼2 mrad normally observed in standard excimer laser with plane-plane cavity. Increase in depth of focus from 3 mm to 5.5 mm was also achieved in case of prism resonator configurationmore » with an improvement of about 60%. Unstable prism resonator configuration is demonstrated here in this paper with further reduction in beam divergence to about 0.5 mrad using plano-convex lens as output coupler. The misalignment tolerance in case of unstable prism resonator was retained at about 30 mrad which is a high value compared to standard unstable resonators. The output beam spot was completely filled with flat-top profile with prism resonator configurations, which is desired for various material processing applications. Focusing properties and beam divergence in case of prism resonator have been investigated using SEM (scanning electron microscope) images. SEM images of the focused spot size (∼20 μm holes) on metal sheet indicate beam divergence of about 0.05 mrad which is about 1.5 times diffraction limit. Energy contained in this angle is thus sufficient for micro-machining applications. Clean and sharp edges of the micro-holes show high pointing stability with multiple shot exposures. Such characteristics of the excimer laser system will be extremely useful in micro-machining and other field applications.« less
XeCl excimer laser with new prism resonator configurations and its performance characteristics.
Benerji, N S; Singh, A; Varshnay, N; Singh, Bijendra
2015-07-01
New resonator cavity configurations, namely, the prism resonator and unstable prism resonator, are demonstrated for the first time in an excimer (XeCl) laser with interesting and novel results. High misalignment tolerance ∼50 mrad is achieved with considerably reduced beam divergence of less than ∼1 mrad without reduction in output power capabilities of the laser. The misalignment tolerance of ∼50 mrad is a dramatic improvement of ∼25 times compared to ∼2 mrad normally observed in standard excimer laser with plane-plane cavity. Increase in depth of focus from 3 mm to 5.5 mm was also achieved in case of prism resonator configuration with an improvement of about 60%. Unstable prism resonator configuration is demonstrated here in this paper with further reduction in beam divergence to about 0.5 mrad using plano-convex lens as output coupler. The misalignment tolerance in case of unstable prism resonator was retained at about 30 mrad which is a high value compared to standard unstable resonators. The output beam spot was completely filled with flat-top profile with prism resonator configurations, which is desired for various material processing applications. Focusing properties and beam divergence in case of prism resonator have been investigated using SEM (scanning electron microscope) images. SEM images of the focused spot size (∼20 μm holes) on metal sheet indicate beam divergence of about 0.05 mrad which is about 1.5 times diffraction limit. Energy contained in this angle is thus sufficient for micro-machining applications. Clean and sharp edges of the micro-holes show high pointing stability with multiple shot exposures. Such characteristics of the excimer laser system will be extremely useful in micro-machining and other field applications.
Laser-induced spalling of thin metal film from silica substrate followed by inflation of microbump
NASA Astrophysics Data System (ADS)
Inogamov, N. A.; Zhakhovsky, V. V.; Migdal, K. P.
2016-04-01
Dynamics of a thin gold film on a silica substrate triggered by fast heating with the use of a subpicosecond laser pulse is studied. The pressure waves generated by such heating may result in spalling (delamination) of the film and its flying away from the substrate after an acoustic time defined by the film thickness and speed of sound in metal. Intensity of the heating laser beam has the spatial Gaussian distribution in a cross section. Therefore, the heating of film surface is non-uniform along cylindrical radius measured from the beam axis. As a result of such heating, the velocity distribution in material flying away from the substrate has a maximum at the beam axis. Thus, the separated film has dome-like shape which inflates with time. Volume of an empty cavity between the separated film and the substrate increases during inflation. Typical flight velocities are in the range of 30-200 m/s. The inflation stage can last from few to several tens of nanoseconds if the diffraction-limited micron-sized laser focal spots are used. Capillary forces acting along the warped flying film decelerate the inflation of dome. Capillary deceleration of a bulging dome focuses mass flow along the dome shell in the direction of its axis. This results in formation of an axial jet and droplet in a tip of the dome. Our new simulation results and comparisons with experiments are presented. The results explain appearance of debris in a form of frozen droplets on a surface of an irradiated spot. This is the consequence of the capillary return of a droplet.
Hinkle, Joshua C; Weisburd, David; Famega, Christine; Ready, Justin
2013-01-01
Hot spots policing is one of the most influential police innovations, with a strong body of experimental research showing it to be effective in reducing crime and disorder. However, most studies have been conducted in major cities, and we thus know little about whether it is effective in smaller cities, which account for a majority of police agencies. The lack of experimental studies in smaller cities is likely in part due to challenges designing statistically powerful tests in such contexts. The current article explores the challenges of statistical power and "noise" resulting from low base rates of crime in smaller cities and provides suggestions for future evaluations to overcome these limitations. Data from a randomized experimental evaluation of broken windows policing in hot spots are used to illustrate the challenges that low base rates present for evaluating hot spots policing programs in smaller cities. Analyses show low base rates make it difficult to detect treatment effects. Very large effect sizes would be required to reach sufficient power, and random fluctuations around low base rates make detecting treatment effects difficult, irrespective of power, by masking differences between treatment and control groups. Low base rates present strong challenges to researchers attempting to evaluate hot spots policing in smaller cities. As such, base rates must be taken directly into account when designing experimental evaluations. The article offers suggestions for researchers attempting to expand the examination of hot spots policing and other microplace-based interventions to smaller jurisdictions.
Compound focusing mirror and X-ray waveguide optics for coherent imaging and nano-diffraction.
Salditt, Tim; Osterhoff, Markus; Krenkel, Martin; Wilke, Robin N; Priebe, Marius; Bartels, Matthias; Kalbfleisch, Sebastian; Sprung, Michael
2015-07-01
A compound optical system for coherent focusing and imaging at the nanoscale is reported, realised by high-gain fixed-curvature elliptical mirrors in combination with X-ray waveguide optics or different cleaning apertures. The key optical concepts are illustrated, as implemented at the Göttingen Instrument for Nano-Imaging with X-rays (GINIX), installed at the P10 coherence beamline of the PETRA III storage ring at DESY, Hamburg, and examples for typical applications in biological imaging are given. Characteristic beam configurations with the recently achieved values are also described, meeting the different requirements of the applications, such as spot size, coherence or bandwidth. The emphasis of this work is on the different beam shaping, filtering and characterization methods.
Non-stationary self-focusing of intense laser beam in plasma using ramp density profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M.; Ghamari, F.
2011-10-15
The non-stationary self-focusing of high intense laser beam in under-dense plasma with upward increasing density ramp is investigated. The obtained results show that slowly increasing plasma density ramp is very important in enhancing laser self-focusing. Also, the spot size oscillations of laser beam in front and rear of the pulse for two different density profiles are shown. We have selected density profiles that already were used by Sadighi-Bonabi et al.[Phys. Plasmas 16, 083105 (2009)]. Ramp density profile causes the laser beam to become more focused and penetrations deeps into the plasma by reduction of diffraction effects. Our computations show moremore » reliable results in comparison to the previous works.« less
Cynthia J. Zabel; Kevin S. McKelvey; James P. Ward
1995-01-01
Correlations between the home-range size of northern spotted owls (Strix occidentalis caurina) and proportion of their range in old-growth forest have been reported, but there are few data on the relationship between their home-range size and prey. The primary prey of spotted owls are wood rats and northern flying squirrels (Glaucomys sabrinus). Wood...
Tapered holey fibers for spot-size and numerical-aperture conversion.
Town, G E; Lizier, J T
2001-07-15
Adiabatically tapered holey fibers are shown to be potentially useful for guided-wave spot-size and numerical-aperture conversion. Conditions for adiabaticity and design guidelines are provided in terms of the effective-index model. We also present finite-difference time-domain calculations of downtapered holey fiber, showing that large spot-size conversion factors are obtainable with minimal loss by use of short, optimally shaped tapers.
Faster scanning and higher resolution: new setup for multilayer zone plate imaging
NASA Astrophysics Data System (ADS)
Osterhoff, Markus; Soltau, Jakob; Eberl, Christian; Krebs, Hans-Ulrich
2017-09-01
Hard x-ray imaging methods are routinely used in two and three spatial dimensions to tackle challenging scientific questions of the 21st century, e.g. catalytic processes in energy research and bio-physical experiments on the single-cell level [1-3]. Among the most important experimental techniques are scanning SAXS to probe the local orientation of filaments and fluorescence mapping to quantify the local composition. The routinely available spot size has been reduced to few tens of nanometres; but the real-space resolution of these techniques can degrade by (i) vibration or drift, and (ii) spreading of beam damage, especially for soft condensed matter on small length scales. We have recently developed new Multilayer Zone Plate (MZP) optics for focusing hard (14 keV) and very hard (60 keV to above 100 keV) x-rays down to spot sizes presumably on 5 or 10nm scale. Here we report on recent progress on a new MZP based sample scanner, and how to tackle beam damage spread. The Eiger detector synchronized to a piezo scanner enables to scan in a 2D continuous mode fields of view larger than 20μm squared, or for high resolution down to (virtual) pixel sizes of below 2nm, in about three minutes for 255×255 points (90 seconds after further improvements). Nano-SAXS measurements with more than one million real-space pixels, each containing a full diffraction image, can be carried out in less than one hour, as we have shown using a Siemens star test pattern.
An integrated optics microfluidic device for detecting single DNA molecules.
Krogmeier, Jeffrey R; Schaefer, Ian; Seward, George; Yantz, Gregory R; Larson, Jonathan W
2007-12-01
A fluorescence-based integrated optics microfluidic device is presented, capable of detecting single DNA molecules in a high throughput and reproducible manner. The device integrates microfluidics for DNA stretching with two optical elements for single molecule detection (SMD): a plano-aspheric refractive lens for fluorescence excitation (illuminator) and a solid parabolic reflective mirror for fluorescence collection (collector). Although miniaturized in size, both optical components were produced and assembled onto the microfluidic device by readily manufacturable fabrication techniques. The optical resolution of the device is determined by the small and relatively low numerical aperture (NA) illuminator lens (0.10 effective NA, 4.0 mm diameter) that delivers excitation light to a diffraction limited 2.0 microm diameter spot at full width half maximum within the microfluidic channel. The collector (0.82 annular NA, 15 mm diameter) reflects the fluorescence over a large collection angle, representing 71% of a hemisphere, toward a single photon counting module in an infinity-corrected scheme. As a proof-of-principle experiment for this simple integrated device, individual intercalated lambda-phage DNA molecules (48.5 kb) were stretched in a mixed elongational-shear microflow, detected, and sized with a fluorescence signal to noise ratio of 9.9 +/-1.0. We have demonstrated that SMD does not require traditional high numerical aperture objective lenses and sub-micron positioning systems conventionally used in many applications. Rather, standard manufacturing processes can be combined in a novel way that promises greater accessibility and affordability for microfluidic-based single molecule applications.
Miniaturized diffraction based interferometric distance measurement sensor
NASA Astrophysics Data System (ADS)
Kim, Byungki
In this thesis, new metrology hardware is designed, fabricated, and tested to provide improvements over current MEMS metrology. The metrology system is a micromachined scanning interferometer (muSI) having a sub-nm resolution in a compact design. The proposed microinterferometer forms a phase sensitive diffraction grating with interferomeric sensitivity, while adding the capability of better lateral resolution by focusing the laser to a smaller spot size. A detailed diffraction model of the microinterferometer was developed to simulate the device performance and to suggest the location of photo detectors for integrated optoelectronics. A particular device is fabricated on a fused silica substrate using aluminum to form the deformable diffraction grating fingers and AZ P4620 photo resist (PR) for the microlens. The details of the fabrication processes are presented. The structure also enables optoelectronics to be integrated so that the interferometer with photo detectors can fit in an area that is 1 mm x 1 mm. The scanning results using a fixed grating muSI demonstrated that it could measure vibration profile as well as static vertical (less than a half wave length) and lateral dimension of MEMS. The muSI, which is integrated with photo diodes, demonstrated its operation by scanning a cMUT. The PID control has been tested and resulted in improvement in scanned images. The integrated muSI demonstrated that the deformable grating could be used to tune the measurement keep the interferometer in quadrature for highest sensitivity.
Measuring Spray Droplet Size from Agricultural Nozzles Using Laser Diffraction
Fritz, Bradley K.; Hoffmann, W. Clint
2016-01-01
When making an application of any crop protection material such as an herbicide or pesticide, the applicator uses a variety of skills and information to make an application so that the material reaches the target site (i.e., plant). Information critical in this process is the droplet size that a particular spray nozzle, spray pressure, and spray solution combination generates, as droplet size greatly influences product efficacy and how the spray moves through the environment. Researchers and product manufacturers commonly use laser diffraction equipment to measure the spray droplet size in laboratory wind tunnels. The work presented here describes methods used in making spray droplet size measurements with laser diffraction equipment for both ground and aerial application scenarios that can be used to ensure inter- and intra-laboratory precision while minimizing sampling bias associated with laser diffraction systems. Maintaining critical measurement distances and concurrent airflow throughout the testing process is key to this precision. Real time data quality analysis is also critical to preventing excess variation in the data or extraneous inclusion of erroneous data. Some limitations of this method include atypical spray nozzles, spray solutions or application conditions that result in spray streams that do not fully atomize within the measurement distances discussed. Successful adaption of this method can provide a highly efficient method for evaluation of the performance of agrochemical spray application nozzles under a variety of operational settings. Also discussed are potential experimental design considerations that can be included to enhance functionality of the data collected. PMID:27684589
NASA Astrophysics Data System (ADS)
Bokor, Nándor; Davidson, Nir
2006-01-01
The properties of the focal spot for 4pi focusing with radially polarized first-order Laguerre-Gaussian beams are calculated. It is shown that a focal spot that has an extremely sharp dark region at the center and an almost-perfect spherical symmetry can be achieved. When such a hollow dark spherical spot is used in 4pi fluorescence depletion microscopy, an axial FWHM spot size of ˜39 nm and a transverse FWHM spot size of ˜64 nm can be achieved simultaneously in a practical system.
Bokor, Nándor; Davidson, Nir
2006-01-15
The properties of the focal spot for 4pi focusing with radially polarized first-order Laguerre-Gaussian beams are calculated. It is shown that a focal spot that has an extremely sharp dark region at the center and an almost-perfect spherical symmetry can be achieved. When such a hollow dark spherical spot is used in 4pi fluorescence depletion microscopy, an axial FWHM spot size of approximately 39 nm and a transverse FWHM spot size of approximately 64 nm can be achieved simultaneously in a practical system.
SU-G-206-08: How Should Focal Spot Be Chosen for Optimized CT Imaging with Dose Modulation?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bache, S; Liu, X; Rong, J
Purpose: To choose the preferred focal spot for achieving optimized CT image quality with balanced tube heating considerations. Methods: An anthropomorphic pelvic phantom was scanned using a GE Discovery CT750 HD at 120 and 140kVp, 0.8s rotation time, and pitch of 0.984. “Smart mA” was enabled to simulate a routine abdomen–pelvis CT scan. Permissible mA values at 120 and 140 kVp were obtained from the Serial Load Rating table (for mimicking a busy CT clinical operation) in the scanner Technical Reference Manual. At each kVp station and two Noise Index levels, the mA Upper Limit was set above/below the permissiblemore » mA values. Scanned mA values and focal spot (FS) used were obtained from the DICOM header of each image, and the FS-mA relationship was analyzed. For visual confirmation beyond recorded FS information, a CatPhan with a fat-ring attached for mimicking patient size/shape was scanned at 120kVp. A group of radiologists/physicists compared a pair of CatPhan images qualitatively. Lastly, a number of patient cases were evaluated to confirm the FS-mA relationship. Results: When preset Upper Limit values were above the permissible mA values, the Large FS (labeled 1.2) was used in scans, even if the maximum scanned mA values were much lower than the permissible values at both 120 and 140 kVp. Otherwise the Small FS (labeled 0.7) was used. Visual evaluation of the high contrast module of CatPhan and additional analysis of patient cases further confirmed that the preset Upper Limit determines which focal spot is to be used, not the actual maximum mA value to be scanned. Conclusion: Specific FS can be selected by setting up appropriate mA Upper Limit in a protocol. CT protocols could be optimized by selecting appropriate FS for improving patient image quality, especially benefiting the small size and pediatric patients.« less
Lan, Hsiao-Chin; Hsiao, Hsu-Liang; Chang, Chia-Chi; Hsu, Chih-Hung; Wang, Chih-Ming; Wu, Mount-Learn
2009-11-09
A monolithically integrated micro-optical element consisting of a diffractive optical element (DOE) and a silicon-based 45 degrees micro-reflector is experimentally demonstrated to facilitate the optical alignment of non-coplanar fiber-to-fiber coupling. The slanted 45 degrees reflector with a depth of 216 microm is fabricated on a (100) silicon wafer by anisotropic wet etching. The DOE with a diameter of 174.2 microm and a focal length of 150 microm is formed by means of dry etching. Such a compact device is suitable for the optical micro-system to deflect the incident light by 90 degrees and to focus it on the image plane simultaneously. The measured light pattern with a spot size of 15 microm has a good agreement with the simulated result of the elliptic-symmetry DOE with an off-axis design for eliminating the strongly astigmatic aberration. The coupling efficiency is enhanced over 10-folds of the case without a DOE on the 45 degrees micro-reflector. This device would facilitate the optical alignment of non-coplanar light coupling and further miniaturize the volume of microsystem.
Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis
NASA Astrophysics Data System (ADS)
Philip, Daizy
2010-03-01
Biological synthesis of gold and silver nanoparticles of various shapes using the leaf extract of Hibiscus rosa sinensis is reported. This is a simple, cost-effective, stable for long time and reproducible aqueous room temperature synthesis method to obtain a self-assembly of Au and Ag nanoparticles. The size and shape of Au nanoparticles are modulated by varying the ratio of metal salt and extract in the reaction medium. Variation of pH of the reaction medium gives silver nanoparticles of different shapes. The nanoparticles obtained are characterized by UV-vis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR spectroscopy. Crystalline nature of the nanoparticles in the fcc structure are confirmed by the peaks in the XRD pattern corresponding to (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes, bright circular spots in the selected area electron diffraction (SAED) and clear lattice fringes in the high-resolution TEM image. From FTIR spectra it is found that the Au nanoparticles are bound to amine groups and the Ag nanoparticles to carboxylate ion groups.
Yu, Zhan; Li, Yuanyang; Liu, Lisheng; Guo, Jin; Wang, Tingfeng; Yang, Guoqing
2017-11-10
The speckle pattern (line by line) sequential extraction (SPSE) metric is proposed by the one-dimensional speckle intensity level crossing theory. Through the sequential extraction of received speckle information, the speckle metrics for estimating the variation of focusing spot size on a remote diffuse target are obtained. Based on the simulation, we will give some discussions about the SPSE metric range of application under the theoretical conditions, and the aperture size will affect the metric performance of the observation system. The results of the analyses are verified by the experiment. This method is applied to the detection of relative static target (speckled jitter frequency is less than the CCD sampling frequency). The SPSE metric can determine the variation of the focusing spot size over a long distance, moreover, the metric will estimate the spot size under some conditions. Therefore, the monitoring and the feedback of far-field spot will be implemented laser focusing system applications and help the system to optimize the focusing performance.
NASA Astrophysics Data System (ADS)
Labin, N. A.; Bulychev, N. A.; Kazaryan, M. A.; Grigoryants, A. G.; Shiganov, I. N.; Krasovskii, V. I.; Sachkov, V. I.; Plyaka, P. S.; Feofanov, I. N.
2015-12-01
Research on CVL installations with an average power of 20-25 W of cutting and drilling has shown wide range of applications of these lasers for micromachining of metals and a wide range of non-metallic materials up to 1-2 mm. From the analysis indicated that peak power density in the focused light spot of 10-30 μm diameter must be 109 -1012 W/cm2 the productivity and quality micromachining, when the treatment material is preferably in the evaporative mode micro explosions, followed by the expansion of the superheated vapor and the liquid. To achieve such levels of power density, a minimum heat affected zone (5- 10 μm) and a minimum surface roughness of the cut (1-2 μm), the quality of the output beam of radiation should be as high. Ideally, to ensure the quality of the radiation, the structure of CVL output beam must be single-beam, diffraction divergence and have at duration pulses τi = 20-40 ns. The pulse energy should have low values of 0.1-1 mJ at pulse repetition rates of 10-20 kHz. Axis of the radiation beam instability of the pattern to be three orders of magnitude smaller than the diffraction limit of the divergence. The spot of the focused radiation beam must have a circular shape with clear boundary, and a Gaussian intensity distribution.
Dynamical effects in Bragg coherent x-ray diffraction imaging of finite crystals
NASA Astrophysics Data System (ADS)
Shabalin, A. G.; Yefanov, O. M.; Nosik, V. L.; Bushuev, V. A.; Vartanyants, I. A.
2017-08-01
We present simulations of Bragg coherent x-ray diffractive imaging (CXDI) data from finite crystals in the frame of the dynamical theory of x-ray diffraction. The developed approach is based on a numerical solution of modified Takagi-Taupin equations and can be applied for modeling of a broad range of x-ray diffraction experiments with finite three-dimensional crystals of arbitrary shape also in the presence of strain. We performed simulations for nanocrystals of a cubic and hemispherical shape of different sizes and provided a detailed analysis of artifacts in the Bragg CXDI reconstructions introduced by the dynamical diffraction. Based on our theoretical analysis we developed an analytical procedure to treat effects of refraction and absorption in the reconstruction. Our results elucidate limitations for the kinematical approach in the Bragg CXDI and suggest a natural criterion to distinguish between kinematical and dynamical cases in coherent x-ray diffraction on a finite crystal.
Age determination of blue-winged teal
Dane, C.W.
1968-01-01
Primary feather length, markings on the greater secondary coverts, and the degree of bill spotting were evaluated as characters for use in the spring to distinguish first-year, blue-winged teal (Anas discors) females from older ones. The length of the 10th primary feather did not prove suitable to separate different aged females. Extreme primary lengths might be used to determine the age of some males. In females that have been through a postnuptial molt the greater secondary coverts have a more symmetrical, and more acutely angled, white, inverted 'V'-marking. Any female with a 'V' subjectively classified as good has gone through at least one postnuptial molt, and a female with no sign of a 'V' on the coverts is a juvenile or yearling before her first postnuptial molt. By measuring the longest bill spot on the upper mandible of each known-age female, it was possible to determine the age of some female teal. Because the spots fade during the breeding season, no lower size limit could be set to delineate first-year females at that time of year, but any nest-trapped hen with a spot longer than 10 mm was considered to be older than 1 year. Upper and lower limits were also established to distinguish some yearlings and 2-year-olds in the fall.
NASA Astrophysics Data System (ADS)
Sampathkumar, Ashwin; Chitnis, Parag V.; Silverman, Ronald H.
2014-03-01
Conventional photoacoustic microscopy (PAM) employs light pulses to produce a photoacoustic (PA) effect and detects the resulting acoustic waves using an ultrasound transducer acoustically coupled to the target. The resolution of conventional PAM is limited by the sensitivity and bandwidth of the ultrasound transducer. We investigated a versatile, all-optical PAM (AOPAM) system for characterizing in vivo as well as ex vivo biological specimens. The system employs non-contact interferometric detection of PA signals that overcomes limitations of conventional PAM. A 532-nm pump laser with a pulse duration of 5 ns excites the PA effect in tissue. Resulting acoustic waves produce surface displacements that are sensed using a 532-nm continuous-wave (CW) probe laser in a Michelson interferometer with a 1- GHz bandwidth. The pump and probe beams are coaxially focused using a 50X objective giving a diffraction-limited spot size of 0.48 μm. The phase-encoded probe beam is demodulated using homodyne methods. The detected timedomain signal is time reversed using k-space wave-propagation methods to produce a spatial distribution of PA sources in the target tissue. A minimum surface-displacement sensitivity of 0.19 pm was measured. PA-induced surface displacements are very small; therefore, they impose stringent detection requirements and determine the feasibility of implementing an all-optical PAM in biomedical applications. 3D PA images of ex vivo porcine retina specimens were generated successfully. We believe the AOPAM system potentially is well suited for assessing retinal diseases and other near-surface biomedical applications such as sectionless histology and evaluation of skin burns and pressure or friction ulcers.
Kessler, Terrance J [Mendon, NY; Bunkenburg, Joachim [Victor, NY; Huang, Hu [Pittsford, NY
2007-02-13
A plurality of gratings (G1, G2) are arranged together with a wavefront sensor, actuators, and feedback system to align the gratings in such a manner, that they operate like a single, large, monolithic grating. Sub-wavelength-scale movements in the mechanical mounting, due to environmental influences, are monitored by an interferometer (28), and compensated by precision actuators (16, 18, 20) that maintain the coherently additive mode. The actuators define the grating plane, and are positioned in response to the wavefronts from the gratings and a reference flat, thus producing the interferogram that contains the alignment information. Movement of the actuators is also in response to a diffraction-limited spot on the CCD (36) to which light diffracted from the gratings is focused. The actuator geometry is implemented to take advantage of the compensating nature of the degrees of freedom between gratings, reducing the number of necessary control variables.
NASA Astrophysics Data System (ADS)
Cesmeli, Erdogan; Berry, Joel L.; Carr, J. J.
2005-04-01
Proliferation of coronary stent deployment for treatment of coronary heart disease (CHD) creates a need for imaging-based follow-up examinations to assess patency. Technological improvements in multi-detector computer tomography (MDCT) make it a potential non-invasive alternative to coronary catheterization for evaluation of stent patency; however, image quality with MDCT varies based on the size and composition of the stent. We studied the role of tube focal spot size and power in the optimization of image quality in a stationary phantom. A standard uniform physical phantom with a tubular insert was used where coronary stents (4 mm in diameter) were deployed in a tube filled with contrast to simulate a typical imaging condition observed in clinical practice. We utilized different commercially available stents and scanned them with different tube voltage and current settings (LightSpeed Pro16, GE Healthcare Technologies, Waukesha, WI, USA). The scanner used different focal spot size depending on the power load and thus allowed us to assess the combined effect of the focal spot size and the power. A radiologist evaluated the resulting images in terms of image quality and artifacts. For all stents, we found that the small focal spot size yielded better image quality and reduced artifacts. In general, higher power capability for the given focal spot size improved the signal-to-noise ratio in the images allowing improved assessment. Our preliminary study in a non-moving phantom suggests that a CT scanner that can deliver the same power on a small focal spot size is better suited to have an optimized scan protocol for reliable stent assessment.
NASA Astrophysics Data System (ADS)
da Paz, I. G.; Soldati, Rodolfo; Cabral, L. A.; de Oliveira, J. G. G.; Sampaio, Marcos
2016-12-01
Recently there have been experimental results on Poisson spot matter-wave interferometry followed by theoretical models describing the relative importance of the wave and particle behaviors for the phenomenon. We propose an analytical theoretical model for Poisson's spot with matter waves based on the Babinet principle, in which we use the results for free propagation and single-slit diffraction. We take into account effects of loss of coherence and finite detection area using the propagator for a quantum particle interacting with an environment. We observe that the matter-wave Gouy phase plays a role in the existence of the central peak and thus corroborates the predominantly wavelike character of the Poisson's spot. Our model shows remarkable agreement with the experimental data for deuterium (D2) molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, P.E.
We are compiling a list of anticipated target spot sizes that are specified by the NIF users groups. This data will be used to anticipate demands for phase plates. The spot size also has an impact on the laser operation. Presently the phase plates are designed to sit in the leo section of the FOA (before the conversion crystals). Intensity modulations produced by the phase plates are nonlinearly proportional to the laser spot size. For spot sizes above 3 mm diameter, the intensity modulations are large enough that the damage threshold for the remainder of the FOA is exceeded. Formore » experiments requiring spot diameters larger than 3 ram, it is suggested that the phase plates sit in the 3{omega} section of the FOA. For planning purposes, the cost of the 3{omega} phase plates is presently projected to be more than that of a le0 phase plate due to the use of inclusion-free fused silica as the substrate material, This report is a summary of a meeting that we had on February 16, 2000 in order to catalogue the possible range of requested NIF spot sizes. Copies of the viewgraphs which were presented are also included.« less
The effect of laser unit on photodynamic therapy spot size.
Ansari-Shahrezaei, Siamak; Binder, Susanne; Stur, Michael
2011-01-01
To determine the effect of the laser unit on photodynamic therapy (PDT) spot size. A calibrated Gullstrand-type model eye was used for this study. The axial length of the model eye was set to different values ranging from 22.2 to 27.0 mm, and the actual spot size from the laser console was recorded for treating a spot of 4 mm in the center of the artificial fundus using two different laser units (Coherent Opal laser; Coherent Inc, Santa Clara, California, USA and Zeiss Visulas laser; Carl Zeiss Meditec Inc, Dublin, California, USA) and two indirect contact laser lenses (Volk PDT laser lens and Volk Area Centralis lens; Volk Optical Inc, Mentor, Ohio, USA). From myopia to hyperopia, the total deviation from the intended spot size was -22.5% to -7.5% (Opal laser and PDT laser lens), and -17.5% to +2.5% (Visulas laser and PDT laser lens), -12.5% to +7.5% (Opal laser and Area Centralis lens), and -7.5% to +10% (Visulas laser and Area Centralis lens). The used laser unit has a significant effect on PDT spot size in this model. These findings may be important for optimizing PDT of choroidal neovascular lesions.
Sound Diffraction Modeling of Rotorcraft Noise Around Terrain
NASA Technical Reports Server (NTRS)
Stephenson, James H.; Sim, Ben W.; Chitta, Subhashini; Steinhoff, John
2017-01-01
A new computational technique, Wave Confinement (WC), is extended here to account for sound diffraction around arbitrary terrain. While diffraction around elementary scattering objects, such as a knife edge, single slit, disc, sphere, etc. has been studied for several decades, realistic environments still pose significant problems. This new technique is first validated against Sommerfeld's classical problem of diffraction due to a knife edge. This is followed by comparisons with diffraction over three-dimensional smooth obstacles, such as a disc and Gaussian hill. Finally, comparisons with flight test acoustics data measured behind a hill are also shown. Comparison between experiment and Wave Confinement prediction demonstrates that a Poisson spot occurred behind the isolated hill, resulting in significantly increased sound intensity near the center of the shadowed region.
Strategies for high-throughput focused-beam ptychography
Jacobsen, Chris; Deng, Junjing; Nashed, Youssef
2017-08-08
X-ray ptychography is being utilized for a wide range of imaging experiments with a resolution beyond the limit of the X-ray optics used. Introducing a parameter for the ptychographic resolution gainG p(the ratio of the beam size over the achieved pixel size in the reconstructed image), strategies for data sampling and for increasing imaging throughput when the specimen is at the focus of an X-ray beam are considered. As a result, the tradeoffs between large and small illumination spots are examined.
Strategies for high-throughput focused-beam ptychography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, Chris; Deng, Junjing; Nashed, Youssef
X-ray ptychography is being utilized for a wide range of imaging experiments with a resolution beyond the limit of the X-ray optics used. Introducing a parameter for the ptychographic resolution gainG p(the ratio of the beam size over the achieved pixel size in the reconstructed image), strategies for data sampling and for increasing imaging throughput when the specimen is at the focus of an X-ray beam are considered. As a result, the tradeoffs between large and small illumination spots are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelles, D. S.; Browning, James Frederick; Snow, Clark Sheldon
Er(D,T){sub 2-x} {sup 3}He{sub x}, erbium di-tritide, films of thicknesses 500 nm, 400 nm, 300 nm, 200 nm, and 100 nm were grown and analyzed by Transmission Electron Microscopy, X-Ray Diffraction, and Ion Beam Analysis to determine variations in film microstructure as a function of film thickness and age, due to the time-dependent build-up of {sup 3}He in the film from the radioactive decay of tritium. Several interesting features were observed: One, the amount of helium released as a function of film thickness is relatively constant. This suggests that the helium is being released only from the near surface regionmore » and that the helium is not diffusing to the surface from the bulk of the film. Two, lenticular helium bubbles are observed as a result of the radioactive decay of tritium into {sup 3}He. These bubbles grow along the [111] crystallographic direction. Three, a helium bubble free zone, or 'denuded zone' is observed near the surface. The size of this region is independent of film thickness. Four, an analysis of secondary diffraction spots in the Transmission Electron Microscopy study indicate that small erbium oxide precipitates, 5-10 nm in size, exist throughout the film. Further, all of the films had large erbium oxide inclusions, in many cases these inclusions span the depth of the film.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moteabbed, M; Depauw, N; Kooy, H
Purpose: To investigate the dosimetric benefits of pencil beam scanning (PBS) compared with passive scattered (PS) proton therapy for treatment of pediatric head&neck patients as a function of the PBS spot size and explore the advantages of using apertures in PBS. Methods: Ten pediatric patients with head&neck cancers treated by PS proton therapy at our institution were retrospectively selected. The histologies included rhabdomyosarcoma, ependymoma, astrocytoma, craniopharyngioma and germinoma. The prescribed dose ranged from 36 to 54 Gy(RBE). Five PBS plans were created for each patient using variable spot size (average sigma at isocenter) and choice of beam specific apertures: (1)more » 10mm spots, (2) 10mm spots with apertures, (3) 6mm spots, (4) 6mm spots with apertures, and (5) 3mm spots. The plans were optimized for intensity modulated proton therapy (IMPT) with no single beam uniformity constraints. Dose volume indices as well as equivalent uniform dose (EUD) were compared between PS and PBS plans. Results: Although target coverage was clinically adequate for all cases, the plans with largest (10mm) spots provide inferior quality compared with PS in terms of dose to organs-at-risk (OAR). However, adding apertures to these plans ensured lower OAR dose than PS. The average EUD difference between PBS and PS plans over all patients and organs at risk were (1) 2.5%, (2) −5.1%, (3) -5%, (4) −7.8%, and (5) −9.5%. As the spot size decreased, more conformal plans were achieved that offered similar target coverage but lower dose to the neighboring healthy organs, while alleviating the need for using apertures. Conclusion: The application of PBS does not always translate to better plan qualities compared to PS depending on the available beam spot size. We recommend that institutions with spot size larger than ∼6mm at isocenter consider using apertures to guarantee clinically comparable or superior dosimetric efficacy to PS treatments.« less
Subwavelength dark hollow focus of spirally polarized axisymmetric Bessel-modulated Gaussian beam
NASA Astrophysics Data System (ADS)
Gao, X. M.; Zhan, Q. F.; Wang, Q.; Yun, M. J.; Guo, H. M.; Zhuang, S. L.
2011-09-01
Dark hollow focus plays an important role in many optical systems. In this paper, dark hollow focal shaping of spirally polarized axisymmetric Bessel-modulated Gaussian beam is investigated by vector diffraction theory in detail. Results show that the dark hollow focus can be altered considerably by beam parameter and spiral parameter that indicates polarization spiral degree. One dark hollow focus and two dark hollow foci pattern may occur for certain spiral parameter, and the transverse size of dark hollow focus can be less than the diffraction limit size of bright focus. In addition, there may also appear two triangle dark hollow foci that are connected by one dark line focus.
Efficient photonic reformatting of celestial light for diffraction-limited spectroscopy
NASA Astrophysics Data System (ADS)
MacLachlan, D. G.; Harris, R. J.; Gris-Sánchez, I.; Morris, T. J.; Choudhury, D.; Gendron, E.; Basden, A. G.; Spaleniak, I.; Arriola, A.; Birks, T. A.; Allington-Smith, J. R.; Thomson, R. R.
2017-02-01
The spectral resolution of a dispersive astronomical spectrograph is limited by the trade-off between throughput and the width of the entrance slit. Photonic guided wave transitions have been proposed as a route to bypass this trade-off, by enabling the efficient reformatting of incoherent seeing-limited light collected by the telescope into a linear array of single modes: a pseudo-slit which is highly multimode in one axis but diffraction-limited in the dispersion axis of the spectrograph. It is anticipated that the size of a single-object spectrograph fed with light in this manner would be essentially independent of the telescope aperture size. A further anticipated benefit is that such spectrographs would be free of `modal noise', a phenomenon that occurs in high-resolution multimode fibre-fed spectrographs due to the coherent nature of the telescope point spread function (PSF). We seek to address these aspects by integrating a multicore fibre photonic lantern with an ultrafast laser inscribed three-dimensional waveguide interconnect to spatially reformat the modes within the PSF into a diffraction-limited pseudo-slit. Using the CANARY adaptive optics (AO) demonstrator on the William Herschel Telescope, and 1530 ± 80 nm stellar light, the device exhibits a transmission of 47-53 per cent depending upon the mode of AO correction applied. We also show the advantage of using AO to couple light into such a device by sampling only the core of the CANARY PSF. This result underscores the possibility that a fully optimized guided-wave device can be used with AO to provide efficient spectroscopy at high spectral resolution.
Jung, Lena; Hauer, Benedikt; Li, Peining; Bornhöfft, Manuel; Mayer, Joachim; Taubner, Thomas
2016-03-07
We present a study on subsurface imaging with an infrared scattering-type scanning near-field optical microscope (s-SNOM). The depth-limitation for the visibility of gold nanoparticles with a diameter of 50 nm under Si 3 N 4 is determined to about 50 nm. We first investigate spot size and signal strength concerning their particle-size dependence for a dielectric cover layer with positive permittivity. The experimental results are confirmed by model calculations and a comparison to TEM images. In the next step, we investigate spectroscopically also the regime of negative permittivity of the capping layer and its influence on lateral resolution and signal strength in experiment and simulations. The explanation of this observation combines subsurface imaging and superlensing, and shows up limitations of the latter regarding small structure sizes.
SpotCaliper: fast wavelet-based spot detection with accurate size estimation.
Püspöki, Zsuzsanna; Sage, Daniel; Ward, John Paul; Unser, Michael
2016-04-15
SpotCaliper is a novel wavelet-based image-analysis software providing a fast automatic detection scheme for circular patterns (spots), combined with the precise estimation of their size. It is implemented as an ImageJ plugin with a friendly user interface. The user is allowed to edit the results by modifying the measurements (in a semi-automated way), extract data for further analysis. The fine tuning of the detections includes the possibility of adjusting or removing the original detections, as well as adding further spots. The main advantage of the software is its ability to capture the size of spots in a fast and accurate way. http://bigwww.epfl.ch/algorithms/spotcaliper/ zsuzsanna.puspoki@epfl.ch Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Wiegelmann, Marcel; Dreisewerd, Klaus; Soltwisch, Jens
2016-12-01
To improve the lateral resolution in matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) beyond the dimensions of the focal laser spot oversampling techniques are employed. However, few data are available on the effect of the laser spot size and its focal beam profile on the ion signals recorded in oversampling mode. To investigate these dependencies, we produced 2 times six spots with dimensions between 30 and 200 μm. By optional use of a fundamental beam shaper, square flat-top and Gaussian beam profiles were compared. MALDI-MSI data were collected using a fixed pixel size of 20 μm and both pixel-by-pixel and continuous raster oversampling modes on a QSTAR mass spectrometer. Coronal mouse brain sections coated with 2,5-dihydroxybenzoic acid matrix were used as primary test systems. Sizably higher phospholipid ion signals were produced with laser spots exceeding a dimension of 100 μm, although the same amount of material was essentially ablated from the 20 μm-wide oversampling pixel at all spot size settings. Only on white matter areas of the brain these effects were less apparent to absent. Scanning electron microscopy images showed that these findings can presumably be attributed to different matrix morphologies depending on tissue type. We propose that a transition in the material ejection mechanisms from a molecular desorption at large to ablation at smaller spot sizes and a concomitant reduction in ion yields may be responsible for the observed spot size effects. The combined results indicate a complex interplay between tissue type, matrix crystallization, and laser-derived desorption/ablation and finally analyte ionization.
Wiegelmann, Marcel; Dreisewerd, Klaus; Soltwisch, Jens
2016-12-01
To improve the lateral resolution in matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) beyond the dimensions of the focal laser spot oversampling techniques are employed. However, few data are available on the effect of the laser spot size and its focal beam profile on the ion signals recorded in oversampling mode. To investigate these dependencies, we produced 2 times six spots with dimensions between ~30 and 200 μm. By optional use of a fundamental beam shaper, square flat-top and Gaussian beam profiles were compared. MALDI-MSI data were collected using a fixed pixel size of 20 μm and both pixel-by-pixel and continuous raster oversampling modes on a QSTAR mass spectrometer. Coronal mouse brain sections coated with 2,5-dihydroxybenzoic acid matrix were used as primary test systems. Sizably higher phospholipid ion signals were produced with laser spots exceeding a dimension of ~100 μm, although the same amount of material was essentially ablated from the 20 μm-wide oversampling pixel at all spot size settings. Only on white matter areas of the brain these effects were less apparent to absent. Scanning electron microscopy images showed that these findings can presumably be attributed to different matrix morphologies depending on tissue type. We propose that a transition in the material ejection mechanisms from a molecular desorption at large to ablation at smaller spot sizes and a concomitant reduction in ion yields may be responsible for the observed spot size effects. The combined results indicate a complex interplay between tissue type, matrix crystallization, and laser-derived desorption/ablation and finally analyte ionization. Graphical Abstract ᅟ.
A comparison of the effects of Nd:YAG and Ho:YAG laser irradiation on dentine and enamel.
Cernavin, I
1995-04-01
This preliminary study was undertaken to investigate the effects of Nd:YAG and Ho:YAG lasers on enamel and dentine of extracted teeth. The Ho:YAG laser (spot size 250 microns, energy density 4160 J/cm2) produced a cleaner puncture in dentine with less melting of the surrounding tissue than did the Nd:YAG laser (spot size 20 microns), energy density 50,000 J/cm2), which produced considerable melting and recrystallization of dentine and was more difficult to control. It was possible to cut enamel and dentine with both lasers, but considerable melted and recrystallized enamel was produced. From the limited observations of this study it appears that the Ho:YAG laser is more suitable for cutting both enamel and dentine than the Nd:YAG laser. More work needs to be done to ascertain the effect on enamel and dentine of modification of the parameters of both lasers.
Simulation of the main physical processes in remote laser penetration with large laser spot size
Khairallah, S. A.; Anderson, A.; Rubenchik, A. M.; ...
2015-04-10
A 3D model is developed to simulate remote laser penetration of a 1mm Aluminum metal sheet with large laser spot size (~3x3cm²), using the ALE3D multi-physics code. The model deals with the laser-induced melting of the plate and the mechanical interaction between the solid and the melted part through plate elastic-plastic response. The effect of plate oscillations and other forces on plate rupture, the droplet formation mechanism and the influence of gravity and high laser power in further breaking the single melt droplet into many more fragments are analyzed. In the limit of low laser power, the numerical results matchmore » the available experiments. The numerical approach couples mechanical and thermal diffusion to hydrodynamics melt flow and accounts for temperature dependent material properties, surface tension, gravity and vapor recoil pressure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagel, S. R.; Chen, H.; Park, J.
Time resolved x-ray images with 7 ps resolution are recorded on relativistic short-pulse laser-plasma experiments using the dilation x-ray imager, a high-speed x-ray framing camera, sensitive to x-rays in the range of ≈1-17 keV. Furthermore, this capability enables a series of 2D x-ray images to be recorded at picosecond scales, which allows for the investigation of fast electron transport within the target with unprecedented temporal resolution. With an increase in the Kα-emission spot size over time we found that targets were thinner than the recirculation limit and is absent for thicker targets. Together with the observed polarization dependence of themore » spot size increase, this indicates that electron recirculation is relevant for the x-ray production in thin targets.« less
Visually augmented targeted combination light therapy for acne vulgaris: a case report.
Yazdi, Alireza; Lyons, Colin-William; Roberts, Niamh
2017-10-31
Acne vulgaris is a common skin disease. Pharmacological modalities for treatment are proven to be efficacious but have limitations. Light therapy for acne vulgaris has shown promise in previous studies. This case report and its accompanying images show how a novel approach of visually augmented high fluence light therapy has been used to good effect. A 26-year-old Caucasian woman with acne vulgaris resistant to treatment with topical therapy underwent three sessions of combination potassium titanyl phosphate laser (532 nm)/neodymium-doped: yttrium aluminum garnet laser (1064 nm) light therapy with visually augmented narrow spot size and high fluence. A 73% reduction in total inflammatory lesions was evident 6 months after the initial treatment. This case report illustrates that there may be utility in this novel approach of narrow spot size, magnification-assisted, high fluence targeted combination laser therapy for inflammatory acne.
Nagel, S. R.; Chen, H.; Park, J.; ...
2017-04-04
Time resolved x-ray images with 7 ps resolution are recorded on relativistic short-pulse laser-plasma experiments using the dilation x-ray imager, a high-speed x-ray framing camera, sensitive to x-rays in the range of ≈1-17 keV. Furthermore, this capability enables a series of 2D x-ray images to be recorded at picosecond scales, which allows for the investigation of fast electron transport within the target with unprecedented temporal resolution. With an increase in the Kα-emission spot size over time we found that targets were thinner than the recirculation limit and is absent for thicker targets. Together with the observed polarization dependence of themore » spot size increase, this indicates that electron recirculation is relevant for the x-ray production in thin targets.« less
Criticality conditions of heterogeneous energetic materials under shock loading
NASA Astrophysics Data System (ADS)
Nassar, Anas; Rai, Nirmal Kumar; Sen, Oishik; Udaykumar, H. S.
2017-06-01
Shock interaction with the microstructural heterogeneities of energetic materials can lead to the formation of locally heated regions known as hot spots. These hot spots are the potential sites where chemical reaction may be initiated. However, the ability of a hot spot to initiate chemical reaction depends on its size, shape and strength (temperature). Previous study by Tarver et al. has shown that there exists a critical size and temperature for a given shape (spherical, cylindrical, and planar) of the hot spot above which reaction initiation is imminent. Tarver et al. assumed a constant temperature variation in the hot spot. However, the meso-scale simulations show that the temperature distribution within a hot spot formed from processes such as void collapse is seldom constant. Also, the shape of a hot spot can be arbitrary. This work is an attempt towards development of a critical hot spot curve which is a function of loading strength, duration and void morphology. To achieve the aforementioned goal, mesoscale simulations are conducted on porous HMX material. The process is repeated for different loading conditions and void sizes. The hot spots formed in the process are examined for criticality depending on whether they will ignite or not. The metamodel is used to obtain criticality curves and is compared with the critical hot spot curve of Tarver et al.
Li, Xuanxuan; Spence, John C. H.; Hogue, Brenda G.; ...
2017-09-22
X-ray free-electron lasers (XFELs) provide new opportunities for structure determination of biomolecules, viruses and nanomaterials. With unprecedented peak brilliance and ultra-short pulse duration, XFELs can tolerate higher X-ray doses by exploiting the femtosecond-scale exposure time, and can thus go beyond the resolution limits achieved with conventional X-ray diffraction imaging techniques. Using XFELs, it is possible to collect scattering information from single particles at high resolution, however particle heterogeneity and unknown orientations complicate data merging in three-dimensional space. Using the Linac Coherent Light Source (LCLS), synthetic inorganic nanocrystals with a core–shell architecture were used as a model system for proof-of-principle coherentmore » diffractive single-particle imaging experiments. To deal with the heterogeneity of the core–shell particles, new computational methods have been developed to extract the particle size and orientation from the scattering data to assist data merging. The size distribution agrees with that obtained by electron microscopy and the merged data support a model with a core–shell architecture.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xuanxuan; Spence, John C. H.; Hogue, Brenda G.
X-ray free-electron lasers (XFELs) provide new opportunities for structure determination of biomolecules, viruses and nanomaterials. With unprecedented peak brilliance and ultra-short pulse duration, XFELs can tolerate higher X-ray doses by exploiting the femtosecond-scale exposure time, and can thus go beyond the resolution limits achieved with conventional X-ray diffraction imaging techniques. Using XFELs, it is possible to collect scattering information from single particles at high resolution, however particle heterogeneity and unknown orientations complicate data merging in three-dimensional space. Using the Linac Coherent Light Source (LCLS), synthetic inorganic nanocrystals with a core–shell architecture were used as a model system for proof-of-principle coherentmore » diffractive single-particle imaging experiments. To deal with the heterogeneity of the core–shell particles, new computational methods have been developed to extract the particle size and orientation from the scattering data to assist data merging. The size distribution agrees with that obtained by electron microscopy and the merged data support a model with a core–shell architecture.« less
Growing Larger Crystals for Neutron Diffraction
NASA Technical Reports Server (NTRS)
Pusey, Marc
2003-01-01
Obtaining crystals of suitable size and high quality has been a major bottleneck in macromolecular crystallography. With the advent of advanced X-ray sources and methods the question of size has rapidly dwindled, almost to the point where if one can see the crystal then it was big enough. Quality is another issue, and major national and commercial efforts were established to take advantage of the microgravity environment in an effort to obtain higher quality crystals. Studies of the macromolecule crystallization process were carried out in many labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. While technological improvements are resulting in a diminishing of the minimum crystal size required, neutron diffraction structural studies still require considerably larger crystals, by several orders of magnitude, than X-ray studies. From a crystal growth physics perspective there is no reason why these 'large' crystals cannot be obtained: the question is generally more one of supply than limitations mechanism. This talk will discuss our laboratory s current model for macromolecule crystal growth, with highlights pertaining to the growth of crystals suitable for neutron diffraction studies.
Wu, Te Chang; Chen, Tai Yuan; Shiue, Yow Ling; Chen, Jeon Hor; Hsieh, Tsyh-Jyi; Ko, Ching Chung; Lin, Ching Po
2018-04-01
Background The computed tomography angiography (CTA) spot sign represents active contrast extravasation within acute primary intracerebral hemorrhage (ICH) and is an independent predictor of hematoma expansion (HE) and poor clinical outcomes. The spot sign could be detected on first-pass CTA (fpCTA) or delayed CTA (dCTA). Purpose To investigate the additional benefits of dCTA spot sign in primary ICH and hematoma size for predicting spot sign. Material and Methods This is a retrospective study of 100 patients who underwent non-contrast CT (NCCT) and CTA within 24 h of onset of primary ICH. The presence of spot sign on fpCTA or dCTA, and hematoma size on NCCT were recorded. The spot sign on fpCTA or dCTA for predicting significant HE, in-hospital mortality, and poor clinical outcomes (mRS ≥ 4) are calculated. The hematoma size for prediction of CTA spot sign was also analyzed. Results Only the spot sign on dCTA could predict high risk of significant HE and poor clinical outcomes as on fpCTA ( P < 0.05). With dCTA, there is increased sensitivity and negative predictive value (NPV) for predicting significant HE, in-hospital mortality, and poor clinical outcomes. The XY value (product of the two maximum perpendicular axial dimensions) is the best predictor (area under the curve [AUC] = 0.82) for predicting spot sign on fpCTA or dCTA in the absence of intraventricular and subarachnoid hemorrhage. Conclusion This study clarifies that dCTA imaging could improve predictive performance of CTA in primary ICH. Furthermore, the XY value is the best predictor for CTA spot sign.
Voelz, David G; Roggemann, Michael C
2009-11-10
Accurate simulation of scalar optical diffraction requires consideration of the sampling requirement for the phase chirp function that appears in the Fresnel diffraction expression. We describe three sampling regimes for FFT-based propagation approaches: ideally sampled, oversampled, and undersampled. Ideal sampling, where the chirp and its FFT both have values that match analytic chirp expressions, usually provides the most accurate results but can be difficult to realize in practical simulations. Under- or oversampling leads to a reduction in the available source plane support size, the available source bandwidth, or the available observation support size, depending on the approach and simulation scenario. We discuss three Fresnel propagation approaches: the impulse response/transfer function (angular spectrum) method, the single FFT (direct) method, and the two-step method. With illustrations and simulation examples we show the form of the sampled chirp functions and their discrete transforms, common relationships between the three methods under ideal sampling conditions, and define conditions and consequences to be considered when using nonideal sampling. The analysis is extended to describe the sampling limitations for the more exact Rayleigh-Sommerfeld diffraction solution.
The Starspots of HAT-P-11: Evidence for a Solar-like Dynamo
NASA Astrophysics Data System (ADS)
Morris, Brett M.; Hebb, Leslie; Davenport, James R. A.; Rohn, Graeme; Hawley, Suzanne L.
2017-09-01
We measure the starspot radii and latitude distribution on the K4 dwarf HAT-P-11 from Kepler short-cadence photometry. We take advantage of starspot occultations by HAT-P-11’s highly misaligned planet to compare the spot size and latitude distributions to those of sunspots. We find that HAT-P-11’s spots are distributed in latitude much like sunspots near the solar activity maximum, with a mean spot latitude of ≈16° ± 1°. The majority of HAT-P-11’s starspots have physical sizes that closely resemble the sizes of sunspots at solar maximum. We estimate the mean spotted area coverage on HAT-P-11 to be {3}-1+6 % , roughly two orders of magnitude greater than the typical solar spotted area.
Electromagnetic Considerations for Planar Bolometer Arrays in the Single Mode Limit
NASA Technical Reports Server (NTRS)
Wollack, Edward J.; Chuss, David T.; Moseley, Samuel
2006-01-01
Filled arrays of planar bolometers are finding astronomical applications at wavelengths as long as several millimeters. In an effort to keep focal planes to a reasonable size while maintaining large numbers of detectors, a common strategy is to push these arrays to operate close to or at the single mode limit. Doing so introduces several new challenges that are not experienced in the multi-mode case of far-infrared detectors having similar pixel sizes. First, diffractive effects of the pixels themselves are no longer insignificant and will ultimately contribute to the resolution limit of the optical system in which they reside. We use the method of Withlngton et al. (2003) to model the polarized diffraction in this limit. Second, it is necessary to re-examine the coupling between the radiation and the absorbing element that is thermally connected to the bolometers. The small f-numbers that are often employed to make use of large focal planes makes backshort construction problematic. We introduce a new strategy to increase detector efficiency that uses an antireflective layer on the front side of the detector array. In addition, typical methods for stray light control that rely on multiple reflections in a lossy medium fail due to physical size constraints. For this application, we find that resonant absorbers are a more effective strategy that can be implemented in the space available.
Vocal complexity and sociality in spotted paca (Cuniculus paca).
Lima, Stella G C; Sousa-Lima, Renata S; Tokumaru, Rosana S; Nogueira-Filho, Sérgio L G; Nogueira, Selene S C
2018-01-01
The evolution of sociality is related to many ecological factors that act on animals as selective forces, thus driving the formation of groups. Group size will depend on the payoffs of group living. The Social Complexity Hypothesis for Communication (SCHC) predicts that increases in group size will be related to increases in the complexity of the communication among individuals. This hypothesis, which was confirmed in some mammal societies, may be useful to trace sociality in the spotted paca (Cuniculus paca), a Neotropical caviomorph rodent reported as solitary. There are, however, sightings of groups in the wild, and farmers easily form groups of spotted paca in captivity. Thus, we aimed to describe the acoustic repertoire of captive spotted paca to test the SCHC and to obtain insights about the sociability of this species. Moreover, we aimed to verify the relationship between group size and acoustic repertoire size of caviomorph rodents, to better understand the evolution of sociality in this taxon. We predicted that spotted paca should display a complex acoustic repertoire, given their social behavior in captivity and group sightings in the wild. We also predicted that in caviomorph species the group size would increase with acoustic repertoire, supporting the SCHC. We performed a Linear Discriminant Analysis (LDA) based on acoustic parameters of the vocalizations recorded. In addition, we applied an independent contrasts approach to investigate sociality in spotted paca following the social complexity hypothesis, independent of phylogeny. Our analysis showed that the spotted paca's acoustic repertoire contains seven vocal types and one mechanical signal. The broad acoustic repertoire of the spotted paca might have evolved given the species' ability to live in groups. The relationship between group size and the size of the acoustic repertoires of caviomorph species was confirmed, providing additional support for the SCHC in yet another group of diverse mammals-caviomorph rodents.
Vocal complexity and sociality in spotted paca (Cuniculus paca)
2018-01-01
The evolution of sociality is related to many ecological factors that act on animals as selective forces, thus driving the formation of groups. Group size will depend on the payoffs of group living. The Social Complexity Hypothesis for Communication (SCHC) predicts that increases in group size will be related to increases in the complexity of the communication among individuals. This hypothesis, which was confirmed in some mammal societies, may be useful to trace sociality in the spotted paca (Cuniculus paca), a Neotropical caviomorph rodent reported as solitary. There are, however, sightings of groups in the wild, and farmers easily form groups of spotted paca in captivity. Thus, we aimed to describe the acoustic repertoire of captive spotted paca to test the SCHC and to obtain insights about the sociability of this species. Moreover, we aimed to verify the relationship between group size and acoustic repertoire size of caviomorph rodents, to better understand the evolution of sociality in this taxon. We predicted that spotted paca should display a complex acoustic repertoire, given their social behavior in captivity and group sightings in the wild. We also predicted that in caviomorph species the group size would increase with acoustic repertoire, supporting the SCHC. We performed a Linear Discriminant Analysis (LDA) based on acoustic parameters of the vocalizations recorded. In addition, we applied an independent contrasts approach to investigate sociality in spotted paca following the social complexity hypothesis, independent of phylogeny. Our analysis showed that the spotted paca’s acoustic repertoire contains seven vocal types and one mechanical signal. The broad acoustic repertoire of the spotted paca might have evolved given the species’ ability to live in groups. The relationship between group size and the size of the acoustic repertoires of caviomorph species was confirmed, providing additional support for the SCHC in yet another group of diverse mammals–caviomorph rodents. PMID:29364898
Mapping Nearby Terrain in 3D by Use of a Grid of Laser Spots
NASA Technical Reports Server (NTRS)
Padgett, Curtis; Liebe, Carl; Chang, Johnny; Brown, Kenneth
2007-01-01
A proposed optoelectronic system, to be mounted aboard an exploratory robotic vehicle, would be used to generate a three-dimensional (3D) map of nearby terrain and obstacles for purposes of navigating the vehicle across the terrain and avoiding the obstacles. The difference between this system and the other systems would lie in the details of implementation. In this system, the illumination would be provided by a laser. The beam from the laser would pass through a two-dimensional diffraction grating, which would divide the beam into multiple beams propagating in different, fixed, known directions. These beams would form a grid of bright spots on the nearby terrain and obstacles. The centroid of each bright spot in the image would be computed. For each such spot, the combination of (1) the centroid, (2) the known direction of the light beam that produced the spot, and (3) the known baseline would constitute sufficient information for calculating the 3D position of the spot.
Takahashi, Y; Fukushima, Y; Kondo, K; Ichihashi, M
2017-11-01
Facial skin hyperpigmention caused by chronic sun exposure is a major skin complaint, however, its characteristics and influential factors are still limitedly known. A cross-sectional survey in healthy Japanese women aged from 6 to 62 years (n=169) was conducted using a facial image analyzer VISIA ™ for knowing onset age of hyperpigmented spot formation, its chronological changes, and influence of environmental factors. UV Pigmented Spot (PS) Score was positively correlated with age (R=.487, P=.000). Hyperpigmented spots appeared first around 18 years old in most subjects, and PS score remarkably increased at 20s then gradually increased by ages. The subjects with Skin Type I, one of the three grades of Japanese Skin Type (JST), whose melanin formation is genetically lower, showed higher PS score. A woman aged 31 years was subjected a weekly VISIA measurement for 2 years, and found no changes in the number, place, size and intensity of the pigment spots in this duration. Hyperpigmented spots developed in women over 20 years of age due to chronic sun exposure without sun protection during childhood and adolescent and it was stable afterwards, whose intensity was influenced by age and skin type. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Evaluation of a risk-based environmental hot spot delineation algorithm.
Sinha, Parikhit; Lambert, Michael B; Schew, William A
2007-10-22
Following remedial investigations of hazardous waste sites, remedial strategies may be developed that target the removal of "hot spots," localized areas of elevated contamination. For a given exposure area, a hot spot may be defined as a sub-area that causes risks for the whole exposure area to be unacceptable. The converse of this statement may also apply: when a hot spot is removed from within an exposure area, risks for the exposure area may drop below unacceptable thresholds. The latter is the motivation for a risk-based approach to hot spot delineation, which was evaluated using Monte Carlo simulation. Random samples taken from a virtual site ("true site") were used to create an interpolated site. The latter was gridded and concentrations from the center of each grid box were used to calculate 95% upper confidence limits on the mean site contaminant concentration and corresponding hazard quotients for a potential receptor. Grid cells with the highest concentrations were removed and hazard quotients were recalculated until the site hazard quotient dropped below the threshold of 1. The grid cells removed in this way define the spatial extent of the hot spot. For each of the 100,000 Monte Carlo iterations, the delineated hot spot was compared to the hot spot in the "true site." On average, the algorithm was able to delineate hot spots that were collocated with and equal to or greater in size than the "true hot spot." When delineated hot spots were mapped onto the "true site," setting contaminant concentrations in the mapped area to zero, the hazard quotients for these "remediated true sites" were on average within 5% of the acceptable threshold of 1.
The growth process of first water layer and crystalline ice on the Rh(111) surface
NASA Astrophysics Data System (ADS)
Beniya, Atsushi; Sakaguchi, Yuji; Narushima, Tetsuya; Mukai, Kozo; Yamashita, Yoshiyuki; Yoshimoto, Shinya; Yoshinobu, Jun
2009-01-01
The adsorption states and growth process of the first layer and multilayer of water (D2O) on Rh(111) above 135K were investigated using infrared reflection absorption spectroscopy (IRAS), temperature programed desorption, spot-profile-analysis low-energy electron diffraction, and scanning tunneling microscopy (STM). At the initial stage, water molecules form commensurate (√3×√3)R30° islands, whose size is limited for several hexagonal units; the average diameter is ˜2.5nm. This two-dimensional (2D) island includes D-down species, and free OD species exist at the island edge. With increasing coverage, the D-up species starts to appear in IRAS. At higher coverages, the 2D islands are connected in STM images. By the titration of Xe adsorption we estimated that the D-down domain occupies about 55% on Rh(111) at the saturation coverage. Further adsorption of water molecules forms three-dimensional ice crystallites on the first water layer; thus, the growth mode of crystalline water layers on Rh(111) is a Stranski-Krastanov type. We have found that an ice crystallite starts to grow on D-down domains and the D-down species do not reorient upon the formation of a crystalline ice.
Near-field optical recording based on solid immersion lens system
NASA Astrophysics Data System (ADS)
Hong, Tao; Wang, Jia; Wu, Yan; Li, Dacheng
2002-09-01
Near-field optical recording based on solid immersion lens (SIL) system has attracted great attention in the field of high-density data storage in recent years. The diffraction limited spot size in optical recording and lithography can be decreased by utilizing the SIL. The SIL near-field optical storage has advantages of high density, mass storage capacity and compatibility with many technologies well developed. We have set up a SIL near-field static recording system. The recording medium is placed on a 3-D scanning stage with the scanning range of 70×70×70μm and positioning accuracy of sub-nanometer, which will ensure the rigorous separation control in SIL system and the precision motion of the recording medium. The SIL is mounted on an inverted microscope. The focusing between long working distance objective and SIL can be monitored and observed by the CCD camera and eyes. Readout signal can be collected by a detector. Some experiments have been performed based on the SIL near-field recording system. The attempt of the near-field recording on photochromic medium has been made and the resolution improvement of the SIL has been presented. The influence factors in SIL near-field recording system are also discussed in the paper.
Bor, E; Turduev, M; Kurt, H
2016-08-01
Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction.
Bor, E.; Turduev, M.; Kurt, H.
2016-01-01
Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction. PMID:27477060
Image processing for grazing incidence fast atom diffraction
NASA Astrophysics Data System (ADS)
Debiossac, Maxime; Roncin, Philippe
2016-09-01
Grazing incidence fast atom diffraction (GIFAD, or FAD) has developed as a surface sensitive technique. Compared with thermal energies helium diffraction (TEAS or HAS), GIFAD is less sensitive to thermal decoherence but also more demanding in terms of surface coherence, the mean distance between defects. Such high quality surfaces can be obtained from freshly cleaved crystals or in a molecular beam epitaxy (MBE) chamber where a GIFAD setup has been installed allowing in situ operation. Based on recent publications by Atkinson et al. (2014) and Debiossac et al. (2014), the paper describes in detail the basic steps needed to measure the relative intensities of the diffraction spots. Care is taken to outline the underlying physical assumptions.
Spherical quartz crystals investigated with synchrotron radiation
Pereira, N. R.; Macrander, A. T.; Hill, K. W.; ...
2015-10-27
The quality of x-ray spectra and images obtained from plasmas with spherically bent crystals depends in part on the crystal's x-ray diffraction across the entire crystal surface. We employ the energy selectivity and high intensity of synchrotron radiation to examine typical spherical crystals from alpha-quartz for their diffraction quality, in a perpendicular geometry that is particularly convenient to examine sagittal focusing. The crystal's local diffraction is not ideal: the most noticeable problems come from isolated regions that so far have failed to correlate with visible imperfections. In conclusion, excluding diffraction from such problem spots has little effect on the focusmore » beyond a decrease in background.« less
Achieving superresolution with illumination-enhanced sparsity.
Yu, Jiun-Yann; Becker, Stephen R; Folberth, James; Wallin, Bruce F; Chen, Simeng; Cogswell, Carol J
2018-04-16
Recent advances in superresolution fluorescence microscopy have been limited by a belief that surpassing two-fold resolution enhancement of the Rayleigh resolution limit requires stimulated emission or the fluorophore to undergo state transitions. Here we demonstrate a new superresolution method that requires only image acquisitions with a focused illumination spot and computational post-processing. The proposed method utilizes the focused illumination spot to effectively reduce the object size and enhance the object sparsity and consequently increases the resolution and accuracy through nonlinear image post-processing. This method clearly resolves 70nm resolution test objects emitting ~530nm light with a 1.4 numerical aperture (NA) objective, and, when imaging through a 0.5NA objective, exhibits high spatial frequencies comparable to a 1.4NA widefield image, both demonstrating a resolution enhancement above two-fold of the Rayleigh resolution limit. More importantly, we examine how the resolution increases with photon numbers, and show that the more-than-two-fold enhancement is achievable with realistic photon budgets.
Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit.
Wang, Suo; Wang, Xing-Yuan; Li, Bo; Chen, Hua-Zhou; Wang, Yi-Lun; Dai, Lun; Oulton, Rupert F; Ma, Ren-Min
2017-12-01
Plasmonic nanolasers are a new class of amplifiers that generate coherent light well below the diffraction barrier bringing fundamentally new capabilities to biochemical sensing, super-resolution imaging, and on-chip optical communication. However, a debate about whether metals can enhance the performance of lasers has persisted due to the unavoidable fact that metallic absorption intrinsically scales with field confinement. Here, we report plasmonic nanolasers with extremely low thresholds on the order of 10 kW cm -2 at room temperature, which are comparable to those found in modern laser diodes. More importantly, we find unusual scaling laws allowing plasmonic lasers to be more compact and faster with lower threshold and power consumption than photonic lasers when the cavity size approaches or surpasses the diffraction limit. This clarifies the long-standing debate over the viability of metal confinement and feedback strategies in laser technology and identifies situations where plasmonic lasers can have clear practical advantage.
X-ray diffraction analysis and in vitro characterization of the UAM2 protein from Oryza sativa
Welner, Ditte Hededam; Tsai, Alex Yi-Lin; DeGiovanni, Andy M.; ...
2017-03-29
The role of seemingly non-enzymatic proteins in complexes interconverting UDP-arabinopyranose and UDP-arabinofuranose (UDP-arabinosemutases; UAMs) in the plant cytosol remains unknown. To shed light on their function, crystallographic and functional studies of the seemingly non-enzymatic UAM2 protein from Oryza sativa (OsUAM2) were undertaken. Here, X-ray diffraction data are reported, as well as analysis of the oligomeric state in the crystal and in solution. OsUAM2 crystallizes readily but forms highly radiation-sensitive crystals with limited diffraction power, requiring careful low-dose vector data acquisition. Using size-exclusion chromatography, it is shown that the protein is monomeric in solution. Finally, limited proteolysis was employed to demonstratemore » DTT-enhanced proteolytic digestion, indicating the existence of at least one intramolecular disulfide bridge or, alternatively, a requirement for a structural metal ion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauböck, Michi; Psaltis, Dimitrios; Özel, Feryal, E-mail: mbaubock@email.arizona.edu
We calculate the effects of spot size on pulse profiles of moderately rotating neutron stars. Specifically, we quantify the bias introduced in radius measurements from the common assumption that spots are infinitesimally small. We find that this assumption is reasonable for spots smaller than 10°–18° and leads to errors that are ≤10% in the radius measurement, depending on the location of the spot and the inclination of the observer. We consider the implications of our results for neutron star radius measurements with the upcoming and planned X-ray missions NICER and LOFT. We calculate the expected spot size for different classesmore » of sources and investigate the circumstances under which the assumption of a small spot is justified.« less
Liu, Chenbin; Schild, Steven E; Chang, Joe Y; Liao, Zhongxing; Korte, Shawn; Shen, Jiajian; Ding, Xiaoning; Hu, Yanle; Kang, Yixiu; Keole, Sameer R; Sio, Terence T; Wong, William W; Sahoo, Narayan; Bues, Martin; Liu, Wei
2018-06-01
To investigate how spot size and spacing affect plan quality, robustness, and interplay effects of robustly optimized intensity modulated proton therapy (IMPT) for lung cancer. Two robustly optimized IMPT plans were created for 10 lung cancer patients: first by a large-spot machine with in-air energy-dependent large spot size at isocenter (σ: 6-15 mm) and spacing (1.3 σ), and second by a small-spot machine with in-air energy-dependent small spot size (σ: 2-6 mm) and spacing (5 mm). Both plans were generated by optimizing radiation dose to internal target volume on averaged 4-dimensional computed tomography scans using an in-house-developed IMPT planning system. The dose-volume histograms band method was used to evaluate plan robustness. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effects with randomized starting phases for each field per fraction. Patient anatomy voxels were mapped phase-to-phase via deformable image registration, and doses were scored using in-house-developed software. Dose-volume histogram indices, including internal target volume dose coverage, homogeneity, and organs at risk (OARs) sparing, were compared using the Wilcoxon signed-rank test. Compared with the large-spot machine, the small-spot machine resulted in significantly lower heart and esophagus mean doses, with comparable target dose coverage, homogeneity, and protection of other OARs. Plan robustness was comparable for targets and most OARs. With interplay effects considered, significantly lower heart and esophagus mean doses with comparable target dose coverage and homogeneity were observed using smaller spots. Robust optimization with a small spot-machine significantly improves heart and esophagus sparing, with comparable plan robustness and interplay effects compared with robust optimization with a large-spot machine. A small-spot machine uses a larger number of spots to cover the same tumors compared with a large-spot machine, which gives the planning system more freedom to compensate for the higher sensitivity to uncertainties and interplay effects for lung cancer treatments. Copyright © 2018 Elsevier Inc. All rights reserved.
Integration of GaN/AlN all-optical switch with SiN/AlN waveguide utilizing spot-size conversion.
Iizuka, Norio; Yoshida, Haruhiko; Managaki, Nobuto; Shimizu, Toshimasa; Hassanet, Sodabanlu; Cumtornkittikul, Chiyasit; Sugiyama, Masakazu; Nakano, Yoshiaki
2009-12-07
Spot-size converters for an all-optical switch utilizing the intersubband transition in GaN/AlN multiple quantum wells are studied with the purpose of reducing operation power by improving the coupling efficiency between the input fiber and the switch. With a stair-like spot-size converter, the absorption saturation of 5 dB is achieved with a pulse energy of 25 pJ. The switch is integrated with a SiN/AlN waveguide and spot-size converters, and the structure provides the possibility of an integration of the switch with other functional devices. To further improve the coupling loss between the waveguide and the switch, triangular-shaped converters are investigated, demonstrating losses as low as 2 dB/facet.
NASA Astrophysics Data System (ADS)
Yao, Jianhua; Zhang, Jie; Wu, Guolong; Wang, Liang; Zhang, Qunli; Liu, Rong
2018-05-01
The distribution of WC particles in laser cladded composite coatings can significantly affect the wear resistance of the coatings under aggressive environments. In this study, pre-alloyed WC-NiCrMo powder is deposited on SS316L via laser cladding with circular spot and wide-band spot, respectively. The microstructure and WC distribution of the coatings are investigated with optical microscope (OM), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD). The wear behavior of the coatings is investigated under dry sliding-wear test. The experimental results show that the partially dissolved WC particles are uniformly distributed in both coatings produced with circular spot and wide-band spot, respectively, and the microstructures consist of WC and M23C6 carbides and γ-(Ni, Fe) solid solution matrix. However, due to Fe dilution, the two coatings have different microstructural characteristics, resulting in different hardness and wear resistance. The wide-band spot laser prepared coating shows better performance than the circular spot laser prepared coating.
Density-based kinetics for mesoscale simulations of detonation initiation in energetic materials
NASA Astrophysics Data System (ADS)
Jackson, Thomas Luther; Zhang, Ju
2017-07-01
In this work we present one- and two-dimensional mesoscale simulations of detonation initiation in energetic materials. We solve the reactive Euler equations, with the energy equation augmented by a power deposition term. The reaction rate at the mesoscale is modelled using a density-based kinetics scheme, adapted from standard 'Ignition and Growth' models. The deposition term is based on previous results of simulations of void collapse at the microscale, modelled at the mesoscale as hot spots. For an isolated hot spot in a homogeneous medium, it is found that a critical size of the hot spots exists. If the hot spots exceed the critical size, initiation of detonation can be achieved. For sub-critical hot-spot sizes, we show that it takes a collection of hot spots to achieve detonation. We also carry out two-dimensional mesoscale simulations of random packs of HMX crystals in a binder, and show that the transition between no detonation and detonation depends on the number density of the hot spots, the initial radius of the hot spot, the post-shock pressure of an imposed shock, and the amplitude of the power deposition term.
Analysis of surface structures of chemically peculiar stars with modern and future interferometers
NASA Astrophysics Data System (ADS)
Shulyak, D.; Perraut, K.; Paladini, Claudia; Li Causi, G.; Sacuto, Stephane; Kochukhov, O.
2014-07-01
Interferometry is a very powerful observational technique known in astronomy for many decades. Its application to main-sequence stars, however, is still limited to only brightest objects. In this work we aim to explore the application of interferometry to a special class of main-sequence stars known as chemically peculiar (CP) stars. These stars demonstrate surface chemical abundance inhomogeneities (spots) that usually cover a considerable part of the stellar surface and induce a pronounced spectral and photometric variability. Interferometry thus has a potential to naturally resolve such spots in single stars, providing unique complementary information about spots sizes and contrasts. By means of numerical experiments we derive the actual interferometric requirements essential for the CP stars research that can be addressed in future instrument development. The first comparison between theoretical predictions and already available observations will also be discussed.
Design and Optimization of the SPOT Primary Mirror Segment
NASA Technical Reports Server (NTRS)
Budinoff, Jason G.; Michaels, Gregory J.
2005-01-01
The 3m Spherical Primary Optical Telescope (SPOT) will utilize a single ring of 0.86111 point-to-point hexagonal mirror segments. The f2.85 spherical mirror blanks will be fabricated by the same replication process used for mass-produced commercial telescope mirrors. Diffraction-limited phasing will require segment-to-segment radius of curvature (ROC) variation of approx.1 micron. Low-cost, replicated segment ROC variations are estimated to be almost 1 mm, necessitating a method for segment ROC adjustment & matching. A mechanical architecture has been designed that allows segment ROC to be adjusted up to 400 microns while introducing a minimum figure error, allowing segment-to-segment ROC matching. A key feature of the architecture is the unique back profile of the mirror segments. The back profile of the mirror was developed with shape optimization in MSC.Nastran(TradeMark) using optical performance response equations written with SigFit. A candidate back profile was generated which minimized ROC-adjustment-induced surface error while meeting the constraints imposed by the fabrication method. Keywords: optimization, radius of curvature, Pyrex spherical mirror, Sigfit
Photonics and microarray technology
NASA Astrophysics Data System (ADS)
Skovsen, E.; Duroux, M.; Neves-Petersen, M. T.; Duroux, L.; Petersen, S. B.
2007-05-01
Photonic induced immobilization of biosensor molecules is a novel technology that results in spatially oriented and spatially localized covalent coupling of a large variety of biomolecules onto thiol reactive surfaces, e.g. thiolated glass, quartz, gold or silicon. The reaction mechanism behind the reported new technology involves light-induced breakage of disulphide bridges in proteins upon UV illumination of nearby aromatic amino acids resulting in the formation of reactive molecules that will form covalent bonds with thiol reactive surfaces. This new technology has the potential of replacing present micro dispensing arraying technologies, where the size of the individual sensor spots are limited by the size of the dispensed droplets. Using light-induced immobilization the spatial resolution is defined by the area of the sensor surface that is illuminated by UV light and not by the physical size of the dispensed droplets of sensor molecules. This new technology allows for dense packing of different biomolecules on a surface, allowing the creation of multi-potent functionalized materials, such as biosensors with micrometer sized individual sensor spots. Thus, we have developed the necessary technology for preparing large protein arrays of enzymes and fragments of antibodies, with micrometer resolution, without the need for liquid micro dispensing.
Technical Note: Spot characteristic stability for proton pencil beam scanning.
Chen, Chin-Cheng; Chang, Chang; Moyers, Michael F; Gao, Mingcheng; Mah, Dennis
2016-02-01
The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning. A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.0-226.0 MeV). The delivered fluence distribution in air was measured using a phosphor screen based CCD camera at three planes perpendicular to the beam line axis (x-ray imaging isocenter and up/down stream 15.0 cm). The measured fluence distributions for each energy were analyzed using in-house programs which calculated the spot sizes and positional deviations of the Gaussian shaped spots. Compared to the spot characteristic data installed into the treatment planning system, the 16-month averaged deviations of the measured spot sizes at the isocenter plane were 2.30% and 1.38% in the IEC gantry x and y directions, respectively. The maximum deviation was 12.87% while the minimum deviation was 0.003%, both at the upstream plane. After the collinearity of the proton and x-ray imaging system isocenters was optimized, the positional deviations of the spots were all within 1.5 mm for all three planes. During the site configuration update, spot positions were found to deviate by 6 mm until the tuning parameters file was properly restored. For this beam delivery system, it is recommended to perform a spot size and position check at least monthly and any time after a database update or cyclotron intervention occurs. A spot size deviation tolerance of <15% can be easily met with this delivery system. Deviations of spot positions were <2 mm at any plane up/down stream 15 cm from the isocenter.
Cost analysis of a mini-facet heliostat
NASA Astrophysics Data System (ADS)
Hall, Colin; Pratt, Rodney; Farrant, David; Corsi, Clotilde; Pye, John; Coventry, Joe
2017-06-01
A significant problem with conventional heliostats is off-axis astigmatism, which increases the spot size at the central receiver, limiting the temperature and efficiency of solar thermal systems. Inspired by low-cost mini-actuators used for car wing mirrors, we examine the economic feasibility of a heliostat with individually adjustable mini-facets to correct astigmatic effects, and we compare three alternative tracking configurations.
Sensitivity in MALDI MS with small spot sizes
NASA Astrophysics Data System (ADS)
Yamchuk, Andriy
In MALDI, for laser fluences below the saturation point the ion yield per shot follows a cubic dependence on the irradiated area, leading to a conclusion that smaller spots produce overall less ions and therefore are less viable. However, Qiao et al. showed that by decreasing the laser spot size it is possible to raise the saturation point, and thus increase the ion yield per unit area, also known as sensitivity. Here we explore laser spots below 10 micrometer diameter to determine whether they offer any practical advantage. We show that sensitivity is greater for a flat-top 3--4 micrometer spot than for a 10 micrometer spot. The sensitivity is greater for a Gaussian-like 3--5 micrometer spot than for flat-top 5--25 micrometer spots. We also report for the first time sensitivity versus theoretical fluence profile for a Gaussian-like beam focu
NASA Technical Reports Server (NTRS)
Lewalle, Jacques; Ashpis, David (Technical Monitor)
2000-01-01
Transition on turbine blades is an important factor in the determination of eventual flow separation and engine performance. The phenomenon is strongly affected by unsteady flow conditions (wake passing). It is likely that some physics of unsteadiness should be included in advanced models, but it is unclear which properties would best embody this information. In this paper, we use a GEAE experimental database in unsteady transition to test some tools of spot identification, tracking and characterization. In this preliminary study, we identify some parameters that appear to be insensitive to wake passing effects, such as convection speed, and others more likely to require unsteady modeling. The main findings are that wavelet duration can be used as a measure of spot size, and that spot energy density is most closely correlated to the wake passing. The energy density is also correlated to spot size, but spot size appears unrelated to the phase angle. Recommendations are made for further study.
Thermal Infrared Hot Spot and Dependence on Canopy Geometry
NASA Technical Reports Server (NTRS)
Smith, James A.; Ballard, Jerrell R., Jr.; Smith, David E. (Technical Monitor)
2001-01-01
We perform theoretical calculations of the canopy thermal infrared (TIR) hot spot using a first principles 3-D model described earlier. Various theoretical canopies of varying leaf size and for differing canopy height are used to illustrate the magnitude of the TIR effect. Our results are similar to predicted behavior in the reflective hot spot as a function of canopy geometry and comparable to TIR measurements from the literature and our own simple ground experiments. We apply the MODTRAN atmospheric code to estimate the at-sensor variation in brightness temperature with view direction in the solar principal plane. For simple homogeneous canopies, we predict canopy thermal infrared hot spot variations of 2 degrees C at the surface with respect to nadir viewing. Dependence on leaf size is weak as long as the ratio of leaf size to canopy height is maintained. However, the angular width of the hot spot increases as the ratio of leaf diameter to canopy height increases. Atmospheric effects minimize but do not eliminate the TIR hot spot at satellite altitudes.
NASA Astrophysics Data System (ADS)
Kandel, Prakash K.; Fernando, Lawrence P.; Ackroyd, P. Christine; Christensen, Kenneth A.
2011-03-01
We report a simple and rapid method to prepare extremely bright, functionalized, stable, and biocompatible conjugated polymer nanoparticles incorporating functionalized polyethylene glycol (PEG) lipids by reprecipitation. These nanoparticles retain the fundamental spectroscopic properties of conjugated polymer nanoparticles prepared without PEG lipid, but demonstrate greater hydrophilicity and quantum yield compared to unmodified conjugated polymer nanoparticles. The sizes of these nanoparticles, as determined by TEM, were 21-26 nm. Notably, these nanoparticles were prepared with several PEG lipid functional end groups, including biotin and carboxy moieties that can be easily conjugated to biomolecules. We have demonstrated the availability of these end groups for functionalization using the interaction of biotin PEG lipid conjugated polymer nanoparticles with streptavidin. Biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-linked magnetic beads, while carboxy and methoxy PEG lipid modified nanoparticles did not. Similarly, biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-coated glass slides and could be visualized as diffraction-limited spots, while nanoparticles without PEG lipid or with non-biotin PEG lipid end groups were not bound. To demonstrate that nanoparticle functionalization could be used for targeted labelling of specific cellular proteins, biotinylated PEG lipid conjugated polymer nanoparticles were bound to biotinylated anti-CD16/32 antibodies on J774A.1 cell surface receptors, using streptavidin as a linker. This work represents the first demonstration of targeted delivery of conjugated polymer nanoparticles and demonstrates the utility of these new nanoparticles for fluorescence based imaging and sensing.We report a simple and rapid method to prepare extremely bright, functionalized, stable, and biocompatible conjugated polymer nanoparticles incorporating functionalized polyethylene glycol (PEG) lipids by reprecipitation. These nanoparticles retain the fundamental spectroscopic properties of conjugated polymer nanoparticles prepared without PEG lipid, but demonstrate greater hydrophilicity and quantum yield compared to unmodified conjugated polymer nanoparticles. The sizes of these nanoparticles, as determined by TEM, were 21-26 nm. Notably, these nanoparticles were prepared with several PEG lipid functional end groups, including biotin and carboxy moieties that can be easily conjugated to biomolecules. We have demonstrated the availability of these end groups for functionalization using the interaction of biotin PEG lipid conjugated polymer nanoparticles with streptavidin. Biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-linked magnetic beads, while carboxy and methoxy PEG lipid modified nanoparticles did not. Similarly, biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-coated glass slides and could be visualized as diffraction-limited spots, while nanoparticles without PEG lipid or with non-biotin PEG lipid end groups were not bound. To demonstrate that nanoparticle functionalization could be used for targeted labelling of specific cellular proteins, biotinylated PEG lipid conjugated polymer nanoparticles were bound to biotinylated anti-CD16/32 antibodies on J774A.1 cell surface receptors, using streptavidin as a linker. This work represents the first demonstration of targeted delivery of conjugated polymer nanoparticles and demonstrates the utility of these new nanoparticles for fluorescence based imaging and sensing. Electronic supplementary information (ESI) available: Additional TEM data, supplemental light scattering measurements, absorbance and fluorescence emission spectra, and photostability measurements. See DOI: 10.1039/c0nr00746c
The effect of a finite focal spot size on location dependent detectability in a fan beam CT system
NASA Astrophysics Data System (ADS)
Kim, Byeongjoon; Baek, Jongduk
2017-03-01
A finite focal spot size is one of the sources to degrade the resolution performance in a fan beam CT system. In this work, we investigated the effect of the finite focal spot size on signal detectability. For the evaluation, five spherical objects with diameters of 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm were used. The optical focal spot size viewed at the iso-center was a 1 mm (height) × 1 mm (width) with a target angle of 7 degrees, corresponding to an 8.21 mm (i.e., 1 mm / sin (7°)) focal spot length. Simulated projection data were acquired using 8 × 8 source lets, and reconstructed by Hanning weighted filtered backprojection. For each spherical object, the detectability was calculated at (0 mm, 0 mm) and (0 mm, 200 mm) using two image quality metrics: pixel signal to noise ratio (SNR) and detection SNR. For all signal sizes, the pixel SNR is higher at the iso-center since the noise variance at the off-center is much higher than that at the iso-center due to the backprojection weightings used in direct fan beam reconstruction. In contrast, detection SNR shows similar values for different spherical objects except 1 mm and 2 mm diameter spherical objects. Overall, the results indicate the resolution loss caused by the finite focal spot size degrades the detection performance, especially for small objects with less than 2 mm diameter.
Discovery and development of x-ray diffraction
NASA Astrophysics Data System (ADS)
Jeong, Yeuncheol; Yin, Ming; Datta, Timir
2013-03-01
In 1912 Max Laue at University of Munich reasoned x-rays to be short wavelength electromagnetic waves and figured interference would occur when scattered off crystals. Arnold Sommerfeld, W. Wien, Ewald and others, raised objections to Laue's idea, but soon Walter Friedrich succeeded in recording x-ray interference patterns off copper sulfate crystals. But the Laue-Ewald's 3-dimensional formula predicted excess spots. Fewer spots were observed. William Lawrence Bragg then 22 year old studying at Cambridge University heard the Munich results from father William Henry Brag, physics professor at Univ of Leeds. Lawrence figured the spots are 2-d interference of x-ray wavelets reflecting off successive atomic planes and derived a simple eponymous equation, the Bragg equation d*sin(theta) = n*lamda. 1913 onward the Braggs dominated the crystallography. Max Laue was awarded the physics Nobel in 1914 and the Braggs shared the same in 1915. Starting with Rontgen's first ever prize in 1901, the importance of x-ray techniques is evident from the four out of a total 16 physics Nobels between 1901-1917. We will outline the historical back ground and importance of x-ray diffraction giving rise to techniques that even in 2013, remain work horses in laboratories all over the globe.
Vasudevan, Rama K; Tselev, Alexander; Baddorf, Arthur P; Kalinin, Sergei V
2014-10-28
Reflection high energy electron diffraction (RHEED) has by now become a standard tool for in situ monitoring of film growth by pulsed laser deposition and molecular beam epitaxy. Yet despite the widespread adoption and wealth of information in RHEED images, most applications are limited to observing intensity oscillations of the specular spot, and much additional information on growth is discarded. With ease of data acquisition and increased computation speeds, statistical methods to rapidly mine the data set are now feasible. Here, we develop such an approach to the analysis of the fundamental growth processes through multivariate statistical analysis of a RHEED image sequence. This approach is illustrated for growth of La(x)Ca(1-x)MnO(3) films grown on etched (001) SrTiO(3) substrates, but is universal. The multivariate methods including principal component analysis and k-means clustering provide insight into the relevant behaviors, the timing and nature of a disordered to ordered growth change, and highlight statistically significant patterns. Fourier analysis yields the harmonic components of the signal and allows separation of the relevant components and baselines, isolating the asymmetric nature of the step density function and the transmission spots from the imperfect layer-by-layer (LBL) growth. These studies show the promise of big data approaches to obtaining more insight into film properties during and after epitaxial film growth. Furthermore, these studies open the pathway to use forward prediction methods to potentially allow significantly more control over growth process and hence final film quality.
Video sensor with range measurement capability
NASA Technical Reports Server (NTRS)
Howard, Richard T. (Inventor); Briscoe, Jeri M. (Inventor); Corder, Eric L. (Inventor); Broderick, David J. (Inventor)
2008-01-01
A video sensor device is provided which incorporates a rangefinder function. The device includes a single video camera and a fixed laser spaced a predetermined distance from the camera for, when activated, producing a laser beam. A diffractive optic element divides the beam so that multiple light spots are produced on a target object. A processor calculates the range to the object based on the known spacing and angles determined from the light spots on the video images produced by the camera.
Rapid acquisition of mean Raman spectra of eukaryotic cells for a robust single cell classification.
Schie, Iwan W; Kiselev, Roman; Krafft, Christoph; Popp, Jürgen
2016-11-14
Raman spectroscopy has previously been used to identify eukaryotic and prokaryotic cells. While prokaryotic cells are small in size and can be assessed by a single Raman spectrum, the larger size of eukaryotic cells and their complex organization requires the acquisition of multiple Raman spectra to properly characterize them. A Raman spectrum from a diffraction-limited spot at an arbitrary location within a cell results in spectral variations that affect classification approaches. To probe whole cells with Raman imaging at high spatial resolution is time consuming, because a large number of Raman spectra need to be collected, resulting in low cell throughput and impairing statistical analysis due to low cell numbers. Here we propose a method to overcome the effects of cellular heterogeneity by acquiring integrated Raman spectra covering a large portion of a cell. The acquired spectrum represents the mean macromolecular composition of a cell with an exposure time that is comparable to acquisition of a single Raman spectrum. Data sets were collected from T lymphocyte Jurkat cells, and pancreatic cell lines Capan1 and MiaPaca2. Cell classification by support vector machines was compared for single spectra, spectra of images and integrated Raman spectra of cells. The integrated approach provides better and more stable prediction for individual cells, and in the current implementation, the mean macromolecular information of a cell can be acquired faster than with the acquisition of individual spectra from a comparable region. It is expected that this approach will have a major impact on the implementation of Raman based cell classification.
An assessment of the effects of cell size on AGNPS modeling of watershed runoff
Wu, S.-S.; Usery, E.L.; Finn, M.P.; Bosch, D.D.
2008-01-01
This study investigates the changes in simulated watershed runoff from the Agricultural NonPoint Source (AGNPS) pollution model as a function of model input cell size resolution for eight different cell sizes (30 m, 60 m, 120 m, 210 m, 240 m, 480 m, 960 m, and 1920 m) for the Little River Watershed (Georgia, USA). Overland cell runoff (area-weighted cell runoff), total runoff volume, clustering statistics, and hot spot patterns were examined for the different cell sizes and trends identified. Total runoff volumes decreased with increasing cell size. Using data sets of 210-m cell size or smaller in conjunction with a representative watershed boundary allows one to model the runoff volumes within 0.2 percent accuracy. The runoff clustering statistics decrease with increasing cell size; a cell size of 960 m or smaller is necessary to indicate significant high-runoff clustering. Runoff hot spot areas have a decreasing trend with increasing cell size; a cell size of 240 m or smaller is required to detect important hot spots. Conclusions regarding cell size effects on runoff estimation cannot be applied to local watershed areas due to the inconsistent changes of runoff volume with cell size; but, optimal cells sizes for clustering and hot spot analyses are applicable to local watershed areas due to the consistent trends.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chin-Cheng, E-mail: chen.ccc@gmail.com; Chang, Chang; Mah, Dennis
Purpose: The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning. Methods: A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.0–226.0 MeV). The delivered fluence distribution in air was measured using a phosphor screen based CCD camera at three planes perpendicular to themore » beam line axis (x-ray imaging isocenter and up/down stream 15.0 cm). The measured fluence distributions for each energy were analyzed using in-house programs which calculated the spot sizes and positional deviations of the Gaussian shaped spots. Results: Compared to the spot characteristic data installed into the treatment planning system, the 16-month averaged deviations of the measured spot sizes at the isocenter plane were 2.30% and 1.38% in the IEC gantry x and y directions, respectively. The maximum deviation was 12.87% while the minimum deviation was 0.003%, both at the upstream plane. After the collinearity of the proton and x-ray imaging system isocenters was optimized, the positional deviations of the spots were all within 1.5 mm for all three planes. During the site configuration update, spot positions were found to deviate by 6 mm until the tuning parameters file was properly restored. Conclusions: For this beam delivery system, it is recommended to perform a spot size and position check at least monthly and any time after a database update or cyclotron intervention occurs. A spot size deviation tolerance of <15% can be easily met with this delivery system. Deviations of spot positions were <2 mm at any plane up/down stream 15 cm from the isocenter.« less
Numerical investigations of the potential for laser focus sensors in micrometrology
NASA Astrophysics Data System (ADS)
Bischoff, Jörg; Mastylo, Rostyslav; Manske, Eberhard
2017-06-01
Laser focus sensors (LFS)1 attached to a scanning nano-positioning and measuring machine (NPMM) enable near diffraction limit resolution with very large measuring areas up to 200 x 200 mm1. Further extensions are planned to address wafer sizes of 8 inch and beyond. Thus, they are preferably suited for micro-metrology on large wafers. On the other hand, the minimum lateral features in state-of-the-art semiconductor industry are as small as a few nanometer and therefore far beyond the resolution limits of classical optics. New techniques such as OCD or ODP3,4 a.k.a. as scatterometry have helped to overcome these constraints considerably. However, scatterometry relies on regular patterns and therefore, the measurements have to be performed on special reference gratings or boxes rather than in-die. Consequently, there is a gap between measurement and the actual structure of interest which becomes more and more an issues with shrinking feature sizes. On the other hand, near-field approaches would also allow to extent the resolution limit greatly5 but they require very challenging controls to keep the working distance small enough to stay within the near field zone. Therefore, the feasibility and the limits of a LFS scanner system have been investigated theoretically. Based on simulations of laser focus sensor scanning across simple topographies, it was found that there is potential to overcome the diffraction limitations to some extent by means of vicinity interference effects caused by the optical interaction of adjacent topography features. We think that it might be well possible to reconstruct the diffracting profile by means of rigorous diffraction simulation based on a thorough model of the laser focus sensor optics in combination with topography diffraction 6 in a similar way as applied in OCD. The difference lies in the kind of signal itself which has to be modeled. While standard OCD is based on spectra, LFS utilizes height scan signals. Simulation results are presented for different types of topographies (dense vs. sparse, regular vs. single) with lateral features near and beyond the classical resolution limit. Moreover, the influence of topography height on the detectability is investigated. To this end, several sensor principles and polarization setups are considered such as a dual color pin hole sensor and a Foucault knife sensor. It is shown that resolution beyond the Abbe or Rayleigh limit is possible even with "classical" optical setups when combining measurements with sophisticated profile retrieval techniques and some a-priori knowledge. Finally, measurement uncertainties are derived based on perturbation simulations according to the method presented in 7.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Designated contract market and swap execution facility position limits and accountability rules. (a) Spot... rules and procedures for monitoring and enforcing spot-month position limits set at levels no greater... monitoring and enforcing spot-month position limits set at levels no greater than 25 percent of estimated...
Code of Federal Regulations, 2013 CFR
2013-04-01
... Designated contract market and swap execution facility position limits and accountability rules. (a) Spot... rules and procedures for monitoring and enforcing spot-month position limits set at levels no greater... monitoring and enforcing spot-month position limits set at levels no greater than 25 percent of estimated...
The fiber optic system for the advanced topographic laser altimeter system instrument (ATLAS)
NASA Astrophysics Data System (ADS)
Ott, Melanie N.; Thomes, W. Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc
2016-09-01
The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.
The fiber optic system for the Advanced Topographic Laser Altimeter System (ATLAS) instrument
Ott, Melanie N.; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc
2017-01-01
The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite – 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the “cryosphere” (as well as terrain) to provide data for assessing the earth’s global climate changes. Where ICESat’s instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here. PMID:28280284
The fiber optic system for the Advanced Topographic Laser Altimeter System (ATLAS) instrument.
Ott, Melanie N; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc
2016-08-28
The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.
The Fiber Optic System for the Advanced Topographic Laser Altimeter System (ATLAS) Instrument
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc
2016-01-01
The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm. The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.
Ruan, Chong-Yu; Vigliotti, Franco; Lobastov, Vladimir A.; Chen, Songye; Zewail, Ahmed H.
2004-01-01
The static structure of macromolecular assemblies can be mapped out with atomic-scale resolution by using electron diffraction and microscopy of crystals. For transient nonequilibrium structures, which are critical to the understanding of dynamics and mechanisms, both spatial and temporal resolutions are required; the shortest scales of length (0.1–1 nm) and time (10–13 to 10–12 s) represent the quantum limit, the nonstatistical regime of rates. Here, we report the development of ultrafast electron crystallography for direct determination of structures with submonolayer sensitivity. In these experiments, we use crystalline silicon as a template for different adsorbates: hydrogen, chlorine, and trifluoroiodomethane. We observe the coherent restructuring of the surface layers with subangstrom displacement of atoms after the ultrafast heat impulse. This nonequilibrium dynamics, which is monitored in steps of 2 ps (total change ≤10 ps), contrasts that of the nanometer substrate. The effect of adsorbates and the phase transition at higher fluences were also studied through the evolution of streaks of interferences, Bragg spots (and their rocking curves), and rings in the diffraction patterns. We compare these results with kinematical theory and those of x-ray diffraction developed to study bulk behaviors. The sensitivity achieved here, with the 6 orders of magnitude larger cross section than x-ray diffraction, and with the capabilities of combined spatial (≈0.01 Å) and temporal (300–600 fs) resolutions, promise diverse applications for this ultrafast electron crystallography tabletop methodology. PMID:14745037
NASA Astrophysics Data System (ADS)
Biteen, Julie S.; Thompson, Michael A.; Tselentis, Nicole K.; Shapiro, Lucy; Moerner, W. E.
2009-02-01
Recently, photoactivation and photoswitching were used to control single-molecule fluorescent labels and produce images of cellular structures beyond the optical diffraction limit (e.g., PALM, FPALM, and STORM). While previous live-cell studies relied on sophisticated photoactivatable fluorescent proteins, we show in the present work that superresolution imaging can be performed with fusions to the commonly used fluorescent protein EYFP. Rather than being photoactivated, however, EYFP can be reactivated with violet light after apparent photobleaching. In each cycle after initial imaging, only a sparse subset fluorophores is reactivated and localized, and the final image is then generated from the measured single-molecule positions. Because these methods are based on the imaging nanometer-sized single-molecule emitters and on the use of an active control mechanism to produce sparse sub-ensembles, we suggest the phrase "Single-Molecule Active-Control Microscopy" (SMACM) as an inclusive term for this general imaging strategy. In this paper, we address limitations arising from physiologically imposed upper boundaries on the fluorophore concentration by employing dark time-lapse periods to allow single-molecule motions to fill in filamentous structures, increasing the effective labeling concentration while localizing each emitter at most once per resolution-limited spot. We image cell-cycle-dependent superstructures of the bacterial actin protein MreB in live Caulobacter crescentus cells with sub-40-nm resolution for the first time. Furthermore, we quantify the reactivation quantum yield of EYFP, and find this to be 1.6 x 10-6, on par with conventional photoswitchable fluorescent proteins like Dronpa. These studies show that EYFP is a useful emitter for in vivo superresolution imaging of intracellular structures in bacterial cells.
Optical design considerations when imaging the fundus with an adaptive optics correction
NASA Astrophysics Data System (ADS)
Wang, Weiwei; Campbell, Melanie C. W.; Kisilak, Marsha L.; Boyd, Shelley R.
2008-06-01
Adaptive Optics (AO) technology has been used in confocal scanning laser ophthalmoscopes (CSLO) which are analogous to confocal scanning laser microscopes (CSLM) with advantages of real-time imaging, increased image contrast, a resistance to image degradation by scattered light, and improved optical sectioning. With AO, the instrumenteye system can have low enough aberrations for the optical quality to be limited primarily by diffraction. Diffraction-limited, high resolution imaging would be beneficial in the understanding and early detection of eye diseases such as diabetic retinopathy. However, to maintain diffraction-limited imaging, sufficient pixel sampling over the field of view is required, resulting in the need for increased data acquisition rates for larger fields. Imaging over smaller fields may be a disadvantage with clinical subjects because of fixation instability and the need to examine larger areas of the retina. Reduction in field size also reduces the amount of light sampled per pixel, increasing photon noise. For these reasons, we considered an instrument design with a larger field of view. When choosing scanners to be used in an AOCSLO, the ideal frame rate should be above the flicker fusion rate for the human observer and would also allow user control of targets projected onto the retina. In our AOCSLO design, we have studied the tradeoffs between field size, frame rate and factors affecting resolution. We will outline optical approaches to overcome some of these tradeoffs and still allow detection of the earliest changes in the fundus in diabetic retinopathy.
Modified hollow Gaussian beam and its paraxial propagation
NASA Astrophysics Data System (ADS)
Cai, Yangjian; Chen, Chiyi; Wang, Fei
2007-10-01
A model named modified hollow Gaussian beam (HGB) is proposed to describe a dark hollow beam with adjustable beam spot size, central dark size and darkness factor. In this modified model, both the beam spot size and the central dark size will be convergent to finite constants as the beam order approaches infinity, which are much different from that of the previous unmodified model, where the beam spot size and the central dark size will not be convergent as the beam order approaches infinity. The dependences of the propagation factor of modified and unmodified HGBs on the beam order are found to be the same. Based on the Collins integral, analytical formulas for the modified HGB propagating through aligned and misaligned optical system are derived. Some numerical examples are given.
Interplay of wavelength, fluence and spot-size in free-electron laser ablation of cornea.
Hutson, M Shane; Ivanov, Borislav; Jayasinghe, Aroshan; Adunas, Gilma; Xiao, Yaowu; Guo, Mingsheng; Kozub, John
2009-06-08
Infrared free-electron lasers ablate tissue with high efficiency and low collateral damage when tuned to the 6-microm range. This wavelength-dependence has been hypothesized to arise from a multi-step process following differential absorption by tissue water and proteins. Here, we test this hypothesis at wavelengths for which cornea has matching overall absorption, but drastically different differential absorption. We measure etch depth, collateral damage and plume images and find that the hypothesis is not confirmed. We do find larger etch depths for larger spot sizes--an effect that can lead to an apparent wavelength dependence. Plume imaging at several wavelengths and spot sizes suggests that this effect is due to increased post-pulse ablation at larger spots.
Design of airborne imaging spectrometer based on curved prism
NASA Astrophysics Data System (ADS)
Nie, Yunfeng; Xiangli, Bin; Zhou, Jinsong; Wei, Xiaoxiao
2011-11-01
A novel moderate-resolution imaging spectrometer spreading from visible wavelength to near infrared wavelength range with a spectral resolution of 10 nm, which combines curved prisms with the Offner configuration, is introduced. Compared to conventional imaging spectrometers based on dispersive prism or diffractive grating, this design possesses characteristics of small size, compact structure, low mass as well as little spectral line curve (smile) and spectral band curve (keystone or frown). Besides, the usage of compound curved prisms with two or more different materials can greatly reduce the nonlinearity inevitably brought by prismatic dispersion. The utilization ratio of light radiation is much higher than imaging spectrometer of the same type based on combination of diffractive grating and concentric optics. In this paper, the Seidel aberration theory of curved prism and the optical principles of Offner configuration are illuminated firstly. Then the optical design layout of the spectrometer is presented, and the performance evaluation of this design, including spot diagram and MTF, is analyzed. To step further, several types of telescope matching this system are provided. This work provides an innovational perspective upon optical system design of airborne spectral imagers; therefore, it can offer theoretic guide for imaging spectrometer of the same kind.
Sheth, Saumil; Lanzetta, Paolo; Veritti, Daniele; Zucchiatti, Ilaria; Savorgnani, Carola; Bandello, Francesco
2011-01-01
Aim: To systematically refine and recommend parameter settings of spot size, power, and treatment duration using the Pascal® photocoagulator, a multi-spot, semi-automated, short-duration laser system. Materials and Methods: A retrospective consecutive series with 752 Caucasian eyes and 1242 laser procedures over two years were grouped into, (1) 374 macular focal / grid photocoagulation (FP), (2), 666 panretinal photocoagulation (PRP), and (3) 202 barrage photocoagulation (BP). Parameters for power, duration, spot number, and spot size were recorded for every group. Results: Power parameters for all groups showed a non-gaussian distribution; FP group, median 190 mW, range 100 – 950 mW, and PRP group, median 800 mW, range 100 – 2000 mW. On subgroup comparison, for similar spot size, as treatment duration decreased, the power required increased, albeit in a much lesser proportion than that given by energy = power × time. Most frequently used patterns were single spot (89% of cases) in FP, 5 × 5 box (72%) in PRP, and 2 × 2 box (78%) in BP. Spot diameters as high as ≈ 700 μm on retina were given in the PRP group. Single session PRP was attempted in six eyes with a median spot count of 3500. Conclusion: Overall, due to the small duration of its pulse, the Pascal® photocoagulator tends to use higher powers, although much lower cumulative energies, than those used in a conventional laser. The consequent lesser heat dissipation, especially lateral, can allow one to use relatively larger spot sizes and give more closely spaced burns, without incurring significant side effects. PMID:21350276
Korolkov, Victor P; Nasyrov, Ruslan K; Shimansky, Ruslan V
2006-01-01
Enhancing the diffraction efficiency of continuous-relief diffractive optical elements fabricated by direct laser writing is discussed. A new method of zone-boundary optimization is proposed to correct exposure data only in narrow areas along the boundaries of diffractive zones. The optimization decreases the loss of diffraction efficiency related to convolution of a desired phase profile with a writing-beam intensity distribution. A simplified stepped transition function that describes optimized exposure data near zone boundaries can be made universal for a wide range of zone periods. The approach permits a similar increase in the diffraction efficiency as an individual-pixel optimization but with fewer computation efforts. Computer simulations demonstrated that the zone-boundary optimization for a 6 microm period grating increases the efficiency by 7% and 14.5% for 0.6 microm and 1.65 microm writing-spot diameters, respectively. The diffraction efficiency of as much as 65%-90% for 4-10 microm zone periods was obtained experimentally with this method.
Cheng, Zhe; Bougher, Thomas; Bai, Tingyu; Wang, Steven Y; Li, Chao; Yates, Luke; Foley, Brian M; Goorsky, Mark; Cola, Baratunde A; Faili, Firooz; Graham, Samuel
2018-02-07
The maximum output power of GaN-based high-electron mobility transistors is limited by high channel temperature induced by localized self-heating, which degrades device performance and reliability. Chemical vapor deposition (CVD) diamond is an attractive candidate to aid in the extraction of this heat and in minimizing the peak operating temperatures of high-power electronics. Owing to its inhomogeneous structure, the thermal conductivity of CVD diamond varies along the growth direction and can differ between the in-plane and out-of-plane directions, resulting in a complex three-dimensional (3D) distribution. Depending on the thickness of the diamond and size of the electronic device, this 3D distribution may impact the effectiveness of CVD diamond in device thermal management. In this work, time-domain thermoreflectance is used to measure the anisotropic thermal conductivity of an 11.8 μm-thick high-quality CVD diamond membrane from its nucleation side. Starting with a spot-size diameter larger than the thickness of the membrane, measurements are made at various modulation frequencies from 1.2 to 11.6 MHz to tune the heat penetration depth and sample the variation in thermal conductivity. We then analyze the data by creating a model with the membrane divided into ten sublayers and assume isotropic thermal conductivity in each sublayer. From this, we observe a two-dimensional gradient of the depth-dependent thermal conductivity for this membrane. The local thermal conductivity goes beyond 1000 W/(m K) when the distance from the nucleation interface only reaches 3 μm. Additionally, by measuring the same region with a smaller spot size at multiple frequencies, the in-plane and cross-plane thermal conductivities are extracted. Through this use of multiple spot sizes and modulation frequencies, the 3D anisotropic thermal conductivity of CVD diamond membrane is experimentally obtained by fitting the experimental data to a thermal model. This work provides an improved understanding of thermal conductivity inhomogeneity in high-quality CVD polycrystalline diamond that is important for applications in the thermal management of high-power electronics.
Spatial characterization of Bessel-like beams for strong-field physics.
Summers, Adam M; Yu, Xiaoming; Wang, Xinya; Raoul, Maxime; Nelson, Josh; Todd, Daniel; Zigo, Stefan; Lei, Shuting; Trallero-Herrero, Carlos A
2017-02-06
We present a compact, simple design for the generation and tuning of both the spot size and effective focal length of Bessel-like beams. In particular, this setup provides an important tool for the use of Bessel-like beams with high-power, femtosecond laser systems. Using a shallow angle axicon in conjunction with a spherical lens, we show that it is possible to focus Bessel-like modes to comparable focal spot sizes to sharp axicons while maintaining a long effective focal length. The resulting focal profiles are characterized in detail using an accurate high dynamic range imaging technique. Quantitatively, we introduce a metric (R0.8) which defines the spot-size containing 80% of the total energy. Our setup overcomes the typical compromise between long working distances and small spot sizes. This is particularly relevant for strong-field physics where most experiments must operate in vacuum.
Studies on X-ray diffraction microscopy
NASA Astrophysics Data System (ADS)
Miao, Huijie
This dissertation includes three main parts: studies on coherence requirements for the diffraction microscopy experiments, ice formation on frozen-hydrated sample during data collection, and centering of the diffraction data sets. These three subjects are all in support of our groups overall goal of high resolution 3D imaging of frozen hydrated eukaryotic cells via x-ray diffraction microscopy. X-ray diffraction microscopy requires coherent illumination. However, the actual degree of coherence at some beamlines has never been tested. In research on coherence, our first aim is to determine the transverse coherence width at the sample plane at BL 9.0.1 at the Advanced Light Source in Lawrence Berkeley National Laboratory. An analytical calculation of the coherence at the sample plane is presented. Experimental diffraction patterns of pinhole-pair samples were also taken at the beamline to determine the coherence. Due to the irregular shape of the pinholes and other optics complexity, it was very difficult to fit the data with known theoretical equations as it was traditionally done with 1D data. However, we found out that the auto-correlation function shows clearly three spots. Theoretical calculation have been carried out to show that the degree of coherence can be obtained from the intensities of the three spots. These results are compared with the results from the analytical calculation. We then perform a simulation, showing the required transverse coherence width for reconstructing samples with a given size. Ice accumulation has been a major problem in X-ray diffraction microscopy with frozen hydrated samples. Since the ice structure is different from point to point, we cannot subtract the scattering from ice, nor assume a completely "empty" region outside the finite support constraint area as required for reconstruction. Ice forms during the sample preparation and transfer. However, from the tests we did in September 2007, we found that the ice layer thickens significantly during the data collecting process. One of the tests we did was putting a dry room-temperature grid into the beam, cooling it down to liquid nitrogen temperature, and then collecting the diffraction pattern of it over time. This test showed that, after the cold grid remained in the chamber for a while, a ring could be observed in the diffraction pattern. The time necessary for this ring to be visible is highly dependent on the pressure and vacuum history of the chamber. We will discuss how the chamber pressure influences the ice accumulation rate, how an anti-contamination device can help to reduce the rate, and how this ring forms. The last part of the research is based on simulations and a real data set collected on beamline 9.0.1 at the ALS in Berkeley. In X-ray diffraction microscopy, one of the major challenges when processing the data is to accurately determine the true center of the recorded data; that is, the zero spatial frequency position. Simulations of reconstructing shifted data show that if the center of a 2D diffraction pattern is shifted by more than 3 pixels from its true center, the positivity constraint to the phase, which otherwise might be applied to improve the convergence of the reconstruction algorithm, cannot be imposed. Moreover, the phase unwrapping problem may appear during the reconstruction. These issues undermine the quality of the reconstruction of 2D data. Furthermore, the individual shift in each 2D pattern will lead to errors when assembling a 3D diffraction data cube, making the 3D reconstruction very difficult. We developed a method which uses power spectra of the partial diffraction pattern to pre-align the data. A reconstruction without severe phase unwrapping can then be obtained from the pre-aligned data. Next, the precise zero spatial frequency position can be found by examining the linear ramp present in the reconstructed phase. This method was applied to a freeze-dried yeast data set to show that this approach is effective with experimental data.
1987-12-31
Spot--Limit-Cal Print-Spot-Limit-Cal PART OF: MNar-t-Origri-Frt-Data 111-780 Syste-, < fvii -Hy-Asset-Forecast-Inp> -Operator 7’-4 :11-781 ADSM 18-LZ4-AKM...DEFINE PROCESS Maint-SpotFactor-Tbl DESCRIPTION; Maintain Spot Factor Table. This is an interactive process that receives SpotFactorCd(s) and...PROCESS Update-SpotFactor-Tbi DESCRIPTION; Update Spot Factor Table. This is a batch process that creates records or changes existing records in the
Shaping plasmon beams via the controlled illumination of finite-size plasmonic crystals
Bouillard, J.-S.; Segovia, P.; Dickson, W.; Wurtz, G. A.; Zayats, A. V.
2014-01-01
Plasmonic crystals provide many passive and active optical functionalities, including enhanced sensing, optical nonlinearities, light extraction from LEDs and coupling to and from subwavelength waveguides. Here we study, both experimentally and numerically, the coherent control of SPP beam excitation in finite size plasmonic crystals under focussed illumination. The correct combination of the illuminating spot size, its position relative to the plasmonic crystal, wavelength and polarisation enables the efficient shaping and directionality of SPP beam launching. We show that under strongly focussed illumination, the illuminated part of the crystal acts as an antenna, launching surface plasmon waves which are subsequently filtered by the surrounding periodic lattice. Changing the illumination conditions provides rich opportunities to engineer the SPP emission pattern. This offers an alternative technique to actively modulate and control plasmonic signals, either via micro- and nano-electromechanical switches or with electro- and all-optical beam steering which have direct implications for the development of new integrated nanophotonic devices, such as plasmonic couplers and switches and on-chip signal demultiplexing. This approach can be generalised to all kinds of surface waves, either for the coupling and discrimination of light in planar dielectric waveguides or the generation and control of non-diffractive SPP beams. PMID:25429786
Code of Federal Regulations, 2014 CFR
2014-04-01
.... (a) Spot-month limits. (1) For all Referenced Contracts executed pursuant to their rules, swap..., establish rules and procedures for monitoring and enforcing spot-month position limits set at levels no... monitoring and enforcing spot-month position limits set at levels no greater than 25 percent of estimated...
NASA Astrophysics Data System (ADS)
Majumder, Saikat; Jha, Amit Kr.; Biswas, Aishik; Banerjee, Debasmita; Ganguly, Dipankar; Chakraborty, Rajib
2017-08-01
Horizontal spot size converter required for horizontal light coupling and vertical bridge structure required for vertical integration are designed on high index contrast SOI platform in order to form more compact integrated photonic circuits. Both the structures are based on the concept of multimode interference. The spot size converter can be realized by successive integration of multimode interference structures with reducing dimension on horizontal plane, whereas the optical bridge structure consists of a number of vertical multimode interference structure connected by single mode sections. The spot size converter can be modified to a spot profile converter when the final single mode waveguide is replaced by a slot waveguide. Analysis have shown that by using three multimode sections in a spot size converter, an Gaussian input having spot diameter of 2.51 μm can be converted to a spot diameter of 0.25 μm. If the output single mode section is replaced by a slot waveguide, this input profile can be converted to a flat top profile of width 50 nm. Similarly, vertical displacement of 8μm is possible by using a combination of two multimode sections and three single mode sections in the vertical bridge structure. The analyses of these two structures are carried out for both TE and TM modes at 1550 nm wavelength using the semi analytical matrix method which is simple and fast in computation time and memory. This work shows that the matrix method is equally applicable for analysis of horizontally as well as vertically integrated photonic circuit.
Influence of TESG layer viscoelasticity on the imaging properties of microlenses
NASA Astrophysics Data System (ADS)
Vasiljević, Darko; Murić, Branka; Pantelić, Dejan; Panić, Bratimir
2012-05-01
Microlenses were produced by the irradiation of a layer of tot'hema and eosin sensitized gelatin (TESG) with laser light (second harmonic Nd:YAG, 532 nm). For this research, eight microlenses were written on a dog-bone-shaped TESG layer. After production, microlenses were uniaxially stretched on a tensile testing machine. Each microlens had different amounts of strain (0, 30, 60, 80, 120, 140, 180 and 240% strain). The influence of TESG layer extensibility on the imaging properties of microlenses was characterized by calculating the root mean square wavefront aberration, the modulation transfer function and the geometrical spot diagram. All microlenses had very good imaging properties and the microlens with 0% strain had diffraction-limited performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bibeau, C; Bayramian, A; Armstrong, P
We report on the operation of the Mercury laser with fourteen 4 x 6 cm{sup 2} Yb:S-FAP amplifier slabs pumped by eight 100 kW peak power diode arrays. The system was continuously run at 55 J and 10 Hz for several hours, (2 x 10{sup 5} cumulative shots) with over 80% of the energy in a 6 times diffraction limited spot at 1.047 um. Improved optical quality was achieved in Yb:S-FAP amplifiers with magneto-rheological finishing, a deterministic polishing method. In addition, average power frequency conversion employing YCOB was demonstrated at 50% conversion efficiency or 22.6 J at 10 Hz.
Optical Imaging of Nonuniform Ferroelectricity and Strain at the Diffraction Limit
Vlasin, Ondrej; Casals, Blai; Dix, Nico; Gutiérrez, Diego; Sánchez, Florencio; Herranz, Gervasi
2015-01-01
We have imaged optically the spatial distributions of ferroelectricity and piezoelectricity at the diffraction limit. Contributions to the birefringence from electro-optics –linked to ferroelectricity– as well as strain –arising from converse piezoelectric effects– have been recorded simultaneously in a BaTiO3 thin film. The concurrent recording of electro-optic and piezo-optic mappings revealed that, far from the ideal uniformity, the ferroelectric and piezoelectric responses were strikingly inhomogeneous, exhibiting significant fluctuations over the scale of the micrometer. The optical methods here described are appropriate to study the variations of these properties simultaneously, which are of great relevance when ferroelectrics are downscaled to small sizes for applications in data storage and processing. PMID:26522345
Wan, Wei; Sun, Junliang; Su, Jie; Hovmöller, Sven; Zou, Xiaodong
2013-01-01
Implementation of a computer program package for automated collection and processing of rotation electron diffraction (RED) data is described. The software package contains two computer programs: RED data collection and RED data processing. The RED data collection program controls the transmission electron microscope and the camera. Electron beam tilts at a fine step (0.05–0.20°) are combined with goniometer tilts at a coarse step (2.0–3.0°) around a common tilt axis, which allows a fine relative tilt to be achieved between the electron beam and the crystal in a large tilt range. An electron diffraction (ED) frame is collected at each combination of beam tilt and goniometer tilt. The RED data processing program processes three-dimensional ED data generated by the RED data collection program or by other approaches. It includes shift correction of the ED frames, peak hunting for diffraction spots in individual ED frames and identification of these diffraction spots as reflections in three dimensions. Unit-cell parameters are determined from the positions of reflections in three-dimensional reciprocal space. All reflections are indexed, and finally a list with hkl indices and intensities is output. The data processing program also includes a visualizer to view and analyse three-dimensional reciprocal lattices reconstructed from the ED frames. Details of the implementation are described. Data collection and data processing with the software RED are demonstrated using a calcined zeolite sample, silicalite-1. The structure of the calcined silicalite-1, with 72 unique atoms, could be solved from the RED data by routine direct methods. PMID:24282334
Wan, Wei; Sun, Junliang; Su, Jie; Hovmöller, Sven; Zou, Xiaodong
2013-12-01
Implementation of a computer program package for automated collection and processing of rotation electron diffraction (RED) data is described. The software package contains two computer programs: RED data collection and RED data processing. The RED data collection program controls the transmission electron microscope and the camera. Electron beam tilts at a fine step (0.05-0.20°) are combined with goniometer tilts at a coarse step (2.0-3.0°) around a common tilt axis, which allows a fine relative tilt to be achieved between the electron beam and the crystal in a large tilt range. An electron diffraction (ED) frame is collected at each combination of beam tilt and goniometer tilt. The RED data processing program processes three-dimensional ED data generated by the RED data collection program or by other approaches. It includes shift correction of the ED frames, peak hunting for diffraction spots in individual ED frames and identification of these diffraction spots as reflections in three dimensions. Unit-cell parameters are determined from the positions of reflections in three-dimensional reciprocal space. All reflections are indexed, and finally a list with hkl indices and intensities is output. The data processing program also includes a visualizer to view and analyse three-dimensional reciprocal lattices reconstructed from the ED frames. Details of the implementation are described. Data collection and data processing with the software RED are demonstrated using a calcined zeolite sample, silicalite-1. The structure of the calcined silicalite-1, with 72 unique atoms, could be solved from the RED data by routine direct methods.
Effect of ambient humidity on the rate at which blood spots dry and the size of the spot produced.
Denniff, Philip; Woodford, Lynsey; Spooner, Neil
2013-08-01
For shipping and storage, dried blood spot (DBS) samples must be sufficiently dry to protect the integrity of the sample. When the blood is spotted the humidity has the potential to affect the size of the spot created and the speed at which it dries. The area of DBS produced on three types of substrates were not affected by the humidity under which they were generated. DBS samples reached a steady moisture content 150 min after spotting and 90 min for humidities less than 60% relative humidity. All packaging materials examined provided some degree of protection from external extreme conditions. However, none of the packaging examined provided a total moisture barrier to extreme environmental conditions. Humidity was shown not to affect the spot area and DBS samples were ready for shipping and storage 2 h after spotting. The packing solutions examined all provided good protection from external high humidity conditions.
NASA Astrophysics Data System (ADS)
Du, Xiangli; Yin, Yaling; Zheng, Gongjue; Guo, Chaoxiu; Sun, Yu; Zhou, Zhongneng; Bai, Shunjie; Wang, Hailing; Xia, Yong; Yin, Jianping
2014-07-01
A new nonlinear optical method to generate a dark hollow beam (DHB) with a dielectric ZnSe crystal is proposed. From Huygens-Fresnel diffraction theory, we calculate the intensity distributions of the DHB and its propagating properties in free space, and study the dependences of the optimal propagation position and the dark-spot size (DSS) of the hollow beam on the waist radius of the incident Gaussian laser beam. Our study shows that the intensity distribution of the DHB presents symmetrical distribution with increasing the propagation distance, the optimal distance zopt becomes farther and the DSS becomes larger with the increase of the waist radius w of the incident Gaussian laser beam. This generated DHB will have applications in the optical guiding and trapping of macroscopic objects, atoms or molecules.
Bragg-Fresnel optics: New field of applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snigirev, A.
Bragg-Fresnel Optics shows excellent compatibility with the third generation synchrotron radiation sources such as ESRF and is capable of obtaining monochromatic submicron focal spots with 10{sup 8}-10{sup 9} photons/sec in an energy bandwidth of 10{sup -4}-10{sup -6} and in a photon energy range between 2-100 keV. New types of Bragg-Fresnel lenses like modified, ion implanted, bent and acoustically modulated were tested. Microprobe techniques like microdiffraction and microfluorescence based on Bragg-Fresnel optics were realised at the ESRF beamlines. Excellent parameters of the X-ray beam at the ESRF in terms of low emittance and quite small angular source size allow for Bragg-Fresnelmore » optics to occupy new fields of applications such as high resolution diffraction, holography, interferometry and phase contrast imaging.« less
Laser-driven powerful kHz hard x-ray source
NASA Astrophysics Data System (ADS)
Li, Minghua; Huang, Kai; Chen, Liming; Yan, Wenchao; Tao, Mengze; Zhao, Jiarui; Ma, Yong; Li, Yifei; Zhang, Jie
2017-08-01
A powerful hard x-ray source based on laser plasma interaction is developed. By introducing the kHz, 800 nm pulses onto a rotating molybdenum (Mo) disk target, intense Mo Kα x-rays are emitted with suppressed bremsstrahlung background. Results obtained with different laser intensities suggest that the dominant absorption mechanism responsible for the high conversion efficiency is vacuum heating (VH). The high degree of spatial coherence is verified. With the high average flux and a source size comparable to the laser focus spot, absorption contrast imaging and phase contrast imaging are carried out to test the imaging capability of the source. Not only useful for imaging application, this compact x-ray source is also holding great potential for ultrafast x-ray diffraction (XRD) due to the intrinsic merits such as femtosecond pulse duration and natural synchronization with the driving laser pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, X. R.; Poenisch, F.; Lii, M.
2013-04-15
Purpose: To present our method and experience in commissioning dose models in water for spot scanning proton therapy in a commercial treatment planning system (TPS). Methods: The input data required by the TPS included in-air transverse profiles and integral depth doses (IDDs). All input data were obtained from Monte Carlo (MC) simulations that had been validated by measurements. MC-generated IDDs were converted to units of Gy mm{sup 2}/MU using the measured IDDs at a depth of 2 cm employing the largest commercially available parallel-plate ionization chamber. The sensitive area of the chamber was insufficient to fully encompass the entire lateralmore » dose deposited at depth by a pencil beam (spot). To correct for the detector size, correction factors as a function of proton energy were defined and determined using MC. The fluence of individual spots was initially modeled as a single Gaussian (SG) function and later as a double Gaussian (DG) function. The DG fluence model was introduced to account for the spot fluence due to contributions of large angle scattering from the devices within the scanning nozzle, especially from the spot profile monitor. To validate the DG fluence model, we compared calculations and measurements, including doses at the center of spread out Bragg peaks (SOBPs) as a function of nominal field size, range, and SOBP width, lateral dose profiles, and depth doses for different widths of SOBP. Dose models were validated extensively with patient treatment field-specific measurements. Results: We demonstrated that the DG fluence model is necessary for predicting the field size dependence of dose distributions. With this model, the calculated doses at the center of SOBPs as a function of nominal field size, range, and SOBP width, lateral dose profiles and depth doses for rectangular target volumes agreed well with respective measured values. With the DG fluence model for our scanning proton beam line, we successfully treated more than 500 patients from March 2010 through June 2012 with acceptable agreement between TPS calculated and measured dose distributions. However, the current dose model still has limitations in predicting field size dependence of doses at some intermediate depths of proton beams with high energies. Conclusions: We have commissioned a DG fluence model for clinical use. It is demonstrated that the DG fluence model is significantly more accurate than the SG fluence model. However, some deficiencies in modeling the low-dose envelope in the current dose algorithm still exist. Further improvements to the current dose algorithm are needed. The method presented here should be useful for commissioning pencil beam dose algorithms in new versions of TPS in the future.« less
Zhu, X. R.; Poenisch, F.; Lii, M.; Sawakuchi, G. O.; Titt, U.; Bues, M.; Song, X.; Zhang, X.; Li, Y.; Ciangaru, G.; Li, H.; Taylor, M. B.; Suzuki, K.; Mohan, R.; Gillin, M. T.; Sahoo, N.
2013-01-01
Purpose: To present our method and experience in commissioning dose models in water for spot scanning proton therapy in a commercial treatment planning system (TPS). Methods: The input data required by the TPS included in-air transverse profiles and integral depth doses (IDDs). All input data were obtained from Monte Carlo (MC) simulations that had been validated by measurements. MC-generated IDDs were converted to units of Gy mm2/MU using the measured IDDs at a depth of 2 cm employing the largest commercially available parallel-plate ionization chamber. The sensitive area of the chamber was insufficient to fully encompass the entire lateral dose deposited at depth by a pencil beam (spot). To correct for the detector size, correction factors as a function of proton energy were defined and determined using MC. The fluence of individual spots was initially modeled as a single Gaussian (SG) function and later as a double Gaussian (DG) function. The DG fluence model was introduced to account for the spot fluence due to contributions of large angle scattering from the devices within the scanning nozzle, especially from the spot profile monitor. To validate the DG fluence model, we compared calculations and measurements, including doses at the center of spread out Bragg peaks (SOBPs) as a function of nominal field size, range, and SOBP width, lateral dose profiles, and depth doses for different widths of SOBP. Dose models were validated extensively with patient treatment field-specific measurements. Results: We demonstrated that the DG fluence model is necessary for predicting the field size dependence of dose distributions. With this model, the calculated doses at the center of SOBPs as a function of nominal field size, range, and SOBP width, lateral dose profiles and depth doses for rectangular target volumes agreed well with respective measured values. With the DG fluence model for our scanning proton beam line, we successfully treated more than 500 patients from March 2010 through June 2012 with acceptable agreement between TPS calculated and measured dose distributions. However, the current dose model still has limitations in predicting field size dependence of doses at some intermediate depths of proton beams with high energies. Conclusions: We have commissioned a DG fluence model for clinical use. It is demonstrated that the DG fluence model is significantly more accurate than the SG fluence model. However, some deficiencies in modeling the low-dose envelope in the current dose algorithm still exist. Further improvements to the current dose algorithm are needed. The method presented here should be useful for commissioning pencil beam dose algorithms in new versions of TPS in the future. PMID:23556893
Zhu, X R; Poenisch, F; Lii, M; Sawakuchi, G O; Titt, U; Bues, M; Song, X; Zhang, X; Li, Y; Ciangaru, G; Li, H; Taylor, M B; Suzuki, K; Mohan, R; Gillin, M T; Sahoo, N
2013-04-01
To present our method and experience in commissioning dose models in water for spot scanning proton therapy in a commercial treatment planning system (TPS). The input data required by the TPS included in-air transverse profiles and integral depth doses (IDDs). All input data were obtained from Monte Carlo (MC) simulations that had been validated by measurements. MC-generated IDDs were converted to units of Gy mm(2)/MU using the measured IDDs at a depth of 2 cm employing the largest commercially available parallel-plate ionization chamber. The sensitive area of the chamber was insufficient to fully encompass the entire lateral dose deposited at depth by a pencil beam (spot). To correct for the detector size, correction factors as a function of proton energy were defined and determined using MC. The fluence of individual spots was initially modeled as a single Gaussian (SG) function and later as a double Gaussian (DG) function. The DG fluence model was introduced to account for the spot fluence due to contributions of large angle scattering from the devices within the scanning nozzle, especially from the spot profile monitor. To validate the DG fluence model, we compared calculations and measurements, including doses at the center of spread out Bragg peaks (SOBPs) as a function of nominal field size, range, and SOBP width, lateral dose profiles, and depth doses for different widths of SOBP. Dose models were validated extensively with patient treatment field-specific measurements. We demonstrated that the DG fluence model is necessary for predicting the field size dependence of dose distributions. With this model, the calculated doses at the center of SOBPs as a function of nominal field size, range, and SOBP width, lateral dose profiles and depth doses for rectangular target volumes agreed well with respective measured values. With the DG fluence model for our scanning proton beam line, we successfully treated more than 500 patients from March 2010 through June 2012 with acceptable agreement between TPS calculated and measured dose distributions. However, the current dose model still has limitations in predicting field size dependence of doses at some intermediate depths of proton beams with high energies. We have commissioned a DG fluence model for clinical use. It is demonstrated that the DG fluence model is significantly more accurate than the SG fluence model. However, some deficiencies in modeling the low-dose envelope in the current dose algorithm still exist. Further improvements to the current dose algorithm are needed. The method presented here should be useful for commissioning pencil beam dose algorithms in new versions of TPS in the future.
Retrieving cirrus microphysical properties from stellar aureoles
NASA Astrophysics Data System (ADS)
DeVore, J. G.; Kristl, J. A.; Rappaport, S. A.
2013-06-01
The aureoles around stars caused by thin cirrus limit nighttime measurement opportunities for ground-based astronomy, but can provide information on high-altitude ice crystals for climate research. In this paper we attempt to demonstrate quantitatively how this works. Aureole profiles can be followed out to ~0.2° from stars and ~0.5° from Jupiter. Interpretation of diffracted starlight is similar to that for sunlight, but emphasizes larger particles. Stellar diffraction profiles are very distinctive, typically being approximately flat out to a critical angle followed by gradually steepening power-law falloff with slope less steep than -3. Using the relationship between the phase function for diffraction and the average Fourier transform of the projected area of complex ice crystals, we show that defining particle size in terms of average projected area normal to the propagation direction of the starlight leads to a simple, analytic approximation representing large-particle diffraction that is nearly independent of crystal habit. A similar analytic approximation for the diffraction aureole allows it to be separated from the point spread function and the sky background. Multiple scattering is deconvolved using the Hankel transform leading to the diffraction phase function. Application of constrained numerical inversion to the phase function then yields a solution for the particle size distribution in the range between ~50 μm and ~400 μm. Stellar aureole measurements can provide one of the very few, as well as least expensive, methods for retrieving cirrus microphysical properties from ground-based observations.
Alternative beam configuration for a Canadian Ka-band satellite system
NASA Technical Reports Server (NTRS)
Hindson, Daniel J.; Caron, Mario
1995-01-01
Satellite systems operating in the Ka-band have been proposed to offer wide band personal communications services to fixed earth terminals employing small aperture antennas as well as to mobile terminals. This requirement to service a small aperture antenna leads to a satellite system utilizing small spot beams. The traditional approach is to cover the service area with uniform spot beams which have been sized to provide a given grade of service at the worst location over the service area and to place them in a honeycomb pattern. In the lower frequency bands this approach leads to a fairly uniform grade of service over the service area due to the minimal effects of rain on the signals. At Ka-band, however, the effects of rain are quite significant. Using this approach over a large service area (e.g. Canada) where the geographic distribution of rain impairment varies significantly yields an inefficient use of satellite resources to provide a uniform grade of service. An alternative approach is to cover the service area using more than one spot beam size in effect linking the spot beam size to the severity of the rain effects in a region. This paper demonstrates how for a Canadian Ka-band satellite system, that the use of two spot beam sizes can provide a more uniform grade of service across the country as well as reduce the satellite payload complexity over a design utilizing a single spot beam size.
Code of Federal Regulations, 2012 CFR
2012-04-01
... spot-month positions. Spot-month limits should be adopted for significant price discovery contracts to... market or derivatives transaction execution facility should set the spot-month limit for its significant... designated contract market or derivatives transaction execution facility. In this case, the spot-month...
Indetermination of particle sizing by laser diffraction in the anomalous size ranges
NASA Astrophysics Data System (ADS)
Pan, Linchao; Ge, Baozhen; Zhang, Fugen
2017-09-01
The laser diffraction method is widely used to measure particle size distributions. It is generally accepted that the scattering angle becomes smaller and the angles to the location of the main peak of scattered energy distributions in laser diffraction instruments shift to smaller values with increasing particle size. This specific principle forms the foundation of the laser diffraction method. However, this principle is not entirely correct for non-absorbing particles in certain size ranges and these particle size ranges are called anomalous size ranges. Here, we derive the analytical formulae for the bounds of the anomalous size ranges and discuss the influence of the width of the size segments on the signature of the Mie scattering kernel. This anomalous signature of the Mie scattering kernel will result in an indetermination of the particle size distribution when measured by laser diffraction instruments in the anomalous size ranges. By using the singular-value decomposition method we interpret the mechanism of occurrence of this indetermination in detail and then validate its existence by using inversion simulations.
NASA Astrophysics Data System (ADS)
Chakravarthy, Sunada; Gonthier, Keith A.
2016-07-01
Variations in the microstructure of granular explosives (i.e., particle packing density, size, shape, and composition) can affect their shock sensitivity by altering thermomechanical fields at the particle-scale during pore collapse within shocks. If the deformation rate is fast, hot-spots can form, ignite, and interact, resulting in burn at the macro-scale. In this study, a two-dimensional finite and discrete element technique is used to simulate and examine shock-induced dissipation and hot-spot formation within low density explosives (68%-84% theoretical maximum density (TMD)) consisting of large ensembles of HMX (C4H8N8O8) and aluminum (Al) particles (size ˜ 60 -360 μm). Emphasis is placed on identifying how the inclusion of Al influences effective shock dissipation and hot-spot fields relative to equivalent ensembles of neat/pure HMX for shocks that are sufficiently strong to eliminate porosity. Spatially distributed hot-spot fields are characterized by their number density and area fraction enabling their dynamics to be described in terms of nucleation, growth, and agglomeration-dominated phases with increasing shock strength. For fixed shock particle speed, predictions indicate that decreasing packing density enhances shock dissipation and hot-spot formation, and that the inclusion of Al increases dissipation relative to neat HMX by pressure enhanced compaction resulting in fewer but larger HMX hot-spots. Ensembles having bimodal particle sizes are shown to significantly affect hot-spot dynamics by altering the spatial distribution of hot-spots behind shocks.
Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading
Fan, D.; Huang, J. W.; Zeng, X. L.; ...
2016-05-23
We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; diffraction peak broadening is largely caused by fracture-induced strain inhomogeneity. Finally, our results demonstrate the potential of such multiscale measurements for revealing and understanding high strain-rate phenomena at dynamic extremes.« less
Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, D.; Huang, J. W.; Zeng, X. L.
We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; diffraction peak broadening is largely caused by fracture-induced strain inhomogeneity. Finally, our results demonstrate the potential of such multiscale measurements for revealing and understanding high strain-rate phenomena at dynamic extremes.« less
Svarcová, Silvie; Kocí, Eva; Bezdicka, Petr; Hradil, David; Hradilová, Janka
2010-09-01
The uniqueness and limited amounts of forensic samples and samples from objects of cultural heritage together with the complexity of their composition requires the application of a wide range of micro-analytical methods, which are non-destructive to the samples, because these must be preserved for potential late revision. Laboratory powder X-ray micro-diffraction (micro-XRD) is a very effective non-destructive technique for direct phase analysis of samples smaller than 1 mm containing crystal constituents. It compliments optical and electron microscopy with elemental micro-analysis, especially in cases of complicated mixtures containing phases with similar chemical composition. However, modification of X-ray diffraction to the micro-scale together with its application for very heterogeneous real samples leads to deviations from the standard procedure. Knowledge of both the limits and the phenomena which can arise during the analysis is crucial for the meaningful and proper application of the method. We evaluated basic limits of micro-XRD equipped with a mono-capillary with an exit diameter of 0.1 mm, for example the size of irradiated area, appropriate grain size, and detection limits allowing identification of given phases. We tested the reliability and accuracy of quantitative phase analysis based on micro-XRD data in comparison with conventional XRD (reflection and transmission), carrying out experiments with two-phase model mixtures simulating historic colour layers. Furthermore, we demonstrate the wide use of micro-XRD for investigation of various types of micro-samples (contact traces, powder traps, colour layers) and we show how to enhance data quality by proper choice of experiment geometry and conditions.
Norazmi-Lokman, Nor Hakim; Purser, G. J.; Patil, Jawahar G.
2016-01-01
In most livebearing fish, the gravid spot is an excellent marker to identify brooding females, however its use to predict progress of embryonic development, brood size, timing of parturition and overall reproductive potential of populations remain unexplored. Therefore, to understand these relationships, this study quantified visual attributes (intensity and size) of the gravid spot in relation to key internal development in Gambusia holbrooki. Observations show that the colour of the gravid spot arises from progressive melanisation on the surface of the ovarian sac at its hind margin, rather than melanisation of the developing embryos or the skin of the brooding mother. More importantly, the gravid spot intensity and size were closely linked with both developmental stages and clutch size, suggesting their reliable use as external surrogates of key internal developmental in the species. Using predictive consistency of the gravid spot, we also determined the effect of rearing temperature (23°C and 25°C) on gestation period and parturition behaviour. The results show that gestation period was significantly reduced (F = 364.58; df = 1,48; P˃0.05) at 25°C. However there was no significant difference in average number of fry parturated in the two temperature groups (P<0.05), reaffirming that gravid spot intensity is a reliable predictor of reproductive output. The parturition in the species occurred predominantly in the morning and in contrast to earlier reports, tails of the fry emerged first with a few exceptions of head-first, twin and premature births. This study demonstrates utility of the gravid spot for downstream reproductive investigations in a live-bearing fish both in the field and laboratory. The reproducibility of the relationships (intensity with both developmental stage and clutch size), imply that they are also relevant to wild populations that experience varying temperature climes and stressors, significant deviations of which may serve as indicators of environmental health and climate variability. PMID:26808521
NASA Astrophysics Data System (ADS)
Li, Xiaoliang; Luo, Lei; Li, Pengwei; Yu, Qingkui
2018-03-01
The image sensor in satellite optical communication system may generate noise due to space irradiation damage, leading to deviation for the determination of the light spot centroid. Based on the irradiation test data of CMOS devices, simulated defect spots in different sizes have been used for calculating the centroid deviation value by grey-level centroid algorithm. The impact on tracking & pointing accuracy of the system has been analyzed. The results show that both the amount and the position of irradiation-induced defect pixels contribute to spot centroid deviation. And the larger spot has less deviation. At last, considering the space radiation damage, suggestions are made for the constraints of spot size selection.
Adequacy of laser diffraction for soil particle size analysis
Fisher, Peter; Aumann, Colin; Chia, Kohleth; O'Halloran, Nick; Chandra, Subhash
2017-01-01
Sedimentation has been a standard methodology for particle size analysis since the early 1900s. In recent years laser diffraction is beginning to replace sedimentation as the prefered technique in some industries, such as marine sediment analysis. However, for the particle size analysis of soils, which have a diverse range of both particle size and shape, laser diffraction still requires evaluation of its reliability. In this study, the sedimentation based sieve plummet balance method and the laser diffraction method were used to measure the particle size distribution of 22 soil samples representing four contrasting Australian Soil Orders. Initially, a precise wet riffling methodology was developed capable of obtaining representative samples within the recommended obscuration range for laser diffraction. It was found that repeatable results were obtained even if measurements were made at the extreme ends of the manufacturer’s recommended obscuration range. Results from statistical analysis suggested that the use of sample pretreatment to remove soil organic carbon (and possible traces of calcium-carbonate content) made minor differences to the laser diffraction particle size distributions compared to no pretreatment. These differences were found to be marginally statistically significant in the Podosol topsoil and Vertosol subsoil. There are well known reasons why sedimentation methods may be considered to ‘overestimate’ plate-like clay particles, while laser diffraction will ‘underestimate’ the proportion of clay particles. In this study we used Lin’s concordance correlation coefficient to determine the equivalence of laser diffraction and sieve plummet balance results. The results suggested that the laser diffraction equivalent thresholds corresponding to the sieve plummet balance cumulative particle sizes of < 2 μm, < 20 μm, and < 200 μm, were < 9 μm, < 26 μm, < 275 μm respectively. The many advantages of laser diffraction for soil particle size analysis, and the empirical results of this study, suggest that deployment of laser diffraction as a standard test procedure can provide reliable results, provided consistent sample preparation is used. PMID:28472043
Wave optics of the central spot in planetary occultations
NASA Technical Reports Server (NTRS)
Hubbard, W. B.
1977-01-01
The detection of a bright central spot during the occultation of epsilon Geminorum by Mars demonstrates that an exponentially-stratified planetary atmosphere can act as a lens providing very high resolution of distant objects (e.g., quasars, white dwarfs, and pulsars). The diffraction nature of the central occultation spot is investigated, with special reference to Mars and Venus. In practice, however, central occultations by these planets are seldom observable from the earth's surface, and spacecraft would have to be used to obtain a suitable orientation for observers. Further difficulties may be encountered in image deconvolution needed for extended objects, in location of the image of a true point source, and in compensation for peculiarities of planets and their atmospheres.
System Concept for Remote Measurement of Asteroid Molecular Composition
NASA Astrophysics Data System (ADS)
Hughes, G. B.; Lubin, P. M.; Zhang, Q.; Brashears, T.; Cohen, A. N.; Madajian, J.
2016-12-01
We propose a method for probing the molecular composition of cold solar system targets (asteroids, comets, planets, moons) from a distant vantage, such as from a spacecraft orbiting the object. A directed energy beam is focused on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption of the blackbody radiation occurs within the ejected plume. Bulk composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected material. Our proposed method differs from technologies such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes materials in the target; scattered ions emit characteristic radiation, and the LIBS detector performs atomic composition analysis by observing emission spectra. Standoff distance for LIBS is limited by the strength of characteristic emission, and distances greater than 10 m are problematic. Our proposed method detects atomic and molecular absorption spectra in the plume; standoff distance is limited by the size of heated spot, and the plume opacity; distances on the order of tens of kilometers are immediately feasible. Simulations have been developed for laser heating of a rocky target, with concomitant evaporation. Evaporation rates lead to determination of plume density and opacity. Absorption profiles for selected materials are estimated from plume properties. Initial simulations of absorption profiles with laser heating show great promise for molecular composition analysis from tens of kilometers distance. This paper explores the feasibility a hypothetical mission that seeks to perform surface molecular composition analysis of a near-earth asteroid while the craft orbits the asteroid. Such a system has compelling potential benefit for solar system exploration.
Al-Ezzi, Salih; Quan, Gaofeng; Elrayah, Adil
2018-05-07
This paper examines the effect of ultrasonic vibration (USV) on grain size and interrupted porosity in Gas Tungsten Arc (GTA) spot-welded copper. Grain size was refined by perpendicularly attaching a transducer to the welded sheet and applying USV to the weld pool for a short time (0, 2, 4, and 6 s) in addition improvements to the degassing process. Results illustrate a significant reduction of grain size (57%). Notably, USV provided interaction between reformations (fragmentation) and provided nucleation points (detaching particles from the fusion line) for grains in the nugget zone and the elimination of porosity in the nugget zone. The GTA spot welding process, in conjunction with USV, demonstrated an improvement in the corrosion potential for a copper spot-welded joint in comparison to the joint welded without assistance of USV. Finally, welding of copper by GTA spot welding in conjunction with ultrasound for 2 s presented significant mechanical properties.
Quan, Gaofeng
2018-01-01
This paper examines the effect of ultrasonic vibration (USV) on grain size and interrupted porosity in Gas Tungsten Arc (GTA) spot-welded copper. Grain size was refined by perpendicularly attaching a transducer to the welded sheet and applying USV to the weld pool for a short time (0, 2, 4, and 6 s) in addition improvements to the degassing process. Results illustrate a significant reduction of grain size (57%). Notably, USV provided interaction between reformations (fragmentation) and provided nucleation points (detaching particles from the fusion line) for grains in the nugget zone and the elimination of porosity in the nugget zone. The GTA spot welding process, in conjunction with USV, demonstrated an improvement in the corrosion potential for a copper spot-welded joint in comparison to the joint welded without assistance of USV. Finally, welding of copper by GTA spot welding in conjunction with ultrasound for 2 s presented significant mechanical properties. PMID:29735894
17 CFR 150.5 - Exchange-set speculative position limits.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) For physical delivery contracts, the spot month limit level must be no greater than one-quarter of the estimated spot month deliverable supply, calculated separately for each month to be listed, and for cash settled contracts, the spot month limit level must be no greater than necessary to minimize the potential...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majumder, Apratim; Helms, Phillip L.; Menon, Rajesh, E-mail: rmenon@eng.utah.edu
2016-03-15
Optical lithography is the most prevalent method of fabricating micro-and nano-scale structures in the semiconductor industry due to the fact that patterning using photons is fast, accurate and provides high throughput. However, the resolution of this technique is inherently limited by the physical phenomenon of diffraction. Absorbance-Modulation-Optical Lithography (AMOL), a recently developed technique has been successfully demonstrated to be able to circumvent this diffraction limit. AMOL employs a dual-wavelength exposure system in conjunction with spectrally selective reversible photo-transitions in thin films of photochromic molecules to achieve patterning of features with sizes beyond the far-field diffraction limit. We have developed amore » finite-element-method based full-electromagnetic-wave solution model that simulates the photo-chemical processes that occur within the thin film of the photochromic molecules under illumination by the exposure and confining wavelengths in AMOL. This model allows us to understand how the material characteristics influence the confinement to sub-diffraction dimensions, of the transmitted point spread function (PSF) of the exposure wavelength inside the recording medium. The model reported here provides the most comprehensive analysis of the AMOL process to-date, and the results show that the most important factors that govern the process, are the polarization of the two beams, the ratio of the intensities of the two wavelengths, the relative absorption coefficients and the concentration of the photochromic species, the thickness of the photochromic layer and the quantum yields of the photoreactions at the two wavelengths. The aim of this work is to elucidate the requirements of AMOL in successfully circumventing the far-field diffraction limit.« less
Malkusch, Wolf
2005-01-01
The enzyme-linked immunospot (ELISPOT) assay was originally developed for the detection of individual antibody secreting B-cells. Since then, the method has been improved, and ELISPOT is used for the determination of the production of tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, or various interleukins (IL)-4, IL-5. ELISPOT measurements are performed in 96-well plates with nitrocellulose membranes either visually or by means of image analysis. Image analysis offers various procedures to overcome variable background intensity problems and separate true from false spots. ELISPOT readers offer a complete solution for precise and automatic evaluation of ELISPOT assays. Number, size, and intensity of each single spot can be determined, printed, or saved for further statistical evaluation. Cytokine spots are always round, but because of floating edges with the background, they have a nonsmooth borderline. Resolution is a key feature for a precise detection of ELISPOT. In standard applications shape and edge steepness are essential parameters in addition to size and color for an accurate spot recognition. These parameters need a minimum spot diameter of 6 pixels. Collecting one single image per well with a standard color camera with 750 x 560 pixels will result in a resolution much too low to get all of the spots in a specimen. IFN-gamma spots may have only 25 microm diameters, and TNF-alpha spots just 15 microm. A 750 x 560 pixel image of a 6-mm well has a pixel size of 12 microm, resulting in only 1 or 2 pixel for a spot. Using a precise microscope optic in combination with a high resolution (1300 x 1030 pixel) integrating digital color camera, and at least 2 x 2 images per well will result in a pixel size of 2.5 microm and, as a minimum, 6 pixel diameter per spot. New approaches try to detect two cytokines per cell at the same time (i.e., IFN-gamma and IL-5). Standard staining procedures produce brownish spots (horseradish peroxidase) and blue spots (alkaline phosphatase). Problems may occur with color overlaps from cells producing both cytokines, resulting in violet spots. The latest experiments therefore try to use fluorescence labels as a marker. Fluorescein isothiocyanate results in green spots and Rhodamine in red spots. Cells producing both cytokines appear yellow. These colors can be separated much easier than the violet, red, and blue, especially using a high resolution.
NASA Technical Reports Server (NTRS)
Palosz, B.; Grzanka, E.; Stelmakh, S.; Gierlotka, S.; Weber, H.-P.; Proffen, T.; Palosz, W.
2002-01-01
The real atomic structure of nanocrystals determines unique, key properties of the materials. Determination of the structure presents a challenge due to inherent limitations of standard powder diffraction techniques when applied to nanocrystals. Alternate methodology of the structural analysis of nanocrystals (several nanometers in size) based on Bragg-like scattering and called the "apparent lattice parameter" (alp) is proposed. Application of the alp methodology to examination of the core-shell model of nanocrystals will be presented. The results of application of the alp method to structural analysis of several nanopowders were complemented by those obtained by determination of the Atomic Pair Distribution Function, PDF. Based on synchrotron and neutron diffraction data measured in a large diffraction vector of up to Q = 25 Angstroms(exp -1), the surface stresses in nanocrystalline diamond and SiC were evaluated.
Home range characteristics of Mexican Spotted Owls in the canyonlands of Utah
Willey, D.W.; van Riper, Charles
2007-01-01
We studied home-range characteristics of adult Mexican Spotted Owls (Strix occidentalis lucida) in southern Utah. Twenty-eight adult owls were radio-tracked using a ground-based telemetry system during 1991-95. Five males and eight females molted tail feathers and dropped transmitters within 4 wk. We estimated cumulative home ranges for 15 Spotted Owls (12 males, 3 females). The mean estimate of cumulative home-range size was not statistically different between the minimum convex polygon and adaptive kernel (AK) 95% isopleth. Both estimators yielded relatively high SD, and male and female range sizes varied widely. For 12 owls tracked during both the breeding and nonbreeding seasons, the mean size of the AK 95% nonbreeding home range was 49% larger than the breeding home-range size. The median AK 75% bome-range isopleth (272 ha) we observed was similar in size to Protected Activity Centers (PACs) recommended by a recovery team. Our results lend support to the PAC concept and we support continued use of PACs to conserve Spotted Owl habitat in Utah. ?? 2007 The Raptor Research Foundation, Inc.
Laser drive development for the APS Dynamic Compression Sector
NASA Astrophysics Data System (ADS)
Lagrange, Thomas; Swift, Damian; Reed, Bryan; Bernier, Joel; Kumar, Mukul; Hawreliak, James; Eggert, Jon; Dixit, Sham; Collins, Gilbert
2013-06-01
The Dynamic Compression Sector (DCS) at the APS synchrotron offers unprecedented possibilities for x-ray diffraction and scattering measurements in-situ during dynamic loading, including single-shot data collection with x-ray energies high enough (tens of kV) to study high-Z samples in transmission as well as reflection. Dynamic loading induced by laser ablation is an important component of load generation, as the duration, strain rate, and pressure can be controlled via the energy, spot size, and pulse shape. Using radiation hydrodynamics simulations, validated by experiments at several laser facilities, we have investigated the relationship between irradiance history and pressure for ablative loads designed to induce shock and ramp loading in the nanosecond to microsecond range, and including free ablation and also ablation confined by a transparent substrate. We have investigated the effects of lateral release, which constrains the minimum diameter of the focal spot for a given drive duration. In this way, we are able to relate the desired drive conditions to the total laser energy needed, which dictates the laser technologies suitable for a given type of experiment. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets.
Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe
2017-03-10
Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co-28Cr-9W-1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.
Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets
Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe
2017-01-01
Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co–28Cr–9W–1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable. PMID:28772639
Three-dimensional light trap for reflective particles
Neal, Daniel R.
1999-01-01
A system for containing either a reflective particle or a particle having an index of refraction lower than that of the surrounding media in a three-dimensional light cage. A light beam from a single source illuminates an optics system and generates a set of at least three discrete focussed beams that emanate from a single exit aperture and focus on to a focal plane located close to the particle. The set of focal spots defines a ring that surrounds the particle. The set of focussed beams creates a "light cage" and circumscribes a zone of no light within which the particle lies. The surrounding beams apply constraining forces (created by radiation pressure) to the particle, thereby containing it in a three-dimensional force field trap. A diffractive element, such as an aperture multiplexed lens, or either a Dammann grating or phase element in combination with a focusing lens, may be used to generate the beams. A zoom lens may be used to adjust the size of the light cage, permitting particles of various sizes to be captured and contained.
Three-dimensional light trap for reflective particles
Neal, D.R.
1999-08-17
A system is disclosed for containing either a reflective particle or a particle having an index of refraction lower than that of the surrounding media in a three-dimensional light cage. A light beam from a single source illuminates an optics system and generates a set of at least three discrete focused beams that emanate from a single exit aperture and focus on to a focal plane located close to the particle. The set of focal spots defines a ring that surrounds the particle. The set of focused beams creates a ``light cage`` and circumscribes a zone of no light within which the particle lies. The surrounding beams apply constraining forces (created by radiation pressure) to the particle, thereby containing it in a three-dimensional force field trap. A diffractive element, such as an aperture multiplexed lens, or either a Dammann grating or phase element in combination with a focusing lens, may be used to generate the beams. A zoom lens may be used to adjust the size of the light cage, permitting particles of various sizes to be captured and contained. 10 figs.
NASA Astrophysics Data System (ADS)
Lattin, G.
2016-02-01
Monitoring debris at sea presents challenges not found in beach or riverine habitats, and is typically done with trawl nets of various apertures and mesh sizes, which limits the size of debris captured and the area surveyed. To partially overcome these limitations in monitoring floating debris, a Quadcopter drone with video transmitting and recording capabilities was deployed at the beginning and the end of manta trawl transects within the North Pacific Subtropical Gyre's eastern convergence zone. Subsurface tucker trawls at 10 meters were conducted at the same time as the manta trawls, in order to assess the effect of sea state on debris dispersal. Trawls were conducted on an 11 station grid used repeatedly since 1999. For drone observations, the operator and observer were stationed on the mother ship while two researchers collected observed debris using a rigid inflatable boat (RIB). The drone was flown to a distance of approximately 100 meters from the vessel in a zigzag or circular search pattern. Here we examine issues arising from drone deployment during the survey: 1) relation of area surveyed by drone to volume of water passing through trawl; 2) retrieval of drone-spotted and associated RIB spotted debris. 3) integrating post- flight image analysis into retrieved debris quantification; and 4) factors limiting drone effectiveness at sea. During the survey, debris too large for the manta trawl was spotted by the drone, and significant debris not observed using the drone was recovered by the RIB. The combination of drone sightings, RIB retrieval, and post flight image analysis leads to improved monitoring of debris at sea. We also examine the issue of the distribution of floating debris during sea states varying from 0-5 by comparing quantities from surface manta trawls to the tucker trawls at a nominal depth of 10 meters.
NASA Astrophysics Data System (ADS)
Willenweber, A.; Thomas, S.; Burnley, P. C.
2012-12-01
The Berkeley Texture Package BEARTEX is a Windows-based computer software that combines various algorithms to analyze lattice-preferred orientation in polycrystalline materials. BEARTEX was initially designed to interpret diffraction intensity data from pole figure goniometers. Recently it has been successfully used to process synthetic forsterite powder diffraction data from in-situ synchrotron X-ray diffraction taken during deformation (Bollinger et al. 2012). Our study aims to test the practicability of using BEARTEX to analyze the evolution of lattice-preferred orientation in natural polycrystalline quartz (novaculite) during deformation. In-situ X-ray diffraction data was collected during the deformation of novaculite at 2.5 GPa and up to 1000 °C in a D-DIA apparatus using the ten-element energy-dispersive detector at the NSLS beamline X17B2. Diffraction intensities are a function of crystal orientation, expressed in azimuth angle η and pole distance ψ. The latter is the angle between the normal of a given diffraction plane and the vertical direction of the D-DIA apparatus - our principal stress direction during compression. Orientation-dependent diffraction intensities were corrected for different responses of the single detectors and x-ray absorption effects of the anvils. Orientation distributions (ODs) and inverse pole figures were calculated using BEARTEX. In addition, electron backscatter diffraction (EBSD) analyses were carried out on the deformed novaculite samples. Generated pole figures were compared with those derived from BEARTEX. Textural properties of our novaculite starting material complicated the BEARTEX analyses. The relatively strong variation of grain sizes in our natural specimens caused non-random diffraction intensity distributions. Those lead to non-random distributions of crystal orientations when analyzed with BEARTEX, although pole figures from EBSD data clearly show random crystal orientations. In an attempt to solve this problem, we employed a scanning routine when recording in-situ synchrotron X-ray diffraction and so collected diffraction from multiple sample volumes rather than from one single spot. Here, we will present a comparison of pole figures derived from independent BEARTEX and EBSD analyses for a series of novaculite experiments and discuss the practicability of BEARTEX to analyze the evolution of lattice-preferred orientation in natural polycrystalline quartz. REFERENCES C. BOLLINGER, S. MERKEL AND P. RATERRON (2012): In situ quantitative analysis of stress and texture development in forsterite aggregates deformed at 6 GPa and 1373 K. J. Appl. Cryst., 45, 263-271.
Continuous adaptive beam pointing and tracking for laser power transmission.
Schäfer, Christian A
2010-06-21
The adaptive beam pointing concept has been revisited for the purpose of controlled transmission of laser energy from an optical transmitter to a target. After illumination, a bidirectional link is established by a retro-reflector on the target and an amplifier-phase conjugate mirror (A-PCM) on the transmitter. By setting the retro-reflector's aperture smaller than the diffraction limited spot size but big enough to provide sufficient amount of optical feedback, a stable link can be maintained and light that hits the retro-reflector's surrounded area can simultaneously be reconverted into usable electric energy. The phase conjugate feedback ensures that amplifier's distortions are compensated and the target tracked accurately.After deriving basic arithmetic expressions for the proposed system, a section is devoted for the motivation of free-space laser power transmission which is supposed to find varied applicability in space. As an example, power transmission from a satellite to the earth is described where recently proposed solar power generating structures on high-altitudes receive the power above the clouds to provide constant energy supply.In the experimental part, an A-PCM setup with reflectivity of about R(A-PCM) = 100 was realized using a semiconductor optical amplifier and a photorefractive self-pumped PCM. Simulation results show that a reflectivity of R(A-PCM)>1000 could be obtained by improving the self-pumped PCM's efficiency. That would lead to a transmission efficiency of eta>90%.
NASA Astrophysics Data System (ADS)
Newaz, Akm; Yore, A. E.; Miller, A.; Crumrine, W.; Redd, B.; Tuck, J. A.; Wang, Bin; Smithe, K. K. H.; Pop, E.
Understanding nanoscale optical behavior of the edges and grain boundaries of synthetically grown transition metal dichalcogenides (TMDCs) is vital for optimizing their optoelectronic properties. Here we present our experimental work on spatial photoluminescence (PL) scanning of large size (>= 50 μ m) monolayer MoS2 grown by chemical vapor deposition (CVD) using a diffraction limited blue laser beam spot (wavelength 405 nm) with a beam diameter as small as 200 nm allowing us to probe nanoscale excitonic phenomena which was not observed before. We have found several important features: (i) there exists a sub-micron width strip ( 500 nm) along the edges that fluoresces 1000 % brighter than the region far inside; (ii) there is another brighter wide region consisting of parallel fluorescing lines ending at the corners of the zig-zag peripheral edges; (iii) there is a giant blue shifted A-excitonic peak, as large as 120 meV, in the PL spectra from the edges. Using density functional theory calculations, we attribute this giant blue shift to the adsorption of oxygen dimers at the edges, which reduces the excitonic binding energy. Our results offer an attractive route to tailor optical properties at the TMDC edges through defect engineering. AFOSR Grant FA9550-14-1-0251, NSF EFRI 2-DARE Grant 1542883, NSF Graduate Research Fellowship under Grant DGE-114747.
NASA Technical Reports Server (NTRS)
Pearl, J. C.; Sinton, W. M.
1982-01-01
The size and temperature, morphology and distribution, variability, possible absorption features, and processes of hot spots on Io are discussed, and an estimate of the global heat flux is made. Size and temperature information is deconvolved to obtain equivalent radius and temperature of hot spots, and simultaneously obtained Voyager thermal and imaging data is used to match hot sources with specific geologic features. In addition to their thermal output, it is possible that hot spots are also characterized by production of various gases and particulate materials; the spectral signature of SO2 has been seen. Origins for relatively stable, low temperature sources, transient high temperature sources, and relatively stable, high-tmperature sources are discussed.
NASA Astrophysics Data System (ADS)
McRae, E. G.; Petroff, P. M.
1984-11-01
Several structural models of the Si(111)-7 × 7 surface are tested by comparing calculated and observed transmission electron diffraction (TED) patterns. The models comprise "adatom" models where the unit mesh contains 12 adatoms or atom clusters in a locally (2 × 2) arrangement, and "triangle-dimer" models where the unit mesh contains 9 dimers or pairs of dimers bordering a triangular subunit of the unit mesh. The distribution of diffraction intensity among fractional-order spots is calculated kinematically and compared with TED patterns observed by Petroff and Wilson and others. No agreement is found for adatom models. Good but not perfect agreement is found for one triangle-dimer model.
Crystallographic Characterization of Extraterrestrial Materials by Energy-Scanning X-ray Diffraction
NASA Technical Reports Server (NTRS)
Hagiya, Kenji; Mikouchi, Takashi; Ohsumi, Kazumasa; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi; Yamaguchi, Shoki; Hirata, Arashi; Kurokawa, Ayaka; Zolensky, Michael E. (Principal Investigator)
2016-01-01
We have continued our long-term project using X-ray diffraction to characterize a wide range of extraterrestrial samples. The stationary sample method with polychromatic X-rays is advantageous because the irradiated area of the sample is always same and fixed, meaning that all diffraction spots occur from the same area of the sample, however, unit cell parameters cannot be directly obtained by this method though they are very important for identification of mineral and for determination of crystal structures. In order to obtain the cell parameters even in the case of the sample stationary method, we apply energy scanning of a micro-beam of monochromatic SR at SPring-8.
Beekman, Alice; Shan, Daxian; Ali, Alana; Dai, Weiguo; Ward-Smith, Stephen; Goldenberg, Merrill
2005-04-01
This study evaluated the effect of the imaginary component of the refractive index on laser diffraction particle size data for pharmaceutical samples. Excipient particles 1-5 microm in diameter (irregular morphology) were measured by laser diffraction. Optical parameters were obtained and verified based on comparison of calculated vs. actual particle volume fraction. Inappropriate imaginary components of the refractive index can lead to inaccurate results, including false peaks in the size distribution. For laser diffraction measurements, obtaining appropriate or "effective" imaginary components of the refractive index was not always straightforward. When the recommended criteria such as the concentration match and the fit of the scattering data gave similar results for very different calculated size distributions, a supplemental technique, microscopy with image analysis, was used to decide between the alternatives. Use of effective optical parameters produced a good match between laser diffraction data and microscopy/image analysis data. The imaginary component of the refractive index can have a major impact on particle size results calculated from laser diffraction data. When performed properly, laser diffraction and microscopy with image analysis can yield comparable results.
Optimal design of a high accuracy photoelectric auto-collimator based on position sensitive detector
NASA Astrophysics Data System (ADS)
Yan, Pei-pei; Yang, Yong-qing; She, Wen-ji; Liu, Kai; Jiang, Kai; Duan, Jing; Shan, Qiusha
2018-02-01
A kind of high accuracy Photo-electric auto-collimator based on PSD was designed. The integral structure composed of light source, optical lens group, Position Sensitive Detector (PSD) sensor, and its hardware and software processing system constituted. Telephoto objective optical type is chosen during the designing process, which effectively reduces the length, weight and volume of the optical system, as well as develops simulation-based design and analysis of the auto-collimator optical system. The technical indicators of auto-collimator presented by this paper are: measuring resolution less than 0.05″; a field of view is 2ω=0.4° × 0.4° measuring range is +/-5' error of whole range measurement is less than 0.2″. Measuring distance is 10m, which are applicable to minor-angle precise measuring environment. Aberration analysis indicates that the MTF close to the diffraction limit, the spot in the spot diagram is much smaller than the Airy disk. The total length of the telephoto lens is only 450mm by the design of the optical machine structure optimization. The autocollimator's dimension get compact obviously under the condition of the image quality is guaranteed.
Burtch, Stephanie R; Sameti, Mahyar; Olmstead, Richard T; Bashur, Chris A
2018-05-01
The development of tissue-engineered products has been limited by lack of a perfused microvasculature that delivers nutrients and maintains cell viability. Current strategies to promote vascularization such as additive three-dimensional printing techniques have limitations. This study validates the use of an ultra-fast laser subtractive printing technique to generate capillary-sized channels in hydrogels prepopulated with cells by demonstrating cell viability relative to the photodisrupted channels in the gel. The system can move the focal spot laterally in the gel at a rate of 2500 mm/s by using a galvanometric scanner to raster the in plane focal spot. A Galilean telescope allows z-axis movement. Blended hydrogels of polyethylene glycol and collagen with a range of optical clarities, mechanical properties and swelling behavior were tested to demonstrate that the subtractive printing process for writing vascular channels is compatible with all of the blended hydrogels tested. Channel width and patterns were controlled by adjusting the laser energy and focal spot positioning, respectively. After treatment, high cell viability was observed at distances greater than or equal to 18 μm from the fabricated channels. Overall, this study demonstrates a flexible technique that has the potential to rapidly generate channels in tissue-engineered constructs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Theory and simulation of electron beam dynamics in the AWE superswarf magnetically immersed diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, B.V.; Welch, D.R.; Olson, C.L.
1999-07-01
Results from numerical simulation and analytic theory of magnetically immersed diode behavior on the United Kingdom's Atomic Weapons Establishment (AWE) Superswarf accelerator are presented. The immersed diode consists of a cylindrical needle point cathode immersed in a strong {approximately}10--20 T solenoidal magnetic field. The anode-cathode (A-K) accelerating gap is held at vacuum and is {approximately}5--10 cm in length, with the anode/target located at the mid-plane of the solenoid. Typical accelerator parameters are 5--6 MeV and 40 kA. Ions emitted from the anode target stream toward the cathode and interact strongly with the electron beam. Collective oscillations between the beam electronsmore » and counter-streaming ions are driven unstable and results in a corkscrew rotation of the beam, yielding a time-integrated spot size substantially larger than that expected from single particle motion. This magnetized ion-hose instability is three dimensional. On the other hand, beam transverse temperature variations, although slightly enhanced in 3D, are primarily due to changes in the effective potential at the cathode (a combination of both the electrostatic and vector potential) and are manifest in 2D. Simulation studies examining spot and dose variation with varying cathode diameter and A-K gap distance are presented and confirm the above mentioned trends. Conclusions are that the diode current is determined by standard di-polar space-charge limited emissions, the minimum beam spot-size is limited by the ion-hose instability saturation amplitude, and the beam transverse temperature at the target is a function of the initial conditions on the cathode. Comparison to existing data will also be presented.« less
Advances toward submicron resolution optics for x-ray instrumentation and applications
NASA Astrophysics Data System (ADS)
Cordier, Mark; Stripe, Benjamin; Yun, Wenbing; Lau, S. H.; Lyon, Alan; Reynolds, David; Lewis, Sylvia J. Y.; Chen, Sharon; Semenov, Vladimir A.; Spink, Richard I.; Seshadri, Srivatsan
2017-08-01
Sigray's axially symmetric x-ray optics enable advanced microanalytical capabilities for focusing x-rays to microns-scale to submicron spot sizes, which can potentially unlock many avenues for laboratory micro-analysis. The design of these optics allows submicron spot sizes even at low x-ray energies, enabling research into low atomic number elements and allows increased sensitivity of grazing incidence measurements and surface analysis. We will discuss advances made in the fabrication of these double paraboloidal mirror lenses designed for use in laboratory x-ray applications. We will additionally present results from as-built paraboloids, including surface figure error and focal spot size achieved to-date.
NASA Astrophysics Data System (ADS)
Kostencka, Julianna; Kozacki, Tomasz; Hennelly, Bryan; Sheridan, John T.
2017-06-01
Holographic tomography (HT) allows noninvasive, quantitative, 3D imaging of transparent microobjects, such as living biological cells and fiber optics elements. The technique is based on acquisition of multiple scattered fields for various sample perspectives using digital holographic microscopy. Then, the captured data is processed with one of the tomographic reconstruction algorithms, which enables 3D reconstruction of refractive index distribution. In our recent works we addressed the issue of spatially variant accuracy of the HT reconstructions, which results from the insufficient model of diffraction that is applied in the widely-used tomographic reconstruction algorithms basing on the Rytov approximation. In the present study, we continue investigating the spatially variant properties of the HT imaging, however, we are now focusing on the limited spatial size of holograms as a source of this problem. Using the Wigner distribution representation and the Ewald sphere approach, we show that the limited size of the holograms results in a decreased quality of tomographic imaging in off-center regions of the HT reconstructions. This is because the finite detector extent becomes a limiting aperture that prohibits acquisition of full information about diffracted fields coming from the out-of-focus structures of a sample. The incompleteness of the data results in an effective truncation of the tomographic transfer function for the out-of-center regions of the tomographic image. In this paper, the described effect is quantitatively characterized for three types of the tomographic systems: the configuration with 1) object rotation, 2) scanning of the illumination direction, 3) the hybrid HT solution combing both previous approaches.
Possible Bright Starspots on TRAPPIST-1
NASA Astrophysics Data System (ADS)
Morris, Brett M.; Agol, Eric; Davenport, James R. A.; Hawley, Suzanne L.
2018-04-01
The M8V star TRAPPIST-1 hosts seven roughly Earth-sized planets and is a promising target for exoplanet characterization. Kepler/K2 Campaign 12 observations of TRAPPIST-1 in the optical show an apparent rotational modulation with a 3.3-day period, though that rotational signal is not readily detected in the Spitzer light curve at 4.5 μm. If the rotational modulation is due to starspots, persistent dark spots can be excluded from the lack of photometric variability in the Spitzer light curve. We construct a photometric model for rotational modulation due to photospheric bright spots on TRAPPIST-1 that is consistent with both the Kepler and Spitzer light curves. The maximum-likelihood model with three spots has typical spot sizes of R spot/R ⋆ ≈ 0.004 at temperature T spot ≳ 5300 ± 200 K. We also find that large flares are observed more often when the brightest spot is facing the observer, suggesting a correlation between the position of the bright spots and flare events. In addition, these flares may occur preferentially when the spots are increasing in brightness, which suggests that the 3.3-day periodicity may not be a rotational signal, but rather a characteristic timescale of active regions.
Dried blood spots as a source of anti-malarial antibodies for epidemiological studies
Corran, Patrick H; Cook, Jackie; Lynch, Caroline; Leendertse, Heleen; Manjurano, Alphaxard; Griffin, Jamie; Cox, Jonathan; Abeku, Tarekegn; Bousema, Teun; Ghani, Azra C; Drakeley, Chris; Riley, Eleanor
2008-01-01
Background Blood spots collected onto filter paper are an established and convenient source of antibodies for serological diagnosis and epidemiological surveys. Although recommendations for the storage and analysis of small molecule analytes in blood spots exist, there are no published systematic studies of the stability of antibodies under different storage conditions. Methods Blood spots, on filter paper or glass fibre mats and containing malaria-endemic plasma, were desiccated and stored at various temperatures for different times. Eluates of these spots were assayed for antibodies against two Plasmodium falciparum antigens, MSP-119 and MSP2, and calculated titres used to fit an exponential (first order kinetic) decay model. The first order rate constants (k) for each spot storage temperature were used to fit an Arrhenius equation, in order to estimate the thermal and temporal stability of antibodies in dried blood spots. The utility of blood spots for serological assays was confirmed by comparing antibodies eluted from blood spots with the equivalent plasma values in a series of samples from North Eastern Tanzania and by using blood spot-derived antibodies to estimate malaria transmission intensity in this site and for two localities in Uganda. Results Antibodies in spots on filter paper and glass fibre paper had similar stabilities but blood was more easily absorbed onto filter papers than glass fibre, spots were more regular and spot size was more closely correlated with blood volume for filter paper spots. Desiccated spots could be stored at or below 4°C for extended periods, but were stable for only very limited periods at ambient temperature. When desiccated, recoveries of antibodies that are predominantly of IgG1 or IgG3 subclasses were similar. Recoveries of antibodies from paired samples of serum and of blood spots from Tanzania which had been suitably stored showed similar recoveries of antibodies, but spots which had been stored for extended periods at ambient humidity and temperature showed severe loss of recoveries. Estimates of malaria transmission intensity obtained from serum and from blood spots were similar, and values obtained using blood spots agreed well with entomologically determined values. Conclusion This study has demonstrated the suitability of filter paper blood spots paper for collection of serum antibodies, and provided clear guidelines for the treatment and storage of filter papers which emphasize the importance of desiccation and minimisation of time spent at ambient temperatures. A recommended protocol for collecting, storing and assaying blood spots is provided. PMID:18826573
Beyond Gaussians: a study of single spot modeling for scanning proton dose calculation
Li, Yupeng; Zhu, Ronald X.; Sahoo, Narayan; Anand, Aman; Zhang, Xiaodong
2013-01-01
Active spot scanning proton therapy is becoming increasingly adopted by proton therapy centers worldwide. Unlike passive-scattering proton therapy, active spot scanning proton therapy, especially intensity-modulated proton therapy, requires proper modeling of each scanning spot to ensure accurate computation of the total dose distribution contributed from a large number of spots. During commissioning of the spot scanning gantry at the Proton Therapy Center in Houston, it was observed that the long-range scattering protons in a medium may have been inadequately modeled for high-energy beams by a commercial treatment planning system, which could lead to incorrect prediction of field-size effects on dose output. In the present study, we developed a pencil-beam algorithm for scanning-proton dose calculation by focusing on properly modeling individual scanning spots. All modeling parameters required by the pencil-beam algorithm can be generated based solely on a few sets of measured data. We demonstrated that low-dose halos in single-spot profiles in the medium could be adequately modeled with the addition of a modified Cauchy-Lorentz distribution function to a double-Gaussian function. The field-size effects were accurately computed at all depths and field sizes for all energies, and good dose accuracy was also achieved for patient dose verification. The implementation of the proposed pencil beam algorithm also enabled us to study the importance of different modeling components and parameters at various beam energies. The results of this study may be helpful in improving dose calculation accuracy and simplifying beam commissioning and treatment planning processes for spot scanning proton therapy. PMID:22297324
Achromatic nested Kirkpatrick–Baez mirror optics for hard X-ray nanofocusing
Liu, Wenjun; Ice, Gene E.; Assoufid, Lahsen; Liu, Chian; Shi, Bing; Khachatryan, Ruben; Qian, Jun; Zschack, Paul; Tischler, Jonathan Z.; Choi, J.-Y.
2011-01-01
The first test of nanoscale-focusing Kirkpatrick–Baez (KB) mirrors in the nested (or Montel) configuration used at a hard X-ray synchrotron beamline is reported. The two mirrors are both 40 mm long and coated with Pt to produce a focal length of 60 mm at 3 mrad incident angle, and collect up to a 120 µm by 120 µm incident X-ray beam with maximum angular acceptance of 2 mrad and a broad bandwidth of energies up to 30 keV. In an initial test a focal spot of about 150 nm in both horizontal and vertical directions was achieved with either polychromatic or monochromatic beam. The nested mirror geometry, with two mirrors mounted side-by-side and perpendicular to each other, is significantly more compact and provides higher demagnification than the traditional sequential KB mirror arrangement. Ultimately, nested mirrors can focus larger divergence to improve the diffraction limit of achromatic optics. A major challenge with the fabrication of the required mirrors is the need for near-perfect mirror surfaces near the edge of at least one of the mirrors. Special polishing procedures and surface profile coating were used to preserve the mirror surface quality at the reflecting edge. Further developments aimed at achieving diffraction-limited focusing below 50 nm are underway. PMID:21685674
NASA Astrophysics Data System (ADS)
Saleh, Mohammad Abu
2007-05-01
When overlapping monochromatic light beams interfere in a photorefractive material, the resulting intensity fringes create a spatially modulated charge distribution. The resulting refractive index grating may cause power transfer from one beam (the pump) to the other beam (the signal). In a special case of the reflection grating geometry, the Fresnel reflection of the pump beam from the rear surface of the crystal is used as the signal beam. It has been noted that for this self-pumped, contra-directional two-beam coupling (SPCD-TBC) geometry, the coupling efficiency seems to be strongly dependent on the focal position and spot size, which is attributed to diffraction and the resulting change in the spatial overlaps between the pump and signal. In this work a full diffraction based simulation of SPCD-TBC for a Gaussian beam is developed with a novel algorithm. In a related context involving reflection gratings, a particular phenomenon named six-wave mixing has received some interest in the photorefractive research. The generation of multiple waves during near-oblique incidence of a 532 nm weakly focused laser light on photorefractive iron doped lithium niobate in a typical reflection geometry configuration is studied. It is shown that these waves are produced through two-wave coupling (self-diffraction) and four-wave mixing (parametric diffraction). One of these waves, the stimulated photorefractive backscatter produced from parametric diffraction, contains the self-phase conjugate. The dynamics of six-wave mixing, and their dependence on crystal parameters, angle of incidence, and pump power are analyzed. A novel order analysis of the interaction equations provides further insight into experimental observations in the steady state. The quality of the backscatter is evaluated through image restoration, interference experiments, and visibility measurement. Reduction of two-wave coupling may significantly improve the quality of the self-phase conjugate.