Glaser, Nicole; Ngo, Catherine; Anderson, Steven; Yuen, Natalie; Trifu, Alexandra; O'Donnell, Martha
2012-07-01
Diabetic ketoacidosis (DKA) may cause brain injuries in children. The mechanisms responsible are difficult to elucidate because DKA involves multiple metabolic derangements. We aimed to determine the independent effects of hyperglycemia and ketosis on cerebral metabolism, blood flow, and water distribution. We used magnetic resonance spectroscopy to measure ratios of cerebral metabolites (ATP to inorganic phosphate [Pi], phosphocreatine [PCr] to Pi, N-acetyl aspartate [NAA] to creatine [Cr], and lactate to Cr) and diffusion-weighted imaging and perfusion-weighted imaging to assess cerebral water distribution (apparent diffusion coefficient [ADC] values) and cerebral blood flow (CBF) in three groups of juvenile rats (hyperglycemic, ketotic, and normal control). ATP-to-Pi ratio was reduced in both hyperglycemic and ketotic rats in comparison with controls. PCr-to-Pi ratio was reduced in the ketotic group, and there was a trend toward reduction in the hyperglycemic group. No significant differences were observed in NAA-to-Cr or lactate-to-Cr ratio. Cortical ADC was reduced in both groups (indicating brain cell swelling). Cortical CBF was also reduced in both groups. We conclude that both hyperglycemia and ketosis independently cause reductions in cerebral high-energy phosphates, CBF, and cortical ADC values. These effects may play a role in the pathophysiology of DKA-related brain injury.
Cerebral Blood Flow and Cerebral Edema in Rats With Diabetic Ketoacidosis
Yuen, Natalie; Anderson, Steven E.; Glaser, Nicole; Tancredi, Daniel J.; O'Donnell, Martha E.
2008-01-01
OBJECTIVE— Cerebral edema (CE) is a potentially life-threatening complication of diabetic ketoacidosis (DKA) in children. Osmotic fluctuations during DKA treatment have been considered responsible, but recent data instead suggest that cerebral hypoperfusion may be involved and that activation of cerebral ion transporters may occur. Diminished cerebral blood flow (CBF) during DKA, however, has not been previously demonstrated. We investigated CBF and edema formation in a rat model of DKA and determined the effects of bumetanide, an inhibitor of Na-K-Cl cotransport. RESEARCH DESIGN AND METHODS— Juvenile rats with streptozotocin-induced DKA were treated with intravenous saline and insulin, similar to human treatment protocols. CBF was determined by magnetic resonance (MR) perfusion–weighted imaging before and during treatment, and CE was assessed by determining apparent diffusion coefficients (ADCs) using MR diffusion–weighted imaging. RESULTS— CBF was significantly reduced in DKA and was responsive to alterations in pCO2. ADC values were reduced, consistent with cell swelling. The reduction in ADCs correlated with dehydration, as reflected in blood urea nitrogen concentrations. Bumetanide caused a rapid rise in ADCs of DKA rats without significantly changing CBF, while saline/insulin caused a rapid rise in CBF and a gradual rise in ADCs. DKA rats treated with bumetanide plus saline/insulin showed a trend toward more rapid rise in cortical ADCs and a larger rise in striatal CBF than those observed with saline/insulin alone. CONCLUSIONS— These data demonstrate that CE in DKA is accompanied by cerebral hypoperfusion before treatment and suggest that blocking Na-K-Cl cotransport may reduce cerebral cell swelling. PMID:18633109
Capillary transit time heterogeneity and flow-metabolism coupling after traumatic brain injury
Østergaard, Leif; Engedal, Thorbjørn S; Aamand, Rasmus; Mikkelsen, Ronni; Iversen, Nina K; Anzabi, Maryam; Næss-Schmidt, Erhard T; Drasbek, Kim R; Bay, Vibeke; Blicher, Jakob U; Tietze, Anna; Mikkelsen, Irene K; Hansen, Brian; Jespersen, Sune N; Juul, Niels; Sørensen, Jens CH; Rasmussen, Mads
2014-01-01
Most patients who die after traumatic brain injury (TBI) show evidence of ischemic brain damage. Nevertheless, it has proven difficult to demonstrate cerebral ischemia in TBI patients. After TBI, both global and localized changes in cerebral blood flow (CBF) are observed, depending on the extent of diffuse brain swelling and the size and location of contusions and hematoma. These changes vary considerably over time, with most TBI patients showing reduced CBF during the first 12 hours after injury, then hyperperfusion, and in some patients vasospasms before CBF eventually normalizes. This apparent neurovascular uncoupling has been ascribed to mitochondrial dysfunction, hindered oxygen diffusion into tissue, or microthrombosis. Capillary compression by astrocytic endfeet swelling is observed in biopsies acquired from TBI patients. In animal models, elevated intracranial pressure compresses capillaries, causing redistribution of capillary flows into patterns argued to cause functional shunting of oxygenated blood through the capillary bed. We used a biophysical model of oxygen transport in tissue to examine how capillary flow disturbances may contribute to the profound changes in CBF after TBI. The analysis suggests that elevated capillary transit time heterogeneity can cause critical reductions in oxygen availability in the absence of ‘classic' ischemia. We discuss diagnostic and therapeutic consequences of these predictions. PMID:25052556
Ammonia-induced brain swelling and neurotoxicity in an organotypic slice model
Back, Adam; Tupper, Kelsey Y.; Bai, Tao; Chiranand, Paulpoj; Goldenberg, Fernando D.; Frank, Jeffrey I.; Brorson, James R.
2013-01-01
Objectives Acute liver failure produces cerebral dysfunction and edema, mediated in part by elevated ammonia concentrations, often leading to coma and death. The pathophysiology of cerebral edema in acute liver failure is incompletely understood. In vitro models of the cerebral effects of acute liver failure have predominately consisted of dissociated astrocyte cultures or acute brain slices. We describe a stable long-term culture model incorporating both neural and glial elements in a three-dimensional tissue structure offering significant advantages to the study of astrocytic-neuronal interactions in the pathophysiology of cerebral edema and dysfunction in acute liver failure. Methods We utilized chronic organotypic slice cultures from mouse forebrain, applying ammonium acetate in iso-osmolar fashion for 72 hours. Imaging of slice thickness to assess for tissue swelling was accomplished in living slices with optical coherence tomography, and confocal microscopy of fluorescence immunochemical and histochemical staining served to assess astrocyte and neuronal numbers, morphology, and volume in the fixed brain slices. Results Ammonia exposure at 1–10 mM produced swelling of immunochemically-identified astrocytes, and at 10 mM resulted in macroscopic tissue swelling, with slice thickness increasing by about 30%. Astrocytes were unchanged in number. In contrast, 10 mM ammonia treatment severely disrupted neuronal morphology and reduced neuronal survival at 72 hours by one-half. Discussion Elevated ammonia produces astrocytic swelling, tissue swelling, and neuronal toxicity in cerebral tissues. Ammonia-treated organotypic brain slice cultures provide an in vitro model of cerebral effects of conditions relevant to acute liver failure, applicable to pathophysiological investigations. PMID:22196764
Fatal Cerebral Edema With Status Epilepticus in Children With Dravet Syndrome: Report of 5 Cases.
Myers, Kenneth A; McMahon, Jacinta M; Mandelstam, Simone A; Mackay, Mark T; Kalnins, Renate M; Leventer, Richard J; Scheffer, Ingrid E
2017-04-01
Dravet syndrome (DS) is a well-recognized developmental and epileptic encephalopathy associated with SCN1A mutations and 15% mortality by 20 years. Although over half of cases succumb to sudden unexpected death in epilepsy, the cause of death in the remainder is poorly defined. We describe the clinical, radiologic, and pathologic characteristics of a cohort of children with DS and SCN1A mutations who developed fatal cerebral edema causing mass effect after fever-associated status epilepticus. Cases were identified from a review of children with DS enrolled in the Epilepsy Genetics Research Program at The University of Melbourne, Austin Health, who died after fever-associated status epilepticus. Five children were identified, all of whom presented with fever-associated convulsive status epilepticus, developed severe brain swelling, and died. All had de novo SCN1A mutations. Fever of 40°C or greater was measured in all cases. Signs of brainstem dysfunction, indicating cerebral herniation, were first noted 3 to 5 days after initial presentation in 4 patients, though were apparent as early as 24 hours in 1 case. When MRI was performed early in a patient's course, focal regions of cortical diffusion restriction were noted. Later MRI studies demonstrated diffuse cytotoxic edema, with severe cerebral herniation. Postmortem studies revealed diffuse brain edema and widespread neuronal damage. Laminar necrosis was seen in 1 case. Cerebral edema leading to fatal brain herniation is an important, previously unreported sequela of status epilepticus in children with DS. This potentially remediable complication may be a significant contributor to the early mortality of DS. Copyright © 2017 by the American Academy of Pediatrics.
Feasibility of using diffuse reflectance spectroscopy for the quantification of brain edema
NASA Astrophysics Data System (ADS)
Rodriguez, Juan G.; Sisson, Cynthia; Hendricks, Chad; Pattillo, Chris; McWaters, Megan; Hardjasudarma, Mardjohan; Quarles, Chad; Yaroslavsky, Anna N.; Yaroslavsky, Ilya V.; Battarbee, Harold
2001-05-01
Many diseased states of the brain can result in the displacement of brain tissues and restrict cerebral blood flow, disrupting function in a life-threatening manner. Clinical examples where displacements are observed include venous thromboses, hematomas, strokes, tumors, abscesses, and, particularly, brain edema. For the latter, the brain tissue swells, displacing the cerebral spinal fluid (CSF) layer that surrounds it, eventually pressing itself against the skull. Under such conditions, catheters are often inserted into the brain's ventricles or the subarachnoid space to monitor increased pressure. These are invasive procedures that incur increased risk of infection and consequently are used reluctantly by clinicians. Recent studies in the field of biomedical optics have suggested that the presence or absence of the CSF layer can lead to dramatic changes in NIR signals obtained from diffuse reflectance measurements around the head. In this study, we consider how this sensitivity of NIR signals to CSF might be exploited to non-invasively monitor the onset and resolution of brain edema.
Brain swelling and death in children with cerebral malaria.
Seydel, Karl B; Kampondeni, Samuel D; Valim, Clarissa; Potchen, Michael J; Milner, Danny A; Muwalo, Francis W; Birbeck, Gretchen L; Bradley, William G; Fox, Lindsay L; Glover, Simon J; Hammond, Colleen A; Heyderman, Robert S; Chilingulo, Cowles A; Molyneux, Malcolm E; Taylor, Terrie E
2015-03-19
Case fatality rates among African children with cerebral malaria remain in the range of 15 to 25%. The key pathogenetic processes and causes of death are unknown, but a combination of clinical observations and pathological findings suggests that increased brain volume leading to raised intracranial pressure may play a role. Magnetic resonance imaging (MRI) became available in Malawi in 2009, and we used it to investigate the role of brain swelling in the pathogenesis of fatal cerebral malaria in African children. We enrolled children who met a stringent definition of cerebral malaria (one that included the presence of retinopathy), characterized them in detail clinically, and obtained MRI scans on admission and daily thereafter while coma persisted. Of 348 children admitted with cerebral malaria (as defined by the World Health Organization), 168 met the inclusion criteria, underwent all investigations, and were included in the analysis. A total of 25 children (15%) died, 21 of whom (84%) had evidence of severe brain swelling on MRI at admission. In contrast, evidence of severe brain swelling was seen on MRI in 39 of 143 survivors (27%). Serial MRI scans showed evidence of decreasing brain volume in the survivors who had had brain swelling initially. Increased brain volume was seen in children who died from cerebral malaria but was uncommon in those who did not die from the disease, a finding that suggests that raised intracranial pressure may contribute to a fatal outcome. The natural history indicates that increased intracranial pressure is transient in survivors. (Funded by the National Institutes of Health and Wellcome Trust U.K.).
Hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS): update on molecular genetics.
Stabile, Carmen; Taglia, Ilaria; Battisti, Carla; Bianchi, Silvia; Federico, Antonio
2016-09-01
Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is a rare autosomal dominant disease characterized by giant neuroaxonal swellings (spheroids) within the cerebral white matter (WM). Symptoms are variable and can include cognitive, mental and motor dysfunctions. Patients carry mutations in the protein kinase domain of the colony-stimulating factor 1 receptor (CSF1R) which is a tyrosine kinase receptor essential for microglia development. To date, more than 50 pathogenic variants have been reported in patients with HDLS, including missense, frameshift and non-sense mutations, but also deletions and splice-site mutations, all located in the intracellular tyrosine kinase domain, encoded by exons 12-22. The aim of this paper is to review the literature data about the molecular genetic pattern of HDLS.
Katayama, Y; Kawamata, T
2003-01-01
The early massive edema caused by severe cerebral contusion results in progressive intracranial pressure (ICP) elevation and clinical deterioration within 24-72 hours post-trauma. Surgical excision of the necrotic brain tissue represents the only therapy, which can provide satisfactory control of the elevated ICP and clinical deterioration. In order to elucidate the mechanisms underlying the early massive edema, we have carried out a series of detailed clinical studies. Diffusion magnetic resonance (MR) imaging and apparent diffusion co-efficient (ADC) mapping suggest that cells in the central area of contusion undergo shrinkage, disintegration and homogenization, whereas cellular swelling is predominant in the peripheral area during the period of 24-72 hours post-trauma. The ADC values in the central and peripheral areas are maximally dissociated during this period. A large amount of edema fluid accumulates within the necrotic brain tissue of the central area beginning at approximately 24 hours post-trauma. We have found that fluid-blood interface formation within the central area does not represent an uncommon finding in various neuroimaging examinations of cerebral contusions, indicating layering of red blood cells within the necrotic brain tissue accumulating voluminous edema fluid. Intravenous slow infusion of gadolinium-DTPA and delayed MR imaging revealed that the central area of contusion can be enhanced at 24-48 hours post-trauma. implying that water supply from the blood vessels is not completely interrupted. Necrotic brain tissue sampled from the central area of contusion during surgery demonstrates a very high osmolality. It appears that the capacitance for edema fluid accumulation increases in the central area, whereas cellular swelling in the peripheral area elevates the resistance for edema fluid propagation. Combination of these circumstances may facilitate edema fluid accumulation in the central area. We also suggest that the dissociation of ADC values and high osmolality within the necrotic brain tissue may generate an osmotic potential across the central and peripheral areas and contribute to the early massive edema caused by cerebral contusion.
Pluta, R
2003-01-01
This study examined the late microvascular consequences of brain ischemia due to cardiac arrest in rats. In reacted vibratome sections scattered foci of extravasated horseradish peroxidase were noted throughout the brain and did not appear to be restricted to any specific area of brain. Ultrastructural investigation of leaky sites frequently presented platelets adhering to the endothelium of venules and capillaries. Endothelial cells demonstrated pathological changes with evidence of perivascular astrocytic swelling. At the same time, we noted C-terminal of amyloid precursor protein/beta-amyloid peptide (CAPP/betaA) deposits in cerebral blood vessels, with a halo of CAPP/betaA immunoreactivity in the surrounding parenchyma suggested diffusion of CAPP/betaA out of the vascular compartment. Changes predominated in the hippocampus, cerebral and entorhinal cortex, corpus callosum, thalamus, basal ganglia and around the lateral ventricles. These data implicate delayed abnormal endothelial function of vessels following ischemia-reperfusion brain injury as a primary event in the pathogenesis of the recurrent cerebral infarction.
Shigemori, M; Watanabe, M; Kuramoto, S
1976-12-01
There are many problems about the cause, pathophysiology and treatment of acute brain swelling under intracranial hypertension frequently encountered in the neurosurgical clinics. Generally, rapid increase of the cerebral vasoparesis caused by unknown etiology is thought to be the main cause of acute brain swelling under intracranial hypertension. Moreover, disturbance of the cerebral venous circulatory system is discussed recently by many authors. But, research from the point of systemic respiration and hemodynamics is necessary for resolving these problems. This experiment was designed to study the effects of respiration and hemodynamics on the cerebral vasoparesis. Using 22 adult dogs, acute intracranial hypertension was produced by epidural balloon inflation sustained at the level of 300 - 400 mmH2O. Simultaneously with measurement of intracranial pressure at the epidural space, superior sagittal sinus pressure, respirogram, systemic blood pressure (femoral artery), central venous pressure, common carotid blood flow, EKG and bipolar lead EEG were monitored continuously. The experimental group was divided by the respiratory loading into 5 groups as follows: control (6 cases), 10% CO2 hypercapnia (4 cases), 10% O2 hypoxia (4 cases), stenosis of airway (5 cases), 100% O2-controled respiration (3 cases). 1) Cerebral vasoparesis under acute intracranial hypertension took place earlier and showed more rapid progression in groups of stenosis of airway, hypercapnia and hypoxia than control group of spontaneous respiration in room air. No occurrence of cerebral vasoparesis was found out in a group of 100% O2 controlled respiration. It is proved that increased airway resistance or asphyxia, hypercapnia and hypoxia have strictly reference to the occurrence and progression of cerebral vasoparesis and for the prevention of cerebral vasoparesis, correct 100% O2 cont rolled respiration is effective. 2) From the hemodynamic change, the progression of rapid increase of cerebral blood volume with increase of blood volume in the superior sagitta sinus during cerebral vasoparesis under intracranial hypertension is presumed. It is suggested from the superior sagittal sinus pressure in various experimental groups that the site, reactivity and disturbed degree of the cerebral venous system are changed by the difference of respiratory or ventrilatory state and the cerebral venous circulatory disturbance has also reference to the occurrence of acute brain swelling. 3) During cerebral vasopareris under acute intracranial hypertension, remarkable supression of respiration, increased central venous pressure and increased common carotid blood flow were observed. It is concluded that the reaction of systemic hemodynamics following respiratory change effects on cerebral circulation markedly and they are being important factors to occurrence of acute brain swelling.
Longitudinal thalamic diffusion changes after middle cerebral artery infarcts
Herve, D; Molko, N; Pappata, S; Buffon, F; LeBihan, D; Bousser, M; Chabriat, H
2005-01-01
Background: Cerebral infarcts are responsible for functional alterations and microscopic tissue damage at distance from the ischaemic area. Such remote effects have been involved in stroke recovery. Thalamic hypometabolism is related to motor recovery in middle cerebral artery (MCA) infarcts but little is known concerning the tissue changes underlying these metabolic changes. Diffusion tensor imaging (DTI) is highly sensitive to microstructural tissue alterations and can be used to quantify in vivo the longitudinal microscopic tissue changes occurring in the thalamus after MCA infarcts in humans. Methods: Nine patients underwent DTI after an isolated MCA infarct. Mean diffusivity (MD), fractional anisotropy (FA), and thalamic region volume were measured from the first week to the sixth month after stroke onset in these patients and in 10 age matched controls. Results: MD significantly increased in the ipsilateral thalamus between the first and the sixth month (0.766x10–3 mm2/s first month; 0.792x10–3 mm2/s third month; 0.806x10–3 mm2/s sixth month). No significant modification of FA was detected. In six patients, the ipsilateral/contralateral index of MD was higher than the upper limit of the 95% CI calculated in 10 age matched controls. An early decrease of MD preceded the increase of ipsilateral thalamic diffusion in one patient at the first week and in two other patients at the first month. Conclusion: After MCA infarcts, an increase in diffusion is observed with DTI in the ipsilateral thalamus later than 1 month after the stroke onset. This is presumably because of the progressive loss of neurons and/or glial cells. In some patients, this increase is preceded by a transient decrease in diffusion possibly related to an early swelling of these cells or to microglial activation. Further studies in larger series are needed to assess the clinical correlates of these findings. PMID:15654032
Brain Cell Swelling During Hypocapnia Increases with Hyperglycemia or Ketosis
Glaser, Nicole; Bundros, Angeliki; Anderson, Steve; Tancredi, Daniel; Lo, Weei; Orgain, Myra; O'Donnell, Martha
2014-01-01
Severe hypocapnia increases the risk of DKA-related cerebral injury in children, but the reason for this association is unclear. To determine whether the effects of hypocapnia on the brain are altered during hyperglycemia or ketosis, we induced hypocapnia (pCO2 20 ± 3 mmHg) via mechanical ventilation in three groups of juvenile rats: 25 controls, 22 hyperglycemic rats (serum glucose 451± 78 mg/dL) and 15 ketotic rats (beta-hydroxy butyrate 3.0 ± 1.0 mmol/L). We used magnetic resonance imaging to measure cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) values in these groups and in 17 ventilated rats with normal pCO2 (40±3 mmHg). In a subset (n=35), after 2 hrs of hypocapnia, pCO2 levels were normalized (40±3 mmHg) and ADC and CBF measurements repeated. Declines in CBF with hypocapnia occurred in all groups. Normalization of pCO2 after hypocapnia resulted in striatal hyperemia. These effects were not substantially altered by hyperglycemia or ketosis, however, declines in ADC during hypocapnia were greater during both hyperglycemia and ketosis. We conclude that brain cell swelling associated with hypocapnia is increased by both hyperglycemia and ketosis, suggesting that these metabolic conditions may make the brain more vulnerable to injury during hypocapnia. PMID:24443981
Positional asphyxia without active restraint following an assault.
Fernando, Tarini; Byard, Roger W
2013-11-01
Deaths due to positional asphyxia are most often accidental, associated with alcohol and/or drug intoxication. A 19-year-old male is reported who was assaulted and placed in a head-down position in the back of a car were he was later found dead. Brush abrasions indicated that he had been dragged to the vehicle. The head and right shoulder were wedged into the foot well with the body uppermost. At autopsy, there was marked congestion of the face, neck, and upper chest with conjunctival ecchymoses, bruising of the face and scalp, focal subarachnoid hemorrhage, minor cerebral contusion, and diffuse cerebral swelling with early hypoxic ischemic encephalopathy (HIE). Toxicology was negative. Death was attributed to HIE resulting from the unusual positioning of the body. Cases of positional asphyxia involving others may not always include restraint, and when encountered should initiate a careful evaluation of the possible events and lethal pathophysiological processes. © 2013 American Academy of Forensic Sciences.
López-Sánchez, Erick J; Romero, Juan M; Yépez-Martínez, Huitzilin
2017-09-01
Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.
NASA Astrophysics Data System (ADS)
López-Sánchez, Erick J.; Romero, Juan M.; Yépez-Martínez, Huitzilin
2017-09-01
Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.
McBride, Devin W; Matei, Nathanael; Câmara, Justin R; Louis, Jean-Sébastien; Oudin, Guillaume; Walker, Corentin; Adam, Loic; Liang, Xiping; Hu, Qin; Tang, Jiping; Zhang, John H
2016-01-01
Stroke disproportionally affects diabetic and hyperglycemic patients with increased incidence and is associated with higher morbidity and mortality due to brain swelling. In this study, the intraluminal suture middle cerebral artery occlusion (MCAO) model was used to examine the effects of blood glucose on brain swelling and infarct volume in acutely hyperglycemic rats and normo-glycemic controls. Fifty-four rats were distributed into normo-glycemic sham surgery, hyperglycemic sham surgery, normo-glycemic MCAO, and hyperglycemic MCAO. To induce hyperglycemia, 15 min before MCAO surgery, animals were injected with 50 % dextrose. Animals were subjected to 90 min of MCAO and sacrificed 24 h after reperfusion for hemispheric brain swelling and infarct volume calculations using standard equations. While normo-glycemic and hyperglycemic animals after MCAO presented with significantly higher brain swelling and larger infarcts than their respective controls, no statistical difference was observed for either brain swelling or infarct volume between normo-glycemic shams and hyperglycemic shams or normo-glycemic MCAO animals and hyperglycemic MCAO animals. The findings of this study suggest that blood glucose does not have any significant effect on hemispheric brain swelling or infarct volume after MCAO in rats.
Fang, Qing; Yan, Xu; Li, Shaowu; Sun, Yilin; Xu, Lixin; Shi, Zhongfang; Wu, Min; Lu, Yi; Dong, Liping; Liu, Ran; Yuan, Fang; Yang, Shao-Hua
2016-01-01
The neuroprotective effect of methylene blue (MB) has been identified against various brain disorders, including ischemic stroke. In the present study, we evaluated the effects of MB on postischemic brain edema using magnetic resonance imaging (MRI) and transmission electron microscopy (TEM). Adult male rats were subjected to transient focal cerebral ischemia induced by 1 h middle cerebral artery occlusion (MCAO), followed by reperfusion. MB was infused intravenously immediately after reperfusion (3 mg/kg) and again at 3 h post-occlusion (1.5 mg/kg). Normal saline was administered as vehicle control. Sequential MRIs, including apparent diffusion coefficient (ADC) and T2-weighted imaging (T2WI), were obtained at 0.5, 2.5, and 48 h after the onset of stroke. Separated groups of animals were sacrificed at 2.5 and 48 h after stroke for ultrastructural analysis by TEM. In addition, final lesion volumes were analyzed by triphenyltetrazolium chloride (TTC) staining at 48 h after stroke. Ischemic stroke induced ADC lesion volume at 0.5 h during MCAOs that were temporally recovered at 1.5 h after reperfusion. No significant difference in ADC-defined lesion was observed between vehicle and MB treatment groups. At 48 h after stroke, MB significantly reduced ADC lesion and T2WI lesion volume and attenuated cerebral swelling. Consistently, MB treatment significantly decreased TTC-defined lesion volume at 48 h after stroke. TEM revealed remarkable swollen astrocytes, astrocytic perivascular end-feet, and concurrent shrunken neurons in the penumbra at 2.5 and 48 h after MCAO. MB treatment attenuated astrocyte swelling, the perivascular astrocytic foot process, and endothelium and also alleviated neuron degeneration. This study demonstrated that MB could decrease postischemic brain edema and provided additional evidence that future clinical investigation of MB for the treatment of ischemic stroke is warrented.
Jha, Ruchira M; Molyneaux, Bradley J; Jackson, Travis C; Wallisch, Jessica S; Park, Seo-Young; Poloyac, Samuel; Vagni, Vincent A; Janesko-Feldman, Keri L; Hoshitsuki, Keito; Minnigh, M Beth; Kochanek, Patrick M
2018-06-06
Cerebral edema is critical to morbidity/mortality in traumatic brain injury (TBI) and is worsened by hypotension. Glibenclamide may reduce cerebral edema by inhibiting sulfonylurea receptor-1 (Sur1); its effect on diffuse cerebral edema exacerbated by hypotension/resuscitation is unknown. We aimed to determine if glibenclamide improves pericontusional and/or diffuse edema in controlled cortical impact (CCI) (5m/sec, 1 mm depth) plus hemorrhagic shock (HS) (35 min), and compare its effects in CCI alone. C57BL/6 mice were divided into five groups (n = 10/group): naïve, CCI+vehicle, CCI+glibenclamide, CCI+HS+vehicle, and CCI+HS+glibenclamide. Intravenous glibenclamide (10 min post-injury) was followed by a subcutaneous infusion for 24 h. Brain edema in injured and contralateral hemispheres was subsequently quantified (wet-dry weight). This protocol brain water (BW) = 80.4% vehicle vs. 78.3% naïve, p < 0.01) but was not reduced by glibenclamide (I%BW = 80.4%). Ipsilateral edema also developed in CCI alone (I%BW = 80.2% vehicle vs. 78.3% naïve, p < 0.01); again unaffected by glibenclamide (I%BW = 80.5%). Contralateral (C) %BW in CCI+HS was increased in vehicle (78.6%) versus naive (78.3%, p = 0.02) but unchanged in CCI (78.3%). At 24 h, glibenclamide treatment in CCI+HS eliminated contralateral cerebral edema (C%BW = 78.3%) with no difference versus naïve. By 72 h, contralateral cerebral edema had resolved (C%BW = 78.5 ± 0.09% vehicle vs. 78.3 ± 0.05% naïve). Glibenclamide decreased 24 h contralateral cerebral edema in CCI+HS. This beneficial effect merits additional exploration in the important setting of TBI with polytrauma, shock, and resuscitation. Contralateral edema did not develop in CCI alone. Surprisingly, 24 h of glibenclamide treatment failed to decrease ipsilateral edema in either model. Interspecies dosing differences versus prior studies may play an important role in these findings. Mechanisms underlying brain edema may differ regionally, with pericontusional/osmolar swelling refractory to glibenclamide but diffuse edema (via Sur1) from combined injury and/or resuscitation responsive to this therapy. TBI phenotype may mandate precision medicine approaches to treat brain edema.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Burkes, Douglas; Lavender, Curt A.
2016-11-01
A three dimensional microstructure dependent swelling model is developed for studying the fission gas swelling kinetics in irradiated nuclear fuels. The model is extended from the Booth model [1] in order to investigate the effect of heterogeneous microstructures on gas bubble swelling kinetics. As an application of the model, the effect of grain morphology, fission gas diffusivity, and spatial dependent fission rate on swelling kinetics are simulated in UMo fuels. It is found that the decrease of grain size, the increase of grain aspect ratio for the grain having the same volume, and the increase of fission gas diffusivity (fissionmore » rate) cause the increase of swelling kinetics. Other heterogeneities such as second phases and spatial dependent thermodynamic properties including diffusivity of fission gas, sink and source strength of defects could be naturally integrated into the model to enhance the model capability.« less
Imaging of high-amylose starch tablets. 3. Initial diffusion and temperature effects.
Thérien-Aubin, Héloïse; Baille, Wilms E; Zhu, Xiao Xia; Marchessault, Robert H
2005-01-01
The penetration of water into cross-linked high amylose starch tablets was studied at different temperatures by nuclear magnetic resonance (NMR) imaging, which follows the changes occurring at the surface and inside the starch tablets during swelling. It was found that the swelling was anisotropic, whereas water diffusion was almost isotropic. The water proton image profiles at the initial stage of water penetration were used to calculate the initial diffusion coefficient. The swelling and water concentration gradients in this controlled release system show significant temperature dependence. Diffusion behavior changed from Fickian to Case II diffusion with increasing temperature. The observed phenomena are attributed to the gelatinization of starch and the pseudo-cross-linking effect of double helix formation.
NASA Astrophysics Data System (ADS)
Sheikh, N.; Jalili, L.; Anvari, F.
2010-06-01
Poly(acrylic acid) (PAA) hydrogels were prepared by using electron beam (EB) crosslinking of PAA homopolymer from its aqueous solutions. The swelling behavior of the hydrogels was studied as a function of the concentration of PAA solution, radiation dose, pH of the swelling medium and swelling time. Also the environmental pH effect on the water diffusion mode into hydrogels was investigated. These hydrogels clearly showed pH-sensitive swelling behavior with Fickian type of diffusion in the stomach-like pH medium (pH 1.3) and non-Fickian type in the intestine-like pH medium (pH 6.8).
The clinical spectrum of sport-related traumatic brain injury.
Jordan, Barry D
2013-04-01
Acute and chronic sports-related traumatic brain injuries (TBIs) are a substantial public health concern. Various types of acute TBI can occur in sport, but detection and management of cerebral concussion is of greatest importance as mismanagement of this syndrome can lead to persistent or chronic postconcussion syndrome (CPCS) or diffuse cerebral swelling. Chronic TBI encompasses a spectrum of disorders that are associated with long-term consequences of brain injury, including chronic traumatic encephalopathy (CTE), dementia pugilistica, post-traumatic parkinsonism, post-traumatic dementia and CPCS. CTE is the prototype of chronic TBI, but can only be definitively diagnosed at autopsy as no reliable biomarkers of this disorder are available. Whether CTE shares neuropathological features with CPCS is unknown. Evidence suggests that participation in contact-collision sports may increase the risk of neurodegenerative disorders such as Alzheimer disease, but the data are conflicting. In this Review, the spectrum of acute and chronic sport-related TBI is discussed, highlighting how examination of athletes involved in high-impact sports has advanced our understanding of pathology of brain injury and enabled improvements in detection and diagnosis of sport-related TBI.
Clinically granulomatous cheilitis with plasma cells
Sarkar, Somenath; Ghosh, Sarmistha; Sengupta, Dipayan
2016-01-01
Plasma cell cheilitis, also known as plasma cell orificial mucositis is a benign inflammatory condition clinically characterized by erythematous plaque on lips that may be ulcerated. Histopathologically it is characterized by dense plasma cell infiltrates in a band-like pattern in dermis, which corresponds to Zoon's plasma cell balanitis. On the other hand, granulomatous cheilitis, as a part of orofacial granulomatosis, manifests as sudden diffuse or nodular swelling involving lip and cheek. Initial swelling is soft to firm, but with recurrent episodes swelling gradually become firm rubbery in consistency. We hereby report a case of cheilitis in a 52-year-old man with diffuse swelling involving lower lip, which clinically resembles granulomatous cheilitis, but histopathological examination showed diffuse infiltrate of plasma cells predominantly in upper and mid-dermis. PMID:27057489
Pathophysiology of cerebral oedema in acute liver failure.
Scott, Teresa R; Kronsten, Victoria T; Hughes, Robin D; Shawcross, Debbie L
2013-12-28
Cerebral oedema is a devastating consequence of acute liver failure (ALF) and may be associated with the development of intracranial hypertension and death. In ALF, some patients may develop cerebral oedema and increased intracranial pressure but progression to life-threatening intracranial hypertension is less frequent than previously described, complicating less than one third of cases who have proceeded to coma since the advent of improved clinical care. The rapid onset of encephalopathy may be dramatic with the development of asterixis, delirium, seizures and coma. Cytotoxic and vasogenic oedema mechanisms have been implicated with a preponderance of experimental data favouring a cytotoxic mechanism. Astrocyte swelling is the most consistent neuropathological finding in humans with ALF and ammonia plays a definitive role in the development of cytotoxic brain oedema. The mechanism(s) by which ammonia induces astrocyte swelling remains unclear but glutamine accumulation within astrocytes has led to the osmolyte hypothesis. Current evidence also supports an alternate 'Trojan horse' hypothesis, with glutamine as a carrier of ammonia into mitochondria, where its accumulation results in oxidative stress, energy failure and ultimately astrocyte swelling. Although a complete breakdown of the blood-brain barrier is not evident in human ALF, increased permeation to water and other small molecules such as ammonia has been demonstrated resulting from subtle alterations in the protein composition of paracellular tight junctions. At present, there is no fully efficacious therapy for cerebral oedema other than liver transplantation and this reflects our incomplete knowledge of the precise mechanisms underlying this process which remain largely unknown.
Reduction of Diffusion-Weighted Imaging Contrast of Acute Ischemic Stroke at Short Diffusion Times.
Baron, Corey Allan; Kate, Mahesh; Gioia, Laura; Butcher, Kenneth; Emery, Derek; Budde, Matthew; Beaulieu, Christian
2015-08-01
Diffusion-weighted imaging (DWI) of tissue water is a sensitive and specific indicator of acute brain ischemia, where reductions of the diffusion of tissue water are observed acutely in the stroke lesion core. Although these diffusion changes have been long attributed to cell swelling, the precise nature of the biophysical mechanisms remains uncertain. The potential cause of diffusion reductions after stroke was investigated using an advanced DWI technique, oscillating gradient spin-echo DWI, that enables much shorter diffusion times and can improve specificity for alterations of structure at the micron level. Diffusion measurements in the white matter lesions of patients with acute ischemic stroke were reduced by only 8% using oscillating gradient spin-echo DWI, in contrast to a 37% decrease using standard DWI. Neurite beading has recently been proposed as a mechanism for the diffusion changes after ischemic stroke with some ex vivo evidence. To explore whether beading could cause such differential results, simulations of beaded cylinders and axonal swelling were performed, yielding good agreement with experiment. Short diffusion times result in dramatically reduced diffusion contrast of human stroke. Simulations implicate a combination of neuronal beading and axonal swelling as the key structural changes leading to the reduced apparent diffusion coefficient after stroke. © 2015 American Heart Association, Inc.
Physics of soft hyaluronic acid-collagen type II double network gels
NASA Astrophysics Data System (ADS)
Morozova, Svetlana; Muthukumar, Murugappan
2015-03-01
Many biological hydrogels are made up of multiple interpenetrating, charged components. We study the swelling, elastic diffusion, mechanical, and optical behaviors of 100 mol% ionizable hyaluronic acid (HA) and collagen type II fiber networks. Dilute, 0.05-0.5 wt% hyaluronic acid networks are extremely sensitive to solution salt concentration, but are stable at pH above 2. When swelled in 0.1M NaCl, single-network hyaluronic acid gels follow scaling laws relevant to high salt semidilute solutions; the elastic shear modulus G' and diffusion constant D scale with the volume fraction ϕ as G' ~ϕ 9 / 4 and D ~ϕ 3 / 4 , respectively. With the addition of a collagen fiber network, we find that the hyaluronic acid network swells to suspend the rigid collagen fibers, providing extra strength to the hydrogel. Results on swelling equilibria, elasticity, and collective diffusion on these double network hydrogels will be presented.
ERIC Educational Resources Information Center
Warlop, Nele P.; Achten, Eric; Fieremans, Els; Debruyne, Jan; Vingerhoets, Guy
2009-01-01
This study investigated the relation between cerebral damage related to multiple sclerosis (MS) and cognitive decline as determined by two classical mental tracking tests. Cerebral damage in 15 relapsing-remitting MS patients was measured by diffusion tensor imaging (DTI). Fractional anisotropy, longitudinal and transverse diffusivity were defined…
Pathophysiology of cerebral oedema in acute liver failure
Scott, Teresa R; Kronsten, Victoria T; Hughes, Robin D; Shawcross, Debbie L
2013-01-01
Cerebral oedema is a devastating consequence of acute liver failure (ALF) and may be associated with the development of intracranial hypertension and death. In ALF, some patients may develop cerebral oedema and increased intracranial pressure but progression to life-threatening intracranial hypertension is less frequent than previously described, complicating less than one third of cases who have proceeded to coma since the advent of improved clinical care. The rapid onset of encephalopathy may be dramatic with the development of asterixis, delirium, seizures and coma. Cytotoxic and vasogenic oedema mechanisms have been implicated with a preponderance of experimental data favouring a cytotoxic mechanism. Astrocyte swelling is the most consistent neuropathological finding in humans with ALF and ammonia plays a definitive role in the development of cytotoxic brain oedema. The mechanism(s) by which ammonia induces astrocyte swelling remains unclear but glutamine accumulation within astrocytes has led to the osmolyte hypothesis. Current evidence also supports an alternate ‘Trojan horse’ hypothesis, with glutamine as a carrier of ammonia into mitochondria, where its accumulation results in oxidative stress, energy failure and ultimately astrocyte swelling. Although a complete breakdown of the blood-brain barrier is not evident in human ALF, increased permeation to water and other small molecules such as ammonia has been demonstrated resulting from subtle alterations in the protein composition of paracellular tight junctions. At present, there is no fully efficacious therapy for cerebral oedema other than liver transplantation and this reflects our incomplete knowledge of the precise mechanisms underlying this process which remain largely unknown. PMID:24409052
Brain damage in fatal non-missile head injury without high intracranial pressure.
Graham, D I; Lawrence, A E; Adams, J H; Doyle, D; McLellan, D R
1988-01-01
As part of a comprehensive study of brain damage in 635 fatal non-missile head injuries, the type and prevalence of brain damage occurring in the absence of high intracranial pressure were analysed. Of 71 such cases, 53 sustained their injury as a result of a road traffic accident; only 25 experienced a lucid interval. Thirty eight had a fractured skull, a mean total contusion index of 12.9 and diffuse axonal injury in 29: severe to moderate ischaemic damage was present in the cerebral cortex in 25, brain swelling in 13, and acute bacterial meningitis in nine. The prevalence and range of brain damage that may occur in the absence of high intracranial pressure are important to forensic pathologists in the medicolegal interpretation of cases of fatal head injury. PMID:3343378
NASA Astrophysics Data System (ADS)
Kou, Jim Hwai-Cher
In this study, ionizable copolymers of HEMA and methacrylic acid (MA) are investigated for their potential use in developing pH dependent oral delivery systems. Because of the MA units, these gels swell extensively at high pH. Since solute diffusion in the hydrophilic polymers depends highly on the water content of the matrix, it is anticipated that the release rate will be modulated by this pH induced swelling. From a practical point of view, the advantage of the present system is that one can minimize drug loss in the stomach and achieve a programmed release in intestine. This approach is expected to improve delivery of acid labile drugs or drugs that cause severe gastrointestinal side effects. This work mainly focuses on the basic understanding of the mechanism involved in drug release from the poly(HEMA -co- MA) gels, especially under dynamic swelling conditions. Equilibrium swelling is first characterized since water content is the major determinant of transport properties in these gels. Phenylpropanolamine (PPA) is chosen as the model drug for the release study and its diffusion characteristics in the gel matrix determined. The data obtained show that the PPA diffusivity follows the free volume theory of Yasuda, which explains the accelerating effect of swelling on drug release. A mathematical model based on a diffusion mechanism has been developed to describe PPA release from the swelling gels. Based on this model, several significant conclusions can be drawn. First, the release rate can be modulated by the aspect ratio of the cylindrical geometry, and this has a practical implication in dosage form design. Second, the release rate can be lowered quite considerably if the dimensional increase due to swelling is significant. Consequently, it is the balance between the drug diffusivity increase and the gel dimensional growth that determines the release rate from the swelling matrix. Third, quasi-steady release kinetics, which are characteristic of swelling release systems, can also be predicted by this model. PPA release from initially dry poly(HEMA -co- MA) gels has also been studied. The data show that the release rate is mainly controlled by the PPA loading level and quite insensitive to the methacrylic acid composition of the gels. These phenomena can be adequately explained by analyzing the transport resistances in the gels. The overall time scale of release from these gels were shown to be in the range which was suitable for oral controlled release applications. (Abstract shortened with permission of author.).
Ohkura, Noriyuki; Fujimura, Masaki; Sakai, Asao; Fujita, Kentaro; Katayama, Nobuyuki
2009-08-01
A 36-year-old woman was admitted to the Intensive Care Unit for the treatment of severe asthma exacerbation. Her condition of asthma improved with systemic glucocorticosteroids, inhaled beta2-agonist, intravenous theophylline and inhaled anesthesia (isoflurane) under mechanical ventilation. Her consciousness was disturbed even after terminating isoflurane. Brain CT and MRI scan showed cerebral edema and diffuse multiple cerebral micro-bleeds. Glyceol, a hyperosmotic diuretic solution consisting of 10% glycerol and 5% fructose in saline, was administered to decrease cerebral edema. Her consciousness disturbance gradually recovered. Cerebral edema and hemorrhage improved. On the 69th hospital day, she was discharged from hospital without sequelae. This case is a rare one in which severe asthma exacerbation was complicated with cerebral edema and diffuse multiple cerebral hemorrhage. Inhaled anesthesia for asthma exacerbation should be used carefully to avoid delay of diagnosis of central nervous system complications.
NASA Astrophysics Data System (ADS)
Guruswamy, B.; Ravindrachary, V.; Shruthi, C.; Hegde, Shreedatta; Sagar, Rohan N.
2018-04-01
ZnO nano particles were synthesized using a chemical precipitation method. Pure and ZnO nano particle doped PVA-NaAlg blend composite films were prepared using solution casing method. Structural information of these composites was studied using FTIR. Diffusion kinetics of these polymer blend composite were studied using Flory-Huggins theory. Using these diffusion studies, cross-linking density and swelling properties of the films were analyzed. Mechanical properties of these composite are also studied.
NMR imaging of high-amylose starch tablets. 1. Swelling and water uptake.
Baille, Wilms E; Malveau, Cédric; Zhu, Xiao Xia; Marchessault, Robert H
2002-01-01
Pharmaceutical tablets made of modified high-amylose starch have a hydrophilic polymer matrix into which water can penetrate with time to form a hydrogel. Nuclear magnetic resonance imaging was used to study the water penetration and the swelling of the matrix of these tablets. The tablets immersed in water were imaged at different time intervals on a 300 MHz NMR spectrometer. Radial images show clearly the swelling of the tablets and the water concentration profile. The rate constants for water diffusion and the tablet swelling were extracted from the experimental data. The water diffusion process was found to follow case II kinetics at 25 degrees C. NMR imaging also provided spin density profiles of the water penetrating inside the tablets.
Choi, Sang-Ho; Arai, Allison L; Mou, Yongshan; Kang, Byeongteck; Yen, Cecil Chern-Chyi; Hallenbeck, John; Silva, Afonso C
2018-03-01
MAGL (monoacylglycerol lipase) is an enzyme that hydrolyzes the endocannabinoid 2-arachidonoylglycerol and regulates the production of arachidonic acid and prostaglandins-substances that mediate tissue inflammatory response. Here, we have studied the effects of the selective MAGL inhibitors JZL184 and MJN110 and their underlying molecular mechanisms on 3 different experimental models of focal cerebral ischemia. SHR (spontaneously hypertensive rats) and normotensive WKY (Wistar Kyoto) rats were subject to an intracortical injection of the potent vasoconstrictor endothelin-1, permanent occlusion of a distal segment of the middle cerebral artery via craniectomy, or transient occlusion of the middle cerebral artery by the intraluminal suture method. JZL184 or MJN110 was administered 60 minutes after focal cerebral ischemia. Infarct volumes, hemispheric swelling, and functional outcomes were assessed between days 1 to 28 by magnetic resonance imaging, histology, and behavioral tests. Pharmacological inhibition of MAGL significantly attenuated infarct volume and hemispheric swelling. MAGL inhibition also ameliorated sensorimotor deficits, suppressed inflammatory response, and decreased the number of degenerating neurons. These beneficial effects of MAGL inhibition were not fully abrogated by selective antagonists of cannabinoid receptors, indicating that the anti-inflammatory effects are caused by inhibition of eicosanoid production rather than by activation of cannabinoid receptors. Our results suggest that MAGL may contribute to the pathophysiology of focal cerebral ischemia and is thus a promising therapeutic target for the treatment of ischemic stroke. © 2018 American Heart Association, Inc.
Swelling mechanism of urea cross-linked starch-lignin films in water.
Sarwono, Ariyanti; Man, Zakaria; Bustam, M Azmi; Subbarao, Duvvuri; Idris, Alamin; Muhammad, Nawshad; Khan, Amir Sada; Ullah, Zahoor
2018-06-01
Coating fertilizer particles with thin films is a possibility to control fertilizer release rates. It is observed that novel urea cross-linked starch-lignin composite thin films, prepared by solution casting, swell on coming into contact with water due to the increase in volume by water uptake by diffusion. The effect of lignin content, varied from 0% to 20% in steps of 5% at three different temperatures (25°C, 35°C and 45°C), on swelling of the film was investigated. By gravimetric analysis, the equilibrium water uptake and diffusion coefficient decrease with lignin content, indicating that the addition of lignin increases the hydrophobicity of the films. When temperature increases, the diffusion coefficient and the amount of water absorbed tend to increase. Assuming that swelling of the thin film is by water uptake by diffusion, the diffusion coefficient is estimated. The estimated diffusion coefficient decreases from 4.3 to 2.1 × 10 -7 cm 2 /s at 25°C, from 5.3 to 2.9 × 10 -7 cm 2 /s at 35°C and from 6.2 to 3.8 × 10 -7 cm 2 /s at 45°C depending on the lignin content. Activation energy for the increase in diffusion coefficient with temperature is observed to be 16.55 kJ/mol. An empirical model of water uptake as a function of percentage of lignin and temperature was also developed based on Fick's law.
Abe, Tsutomu; Takagi, Norio; Nakano, Midori; Takeo, Satoshi
2004-03-11
Calcium accumulation and free radical formation in the mitochondria are suggested to result in opening of the mitochondrial permeability transition pore that may be an initial step in neuronal cell death. The purpose of the present study was to determine whether monobromobimane (MBM) was a possible protective agent against neuronal cell death after transient global ischemia and the swelling of isolated hippocampal mitochondria. Infusion of MBM (1 or 3 microg) to cerebral ventricles 30 min before ischemia attenuated the expression of TUNEL-labeled cells and neuronal cell death in the hippocampal CA1 region at 72 h of reperfusion dose-dependently. Treatment with MBM inhibited an increase in caspase-3-like activity at 48 h of reperfusion in the hippocampus. MBM (30-300 microM) also inhibited an enhanced swelling rate induced by Ca2+ and phenylarsineoxide in the isolated hippocampal mitochondria. These results suggest that in vivo treatment with MBM may protect against neuronal cell death through inhibition of the mitochondrial swelling and caspase-3-dependent apoptotic pathway.
NASA Astrophysics Data System (ADS)
Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Carrera, David; Martí-Fàbregas, Joan; Durduran, Turgut
2014-01-01
The ultimate goal of therapeutic strategies for ischemic stroke is to reestablish the blood flow to the ischemic region of the brain. However, currently, the local cerebral hemodynamics (microvascular) is almost entirely inaccessible for stroke clinicians at the patient bed-side, and the recanalization of the major cerebral arteries (macrovascular) is the only available measure to evaluate the therapy, which does not always reflect the local conditions. Here we report the case of an ischemic stroke patient whose microvascular cerebral blood flow and oxygenation were monitored by a compact hybrid diffuse optical monitor during thrombolytic therapy. This monitor combined diffuse correlation spectroscopy and near-infrared spectroscopy. The reperfusion assessed by hybrid diffuse optics temporally correlated with the recanalization of the middle cerebral artery (assessed by transcranial-Doppler) and was in agreement with the patient outcome. This study suggests that upon further investigation, diffuse optics might have a potential for bed-side acute stroke monitoring and therapy guidance by providing hemodynamics information at the microvascular level.
Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Carrera, David; Martí-Fàbregas, Joan; Durduran, Turgut
2014-01-01
The ultimate goal of therapeutic strategies for ischemic stroke is to reestablish the blood flow to the ischemic region of the brain. However, currently, the local cerebral hemodynamics (microvascular) is almost entirely inaccessible for stroke clinicians at the patient bed-side, and the recanalization of the major cerebral arteries (macrovascular) is the only available measure to evaluate the therapy, which does not always reflect the local conditions. Here we report the case of an ischemic stroke patient whose microvascular cerebral blood flow and oxygenation were monitored by a compact hybrid diffuse optical monitor during thrombolytic therapy. This monitor combined diffuse correlation spectroscopy and near-infrared spectroscopy. The reperfusion assessed by hybrid diffuse optics temporally correlated with the recanalization of the middle cerebral artery (assessed by transcranial-Doppler) and was in agreement with the patient outcome. This study suggests that upon further investigation, diffuse optics might have a potential for bed-side acute stroke monitoring and therapy guidance by providing hemodynamics information at the microvascular level.
The Controversial Second Impact Syndrome: A Review of the Literature.
McLendon, Loren A; Kralik, Stephen F; Grayson, Patricia A; Golomb, Meredith R
2016-09-01
Second impact syndrome is a devastating injury that primarily affects athletic children and young adults. It occurs when a second concussion occurs before symptoms from the first concussion have resolved. Diffuse and often catastrophic cerebral edema results. Reports of second impact syndrome are few, and some argue that second impact syndrome is simply diffuse cerebral swelling unrelated to the first concussion. Ovid and PubMed were searched from years 1946 to 2015 using the terms "second impact syndrome," "repeat concussion," and "catastrophic brain injury." In addition, review articles were found using a combination of the terms, "concussion," "second impact syndrome," and "repetitive head trauma." Seventeen patients in seven publications met the criteria of having two witnessed hits and persistent symptoms from the first to the second concussion. Ten of the 17 (59%) included individuals were football players. All were male. Ages ranged from 13 to 23 years. All children with poor outcomes (death or permanent disability) were younger than 20 years, while four of the five players with good outcomes were older than 19 years. The lag time from first to second concussion ranged from one hour to four weeks, and in many cases, at least one of the two hits appeared minor. American football, male gender, and young age appear to be associated with second impact syndrome. Controversies surrounding this syndrome are discussed. There is a need for prospective studies to clarify risk factors and outcomes of second impact syndrome to guide return-to-play recommendations for young athletes. Copyright © 2016 Elsevier Inc. All rights reserved.
Yang, Yunjun; Gao, Lingyun; Fu, Jun; Zhang, Jun; Li, Yuxin; Yin, Bo; Chen, Weijian; Geng, Daoying
2013-01-01
Supratentorial cerebral infarction can cause functional inhibition of remote regions such as the cerebellum, which may be relevant to diaschisis. This phenomenon is often analyzed using positron emission tomography and single photon emission CT. However, these methods are expensive and radioactive. Thus, the present study quantified the changes of infarction core and remote regions after unilateral middle cerebral artery occlusion using apparent diffusion coefficient values. Diffusion-weighted imaging showed that the area of infarction core gradually increased to involve the cerebral cortex with increasing infarction time. Diffusion weighted imaging signals were initially increased and then stabilized by 24 hours. With increasing infarction time, the apparent diffusion coefficient value in the infarction core and remote bilateral cerebellum both gradually decreased, and then slightly increased 3–24 hours after infarction. Apparent diffusion coefficient values at remote regions (cerebellum) varied along with the change of supratentorial infarction core, suggesting that the phenomenon of diaschisis existed at the remote regions. Thus, apparent diffusion coefficient values and diffusion weighted imaging can be used to detect early diaschisis. PMID:25206615
Abe, Tsutomu; Takagi, Norio; Nakano, Midori; Tanonaka, Kouichi; Takeo, Satoshi
2004-04-01
A possible involvement of inhibitory effects of monobromobimane (MBM), a thiol reagent, on the swelling and the release of cytochrome c in the isolated brain mitochondria was examined. MBM dose-dependently inhibited the calcium and phenylarsineoxide-induced mitochondrial swelling and cytochrome c release. Significant relationships between mitochondrial swelling and cytochrome c release were detected. Furthermore, effects of in vivo treatment with MBM on neuronal cell damage after transient (15 min) global ischemia in rats were examined. Infusion of MBM (1 or 3 microg/animal) to cerebral ventricles attenuated an increased number of TUNEL-positive cells and neuronal cell death in the hippocampal CA1 region at 72 h of reperfusion. These results suggest that MBM may have an ability to inhibit mitochondria-associated apoptotic pathways through attenuation of the mitochondrial swelling and the release of cytochrome c.
NASA Astrophysics Data System (ADS)
Miotke, M.; Strankowska, J.; Kwela, J.; Strankowski, M.; Piszczyk, Ł.; Józefowicz, M.; Gazda, M.
2017-09-01
Studies of swelling and release of naproxen sodium (NAP) solution by polyurethane nanocomposite hydrogels containing Cloisite® 30B (organically modified montmorillonite (OMMT)) have been performed. Polyurethane nanocomposite hydrogels are hybrid, nontoxic biomaterials with unique swelling and release properties in comparison with unmodified hydrogels. These features enable to use nanocomposite hydrogels as a modern wound dressing. The presence of nanoparticles significantly improves the swelling. On the other hand, their presence hinders drug diffusion from polymer matrix and consequently causes delay of the drug release. The kinetics of swelling and release were carefully analyzed using the Korsmeyer-Peppas and the modified Hopfenberg models. The models were fitted to precise experimental data allowing accurate quantitative and qualitative analysis. We observed that 0.5% admixture of nanoparticles (Cloisite® 30B) is the best concentration for hydrogel swelling properties. The release process was studied using fluorescence excitation spectra of NAP. Furthermore, we studied swelling hysteresis; polymer chains have not been destroyed after the swelling and part of swelled solution with active substances which remained absorbed in the polymer matrix after the drying process. We have found that the amount of solution with NAP remained in the nanocomposite matrix is greater than in pure hydrogel, as a consequence of NAP-OMMT interactions (nanosize effect).
Inferring nonlinear mantle rheology from the shape of the Hawaiian swell.
Asaadi, N; Ribe, N M; Sobouti, F
2011-05-26
The convective circulation generated within the Earth's mantle by buoyancy forces of thermal and compositional origin is intimately controlled by the rheology of the rocks that compose it. These can deform either by the diffusion of point defects (diffusion creep, with a linear relationship between strain rate and stress) or by the movement of intracrystalline dislocations (nonlinear dislocation creep). However, there is still no reliable map showing where in the mantle each of these mechanisms is dominant, and so it is important to identify regions where the operative mechanism can be inferred directly from surface geophysical observations. Here we identify a new observable quantity--the rate of downstream decay of the anomalous seafloor topography (swell) produced by a mantle plume--which depends only on the value of the exponent in the strain rate versus stress relationship that defines the difference between diffusion and dislocation creep. Comparison of the Hawaiian swell topography with the predictions of a simple fluid mechanical model shows that the swell shape is poorly explained by diffusion creep, and requires a dislocation creep rheology. The rheology predicted by the model is reasonably consistent with laboratory deformation data for both olivine and clinopyroxene, suggesting that the source of Hawaiian lavas could contain either or both of these components.
NASA Astrophysics Data System (ADS)
Singh, Baljit; Kumar, S.
2008-08-01
In order to develop the hydrogels meant for the drug delivery, we have prepared psyllium- N-vinylpyrrolidone (NVP) based hydrogels by radiation induced crosslinking. Polymers were characterized with SEMs, FTIR and swelling studies. Swelling of the hydrogels was studied as a function of monomer concentration, total radiation dose, temperature, pH and [NaCl] of the swelling medium. The swelling kinetics of the hydrogels and release dynamics of anticancer model drug (5-fluorouracil) from the hydrogels have been carried out for the evaluation of swelling and drug release mechanism. It has been observed that diffusion exponent ' n' have 0.8, 0.9, 0.8 and gel characteristics constant ' k' have 9.22 × 10 -3, 2.06 × 10 -3, 11.72 × 10 -3 values for the release of drug from the drug loaded hydrogels in distilled water, pH 2.2 buffer and pH 7.4 buffer, respectively. The present study shows that the release of drug from the hydrogels occurred through Non-Fickian diffusion mechanism.
Memedyarov, A M; Namazova-Baranova, L S; Ermolina, Y V; Anikin, A V; Maslova, O I; Karkashadze, M Z; Klochkova, O A
2014-01-01
Diffusion tensor tractography--a new method of magnetic resonance imaging, that allows to visualize the pathways of the brain and to study their structural-functional state. The authors investigated the changes in motor and sensory pathways of brain in children with cerebral palsy using routine magnetic resonance imaging and diffusion-tensor tractography. The main group consisted of 26 patients with various forms of cerebral palsy and the comparison group was 25 people with normal psychomotor development (aged 2 to 6 years) and MR-picture of the brain. Magnetic resonance imaging was performed on the scanner with the induction of a magnetic field of 1,5 Tesla. Coefficients of fractional anisotropy and average diffusion coefficient estimated in regions of the brain containing the motor and sensory pathways: precentral gyrus, posterior limb of the internal capsule, thalamus, posterior thalamic radiation and corpus callosum. Statistically significant differences (p < 0.05) values of fractional anisotropy and average diffusion coefficient in patients with cerebral palsy in relation to the comparison group. All investigated regions, the coefficients of fractional anisotropy in children with cerebral palsy were significantly lower, and the average diffusion coefficient, respectively, higher. These changes indicate a lower degree of ordering of the white matter tracts associated with damage and subsequent development of gliosis of varying severity in children with cerebral palsy. It is shown that microstructural damage localized in both motor and sensory tracts that plays a leading role in the development of the clinical picture of cerebral palsy.
Cross-linked high amylose starch derivatives for drug release III. Diffusion properties.
Mulhbacher, Jérôme; Mateescu, Mircea Alexandru
2005-06-13
Acetate (Ac-), aminoethyl (AE-) and carboxymethyl (CM-) derivatives of cross-linked high amylose starch (HASCL-6) were previously shown to control the release of drugs over 20 h from highly loaded (up to 60% drug) monolithic tablets. This report presents a diffusion analysis, aimed to facilitate a better understanding of the mechanisms involved in the control of the drug release from these hydrogels. The diffusion was found to depend on the molecular weight of the diffusant, whereas the partition coefficient depended on the affinities of the diffusant for the polymers and for the dissolution media via attractive or repulsive ionic interactions. The diffusion was also affected by the swelling of CM-HASCL-6, which, unexpectedly, increased with the decrease of the ionic strength. This diffusion analysis completes the swelling studies of HASCL-6 and of its derivatives, allowing the prediction of release kinetics of various active agents.
Boat Hull Blisters: Repair Techniques and Long Term Effects on Hull Degradation
1988-08-01
Swelling Stresses Produced by Diffusion; Long Term Damage by Water Absorption ; Effects of Gel Coat on Leaching of Water Soluble Material from...leinforcesents 5. Swelling Stresses Produced by Diffusion 6. Long Term Damage by Water Absorption 7. Effects of Gel Coat on Leaching of Water Soluble...the importance of bilge side water pick-up is emphasized. A second method for preventing blister formation is to eliminate or minimize the water soluble
Impact of grain size evolution on necking and pinch-and-swell formation in calcite layers
NASA Astrophysics Data System (ADS)
Schmalholz, Stefan Markus; Duretz, Thibault
2017-04-01
The formation of necking zones and the associated formation of pinch-and-swell structure is one form of strain localization in extending, competent layers. Natural pinch-and-swell structure in centimetre-thick calcite layers typically shows a reduction of grain size from swell towards pinch. However, the impact of grain size evolution on necking and pinch-and-swell formation is incompletely understood. We perform zero-dimensional (0D) and 2D thermo-mechanical numerical simulations to quantify the impact of grain size evolution on necking for extension rates between 10-12s^-1and10^-14 s-1 and temperatures around 350°C. For a combination of diffusion and dislocation creep we calculate grain size evolution according to the paleowattmeter (grain size is proportional to mechanical work rate) or the paleopiezometer (grain size is proportional to stress). Numerical results fit two observations: (i) grain size reduction from swells towards pinches, and (ii) dislocation creep dominated deformation in swells and significant contribution of diffusion creep in pinches. Modelled grain size in pinches (10 to 60 μm) and swells (70 to 800 μm) is close to observed grain size in pinches (15 to 27 μm) and in swells (250 to 1500 μm). Grain size evolution has only a minor impact on necking suggesting that grain size evolution is a consequence, and not the cause of necking. Viscous shear heating and grain size evolution had a negligible thermal impact in the simulations.
Numerical simulation model of hyperacute/acute stage white matter infarction.
Sakai, Koji; Yamada, Kei; Oouchi, Hiroyuki; Nishimura, Tsunehiko
2008-01-01
Although previous studies have revealed the mechanisms of changes in diffusivity (apparent diffusion coefficient [ADC]) in acute brain infarction, changes in diffusion anisotropy (fractional anisotropy [FA]) in white matter have not been examined. We hypothesized that membrane permeability as well as axonal swelling play important roles, and we therefore constructed a simulation model using random walk simulation to replicate the diffusion of water molecules. We implemented a numerical diffusion simulation model of normal and infarcted human brains using C++ language. We constructed this 2-pool model using simple tubes aligned in a single direction. Random walk simulation diffused water. Axon diameters and membrane permeability were then altered in step-wise fashion. To estimate the effects of axonal swelling, axon diameters were changed from 6 to 10 microm. Membrane permeability was altered from 0% to 40%. Finally, both elements were combined to explain increasing FA in the hyperacute stage of white matter infarction. The simulation demonstrated that simple water shift into the intracellular space reduces ADC and increases FA, but not to the extent expected from actual human cases (ADC approximately 50%; FA approximately +20%). Similarly, membrane permeability alone was insufficient to explain this phenomenon. However, a combination of both factors successfully replicated changes in diffusivity indices. Both axonal swelling and reduced membrane permeability appear important in explaining changes in ADC and FA based on eigenvalues in hyperacute-stage white matter infarction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Linyun; Mei, Zhi-Gang; Yacout, Abdellatif M.
We have developed a mesoscale phase-field model for studying the effect of recrystallization on the gas-bubble-driven swelling in irradiated U-Mo alloy fuel. The model can simulate the microstructural evolution of the intergranular gas bubbles on the grain boundaries as well as the recrystallization process. Our simulation results show that the intergranular gas-bubble-induced fuel swelling exhibits two stages: slow swelling kinetics before recrystallization and rapid swelling kinetics with recrystallization. We observe that the recrystallization can significantly expedite the formation and growth of gas bubbles at high fission densities. The reason is that the recrystallization process increases the nucleation probability of gasmore » bubbles and reduces the diffusion time of fission gases from grain interior to grain boundaries by increasing the grain boundary area and decreasing the diffusion distance. The simulated gas bubble shape, size distribution, and density on the grain boundaries are consistent with experimental measurements. We investigate the effect of the recrystallization on the gas-bubble-driven fuel swelling in UMo through varying the initial grain size and grain aspect ratio. We conclude that the initial microstructure of fuel, such as grain size and grain aspect ratio, can be used to effectively control the recrystallization and therefore reduce the swelling in U-Mo fuel.« less
Simulating the swelling and deformation behaviour in soft tissues using a convective thermal analogy
Wu, John Z; Herzog, Walter
2002-01-01
Background It is generally accepted that cartilage adaptation and degeneration are mechanically mediated. Investigating the swelling behaviour of cartilage is important because the stress and strain state of cartilage is associated with the swelling and deformation behaviour. It is well accepted that the swelling of soft tissues is associated with mechanical, chemical, and electrical events. Method The purpose of the present study was to implement the triphasic theory into a commercial finite element tool (ABAQUS) to solve practical problems in cartilage mechanics. Because of the mathematical identity between thermal and mass diffusion processes, the triphasic model was transferred into a convective thermal diffusion process in the commercial finite element software. The problem was solved using an iterative procedure. Results The proposed approach was validated using the one-dimensional numerical solutions and the experimental results of confined compression of articular cartilage described in the literature. The time-history of the force response of a cartilage specimen in confined compression, which was subjected to swelling caused by a sudden change of saline concentration, was predicted using the proposed approach and compared with the published experimental data. Conclusion The advantage of the proposed thermal analogy technique over previous studies is that it accounts for the convective diffusion of ion concentrations and the Donnan osmotic pressure in the interstitial fluid. PMID:12685940
Gervasio, Michelle; Lu, Kathy; Davis, Richey
2015-09-15
This study is the first that focuses on solvent migration in a polydimethylsiloxane (PDMS) stamp during the imprint lithography of ZnO-poly(methyl methacrylate) (PMMA) hybrid suspensions. Using suspensions with varying solids loading levels and ZnO/PMMA ratios, the uptake of the anisole solvent in the stamp is evaluated as a function of time. Laser confocal microscopy is employed as a unique technique to measure the penetration depth of the solvent into the stamp. The suspension solids loading affects the anisole saturation depth in the PDMS stamp. For the suspensions with low solids loading, the experimental data agree with the model for non-Fickian diffusion through a rubbery-elastic polymer. For the suspensions with high solids loading, the data agree more with a sigmoidal diffusion curve, reflecting the rubbery-viscous behavior of a swelling polymer. This difference is due to the degree of swelling in the PDMS. Higher solids loadings induce more swelling because the rate of anisole diffusing into the stamp is increased, likely due to the less dense buildup of the solids as the suspension dries.
Lee, Jun Ho; Choi, Hui-Chul; Kim, Chulho; Sohn, Jong Hee; Kim, Heung Cheol
2014-01-01
Necrotizing fasciitis is a soft tissue infection that is characterized by extensive necrosis of the subcutaneous fat, neurovascular structures, and fascia. Cerebral infarction after facial necrotizing fasciitis has been rarely reported. A 61-year-old woman with diabetes was admitted with painful swelling of her right cheek. One day later, she was stuporous and quadriplegic. A computed tomographic scan of her face revealed right facial infection in the periorbital soft tissue, parotid, buccal muscle, and maxillary sinusitis. A computed tomographic scan of the brain revealed cerebral infarction in the right hemisphere, left frontal area, and both cerebellum. Four days later, she died from cerebral edema and septic shock. Involvement of the cerebral vasculature, such as the carotid or vertebral artery by necrotizing fasciitis, can cause cerebral infarction. Facial necrotizing fasciitis should be treated early with surgical treatment and the appropriate antibiotic therapy. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Zirak, Peyman; Delgado-Mederos, Raquel; Martí-Fàbregas, Joan; Durduran, Turgut
2010-01-01
Acetazolamide (ACZ) was used to stimulate the cerebral vasculature on ten healthy volunteers to assess the cerebral vasomotor reactivity (CVR). We have combined near infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS) and transcranial Doppler (TCD) technologies to non-invasively assess CVR in real-time by measuring oxy- and deoxy-hemoglobin concentrations, using NIRS, local cerebral blood flow (CBF), using DCS, and blood flow velocity (CBFV) in the middle cerebral artery, using TCD. Robust and persistent increases in oxy-hemoglobin concentration, CBF and CBFV were observed. A significant agreement was found between macro-vascular (TCD) and micro-vascular (DCS) hemodynamics, between the NIRS and TCD data, and also within NIRS and DCS results. The relative cerebral metabolic rate of oxygen, rCMRO2, was also determined, and no significant change was observed. Our results showed that the combined diffuse optics-ultrasound technique is viable to follow (CVR) and rCMRO2 changes in adults, continuously, at the bed-side and in real time. PMID:21258561
Zirak, Peyman; Delgado-Mederos, Raquel; Martí-Fàbregas, Joan; Durduran, Turgut
2010-11-19
Acetazolamide (ACZ) was used to stimulate the cerebral vasculature on ten healthy volunteers to assess the cerebral vasomotor reactivity (CVR). We have combined near infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS) and transcranial Doppler (TCD) technologies to non-invasively assess CVR in real-time by measuring oxy- and deoxy-hemoglobin concentrations, using NIRS, local cerebral blood flow (CBF), using DCS, and blood flow velocity (CBFV) in the middle cerebral artery, using TCD. Robust and persistent increases in oxy-hemoglobin concentration, CBF and CBFV were observed. A significant agreement was found between macro-vascular (TCD) and micro-vascular (DCS) hemodynamics, between the NIRS and TCD data, and also within NIRS and DCS results. The relative cerebral metabolic rate of oxygen, rCMRO(2), was also determined, and no significant change was observed. Our results showed that the combined diffuse optics-ultrasound technique is viable to follow (CVR) and rCMRO(2) changes in adults, continuously, at the bed-side and in real time.
Propionate induces cell swelling and K+ accumulation in shark rectal gland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, G.M.; Ziyadeh, F.N.; Mills, J.W.
1989-08-01
Small organic anions have been reported to induce cell solute accumulation and swelling. To investigate the mechanism of swelling, we utilized preparations of rectal gland cells from Squalus acanthias incubated in medium containing propionate. Propionate causes cells to swell by diffusing across membranes in its nonionic form, acidifying cell contents, and activating the Na+-H+ antiporter. The Na+-H+ exchange process tends to correct intracellular pH (pHi), and thus it maintains a favorable gradient for propionic acid diffusion and allows propionate to accumulate. Activation of the Na+-H+ antiport also facilitates Na+ entry into the cell and Nai accumulation. At the same timemore » Na+-K+-ATPase activity, unaffected by propionate, replaces Nai with Ki, whereas the K+ leak rate, decreased by propionate, allows Ki to accumulate. As judged by {sup 86}Rb+ efflux, the reduction in K+ leak was not due to propionate-induced cell acidification or reduction in Cli concentration. Despite inducing cell swelling, propionate did not disrupt cell structural elements and F actin distribution along cell membranes.« less
Brain microvascular function during cardiopulmonary bypass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorensen, H.R.; Husum, B.; Waaben, J.
1987-11-01
Emboli in the brain microvasculature may inhibit brain activity during cardiopulmonary bypass. Such hypothetical blockade, if confirmed, may be responsible for the reduction of cerebral metabolic rate for glucose observed in animals subjected to cardiopulmonary bypass. In previous studies of cerebral blood flow during bypass, brain microcirculation was not evaluated. In the present study in animals (pigs), reduction of the number of perfused capillaries was estimated by measurements of the capillary diffusion capacity for hydrophilic tracers of low permeability. Capillary diffusion capacity, cerebral blood flow, and cerebral metabolic rate for glucose were measured simultaneously by the integral method, different tracersmore » being used with different circulation times. In eight animals subjected to normothermic cardiopulmonary bypass, and seven subjected to hypothermic bypass, cerebral blood flow, cerebral metabolic rate for glucose, and capillary diffusion capacity decreased significantly: cerebral blood flow from 63 to 43 ml/100 gm/min in normothermia and to 34 ml/100 gm/min in hypothermia and cerebral metabolic rate for glucose from 43.0 to 23.0 mumol/100 gm/min in normothermia and to 14.1 mumol/100 gm/min in hypothermia. The capillary diffusion capacity declined markedly from 0.15 to 0.03 ml/100 gm/min in normothermia but only to 0.08 ml/100 gm/min in hypothermia. We conclude that the decrease of cerebral metabolic rate for glucose during normothermic cardiopulmonary bypass is caused by interruption of blood flow through a part of the capillary bed, possibly by microemboli, and that cerebral blood flow is an inadequate indicator of capillary blood flow. Further studies must clarify why normal microvascular function appears to be preserved during hypothermic cardiopulmonary bypass.« less
Ding, Guangliang; Chen, Jieli; Chopp, Michael; Li, Lian; Yan, Tao; Davoodi-Bojd, Esmaeil; Li, Qingjiang; Davarani, Siamak Pn; Jiang, Quan
2017-01-01
Diffusion-related magnetic resonance imaging parametric maps may be employed to characterize white matter of brain. We hypothesize that entropy of diffusion anisotropy may be most effective for detecting therapeutic effects of bone marrow stromal cell treatment of ischemia in type 2 diabetes mellitus rats. Type 2 diabetes mellitus was induced in adult male Wistar rats. These rats were then subjected to 2 h of middle cerebral artery occlusion, and received bone marrow stromal cell (5 × 10 6 , n = 8) or an equal volume of saline (n = 8) via tail vein injection at three days after middle cerebral artery occlusion. Magnetic resonance imaging was performed on day one and then weekly for five weeks post middle cerebral artery occlusion. The diffusion metrics complementarily permitted characterization of axons and axonal myelination. All six magnetic resonance imaging diffusion metrics, confirmed by histological measures, demonstrated that bone marrow stromal cell treatment significantly (p < 0.05) improved magnetic resonance imaging diffusion indices of white matter in type 2 diabetes mellitus rats after middle cerebral artery occlusion compared with the saline-treated rats. Superior to the fractional anisotropy metric that provided measures related to organization of neuronal fiber bundles, the entropy metric can also identify microstructures and low-density axonal fibers of cerebral tissue after stroke in type 2 diabetes mellitus rats. © The Author(s) 2015.
Ding, Guangliang; Chen, Jieli; Chopp, Michael; Li, Lian; Yan, Tao; Davoodi-Bojd, Esmaeil; Li, Qingjiang; Davarani, Siamak PN
2015-01-01
Diffusion-related magnetic resonance imaging parametric maps may be employed to characterize white matter of brain. We hypothesize that entropy of diffusion anisotropy may be most effective for detecting therapeutic effects of bone marrow stromal cell treatment of ischemia in type 2 diabetes mellitus rats. Type 2 diabetes mellitus was induced in adult male Wistar rats. These rats were then subjected to 2 h of middle cerebral artery occlusion, and received bone marrow stromal cell (5 × 106, n = 8) or an equal volume of saline (n = 8) via tail vein injection at three days after middle cerebral artery occlusion. Magnetic resonance imaging was performed on day one and then weekly for five weeks post middle cerebral artery occlusion. The diffusion metrics complementarily permitted characterization of axons and axonal myelination. All six magnetic resonance imaging diffusion metrics, confirmed by histological measures, demonstrated that bone marrow stromal cell treatment significantly (p < 0.05) improved magnetic resonance imaging diffusion indices of white matter in type 2 diabetes mellitus rats after middle cerebral artery occlusion compared with the saline-treated rats. Superior to the fractional anisotropy metric that provided measures related to organization of neuronal fiber bundles, the entropy metric can also identify microstructures and low-density axonal fibers of cerebral tissue after stroke in type 2 diabetes mellitus rats. PMID:26685128
Studholme, Colin; Frias, Antonio E.
2017-01-01
Altered macroscopic anatomical characteristics of the cerebral cortex have been identified in individuals affected by various neurodevelopmental disorders. However, the cellular developmental mechanisms that give rise to these abnormalities are not understood. Previously, advances in image reconstruction of diffusion magnetic resonance imaging (MRI) have made possible high-resolution in utero measurements of water diffusion anisotropy in the fetal brain. Here, diffusion anisotropy within the developing fetal cerebral cortex is longitudinally characterized in the rhesus macaque, focusing on gestation day (G85) through G135 of the 165 d term. Additionally, for subsets of animals characterized at G90 and G135, immunohistochemical staining was performed, and 3D structure tensor analyses were used to identify the cellular processes that most closely parallel changes in water diffusion anisotropy with cerebral cortical maturation. Strong correlations were found between maturation of dendritic arbors on the cellular level and the loss of diffusion anisotropy with cortical development. In turn, diffusion anisotropy changes were strongly associated both regionally and temporally with cortical folding. Notably, the regional and temporal dependence of diffusion anisotropy and folding were distinct from the patterns observed for cerebral cortical surface area expansion. These findings strengthen the link proposed in previous studies between cellular-level changes in dendrite morphology and noninvasive diffusion MRI measurements of the developing cerebral cortex and support the possibility that, in gyroencephalic species, structural differentiation within the cortex is coupled to the formation of gyri and sulci. SIGNIFICANCE STATEMENT Abnormal brain morphology has been found in populations with neurodevelopmental disorders. However, the mechanisms linking cellular level and macroscopic maturation are poorly understood, even in normal brains. This study contributes new understanding to this subject using serial in utero MRI measurements of rhesus macaque fetuses, from which macroscopic and cellular information can be derived. We found that morphological differentiation of dendrites was strongly associated both regionally and temporally with folding of the cerebral cortex. Interestingly, parallel associations were not observed with cortical surface area expansion. These findings support the possibility that perturbed morphological differentiation of cells within the cortex may underlie abnormal macroscopic characteristics of individuals affected by neurodevelopmental disorders. PMID:28069920
Patterns of human local cerebral glucose metabolism during epileptic seizures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, J. Jr.; Kuhl, D.E.; Phelps, M.E.
1982-10-01
Ictal patterns of local cerebral metabolic rate have been studied in epileptic patients by positron computed tomography with /sup 18/F-labeled 2-fluoro-2-deoxy-D-glucose. Partial seizures were associated with activation of anatomic structures unique to each patient studied. Ictal increases and decreases in local cerebral metabolism were observed. Scans performed during generalized convulsions induced by electroshock demonstrated a diffuse ictal increase and postictal decrease in cerebral metabolism. Petit mal absences were associated with a diffuse increase in cerebral metabolic rate. The ictal fluorodeoxyglucose patterns obtained from patients do not resemble autoradiographic patterns obtained from common experimental animal models of epilepsy.
Kim, Eunhee; Yang, Jiwon; Park, Keun Woo; Cho, Sunghee
2017-12-30
In light of repeated translational failures with preclinical neuroprotection-based strategies, this preclinical study reevaluates brain swelling as an important pathological event in diabetic stroke and investigates underlying mechanism of the comorbidity-enhanced brain edema formation. Type 2 (mild), type 1 (moderate), and mixed type 1/2 (severe) diabetic mice were subjected to transient focal ischemia. Infarct volume, brain swelling, and IgG extravasation were assessed at 3 days post-stroke. Expression of vascular endothelial growth factor (VEGF)-A, endothelial-specific molecule-1 (Esm1), and the VEGF receptor 2 (VEGFR2) was determined in the ischemic brain. Additionally, SU5416, a VEGFR2 inhibitor, was treated in the type 1/2 diabetic mice, and stroke outcomes were determined. All diabetic groups displayed bigger infarct volume and brain swelling compared to nondiabetic mice, and the increased swelling was disproportionately larger relative to infarct enlargement. Diabetic conditions significantly increased VEGF-A, Esm1, and VEGFR2 expressions in the ischemic brain compared to nondiabetic mice. Notably, in diabetic mice, VEGFR2 mRNA levels were positively correlated with brain swelling, but not with infarct volume. Treatment with SU5416 in diabetic mice significantly reduced brain swelling. The study shows that brain swelling is a predominant pathological event in diabetic stroke and that an underlying event for diabetes-enhanced brain swelling includes the activation of VEGF signaling. This study suggests consideration of stroke therapies aiming at primarily reducing brain swelling for subjects with diabetes.
Modeling fluid diffusion in cerebral white matter with random walks in complex environments
NASA Astrophysics Data System (ADS)
Levy, Amichai; Cwilich, Gabriel; Buldyrev, Sergey V.; Weeden, Van J.
2012-02-01
Recent studies with diffusion MRI have shown new aspects of geometric order in the brain, including complex path coherence within the cerebral cortex, and organization of cerebral white matter and connectivity across multiple scales. The main assumption of these studies is that water molecules diffuse along myelin sheaths of neuron axons in the white matter and thus the anisotropy of their diffusion tensor observed by MRI can provide information about the direction of the axons connecting different parts of the brain. We model the diffusion of particles confined in the space of between the bundles of cylindrical obstacles representing fibrous structures of various orientations. We have investigated the directional properties of the diffusion, by studying the angular distribution of the end point of the random walks as a function of their length, to understand the scale over which the distribution randomizes. We will show evidence of qualitative change in the behavior of the diffusion for different volume fractions of obstacles. Comparisons with three-dimensional MRI images will be illustrated.
Magnetic resonance features of cerebral malaria.
Yadav, P; Sharma, R; Kumar, S; Kumar, U
2008-06-01
Cerebral malaria is a major health hazard, with a high incidence of mortality. The disease is endemic in many developing countries, but with a greater increase in tourism, occasional cases may be detected in countries where the disease in not prevalent. Early diagnosis and evaluation of cerebral involvement in malaria utilizing modern imaging modalities have an impact on the treatment and clinical outcome. To evaluate the magnetic resonance (MR) features of patients with cerebral malaria presenting with altered sensorium. We present the findings in three patients with cerebral malaria presenting with altered sensorium. MR imaging using a 1.5-Tesla unit was carried out. The sequences performed were 5-mm-thick T1-weighted, T2-weighted, fluid-attenuated inversion-recovery (FLAIR), and T2-weighted gradient-echo axial sequences, and sagittal and coronal FLAIR. Diffusion-weighted imaging was performed with b values of 0 and 1000 s/mm(2), and apparent diffusion coefficient (ADC) maps were obtained. Focal hyperintensities in the bilateral periventricular white matter, corpus callosum, occipital subcortex, and bilateral thalami were noticed on T2-weighted and FLAIR sequences. The lesions were more marked in the splenium of the corpus callosum. No enhancement on postcontrast T1-weighted MR images was observed. There was no evidence of restricted diffusion on the diffusion-weighted sequence and ADC map. MR is a sensitive imaging modality, with a role in the assessment of cerebral lesions in malaria. Focal white matter and corpus callosal lesions without any restricted diffusion were the key findings in our patients.
Rosenthal, Guy; Hemphill, J Claude; Sorani, Marco; Martin, Christine; Morabito, Diane; Obrist, Walter D; Manley, Geoffrey T
2008-06-01
Despite the growing clinical use of brain tissue oxygen monitoring, the specific determinants of low brain tissue oxygen tension (P(bt)O2) following severe traumatic brain injury (TBI) remain poorly defined. The objective of this study was to evaluate whether P(bt)O2 more closely reflects variables related to cerebral oxygen diffusion or reflects cerebral oxygen delivery and metabolism. Prospective observational study. Level I trauma center. Fourteen TBI patients with advanced neuromonitoring underwent an oxygen challenge (increase in FiO2 to 1.0) to assess tissue oxygen reactivity, pressure challenge (increase in mean arterial pressure) to assess autoregulation, and CO2 challenge (hyperventilation) to assess cerebral vasoreactivity. None. P(bt)O2 was measured directly with a parenchymal probe in the least-injured hemisphere. Local cerebral blood flow (CBF) was measured with a parenchymal thermal diffusion probe. Cerebral venous blood gases were drawn from a jugular bulb venous catheter. We performed 119 measurements of PaO2, arterial oxygen content (CaO2), jugular bulb venous oxygen tension (PVO2), venous oxygen content (CVO2), arteriovenous oxygen content difference (AVDO2), and local cerebral metabolic rate of oxygen (locCMRO2). In multivariable analysis adjusting for various variables of cerebral oxygen delivery and metabolism, the only statistically significant relationship was that between P(bt)O2 and the product of CBF and cerebral arteriovenous oxygen tension difference (AVTO2), suggesting a strong association between brain tissue oxygen tension and diffusion of dissolved plasma oxygen across the blood-brain barrier. Measurements of P(bt)O2 represent the product of CBF and the cerebral AVTO2 rather than a direct measurement of total oxygen delivery or cerebral oxygen metabolism. This improved understanding of the cerebral physiology of P(bt)O2 should enhance the clinical utility of brain tissue oxygen monitoring in patients with TBI.
Waheed, Waqar; Nathan, Muriel H; Allen, Gilman B; Borden, Neil M; Babi, M Ali; Tandan, Rup
2015-11-03
A 37-year-old man with a known history of neurofibromatosis 1 (NF1) presented within 2 days of diarrhoeal illness followed by encephalopathy, facial twitching, hypoglycaemia, hypotension, tachycardia and low-grade fever. Examination showed multiple café-au-lait spots and neurofibromas over the trunk, arms and legs and receptive aphasia with right homonymous hemianopia, which resolved. Workup for cardiac, inflammatory and infectious aetiologies was unrevealing. A brain MRI showed gyral swelling with increased T2 fluid-attenuated inversion recovery signal and diffusion restriction in the left cerebral cortex. Neuroendocrine findings suggested panhypopituitarism with centrally derived adrenal insufficiency. Supportive treatment, hormone supplementation, antibiotics, antivirals and levetiracetam yielded clinical improvement. A follow-up brain MRI showed focal left parieto-occipital atrophy with findings of cortical laminar necrosis. In conclusion, we describe a case of NF1-associated panhypopituitarism presenting as hypoglycaemic seizures and stroke-like findings, hitherto unreported manifestations of NF1. Prompt recognition and treatment of these associated conditions can prevent devastating complications. 2015 BMJ Publishing Group Ltd.
Waheed, Waqar; Nathan, Muriel H; Allen, Gilman B; Borden, Neil M; Babi, M Ali; Tandan, Rup
2015-01-01
A 37-year-old man with a known history of neurofibromatosis 1 (NF1) presented within 2 days of diarrhoeal illness followed by encephalopathy, facial twitching, hypoglycaemia, hypotension, tachycardia and low-grade fever. Examination showed multiple café-au-lait spots and neurofibromas over the trunk, arms and legs and receptive aphasia with right homonymous hemianopia, which resolved. Workup for cardiac, inflammatory and infectious aetiologies was unrevealing. A brain MRI showed gyral swelling with increased T2 fluid-attenuated inversion recovery signal and diffusion restriction in the left cerebral cortex. Neuroendocrine findings suggested panhypopituitarism with centrally derived adrenal insufficiency. Supportive treatment, hormone supplementation, antibiotics, antivirals and levetiracetam yielded clinical improvement. A follow-up brain MRI showed focal left parieto-occipital atrophy with findings of cortical laminar necrosis. In conclusion, we describe a case of NF1-associated panhypopituitarism presenting as hypoglycaemic seizures and stroke-like findings, hitherto unreported manifestations of NF1. Prompt recognition and treatment of these associated conditions can prevent devastating complications. PMID:26531733
NASA Astrophysics Data System (ADS)
Shakeri, Alireza; Ghasemian, Ali
2010-04-01
This study aims to investigate the moisture absorption of recycled newspaper fiber and recycled newspaper-glass fiber hybrid reinforced polypropylene composites to study their suitability in outdoor applications. In this work composite materials were made from E-glass fiber (G), recycled newspaper (NP) and polypropylene (PP), by using internal mixing and hot-pressing molding. Long-term water absorption (WA) and thickness swelling (TS) kinetics of the composites was investigated with water immersion. It was found that the WA and TS increase with NP content in composite and water immersion time before an equilibrium condition was reached. Composites made from the NP show comparable results as those made of the hybrid fiber. The results suggest that the water absorption and thickness swelling composite decrease with increasing glass fiber contents in hybrid fiber composite. It is interesting to find that the WA and TS can be reduced significantly with incorporation of a coupling agent (maleated polypropylene) in the composite formulation. Further studies were conducted to model the water diffusion and thickness swelling of the composites. Diffusion coefficients and swelling rate parameters in the models were obtained by fitting the model predictions with the experimental data.
Cerebral Proliferative Angiopathy (CPA): Imaging Findings and Response to Therapy.
Lopci, Egesta; Olivari, Laura; Bello, Lorenzo; Navarria, Pierina; Chiti, Arturo
2016-12-01
We report the case of a 55-year-old woman with cerebral proliferative angiopathy (CPA). Her medical history included brain surgery for small vascular lesions and suspicion of cerebral malignancy. C methionine PET (C-METH PET) demonstrated a diffusely increased uptake on the right hemisphere. Contrast-enhanced MRI documented a massive lesion with a diffuse "nidus" appearance, involving the right cerebral hemisphere (sparing the inferior frontal gyrus and the anterior frontal lobe), the brainstem, and the middle cerebellar peduncle. Pathology confirmed the diagnosis of CPA and, after radiation treatment, the patient presented with clinical and radiological response.
Delgado-Mederos, Raquel; Gregori-Pla, Clara; Zirak, Peyman; Blanco, Igor; Dinia, Lavinia; Marín, Rebeca; Durduran, Turgut; Martí-Fàbregas, Joan
2018-01-01
In this pilot study, we have evaluated bedside diffuse optical monitoring combining diffuse correlation spectroscopy and near-infrared diffuse optical spectroscopy to assess the effect of thrombolysis with an intravenous recombinant tissue plasminogen activator (rtPA) on cerebral hemodynamics in an acute ischemic stroke. Frontal lobes of five patients with an acute middle cerebral artery occlusion were measured bilaterally during rtPA treatment. Both ipsilesional and contralesional hemispheres showed significant increases in cerebral blood flow, total hemoglobin concentration and oxy-hemoglobin concentration during the first 2.5 hours after rtPA bolus. The increases were faster and higher in the ipsilesional hemisphere. The results show that bedside optical monitoring can detect the effect of reperfusion therapy for ischemic stroke in real-time. PMID:29541519
Delgado-Mederos, Raquel; Gregori-Pla, Clara; Zirak, Peyman; Blanco, Igor; Dinia, Lavinia; Marín, Rebeca; Durduran, Turgut; Martí-Fàbregas, Joan
2018-03-01
In this pilot study, we have evaluated bedside diffuse optical monitoring combining diffuse correlation spectroscopy and near-infrared diffuse optical spectroscopy to assess the effect of thrombolysis with an intravenous recombinant tissue plasminogen activator (rtPA) on cerebral hemodynamics in an acute ischemic stroke. Frontal lobes of five patients with an acute middle cerebral artery occlusion were measured bilaterally during rtPA treatment. Both ipsilesional and contralesional hemispheres showed significant increases in cerebral blood flow, total hemoglobin concentration and oxy-hemoglobin concentration during the first 2.5 hours after rtPA bolus. The increases were faster and higher in the ipsilesional hemisphere. The results show that bedside optical monitoring can detect the effect of reperfusion therapy for ischemic stroke in real-time.
Microfluidic diffusivity meter: a tool to optimize CO2 driven enhanced oil recovery
NASA Astrophysics Data System (ADS)
Puneeth, S. B.; Kim, Young Ho; Goel, Sanket
2017-02-01
As the energy demands continue to swell with growing population and there persists a lack of unexploited oilfields, the prime focus of any nation would be to maximize the oil recovery factor from existing oil fields. CO2-Enhanced oil recovery is a process to improve the recovery of crude oil from an oil field and works at high pressure and in very deep conditions. CO2 and oil are miscible at high pressure, resulting in low viscosity and oil swells. This swelling can be measured based on mathematical calculations in real time and correlated with the CO2 concentration. This process has myriad advantages over its counterparts which include being able to harness oil trapped in reservoirs besides being cheaper and more efficient. A Diffusivity meter is inevitable in the measurement of the diffusion co-efficient of two samples. Diffusivity meters currently available in the market are weighed down by disadvantages like the requirement of large samples for testing, high cost and complexity. This elicits the need for a Microfluidic based diffusivity meter capable of analyzing Nano-liter sample volumes besides being more precise and affordable. The scope of this work involves the design and development of a Microfluidic robust and inexpensive prototype diffusivity meter using a capillary tube and endorsing its performance by comparison of results with known diffusivity range and supervision of the results with an electronic microscope coupled to PC and Data Acquisition System. The prototype produced at the end of the work is expected to outweigh disadvantages in existing products in terms of sample size, efficiency and time saving.
A coupled theory for chemically active and deformable solids with mass diffusion and heat conduction
NASA Astrophysics Data System (ADS)
Zhang, Xiaolong; Zhong, Zheng
2017-10-01
To analyse the frequently encountered thermo-chemo-mechanical problems in chemically active material applications, we develop a thermodynamically-consistent continuum theory of coupled deformation, mass diffusion, heat conduction and chemical reaction. Basic balance equations of force, mass and energy are presented at first, and then fully coupled constitutive laws interpreting multi-field interactions and evolving equations governing irreversible fluxes are constructed according to the energy dissipation inequality and the chemical kinetics. To consider the essential distinction between mass diffusion and chemical reactions in affecting free energy and dissipations of a highly coupled system, we regard both the concentrations of diffusive species and the extent of reaction as independent state variables. This new formulation then distinguishes between the energy contribution from the diffusive species entering the solid and that from the subsequent chemical reactions occurring among these species and the host solid, which not only interact with stresses or strains in different manners and on different time scales, but also induce different variations of solid microstructures and material properties. Taking advantage of this new description, we further establish a specialized isothermal model to predict precisely the transient chemo-mechanical response of a swelling solid with a proposed volumetric constraint that accounts for material incompressibility. Coupled kinetics is incorporated to capture the volumetric swelling of the solid caused by imbibition of external species and the simultaneous dilation arised from chemical reactions between the diffusing species and the solid. The model is then exemplified with two numerical examples of transient swelling accompanied by chemical reaction. Various ratios of characteristic times of diffusion and chemical reaction are taken into account to shed light on the dependency on kinetic time scales of evolution patterns for a diffusion-reaction controlled deformable solid.
Okeda, Riki; Arima, Kunimasa; Kawai, Mitsuru
2002-11-01
There is little information regarding the pathogenesis underlying diffuse myelin loss in the cerebral white matter and sparing of the U fibers in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), in which the medial smooth muscle cells of systemic arteries are characteristically involved. We sought to examine the precise extent and severity of changes in the cerebral arteries in an autopsy case of CADASIL in relation to pathogenesis of the diffuse myelin loss. We reconstructed 1000 serial sections of the frontal cerebral medullary arteries of an autopsy subject, which was the first identified Japanese case of CADASIL, as confirmed by the presence of ultrastructural deposits of granular osmiophilic material in the media of some visceral arteries and by genetic analysis. We reconstructed 11 medullary arteries of the frontal lobe showing diffuse myelin loss and atrophy of the white matter with sparing of the U fibers. All of these showed complete loss of medial smooth muscle cells over their entire length and severe adventitial fibrosis. Although intimal fibrosis or hyalinosis was present, luminal occlusion was scarce. These changes were also observed in the small and large arachnoidal arteries but were relatively mild in the latter and in the cortical and subcortical medullary arteries. These arterial changes resulted in transformation of the cerebral arteries, in particular almost all the medullary arteries, to a so-called earthen pipe state. This supports the reported findings of a reduction in vascular reactivity to fluctuations in CO2 levels and systemic blood pressure in CADASIL.
Huang, Jinbai; Luo, Jing; Peng, Jie; Yang, Tao; Zheng, Huanghua; Mao, Chunping
2017-11-01
Background Diffusion-weighted imaging (DWI) was introduced into clinical use some years ago. However, its use in the diagnosis of cerebral schistosomiasis has not been reported. Purpose To investigate the ability of the apparent diffusion coefficient (ADC) value of DWI in the diagnosis of cerebral schistosomiasis, and to differentiate it from brain high-grade gliomas and metastasis. Material and Methods Conventional brain MRI with pre-contrast, post-contrast, and DWI was performed on 50 cases of cerebral schistosomiasis, high-grade glioma, and brain metastasis. The ADC values of the three lesions, the proximal and the distal perifocal edema were measured. In order to remove the individual difference effect of ADC values, relative ADC (rADC) values were calculated through dividing the ADC value of the lesion area by that of the contralateral normal white matter. rADC values were used to evaluate the differences among cerebral schistosomiasis, brain high-grade gliomas, and metastasis. Results rADC of cerebral schistosomiasis was significantly lower than rADC of brain metastasis ( P < 0.05), without any significant differences when compared with high-grade gliomas. rADC of proximal perifocal edema in cerebral schistosomiasis was significantly higher than in high-grade gliomas ( P < 0.010), but not different compared with brain metastasis. Conclusion DWI examination with ADC values of lesions and proximal perifocal edema might be helpful in the exact diagnosis of cerebral schistosomiasis.
Role of dietary polyphenols in attenuating brain edema and cell swelling in cerebral ischemia
USDA-ARS?s Scientific Manuscript database
Polyphenols are natural substances with variable phenolic structures and are enriched in vegetables, fruits, grains, bark, roots, tea, and wine. There are over 8000 polyphenolic structures identified in plants, but edible plants contain only several hundred polyphenolic structures. Recent interest...
Beck, Christoph; Kruetzelmann, Anna; Forkert, Nils D; Juettler, Eric; Singer, Oliver C; Köhrmann, Martin; Kersten, Jan F; Sobesky, Jan; Gerloff, Christian; Fiehler, Jens; Schellinger, Peter D; Röther, Joachim; Thomalla, Götz
2014-06-01
In patients with malignant middle cerebral artery infarction (MMI) decompressive surgery within 48 h improves functional outcome. In this respect, early identification of patients at risk of developing MMI is crucial. While the acute diffusion weighted imaging (DWI) lesion volume was found to predict MMI with high predictive values, the potential impact of preexisting brain atrophy on the course of space-occupying middle cerebral artery (MCA) infarction and the development of MMI remains unclear. We tested the hypothesis that the combination of the acute DWI lesion volume with simple measures of brain atrophy improves the early prediction of MMI. Data from a prospective, multicenter, observational study, which included patients with acute middle cerebral artery main stem occlusion studied by MRI within 6 h of symptom onset, was analyzed retrospectively. The development of MMI was defined according to the European randomized controlled trials of decompressive surgery. Acute DWI lesion volume, as well as brain and cerebrospinal fluid volume (CSF) were delineated. The intercaudate distance (ICD) was assessed as a linear brain atrophy marker by measuring the hemi-ICD of the intact hemisphere to account for local brain swelling. Binary logistic regression analysis was used to identify significant predictors of MMI. Cut-off values were determined by Classification and Regression Trees analysis. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the resulting models were calculated. Twenty-one (18 %) of 116 patients developed a MMI. Malignant middle cerebral artery infarctions patients had higher National Institutes of Health Stroke Scale scores on admission and presented more often with combined occlusion of the internal carotid artery and MCA. There were no differences in brain and CSF volume between the two groups. Diffusion weighted imaging lesion volume was larger (p < 0.001), while hemi-ICD was smaller (p = 0.029) in MMI patients. Inclusion of hemi-ICD improved the prediction of MMI. Best cut-off values to predict the development of MMI were DWI lesion volume > 87 ml and hemi-ICD ≤ 9.4 mm. The addition of hemi-ICD to the decision tree strongly increased PPV (0.93 vs. 0.70) resulting in a reduction of false positive findings from 7/23 (30 %) to 1/15 (7 %), while there were only slight changes in specificity, sensitivity and NPV. The absolute number of correct classifications increased by 4 (3.4 %). The integration of hemi-ICD as a linear marker of brain atrophy, that can easily be assessed in an emergency setting, may improve the prediction of MMI by lesion volume based predictive models.
USDA-ARS?s Scientific Manuscript database
Polyphenols possess anti-oxidant and anti-inflammatory properties. Oxidative stress (OS) and inflammation have been implicated in the pathogenesis of cytotoxic brain edema in cerebral ischemia. In addition, OS and pro-inflammatory cytokines also damage the endothelial cells and the neurovascular uni...
Biological Effects of Nonionizing Electromagnetic Radiation. Volume IV. Number 4.
1980-06-01
absorbed power levels. The effect of EMR on CCAs will be evaluated using the following parameters: beat rate, maximum diastolic potential, action 0591...cerebral forma- superior olive were similar to those evoked by tions examined. The swelling of the cytoplasm was acoustic pulses presented binaurally at a
Zhang, Heng; Gao, Xin; Chen, Keli; Li, Hui; Peng, Lincai
2018-02-01
In current study, cellouronic acid sodium (CAS), obtained from bagasse pith, has been introduced into poly(acrylamide-co-diallyldimethylammonium chloride) (poly(AM-co-DAC)) network to form novel thermo-sensitive semi-IPNs. The structure and morphology of the hydrogels were proved by Fourier transformation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The effects of CAS content, initiator charge, cross-linker dosage and swelling-medium property on the thermo-responsive water absorptivity were investigated in detail. The results elucidated that the prepared gels exhibited a thermo-sensibility with an upper critical solution temperature (UCST) and a high water-absorbency. And the values of UCST and equilibrium swelling ratio largely depended on the inner structure of the semi-IPNs and the external solvent property. It was also revealed that the swelling process conformed to the Schott's pseudo second order model and diffusion type was non-Fickian diffusion. The value of activation energy for this polyelectrolyte was found to be 8.74kJ/mol. Copyright © 2017 Elsevier Ltd. All rights reserved.
Panickar, Kiran S; Qin, Bolin; Anderson, Richard A
2015-10-01
Polyphenols possess antioxidant and anti-inflammatory properties. Oxidative stress (OS) and inflammation have been implicated in the pathogenesis of cytotoxic brain edema in cerebral ischemia. In addition, OS and pro-inflammatory cytokines also damage the endothelial cells and the neurovascular unit. Endothelial cell swelling may contribute to a leaky blood-brain barrier which may result in vasogenic edema in the continued presence of the existing cytotoxic edema. We investigated the protective effects of polyphenols on cytotoxic cell swelling in bEND3 endothelial cultures subjected to 5 hours oxygen-glucose deprivation (OGD). A polyphenol trimer from cinnamon (cinnamtannin D1), a polyphenol-rich extract from green tea, and resveratrol prevented the OGD-induced rise in mitochondrial free radicals, cell swelling, and the dissipation of the inner mitochondrial membrane potential. Monocyte chemoattractant protein (also called CCL2), a chemokine, but not tumor necrosis factor-α or interleukin-6, augmented the cell swelling. This effect of monochemoattractant protein 1-1 was attenuated by the polyphenols. Cyclosporin A, a blocker of the mitochondrial permeability transition pore, did not attenuate cell swelling but BAPTA-AM, an intracellular calcium chelator did, indicating a role of [Ca(2+)]i but not the mPT in cell swelling. These results indicate that the polyphenols reduce mitochondrial reactive oxygen species and subsequent cell swelling in endothelial cells following ischemic injury and thus may reduce brain edema and associated neural damage in ischemia. One possible mechanism by which the polyphenols may attenuate endothelial cell swelling is through the reduction in [Ca(2+)]i.
The systemic pathology of cerebral malaria in African children
Milner, Danny A.; Whitten, Richard O.; Kamiza, Steve; Carr, Richard; Liomba, George; Dzamalala, Charles; Seydel, Karl B.; Molyneux, Malcolm E.; Taylor, Terrie E.
2014-01-01
Pediatric cerebral malaria carries a high mortality rate in sub-Saharan Africa. We present our systematic analysis of the descriptive and quantitative histopathology of all organs sampled from a series of 103 autopsies performed between 1996 and 2010 in Blantyre, Malawi on pediatric cerebral malaria patients and control patients (without coma, or without malaria infection) who were clinically well characterized prior to death. We found brain swelling in all cerebral malaria patients and the majority of controls. The histopathology in patients with sequestration of parasites in the brain demonstrated two patterns: (a) the “classic” appearance (i.e., ring hemorrhages, dense sequestration, and extra-erythrocytic pigment) which was associated with evidence of systemic activation of coagulation and (b) the “sequestration only” appearance associated with shorter duration of illness and higher total burden of parasites in all organs including the spleen. Sequestration of parasites was most intense in the gastrointestinal tract in all parasitemic patients (those with cerebral malarial and those without). PMID:25191643
Knöös, Patrik; Wahlgren, Marie; Topgaard, Daniel; Ulvenlund, Stefan; Piculell, Lennart
2014-08-14
A combination of NMR chemical shift imaging and self-diffusion experiments is shown to give a detailed molecular picture of the events that occur when tablets of hydrophobically modified poly(acrylic acid) loaded with a drug (griseofulvin) swell in water in the presence or absence of surfactant (sodium octylbenzenesulfonate). The hydrophobic substituents on the polymer bind and trap the surfactant molecules in mixed micelles, leading to a slow effective surfactant transport that occurs via a small fraction of individually dissolved surfactant molecules in the water domain. Because of the efficient binding of surfactant, the penetrating water is found to diffuse past the penetrating surfactant into the polymer matrix, pushing the surfactant front outward as the matrix swells. The added surfactant has little effect on the transport of drug because both undissolved solid drug and surfactant-solubilized drug function as reservoirs that essentially follow the polymer as it swells. However, the added surfactant nevertheless has a strong indirect effect on the release of griseofulvin, through the effect of the surfactant on the solubility and erosion of the polymer matrix. The surfactant effectively solubilizes the hydrophobically modified polymer, making it fully miscible with water, leading to a more pronounced swelling and a slower erosion of the polymer matrix.
Free water determines diffusion alterations and clinical status in cerebral small vessel disease.
Duering, Marco; Finsterwalder, Sofia; Baykara, Ebru; Tuladhar, Anil Man; Gesierich, Benno; Konieczny, Marek J; Malik, Rainer; Franzmeier, Nicolai; Ewers, Michael; Jouvent, Eric; Biessels, Geert Jan; Schmidt, Reinhold; de Leeuw, Frank-Erik; Pasternak, Ofer; Dichgans, Martin
2018-06-01
Diffusion tensor imaging detects early tissue alterations in Alzheimer's disease and cerebral small vessel disease (SVD). However, the origin of diffusion alterations in SVD is largely unknown. To gain further insight, we applied free water (FW) imaging to patients with genetically defined SVD (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy [CADASIL], n = 57), sporadic SVD (n = 444), and healthy controls (n = 28). We modeled freely diffusing water in the extracellular space (FW) and measures reflecting fiber structure (tissue compartment). We tested associations between these measures and clinical status (processing speed and disability). Diffusion alterations in SVD were mostly driven by increased FW and less by tissue compartment alterations. Among imaging markers, FW showed the strongest association with clinical status (R 2 up to 34%, P < .0001). Findings were consistent across patients with CADASIL and sporadic SVD. Diffusion alterations and clinical status in SVD are largely determined by extracellular fluid increase rather than alterations of white matter fiber organization. Copyright © 2018 the Alzheimer's Association. All rights reserved.
Characterization of poly(vinyl acetate) based floating matrix tablets.
Strübing, Sandra; Metz, Hendrik; Mäder, Karsten
2008-03-03
Floating Kollidon SR matrix tablets containing Propranolol HCl were developed and characterized with respect to drug release characteristics and floating strength. Kollidon SR was able to delay Propranolol HCl release efficiently. Drug release kinetics was evaluated using the Korsmeyer-Peppas model and found to be governed by Fickian diffusion. Tablet floating started immediately and continued for 24 h. It was possible to monitor the floating strength of the matrix devices using a simple experimental setup. Floating strength was related to Kollidon SR level with improved floating characteristics for samples with a high polymer/drug ratio. Swelling characteristics of the tablets were analyzed by applying the equation according to Therien-Aubin et al. The influence of the polymer content on swelling characteristics was found to be only marginal. Furthermore, the new method of benchtop MRI was introduced to study the water diffusion and swelling behaviour non-invasively and continuously.
Atomistic modeling of water diffusion in hydrolytic biomaterials.
Gautieri, Alfonso; Mezzanzanica, Andrea; Motta, Alberto; Redealli, Alberto; Vesentini, Simone
2012-04-01
One of the most promising applications of hydrolytically degrading biomaterials is their use as drug release carriers. These uses, however, require that the degradation and diffusion of drug are reliably predicted, which is complex to achieve through present experimental methods. Atomistic modeling can help in the knowledge-based design of degrading biomaterials with tuned drug delivery properties, giving insights on the small molecules diffusivity at intermediate states of the degradation process. We present here an atomistic-based approach to investigate the diffusion of water (through which hydrolytic degradation occurs) in degrading bulk models of poly(lactic acid) or PLA. We determine the water diffusion coefficient for different swelling states of the polymeric matrix (from almost dry to pure water) and for different degrees of degradation. We show that water diffusivity is highly influenced by the swelling degree, while little or not influenced by the degradation state. This approach, giving water diffusivity for different states of the matrix, can be combined with diffusion-reaction analytical methods in order to predict the degradation path on longer time scales. Furthermore, atomistic approach can be used to investigate diffusion of other relevant small molecules, eventually leading to the a priori knowledge of degradable biomaterials transport properties, helping the design of the drug delivery systems.
NASA Astrophysics Data System (ADS)
Zhou, Chao; Yu, Guoqiang; Furuya, Daisuke; Greenberg, Joel; Yodh, Arjun; Durduran, Turgut
2006-02-01
Diffuse optical correlation methods were adapted for three-dimensional (3D) tomography of cerebral blood flow (CBF) in small animal models. The image reconstruction was optimized using a noise model for diffuse correlation tomography which enabled better data selection and regularization. The tomographic approach was demonstrated with simulated data and during in-vivo cortical spreading depression (CSD) in rat brain. Three-dimensional images of CBF were obtained through intact skull in tissues(~4mm) deep below the cortex.
Hu, Hui; Lu, Hong; He, Zhanping; Han, Xiangjun; Chen, Jing; Tu, Rong
2012-07-25
To investigate the effects of mRNA interference on aquaporin-4 expression in swollen tissue of rats with ischemic cerebral edema, and diagnose the significance of diffusion-weighted MRI, we injected 5 μL shRNA- aquaporin-4 (control group) or siRNA- aquaporin-4 solution (1:800) (RNA interference group) into the rat right basal ganglia immediately before occlusion of the middle cerebral artery. At 0.25 hours after occlusion of the middle cerebral artery, diffusion-weighted MRI displayed a high signal; within 2 hours, the relative apparent diffusion coefficient decreased markedly, aquaporin-4 expression increased rapidly, and intracellular edema was obviously aggravated; at 4 and 6 hours, the relative apparent diffusion coefficient slowly returned to control levels, aquaporin-4 expression slightly increased, and angioedema was observed. In the RNA interference group, during 0.25-6 hours after injection of siRNA- aquaporin-4 solution, the relative apparent diffusion coefficient slightly fluctuated and aquaporin-4 expression was upregulated; during 0.5-4 hours, the relative apparent diffusion coefficient was significantly higher, while aquaporin-4 expression was significantly lower when compared with the control group, and intracellular edema was markedly reduced; at 0.25 and 6 hours, the relative apparent diffusion coefficient and aquaporin-4 expression were similar when compared with the control group; obvious angioedema remained at 6 hours. Pearson's correlation test results showed that aquaporin-4 expression was negatively correlated with the apparent diffusion coefficient (r = -0.806, P < 0.01). These findings suggest that upregulated aquaporin-4 expression is likely to be the main molecular mechanism of intracellular edema and may be the molecular basis for decreased relative apparent diffusion coefficient. Aquaporin-4 gene interference can effectively inhibit the upregulation of aquaporin-4 expression during the stage of intracellular edema with time-effectiveness. Moreover, diffusion-weighted MRI can accurately detect intracellular edema.
USDA-ARS?s Scientific Manuscript database
Polyphenols are natural substances with variable phenolic structures and are elevated in vegetables, fruits, grains, bark, roots, tea, and wine. while there are over 8000 polyphenolic structures identified in plants, edible plants contain only several hundred polyphenolic structures. In addition t...
Human Neural Stem Cell Extracellular Vesicles Improve Recovery in a Porcine Model of Ischemic Stroke
Webb, Robin L.; Kaiser, Erin E.; Jurgielewicz, Brian J.; Spellicy, Samantha; Scoville, Shelley L.; Thompson, Tyler A.; Swetenburg, Raymond L.; Hess, David C.; West, Franklin D.
2018-01-01
Background and Purpose— Recent work from our group suggests that human neural stem cell–derived extracellular vesicle (NSC EV) treatment improves both tissue and sensorimotor function in a preclinical thromboembolic mouse model of stroke. In this study, NSC EVs were evaluated in a pig ischemic stroke model, where clinically relevant end points were used to assess recovery in a more translational large animal model. Methods— Ischemic stroke was induced by permanent middle cerebral artery occlusion (MCAO), and either NSC EV or PBS treatment was administered intravenously at 2, 14, and 24 hours post-MCAO. NSC EV effects on tissue level recovery were evaluated via magnetic resonance imaging at 1 and 84 days post-MCAO. Effects on functional recovery were also assessed through longitudinal behavior and gait analysis testing. Results— NSC EV treatment was neuroprotective and led to significant improvements at the tissue and functional levels in stroked pigs. NSC EV treatment eliminated intracranial hemorrhage in ischemic lesions in NSC EV pigs (0 of 7) versus control pigs (7 of 8). NSC EV–treated pigs exhibited a significant decrease in cerebral lesion volume and decreased brain swelling relative to control pigs 1-day post-MCAO. NSC EVs significantly reduced edema in treated pigs relative to control pigs, as assessed by improved diffusivity through apparent diffusion coefficient maps. NSC EVs preserved white matter integrity with increased corpus callosum fractional anisotropy values 84 days post-MCAO. Behavior and mobility improvements paralleled structural changes as NSC EV–treated pigs exhibited improved outcomes, including increased exploratory behavior and faster restoration of spatiotemporal gait parameters. Conclusions— This study demonstrated for the first time that in a large animal model novel NSC EVs significantly improved neural tissue preservation and functional levels post-MCAO, suggesting NSC EVs may be a paradigm changing stroke therapeutic. PMID:29650593
NASA Astrophysics Data System (ADS)
Dubey, K. A.; Bhardwaj, Y. K.; Chaudhari, C. V.; Kumar, Virendra; Goel, N. K.; Sabharwal, S.
2009-03-01
Blends of polychloroprene rubber (PCR) and ethylene propylene diene terpolymer rubber (EPDM) of different compositions were made and exposed to different gamma radiation doses. The radiation sensitivity and radiation vulcanization efficiency of blends was estimated by gel-content analysis, Charlesby-Pinner parameter determination and crosslinking density measurements. Gamma radiation induced crosslinking was most efficient for EPDM ( p0/ q0 ˜ 0.08), whereas it was the lowest for blends containing 40% PCR ( p0/ q0 ˜ 0.34). The vulcanized blends were characterized for solvent diffusion characteristics by following the swelling dynamics. Blends with higher PCR content showed anomalous swelling. The sorption and permeability of the solvent were not strictly in accordance with each other and the extent of variation in two parameters was found to be a function of blend composition. The Δ G values for solvent diffusion were in the range -2.97 to -9.58 kJ/mol and indicated thermodynamically favorable sorption for all blends. These results were corroborated by dynamic swelling, experimental as well as simulated profiles and have been explained on the basis of correlation between crosslinking density, diffusion kinetics, thermodynamic parameters and polymer-polymer interaction parameter.
NASA Astrophysics Data System (ADS)
Abookasis, David; Volkov, Boris; Kofman, Itamar
2017-02-01
During the last four decades, various optical techniques have been proposed and intensively used for biomedical diagnosis and therapy both in animal model and in human. These techniques have several advantages over the traditional existing methods: simplicity in structure, low-cost, easy to handle, portable, can be used repeatedly over time near the patient bedside for continues monitoring, and offer high spatiotemporal resolution. In this work, we demonstrate the use of two optical imaging modalities namely, spatially modulated illumination and dual-wavelength laser speckle to image the changes in brain tissue chromophores, morphology, and metabolic before, during, and after the onset of focal traumatic brain injury in intact mouse head (n=15). Injury was applied in anesthetized mice by weight-drop apparatus using 50gram metal rod striking the mouse's head. Following data analysis, we show a series of hemodynamic and structural changes over time including higher deoxyhemoglobin, reduction in oxygen saturation and blood flow, cell swelling, etc., in comparison with baseline measurements. In addition, to validate the monitoring of cerebral blood flow by the imaging system, measurements with laser Doppler flowmetry were also performed (n=5), which confirmed reduction in blood flow following injury. Overall, our result demonstrates the capability of diffuse optical modalities to monitor and map brain tissue optical and physiological properties following brain trauma.
Naga, Kranthi Kumari
2012-01-01
Dimebon was originally introduced as an antihistamine and subsequently investigated as a possible therapeutic for a variety of disorders, including Alzheimer's disease. One putative mechanism underlying the neuroprotective properties of Dimebon is inhibition of mitochondrial permeability transition, based on the observation that Dimebon inhibited the swelling of rat liver mitochondria induced by calcium and other agents that induce permeability transition. Because liver and brain mitochondria differ substantially in their properties and response to conditions associated with opening of the permeability transition pore, we sought to determine whether Dimebon inhibited permeability transition in brain mitochondria. Dimebon reduced calcium-induced mitochondrial swelling but did not enhance the calcium retention capacity or impair calcium-induced cytochrome C release from non-synaptic mitochondria isolated from rat brain cerebral cortex. These findings indicate that Dimebon does not inhibit mitochondrial permeability transition, induced by excessive calcium uptake, in brain mitochondria. PMID:20625939
Naga, Kranthi Kumari; Geddes, James W
2011-03-01
Dimebon was originally introduced as an antihistamine and subsequently investigated as a possible therapeutic for a variety of disorders, including Alzheimer's disease. One putative mechanism underlying the neuroprotective properties of Dimebon is inhibition of mitochondrial permeability transition, based on the observation that Dimebon inhibited the swelling of rat liver mitochondria induced by calcium and other agents that induce permeability transition. Because liver and brain mitochondria differ substantially in their properties and response to conditions associated with opening of the permeability transition pore, we sought to determine whether Dimebon inhibited permeability transition in brain mitochondria. Dimebon reduced calcium-induced mitochondrial swelling but did not enhance the calcium retention capacity or impair calcium-induced cytochrome C release from non-synaptic mitochondria isolated from rat brain cerebral cortex. These findings indicate that Dimebon does not inhibit mitochondrial permeability transition, induced by excessive calcium uptake, in brain mitochondria.
Hu, Hui; Lu, Hong; He, Zhanping; Han, Xiangjun; Chen, Jing; Tu, Rong
2012-01-01
To investigate the effects of mRNA interference on aquaporin-4 expression in swollen tissue of rats with ischemic cerebral edema, and diagnose the significance of diffusion-weighted MRI, we injected 5 μL shRNA- aquaporin-4 (control group) or siRNA- aquaporin-4 solution (1:800) (RNA interference group) into the rat right basal ganglia immediately before occlusion of the middle cerebral artery. At 0.25 hours after occlusion of the middle cerebral artery, diffusion-weighted MRI displayed a high signal; within 2 hours, the relative apparent diffusion coefficient decreased markedly, aquaporin-4 expression increased rapidly, and intracellular edema was obviously aggravated; at 4 and 6 hours, the relative apparent diffusion coefficient slowly returned to control levels, aquaporin-4 expression slightly increased, and angioedema was observed. In the RNA interference group, during 0.25–6 hours after injection of siRNA- aquaporin-4 solution, the relative apparent diffusion coefficient slightly fluctuated and aquaporin-4 expression was upregulated; during 0.5–4 hours, the relative apparent diffusion coefficient was significantly higher, while aquaporin-4 expression was significantly lower when compared with the control group, and intracellular edema was markedly reduced; at 0.25 and 6 hours, the relative apparent diffusion coefficient and aquaporin-4 expression were similar when compared with the control group; obvious angioedema remained at 6 hours. Pearson's correlation test results showed that aquaporin-4 expression was negatively correlated with the apparent diffusion coefficient (r = −0.806, P < 0.01). These findings suggest that upregulated aquaporin-4 expression is likely to be the main molecular mechanism of intracellular edema and may be the molecular basis for decreased relative apparent diffusion coefficient. Aquaporin-4 gene interference can effectively inhibit the upregulation of aquaporin-4 expression during the stage of intracellular edema with time-effectiveness. Moreover, diffusion-weighted MRI can accurately detect intracellular edema. PMID:25657707
Tissue signature characterisation of diffusion tensor abnormalities in cerebral gliomas.
Price, Stephen J; Peña, Alonso; Burnet, Neil G; Jena, Raj; Green, Hadrian A L; Carpenter, T Adrian; Pickard, John D; Gillard, Jonathan H
2004-10-01
The inherent invasiveness of malignant cells is a major determinant of the poor prognosis of cerebral gliomas. Diffusion tensor MRI (DTI) can identify white matter abnormalities in gliomas that are not seen on conventional imaging. By breaking down DTI into its isotropic (p) and anisotropic (q) components, we can determine tissue diffusion "signatures". In this study we have characterised these abnormalities in peritumoural white matter tracts. Thirty-five patients with cerebral gliomas and seven normal volunteers were imaged with DTI and T2-weighted sequences at 3 T. Displaced, infiltrated and disrupted white matter tracts were identified using fractional anisotropy (FA) maps and directionally encoded colour maps and characterised using tissue signatures. The diffusion tissue signatures were normal in ROIs where the white matter was displaced. Infiltrated white matter was characterised by an increase in the isotropic component of the tensor (p) and a less marked reduction of the anisotropic component (q). In disrupted white matter tracts, there was a marked reduction in q and increase in p. The direction of water diffusion was grossly abnormal in these cases. Diffusion tissue signatures may be a useful method of assessing occult white matter infiltration. Copyright 2004 Springer-Verlag
Jayakumar, Arumugam R; Tong, Xiao Y; Curtis, Kevin M; Ruiz-Cordero, Roberto; Abreu, Maria T; Norenberg, Michael D
2014-03-01
Astrocyte swelling and the subsequent increase in intracranial pressure and brain herniation are major clinical consequences in patients with acute hepatic encephalopathy. We recently reported that conditioned media from brain endothelial cells (ECs) exposed to ammonia, a mixture of cytokines (CKs) or lipopolysaccharide (LPS), when added to astrocytes caused cell swelling. In this study, we investigated the possibility that ammonia and inflammatory agents activate the toll-like receptor 4 (TLR4) in ECs, resulting in the release of factors that ultimately cause astrocyte swelling. We found a significant increase in TLR4 protein expression when ECs were exposed to ammonia, CKs or LPS alone, while exposure of ECs to a combination of these agents potentiate such effects. In addition, astrocytes exposed to conditioned media from TLR4-silenced ECs that were treated with ammonia, CKs or LPS, resulted in a significant reduction in astrocyte swelling. TLR4 protein up-regulation was also detected in rat brain ECs after treatment with the liver toxin thioacetamide, and that thioacetamide-treated TLR4 knock-out mice exhibited a reduction in brain edema. These studies strongly suggest that ECs significantly contribute to the astrocyte swelling/brain edema in acute hepatic encephalopathy, likely as a consequence of increased TLR4 protein expression by blood-borne noxious agents. © 2013 International Society for Neurochemistry.
Perez, Gina S; McCaslin, Justin; Shamim, Sadat
2017-04-01
We report a right-handed 19-year-old girl who developed reversible cerebral vasoconstriction syndrome (RCVS) lateralized to the right hemisphere with simultaneous new-onset left hemispheric seizures. RCVS, typically more diffuse, was lateralized to one of the cerebral hemispheres.
Yi, Kyung Sik; Choi, Chi-Hoon; Lee, Sang-Rae; Lee, Hong Jun; Lee, Youngjeon; Jeong, Kang-Jin; Hwang, Jinwoo; Chang, Kyu-Tae
2016-01-01
Although early diffusion lesion reversal after recanalization treatment of acute ischaemic stroke has been observed in clinical settings, the reversibility of lesions observed by diffusion-weighted imaging remains controversial. Here, we present consistent observations of sustained diffusion lesion reversal after transient middle cerebral artery occlusion in a monkey stroke model. Seven rhesus macaques were subjected to endovascular transient middle cerebral artery occlusion with in-bore reperfusion confirmed by repeated prospective diffusion-weighted imaging. Early diffusion lesion reversal was defined as lesion reversal at 3 h after reperfusion. Sustained diffusion lesion reversal was defined as the difference between the ADC-derived pre-reperfusion maximal ischemic lesion volume (ADCD-P Match) and the lesion on 4-week follow-up FLAIR magnetic resonance imaging. Diffusion lesions were spatiotemporally assessed using a 3-D voxel-based quantitative technique. The ADCD-P Match was 9.7 ± 6.0% (mean ± SD) and the final infarct was 1.2–6.0% of the volume of the ipsilateral hemisphere. Early diffusion lesion reversal and sustained diffusion lesion reversal were observed in all seven animals, and the calculated percentages compared with their ADCD-P Match ranged from 8.3 to 51.9% (mean ± SD, 26.9 ± 15.3%) and 41.7–77.8% (mean ± SD, 65.4 ± 12.2%), respectively. Substantial sustained diffusion lesion reversal and early reversal were observed in all animals in this monkey model of transient focal cerebral ischaemia. PMID:27401804
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindblad, M.S.; Keyes, B.; Gedvilas, L.
Fourier transform infrared (FTIR) spectroscopic imaging was used to study the initial diffusion of different solvents in cellulose acetate butyrate (CAB) films containing different amounts of acetyl and butyryl substituents. Different solvents and solvent/non-solvent mixtures were also studied. The FTIR imaging system allowed acquisition of sequential images of the CAB films as solvent penetration proceeded without disturbing the system. The interface between the non-swollen polymer and the initial swelling front could be identified using multivariate data analysis tools. For a series of ketone solvents the initial diffusion coefficients and diffusion rates could be quantified and were found to be relatedmore » to the polar and hydrogen interaction parameters in the Hansen solubility parameters of the solvents. For the solvent/non-solvent system the initial diffusion rate decreased less than linearly with the weight-percent of non-solvent present in the solution, which probably was due to the swelling characteristic of the non-solvent. For a given solvent, increasing the butyryl content of the CAB increased the initial diffusion rate. Increasing the butyryl content from 17 wt.% butyryl to 37 wt.% butyryl produced a considerably larger increase in initial diffusion rate compared to an increase in butyryl content from 37 wt.% to 50 wt.% butyryl.« less
Lin, Wei-Che; Chou, Kun-Hsien; Chen, Chao-Long; Chen, Hsiu-Ling; Lu, Cheng-Hsien; Li, Shau-Hsuan; Huang, Chu-Chung; Lin, Ching-Po; Cheng, Yu-Fan
2014-01-01
Cerebral edema is the common pathogenic mechanism for cognitive impairment in minimal hepatic encephalopathy. Whether complete reversibility of brain edema, cognitive deficits, and their associated imaging can be achieved after liver transplantation remains an open question. To characterize white matter integrity before and after liver transplantation in patients with minimal hepatic encephalopathy, multiple diffusivity indices acquired via diffusion tensor imaging was applied. Twenty-eight patients and thirty age- and sex-matched healthy volunteers were included. Multiple diffusivity indices were obtained from diffusion tensor images, including mean diffusivity, fractional anisotropy, axial diffusivity and radial diffusivity. The assessment was repeated 6-12 month after transplantation. Differences in white matter integrity between groups, as well as longitudinal changes, were evaluated using tract-based spatial statistical analysis. Correlation analyses were performed to identify first scan before transplantation and interval changes among the neuropsychiatric tests, clinical laboratory tests, and diffusion tensor imaging indices. After transplantation, decreased water diffusivity without fractional anisotropy change indicating reversible cerebral edema was found in the left anterior cingulate, claustrum, postcentral gyrus, and right corpus callosum. However, a progressive decrease in fractional anisotropy and an increase in radial diffusivity suggesting demyelination were noted in temporal lobe. Improved pre-transplantation albumin levels and interval changes were associated with better recoveries of diffusion tensor imaging indices. Improvements in interval diffusion tensor imaging indices in the right postcentral gyrus were correlated with visuospatial function score correction. In conclusion, longitudinal voxel-wise analysis of multiple diffusion tensor imaging indices demonstrated different white matter changes in minimal hepatic encephalopathy patients. Transplantation improved extracellular cerebral edema and the results of associated cognition tests. However, white matter demyelination may advance in temporal lobe.
Perez, Gina S.; McCaslin, Justin
2017-01-01
We report a right-handed 19-year-old girl who developed reversible cerebral vasoconstriction syndrome (RCVS) lateralized to the right hemisphere with simultaneous new-onset left hemispheric seizures. RCVS, typically more diffuse, was lateralized to one of the cerebral hemispheres. PMID:28405089
Shrestha, Shikha; Diaz, Jairo A; Ghanbari, Siavash; Youngblood, Jeffrey P
2017-05-08
The coefficient of hygroscopic swelling (CHS) of self-organized and shear-oriented cellulose nanocrystal (CNC) films was determined by capturing hygroscopic strains produced as result of isothermal water vapor intake in equilibrium. Contrast enhanced microscopy digital image correlation enabled the characterization of dimensional changes induced by the hygroscopic swelling of the films. The distinct microstructure and birefringence of CNC films served in exploring the in-plane hygroscopic swelling at relative humidity values ranging from 0% to 97%. Water vapor intake in CNC films was measured using dynamic vapor sorption (DVS) at constant temperature. The obtained experimental moisture sorption and kinetic profiles were analyzed by fitting with Guggenheim, Anderson, and deBoer (GAB) and Parallel Exponential Kinetics (PEK) models, respectively. Self-organized CNC films showed isotropic swelling, CHS ∼0.040 %strain/%C. By contrast, shear-oriented CNC films exhibited an anisotropic swelling, resulting in CHS ∼0.02 and ∼0.30 %strain/%C, parallel and perpendicular to CNC alignment, respectively. Finite element analysis (FEA) further predicted moisture diffusion as the predominant mechanism for swelling of CNC films.
Kinetics of electrically and chemically induced swelling in polyelectrolyte gels
NASA Astrophysics Data System (ADS)
Grimshaw, P. E.; Nussbaum, J. H.; Grodzinsky, A. J.; Yarmush, M. L.
1990-09-01
Controlled swelling and shrinking of polyelectrolyte gels is useful for regulating the transport of solutes into, out of, and through these materials. A macroscopic continuum model is presented to predict the kinetics of swelling in polyelectrolyte gel membranes induced by augmentation of electrostatic swelling forces arising from membrane fixed charge groups. The model accounts for ionic transport within the membrane, electrodiffusion phenomena, dissociation of membrane charge groups, intramembrane fluid flow, and mechanical deformation of the membrane matrix. Model predictions are compared with measurements of chemically and electrically induced swelling and shrinking in crosslinked polymethacrylic acid (PMAA) membranes. Large, reversible changes in PMAA membrane hydration were observed after changing the bath pH or by applying an electric field to modify the intramembrane ionic environment and fixed charge density. A relatively slow swelling process and more rapid shrinking for both chemical and electrical modulation of the intramembrane pH are observed. The model indicates that retardation of membrane swelling is dominated by diffusion-limited reaction of H+ ions with membrane charge groups, and that the more rapid shrinking is limited primarily by mechanical processes.
Naeem, Fahad; Khan, Samiullah; Jalil, Aamir; Ranjha, Nazar Muhammad; Riaz, Amina; Haider, Malik Salman; Sarwar, Shoaib; Saher, Fareha; Afzal, Samrin
2017-01-01
Introduction: The current work was aimed to design and synthesize novel crosslinked pH-sensitive gelatin/pectin (Ge/Pec) hydrogels using different polymeric ratios and to explore the effect of polymers and degree of crosslinking on dynamic, equilibrium swelling and in vitro release behavior of the model drug (Mannitol). Methods: The Ge/Pec based hydrogels were prepared using glutaraldehyde as the crosslinker. Various structural parameters that affect their release behavior were determined, including swelling study, porosity, sol-gel analysis, average molecular weight between crosslinks (Mc), volume fraction of polymer (V2,s), solvent interaction parameter (χ) and diffusion coefficient. The synthesized hydrogels were subjected to various characterization tools like Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and DSC differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Results: The hydrogels show highest water uptake and release at lower pH values. The FTIR spectra showed an interaction between Ge and Pec, and the drug-loaded samples also showed the drug-related peaks, indicating proper loading of the drug. DSC and TGA studies confirmed the thermal stability of hydrogel samples, while SEM showed the porous nature of hydrogels. The drug release followed non-Fickian diffusion or anomalous mechanism. Conclusion: Aforementioned characterizations reveal the successful formation of copolymer hydrogels. The pH-sensitive swelling ability and drug release behavior suggest that the rate of polymer chain relaxation and drug diffusion from these hydrogels are comparable which also predicts their possible use for site-specific drug delivery.
Naeem, Fahad; Khan, Samiullah; Jalil, Aamir; Ranjha, Nazar Muhammad; Riaz, Amina; Haider, Malik Salman; Sarwar, Shoaib; Saher, Fareha; Afzal, Samrin
2017-01-01
Introduction: The current work was aimed to design and synthesize novel crosslinked pH-sensitive gelatin/pectin (Ge/Pec) hydrogels using different polymeric ratios and to explore the effect of polymers and degree of crosslinking on dynamic, equilibrium swelling and in vitro release behavior of the model drug (Mannitol). Methods: The Ge/Pec based hydrogels were prepared using glutaraldehyde as the crosslinker. Various structural parameters that affect their release behavior were determined, including swelling study, porosity, sol-gel analysis, average molecular weight between crosslinks (Mc), volume fraction of polymer (V2,s), solvent interaction parameter (χ) and diffusion coefficient. The synthesized hydrogels were subjected to various characterization tools like Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and DSC differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Results:The hydrogels show highest water uptake and release at lower pH values. The FTIR spectra showed an interaction between Ge and Pec, and the drug-loaded samples also showed the drug-related peaks, indicating proper loading of the drug. DSC and TGA studies confirmed the thermal stability of hydrogel samples, while SEM showed the porous nature of hydrogels. The drug release followed non-Fickian diffusion or anomalous mechanism. Conclusion: Aforementioned characterizations reveal the successful formation of copolymer hydrogels. The pH-sensitive swelling ability and drug release behavior suggest that the rate of polymer chain relaxation and drug diffusion from these hydrogels are comparable which also predicts their possible use for site-specific drug delivery. PMID:29159145
Swelling kinetics and electrical charge transport in PEDOT:PSS thin films exposed to water vapor.
Sarkar, Biporjoy; Jaiswal, Manu; Satapathy, Dillip K
2018-06-06
We report the swelling kinetics and evolution of the electrical charge transport in poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) thin films subjected to water vapor. Polymer films swell by the diffusion of water vapor and are found to undergo structural relaxations. Upon exposure to water vapor, primarily the hygroscopic PSS shell, which surrounds the conducting PEDOT-rich cores, takes up water vapor and subsequently swells. We found that the degree of swelling largely depends on the PEDOT to PSS ratio. Swelling driven microscopic rearrangement of the conducting PEDOT-rich cores in the PSS matrix strongly influences the electrical charge transport of the polymer film. Swelling induced increase as well as decrease of electrical resistance are observed in polymer films having different PEDOT to PSS ratio. This anomalous charge transport behavior in PEDOT:PSS films is reconciled by taking into account the contrasting swelling behavior of the PSS and the conducting PEDOT-rich cores leading to spatial segregation of PSS in films with PSS as a minority phase and by a net increase in mean separation between conducting PEDOT-rich cores for films having abundance of PSS.
Swelling kinetics and electrical charge transport in PEDOT:PSS thin films exposed to water vapor
NASA Astrophysics Data System (ADS)
Sarkar, Biporjoy; Jaiswal, Manu; Satapathy, Dillip K.
2018-06-01
We report the swelling kinetics and evolution of the electrical charge transport in poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) thin films subjected to water vapor. Polymer films swell by the diffusion of water vapor and are found to undergo structural relaxations. Upon exposure to water vapor, primarily the hygroscopic PSS shell, which surrounds the conducting PEDOT-rich cores, takes up water vapor and subsequently swells. We found that the degree of swelling largely depends on the PEDOT to PSS ratio. Swelling driven microscopic rearrangement of the conducting PEDOT-rich cores in the PSS matrix strongly influences the electrical charge transport of the polymer film. Swelling induced increase as well as decrease of electrical resistance are observed in polymer films having different PEDOT to PSS ratio. This anomalous charge transport behavior in PEDOT:PSS films is reconciled by taking into account the contrasting swelling behavior of the PSS and the conducting PEDOT-rich cores leading to spatial segregation of PSS in films with PSS as a minority phase and by a net increase in mean separation between conducting PEDOT-rich cores for films having abundance of PSS.
Aojula, Anuriti; Botfield, Hannah; McAllister, James Patterson; Gonzalez, Ana Maria; Abdullah, Osama; Logan, Ann; Sinclair, Alexandra
2016-05-31
In an effort to develop novel treatments for communicating hydrocephalus, we have shown previously that the transforming growth factor-β antagonist, decorin, inhibits subarachnoid fibrosis mediated ventriculomegaly; however decorin's ability to prevent cerebral cytopathology in communicating hydrocephalus has not been fully examined. Furthermore, the capacity for diffusion tensor imaging to act as a proxy measure of cerebral pathology in multiple sclerosis and spinal cord injury has recently been demonstrated. However, the use of diffusion tensor imaging to investigate cytopathological changes in communicating hydrocephalus is yet to occur. Hence, this study aimed to determine whether decorin treatment influences alterations in diffusion tensor imaging parameters and cytopathology in experimental communicating hydrocephalus. Moreover, the study also explored whether diffusion tensor imaging parameters correlate with cellular pathology in communicating hydrocephalus. Accordingly, communicating hydrocephalus was induced by injecting kaolin into the basal cisterns in 3-week old rats followed immediately by 14 days of continuous intraventricular delivery of either human recombinant decorin (n = 5) or vehicle (n = 6). Four rats remained as intact controls and a further four rats served as kaolin only controls. At 14-days post-kaolin, just prior to sacrifice, routine magnetic resonance imaging and magnetic resonance diffusion tensor imaging was conducted and the mean diffusivity, fractional anisotropy, radial and axial diffusivity of seven cerebral regions were assessed by voxel-based analysis in the corpus callosum, periventricular white matter, caudal internal capsule, CA1 hippocampus, and outer and inner parietal cortex. Myelin integrity, gliosis and aquaporin-4 levels were evaluated by post-mortem immunohistochemistry in the CA3 hippocampus and in the caudal brain of the same cerebral structures analysed by diffusion tensor imaging. Decorin significantly decreased myelin damage in the caudal internal capsule and prevented caudal periventricular white matter oedema and astrogliosis. Furthermore, decorin treatment prevented the increase in caudal periventricular white matter mean diffusivity (p = 0.032) as well as caudal corpus callosum axial diffusivity (p = 0.004) and radial diffusivity (p = 0.034). Furthermore, diffusion tensor imaging parameters correlated primarily with periventricular white matter astrocyte and aquaporin-4 levels. Overall, these findings suggest that decorin has the therapeutic potential to reduce white matter cytopathology in hydrocephalus. Moreover, diffusion tensor imaging is a useful tool to provide surrogate measures of periventricular white matter pathology in communicating hydrocephalus.
Cerebral fat embolism and the "starfield" pattern: a case report.
Aravapalli, Amit; Fox, James; Lazaridis, Christos
2009-11-19
Nearly all long-bone fractures are accompanied by some form of fat embolism. The rare complication of clinically significant fat embolism syndrome, however, occurs in only 0.9-2.2% of cases. The clinical triad of fat embolism syndrome consists of respiratory distress, altered mental status, and petechial rash. Cerebral fat embolism causes the neurologic involvement seen in fat embolism syndrome. A 19-year-old African-American male was admitted with gunshot wounds to his right hand and right knee. He had diffuse hyperactive deep tendon reflexes, bilateral ankle clonus and decerebrate posturing with a Glasgow Coma Scale (GCS) score of 4T. Subsequent MRI of the brain showed innumerable punctate areas of restricted diffusion consistent with "starfield" pattern. On a 10-week follow up he has a normal neurological examination and he is discharged home. Despite the severity of the neurologic insult upon initial presentation, the majority of case reports on cerebral fat embolism illustrate that cerebral dysfunction associated with cerebral fat embolism is reversible. When neurologic deterioration occurs in the non-head trauma patient, then a systemic cause such as fat emboli should be considered. We describe a patient with non-head trauma who demonstrated the classic "starfield" pattern on diffusion-weighted MRI imaging.
Murro, Diana; Novo, Jorge; Arvanitis, Leonidas
2016-07-01
Classic cerebral toxoplasmosis typically presents with neurologic symptoms such as seizures and mental status changes and histological examination shows focal lesions with necrosis. However, in the diffuse "encephalitic" form, patients are asymptomatic with diffuse, inflammatory, non-necrotic lesions. Asymptomatic diffuse "encephalitic" toxoplasmosis has been reported only in four acquired immunodeficiency syndrome patients and one human immunodeficiency virus (HIV) negative patient with chronic lymphocytic leukemia. We present a 36-year-old HIV-negative woman with systemic lupus erythematosus and lupus nephritis who was on immunosuppression for 9years after cadaveric renal transplant and died from pulmonary hemorrhage and cytomegalovirus pneumonia. Brain autopsy findings revealed multifocal microglial nodules containing Toxoplasma bradyzoites and associated astrogliosis. These nodules were prominent in the cerebellum, midbrain and medulla and also present in the cortex and thalamus. No coagulative necrosis, necrotizing abscesses, or other opportunistic infections were present. The patient had previously exhibited no neurologic symptoms and there was no clinical suspicion for toxoplasmosis. To the best of our knowledge, this is the first case of diffuse, non-necrotizing, "encephalitic" cerebral toxoplasmosis reported in a lupus patient and also the first reported female case. Copyright © 2016 Elsevier Ltd. All rights reserved.
McNab, Jennifer A.; Polimeni, Jonathan R.; Wang, Ruopeng; Augustinack, Jean C.; Fujimoto, Kyoko; Player, Allison; Janssens, Thomas; Farivar, Reza; Folkerth, Rebecca D.; Vanduffel, Wim; Wald, Lawrence L.
2012-01-01
Diffusion tensor MRI is sensitive to the coherent structure of brain tissue and is commonly used to study large-scale white matter structure. Diffusion in grey matter is more isotropic, however, several groups have observed coherent patterns of diffusion anisotropy within the cerebral cortical grey matter. We extend the study of cortical diffusion anisotropy by relating it to the local coordinate system of the folded cerebral cortex. We use 1mm and sub-millimeter isotropic resolution diffusion imaging to perform a laminar analysis of the principal diffusion orientation, fractional anisotropy, mean diffusivity and partial volume effects. Data from 6 in vivo human subjects, a fixed human brain specimen and an anesthetized macaque were examined. Large regions of cortex show a radial diffusion orientation. In vivo human and macaque data displayed a sharp transition from radial to tangential diffusion orientation at the border between primary motor and somatosensory cortex, and some evidence of tangential diffusion in secondary somatosensory cortex and primary auditory cortex. Ex vivo diffusion imaging in a human tissue sample showed some tangential diffusion orientation in S1 but mostly radial diffusion orientations in both M1 and S1. PMID:23247190
Charge-regularized swelling kinetics of polyelectrolyte gels: Elasticity and diffusion
NASA Astrophysics Data System (ADS)
Sen, Swati; Kundagrami, Arindam
2017-11-01
We apply a recently developed method [S. Sen and A. Kundagrami, J. Chem. Phys. 143, 224904 (2015)], using a phenomenological expression of osmotic stress, as a function of polymer and charge densities, hydrophobicity, and network elasticity for the swelling of spherical polyelectrolyte (PE) gels with fixed and variable charges in a salt-free solvent. This expression of stress is used in the equation of motion of swelling kinetics of spherical PE gels to numerically calculate the spatial profiles for the polymer and free ion densities at different time steps and the time evolution of the size of the gel. We compare the profiles of the same variables obtained from the classical linear theory of elasticity and quantitatively estimate the bulk modulus of the PE gel. Further, we obtain an analytical expression of the elastic modulus from the linearized expression of stress (in the small deformation limit). We find that the estimated bulk modulus of the PE gel decreases with the increase of its effective charge for a fixed degree of deformation during swelling. Finally, we match the gel-front locations with the experimental data, taken from the measurements of charged reversible addition-fragmentation chain transfer gels to show an increase in gel-size with charge and also match the same for PNIPAM (uncharged) and imidazolium-based (charged) minigels, which specifically confirms the decrease of the gel modulus value with the increase of the charge. The agreement between experimental and theoretical results confirms general diffusive behaviour for swelling of PE gels with a decreasing bulk modulus with increasing degree of ionization (charge). The new formalism captures large deformations as well with a significant variation of charge content of the gel. It is found that PE gels with large deformation but same initial size swell faster with a higher charge.
Nonlinear Layer-by-Layer Films: Effects of Chain Diffusivity on Film Structure and Swelling
Selin, Victor; Ankner, John F.; Sukhishvili, Svetlana A.
2017-08-09
Here in this paper, we report on the role of molecular diffusivity in the formation of nonlinearly growing polyelectrolyte multilayers (nlPEMs). Electrostatically bound polyelectrolyte multilayers were assembled from poly(methacrylic acid) (PMAA) as a polyanion and quaternized poly(2-(dimethylamino)ethyl methacrylate) (QPC) as a polycation. Film growth as measured by ellipsometry was strongly dependent on the time allowed for each polymer deposition step, suggesting that the diffusivities of the components are crucial in controlling the rate of film growth. Uptake of polyelectrolytes within nlPEMs was relatively slow and occurred on time scales ranging from minutes to hours, depending on the film thickness. Spectroscopicmore » ellipsometry measurements with nlPEM films exposed to aqueous solutions exhibited high (severalfold) degrees of film swelling and different swelling values for films exposed to QPC or PMAA solutions. FTIR spectroscopy showed that the average ionization of film-assembled PMAA increased upon binding of QPC and decreased upon binding of PMAA, in agreement with the charge regulation mechanism for weak polyelectrolytes. The use of neutron reflectometry (NR) enabled quantification of chain intermixing within the film, which was drastically enhanced when longer times were allowed for polyelectrolyte deposition. Diffusion coefficients of the polycation derived from the uptake rates of deuterated chains within hydrogenated films were of the order of 10 –14 cm 2/s, i.e., 5–6 orders of magnitude smaller than those found for diffusion of free polymer chains in solution. Exchange of the polymer solutions to buffer inhibited film intermixing. Taken together, these results contribute to understanding the mechanism of the growth of nonlinear polyelectrolyte multilayers and demonstrate the possibility of controlling film intermixing, which is highly desirable for potential future applications.« less
Zheng, J; Li, G; Chen, S; Bihl, J; Buck, J; Zhu, Y; Xia, H; Lazartigues, E; Chen, Y; Olson, J E
2014-07-25
We previously demonstrated that mice which overexpress human renin and angiotensinogen (R+A+) show enhanced cerebral damage in both in vivo and in vitro experimental ischemia models. Angiotensin-converting enzyme 2 (ACE2) counteracts the effects of angiotensin (Ang-II) by transforming it into Ang-(1-7), thus reducing the ligand for the AT1 receptor and increasing stimulation of the Mas receptor. Triple transgenic mice, SARA, which specifically overexpress ACE2 in neurons of R+A+ mice were used to study the role of ACE2 in ischemic stroke using oxygen and glucose deprivation (OGD) of brain slices as an in vitro model. We examined tissue swelling, the production of reactive oxygen species (ROS), and cell death in the cerebral cortex (CX) and the hippocampal CA1 region during OGD. Expression levels of NADPH oxidase (Nox) isoforms, Nox2 and Nox4 were measured using western blots. Results show that SARA mice and R+A+ mice treated with the Mas receptor agonist Ang-(1-7) had less swelling, cell death, and ROS production in CX and CA1 areas compared to those in R+A+ animals. Treatment of slices from SARA mice with the Mas antagonist A779 eliminated this protection. Finally, western blots revealed less Nox2 and Nox4 expression in SARA mice compared with R+A+ mice both before and after OGD. We suggest that reduced brain swelling and cell death observed in SARA animals exposed to OGD result from diminished ROS production coupled with lower expression of Nox isoforms. Thus, the ACE2/Ang-(1-7)/Mas receptor pathway plays a protective role in brain ischemic damage by counteracting the detrimental effects of Ang-II-induced ROS production. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials
NASA Astrophysics Data System (ADS)
Zhang, XiaoLong; Zhong, Zheng
2017-08-01
In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving laws for irreversible fluxes are provided based on entropy imbalance and stoichiometry that governs reactions. The framework manifests itself with a special feature that the change of Helmholtz free energy is attributed to separate contributions of the diffusion-swelling process and chemical reaction-dilation process. Both the extent of reaction and the concentrations of diffusive species are taken as independent state variables, which describe the reaction-activated responses with underlying variation of microstructures and properties of a material in an explicit way. A specialized isothermal formulation for isotropic materials is proposed that can properly account for volumetric constraints from material incompressibility under chemo-mechanical loadings, in which inhomogeneous deformation is associated with reaction and diffusion under various kinetic time scales. This framework can be easily applied to model the transient volumetric swelling of a solid caused by imbibition of external chemical species and simultaneous chemical dilation arising from reactions between the diffusing species and the solid.
[The pharmacodynamic research on fuxiye, a Chinese herbal lotion for external wash].
Chen, Xue-Qi; Ge, Bei-Fen; Shen, Wei; Liu, Pei; Cao, Jun-Ming; Chen, Zhe
2013-05-01
To observe antisepsis, anti-swelling, and therapeutic effects of Fuxiye (FXY), a Chinese medical lotion for external wash in treating vaginitis model rats. The cervicitis rat model was induced by agar plate diffusion, ear auricle swelling induced by dimethylbenzene, and chemical stimulus. The in vitro antibiotic actions of FXY were observed. Besides, its effects on the swelling and inflammation in model rats were also observed. FXY at 25 mg/mL could completely inhibit the growth of Pseudomonas aeruginosa, Escherichia coli, pyogenic Streptococcus, and Streptococcus agalactiae. FXY at 50 mg/mL could completely inhibit the growth of Staphylococcus aureus and Candida albicans. It obviously restrained dimethylbenzene induced ear auricle swelling. It significantly alleviated cervicitis induced by chemical stiumli. FXY showed better effects on antisepsis, anti-inflammation, and treating cervicitis.
Chen, Ying-Chen; Ho, Hsiu-O; Liu, Der-Zen; Siow, Wen-Shian; Sheu, Ming-Thau
2015-01-01
The aim of this study was to characterize the swelling and floating behaviors of gastroretentive drug delivery system (GRDDS) composed of hydroxyethyl cellulose (HEC) and sodium carboxymethyl cellulose (NaCMC) and to optimize HEC/NaCMC GRDDS to incorporate three model drugs with different solubilities (metformin, ciprofloxacin, and esomeprazole). Various ratios of NaCMC to HEC were formulated, and their swelling and floating behaviors were characterized. Influences of media containing various NaCl concentrations on the swelling and floating behaviors and drug solubility were also characterized. Finally, release profiles of the three model drugs from GRDDS formulation (F1-4) and formulation (F1-1) were examined. Results demonstrated when the GRDDS tablets were tested in simulated gastric solution, the degree of swelling at 6 h was decreased for each formulation that contained NaCMC in comparison to those in de-ionized water (DIW). Of note, floating duration was enhanced when in simulated gastric solution compared to DIW. Further, the hydration of tablets was found to be retarded as the NaCl concentration in the medium increased resulting in smaller gel layers and swelling sizes. Dissolution profiles of the three model drugs in media containing various concentrations of NaCl showed that the addition of NaCl to the media affected the solubility of the drugs, and also their gelling behaviors, resulting in different mechanisms for controlling a drug’s release. The release mechanism of the freely water-soluble drug, metformin, was mainly diffusion-controlled, while those of the water-soluble drug, ciprofloxacin, and the slightly water-soluble drug, esomeprazole, were mainly anomalous diffusion. Overall results showed that the developed GRDDS composed of HEC 250HHX and NaCMC of 450 cps possessed proper swelling extents and desired floating periods with sustained-release characteristics. PMID:25617891
NASA Astrophysics Data System (ADS)
Xie, M.; Agus, S. S.; Schanz, T.; Kolditz, O.
2004-12-01
This paper presents an upscaling concept of swelling/shrinking processes of a compacted bentonite/sand mixture, which also applies to swelling of porous media in general. A constitutive approach for highly compacted bentonite/sand mixture is developed accordingly. The concept is based on the diffuse double layer theory and connects microstructural properties of the bentonite as well as chemical properties of the pore fluid with swelling potential. Main factors influencing the swelling potential of bentonite, i.e. variation of water content, dry density, chemical composition of pore fluid, as well as the microstructures and the amount of swelling minerals are taken into account. According to the proposed model, porosity is divided into interparticle and interlayer porosity. Swelling is the potential of interlayer porosity increase, which reveals itself as volume change in the case of free expansion, or turns to be swelling pressure in the case of constrained swelling. The constitutive equations for swelling/shrinking are implemented in the software GeoSys/RockFlow as a new chemo-hydro-mechanical model, which is able to simulate isothermal multiphase flow in bentonite. Details of the mathematical and numerical multiphase flow formulations, as well as the code implementation are described. The proposed model is verified using experimental data of tests on a highly compacted bentonite/sand mixture. Comparison of the 1D modelling results with the experimental data evidences the capability of the proposed model to satisfactorily predict free swelling of the material under investigation. Copyright
Sanborn, Matthew R; Edsell, Mark E; Kim, Meeri N; Mesquita, Rickson; Putt, Mary E; Imray, Chris; Yow, Heng; Wilson, Mark H; Yodh, Arjun G; Grocott, Mike; Martin, Daniel S
2015-06-01
Alterations in cerebral blood flow (CBF) and cerebral oxygenation are implicated in altitude-associated diseases. We assessed the dynamic changes in CBF and peripheral and cerebral oxygenation engendered by ascent to altitude with partial acclimatization and hyperventilation using a combination of near-infrared spectroscopy, transcranial Doppler ultrasound, and diffuse correlation spectroscopy. Peripheral (Spo2) and cerebral (Scto2) oxygenation, end-tidal carbon dioxide (ETCO2), and cerebral hemodynamics were studied in 12 subjects using transcranial Doppler and diffuse correlation spectroscopy (DCS) at 75 m and then 2 days and 7 days after ascending to 4559 m above sea level. After obtaining baseline measurements, subjects hyperventilated to reduce baseline ETCO2 by 50%, and a further set of measurements were obtained. Cerebral oxygenation and peripheral oxygenation showed a divergent response, with cerebral oxygenation decreasing at day 2 and decreasing further at day 7 at altitude, whereas peripheral oxygenation decreased on day 2 before partially rebounding on day 7. Cerebral oxygenation decreased after hyperventilation at sea level (Scto2 from 68.8% to 63.5%; P<.001), increased after hyperventilation after 2 days at altitude (Scto2 from 65.6% to 69.9%; P=.001), and did not change after hyperventilation after 7 days at altitude (Scto2 from 62.2% to 63.3%; P=.35). An intensification of the normal cerebral hypocapnic vasoconstrictive response occurred after partial acclimatization in the setting of divergent peripheral and cerebral oxygenation. This may help explain why hyperventilation fails to improve cerebral oxygenation after partial acclimatization as it does after initial ascent. The use of DCS is feasible at altitude and provides a direct measure of CBF indices with high temporal resolution. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
Experimental determination and modelling of the swelling speed of a hydrogel polymer
NASA Astrophysics Data System (ADS)
Lenk, Sándor; Majoros, Tamás; Beleznai, Szabolcs; Ujhelyi, Ferenc; Péczeli, Imre; Karda, Zsolt; Barócsi, Attila
2018-03-01
When a hydrophilic intraocular lens material is immersed, its volume and mass start increase due to the diffusion of water (or isotonic saline solution) reaching a quasi-equilibrium in a time scale of several hours. Here, we present a combination of atomic force and confocal microscopy to measure the axial swelling speed of such polymers in distilled water. The measurements are used for the experimental verification of a simplistic finite element model developed for engineering applications in COMSOL environment. The model is calibrated with the temporal change of the sample mass. The swelling velocity is found to be inversely proportional to the square root of time.
NASA Astrophysics Data System (ADS)
Saraydın, Dursun; Işıkver, Yasemin; Karadağ, Erdener; Sahiner, Nurettin; Güven, Olgun
2002-03-01
Acrylamide hydrogels, containing different amounts and types of crosslinkers, were synthesized via γ-irradiation technique. Their swellings in simulated body fluids, such as physiological saline (0.89% NaCl) isoosmotic phosphate buffer at pH 7.4, gastric fluid at pH 1.1 (glycine-HCl), protein (aqueous solution of bovine serum albumin), urine (aqueous solution of urea), glucose and distilled water, were studied. Equilibrium swellings of the hydrogels were changed in the range 27-85 depending upon the fluids, type and amount of crosslinkers. The diffusion exponents were found over half for all hydrogels.
Neuroaxonal Dystrophy and Cavitating Leukoencephalopathy of Chihuahua Dogs.
Degl'Innocenti, Sara; Asiag, Nimrod; Zeira, Offer; Falzone, Cristian; Cantile, Carlo
2017-09-01
A novel form of neuroaxonal dystrophy is described in 3 Chihuahua pups, 2 of which were from the same litter. It was characterized not only by accumulation of numerous and widely distributed axonal swellings (spheroids) but also by a severe cavitating leukoencephalopathy. The dogs presented with progressive neurological signs, including gait abnormalities and postural reaction deficits. Magnetic resonance images and gross examination at necropsy revealed dilation of lateral ventricles and cerebral atrophy, accompanied by cavitation of the subcortical white matter. Histopathologically, severe axonal degeneration with formation of large spheroids was found in the cerebral and cerebellar white matter, thalamus, and brainstem nuclei. Small-caliber spheroids were observed in the cerebral and cerebellar gray matter. The telencephalic white matter had severe myelin loss and cavitation with relative sparing of the U-fibers. Different from previously reported cases of canine neuroaxonal dystrophy, in these Chihuahuas the spheroid distribution predominantly involved the white matter with secondary severe leukoencephalopathy.
A rare case of mycetoma due to curvularia.
Shinde, Rupali S; Hanumantha, Sreedevi; Mantur, Basappa G; Parande, Mahantesh V
2015-01-01
Mycetoma due to Curvularia is a rare clinical entity. Here, we report a case of 27-year-old female presented with multiple swellings and discharging wounds around left shoulder joint since 12 years. Local examination showed diffuse nodular swellings over left anterior chest wall, posterior chest wall, and axilla. Multiple nodules and discharging sinuses were seen. Fungal culture of the biopsy of the lesion revealed Curvularia species. Patient showed significant clinical improvement with itraconazole therapy.
López-Larrubia, Pilar; Cauli, Omar
2011-03-15
Diffusion-weighted imaging (DWI) allows the assessment of the water apparent diffusion coefficient (ADC), a measure of tissue water diffusivity which is altered during different pathological conditions such as cerebral oedema. By means of DWI, we repeatedly measured in the same rats apparent diffusion coefficient ADC in different brain areas (motor cortex (MCx), somato-sensory cortex (SCx), caudate-putamen (CPu), hippocampus (Hip), mesencephalic reticular formation (RF), corpus callosum (CC) and cerebellum (Cb)) after 1 week, 4 and 12 weeks of lead acetate exposure via drinking water (50 or 500 ppm). After 12 weeks of lead exposure rats received albumin-Evans blue complex administration and were sacrificed 1h later. Blood-brain barrier permeability and water tissue content were determined in order to evaluate their relationship with ADC changes. Chronic exposure to lead acetate (500 ppm) for 4 weeks increased ADC values in Hip, RF and Cb but no in other brain areas. After 12 weeks of lead acetate exposure at 500 ppm ADC is significantly increased also in CPu and CC. Brain areas displaying high ADC values after lead exposure showed also an increased water content and increased BBB permeability to Evans blue-albumin complex. Exposure to 50 ppm for 12 weeks increased ADC values and BBB permeability in the RF and Cb. In summary, chronic lead exposure induces cerebral oedema in the adult brain depending on the brain area and the dose of exposure. RF and Cb appeared the most sensitive brain areas whereas cerebral cortex appears resistant to lead-induced cerebral oedema. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Wijdicks, Eelco F M; Sheth, Kevin N; Carter, Bob S; Greer, David M; Kasner, Scott E; Kimberly, W Taylor; Schwab, Stefan; Smith, Eric E; Tamargo, Rafael J; Wintermark, Max
2014-04-01
There are uncertainties surrounding the optimal management of patients with brain swelling after an ischemic stroke. Guidelines are needed on how to manage this major complication, how to provide the best comprehensive neurological and medical care, and how to best inform families facing complex decisions on surgical intervention in deteriorating patients. This scientific statement addresses the early approach to the patient with a swollen ischemic stroke in a cerebral or cerebellar hemisphere. The writing group used systematic literature reviews, references to published clinical and epidemiology studies, morbidity and mortality reports, clinical and public health guidelines, authoritative statements, personal files, and expert opinion to summarize existing evidence and to indicate gaps in current knowledge. The panel reviewed the most relevant articles on adults through computerized searches of the medical literature using MEDLINE, EMBASE, and Web of Science through March 2013. The evidence is organized within the context of the American Heart Association framework and is classified according to the joint American Heart Association/American College of Cardiology Foundation and supplementary American Heart Association Stroke Council methods of classifying the level of certainty and the class and level of evidence. The document underwent extensive American Heart Association internal peer review. Clinical criteria are available for hemispheric (involving the entire middle cerebral artery territory or more) and cerebellar (involving the posterior inferior cerebellar artery or superior cerebellar artery) swelling caused by ischemic infarction. Clinical signs that signify deterioration in swollen supratentorial hemispheric ischemic stroke include new or further impairment of consciousness, cerebral ptosis, and changes in pupillary size. In swollen cerebellar infarction, a decrease in level of consciousness occurs as a result of brainstem compression and therefore may include early loss of corneal reflexes and the development of miosis. Standardized definitions should be established to facilitate multicenter and population-based studies of incidence, prevalence, risk factors, and outcomes. Identification of patients at high risk for brain swelling should include clinical and neuroimaging data. If a full resuscitative status is warranted in a patient with a large territorial stroke, admission to a unit with neurological monitoring capabilities is needed. These patients are best admitted to intensive care or stroke units attended by skilled and experienced physicians such as neurointensivists or vascular neurologists. Complex medical care includes airway management and mechanical ventilation, blood pressure control, fluid management, and glucose and temperature control. In swollen supratentorial hemispheric ischemic stroke, routine intracranial pressure monitoring or cerebrospinal fluid diversion is not indicated, but decompressive craniectomy with dural expansion should be considered in patients who continue to deteriorate neurologically. There is uncertainty about the efficacy of decompressive craniectomy in patients ≥60 years of age. In swollen cerebellar stroke, suboccipital craniectomy with dural expansion should be performed in patients who deteriorate neurologically. Ventriculostomy to relieve obstructive hydrocephalus after a cerebellar infarct should be accompanied by decompressive suboccipital craniectomy to avoid deterioration from upward cerebellar displacement. In swollen hemispheric supratentorial infarcts, outcome can be satisfactory, but one should anticipate that one third of patients will be severely disabled and fully dependent on care even after decompressive craniectomy. Surgery after a cerebellar infarct leads to acceptable functional outcome in most patients. Swollen cerebral and cerebellar infarcts are critical conditions that warrant immediate, specialized neurointensive care and often neurosurgical intervention. Decompressive craniectomy is a necessary option in many patients. Selected patients may benefit greatly from such an approach, and although disabled, they may be functionally independent.
Panahpour, Hamdolah; Nekooeian, Ali Akbar; Dehghani, Gholam Abbas
2014-11-01
Stroke is the third leading cause of invalidism and death in industrialized countries. There are conflicting reports about the effects of Angiotensin II on ischemia-reperfusion brain injuries and most data have come from chronic hypertensive rats. In this study, hypotensive and non-hypotensive doses of candesartan were used to investigate the effects of angiotensin II AT1 receptor blockade by transient focal cerebral ischemia in normotensive rats. In this experimental study, 48 male Sprague-Dawley rats were randomly divided into four groups (n=12). Sham group, the control ischemic group, and two ischemic groups received candesartan at doses of 0.1 or 0.5 mg/kg at one hour before ischemia. Transient focal cerebral ischemia was induced by 60 minutes occlusion of the middle cerebral artery, followed by 24 h reperfusion. The neurological deficit score was evaluated at the end of the reperfusion period. The total cortical and striatal infarct volumes were determined using triphenyltetrazolium chloride staining technique. Tissue swelling was calculated for the investigation of ischemic brain edema formation. In comparison with the control ischemic group, AT1 receptor blockade with both doses of candesartan (0.1 or 0.5 mg/kg) significantly improved neurological deficit and lowered cortical and striatal infarct sizes. In addition, pretreatment with candesartan significantly reduced ischemia induced tissue swelling. Angiotensin II by stimulating AT1 receptors, participates in ischemia-reperfusion injuries and edema formation. AT1 receptor blockade with candesartan decreased ischemic brain injury and edema and improved neurological outcome.
Panahpour, Hamdolah; Nekooeian, Ali Akbar; Dehghani, Gholam Abbas
2014-01-01
Background: Stroke is the third leading cause of invalidism and death in industrialized countries. There are conflicting reports about the effects of Angiotensin II on ischemia-reperfusion brain injuries and most data have come from chronic hypertensive rats. In this study, hypotensive and non-hypotensive doses of candesartan were used to investigate the effects of angiotensin II AT1 receptor blockade by transient focal cerebral ischemia in normotensive rats. Methods: In this experimental study, 48 male Sprague-Dawley rats were randomly divided into four groups (n=12). Sham group, the control ischemic group, and two ischemic groups received candesartan at doses of 0.1 or 0.5 mg/kg at one hour before ischemia. Transient focal cerebral ischemia was induced by 60 minutes occlusion of the middle cerebral artery, followed by 24 h reperfusion. The neurological deficit score was evaluated at the end of the reperfusion period. The total cortical and striatal infarct volumes were determined using triphenyltetrazolium chloride staining technique. Tissue swelling was calculated for the investigation of ischemic brain edema formation. Results: In comparison with the control ischemic group, AT1 receptor blockade with both doses of candesartan (0.1 or 0.5 mg/kg) significantly improved neurological deficit and lowered cortical and striatal infarct sizes. In addition, pretreatment with candesartan significantly reduced ischemia induced tissue swelling. Conclusion: Angiotensin II by stimulating AT1 receptors, participates in ischemia-reperfusion injuries and edema formation. AT1 receptor blockade with candesartan decreased ischemic brain injury and edema and improved neurological outcome. PMID:25429176
Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement
Durduran, Turgut; Yodh, Arjun G.
2013-01-01
Diffuse correlation spectroscopy (DCS) uses the temporal fluctuations of near-infrared (NIR) light to measure cerebral blood flow (CBF) non-invasively. Here, we provide a brief history of DCS applications in brain with an emphasis on the underlying physical ideas, common instrumentation and validation. Then we describe recent clinical research that employs DCS-measured CBF as a biomarker of patient well-being, and as an indicator of hemodynamic and metabolic response to functional stimuli. PMID:23770408
Polymer mobilization and drug release during tablet swelling. A 1H NMR and NMR microimaging study.
Dahlberg, Carina; Fureby, Anna; Schuleit, Michael; Dvinskikh, Sergey V; Furó, István
2007-09-26
The objective of this study was to investigate the swelling characteristics of a hydroxypropyl methylcellulose (HPMC) matrix incorporating the hydrophilic drug antipyrine. We have used this matrix to introduce a novel analytical method, which allows us to obtain within one experimental setup information about the molecular processes of the polymer carrier and its impact on drug release. Nuclear magnetic resonance (NMR) imaging revealed in situ the swelling behavior of tablets when exposed to water. By using deuterated water, the spatial distribution and molecular dynamics of HPMC and their kinetics during swelling could be observed selectively. In parallel, NMR spectroscopy provided the concentration of the drug released into the aqueous phase. We find that both swelling and release are diffusion controlled. The ability of monitoring those two processes using the same experimental setup enables mapping their interconnection, which points on the importance and potential of this analytical technique for further application in other drug delivery forms.
Tachiyama, Keisuke; Shiga, Yuji; Shimoe, Yutaka; Mizuta, Ikuko; Mizuno, Toshiki; Kuriyama, Masaru
2018-04-25
A 55-year-old man with no history of stroke or migraine presented to the clinic with cognitive impairment and depression that had been experiencing for two years. Neurological examination showed bilateral pyramidal signs, and impairments in cognition and attention. Brain MRI revealed multiple lacunar lesions and microbleeds in the deep cerebral white matter, subcortical regions, and brainstem, as well as diffuse white matter hyperintensities without anterior temporal pole involvement. Cerebral single-photon emission computed tomography (SPECT) revealed bilateral hypoperfusion in the basal ganglia. Gene analysis revealed an arginine-to-proline missense mutation in the NOTCH3 gene at codon 75. The patient was administered lomerizine (10 mg/day), but the patient's cognitive impairment and cerebral atrophy continued to worsen. Follow-up testing with MRI three years after his initial diagnosis revealed similar lacunar infarctions, cerebral microbleeds, and diffuse white matter hyperintensities to those observed three years earlier. However, MRI scans revealed signs of increased cerebral blood flow. Together, these findings suggest that the patient's cognitive impairments may have been caused by pathogenesis in the cerebral cortex.
Kim, Jae Hwan; Lee, Yong Woo; Park, Kyung Ah; Lee, Won Taek; Lee, Jong Eun
2010-01-01
Brain edema is frequently shown after cerebral ischemia. It is an expansion of brain volume because of increasing water content in brain. It causes to increase mortality after stroke. Agmatine, formed by the decarboxylation of -arginine by arginine decarboxylase, has been shown to be neuroprotective in trauma and ischemia models. The purpose of this study was to investigate the effect of agmatine for brain edema in ischemic brain damage and to evaluate the expression of aquaporins (AQPs). Results showed that agmatine significantly reduced brain swelling volume 22 h after 2 h middle cerebral artery occlusion in mice. Water content in brain tissue was clearly decreased 24 h after ischemic injury by agmatine treatment. Blood–brain barrier (BBB) disruption was diminished with agmatine than without. The expressions of AQPs-1 and -9 were well correlated with brain edema as water channels, were significantly decreased by agmatine treatment. It can thus be suggested that agmatine could attenuate brain edema by limitting BBB disruption and blocking the accumulation of brain water content through lessening the expression of AQP-1 after cerebral ischemia. PMID:20029450
Pakhomov, Andrei G; Xiao, Shu; Pakhomova, Olga N; Semenov, Iurii; Kuipers, Marjorie A; Ibey, Bennett L
2014-12-01
Disruption of the actin cytoskeleton structures was reported as one of the characteristic effects of nanosecond-duration pulsed electric field (nsPEF) in both mammalian and plant cells. We utilized CHO cells that expressed the monomeric fluorescent protein (mApple) tagged to actin to test if nsPEF modifies the cell actin directly or as a consequence of cell membrane permeabilization. A train of four 600-ns pulses at 19.2 kV/cm (2 Hz) caused immediate cell membrane poration manifested by YO-PRO-1 dye uptake, gradual cell rounding and swelling. Concurrently, bright actin features were replaced by dimmer and uniform fluorescence of diffuse actin. To block the nsPEF-induced swelling, the bath buffer was isoosmotically supplemented with an electropore-impermeable solute (sucrose). A similar addition of a smaller, electropore-permeable solute (adonitol) served as a control. We demonstrated that sucrose efficiently blocked disassembly of actin features by nsPEF, whereas adonitol did not. Sucrose also attenuated bleaching of mApple-tagged actin in nsPEF-treated cells (as integrated over the cell volume), although did not fully prevent it. We conclude that disintegration of the actin cytoskeleton was a result of cell swelling, which, in turn, was caused by cell permeabilization by nsPEF and transmembrane diffusion of solutes which led to the osmotic imbalance. Copyright © 2014 Elsevier B.V. All rights reserved.
A mechanistic modelling approach to polymer dissolution using magnetic resonance microimaging.
Kaunisto, Erik; Abrahmsen-Alami, Susanna; Borgquist, Per; Larsson, Anette; Nilsson, Bernt; Axelsson, Anders
2010-10-15
In this paper a computationally efficient mathematical model describing the swelling and dissolution of a polyethylene oxide tablet is presented. The model was calibrated against polymer release, front position and water concentration profile data inside the gel layer, using two different diffusion models. The water concentration profiles were obtained from magnetic resonance microimaging data which, in addition to the previously used texture analysis method, can help to validate and discriminate between the mechanisms of swelling, diffusion and erosion in relation to the dissolution process. Critical parameters were identified through a comprehensive sensitivity analysis, and the effect of hydrodynamic shearing was investigated by using two different stirring rates. Good agreement was obtained between the experimental results and the model. Copyright © 2010 Elsevier B.V. All rights reserved.
Dai, Zhenyu; Chen, Fei; Yao, Lizheng; Dong, Congsong; Liu, Yang; Shi, Haicun; Zhang, Zhiping; Yang, Naizhong; Zhang, Mingsheng; Dai, Yinggui
2015-08-18
To evaluate the clinical application value of diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) in judging infarction time phase of acute ischemic cerebral infarction. To retrospective analysis DTI images of 52 patients with unilateral acute ischemic cerebral infarction (hyper-acute, acute and sub-acute) from the Affiliated Yancheng Hospital of Southeast University Medical College, which diagnosed by clinic and magnetic resonance imaging. Set the regions of interest (ROIs) of infarction lesions, brain tissue close to infarction lesions and corresponding contra (contralateral normal brain tissue) on DTI parameters mapping of fractional anisotropy (FA), volume ratio anisotropy (VRA), average diffusion coefficient (DCavg) and exponential attenuation (Exat), record the parameters values of ROIs and calculate the relative parameters value of infarction lesion to contra. Meanwhile, reconstruct the DTT images based on the seed points (infarction lesion and contra). The study compared each parameter value of infarction lesions, brain tissue close to infarction lesions and corresponding contra, also analysed the differences of relative parameters values in different infarction time phases. The DTT images of acute ischemic cerebral infarction in each time phase could show the manifestation of fasciculi damaged. The DCavg value of cerebral infarction lesions was lower and the Exat value was higher than contra in each infarction time phase (P<0.05). The FA and VRA value of cerebral infarction lesions were reduced than contra only in acute and sub-acute infarction (P<0.05). The FA, VRA and Exat value of brain tissue close to infarction lesions were increased and DCavg value was decreased than contra in hyper-acute infarction (P<0.05). There were no statistic differences of FA, VRA, DCavg and Exat value of brain tissue close to infarction lesions in acute and sub-acute infarction. The relative FA and VRA value of infarction lesion to contra gradually decreased from hyper-acute to sub-acute cerebral infarction (P<0.05), but there were no difference of the relative VRA value between acute and sub-acute cerebral infarction. The relative DCavg value of infarction lesion to contra in hyper-acute infarction than that in acute and sub-acute infarction (P<0.05), however there was also no difference between acute and sub-acute infarction. ROC curve showed the best diagnosis cut off value of relative FA, VRA and DCavg of infarction lesions to contra were 0.852, 0.886 and 0.541 between hyper-acute and acute cerebral infarction, the best diagnosis cut off value of relative FA was 0.595 between acute and sub-acute cerebral infarction, respectively. The FA, VRA, DCavg and Exat value have specific change mode in acute ischemic cerebral infarction of different infarction time phases, which can be combine used in judging infarction time phase of acute ischemic cerebral infarction without clear onset time, thus to help selecting the reasonable treatment protocols.
Iwasaki, Yasushi; Mori, Keiko; Ito, Masumi; Nokura, Kazuya; Tatsumi, Shinsui; Mimuro, Maya; Kitamoto, Tetsuyuki; Yoshida, Mari
2014-01-01
We describe an autopsied case of a Japanese woman with Gerstmann-Straeussler-Scheinker disease (GSS) presenting with a rapidly progressive clinical course. Disease onset occurred at the age of 54 with dementia and gait disturbance. Her clinical course progressively deteriorated until she reached a bedridden state with myoclonus 9 months after onset. Two months later, she reached the akinetic mutism state. Nasal tube feeding was introduced at this point and continued for several years. Electroencephalograms showed diffuse slowing without periodic sharp-wave complexes. Diffusion-weighted magnetic resonance imaging (MRI) showed widespread cerebral cortical hyperintensity. Prion protein (PrP) gene analysis revealed a Pro to Leu point mutation at codon 102 with methionine homozygosity at codon 129. The patient died of respiratory failure after a total disease duration of 62 months. Neuropathologic examination revealed widespread spongiform change with numerous eosinophilic amyloid plaques (Kuru plaques) in the cerebral and cerebellar cortices by H & E staining. Diffuse myelin pallor with axon loss of the cerebral white matter, suggestive of panencephalopathic-type pathology was observed. Numerous PrP immunopositive plaques and diffuse synaptic-type PrP deposition were extensively observed, particularly in the cerebral and cerebellar cortices. Western blot analysis of proteinase Kresistant PrP showed a characteristic band pattern with a small molecular band of 6 kDa. The reason for the similarity in clinicopathologic findings between the present case and Creutzfeldt-Jakob disease is uncertain; however, the existence of an unknown disease-modifying factor is suspected.
Hyzinski-García, María C.; Vincent, Melanie Y.; Haskew-Layton, Renée E.; Dohare, Preeti; Keller, Richard W.; Mongin, Alexander A.
2011-01-01
In our previous work, we found that perfusion of the rat cerebral cortex with hypoosmotic medium triggers massive release of the excitatory amino acid L-glutamate but decreases extracellular levels of L-glutamine (R.E. Haskew-Layton et al., PLoS ONE, 3: e3543). The release of glutamate was linked to activation of volume-regulated anion channels (VRAC), while mechanism(s) responsible for alterations in extracellular glutamine remained unclear. When mannitol was added to the hypoosmotic medium in order to reverse reductions in osmolarity, changes in microdialysate levels of glutamine were prevented, indicating an involvement of cellular swelling. Since the main source of brain glutamine is astrocytic synthesis and export, we explored the impact of hypoosmotic medium on glutamine synthesis and transport in rat primary astrocyte cultures. In astrocytes, a 40% reduction in medium osmolarity moderately stimulated the release of L-[3H]glutamine by ~2-fold and produced no changes in L-[3H]glutamine uptake. In comparison, hypoosmotic medium stimulated the release of glutamate (traced with D[3H]aspartate) by more than 20-fold. In whole-cell enzymatic assays, we discovered that hypoosmotic medium caused a 20% inhibition of astrocytic conversion of L[3H]glutamate into L-[3H]glutamine by glutamine synthetase. Using an HPLC assay we further found a 35% reduction in intracellular levels of endogenous glutamine. Overall, our findings suggest that cellular swelling (1) inhibits astrocytic glutamine synthetase activity, and (2) reduces substrate availability for this enzyme due to the activation of VRAC. These combined effects likely lead to reductions in astrocytic glutamine export in vivo and may partially explain occurrence of hyperexcitability and seizures in human hyponatremia. PMID:21517854
Brain Perfusion and Diffusion Abnormalities in Children Treated for Posterior Fossa Brain Tumors.
Li, Matthew D; Forkert, Nils D; Kundu, Palak; Ambler, Cheryl; Lober, Robert M; Burns, Terry C; Barnes, Patrick D; Gibbs, Iris C; Grant, Gerald A; Fisher, Paul G; Cheshier, Samuel H; Campen, Cynthia J; Monje, Michelle; Yeom, Kristen W
2017-06-01
To compare cerebral perfusion and diffusion in survivors of childhood posterior fossa brain tumor with neurologically normal controls and correlate differences with cognitive dysfunction. We analyzed retrospectively arterial spin-labeled cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) in 21 patients with medulloblastoma (MB), 18 patients with pilocytic astrocytoma (PA), and 64 neurologically normal children. We generated ANCOVA models to evaluate treatment effects on the cerebral cortex, thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala, nucleus accumbens, and cerebral white matter at time points an average of 5.7 years after original diagnosis. A retrospective review of patient charts identified 12 patients with neurocognitive data and in whom the relationship between IQ and magnetic resonance imaging variables was assessed for each brain structure. Patients with MB (all treated with surgery, chemotherapy, and radiation) had significantly lower global CBF relative to controls (10%-23% lower, varying by anatomic region, all adjusted P?.05), whereas patients with PA (all treated with surgery alone) had normal CBF. ADC was decreased specifically in the hippocampus and amygdala of patients with MB and within the amygdala of patients with PA but otherwise remained normal after therapy. In the patients with tumor previously evaluated for IQ, regional ADC, but not CBF, correlated with IQ (R 2 ?=?0.33-0.75). The treatment for MB, but not PA, was associated with globally reduced CBF. Treatment in both tumor types was associated with diffusion abnormalities of the mesial temporal lobe structures. Despite significant perfusion abnormalities in patients with MB, diffusion, but not perfusion, correlated with cognitive outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.
Bennett, Kevin M; Schmainda, Kathleen M; Bennett, Raoqiong Tong; Rowe, Daniel B; Lu, Hanbing; Hyde, James S
2003-10-01
Experience with diffusion-weighted imaging (DWI) shows that signal attenuation is consistent with a multicompartmental theory of water diffusion in the brain. The source of this so-called nonexponential behavior is a topic of debate, because the cerebral cortex contains considerable microscopic heterogeneity and is therefore difficult to model. To account for this heterogeneity and understand its implications for current models of diffusion, a stretched-exponential function was developed to describe diffusion-related signal decay as a continuous distribution of sources decaying at different rates, with no assumptions made about the number of participating sources. DWI experiments were performed using a spin-echo diffusion-weighted pulse sequence with b-values of 500-6500 s/mm(2) in six rats. Signal attenuation curves were fit to a stretched-exponential function, and 20% of the voxels were better fit to the stretched-exponential model than to a biexponential model, even though the latter model had one more adjustable parameter. Based on the calculated intravoxel heterogeneity measure, the cerebral cortex contains considerable heterogeneity in diffusion. The use of a distributed diffusion coefficient (DDC) is suggested to measure mean intravoxel diffusion rates in the presence of such heterogeneity. Copyright 2003 Wiley-Liss, Inc.
Huanbutta, Kampanart; Sriamornsak, Pornsak; Limmatvapirat, Sontaya; Luangtana-anan, Manee; Yoshihashi, Yasuo; Yonemochi, Etsuo; Terada, Katsuhide; Nunthanid, Jurairat
2011-02-01
Magnetic resonance imaging (MRI) was used to assess in situ swelling behaviors of spray-dried chitosan acetate (CSA) in 0.1N HCl, pH 6.8 and pH 5.0 Tris-HCl buffers. The in vitro drug releases from CSA matrix tablets containing the model drugs, diclofenac sodium and theophylline were investigated in all media using USP-4 apparatus. The effect of chitosan molecular weight, especially in pH 6.8 Tris-HCl, was also studied. In 0.1N HCl, the drug release from the matrix tablets was the lowest in relation to the highest swelling of CSA. The swelling kinetics in Tris-HCl buffers are Fickian diffusion according to their best fit to Higuchi's model as well as the drug release kinetics in all the media. The high swelling rate (k(s)(')) was found to delay the drug release rate (k'). The linear relationship between the swelling and fractions of drug release in Tris-HCl buffers was observed, indicating an important role of the swelling on controlling the drug release mechanism. Additionally, CSA of 200 and 800 kDa chitosan did not swell in pH 6.8 Tris-HCl but disintegrated into fractions, and the drug release from the matrix tablets was the highest. Copyright © 2010 Elsevier B.V. All rights reserved.
Zhou, Iris Yuwen; Guo, Yingkun; Igarashi, Takahiro; Wang, Yu; Mandeville, Emiri; Chan, Suk-Tak; Wen, Lingyi; Vangel, Mark; Lo, Eng H; Ji, Xunming; Sun, Phillip Zhe
2016-12-01
Diffusion kurtosis imaging (DKI) has been shown to augment diffusion-weighted imaging (DWI) for the definition of irreversible ischemic injury. However, the complexity of cerebral structure/composition makes the kurtosis map heterogeneous, limiting the specificity of kurtosis hyperintensity to acute ischemia. We propose an Inherent COrrelation-based Normalization (ICON) analysis to suppress the intrinsic kurtosis heterogeneity for improved characterization of heterogeneous ischemic tissue injury. Fast DKI and relaxation measurements were performed on normal (n = 10) and stroke rats following middle cerebral artery occlusion (MCAO) (n = 20). We evaluated the correlations between mean kurtosis (MK), mean diffusivity (MD) and fractional anisotropy (FA) derived from the fast DKI sequence and relaxation rates R 1 and R 2 , and found a highly significant correlation between MK and R 1 (p < 0.001). We showed that ICON analysis suppressed the intrinsic kurtosis heterogeneity in normal cerebral tissue, enabling automated tissue segmentation in an animal stroke model. We found significantly different kurtosis and diffusivity lesion volumes: 147 ± 59 and 180 ± 66 mm 3 , respectively (p = 0.003, paired t-test). The ratio of kurtosis to diffusivity lesion volume was 84% ± 19% (p < 0.001, one-sample t-test). We found that relaxation-normalized MK (RNMK), but not MD, values were significantly different between kurtosis and diffusivity lesions (p < 0.001, analysis of variance). Our study showed that fast DKI with ICON analysis provides a promising means of demarcation of heterogeneous DWI stroke lesions. Copyright © 2016 John Wiley & Sons, Ltd.
[See the thinking brain: a story about water].
Le Bihan, D
2008-01-01
Among the astonishing Einstein's papers from 1905, there is one which unexpectedly gave birth to a powerful method to explore the brain. Molecular diffusion was explained by Einstein on the basis of the random translational motion of molecules which results from their thermal energy. In the mid 1980s it was shown that water diffusion in the brain could be imaged using MRI. During their random displacements water molecules probe tissue structure at a microscopic scale, interacting with cell membranes and, thus, providing unique information on the functional architecture of tissues. A dramatic application of diffusion MRI has been brain ischemia, following the discovery that water diffusion drops immediately after the onset of an ischemic event, when brain cells undergo swelling through cytotoxic edema. On the other hand, water diffusion is anisotropic in white matter, because axon membranes limit molecular movement perpendicularly to the fibers. This feature can be exploited to map out the orientation in space of the white matter tracks and image brain connections. More recently, it has been shown that diffusion MRI could accurately detect cortical activation. As the diffusion response precedes by several seconds the hemodynamic response captured by BOLD fMRI, it has been suggested that water diffusion could reflect early neuronal events, such as the transient swelling of activated cortical cells. If confirmed, this discovery will represent a significant breakthrough, allowing non invasive access to a direct physiological marker of brain activation. This approach will bridge the gap between invasive optical imaging techniques in neuronal cell cultures, and current functional neuroimaging approaches in humans, which are based on indirect and remote blood flow changes.
NASA Astrophysics Data System (ADS)
Fantini, Sergio; Sassaroli, Angelo; Kainerstorfer, Jana M.; Tgavalekos, Kristen T.; Zang, Xuan
2016-03-01
We describe the general principles and initial results of coherent hemodynamics spectroscopy (CHS), which is a new technique for the quantitative assessment of cerebral hemodynamics on the basis of dynamic near-infrared spectroscopy (NIRS) measurements. The two components of CHS are (1) dynamic measurements of coherent cerebral hemodynamics in the form of oscillations at multiple frequencies (frequency domain) or temporal transients (time domain), and (2) their quantitative analysis with a dynamic mathematical model that relates the concentration and oxygen saturation of hemoglobin in tissue to cerebral blood volume (CBV), cerebral blood flow (CBF), and cerebral metabolic rate of oxygen (CMRO2). In particular, CHS can provide absolute measurements and dynamic monitoring of CBF, and quantitative measures of cerebral autoregulation. We report initial results of CBF measurements in hemodialysis patients, where we found a lower CBF (54 +/- 16 ml/(100 g-min)) compared to a group of healthy controls (95 +/- 11 ml/(100 g-min)). We also report CHS measurements of cerebral autoregulation, where a quantitative index of autoregulation (its cutoff frequency) was found to be significantly greater in healthy subjects during hyperventilation (0.034 +/- 0.005 Hz) than during normal breathing (0.017 +/- 0.002 Hz). We also present our approach to depth resolved CHS, based on multi-distance, frequency-domain NIRS data and a two-layer diffusion model, to enhance sensitivity to cerebral tissue. CHS offers a potentially powerful approach to the quantitative assessment and continuous monitoring of local brain perfusion at the microcirculation level, with prospective brain mapping capabilities of research and clinical significance.
Release and diffusional modeling of metronidazole lipid matrices.
Ozyazici, Mine; Gökçe, Evren H; Ertan, Gökhan
2006-07-01
In this study, the first aim was to investigate the swelling and relaxation properties of lipid matrix on diffusional exponent (n). The second aim was to determine the desired release profile of metronidazole lipid matrix tablets. We prepared metronidazole lipid matrix granules using Carnauba wax, Beeswax, Stearic acid, Cutina HR, Precirol ATO 5, and Compritol ATO 888 by hot fusion method and pressed the tablets of these granules. In vitro release test was performed using a standard USP dissolution apparatus I (basket method) with a stirring rate of 100 rpm at 37 degrees C in 900 ml of 0.1 N hydrochloric acid, adjusted to pH 1.2, as medium for the formulations' screening. Hardness, diameter-height ratio, friability, and swelling ratio were determined. Target release profile of metronidazole was also drawn. Stearic acid showed the highest and Carnauba wax showed the lowest release rates in all formulations used. Swelling ratios were calculated after the dissolution of tablets as 9.24%, 6.03%, 1.74%, and 1.07% for Cutina HR, Beeswax, Precirol ATO 5, and Compritol ATO 888, respectively. There was erosion in Stearic acid, but neither erosion nor swelling in Carnauba wax, was detected. According to the power law analysis, the diffusion mechanism was expressed as pure Fickian for Stearic acid and Carnauba wax and the coupling of Fickian and relaxation contributions for other Cutina HR, Beeswax, Compritol ATO 888, and Precirol ATO 5 tablets. It was found that Beeswax (kd=2.13) has a very close drug release rate with the target profile (kt=1.95). Our results suggested that swelling and relaxation properties of lipid matrices should be examined together for a correct evaluation on drug diffusion mechanism of insoluble matrices.
Orthner, M.P.; Lin, G.; Avula, M.; Buetefisch, S.; Magda, J.; Rieth, L.W.; Solzbacher, F.
2010-01-01
This report details the first experimental results from novel hydrogel sensor array (2 × 2) which incorporates analyte diffusion pores into a piezoresistive diaphragm for the detection of hydrogel swelling pressures and hence chemical concentrations. The sensor assembly was comprised of three components, the active four sensors, HPMA/DMA/TEGDMA (hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA)) hydrogel, and backing plate. Each of the individual sensors of the array can be used with various hydrogels used to measure the presence of a number of stimuli including pH, ionic strength, and glucose concentrations. Ideally, in the future, these sensors will be used for continuous metabolic monitoring applications and implanted subcutaneously. In this paper and to properly characterize the sensor assembly, hydrogels sensitive to changes ionic strength were synthesized using hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA) and inserted into the sensor assembly. This hydrogel quickly and reversibly swells when placed environments of physiological buffer solutions (PBS) with ionic strengths ranging from 0.025 to 0.15 M, making it ideal for proof-of-concept testing and initial characterization. The assembly was wire bonded to a printed circuit board and coated with 3 ± 0.5 μm of Parylene-C using chemical vapor deposition (CVD) to protect the sensor and electrical connections during ionic strength wet testing. Two versions of sensors were fabricated for comparison, the first incorporated diffusion pores into the diaphragm, and the second used a solid diaphragm with perforated backing plate. This new design (perforated diaphragm) was shown to have slightly higher sensitivity than solid diaphragm sensors with separate diffuse backing plates when coupled with the hydrogel. The sensitivities for the 1 mm × 1 mm, 1.25 mm × 1.25 mm, 1.5 mm × 1.5 mm perforated diaphragm sensors were 53.3 ± 6.5, 171.7 ± 8.8, and 271.47 ± 27.53 mV/V-M, respectively. These results show that perforations in the diaphragm can be used not only to allow the diffusion of analyte into the cavity but to increase mechanical stress in the piezoresistive diaphragm, thereby increasing sensor output signal. The time constants for swelling (τswelling) and contracting (τcontracting) were calculated by fitting the sensor output half cycles to an exponential growth function. We found that the sensors' response was initially retarded during the preliminary hydrogel conditioning period then improved after 3–5 cycles with values of approximately 9 and 7 min for τswelling and τcontracting. For all sensors tested τswelling > τcontracting. This may be due to the increased loading on the hydrogel from the diaphragm during the swelling process. During contraction the diaphragm aids the hydrogel by reversibly applying mechanical pressure and therefore reducing τcontracting. Long term stability testing showed the sensors remained functional for upwards of 2 weeks in the test phosphate buffer solution (PBS). PMID:23750073
Orthner, M P; Lin, G; Avula, M; Buetefisch, S; Magda, J; Rieth, L W; Solzbacher, F
2010-03-19
This report details the first experimental results from novel hydrogel sensor array (2 × 2) which incorporates analyte diffusion pores into a piezoresistive diaphragm for the detection of hydrogel swelling pressures and hence chemical concentrations. The sensor assembly was comprised of three components, the active four sensors, HPMA/DMA/TEGDMA (hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA)) hydrogel, and backing plate. Each of the individual sensors of the array can be used with various hydrogels used to measure the presence of a number of stimuli including pH, ionic strength, and glucose concentrations. Ideally, in the future, these sensors will be used for continuous metabolic monitoring applications and implanted subcutaneously. In this paper and to properly characterize the sensor assembly, hydrogels sensitive to changes ionic strength were synthesized using hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA) and inserted into the sensor assembly. This hydrogel quickly and reversibly swells when placed environments of physiological buffer solutions (PBS) with ionic strengths ranging from 0.025 to 0.15 M, making it ideal for proof-of-concept testing and initial characterization. The assembly was wire bonded to a printed circuit board and coated with 3 ± 0.5 μm of Parylene-C using chemical vapor deposition (CVD) to protect the sensor and electrical connections during ionic strength wet testing. Two versions of sensors were fabricated for comparison, the first incorporated diffusion pores into the diaphragm, and the second used a solid diaphragm with perforated backing plate. This new design (perforated diaphragm) was shown to have slightly higher sensitivity than solid diaphragm sensors with separate diffuse backing plates when coupled with the hydrogel. The sensitivities for the 1 mm × 1 mm, 1.25 mm × 1.25 mm, 1.5 mm × 1.5 mm perforated diaphragm sensors were 53.3 ± 6.5, 171.7 ± 8.8, and 271.47 ± 27.53 mV/V-M, respectively. These results show that perforations in the diaphragm can be used not only to allow the diffusion of analyte into the cavity but to increase mechanical stress in the piezoresistive diaphragm, thereby increasing sensor output signal. The time constants for swelling ( τ swelling ) and contracting ( τ contracting ) were calculated by fitting the sensor output half cycles to an exponential growth function. We found that the sensors' response was initially retarded during the preliminary hydrogel conditioning period then improved after 3-5 cycles with values of approximately 9 and 7 min for τ swelling and τ contracting . For all sensors tested τ swelling > τ contracting . This may be due to the increased loading on the hydrogel from the diaphragm during the swelling process. During contraction the diaphragm aids the hydrogel by reversibly applying mechanical pressure and therefore reducing τ contracting . Long term stability testing showed the sensors remained functional for upwards of 2 weeks in the test phosphate buffer solution (PBS).
Regional microstructural organization of the cerebral cortex is affected by preterm birth.
Bouyssi-Kobar, Marine; Brossard-Racine, Marie; Jacobs, Marni; Murnick, Jonathan; Chang, Taeun; Limperopoulos, Catherine
2018-01-01
To compare regional cerebral cortical microstructural organization between preterm infants at term-equivalent age (TEA) and healthy full-term newborns, and to examine the impact of clinical risk factors on cerebral cortical micro-organization in the preterm cohort. We prospectively enrolled very preterm infants (gestational age (GA) at birth<32 weeks; birthweight<1500 g) and healthy full-term controls. Using non-invasive 3T diffusion tensor imaging (DTI) metrics, we quantified regional micro-organization in ten cerebral cortical areas: medial/dorsolateral prefrontal cortex, anterior/posterior cingulate cortex, insula, posterior parietal cortex, motor/somatosensory/auditory/visual cortex. ANCOVA analyses were performed controlling for sex and postmenstrual age at MRI. We studied 91 preterm infants at TEA and 69 full-term controls. Preterm infants demonstrated significantly higher diffusivity in the prefrontal, parietal, motor, somatosensory, and visual cortices suggesting delayed maturation of these cortical areas. Additionally, postnatal hydrocortisone treatment was related to accelerated microstructural organization in the prefrontal and somatosensory cortices. Preterm birth alters regional microstructural organization of the cerebral cortex in both neurocognitive brain regions and areas with primary sensory/motor functions. We also report for the first time a potential protective effect of postnatal hydrocortisone administration on cerebral cortical development in preterm infants.
Investigating cerebral oedema using poroelasticity.
Vardakis, John C; Chou, Dean; Tully, Brett J; Hung, Chang C; Lee, Tsong H; Tsui, Po-Hsiang; Ventikos, Yiannis
2016-01-01
Cerebral oedema can be classified as the tangible swelling produced by expansion of the interstitial fluid volume. Hydrocephalus can be succinctly described as the abnormal accumulation of cerebrospinal fluid (CSF) within the brain which ultimately leads to oedema within specific sites of parenchymal tissue. Using hydrocephalus as a test bed, one is able to account for the necessary mechanisms involved in the interaction between oedema formation and cerebral fluid production, transport and drainage. The current state of knowledge about integrative cerebral dynamics and transport phenomena indicates that poroelastic theory may provide a suitable framework to better understand various diseases. In this work, Multiple-Network Poroelastic Theory (MPET) is used to develop a novel spatio-temporal model of fluid regulation and tissue displacement within the various scales of the cerebral environment. The model is applied through two formats, a one-dimensional finite difference - Computational Fluid Dynamics (CFD) coupling framework, as well as a two-dimensional Finite Element Method (FEM) formulation. These are used to investigate the role of endoscopic fourth ventriculostomy in alleviating oedema formation due to fourth ventricle outlet obstruction (1D coupled model) in addition to observing the capability of the FEM template in capturing important characteristics allied to oedema formation, like for instance in the periventricular region (2D model). Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Dhaya, Ibtihel; Griton, Marion; Raffard, Gérard; Amri, Mohamed; Hiba, Bassem; Konsman, Jan Pieter
2018-01-15
To better understand brain dysfunction during sepsis, cerebral arterial blood flow was assessed with Phase Contrast Magnetic Resonance Imaging, perfusion with Arterial Spin Labeling and structure with diffusion-weighted Magnetic Resonance Imaging in rats after intraperitoneal administration of bacterial lipopolysaccharides. Although cerebral arterial flow was not altered, perfusion of the corpus callosum region and diffusion parallel to its fibers were higher after lipopolysaccharide administration as compared to saline injection. In parallel, lipopolysaccharide induced perivascular immunoglobulin-immunoreactivity in white matter. These findings indicate that systemic inflammation can result in increased perfusion, blood-brain barrier breakdown and altered water diffusion in white matter. Copyright © 2017 Elsevier B.V. All rights reserved.
Scleredema adultorum of Buschke presenting as periorbital edema: a diagnostic challenge.
Ioannidou, Despina I; Krasagakis, Konstantin; Stefanidou, Maria P; Karampekios, Spyros; Panayiotidis, John; Tosca, Androniki D
2005-02-01
Scleredema adultorum is a rare sclerotic disorder characterized by diffuse swelling and nonpitting induration of the skin. Its occurrence has been documented in association with infections, diabetes mellitus, paraproteinemia, multiple myeloma, and monoclonal gammopathy. We report an unusual case of a 48-year-old man with an asymptomatic bilateral eyelid edema of sudden onset. During a period of 6 months, the condition slowly progressed to extensive nonpitting edematous swelling restricted to the periorbital sites. The presumptive diagnosis of scleredema adultorum was confirmed by the presence of typical histologic findings. This case is unique in that the periorbital swelling remained as the sole clinical manifestation of scleredema during the 5-year follow-up and was complicated with partial vision blockage.
Taha, Mahmoud M; Maeda, Masayuki; Sakaida, Hiroshi; Kawaguchi, Kenji; Toma, Naoki; Yamamoto, Akitaka; Hirose, Tomofumi; Miura, Youichi; Fujimoto, Masashi; Matsushima, Satoshi; Taki, Waro
2009-09-01
Distal embolism is an important periprocedural technical complication with carotid angioplasty and carotid artery stenting (CAS). We evaluated the safety and efficacy of protection devices used during CAS by detecting new cerebral ischemic lesions using diffusion-weighted magnetic resonance imaging in 95 patients who underwent 98 CAS procedures: 34 using single PercuSurge GuardWire, 31 using double balloon protection, 15 using proximal flow reverse protection devices, 14 using Naviballoon, and 4 using filter anti-embolic devices. Diffusion-weighted imaging was performed preoperatively and postoperatively to evaluate the presence of any new embolic cerebral lesions. Postoperative diffusion-weighted imaging revealed 117 new ischemic lesions. Three patients had new ischemic stroke, two minor and one major, all ipsilateral to the treated carotid artery. The remaining patients had clinically silent ischemia. The incidence of new embolic lesions was lower using the proximal flow reverse protection device than with the double balloon protection (33% vs. 48.4%), but the volume of ipsilateral new ischemic lesions per patient was 136.6 mm(3) vs. 86.9 mm(3), respectively. Neuroprotection with Naviballoon yielded ipsilateral lesions of large volume (86.6 mm(3)) and higher number (5.7 lesions per patient) than using the filter anti-embolic device (34.8 mm(3) and 1 lesion per patient). New cerebral ischemic lesions after neuroprotected CAS are usually silent. The lower incidence of distal ischemia using proximal flow reverse and double balloon protection devices is limited by the larger volume and higher number of ischemic lesions.
Hantson, Philippe; Forget, Patrice
2010-06-01
"Reversible cerebral vasoconstriction syndrome" (RCVS) is a recently described entity that is mainly characterized by the association of severe ("thunderclap") headaches with or without additional neurological symptoms and diffuse, multifocal, segmental narrowings involving large and medium-sized cerebral arteries. By definition, angiographic abnormalities disappear within 3 months. The clinical course is usually benign, with a higher prevalence in young women. RCVS is idiopathic in the majority of the cases. However, recent papers have outlined the role of precipitating factors, including the use of vasoactive substances. Some patients, nevertheless, have a more severe clinical course with transient or permanent ischemic events. Hemorrhagic complications appear to have been underestimated. They are usually restricted to circumscribed cortical subarachnoid hemorrhage, in the absence of any ruptured cerebral aneurysm. This limited bleeding is unlikely at the origin of the diffuse vasoconstriction. The finding of an unruptured cerebral aneurysm in RCVS patients is probably incidental. An overlap is possible between RCVS and other syndromes such as posterior reversible encephalopathy syndrome. There is no standardized treatment regimen for RCVS patients. It appears rational to further investigate the efficacy and safety of the calcium-channel antagonist nimodipine.
Nitkunan, Arani; Barrick, Tom R; Charlton, Rebecca A; Clark, Chris A; Markus, Hugh S
2008-07-01
Cerebral small vessel disease is the most common cause of vascular dementia. Interest in using MRI parameters as surrogate markers of disease to assess therapies is increasing. In patients with symptomatic sporadic small vessel disease, we determined which MRI parameters best correlated with cognitive function on cross-sectional analysis and which changed over a period of 1 year. Thirty-five patients with lacunar stroke and leukoaraiosis were recruited. They underwent multimodal MRI (brain volume, fluid-attenuated inversion recovery lesion load, lacunar infarct number, fractional anisotropy, and mean diffusivity from diffusion tensor imaging) and neuropsychological testing. Twenty-seven agreed to reattend for repeat MRI and neuropsychology at 1 year. An executive function score correlated most strongly with diffusion tensor imaging (fractional anisotropy histogram, r=-0.640, P=0.004) and brain volume (r=0.501, P=0.034). Associations with diffusion tensor imaging were stronger than with all other MRI parameters. On multiple regression of all imaging parameters, a model that contained brain volume and fractional anisotropy, together with age, gender, and premorbid IQ, explained 74% of the variance of the executive function score (P=0.0001). Changes in mean diffusivity and fractional anisotropy were detectable over the 1-year follow-up; in contrast, no change in other MRI parameters was detectable over this time period. A multimodal MRI model explains a large proportion of the variation in executive function in cerebral small vessel disease. In particular, diffusion tensor imaging correlates best with executive function and is the most sensitive to change. This supports the use of MRI, in particular diffusion tensor imaging, as a surrogate marker in treatment trials.
Characteristics of early MRI in children and adolescents with vanishing white matter.
van der Lei, Hannemieke D; Steenweg, Marjan E; Barkhof, Frederik; de Grauw, Ton; d'Hooghe, Marc; Morton, Richard; Shah, Siddharth; Wolf, Nicole; van der Knaap, Marjo S
2012-02-01
MRI in vanishing white matter typically shows diffuse abnormality of the cerebral white matter, which becomes increasingly rarefied and cystic. We investigated the MRI characteristics preceding this stage. In a retrospective observational study, we evaluated all available MRIs in our database of DNA-confirmed VWM patients and selected MRIs without diffuse cerebral white matter abnormalities and without signs of rarefaction or cystic degeneration in patients below 20 years of age. A previously established scoring list was used to evaluate the MRIs. An MRI of seven patients fulfilled the criteria. All had confluent and symmetrical abnormalities in the periventricular and bordering deep white matter. In young patients, myelination was delayed. The inner rim of the corpus callosum was affected in all patients. In early stages of VWM, MRI does not necessarily display diffuse cerebral white matter involvement and rarefaction or cystic degeneration. If the MRI abnormalities do not meet the criteria for VWM, it helps to look at the corpus callosum. If the inner rim (the callosal-septal interface) is affected, VWM should be considered. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Kim, Jin Hyun; Kwon, Yong Min; Son, Su Min
2015-01-01
Previous diffusion tensor imaging (DTI) studies regarding pediatric patients with motor dysfunction have confirmed the correlation between DTI parameters of the injured corticospinal tract and the severity of motor dysfunction. There is also evidence that DTI parameters can help predict the prognosis of motor function of patients with cerebral palsy. But few studies are reported on the DTI parameters that can reflect the motor function outcomes of pediatric patients with hemiplegic cerebral palsy after rehabilitation treatment. In the present study, 36 pediatric patients with hemiplegic cerebral palsy were included. Before and after rehabilitation treatment, DTI was used to measure the fiber number (FN), fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of bilateral corticospinal tracts. Functional Level of Hemiplegia scale (FxL) was used to assess the therapeutic effect of rehabilitative therapy on clinical hemiplegia. Correlation analysis was performed to assess the statistical interrelationship between the change amount of DTI parameters and FxL. DTI findings obtained at the initial and follow-up evaluations demonstrated that more affected corticospinal tract yielded significantly decreased FN and FA values and significantly increased ADC value compared to the less affected corticospinal tract. Correlation analysis results showed that the change amount of FxL was positively correlated to FN and FA values, and the correlation to FN was stronger than the correlation to FA. The results suggest that FN and FA values can be used to evaluate the motor function outcomes of pediatric patients with hemiplegic cerebral palsy after rehabilitation treatment and FN is of more significance for evaluation. PMID:26170825
Cerebral involvement in axonal Charcot-Marie-Tooth neuropathy caused by mitofusin2 mutations.
Brockmann, Knut; Dreha-Kulaczewski, Steffi; Dechent, Peter; Bönnemann, Carsten; Helms, Gunther; Kyllerman, Marten; Brück, Wolfgang; Frahm, Jens; Huehne, Kathrin; Gärtner, Jutta; Rautenstrauss, Bernd
2008-07-01
Mutations in the mitofusin 2 (MFN2) gene are a major cause of primary axonal Charcot- Marie-Tooth (CMT) neuropathy. This study aims at further characterization of cerebral white matter alterations observed in patients with MFN2 mutations. Molecular genetic, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and diffusion tensor imaging (DTI) investigations were performed in four unrelated patients aged 7 to 38 years with early onset axonal CMT neuropathy. Three distinct and so far undescribed MFN2 mutations were detected. Two patients had secondary macrocephaly and mild diffuse predominantly periventricular white matter alterations on MRI. In addition, one boy had symmetrical T2-hyperintensities in both thalami. Two patients had optic atrophy, one of them with normal MRI. In three patients proton MRS revealed elevated concentrations of total N-acetyl compounds (neuronal marker), total creatine (found in all cells) and myo-inositol (astrocytic marker) in cerebral white and gray matter though with regional variation. These alterations were most pronounced in the two patients with abnormal MRI. DTI of these patients revealed mild reductions of fractional anisotropy and mild increase of mean diffusivity in white matter. The present findings indicate an enhanced cellular density in cerebral white matter of MFN2 neuropathy which is primarily due to a reactive gliosis without axonal damage and possibly accompanied by mild demyelination.
Method for hygromechanical characterization of graphite/epoxy composite
NASA Technical Reports Server (NTRS)
Yaniv, Gershon; Peimanidis, Gus; Daniel, Isaac M.
1987-01-01
An experimental method is described for measuring hygroscopic swelling strains and mechanical strains of moisture-conditioned composite specimens. The method consists of embedding encapsulated strain gages in the midplane of the composite laminate; thus it does not interfere with normal moisture diffusion. It is particularly suited for measuring moisture swelling coefficients and for mechanical testing of moisture-conditioned specimens at high strain rates. Results obtained by the embedded gage method were shown to be more reliable and reproducible than those obtained by surface gages, dial gages, or extensometers.
Wang, Y J; Assaad, E; Ispas-Szabo, P; Mateescu, M A; Zhu, X X
2011-10-31
The hydration and swelling properties of the tablets made of chitosan, carboxymethyl starch, and a polyelectrolyte complex of these two polysaccharides have been studied by NMR imaging. We studied the effect of pH and ionic strength on the swelling of the tablets and on the diffusion of fluid into the tablets in water and simulated physiological fluids. The pH value of the fluids exerts a more significant effect than their ionic strengths on the swelling of the tablets. The tablets are compared also with those made of cross-linked high amylose starch. The formation of complex helps to keep the integrity of the tablets in various media and render a slow and restricted swelling similar to that of the tablets of the cross-linked high amylase starch, which is significantly lower than the swelling of chitosan and of carboxymethyl starch. The capacities to modulate the release rate of drugs in different media are discussed by comparing the matrices and evaluating the preparation process of the complex. A sustained release of less soluble drugs such as aspirin in gastrointestinal fluids can be provided by the complex, due to the ionic interaction and hydrogen bonding between the drug and the biopolymer complex. Copyright © 2011 Elsevier B.V. All rights reserved.
Nicotine-selective radiation-induced poly(acrylamide/maleic acid) hydrogels
NASA Astrophysics Data System (ADS)
Saraydin, D.; Karadağ, E.; Çaldiran, Y.; Güven, O.
2001-02-01
Nicotine-selective poly(acrylamide/maleic acid) (AAm/MA) hydrogels prepared by γ-irradiation were used in experiments on swelling, diffusion, and interactions of the pharmaceuticals nicotine, nicotinic acid, nicotinamide, and nikethamide. For AAm/MA hydrogel containing 60 mg maleic acid and irradiated at 5.2 kGy, the studies indicated that swelling increased in the following order; nicotine>nicotinamide>nikethamide>nicotinic acid>water. Diffusions of water and the pharmaceuticals within the hydrogels were found to be non-Fickian in character. AAm/MA hydrogel sorbed only nicotine and did not sorb nicotinamide, nikethamide and nicotinic acid in the binding experiments. S-type adsorption in Giles's classification system was observed. Some binding and thermodynamic parameters for AAm/MA hydrogel-nicotine system were calculated using the Scatchard method. The values of adsorption heat and free energy of this system were found to be negative whereas adsorption entropy was found to be positive.
Thyroid Swelling and Thyroiditis in the Setting of Recent hCG Injections and Fine Needle Aspiration
Lamos, Elizabeth M.; Munir, Kashif M.
2016-01-01
A 60-year-old woman presented with a neck mass and underwent fine needle aspiration of a left thyroid nodule. During this time, she had been injected with hCG for weight loss. Soon after, she developed rapid diffuse thyroid growth with pain. She was ultimately diagnosed with thyrotoxicosis due to postaspiration subacute thyroiditis and subsequently became hypothyroid. This condition is rare in the nonpregnant state in noncystic nodules with a smaller needle gauge approach. The incidence of thyroid nodule discovery and evaluation is increasing. As more procedures are undertaken, understanding of potential complications is important. This case highlights potential complications of thyroid fine needle aspiration including diffuse thyroid swelling and thyroiditis. The role of hCG injections is speculated to have potentially stimulated thyroid follicular epithelium via cross-reactivity with the TSH receptor and contributed to the acute inflammatory response after fine needle aspiration. PMID:26942022
Phillis, John W
2004-01-01
A considerable volume of evidence implicates the purine adenosine in the regulation of cerebral blood flow during states such as hypotension, neural activation, hypoxia/ischemia, and hypercapnia/acidosis. The aim of this review is to describe developments in our understanding of the roles that adenosine and the adenine nucleotides play in cerebral blood flow control, with some comparisons to coronary blood flow. The first part of the review focuses on the categorization of receptors for adenosine (A1, A2A, A2B, and A3) and the adenine nucleotides, ATP and ADP (P2X and P2Y). Frequently used agonists and antagonists for these different receptors are mentioned. A description follows of the distribution of these different receptors in cerebral arterioles. The second part of the review initially deals with the literature on the release of adenosine and adenine nucleotides into the extracellular space of the brain, describing the various techniques used to make these measurements and assessing the pitfalls associated with their use. This is followed by a discussion of the factors affecting purine release, which include cell swelling and acidosis. The third section evaluates the role of smooth muscle potassium channels in controlling arteriolar diameter. There is evidence for an important role of KATP and KCa channels, but less is known about the contributions of voltage-dependent (KV) and inwardly rectifying (KIR) channels. This section ends with a discussion on the reported inhibitory effect of nitric oxide synthase inhibitors on the KATP channel and the consequences of such an action for the interpretation of much of the published work on nitric oxide as a regulator of cerebral blood flow. The fourth section evaluates the data supporting a role of adenosine and ATP in the regulation of cerebral blood flow during autoregulation, hypotension, neural activity, hypoxia/ ischemia, and hypercapnia. Studies using antagonists and potentiators of adenosine's actions have led to the conclusion that adenosine is involved in vascular flow control, matching metabolic activity to blood flow in all of these conditions, possibly with the exceptions of autoregulation at mean arterial blood pressures above approximately 60 mmHg. Evidence is presented for a major role of A2A, and a more limited role of A2B receptors, in balancing blood flow with metabolism. The primary effect of receptor occupancy is activation of KATP and KCa channels with smooth muscle relaxation and elevated blood flow rates. There are presently fewer data on ATP's participation in flow control, but recent evidence regarding glial cell control of cerebral arteriolar diameter suggests that this may be an important mechanism. The semi-final section, which briefly describes the evidence for a comparable role of adenosine in regulating coronary blood flow, is followed by a concluding statement reaffirming the importance of adenosine as a cerebral blood flow regulator.
Ferreira, Bruno Fortaleza de Aquino; Rodriguez, Ever Ernesto Caso; Prado, Leandro Lara do; Gonçalves, Celio Roberto; Hirata, Carlos Eduardo; Yamamoto, Joyce Hisae
2017-04-15
Frosted branch angiitis is a rare, severe condition. It can be either a primary or a secondary condition and is characterized by rapid deterioration of vision and fulminant retinal vasculitis that manifests as diffuse sheathing of retinal vessels, macular edema, papillitis, vitritis and anterior uveitis. We aimed to describe a case of frosted branch angiitis and cerebral venous sinus thrombosis as an initial neuro-Behçet's disease onset. Diagnosis of Behçet's disease was based on the current 2014 International Criteria for Behçet's Disease and the International consensus recommendation criteria for neuro-Behçet's disease. In addition, a literature review using search parameters of "frosted branch angiitis", "Behçet" and "neuro-Behçet" in the PubMed database is presented. A 28-year-old Brazilian pardo woman presented to our hospital with abrupt bilateral vision loss associated with recurrent aphthous oral ulcers 6 months before visual symptom onset. A fundus examination showed bilateral widespread retinal vasculitis with venous and arterial white sheathing, optic disc swelling, macular edema, and retinal hemorrhages, leading to the diagnosis of frosted branch angiitis. An extensive systemic workup for retinal vasculitis was uneventful, except for brain magnetic resonance imaging demonstrating cerebral venous sinus thrombosis and lymphocytic aseptic meningitis. A diagnosis of neuro-Behçet's disease was made, and treatment was started with methylprednisolone therapy 1 g/day for 5 consecutive days, followed by oral mycophenolate mofetil and infliximab 5 mg/kg infusion. The patient's response was rapid, with improvement of visual acuity to hand movement and counting fingers by day 7 and final visual acuity of counting fingers and 20/130. Frosted branch angiitis may be associated with infectious, noninfectious, or idiopathic causes. An extensive workup should be done to exclude systemic vasculitis such as Behçet's disease. Treatment with systemic steroids must be promptly initiated in association with specific treatment aimed at inflammation control and blindness risk reduction.
Ryu, Han-Seung; Jung, Tae-Young; Han, Moon-Soo; Kim, Seul-Ki; Lee, Kyung-Hwa
2017-01-01
We report a rare case of intraoperative tumoral bleeding of a hypervascular medulloblastoma. A 12-year-old girl presented with dizziness and nausea. Brain magnetic resonance (MR) images revealed an approximately 4.2-cm enhanced mass on the cerebellar vermis associated with mild perilesional edema and increased cerebral blood volume. Angiography showed tumoral staining and developed occipital and circular dural sinuses in the venous phase. A suboccipital craniotomy was performed. To relieve the intracranial pressure, cerebrospinal fluid (CSF) was drained via a lateral ventricular catheter in the occipital horn. During the opening of the dura, the brain swelling had progressed, and brain computed tomography revealed an intratumoral hemorrhage with brainstem compression. The patient was in a stuporous mental state. A reoperation was performed, and the mass was totally removed. The pathologic findings revealed a medulloblastoma with abnormal enlarged arterial vascular structures. Postoperatively, the patient recovered to an alert mental state. She underwent chemotherapy and radiotherapy. There was no recurrence after 1 year. Pre-resectional CSF drainage should not be routinely performed in posterior fossa tumors, especially with increased cerebral blood volume on MR perfusion images. Complete removal should be performed quickly while CSF drainage should be performed slowly. An intratumoral hemorrhage should be considered in posterior fossa tumors when severe brain swelling suddenly develops after CSF drainage. © 2016 S. Karger AG, Basel.
Khalid, Ikrima; Ahmad, Mahmood; Usman Minhas, Muhammad; Barkat, Kashif
2018-02-01
Mixtures of polymer (chondroitin sulfate) and monomer (AMPS) in the presence of co-monomer (MBA) were employed for the production of hydrogels, with adjustable properties, following free radical copolymerization. The hydrogel's structural properties were assessed by FTIR, DSC, TGA, SEM and XRD which confirmed the development and stability of synthesized structure. The results from FTIR analysis showed that CS react with the AMPS monomer during the polymerization process and confirmed the grafting of AMPS chains onto CS backbone. The surface morphology of CS-co-poly(AMPS) hydrogels, as evident by SEM, corresponds to their improved swelling ability due to high porosity. Thermal analysis showed that crosslinking formed a stable hydrogel network which is thermally more stable than its basic ingredients. The effects of pH revealed an increasing trend in swelling with increasing concentration of either CS or AMPS. In addition, different modalities for drug loading were studied with respect to drug homogeneous distribution; loxoprofen sodium was employed as model drug and was loaded by swelling-diffusion method. In vitro drug release profiles and kinetics were assessed to confirm their reproducibility and reliability. Higuchi model is the best fit model to explain drug release from formed gels indicating diffusion-controlled release. Similarly, Korsmeyer-Peppas model yields remarkably good adjustments where release kinetics involves a combination of diffusion in hydrated matrix and polymer relaxation. Conclusively, CS-co-poly(AMPS) hydrogels could be a potential alternate to conventional dosage forms for controlled delivery of loxoprofen sodium for extended period of time. Copyright © 2017. Published by Elsevier Ltd.
Kaichi, Yoko; Kakeda, Shingo; Korogi, Yukunori; Nezu, Tomohisa; Aoki, Shiro; Matsumoto, Masayasu; Iida, Makoto; Awai, Kazuo
2015-01-01
Cerebral air embolism can be easily identified on computed tomography (CT) scans. However, changes in the distribution and amount of intracranial air are not well known. We report two patients with cerebral air embolism and present imaging findings on the serial changes in the intracranial air. We thought that the embolic source was venous in one patient because CT showed air inflow in cortical veins in the bilateral frontal areas, reflecting air buoyancy. In the other patient, CT showed air inflow into not only the cortical veins but also the bilateral cerebral hemispheres and we thought this to be a paradoxical cerebral air embolism. We found that intracranial air can be promptly absorbed and while cerebral infarcts due to air are clearly visualized on diffusion-weighted images (DWI), the air may rapidly disappear from images. In patients with suspected cerebral air embolism whose CT findings show no intracranial air, DWI should be performed because it may reveal cerebral infarction due to cerebral air embolism. PMID:26640730
Fairbairn, Timothy A; Mather, Adam N; Bijsterveld, Petra; Worthy, Gillian; Currie, Stuart; Goddard, Anthony J P; Blackman, Daniel J; Plein, Sven; Greenwood, John P
2012-01-01
'Silent' cerebral infarction and stroke are complications of transcatheter aortic valve implantation (TAVI). To assess the occurrence of cerebral infarction, identify predictive risk factors and examine the impact on patient health-related quality of life (HRQoL). Cerebral diffusion weighted MRI of 31 patients with aortic stenosis undergoing CoreValve TAVI was carried out. HRQoL was assessed at baseline and at 30 days by SF-12v2 and EQ5D questionnaires. New cerebral infarcts occurred in 24/31 patients (77%) and stroke in 2 (6%). Stroke was associated with a greater number and volume of cerebral infarcts. Age (r=0.37, p=0.042), severity of atheroma (arch and descending aorta; r=0.91, p<0.001, r=0.69, p=0.001, respectively) and catheterisation time (r=0.45, p=0.02) were predictors of the number of new cerebral infarcts. HRQoL improved overall: SF-12v2 physical component summary increased significantly (32.4±6.2 vs 36.5±7.2; p=0.03) with no significant change in mental component summary (43.5±11.7 vs. 43.1±14.3; p=0.85). The EQ5D score and Visual Analogue Scale showed no significant change (0.56±0.26 vs. 0.59±0.31; p=0.70, and 54.2±19 vs. 58.2±24; p=0.43). Multiple small cerebral infarcts occurred in 77% of patients with TAVI. The majority of infarcts were 'silent' with clinical stroke being associated with a both higher infarct number and volume. Increased age and the severity of aortic arch atheroma were independent risk factors for the development of new cerebral infarcts. Overall HRQoL improved and there was no association between the number of new cerebral infarcts and altered health status.
AIDS with acute cerebral infarct: a case report.
Wu, Lin-Hui; Chen, Wei-Hung; Lien, Li-Ming; Huang, Chien-Hsien; Chiu, Hou-Chang
2005-06-01
A 38 year-old male presented with an acute onset of left hemiplegia. Brain magnetic resonance imaging (MRI) revealed a bright lesion by diffusion-weighted imaging with low apparent diffusion coefficient value in the right subcortical region, a finding compatible with an acute cerebral infarct. An old infarct was also noted in the same imaging. Both enzyme-linked immunosorbent assay and Western blot method were positive for human immunodeficiency virus infection. The white blood cell count was 2930 cells / mm3, and the subpopulation study for lymphocyte revealed a decreased cluster of differentiation 4+ count of 149 cells/mm3. Studies for prothrombotic states showed decreased protein S and increased anticardiolipin antibodies. We concluded that this was a case of acquired immunodeficiency syndrome (AIDS) with acute and old cerebral infarcts. This patient might be the first reported case in Taiwan. AIDS might be related with stroke in young patients, a condition probably under-recognized in Taiwan.
Ereniev, S I; Semchenko, V V; Sysheva, E V; Bogdashin, I V; Shapovalova, V V; Khizhnyak, A S; Gasanenko, L N
2005-11-01
Comparative study of the structural and functional state of cerebral cortex of adult albino rats after intracerebral allo- and xenotransplantation of embryonic nervous tissue and intravenous injection of umbilical cord blood-derived stem cells at different terms after diffuse-focal cerebral trauma revealed the best cerebroprotective effect on day 7 of posttraumatic period in animals receiving embryonic nervous tissue.
Lizarbe, Blanca; Benitez, Ania; Peláez Brioso, Gerardo A.; Sánchez-Montañés, Manuel; López-Larrubia, Pilar; Ballesteros, Paloma; Cerdán, Sebastián
2013-01-01
We review the role of neuroglial compartmentation and transcellular neurotransmitter cycling during hypothalamic appetite regulation as detected by Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) methods. We address first the neurochemical basis of neuroendocrine regulation in the hypothalamus and the orexigenic and anorexigenic feed-back loops that control appetite. Then we examine the main MRI and MRS strategies that have been used to investigate appetite regulation. Manganese-enhanced magnetic resonance imaging (MEMRI), Blood oxygenation level-dependent contrast (BOLD), and Diffusion-weighted magnetic resonance imaging (DWI) have revealed Mn2+ accumulations, augmented oxygen consumptions, and astrocytic swelling in the hypothalamus under fasting conditions, respectively. High field 1H magnetic resonance in vivo, showed increased hypothalamic myo-inositol concentrations as compared to other cerebral structures. 1H and 13C high resolution magic angle spinning (HRMAS) revealed increased neuroglial oxidative and glycolytic metabolism, as well as increased hypothalamic glutamatergic and GABAergic neurotransmissions under orexigenic stimulation. We propose here an integrative interpretation of all these findings suggesting that the neuroendocrine regulation of appetite is supported by important ionic and metabolic transcellular fluxes which begin at the tripartite orexigenic clefts and become extended spatially in the hypothalamus through astrocytic networks becoming eventually MRI and MRS detectable. PMID:23781199
Glyburide is associated with attenuated vasogenic edema in stroke patients.
Kimberly, W Taylor; Battey, Thomas W K; Pham, Ly; Wu, Ona; Yoo, Albert J; Furie, Karen L; Singhal, Aneesh B; Elm, Jordan J; Stern, Barney J; Sheth, Kevin N
2014-04-01
Brain edema is a serious complication of ischemic stroke that can lead to secondary neurological deterioration and death. Glyburide is reported to prevent brain swelling in preclinical rodent models of ischemic stroke through inhibition of a non-selective channel composed of sulfonylurea receptor 1 and transient receptor potential cation channel subfamily M member 4. However, the relevance of this pathway to the development of cerebral edema in stroke patients is not known. Using a case-control design, we retrospectively assessed neuroimaging and blood markers of cytotoxic and vasogenic edema in subjects who were enrolled in the glyburide advantage in malignant edema and stroke-pilot (GAMES-Pilot) trial. We compared serial brain magnetic resonance images (MRIs) to a cohort with similar large volume infarctions. We also compared matrix metalloproteinase-9 (MMP-9) plasma level in large hemispheric stroke. We report that IV glyburide was associated with T2 fluid-attenuated inversion recovery signal intensity ratio on brain MRI, diminished the lesional water diffusivity between days 1 and 2 (pseudo-normalization), and reduced blood MMP-9 level. Several surrogate markers of vasogenic edema appear to be reduced in the setting of IV glyburide treatment in human stroke. Verification of these potential imaging and blood biomarkers is warranted in the context of a randomized, placebo-controlled trial.
El-Maradny, Hoda A
2007-11-01
Diclofenac sodium tablets consisting of core coated with two layers of swelling and rupturable coatings were prepared and evaluated as a pulsatile drug delivery system. Cores containing the drug were prepared by direct compression using microcrystalline cellulose and Ludipress as hydrophilic excipients with the ratio of 1:1. Cores were then coated sequentially with an inner swelling layer of different swellable materials; either Explotab, Croscarmellose sodium, or Starch RX 1500, and an outer rupturable layer of different levels of ethylcellulose. The effect of the nature of the swelling layer and the level of the rupturable coating on the lag time and the water uptake were investigated. Drug release rate studies were performed using USP paddle method. Results showed the dependence of the lag time and water uptake prior to tablet rupture on the nature of the swelling layer and the coating levels. Explotab showed a significant decrease in the lag time, followed by Croscarmellose sodium and finally by Starch RX 1500. Increasing the level of ethylcellulose coating retarded the diffusion of the release medium to the swelling layer and the rupture of the coat, thus prolonging the lag time.
Dynamics of Nafion membrane swelling in H2O/D2O mixtures as studied using FTIR technique
NASA Astrophysics Data System (ADS)
Bunkin, Nikolai F.; Kozlov, Valeriy A.; Shkirin, Alexey V.; Ninham, Barry W.; Balashov, Anatoliy A.; Gudkov, Sergey V.
2018-03-01
Experiments with Fourier transform spectrometry of Nafion, a water-swollen polymeric membrane, are described. The transmittance spectra of liquid samples and Nafion, soaked in these samples, were studied, depending on the deuterium content in water in the spectral range 1.8-2.15 μm. The experiments were carried out using two protocols: in the first protocol we studied the dynamics of Nafion swelling in H2O + D2O mixtures for the deuterium concentrations 3 < C < 104 ppm, and in the second protocol we studied the dynamics of swelling in pure heavy water (C = 106 ppm). For liquid mixtures in the concentration range 3 < C < 104 ppm, the transmittance spectra are the same, but for Nafion soaked in these fluids, the corresponding spectra are different. It is shown that, in the range of deuterium contents C = 90-500 ppm, the behavior of transmittance of the polymer membrane is non-monotonic. In experiments using the second protocol, the dynamics of diffusion replacement of residual water, which is always present in the bulk of the polymer membrane inside closed cavities (i.e., without access to atmospheric air), were studied. The experimentally estimated diffusion coefficient for this process is ≈6.10-11 cm2/s.
[Research on brain white matter network in cerebral palsy infant].
Li, Jun; Yang, Cheng; Wang, Yuanjun; Nie, Shengdong
2017-10-01
Present study used diffusion tensor image and tractography to construct brain white matter networks of 15 cerebral palsy infants and 30 healthy infants that matched for age and gender. After white matter network analysis, we found that both cerebral palsy and healthy infants had a small-world topology in white matter network, but cerebral palsy infants exhibited abnormal topological organization: increased shortest path length but decreased normalize clustering coefficient, global efficiency and local efficiency. Furthermore, we also found that white matter network hub regions were located in the left cuneus, precuneus, and left posterior cingulate gyrus. However, some abnormal nodes existed in the frontal, temporal, occipital and parietal lobes of cerebral palsy infants. These results indicated that the white matter networks for cerebral palsy infants were disrupted, which was consistent with previous studies about the abnormal brain white matter areas. This work could help us further study the pathogenesis of cerebral palsy infants.
Modeling High-Pressure Gas-Polymer Sorpion Behavior Using the Sanchez-Lacombe Equation of State.
1987-06-01
The solubility of a gas in an amorphous or molten polymer is an important consideration in membrane and polymer processes . For instance, the efficacy...to a supercritical fluid during the impregnation process . Swelling the polymer effectively increases the diffusion coefficient of the heavy dopant by...dissolve the impurity, and then diffuse out of the swollen matrix thus removing the impurity. This supercritical fluid extraction process is somewhat
Vedel, Anne G; Holmgaard, Frederik; Rasmussen, Lars S; Langkilde, Annika; Paulson, Olaf B; Lange, Theis; Thomsen, Carsten; Olsen, Peter Skov; Ravn, Hanne Berg; Nilsson, Jens C
2018-04-24
Cerebral injury is an important complication after cardiac surgery with the use of cardiopulmonary bypass. The rate of overt stroke after cardiac surgery is 1% to 2%, whereas silent strokes, detected by diffusion-weighted magnetic resonance imaging, are found in up to 50% of patients. It is unclear whether a higher versus a lower blood pressure during cardiopulmonary bypass reduces cerebral infarction in these patients. In a patient- and assessor-blinded randomized trial, we allocated patients to a higher (70-80 mm Hg) or lower (40-50 mm Hg) target for mean arterial pressure by the titration of norepinephrine during cardiopulmonary bypass. Pump flow was fixed at 2.4 L·min -1 ·m -2 . The primary outcome was the total volume of new ischemic cerebral lesions (summed in millimeters cubed), expressed as the difference between diffusion-weighted imaging conducted preoperatively and again postoperatively between days 3 and 6. Secondary outcomes included diffusion-weighted imaging-evaluated total number of new ischemic lesions. Among the 197 enrolled patients, mean (SD) age was 65.0 (10.7) years in the low-target group (n=99) and 69.4 (8.9) years in the high-target group (n=98). Procedural risk scores were comparable between groups. Overall, diffusion-weighted imaging revealed new cerebral lesions in 52.8% of patients in the low-target group versus 55.7% in the high-target group ( P =0.76). The primary outcome of volume of new cerebral lesions was comparable between groups, 25 mm 3 (interquartile range, 0-118 mm 3 ; range, 0-25 261 mm 3 ) in the low-target group versus 29 mm 3 (interquartile range, 0-143 mm 3 ; range, 0-22 116 mm 3 ) in the high-target group (median difference estimate, 0; 95% confidence interval, -25 to 0.028; P =0.99), as was the secondary outcome of number of new lesions (1 [interquartile range, 0-2; range, 0-24] versus 1 [interquartile range, 0-2; range, 0-29] respectively; median difference estimate, 0; 95% confidence interval, 0-0; P =0.71). No significant difference was observed in frequency of severe adverse events. Among patients undergoing on-pump cardiac surgery, targeting a higher versus a lower mean arterial pressure during cardiopulmonary bypass did not seem to affect the volume or number of new cerebral infarcts. URL: https://www.clinicaltrials.gov. Unique identifier: NCT02185885. © 2018 American Heart Association, Inc.
Cerebral fat embolism syndrome after long bone fracture due to gunshot injury.
Duran, Latif; Kayhan, Servet; Kati, Celal; Akdemir, Hizir Ufuk; Balci, Kemal; Yavuz, Yucel
2014-03-01
Cerebral fat embolism syndrome is a lethal complication of long-bone fractures and clinically manifasted with respiratory distress, altered mental status, and petechial rash. We presented a 20-year-old male admitted with gun-shot wounds to his left leg. Twenty-four hours after the event, he had generalized tonic clonic seizures, decorticate posture and a Glascow Coma Scale of seven with localization of painful stimuli. Subsequent magnetic resonance imaging of the brain showed a star-field pattern defining multiple lesions of restricted diffusion. On a 4-week follow-up, he had returned to normal neurological function. Despite the severity of the neurological condition upon initial presentation, the case cerebral fat embolism illustrates that, cerebral dysfunction associated with cerebral fat embolism illustrates reversible.
Arterial Cannulation and Cerebral Perfusion Strategies for Aortic Arch Operations.
Foley, Lisa S; Yamanaka, Katsuhiro; Reece, T Brett
2016-12-01
Neurologic injuries following aortic arch operations can be devastating, with stroke occurring in up to 12% of elective operations and significant cerebral dysfunction occurring in up to 25% of cases. The primary challenge unique to aortic arch operations involves interruption of direct perfusion of the brachiocephalic vessels during arch reconstruction. For this reason, neuroprotection is paramount. The 2 main modes of protection are (1) reducing metabolic demand through hypothermia and (2) limiting, or even eliminating, the ischemic period. Preoperative selection of the cerebral perfusion plan for each operation is imperative to maintain maximal diffuse cerebral protection and prevent focal neurologic events. © The Author(s) 2016.
Intracerebral venous thrombosis and hematoma secondary to high-voltage brain injury.
Sure, U; Kleihues, P
1997-06-01
We report the case of a 19-year-old male who sustained an electrodynamic (16.67 Hz) high-voltage (15,000 V) railway overhead cable injury. He lost consciousness 30 minutes after contact and died secondary to brainstem herniation as a result of intracerebral swelling within 8 days. Repeated cranial computed tomography revealed a huge hemispheric mass bleeding accompanied by subarachnoidal hemorrhage. Additionally, necropsy showed an extensive thrombosis of the adjacent cerebral veins. The pathophysiological mechanism of this unusual injury is discussed.
2017-01-30
Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymal Giant Cell Astrocytoma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Recurrent Adult Brain Tumor; Recurrent Childhood Anaplastic Astrocytoma; Recurrent Childhood Anaplastic Oligoastrocytoma; Recurrent Childhood Anaplastic Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Diffuse Astrocytoma; Recurrent Childhood Fibrillary Astrocytoma; Recurrent Childhood Gemistocytic Astrocytoma; Recurrent Childhood Giant Cell Glioblastoma; Recurrent Childhood Glioblastoma; Recurrent Childhood Gliomatosis Cerebri; Recurrent Childhood Gliosarcoma; Recurrent Childhood Oligoastrocytoma; Recurrent Childhood Oligodendroglioma; Recurrent Childhood Pilomyxoid Astrocytoma; Recurrent Childhood Protoplasmic Astrocytoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Untreated Childhood Anaplastic Astrocytoma; Untreated Childhood Anaplastic Oligoastrocytoma; Untreated Childhood Anaplastic Oligodendroglioma; Untreated Childhood Brain Stem Glioma; Untreated Childhood Cerebellar Astrocytoma; Untreated Childhood Cerebral Astrocytoma; Untreated Childhood Diffuse Astrocytoma; Untreated Childhood Fibrillary Astrocytoma; Untreated Childhood Gemistocytic Astrocytoma; Untreated Childhood Giant Cell Glioblastoma; Untreated Childhood Glioblastoma; Untreated Childhood Gliomatosis Cerebri; Untreated Childhood Gliosarcoma; Untreated Childhood Oligoastrocytoma; Untreated Childhood Oligodendroglioma; Untreated Childhood Pilomyxoid Astrocytoma; Untreated Childhood Protoplasmic Astrocytoma; Untreated Childhood Subependymal Giant Cell Astrocytoma; Untreated Childhood Visual Pathway and Hypothalamic Glioma; Untreated Childhood Visual Pathway Glioma
Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm.
Witwer, Brian P; Moftakhar, Roham; Hasan, Khader M; Deshmukh, Praveen; Haughton, Victor; Field, Aaron; Arfanakis, Konstantinos; Noyes, Jane; Moritz, Chad H; Meyerand, M Elizabeth; Rowley, Howard A; Alexander, Andrew L; Badie, Behnam
2002-09-01
Preserving vital cerebral function while maximizing tumor resection is a principal goal in surgical neurooncology. Although functional magnetic resonance imaging has been useful in the localization of eloquent cerebral cortex, this method does not provide information about the white matter tracts that may be involved in invasive, intrinsic brain tumors. Recently, diffusion-tensor (DT) imaging techniques have been used to map white matter tracts in the normal brain. The aim of this study was to demonstrate the role of DT imaging in preoperative mapping of white matter tracts in relation to cerebral neoplasms. Nine patients with brain malignancies (one pilocytic astrocytoma, five oligodendrogliomas, one low-grade oligoastrocytoma, one Grade 4 astrocytoma, and one metastatic adenocarcinoma) underwent DT imaging examinations prior to tumor excision. Anatomical information about white matter tract location, orientation, and projections was obtained in every patient. Depending on the tumor type and location, evidence of white matter tract edema (two patients), infiltration (two patients), displacement (five patients), and disruption (two patients) could be assessed with the aid of DT imaging in each case. Diffusion-tensor imaging allowed for visualization of white matter tracts and was found to be beneficial in the surgical planning for patients with intrinsic brain tumors. The authors' experience with DT imaging indicates that anatomically intact fibers may be present in abnormal-appearing areas of the brain. Whether resection of these involved fibers results in subtle postoperative neurological deficits requires further systematic study.
Umegaki, N; Hirota, K; Kitayama, M; Yatsu, Y; Ishihara, H; Mtasuki, A
2003-11-01
A 77-year-old man with a ruptured abdominal aortic aneurysm undergoing aneurysmectomy were anaesthetised with ketamine under bispectral index (BIS) monitoring, which is a clinical EEG monitor for measurement of depth of anaesthesia/sedation. First marked BIS reduction with elevation of suppression ratio (SR) was observed following severe hypotension by deflation of the aortic occlusion balloon. The re-inflation and rapid blood transfusion improved haemodyanamics and BIS and SR. At second marked BIS reduction with SR elevation, a heavy cervical swelling due to a massive subcutaneous haematoma around the previously mis-punctured right carotid artery extending throughout the whole neck was observed without hypotension. Cervical relief incision improved the BIS and SR. The present case suggests that BIS monitor may be a simple and convenient monitor for cerebral ischaemia detection.
Effective diffusion coefficients of gas mixture in heavy oil under constant-pressure conditions
NASA Astrophysics Data System (ADS)
Li, Huazhou Andy; Sun, Huijuan; Yang, Daoyong
2017-05-01
We develop a method to determine the effective diffusion coefficient for each individual component of a gas mixture in a non-volatile liquid (e.g., heavy oil) at high pressures with compositional analysis. Theoretically, a multi-component one-way diffusion model is coupled with the volume-translated Peng-Robinson equation of state to quantify the mass transfer between gas and liquid (e.g., heavy oil). Experimentally, the diffusion tests have been conducted with a PVT setup for one pure CO2-heavy oil system and one C3H8-CO2-heavy oil system under constant temperature and pressure, respectively. Both the gas-phase volume and liquid-phase swelling effect are simultaneously recorded during the measurement. As for the C3H8-CO2-heavy oil system, the gas chromatography method is employed to measure compositions of the gas phase at the beginning and end of the diffusion measurement, respectively. The effective diffusion coefficients are then determined by minimizing the discrepancy between the measured and calculated gas-phase composition at the end of diffusion measurement. The newly developed technique can quantify the contributions of each component of mixture to the bulk mass transfer from gas into liquid. The effective diffusion coefficient of C3H8 in the C3H8-CO2 mixture at 3945 ± 20 kPa and 293.85 K, i.e., 18.19 × 10^{ - 10} {{m}}^{ 2} / {{s}}, is found to be much higher than CO2 at 3950 ± 18 kPa and 293.85 K, i.e., 8.68 × 10^{ - 10} {{m}}^{ 2} / {{s}}. In comparison with pure CO2, the presence of C3H8 in the C3H8-CO2 mixture contributes to a faster diffusion of CO2 from the gas phase into heavy oil and consequently a larger swelling factor of heavy oil.
Mechanism of metabolic stroke and spontaneous cerebral hemorrhage in glutaric aciduria type I
2014-01-01
Background Metabolic stroke is the rapid onset of lasting central neurological deficit associated with decompensation of an underlying metabolic disorder. Glutaric aciduria type I (GA1) is an inherited disorder of lysine and tryptophan metabolism presenting with metabolic stroke in infancy. The clinical presentation includes bilateral striatal necrosis and spontaneous subdural and retinal hemorrhages, which has been frequently misdiagnosed as non-accidental head trauma. The mechanisms underlying metabolic stroke and spontaneous hemorrhage are poorly understood. Results Using a mouse model of GA1, we show that metabolic stroke progresses in the opposite sequence of ischemic stroke, with initial neuronal swelling and vacuole formation leading to cerebral capillary occlusion. Focal regions of cortical followed by striatal capillaries are occluded with shunting to larger non-exchange vessels leading to early filling and dilation of deep cerebral veins. Blood–brain barrier breakdown was associated with displacement of tight-junction protein Occludin. Conclusion Together the current findings illuminate the pathophysiology of metabolic stroke and vascular compromise in GA1, which may translate to other neurometabolic disorders presenting with stroke. PMID:24468193
Mechanism of metabolic stroke and spontaneous cerebral hemorrhage in glutaric aciduria type I.
Zinnanti, William J; Lazovic, Jelena; Housman, Cathy; Antonetti, David A; Koeller, David M; Connor, James R; Steinman, Lawrence
2014-01-27
Metabolic stroke is the rapid onset of lasting central neurological deficit associated with decompensation of an underlying metabolic disorder. Glutaric aciduria type I (GA1) is an inherited disorder of lysine and tryptophan metabolism presenting with metabolic stroke in infancy. The clinical presentation includes bilateral striatal necrosis and spontaneous subdural and retinal hemorrhages, which has been frequently misdiagnosed as non-accidental head trauma. The mechanisms underlying metabolic stroke and spontaneous hemorrhage are poorly understood. Using a mouse model of GA1, we show that metabolic stroke progresses in the opposite sequence of ischemic stroke, with initial neuronal swelling and vacuole formation leading to cerebral capillary occlusion. Focal regions of cortical followed by striatal capillaries are occluded with shunting to larger non-exchange vessels leading to early filling and dilation of deep cerebral veins. Blood-brain barrier breakdown was associated with displacement of tight-junction protein Occludin. Together the current findings illuminate the pathophysiology of metabolic stroke and vascular compromise in GA1, which may translate to other neurometabolic disorders presenting with stroke.
[Analysis of 58 neonatal cases with cerebral infarction].
Li, Zhi-hua; Chen, Chao
2013-01-01
Cerebral infarction (CI) is one of severe diseases of central nervous system in neonates, and some infants with CI could have poor prognosis in the long term. This study aimed to analyze the clinical data and prognosis of all neonatal cases with cerebral infarction in recent years and to help future clinical work. Totally 58 neonatal cases with CI admitted to NICU of the hospital from January 1999 to December 2010 were included in this study. We analyzed all clinical data and prognosis by retrospective analysis. Fifty-two term babies and six preterm babies were included. There were altogether 51 cases with asphyxia and 7 with hemorrhagic cerebral infarction. Perinatal hypoxia-ischemia was the most common high-risk factor and it accounted for 46.6%. Seizure was the most frequent initial symptom and the most common clinical manifestation (accounted for 77.6%), and it was followed by intermittent cyanosis, apnea and lethargy. Cerebral CT scan and magnetic resonance imaging were major methods to help to make the diagnosis and they also had close relation with prognosis. Diffusion weighted imaging was very helpful to diagnose infarction in early stage. Left middle cerebral artery was the most common artery to be involved. Supportive therapy and symptomatic treatment were the main methods in the acute stage of neonatal cerebral infarction. Those babies with poor prognosis mostly had large infarction involving cerebral hemisphere, thalamus and basal ganglia. Neonatal cerebral infarction was a severe brain injury affecting long tern nervous system prognosis. Perinatal hypoxia was the most common high-risk factor and seizure was the most frequent initial symptom. Diffusion weighted imaging was valuable to diagnose infarction in early stage. Most of infants with poor prognosis had large infarction involving hemisphere, thalamus and basal ganglia. Early diagnosis with brain imaging would be helpful for rehabilitation therapy and improving prognosis.
Preliminary analysis of the distribution of water in human hair by small-angle neutron scattering.
Kamath, Yash; Murthy, N Sanjeeva; Ramaprasad, Ram
2014-01-01
Diffusion and distribution of water in hair can reveal the internal structure of hair that determines the penetration of various products used to treat hair. The distribution of water into different morphological components in unmodified hair, cuticle-free hair, and hair saturated with oil at various levels of humidity was examined using small-angle neutron scattering (SANS) by substituting water with deuterium oxide (D(2)O). Infrared spectroscopy was used to follow hydrogen-deuterium exchange. Water present in hair gives basically two types of responses in SANS: (i) interference patterns, and (ii) central diffuse scattering (CDS) around the beam stop. The amount of water in the matrix between the intermediate filaments that gives rise to interference patterns remained essentially constant over the 50-98% humidity range without swelling this region of the fiber extensively. This observation suggests that a significant fraction of water in the hair, which contributes to the CDS, is likely located in a different morphological region of hair that is more like pores in a fibrous structure, which leads to significant additional swelling of the fiber. Comparison of the scattering of hair treated with oil shows that soybean oil, which diffuses less into hair, allows more water into hair than coconut oil. These preliminary results illustrate the utility of SANS for evaluating and understanding the diffusion of deuterated liquids into different morphological structures in hair.
Chan, Ariel W; Neufeld, Ronald J
2009-10-01
Semisynthetic network alginate polymer (SNAP), synthesized by acetalization of linear alginate with di-aldehyde, is a pH-responsive tetrafunctionally linked 3D gel network, and has potential application in oral delivery of protein therapeutics and active biologicals, and as tissue bioscaffold for regenerative medicine. A constitutive polyelectrolyte gel model based on non-Gaussian polymer elasticity, Flory-Huggins liquid lattice theory, and non-ideal Donnan membrane equilibria was derived, to describe SNAP gel swelling in dilute and ionic solutions containing uni-univalent, uni-bivalent, bi-univalent or bi-bi-valent electrolyte solutions. Flory-Huggins interaction parameters as a function of ionic strength and characteristic ratio of alginates of various molecular weights were determined experimentally to numerically predict SNAP hydrogel swelling. SNAP hydrogel swells pronouncedly to 1000 times in dilute solution, compared to its compact polymer volume, while behaving as a neutral polymer with limited swelling in high ionic strength or low pH solutions. The derived model accurately describes the pH-responsive swelling of SNAP hydrogel in acid and alkaline solutions of wide range of ionic strength. The pore sizes of the synthesized SNAP hydrogels of various crosslink densities were estimated from the derived model to be in the range of 30-450 nm which were comparable to that measured by thermoporometry, and diffusion of bovine serum albumin. The derived equilibrium swelling model can characterize hydrogel structure such as molecular weight between crosslinks and crosslinking density, or can be used as predictive model for swelling, pore size and mechanical properties if gel structural information is known, and can potentially be applied to other point-link network polyelectrolytes such as hyaluronic acid gel.
Sheth, Kevin N; Elm, Jordan J; Molyneaux, Bradley J; Hinson, Holly; Beslow, Lauren A; Sze, Gordon K; Ostwaldt, Ann-Christin; Del Zoppo, Gregory J; Simard, J Marc; Jacobson, Sven; Kimberly, W Taylor
2016-10-01
Preclinical models of stroke have shown that intravenous glyburide reduces brain swelling and improves survival. We assessed whether intravenous glyburide (RP-1127; glibenclamide) would safely reduce brain swelling, decrease the need for decompressive craniectomy, and improve clinical outcomes in patients presenting with a large hemispheric infarction. For this double-blind, randomised, placebo-controlled phase 2 trial, we enrolled patients (aged 18-80 years) with a clinical diagnosis of large anterior circulation hemispheric infarction for less than 10 h and baseline diffusion-weighted MRI image lesion volume of 82-300 cm(3) on MRI at 18 hospitals in the USA. We used web-based randomisation (1:1) to allocate patients to the placebo or intravenous glyburide group. Intravenous glyburide was given as a 0·13 mg bolus intravenous injection for the first 2 min, followed by an infusion of 0·16 mg/h for the first 6 h and then 0·11 mg/h for the remaining 66 h. The primary efficacy outcome was the proportion of patients who achieved a modified Rankin Scale (mRS) score of 0-4 at 90 days without undergoing decompressive craniectomy. Analysis was by per protocol. Safety analysis included all randomly assigned patients who received the study drug. This trial is registered with ClinicalTrials.gov, number NCT01794182. Between May 3, 2013, and April 30, 2015, 86 patients were randomly assigned but enrolment was stopped because of funding reasons. The funder, principal investigators, site investigators, patients, imaging core, and outcomes personnel were masked to treatment. The per-protocol study population was 41 participants who received intravenous glyburide and 36 participants who received placebo. 17 (41%) patients in the intravenous glyburide group and 14 (39%) in the placebo group had an mRS score of 0-4 at 90 days without decompressive craniectomy (adjusted odds ratio 0·87, 95% CI 0·32-2·32; p=0·77). Ten (23%) of 44 participants in the intravenous glyburide group and ten (26%) of 39 participants in the placebo group had cardiac events (p=0·76), and four of 20 had serious adverse events (two in the intravenous glyburide group and two in the placebo group, p=1·00). One cardiac death occurred in each group (p=1·00). Intravenous glyburide was well tolerated in patients with large hemispheric stroke at risk for cerebral oedema. There was no difference in the composite primary outcome. Further study is warranted to assess the potential clinical benefit of a reduction in swelling by intravenous glyburide. Remedy Pharmaceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cerebral fat embolism syndrome after long bone fracture due to gunshot injury
Duran, Latif; Kayhan, Servet; Kati, Celal; Akdemir, Hizir Ufuk; Balci, Kemal; Yavuz, Yucel
2014-01-01
Cerebral fat embolism syndrome is a lethal complication of long-bone fractures and clinically manifasted with respiratory distress, altered mental status, and petechial rash. We presented a 20-year-old male admitted with gun-shot wounds to his left leg. Twenty-four hours after the event, he had generalized tonic clonic seizures, decorticate posture and a Glascow Coma Scale of seven with localization of painful stimuli. Subsequent magnetic resonance imaging of the brain showed a star-field pattern defining multiple lesions of restricted diffusion. On a 4-week follow-up, he had returned to normal neurological function. Despite the severity of the neurological condition upon initial presentation, the case cerebral fat embolism illustrates that, cerebral dysfunction associated with cerebral fat embolism illustrates reversible. PMID:24701067
Cerebral White Matter Integrity and Cognitive Aging: Contributions from Diffusion Tensor Imaging
Madden, David J.; Bennett, Ilana J.; Song, Allen W.
2009-01-01
The integrity of cerebral white matter is critical for efficient cognitive functioning, but little is known regarding the role of white matter integrity in age-related differences in cognition. Diffusion tensor imaging (DTI) measures the directional displacement of molecular water and as a result can characterize the properties of white matter that combine to restrict diffusivity in a spatially coherent manner. This review considers DTI studies of aging and their implications for understanding adult age differences in cognitive performance. Decline in white matter integrity contributes to a disconnection among distributed neural systems, with a consistent effect on perceptual speed and executive functioning. The relation between white matter integrity and cognition varies across brain regions, with some evidence suggesting that age-related effects exhibit an anterior-posterior gradient. With continued improvements in spatial resolution and integration with functional brain imaging, DTI holds considerable promise, both for theories of cognitive aging and for translational application. PMID:19705281
Diffuse cerebral symptoms in convalescents from cerebral infarction and myocardial infarction.
Leegaard, O F
1983-06-01
In order to evaluate occurrence and cause of a number of diffuse cerebral symptoms (DCS), such as impaired memory, inability to concentrate, emotional instability, irritability, etc., 44 survivors of cerebral infarction (CI) and 40 survivors of myocardial infarction (MI) were seen 6-26 months after onset for psychometric testing and an interview about DCS. Although surprisingly common in both groups, DCS were significantly more frequent in CI patients than in MI patients. 1/2 of the former and 1/3 of the latter complained of 5 or more symptoms. In contrast, a significant difference in test performance was demonstrated in only 1 of 4 tests. There was no significant correlation between the number of DCS and test performance. In both groups, DCS occurrence was independent of age, whereas in the MI group, but not in the CI group, test performance was inversely related to age. In the CI group, DCS occurrence was not significantly related to size or site of the infarction. The results indicate that an organic brain damage cannot be the sole cause of DCS, and it is suggested that some of the symptoms are manifestations of a stress response syndrome provoked by insufficient coping with the consequences of the disease.
The influence of different diffusion pattern to the sub- and super-critical fluid flow in brown coal
NASA Astrophysics Data System (ADS)
Peng, Peihuo
2018-03-01
Sub- and super-critical CO2 flowing in nanoscale pores are recently becoming of great interest due to that it is closely related to many engineering applications, such as geological burial and sequestration of carbon dioxide, Enhanced Coal Bed Methane recovery ( ECBM), super-critical CO2 fracturing and so on. Gas flow in nanopores cannot be described simply by the Darcy equation. Different diffusion pattern such as Fick diffusion, Knudsen diffusion, transitional diffusion and slip flow at the solid matrix separate the seepage behaviour from Darcy-type flow. According to the principle of different diffusion pattern, the flow of sub- and super-critical CO2 in brown coal was simulated by numerical method, and the results were compared with the experimental results to explore the contribution of different diffusion pattern and swelling effect in sub- and super-critical CO2 flow in nanoscale pores.
Pressure modulation algorithm to separate cerebral hemodynamic signals from extracerebral artifacts.
Baker, Wesley B; Parthasarathy, Ashwin B; Ko, Tiffany S; Busch, David R; Abramson, Kenneth; Tzeng, Shih-Yu; Mesquita, Rickson C; Durduran, Turgut; Greenberg, Joel H; Kung, David K; Yodh, Arjun G
2015-07-01
We introduce and validate a pressure measurement paradigm that reduces extracerebral contamination from superficial tissues in optical monitoring of cerebral blood flow with diffuse correlation spectroscopy (DCS). The scheme determines subject-specific contributions of extracerebral and cerebral tissues to the DCS signal by utilizing probe pressure modulation to induce variations in extracerebral blood flow. For analysis, the head is modeled as a two-layer medium and is probed with long and short source-detector separations. Then a combination of pressure modulation and a modified Beer-Lambert law for flow enables experimenters to linearly relate differential DCS signals to cerebral and extracerebral blood flow variation without a priori anatomical information. We demonstrate the algorithm's ability to isolate cerebral blood flow during a finger-tapping task and during graded scalp ischemia in healthy adults. Finally, we adapt the pressure modulation algorithm to ameliorate extracerebral contamination in monitoring of cerebral blood oxygenation and blood volume by near-infrared spectroscopy.
Subramanian, Prem S; Gordon, Lynn K; Bonelli, Laura; Arnold, Anthony C
2017-05-01
The time of onset of optic disc swelling in non-arteritic anterior ischaemic optic neuropathy (NAION) is not known, and it is commonly assumed to arise simultaneously with vision loss. Our goal is to report the presence and persistence of optic disc swelling without initial vision loss and its subsequent evolution to typical, symptomatic NAION. Clinical case series of patients with optic disc swelling and normal visual acuity and visual fields at initial presentation who progressed to have vision loss typical of NAION. All subjects underwent automated perimetry, disc photography and optic coherence tomography and/or fluorescein angiography to evaluate optic nerve function and perfusion. Four patients were found to have sectoral or diffuse optic disc swelling without visual acuity or visual field loss; the fellow eye of all four had either current or prior NAION or a 'disc at risk' configuration. Over several weeks of clinical surveillance, each patient experienced sudden onset of visual field and/or visual acuity loss typical for NAION. Current treatment options for NAION once vision loss occurs are limited and may not alter the natural history of the disorder. Subjects with NAION may have disc swelling for 2-10 weeks prior to the occurrence of visual loss, and with the development of new therapeutic agents, treatment at the time of observed disc swelling could prevent vision loss from NAION. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Apparent diffusion coefficient of the normal human brain for various experimental conditions
NASA Astrophysics Data System (ADS)
Moraru, Luminita; Dimitrievici, Lucian
2017-01-01
Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) is being increasingly used to assess both brain tissues and cerebrospinal fluid integrity. In this paper we study inter-site reproducibility of the apparent diffusion coefficient values for the main cerebral tissues such as gray matter, white matter and into cerebrospinal fluid and for three different stacks of slices that were spaced at L = 79.8, 84.9 and 90 mm. We assessed the impact of the attenuation factor and diffusion gradient on the results reproducibility.
A rare case of short stature: Say Meyer syndrome.
Karthik, T S; Prasad, N Rajendra; Rani, P Radha; Maheshwari, Rushikesh; Reddy, P Amaresh; Chakradhar, B V S; Menon, Bindu
2013-10-01
Say Meyer syndrome is rare X linked condition characterized by developmental delay, short stature and metopic suture synostosis. We are reporting a case of Say Meyer syndrome presented to our hospital for short stature and developmental delay at age 3½ years. A 3½-year-old boy presented to our hospital for decreased growth velocity from the age of 1 year. History revealed the boy had a birth weight of 2.3 kg, had an episode of seizures in the neonatal period. He was born to non-consanguineous marriage. He had global developmental delay and there was a lack of bowel and bladder control. History did not reveal any hearing or visual impairment. No history of any chronic systemic illnesses. Magnetic resonance imaging (MRI) brain revealed mild diffuse frontotemporal atrophy with multiple irregular gliotic areas in bilateral frontal lobes. Diffuse white matter volume loss in bilateral cerebral hemispheres. Diffuse thinning of corpus callosum. Diffuse periventricular hyper intensity on T2W and fluid attenuated inversion recovery sequences. Say Meyer syndrome is rare X linked condition characterized by developmental delay, short stature and metopic suture synostosis. Characteristic MRI brain findings include diffuse frontotemporal atrophy with multiple gliotic areas in frontal lobes. Diffuse white matter volume loss in bilateral cerebral hemispheres.
Types of traumatic brain injury and regional cerebral blood flow assessed by 99mTc-HMPAO SPECT.
Yamakami, I; Yamaura, A; Isobe, K
1993-01-01
To investigate the relationship between focal and diffuse traumatic brain injury (TBI) and regional cerebral blood flow (rCBF), rCBF changes in the first 24 hours post-trauma were studied in 12 severe head trauma patients using single photon emission computed tomography (SPECT) with 99mtechnetium-hexamethyl propyleneamine oxime. Patients were classified as focal or diffuse TBI based on x-ray computed tomographic (X-CT) findings and neurological signs. In six patients with focal damage, SPECT demonstrated 1) perfusion defect (focal severe ischemia) in the brain region larger than the brain contusion by X-CT, 2) hypoperfusion (focal CBF reduction) in the brain region without abnormality by X-CT, and 3) localized hyperperfusion (focal CBF increase) in the surgically decompressed brain after decompressive craniectomy. Focal damage may be associated with a heterogeneous CBF change by causing various focal CBF derangements. In six patients with diffuse damage, SPECT revealed hypoperfusion in only one patient. Diffuse damage may be associated with a homogeneous CBF change by rarely causing focal CBF derangements. The type of TBI, focal or diffuse, determines the type of CBF change, heterogeneous or homogeneous, in the acute severe head trauma patient.
NASA Astrophysics Data System (ADS)
Yamamoto, Utako; Kobayashi, Tetsuo; Kito, Shinsuke; Koga, Yoshihiko
We have analyzed cerebral white matter using magnetic resonance diffusion tensor imaging (MR-DTI) to measure the diffusion anisotropy of water molecules. The goal of this study is the quantitative evaluation of schizophrenia. Diffusion tensor images are acquired for patients with schizophrenia and healthy comparison subjects, group-matched for age, sex, and handedness. Fiber tracking is performed on the superior longitudinal fasciculus for the comparison between the patient and comparison groups. We have analysed and compared the cross-sectional area on the starting coronal plane and the mean and standard deviation of the fractional anisotropy and the apparent diffusion coefficient along fibers in the right and left hemispheres. In the right hemisphere, the cross-sectional areas in patient group are significantly smaller than those in the comparison group. Furthermore, in the comparison group, the cross-sectional areas in the right hemisphere are significantly larger than those in the left hemisphere, whereas there is no significant difference in the patient group. These results suggest that we may evaluate the disruption in white matter integrity in schizophrenic patients quantitatively by comparing the cross-sectional area of the superior longitudinal fasciculus in the right and left hemispheres.
FURTHER STUDIES ON THE KINETICS OF OSMOSIS IN LIVING CELLS
Lucké, Balduin; Hartline, H. Keffer; McCutcheon, Morton
1931-01-01
Using unfertilized eggs of Arbacia punctulata as natural osmometers an attempt has been made to account for the course of swelling and shrinking of these cells in anisotonic solutions by means of the laws governing osmosis and diffusion. The method employed has been to compute permeability of the cell to water, as measured by the rate of volume change per unit of cell surface per unit of osmotic pressure outstanding between the cell and its medium. Permeability to water as here defined and as somewhat differently defined by Northrop is approximately constant during swelling and shrinking, at least for the first several minutes of these processes. Permeability is found to be independent of the osmotic pressure of the solution in which cells are swelling. Water is found to leave cells more readily than it enters, that is, permeability is greater during exosmosis than during endosmosis. PMID:19872594
Dynamic response of gold nanoparticle chemiresistors to organic analytes in aqueous solution.
Müller, Karl-Heinz; Chow, Edith; Wieczorek, Lech; Raguse, Burkhard; Cooper, James S; Hubble, Lee J
2011-10-28
We investigate the response dynamics of 1-hexanethiol-functionalized gold nanoparticle chemiresistors exposed to the analyte octane in aqueous solution. The dynamic response is studied as a function of the analyte-water flow velocity, the thickness of the gold nanoparticle film and the analyte concentration. A theoretical model for analyte limited mass-transport is used to model the analyte diffusion into the film, the partitioning of the analyte into the 1-hexanethiol capping layers and the subsequent swelling of the film. The degree of swelling is then used to calculate the increase of the electron tunnel resistance between adjacent nanoparticles which determines the resistance change of the film. In particular, the effect of the nonlinear relationship between resistance and swelling on the dynamic response is investigated at high analyte concentration. Good agreement between experiment and the theoretical model is achieved. This journal is © the Owner Societies 2011
Kuban, Karl C. K.; Allred, Elizabeth N.; O’Shea, T. Michael; Paneth, Nigel; Pagano, Marcello; Dammann, Olaf; Leviton, Alan; Du Plessis, Adré; Westra, Sjirk J.; Miller, Cindy R.; Bassan, Haim; Krishnamoorthy, Kalpathy; Junewick, Joseph; Olomu, Nicholas; Romano, Elaine; Seibert, Joanna; Engelke, Steve; Karna, Padmani; Batton, Daniel; O’Connor, Sunila E.; Keller, Cecelia E.
2009-01-01
Our prospective cohort study of extremely low gestational age newborns evaluated the association of neonatal head ultrasound abnormalities with cerebral palsy at age 2 years. Cranial ultrasounds in 1053 infants were read with respect to intraventricular hemorrhage, ventriculomegaly, and echolucency, by multiple sonologists. Standardized neurological examinations classified cerebral palsy, and functional impairment was assessed. Forty-four percent with ventriculomegaly and 52% with echolucency developed cerebral palsy. Compared with no ultrasound abnormalities, children with echolucency were 24 times more likely to have quadriparesis and 29 times more likely to have hemiparesis. Children with ventriculomegaly were 17 times more likely to have quadriparesis or hemiparesis. Forty-three percent of children with cerebral palsy had normal head ultrasound. Focal white matter damage (echolucency) and diffuse damage (late ventriculomegaly) are associated with a high probability of cerebral palsy, especially quadriparesis. Nearly half the cerebral palsy identified at 2 years is not preceded by a neonatal brain ultrasound abnormality. PMID:19168819
Diffusion and Swelling Measurements in Pharmaceutical Powder Compacts Using Terahertz Pulsed Imaging
Yassin, Samy; Su, Ke; Lin, Hungyen; Gladden, Lynn F; Zeitler, J Axel
2015-01-01
Tablet dissolution is strongly affected by swelling and solvent penetration into its matrix. A terahertz-pulsed imaging (TPI) technique, in reflection mode, is introduced as a new tool to measure one-dimensional swelling and solvent ingress in flat-faced pharmaceutical compacts exposed to dissolution medium from one face of the tablet. The technique was demonstrated on three tableting excipients: hydroxypropylmethyl cellulose (HPMC), Eudragit RSPO, and lactose. Upon contact with water, HPMC initially shrinks to up to 13% of its original thickness before undergoing expansion. HPMC and lactose were shown to expand to up to 20% and 47% of their original size in 24 h and 13 min, respectively, whereas Eudragit does not undergo dimensional change. The TPI technique was used to measure the ingress of water into HPMC tablets over a period of 24 h and it was observed that water penetrates into the tablet by anomalous diffusion. X-ray microtomography was used to measure tablet porosity alongside helium pycnometry and was linked to the results obtained by TPI. Our results highlight a new application area of TPI in the pharmaceutical sciences that could be of interest in the development and quality testing of advanced drug delivery systems as well as immediate release formulations. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:1658–1667, 2015 PMID:25645509
Yassin, Samy; Su, Ke; Lin, Hungyen; Gladden, Lynn F; Zeitler, J Axel
2015-05-01
Tablet dissolution is strongly affected by swelling and solvent penetration into its matrix. A terahertz-pulsed imaging (TPI) technique, in reflection mode, is introduced as a new tool to measure one-dimensional swelling and solvent ingress in flat-faced pharmaceutical compacts exposed to dissolution medium from one face of the tablet. The technique was demonstrated on three tableting excipients: hydroxypropylmethyl cellulose (HPMC), Eudragit RSPO, and lactose. Upon contact with water, HPMC initially shrinks to up to 13% of its original thickness before undergoing expansion. HPMC and lactose were shown to expand to up to 20% and 47% of their original size in 24 h and 13 min, respectively, whereas Eudragit does not undergo dimensional change. The TPI technique was used to measure the ingress of water into HPMC tablets over a period of 24 h and it was observed that water penetrates into the tablet by anomalous diffusion. X-ray microtomography was used to measure tablet porosity alongside helium pycnometry and was linked to the results obtained by TPI. Our results highlight a new application area of TPI in the pharmaceutical sciences that could be of interest in the development and quality testing of advanced drug delivery systems as well as immediate release formulations. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.
Embolic stroke associated with injection of buprenorphine tablets.
Lim, C C Tchoyoson; Lee, Sze Haur; Wong, Yee-Choon; Hui, Francis
2009-09-15
Drug users who crush, dissolve, and inject buprenorphine tablets parenterally may be at risk of severe thromboembolic complications or death. We describe patients with neurologic complications after injecting buprenorphine tablets. Brain MRI including diffusion-weighted imaging (DWI) in patients admitted to the neurologic department after injecting buprenorphine tablets were reviewed. Seven men had neurologic complications after buprenorphine tablet injection. In 5 patients, multiple small scattered hyperintense lesions were detected on DWI in the cortex, white matter, and basal ganglia of the cerebral hemisphere; one patient had a single small lesion. The side of MRI abnormality corresponded to the side of needle marks on the neck except in one patient who had bilateral injections. One patient, who denied injecting into the neck, had DWI abnormalities in the middle cerebral artery territory on one side and occlusion of the ipsilateral internal carotid artery. Buprenorphine tablets can be intentionally or inadvertently injected into the carotid artery, causing a characteristic appearance on diffusion-weighted imaging, consistent with embolic cerebral infarction.
Perfusion weighted imaging and its application in stroke
NASA Astrophysics Data System (ADS)
Li, Enzhong; Tian, Jie; Han, Ying; Wang, Huifang; Li, Xingfeng; Zhu, Fuping
2003-05-01
To study the technique and application of perfusion weighted imaging (PWI) in the diagnosis and medical treatment of acute stroke, 25 patients were examined by 1.5 T or 1.0 T MRI scanner. The Data analysis was done with "3D Med System" developed by our Lab to process the data and obtain apparent diffusion coefficient (ADC) map, cerebral blood volume (CBV) map, cerebral blood flow (CBF) map as well as mean transit time (MTT) map. In accute stage of stroke, normal or slightly hypointensity in T1-, hyperintensity in T2- and diffusion-weighted images were seen in the cerebral infarction areas. There were hypointensity in CBV map, CBF map and ADC map; and hyperintensity in MTT map that means this infarct area could be saved. If the hyperintensity area in MTT map was larger than the area in diffusion weighted imaging (DWI), the larger part was called penumbra and could be cured by an appropriate thrombolyitic or other therapy. The CBV, CBF and MTT maps are very important in the diagnosis and medical treatment of acute especially hyperacute stroke. Comparing with DWI, we can easily know the situation of penumbra and the effect of curvative therapy. Besides, we can also make a differential diagnosis with this method.
The pathogenesis of pediatric cerebral malaria: eye exams, autopsies and neuro-imaging
Taylor, Terrie E.; Molyneux, Malcolm E.
2015-01-01
Several advances in our understanding of pediatric cerebral malaria (CM) have been made over the past 25 years. Accurate clinical diagnosis is enhanced by the identification of a characteristic retinopathy, visible by direct or indirect ophthalmoscopy, the retinal changes (retinal whitening, vessel color changes, white-centered hemorrhages) being consistently associated with intracerebral sequestration of parasites in autopsy studies. Autopsies have yielded information at tissue levels in fatal CM, but new insights into critical pathogenetic processes have emerged from neuro-imaging studies which, unlike autopsy-based studies, permit serial observations over time and allow comparisons between fatal cases and survivors. Brain swelling has emerged as the major risk factor for death, and, among survivors, brain volume diminishes spontaneously over 24-48 hours. Studies of life-threatening and fatal malaria are suggesting new approaches to identifying and caring for those at highest risk; potential adjuvants should be evaluated and implemented where they are most needed. PMID:25708306
Gregori-Pla, Clara; Cotta, Gianluca; Blanco, Igor; Zirak, Peyman; Giovannella, Martina; Mola, Anna; Fortuna, Ana; Durduran, Turgut; Mayos, Mercedes
2018-01-01
Obstructive sleep apnea (OSA) can impair cerebral vasoreactivity and is associated with an increased risk of cerebrovascular disease. Unfortunately, an easy-to-use, non-invasive, portable monitor of cerebral vasoreactivity does not exist. Therefore, we have evaluated the use of near-infrared diffuse correlation spectroscopy to measure the microvascular cerebral blood flow (CBF) response to a mild head-of-bed position change as a biomarker for the evaluation of cerebral vasoreactivity alteration due to chronic OSA. Furthermore, we have monitored the effect of two years of continuous positive airway pressure (CPAP) treatment on the cerebral vasoreactivity. CBF was measured at different head-of-bed position changes (supine to 30° to supine) in sixty-eight patients with OSA grouped according to severity (forty moderate to severe, twenty-eight mild) and in fourteen control subjects without OSA. A subgroup (n = 13) with severe OSA was measured again after two years of CPAP treatment. All patients and controls showed a similar CBF response after changing position from supine to 30° (p = 0.819), with a median (confidence interval) change of -17.5 (-10.3, -22.9)%. However, when being tilted back to the supine position, while the control group (p = 0.091) and the mild patients with OSA (p = 0.227) recovered to the initial baseline, patients with moderate and severe OSA did not recover to the baseline (9.8 (0.8, 12.9)%, p < 0.001) suggesting altered cerebral vasoreactivity. This alteration was correlated with OSA severity defined by the apnea-hypopnea index, and with mean nocturnal arterial oxygen saturation. The CBF response was normalized after two years of CPAP treatment upon follow-up measurements. In conclusion, microvascular CBF response to a head-of-bed challenge measured by diffuse correlation spectroscopy suggests that moderate and severe patients with OSA have altered cerebral vasoreactivity related to OSA severity. This may normalize after two years of CPAP treatment.
Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods
NASA Astrophysics Data System (ADS)
Durduran, Turgut
Diffuse optical techniques were used to measure hemodynamics of tissues non-invasively. Spectroscopy and tomography of the brain, muscle and implanted tumors were carried out in animal models and humans. Two qualitatively different methods, diffuse optical tomography and diffuse correlation tomography, were hybridized permitting simultaneous measurement of total hemoglobin concentration, blood oxygen saturation and blood flow. This combination of information was processed further to derive estimates of oxygen metabolism (e.g. CMRO 2) in tissue. The diffuse correlation measurements of blood flow were demonstrated in human tissues, for the first time, demonstrating continous, non-invasive imaging of oxygen metabolism in large tissue volumes several centimeters below the tissue surface. The bulk of these investigations focussed on cerebral hemodynamics. Extensive validation of this methodology was carried out in in vivo rat brain models. Three dimensional images of deep tissue hemodynamics in middle cerebral artery occlusion and cortical spreading depression (CSD) were obtained. CSD hemodynamics were found to depend strongly on partial pressure of carbon dioxide. The technique was then adapted for measurement of human brain. All optical spectroscopic measurements of CMRO2 during functional activation were obtained through intact human skull non-invasively. Finally, a high spatio-temporal resolution measurement of cerebral blood flow due to somatosensory cortex activation following electrical forepaw stimulation in rats was carried out with laser speckle flowmetry. New analysis methods were introduced for laser speckle flowmetry. In other organs, deep tissue hemodynamics were measured on human calf muscle during exercise and cuff-ischemia and were shown to have some clinical utility for peripheral vascular disease. In mice tumor models, the measured hemodynamics were shown to be predictive of photodynamic therapy efficacy, again suggesting promise of clinical utility. In total, the research has pioneered the development of diffuse optical measurements of blood flow, oxygenation and oxygen metabolism in a large range of research and clinical applications.
Cheng, Xue; Zhao, Haiping; Yan, Feng; Tao, Zhen; Wang, Rongliang; Han, Ziping; Li, Guangwen; Luo, Yumin; Ji, Xunming
2018-05-01
Maladaptive alterations of astrocytic plasticity may cause brain edema in the acute stage of stroke and glial scar formation in the recovery stage. The present study was designed to investigate the potential regulation of limb remote ischemic post-conditioning (RIPC) on astrocytic plasticity in experimental cerebral ischemia-reperfusion injury. Cerebral ischemia was induced by transient middle cerebral artery occlusion (tMCAO) for 1 h in C57BL/6 mice, who were treated with RIPC immediately after reperfusion. The results showed that RIPC decreased hemispheric swelling, infarct volume and brain atrophy, and increased neurological function recovery and survival rates of ischemic mice at 3 and 14 d after cerebral ischemia-reperfusion, respectively. Moreover, the proportion of astrocyte subtypes was adjusted by RIPC treatment, demonstrated by decreased expression of the fibrous type (glial fibrillary acidic protein, GFAP) and increased expression of the protoplasmic type (glutamine synthetase, GS) in the ipsilateral side of the mouse brain at 14 d after cerebral ischemia-reperfusion. RIPC treatment adjusted the proportion of GFAP subtypes by downregulating the protein level of GFAPα, as well as upregulating the GFAPδ/GFAPα ratio in the ipsilateral side at 3 and 14 d after reperfusion. Notably, RIPC inhibited the phosphorylation of signal transducer and activators of transcriptions 3 (p-STAT3) in the ipsilateral side at 3 and 14 d after cerebral ischemia-reperfusion. Taken together, the results show that RIPC treatment could regulate reactive astrocytic plasticity and inhibition of STAT3 phosphorylation to promote neurological function recovery following ischemic stroke. Copyright © 2018 Elsevier B.V. All rights reserved.
Jelescu, Ileana Ozana; Ciobanu, Luisa; Geffroy, Françoise; Marquet, Pierre; Le Bihan, Denis
2014-03-01
There is evidence that physiological or pathological cell swelling is associated with a decrease of the apparent diffusion coefficient (ADC) of water in tissues, as measured with MRI. However the mechanism remains unclear. Magnetic resonance microscopy, performed on small tissue samples, has the potential to distinguish effects occurring at cellular and tissue levels. A three-dimensional diffusion prepared fast imaging with steady-state free precession sequence for MR microscopy was implemented on a 17.2 T imaging system and used to investigate the effect of two biological challenges known to cause cell swelling, exposure to a hypotonic solution or to ouabain, on Aplysia nervous tissue. The ADC was measured inside isolated neuronal soma and in the region of cell bodies of the buccal ganglia. Both challenges resulted in an ADC increase inside isolated neuronal soma (+31 ± 24% and +30 ± 11%, respectively) and an ADC decrease at tissue level in the buccal ganglia (-12 ± 5% and -18 ± 8%, respectively). A scenario involving a layer of water molecules bound to the inflating cell membrane surface is proposed to reconcile this apparent discrepancy. Copyright © 2014 John Wiley & Sons, Ltd.
Glyburide is associated with attenuated vasogenic edema in stroke patients
Kimberly, W. Taylor; Battey, Thomas W. K.; Pham, Ly; Wu, Ona; Yoo, Albert J.; Furie, Karen L.; Singhal, Aneesh B.; Elm, Jordan J.; Stern, Barney J.; Sheth, Kevin N.
2016-01-01
Background and Purpose Brain edema is a serious complication of ischemic stroke that can lead to secondary neurological deterioration and death. Glyburide is reported to prevent brain swelling in preclinical rodent models of ischemic stroke through inhibition of a non-selective channel composed of sulfonylurea receptor 1 (SUR1) and transient receptor potential cation channel subfamily M member 4 (TRPM4). However, the relevance of this pathway to the development of cerebral edema in stroke patients is not known. Methods Using a case control design, we retrospectively assessed neuroimaging and blood markers of cytotoxic and vasogenic edema in subjects who were enrolled in the Glyburide Advantage in Malignant Edema and Stroke-Pilot (GAMES-Pilot) trial. We compared serial brain magnetic resonance images (MRIs) to a cohort with similar large volume infarctions. We also compared matrix metalloproteinase-9 plasma level in large hemispheric stroke. Results We report that IV glyburide was associated with attenuated T2 fluid attenuated inversion recovery (FLAIR) signal intensity ratio on brain MRI, diminished the lesional water diffusivity between days 1 and 2 (pseudo-normalization), and reduced blood matrix metalloproteinase-9 (MMP-9) level. Conclusions Several surrogate markers of vasogenic edema appear to be reduced in the setting of IV glyburide treatment in human stroke. Verification of these potential imaging and blood biomarkers is warranted in the context of a randomized, placebo-controlled trial. PMID:24072459
18TH Annual Meeting of the European Neuroscience Association.
1996-01-01
propagation of ictal-like seizure activity oný the neocottex of anaesthetised rats in viva. Epileptifotot events in the Global cerebral isehemia in rats...for the study of stroke -related brain injury . Novel MR] techniques, 40 neurological patients suspected clinically to suffer from inherited...head injury . MRI scan of start, runway and goal chamber with 2 drinking indicates diffuse cerebral damage, with focal abnormality spouts. The goal had
NASA Astrophysics Data System (ADS)
Mesquita, Rickson C.; Faseyitan, Olufunsho K.; Turkeltaub, Peter E.; Buckley, Erin M.; Thomas, Amy; Kim, Meeri N.; Durduran, Turgut; Greenberg, Joel H.; Detre, John A.; Yodh, Arjun G.; Hamilton, Roy H.
2013-06-01
Transcranial magnetic stimulation (TMS) modulates processing in the human brain and is therefore of interest as a treatment modality for neurologic conditions. During TMS administration, an electric current passing through a coil on the scalp creates a rapidly varying magnetic field that induces currents in the cerebral cortex. The effects of low-frequency (1 Hz), repetitive TMS (rTMS) on motor cortex cerebral blood flow (CBF) and tissue oxygenation in seven healthy adults, during/after 20 min stimulation, is reported. Noninvasive optical methods are employed: diffuse correlation spectroscopy (DCS) for blood flow and diffuse optical spectroscopy (DOS) for hemoglobin concentrations. A significant increase in median CBF (33%) on the side ipsilateral to stimulation was observed during rTMS and persisted after discontinuation. The measured hemodynamic parameter variations enabled computation of relative changes in cerebral metabolic rate of oxygen consumption during rTMS, which increased significantly (28%) in the stimulated hemisphere. By contrast, hemodynamic changes from baseline were not observed contralateral to rTMS administration (all parameters, p>0.29). In total, these findings provide new information about hemodynamic/metabolic responses to low-frequency rTMS and, importantly, demonstrate the feasibility of DCS/DOS for noninvasive monitoring of TMS-induced physiologic effects.
NASA Astrophysics Data System (ADS)
Karahan, Aydın
2011-07-01
Computational models in FEAST-METAL fuel behaviour code have been upgraded to simulate minor actinide bearing zirconium rich metallic fuels for use in sodium fast reactors. Increasing the zirconium content to 20-40 wt.% causes significant changes in fuel slug microstructure affecting thermal, mechanical, chemical, and fission gas behaviour. Inclusion of zirconium rich phase reduces the fission gas swelling rate significantly in early irradiation. Above the threshold fission gas swelling, formation of micro-cracks, and open pores increase material compliancy enhance diffusivity, leading to rapid fuel gas swelling, interconnected porosity development and release of the fission gases and helium. Production and release of helium was modelled empirically as a function of americium content and fission gas production, consistent with previous Idaho National Laboratory studies. Predicted fuel constituent redistribution is much smaller compared to typical U-Pu-10Zr fuel operated at EBR-II. Material properties such as fuel thermal conductivity, modulus of elasticity, and thermal expansion coefficient have been approximated using the available database. Creep rate and fission gas diffusivity of high zirconium fuel is lowered by an order of magnitude with respect to the reference low zirconium fuel based on limited database and in order to match experimental observations. The new code is benchmarked against the AFC-1F fuel assembly post irradiation examination results. Satisfactory match was obtained for fission gas release and swelling behaviour. Finally, the study considers a comparison of fuel behaviour between high zirconium content minor actinide bearing fuel and typical U-15Pu-6Zr fuel pins with 75% smear density. The new fuel has much higher fissile content, allowing for operating at lower neutron flux level compared to fuel with lower fissile density. This feature allows the designer to reach a much higher burnup before reaching the cladding dose limit. On the other hand, in order to accommodate solid fission product swelling and to control fuel clad mechanical interaction of the stiffer fuel, the fuel smear density is reduced to 70%. In addition, plenum height is increased to accommodate for fission gases.
Wolf, Dominik; Fischer, Florian U; Scheurich, Armin; Fellgiebel, Andreas
2015-01-01
Cerebral amyloid-β accumulation and changes in white matter (WM) microstructure are imaging characteristics in clinical Alzheimer's disease and have also been reported in cognitively healthy older adults. However, the relationship between amyloid deposition and WM microstructure is not well understood. Here, we investigated the impact of quantitative cerebral amyloid load on WM microstructure in a group of cognitively healthy older adults. AV45-positron emission tomography and diffusion tensor imaging (DTI) scans of forty-four participants (age-range: 60 to 89 years) from the Alzheimer's Disease Neuroimaging Initiative were analyzed. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (DR), and axial diffusivity (DA) were calculated to characterize WM microstructure. Regression analyses demonstrated non-linear (quadratic) relationships between amyloid deposition and FA, MD, as well as RD in widespread WM regions. At low amyloid burden, higher deposition was associated with increased FA as well as decreased MD and DR. At higher amyloid burden, higher deposition was associated with decreased FA as well as increased MD and DR. Additional regression analyses demonstrated an interaction effect between amyloid load and global WM FA, MD, DR, and DA on cognition, suggesting that cognition is only affected when amyloid is increasing and WM integrity is decreasing. Thus, increases in FA and decreases in MD and RD with increasing amyloid load at low levels of amyloid burden may indicate compensatory processes that preserve cognitive functioning. Potential mechanisms underlying the observed non-linear association between amyloid deposition and DTI metrics of WM microstructure are discussed.
Pressure modulation algorithm to separate cerebral hemodynamic signals from extracerebral artifacts
Baker, Wesley B.; Parthasarathy, Ashwin B.; Ko, Tiffany S.; Busch, David R.; Abramson, Kenneth; Tzeng, Shih-Yu; Mesquita, Rickson C.; Durduran, Turgut; Greenberg, Joel H.; Kung, David K.; Yodh, Arjun G.
2015-01-01
Abstract. We introduce and validate a pressure measurement paradigm that reduces extracerebral contamination from superficial tissues in optical monitoring of cerebral blood flow with diffuse correlation spectroscopy (DCS). The scheme determines subject-specific contributions of extracerebral and cerebral tissues to the DCS signal by utilizing probe pressure modulation to induce variations in extracerebral blood flow. For analysis, the head is modeled as a two-layer medium and is probed with long and short source-detector separations. Then a combination of pressure modulation and a modified Beer-Lambert law for flow enables experimenters to linearly relate differential DCS signals to cerebral and extracerebral blood flow variation without a priori anatomical information. We demonstrate the algorithm’s ability to isolate cerebral blood flow during a finger-tapping task and during graded scalp ischemia in healthy adults. Finally, we adapt the pressure modulation algorithm to ameliorate extracerebral contamination in monitoring of cerebral blood oxygenation and blood volume by near-infrared spectroscopy. PMID:26301255
Raya, Amanda; Zipfel, Gregory J; Diringer, Michael N; Dacey, Ralph G; Derdeyn, Colin P; Rich, Keith M; Chicoine, Michael R; Dhar, Rajat
2014-01-01
Spontaneous idiopathic subarachnoid hemorrhage (SAH) with a perimesencephalic bleeding pattern is usually associated with a benign course, whereas a diffuse bleeding pattern has been associated with a higher risk of vasospasm and disability. We evaluated whether volume of bleeding explains this disparity. Pattern and amount of bleeding (by Hijdra and intraventricular hemorrhage scores) were assessed in 89 patients with nonaneurysmal SAH. Outcomes included angiographic vasospasm, delayed cerebral ischemia, and functional outcome at 1 year. Diffuse bleeding was associated with significantly higher Hijdra and intraventricular hemorrhage scores than perimesencephalic SAH, P≤0.003. Angiographic vasospasm was more likely in diffuse versus perimesencephalic SAH (45% versus 27%; odds ratio, 2.9; P=0.08), but adjustment for greater blood burden only partially attenuated this trend (adjusted odds ratio, 2.2; 95% confidence interval, 0.69-7.2; P=0.18); delayed cerebral ischemia was only seen in those with diffuse bleeding. Patients with diffuse bleeding were less likely to be discharged home (68% versus 90%; P=0.01) and tended to have more residual disability (modified Rankin scale, 3-6; 20% versus 6%; P=0.18). Nonaneurysmal SAH can still result in vasospasm and residual disability, especially in those with diffuse bleeding. This disparity is only partially accounted for by greater cisternal or intraventricular blood, suggesting that the mechanism and distribution of bleeding may be as important as the amount of hemorrhage in patients with idiopathic SAH.
Mikac, U; Sepe, A; Kristl, J; Baumgartner, I
2012-01-01
Modified-release matrix tablets have been extensively used by the pharmaceutical industry as one of the most successful oral drug-delivery systems. The key element in drug release from hydrophilic matrix tablets is the gel layer that regulates the penetration of water and controls drug dissolution and diffusion. Magnetic resonance imaging (MRI) is a powerful, non-invasive technique that can help improve our understanding of the gel layer formed on swellable, polymer-matrix tablets, as well as the layer's properties and its influence on the drug release. The aim was to investigate the effects of pH and ionic strength on swelling and to study the influence of structural changes in xanthan gel on drug release. For this purpose a combination of different MRI methods for accurate determination of penetration, swelling and erosion fronts was used. The position of the penetration and swelling fronts were the same, independently of the different xanthan gel structures formed under different conditions of pH and ionic strength. The position of the erosion front, on the other hand, is strongly dependent on pH and ionic strength, as reflected in different thicknesses of the gel layers.
Reid, Michael S; Kedzior, Stephanie A; Villalobos, Marco; Cranston, Emily D
2017-08-01
This work explores cellulose nanocrystal (CNC) thin films (<50 nm) and particle-particle interactions by investigating film swelling in aqueous solutions with varying ionic strength (1-100 mM). CNC film hydration was monitored in situ via surface plasmon resonance, and the kinetics of liquid uptake were quantified. The contribution of electrostatic double-layer forces to film swelling was elucidated by using CNCs with different surface charges (anionic sulfate half ester groups, high and low surface charge density, and cationic trimethylammonium groups). Total water uptake in the thin films was found to be independent of ionic strength and surface chemistry, suggesting that in the aggregated state van der Waals forces dominate over double-layer forces to hold the films together. However, the rate of swelling varied significantly. The water uptake followed Fickian behavior, and the measured diffusion constants decreased with the ionic strength gradient between the film and the solution. This work highlights that nanoparticle interactions and dispersion are highly dependent on the state of particle aggregation and that the rate of water uptake in aggregates and thin films can be tailored based on surface chemistry and solution ionic strength.
Buckley, Erin M.; Lynch, Jennifer M.; Goff, Donna A.; Schwab, Peter J.; Baker, Wesley B.; Durduran, Turgut; Busch, David R.; Nicolson, Susan C.; Montenegro, Lisa M.; Naim, Maryam Y.; Xiao, Rui; Spray, Thomas L.; Yodh, A. G.; Gaynor, J. William; Licht, Daniel J.
2013-01-01
Objective The early postoperative period following neonatal cardiac surgery is a time of increased risk for brain injury, yet the mechanisms underlying this risk are unknown. To understand these risks more completely, we quantified changes in postoperative cerebral metabolic rate of oxygen (CMRO2), oxygen extraction fraction (OEF), and cerebral blood flow (CBF) compared with preoperative levels by using noninvasive optical modalities. Methods Diffuse optical spectroscopy and diffuse correlation spectroscopy were used concurrently to derive cerebral blood flow and oxygen utilization postoperatively for 12 hours. Relative changes in CMRO2, OEF, and CBF were quantified with reference to preoperative data. A mixed-effect model was used to investigate the influence of total support time and deep hypothermic circulatory arrest duration on relative changes in CMRO2, OEF, and CBF. Results Relative changes in CMRO2, OEF, and CBF were assessed in 36 patients, 21 with single-ventricle defects and 15 with 2-ventricle defects. Among patients with single-ventricle lesions, deep hypothermic circulatory arrest duration did not affect relative changes in CMRO2, CBF, or OEF (P > .05). Among 2-ventricle patients, total support time was not a significant predictor of relative changes in CMRO2 or CBF (P > .05), although longer total support time was associated significantly with greater increases in relative change of postoperative OEF (P = .008). Conclusions Noninvasive diffuse optical techniques were used to quantify postoperative relative changes in CMRO2, CBF, and OEF for the first time in this observational pilot study. Pilot data suggest that surgical duration does not account for observed variability in the relative change in CMRO2, and that more comprehensive clinical studies using the new technology are feasible and warranted to elucidate these issues further. PMID:23111021
Dengue fever with diffuse cerebral hemorrhages, subdural hematoma and cranial diabetes insipidus.
Jayasinghe, Nayomi Shermila; Thalagala, Eranga; Wattegama, Milanka; Thirumavalavan, Kanapathipillai
2016-05-10
Neurological manifestations in dengue fever occur in <1 % of the patients and known to be due to multisystem dysfunction secondary to vascular leakage. Occurrence of wide spread cerebral haemorrhages with subdural hematoma during the leakage phase without profound thrombocytopenia and occurrence of cranial diabetes insipidus are extremely rare and had not been reported in published literature earlier, thus we report the first case. A 24 year old previously healthy lady was admitted on third day of fever with thrombocytopenia. Critical phase started on fifth day with evidence of pleural effusion and moderate ascites. Thirty one hours into critical phase she developed headache, altered level of consciousness, limb rigidity and respiratory depression without definite seizures. Non-contrast CT brain done at tertiary care level revealed diffuse intracranial haemorrhages and sub arachnoid haemorrhages in right frontal, parietal, occipital lobes and brainstem, cerebral oedema with an acute subdural hematoma in right temporo- parietal region. Her platelet count was 40,000 at this time with signs of vascular leakage. She was intubated and ventilated with supportive care. Later on she developed features of cranial diabetes insipidus and it responded to intranasal desmopressin therapy. In spite of above measures signs of brainstem herniation developed and she succumbed to the illness on day 8. Dengue was confirmed serologically. Exact pathophysiological mechanism of diffuse cerebral haemorrhages without profound thrombocytopenia is not well understood. Increased awareness and high degree of clinical suspicion is needed among clinicians for timely diagnosis of this extremely rare complication of dengue fever. We postulate that immunological mechanisms may play a role in pathogenesis. However further comprehensive research and studies are needed to understand the pathophysiological mechanisms leading to this complication.
Molecular dynamic simulations of selective self-diffusion of CH4/CO2/H2O/N2 in coal
NASA Astrophysics Data System (ADS)
Song, Y.; Jiang, B.; Li, F. L.
2017-06-01
The self-diffusion coefficients (D) of CH4/CO2/H2O/N2 at a relatively broad range of temperatures(298.15∼ 458.15K)and pressures (1∼6MPa) under the NPT, NPH, NVE, and NVT ensembles were obtained after the calculations of molecular mechanics(MM), annealing kinetics(AK), giant canonical Monte Carlo(GCMC), and molecular dynamics (MD) based on Wiser bituminous coal model (WM). The Ds of the adsorbates at the saturated adsorption configurations are D CH4
Manning, Kathryn Y; Fehlings, Darcy; Mesterman, Ronit; Gorter, Jan Willem; Switzer, Lauren; Campbell, Craig; Menon, Ravi S
2015-10-01
The aim was to identify neuroimaging predictors of clinical improvements following constraint-induced movement therapy. Resting state functional magnetic resonance and diffusion tensor imaging data was acquired in 7 children with hemiplegic cerebral palsy. Clinical and magnetic resonance imaging (MRI) data were acquired at baseline and 1 month later following a 3-week constraint therapy regimen. A more negative baseline laterality index characterizing an atypical unilateral sensorimotor resting state network significantly correlated with an improvement in the Canadian Occupational Performance Measure score (r = -0.81, P = .03). A more unilateral network with decreased activity in the affected hemisphere was associated with greater improvements in clinical scores. Higher mean diffusivity in the posterior limb of the internal capsule of the affect tract correlated significantly with improvements in the Jebsen-Taylor score (r = -0.83, P = .02). Children with more compromised networks and tracts improved the most following constraint therapy. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Leenaers, A.; Van den Berghe, S.; Koonen, E.; Kuzminov, V.; Detavernier, C.
2015-03-01
In the framework of the SELENIUM project two full size flat fuel plates were produced with respectively Si and ZrN coated U(Mo) particles and irradiated in the BR2 reactor at SCK•CEN. Non-destructive analysis of the plates showed that the fuel swelling profiles of both SELENIUM plates were very similar to each other and none of the plates showed signs of pillowing or excessive swelling at the end of irradiation at the highest power position (local maximum 70% 235U). The microstructural analysis showed that the Si coated fuel has less interaction phase formation at low burn-up but at the highest burn-ups, defects start to develop on the IL-matrix interface. The ZrN coated fuel, shows a virtual absence of reaction between the U(Mo) and the Al, up to high fission densities after which the interaction layer formation starts and defects develop in the matrix near the U(Mo) particles. It was found and is confirmed by the SELENIUM (Surface Engineering of Low ENrIched Uranium-Molybdenum) experiment that there are two phenomena at play that need to be controlled: the formation of an interaction layer and swelling of the fuel. As the interaction layer formation occurs at the U(Mo)-matrix interface, applying a diffusion barrier (coating) at that interface should prevent the interaction between U(Mo) and the matrix. The U(Mo) swelling, observed to proceed at an accelerating rate with respect to fission density accumulation, is governed by linear solid state swelling and fission gas bubble swelling due to recrystallization of the fuel. The examination of the SELENIUM fuel plates clearly show that for the U(Mo) dispersion fuel to be qualified, the swelling rate at high burn-up needs to be reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Joshi, Vineet; Lavender, Curt A.
Experiments showed that recrystallization dramatically speeds up the gas bubble swelling kinetics in metallic UMo fuels. In this work a recrystallization model is developed to study the effect of microstructures and radiation conditions on recrystallization kinetics. The model integrates the rate theory of intra-granular gas bubble and interstitial loop evolution and a phase field model of recrystallization zone evolution. A fast passage method is employed to describe one dimensional diffusion of interstitials which have diffusivity several order magnitude larger than that of the fission gas Xe. With the model, the effect of grain sizes on recrystallization kinetics is simulated.
Embolic Protection Devices During TAVI: Current Evidence and Uncertainties.
Abdul-Jawad Altisent, Omar; Puri, Rishi; Rodés-Cabau, Josep
2016-10-01
Transcatheter aortic valve implantation (TAVI) is now the principal therapeutic option in patients with severe aortic stenosis deemed inoperable or at high surgical risk. Implementing TAVI in a lower risk profile population could be limited by relatively high cerebrovascular event rates related to the procedure. Diffusion-weighted magnetic resonance imaging studies have demonstrated the ubiquitous presence of silent embolic cerebral infarcts after TAVI, with some data relating these lesions to subsequent cognitive decline. Embolic protection devices provide a mechanical barrier against debris embolizing to the brain during TAVI. We review the current evidence and ongoing uncertainties faced with the 3 currently available devices (Embrella, TriGuard and Claret) in TAVI. Studies evaluated neurological damage at 3 levels: clinical, subclinical, and cognitive. Feasibility and safety were analyzed for the 3 devices. In terms of efficacy, all studies were exploratory, but none demonstrated significant reductions in clinical event rates. The Embrella and Claret devices demonstrated significant reductions of the total cerebral lesion volume on diffusion-weighted magnetic resonance imaging. Studies evaluating the effects on cognition were also somewhat inconclusive. In conclusion, despite embolic protection devices demonstrating reductions in the total cerebral lesion volume on diffusion-weighted magnetic resonance imaging, the clinical efficacy in terms of preventing stroke/cognitive decline requires confirmation in larger studies. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Effects of intravenous dimethyl sulfoxide on ischemia evolution in a rat permanent occlusion model
Bardutzky, Juergen; Meng, Xianjun; Bouley, James; Duong, Timothy Q; Ratan, Rajiv; Fisher, Marc
2010-01-01
Dimethyl sulfoxide (DMSO) has a variety of biological actions that suggest efficacy as a neuroprotectant. We (1) tested the neuroprotective potential of DMSO at different time windows on infarct size using 2,3,5-triphenyltetrazolium staining and (2) investigated the effects of DMSO on ischemia evolution using quantitative diffusion and perfusion imaging in a permanent middle cerebral artery occlusion (MCAO) model in rats. In experiment 1, DMSO treatment (1.5 g/kg intravenously over 3 h) reduced infarct volume 24 h after MCAO by 65% (P<0.00001) when initiated 20 h before MCAO, by 44% (P=0.0006) when initiated 1 h after MCAO, and by 17% (P=0.11) when started 2 h after MCAO. Significant infarct reduction was also observed after a 3-day survival in animals treated 1 h after MCAO (P=0.005). In experiment 2, treatment was initiated 1 h after MCAO and maps for cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) were acquired before treatment and then every 30 mins up to 4 h. Cerebral blood flow characteristics and CBF-derived lesion volumes did not differ between treated and untreated animals, whereas the ADC-derived lesion volume essentially stopped progressing during DMSO treatment, resulting in a persistent diffusion/perfusion mismatch. This effect was mainly observed in the cortex. Our data suggest that DMSO represents an interesting candidate for acute stroke treatment. PMID:15744247
de Haas, Ria; Das, Devashish; Garanto, Alejandro; Renkema, Herma G; Greupink, Rick; van den Broek, Petra; Pertijs, Jeanne; Collin, Rob W J; Willems, Peter; Beyrath, Julien; Heerschap, Arend; Russel, Frans G; Smeitink, Jan A
2017-09-15
Leigh Disease is a progressive neurometabolic disorder for which a clinical effective treatment is currently still lacking. Here, we report on the therapeutic efficacy of KH176, a new chemical entity derivative of Trolox, in Ndufs4 -/- mice, a mammalian model for Leigh Disease. Using in vivo brain diffusion tensor imaging, we show a loss of brain microstructural coherence in Ndufs4 -/- mice in the cerebral cortex, external capsule and cerebral peduncle. These findings are in line with the white matter diffusivity changes described in mitochondrial disease patients. Long-term KH176 treatment retained brain microstructural coherence in the external capsule in Ndufs4 -/- mice and normalized the increased lipid peroxidation in this area and the cerebral cortex. Furthermore, KH176 treatment was able to significantly improve rotarod and gait performance and reduced the degeneration of retinal ganglion cells in Ndufs4 -/- mice. These in vivo findings show that further development of KH176 as a potential treatment for mitochondrial disorders is worthwhile to pursue. Clinical trial studies to explore the potency, safety and efficacy of KH176 are ongoing.
Gallardo, Alberto; Lujan, Noelia; Reinecke, Helmut; García, Carolina; Campo, Adolfo Del; Rodriguez-Hernandez, Juan
2017-02-21
Facile procedures capable of simultaneously conferring hydrophilicity and tailored topography to surfaces of hydrophobic supports, such as polycarbonate (PC), are very attractive but rare. In this work, we describe a simple methodology to wrinkle PC surfaces after a process of (a) contacting with a photopolymerizable vinylic solution, (b) UV curing of such solutions, and (c) detachment of the formed polymer network, upon swelling in ethanol. The influence of different parameters such as contact lag time between the PC surface and the polymerizable solution, the monomer concentration and type of solvents, as well as the cross-linking degree on the formation of wrinkles, has been studied. The dimensions of the wrinkles can be tailored to some extent by altering the different parameters. Surface chemistry has been analyzed by contact angle measurements and by confocal Raman microscopy. The results are consistent with a chemical alteration of the surface and the formation of an outer hydrogel layer, which is interpenetrated into the PC structure. A mechanism of monomer diffusion and PC swelling that produces surface instabilities and wrinkling is proposed.
Tissue-Selective Salvage of the White Matter by Successful Endovascular Stroke Therapy.
Kleine, Justus F; Kaesmacher, Mirjam; Wiestler, Benedikt; Kaesmacher, Johannes
2017-10-01
White matter (WM) is less vulnerable to ischemia than gray matter. In ischemic stroke caused by acute large-vessel occlusion, successful recanalization might therefore sometimes selectively salvage the WM, leading to infarct patterns confined to gray matter. This study examines occurrence, determinants, and clinical significance of such effects. Three hundred twenty-two patients with acute middle cerebral artery occlusion subjected to mechanical thrombectomy were included. Infarct patterns were categorized into WM - (sparing the WM) and WM + (involving WM). National Institutes of Health Stroke Scale-based measures of neurological outcome, including National Institutes of Health Stroke Scale improvement or National Institutes of Health Stroke Scale worsening, good functional midterm outcome (day 90-modified Rankin Scale score of ≤2), the occurrence of malignant swelling, and in-hospital mortality were predefined outcome measures. WM - infarcts occurred in 118 of 322 patients and were associated with successful recanalization and better collateral grades ( P <0.05). Shorter symptom-onset to recanalization times were also associated with WM - infarcts in univariate analysis, but not when adjusted for collateral grades. WM - infarcts were independently associated with good neurological outcome (adjusted odds ratio, 3.003; 95% confidence interval, 1.186-7.607; P =0.020) and good functional midterm outcome (adjusted odds ratio, 8.618; 95% confidence interval, 2.409-30.828; P =0.001) after correcting for potential confounders, including final infarct volume. Only 2.6% of WM - patients, but 20.5% of WM + patients exhibited neurological worsening, and none versus 12.8% developed malignant swelling ( P <0.001), contributing to lower mortality in this group (2.5% versus 10.3%; P =0.014). WM infarction commonly commences later than gray matter infarction after acute middle cerebral artery occlusion. Successful recanalization can therefore salvage completely the WM at risk in many patients even several hours after symptom onset. Preservation of the WM is associated with better neurological recovery, prevention of malignant swelling, and reduced mortality. This has important implications for neuroprotective strategies, and perfusion imaging-based patient selection, and provides a rationale for treating selected patients in extended time windows. © 2017 American Heart Association, Inc.
Mandal, Bidyadhar; Ray, Samit Kumar
2015-11-01
Several hydrogels were prepared by a free radical polymerization of acrylic acid (AA), sodium acrylate (SA) and AA/hydroxy ethyl methacrylate (HEMA) in the presence of starch in water. These starch incorporated acrylic gels were prepared by varying the concentration of the initiator, monomer, crosslinker and the starch. The resulting gels were characterized by FTIR, SEM, XRD, DTA-TGA, pH at point zero charge (PZC), swelling and the diffusion in water. The gels showed high adsorption and removal% of Safranine T (ST) and Brilliant Cresyl Blue (BCB) dyes from water. The swelling and the adsorption data were fitted to different kinetic models and isotherms. Amongst the three kinds of gels, the starch incorporated sodium polyacrylate gel showed the highest adsorption of 9.7-85.3mg/L (97-61% removal) of BCB dye and 9.1-83mg/L (91-60% removal) of ST dye for a feed dye concentration of 10-140mg/L. Copyright © 2015 Elsevier B.V. All rights reserved.
Kong, Bong Ju; Kim, Ayoung; Park, Soo Nam
2016-08-20
In the present study, the properties of hydrogel systems based on hyaluronic acid (HA)-hydroxyethyl cellulose (HEC) were investigated for effective transdermal delivery of isoliquiritigenin (ILTG). Hydrogels were synthesized by chemical cross-linking, and network structures were characterised using scanning electron microscopy (SEM) and surface area analyser. Texture properties and swelling of HA-HEC hydrogels were found to be closely linked to cross-linker concentration and swelling medium. Water in HA-HEC hydrogels was found to exist mostly in the form of free water. The viscoelasticity and the network stabilization of the hydrogels were analysed via rheological studies. The release kinetics of the hydrogel followed Fickian diffusion mechanism. In an in vitro skin penetration study, the system substantially improved the delivery of ILTG into the skin. These results indicate that the hydrogel system composed of HA and HEC has potential as a transdermal delivery system, with cross-linking density and the swelling medium influencing the properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dehaes, Mathieu; Cheng, Henry H.; Buckley, Erin M.; Lin, Pei-Yi; Ferradal, Silvina; Williams, Kathryn; Vyas, Rutvi; Hagan, Katherine; Wigmore, Daniel; McDavitt, Erica; Soul, Janet S.; Franceschini, Maria Angela; Newburger, Jane W.; Ellen Grant, P.
2015-01-01
Congenital heart disease (CHD) patients are at risk for neurodevelopmental delay. The etiology of these delays is unclear, but abnormal prenatal cerebral maturation and postoperative hemodynamic instability likely play a role. A better understanding of these factors is needed to improve neurodevelopmental outcome. In this study, we used bedside frequency-domain near infrared spectroscopy (FDNIRS) and diffuse correlation spectroscopy (DCS) to assess cerebral hemodynamics and oxygen metabolism in neonates with single-ventricle (SV) CHD undergoing surgery and compared them to controls. Our goals were 1) to compare cerebral hemodynamics between unanesthetized SV and healthy neonates, and 2) to determine if FDNIRS-DCS could detect alterations in cerebral hemodynamics beyond cerebral hemoglobin oxygen saturation (SO2). Eleven SV neonates were recruited and compared to 13 controls. Preoperatively, SV patients showed decreased cerebral blood flow (CBFi), cerebral oxygen metabolism (CMRO2i) and SO2; and increased oxygen extraction fraction (OEF) compared to controls. Compared to preoperative values, unstable postoperative SV patients had decreased CMRO2i and CBFi, which returned to baseline when stable. However, SO2 showed no difference between unstable and stable states. Preoperative SV neonates are flow-limited and show signs of impaired cerebral development compared to controls. FDNIRS-DCS shows potential to improve assessment of cerebral development and postoperative hemodynamics compared to SO2 alone. PMID:26713191
Cotta, Gianluca; Blanco, Igor; Zirak, Peyman; Giovannella, Martina; Mola, Anna; Fortuna, Ana; Durduran, Turgut; Mayos, Mercedes
2018-01-01
Motivation Obstructive sleep apnea (OSA) can impair cerebral vasoreactivity and is associated with an increased risk of cerebrovascular disease. Unfortunately, an easy-to-use, non-invasive, portable monitor of cerebral vasoreactivity does not exist. Therefore, we have evaluated the use of near-infrared diffuse correlation spectroscopy to measure the microvascular cerebral blood flow (CBF) response to a mild head-of-bed position change as a biomarker for the evaluation of cerebral vasoreactivity alteration due to chronic OSA. Furthermore, we have monitored the effect of two years of continuous positive airway pressure (CPAP) treatment on the cerebral vasoreactivity. Methodology CBF was measured at different head-of-bed position changes (supine to 30° to supine) in sixty-eight patients with OSA grouped according to severity (forty moderate to severe, twenty-eight mild) and in fourteen control subjects without OSA. A subgroup (n = 13) with severe OSA was measured again after two years of CPAP treatment. Results All patients and controls showed a similar CBF response after changing position from supine to 30° (p = 0.819), with a median (confidence interval) change of -17.5 (-10.3, -22.9)%. However, when being tilted back to the supine position, while the control group (p = 0.091) and the mild patients with OSA (p = 0.227) recovered to the initial baseline, patients with moderate and severe OSA did not recover to the baseline (9.8 (0.8, 12.9)%, p < 0.001) suggesting altered cerebral vasoreactivity. This alteration was correlated with OSA severity defined by the apnea-hypopnea index, and with mean nocturnal arterial oxygen saturation. The CBF response was normalized after two years of CPAP treatment upon follow-up measurements. Conclusion In conclusion, microvascular CBF response to a head-of-bed challenge measured by diffuse correlation spectroscopy suggests that moderate and severe patients with OSA have altered cerebral vasoreactivity related to OSA severity. This may normalize after two years of CPAP treatment. PMID:29538409
Characterization of the Properties of Photopatterned Hydrogels for Use in Regenerative Medicine
NASA Astrophysics Data System (ADS)
Fiedler, Callie Irene
The goal of this thesis was to locally photopattern cytocompatible hydrogels to exhibit a wide range of mechanical properties and to probe the fundamental parameters governing these materials printed via stereolithography (SLA). Fabricating cell-laden structures with locally defined mechanical properties is non-trivial because the use of multiple precursor materials is wasteful, slow, and can lead to cell-death. To investigate the range of mechanical properties a single precursor solution can produce, I initially formed a single-network hydrogel and cyclically in- swelled fresh precursor solution followed by photo-exposure of the swollen gel ("swelling + exposure" or SE cycle). Because transport (i.e., diffusion and swelling) can occur on the same time scale as photopolymerization reaction kinetics, I first characterized the variable modulus hydrogels in bulk to isolate the reaction kinetics. In these experiments, I demonstrated the ability modify the mechanical and chemical (i.e., compressive modulus, toughness, crosslink density, swelling ratio) properties by up to 10-fold using only 2-4 SE cycles. I then used the understanding gained via these bulk experiments to locally photopattern the elastic modulus of a cytocompatible hydrogel with pixel-limited resolution (˜10s mum) employing a custom SLA system. Here I demonstrated the ability to fabricate hydrogels with a 500% elastic moduli increase with respect to the unpatterned hydrogel using atomic force microscopy. I monitored monomer attachment to the existing matrix as a function of SE cycle using confocal fluorescence microscopy to characterize the shape and size of printed features. I validated that the dependence of these features on material and processing conditions could be explained by a first-order reaction/diffusion model. With this understanding, I fabricated SLA 3D printed, soft, cytocompatible hydrogels (˜10s kPa) with ˜250 mum channels in addition to fabricating 3D printed stiff, cytocompatible hydrogels (39 MPa) both with ˜10 mum resolution.
Ito, Umeo; Hakamata, Yoji; Watabe, Kazuhiko; Oyanagi, Kiyomitsu
2014-01-01
Previously we found that, after temporary cerebral ischemia, microvasculogenic secondary focal cerebral cortical ischemia occurred, caused by microvascular obstruction due to compression by swollen astrocytic end-feet, resulting in focal infarction. Herein, we examined whether mannitol infusion immediately after restoration of blood flow could protect the cerebral cortex against the development of such an infarction. If so, the infusion of mannitol might improve the results of vascular reperfusion therapy. We selected stroke-positive animals during the first 10 min after left carotid occlusion performed twice with a 5-h interval, and allocated them into four groups: sham-operated control, no-treatment, mannitol-infusion, and saline-infusion groups. Light- and electron-microscopic studies were performed on cerebral cortices of coronal sections prepared at the chiasmatic level, where the focal infarction develops abruptly in the area where disseminated selective neuronal necrosis is maturing. Measurements were performed to determine the following: (A) infarct size in HE-stained specimens from all groups at 72 and 120 h after return of blood flow; (B) number of carbon-black-suspension-perfused microvessels in the control and at 0.5, 3, 5, 8, 12 and 24 h in the no-treatment and mannitol-infusion groups; (C) area of astrocytic end-feet; and (D) number of mitochondria in the astrocytic end-feet in electron microscopic pictures taken at 5 h. The average decimal fraction area ratio of infarct size in the mannitol group was significantly reduced at 72 and 120 h, associated with an increased decimal fraction number ratio of carbon-black-suspension-perfused microvessels at 3, 5 and 8 h, and a marked reduction in the size of the end-feet at 5 h. Mannitol infusion performed immediately after restitution of blood flow following temporary cerebral ischemia remarkably reduced the size of the cerebral cortical focal infarction by decreasing the swelling of the end-feet, thus preventing the microvascular compression and stasis and thereby microvasculogenic secondary focal cerebral ischemia. PMID:24661099
... The force of a professional boxer's fist is equivalent to being hit with a 13-pound bowling ... concussions frequently affect athletes in both contact and non-contact sports. Cerebral concussions are considered diffuse brain ...
Zanchi, Davide; Viallon, Magalie; Le Goff, Caroline; Millet, Grégoire P.; Giardini, Guido; Croisille, Pierre; Haller, Sven
2017-01-01
Background: Pioneer studies demonstrate the impact of extreme sport load on the human brain, leading to threatening conditions for athlete's health such as cerebral edema. The investigation of brain water diffusivity, allowing the measurement of the intercellular water and the assessment of cerebral edema, can give a great contribution to the investigation of the effects of extreme sports on the brain. We therefore assessed the effect of supra-physiological effort (extreme distance and elevation changes) in mountain ultra-marathons (MUMs) athletes combining for the first time brain magnetic resonance imaging (MRI) and blood parameters. Methods:This longitudinal study included 19 volunteers (44.2 ± 9.5 years) finishing a MUM (330 km, elevation + 24000 m). Quantitative measurements of brain diffusion-weighted images (DWI) were performed at 3 time-points: Before the race, upon arrival and after 48 h. Multiple blood biomarkers were simultaneously investigated. Data analyses included brain apparent diffusion coefficient (ADC) and physiological data comparisons between three time-points. Results:The whole brain ADC significantly increased from baseline to arrival (p = 0.005) and then significantly decreased at recovery (p = 0.005) to lower values than at baseline (p = 0.005). While sodium, potassium, calcium, and chloride as well as hematocrit (HCT) changed over time, the serum osmolality remained constant. Significant correlations were found between whole brain ADC changes and osmolality (p = 0.01), cholesterol (p = 0.009), c-reactive protein (p = 0.04), sodium (p = 0.01), and chloride (p = 0.002) plasma level variations. Conclusions:These results suggest the relative increase of the inter-cellular volume upon arrival, and subsequently its reduction to lower values than at baseline, indicating that even after 48 h the brain has not fully recovered to its equilibrium state. Even though serum electrolytes may only indirectly indicate modifications at the brain level due to the blood brain barrier, the results concerning osmolality suggest that body water might directly influence the change in cerebral ADC. These findings establish therefore a direct link between general brain inter-cellular water content and physiological biomarkers modifications produced by extreme sport. PMID:28105018
Zanchi, Davide; Viallon, Magalie; Le Goff, Caroline; Millet, Grégoire P; Giardini, Guido; Croisille, Pierre; Haller, Sven
2016-01-01
Background: Pioneer studies demonstrate the impact of extreme sport load on the human brain, leading to threatening conditions for athlete's health such as cerebral edema. The investigation of brain water diffusivity, allowing the measurement of the intercellular water and the assessment of cerebral edema, can give a great contribution to the investigation of the effects of extreme sports on the brain. We therefore assessed the effect of supra-physiological effort (extreme distance and elevation changes) in mountain ultra-marathons (MUMs) athletes combining for the first time brain magnetic resonance imaging (MRI) and blood parameters. Methods: This longitudinal study included 19 volunteers (44.2 ± 9.5 years) finishing a MUM (330 km, elevation + 24000 m). Quantitative measurements of brain diffusion-weighted images (DWI) were performed at 3 time-points: Before the race, upon arrival and after 48 h. Multiple blood biomarkers were simultaneously investigated. Data analyses included brain apparent diffusion coefficient (ADC) and physiological data comparisons between three time-points. Results: The whole brain ADC significantly increased from baseline to arrival ( p = 0.005) and then significantly decreased at recovery ( p = 0.005) to lower values than at baseline ( p = 0.005). While sodium, potassium, calcium, and chloride as well as hematocrit (HCT) changed over time, the serum osmolality remained constant. Significant correlations were found between whole brain ADC changes and osmolality ( p = 0.01), cholesterol ( p = 0.009), c-reactive protein ( p = 0.04), sodium ( p = 0.01), and chloride ( p = 0.002) plasma level variations. Conclusions: These results suggest the relative increase of the inter-cellular volume upon arrival, and subsequently its reduction to lower values than at baseline, indicating that even after 48 h the brain has not fully recovered to its equilibrium state. Even though serum electrolytes may only indirectly indicate modifications at the brain level due to the blood brain barrier, the results concerning osmolality suggest that body water might directly influence the change in cerebral ADC. These findings establish therefore a direct link between general brain inter-cellular water content and physiological biomarkers modifications produced by extreme sport.
NASA Astrophysics Data System (ADS)
Cheng, Ran; Shang, Yu; Wang, Siqi; Evans, Joyce M.; Rayapati, Abner; Randall, David C.; Yu, Guoqiang
2014-01-01
Significant drops in arterial blood pressure and cerebral hemodynamics have been previously observed during vasovagal syncope (VVS). Continuous and simultaneous monitoring of these physiological variables during VVS is rare, but critical for determining which variable is the most sensitive parameter to predict VVS. The present study used a novel custom-designed diffuse correlation spectroscopy flow-oximeter and a finger plethysmograph to simultaneously monitor relative changes of cerebral blood flow (rCBF), cerebral oxygenation (i.e., oxygenated/deoxygenated/total hemoglobin concentration: r[HbO2]/r[Hb]/rTHC), and mean arterial pressure (rMAP) during 70 deg head-up tilt (HUT) in 14 healthy adults. Six subjects developed presyncope during HUT. Two-stage physiological responses during HUT were observed in the presyncopal group: slow and small changes in measured variables (i.e., Stage I), followed by rapid and dramatic decreases in rMAP, rCBF, r[HbO2], and rTHC (i.e., Stage II). Compared to other physiological variables, rCBF reached its breakpoint between the two stages earliest and had the largest decrease (76±8%) during presyncope. Our results suggest that rCBF has the best sensitivity for the assessment of VVS. Most importantly, a threshold of ˜50% rCBF decline completely separated the subjects from those without presyncope, suggesting its potential for predicting VVS.
Muñoz, Esteban; Campdelacreu, Jaume; Ferrer, Isidre; Rey, María J; Cardozo, Adriana; Gómez, Beatriz; Tolosa, Eduardo
2004-06-01
The pathophysiology of white matter involvement in dentatorubropallidoluysian atrophy (DRPLA) is controversial. Moreover, the clinical repercussions and evolution of these lesions have not been well documented. To describe a case of DRPLA with severe cerebellar white matter involvement. Case report. Patient A 62-year-old woman with DRPLA. When the genetic diagnosis was made, the patient manifested severe ataxia, slight dysarthria, and subcortical cognitive impairment. Cranial magnetic resonance imaging showed atrophy of the cerebellum and brainstem and moderate high-intensity signal alterations in the periventricular cerebral white matter in T2-weighted sequences. In the following 5 years, she developed uncontrolled head movements associated with severe bruxism and tetraparesis, and became deeply demented. New magnetic resonance imaging showed severe diffuse cerebral white matter alterations in T2 sequences with only slight progression of brainstem and cerebellar atrophy. After her death at 67 years of age, the autopsy study showed diffuse myelin pallor, axonal preservation, and reactive astrogliosis in the cerebral white matter, with only mild atherosclerotic changes, and moderate neuronal loss in the cerebellum and brainstem. Leukoencephalopathy could be a prominent finding in some patients with DRPLA, explaining, at least in part, their clinical evolution. In our case, the disproportion between the severity of white matter damage and vascular changes does not support a cardinal role for ischemic mechanisms in leukoencephalopathy.
Verdecchia, Kyle; Diop, Mamadou; Lee, Ting-Yim; St Lawrence, Keith
2013-02-01
Preterm infants are highly susceptible to ischemic brain injury; consequently, continuous bedside monitoring to detect ischemia before irreversible damage occurs would improve patient outcome. In addition to monitoring cerebral blood flow (CBF), assessing the cerebral metabolic rate of oxygen (CMRO2) would be beneficial considering that metabolic thresholds can be used to evaluate tissue viability. The purpose of this study was to demonstrate that changes in absolute CMRO2 could be measured by combining diffuse correlation spectroscopy (DCS) with time-resolved near-infrared spectroscopy (TR-NIRS). Absolute CBF was determined using bolus-tracking TR-NIRS to calibrate the DCS measurements. Cerebral venous blood oxygenation (SvO2) was determined by multiwavelength TR-NIRS measurements, the accuracy of which was assessed by directly measuring the oxygenation of sagittal sinus blood. In eight newborn piglets, CMRO2 was manipulated by varying the anesthetics and by injecting sodium cyanide. No significant differences were found between the two sets of SvO2 measurements obtained by TR-NIRS or sagittal sinus blood samples and the corresponding CMRO2 measurements. Bland-Altman analysis showed a mean CMRO2 difference of 0.0268 ± 0.8340 mLO2/100 g/min between the two techniques over a range from 0.3 to 4 mL O2/100 g/min.
Hoffmann, Angelika; Kunze, Reiner; Helluy, Xavier; Milford, David; Heiland, Sabine; Bendszus, Martin; Pham, Mirko; Marti, Hugo H
2016-01-01
Human pathophysiology of high altitude hypoxic brain injury is not well understood and research on the underlying mechanisms is hampered by the lack of well-characterized animal models. In this study, we explored the evolution of brain injury by magnetic resonance imaging (MRI) and histological methods in mice exposed to normobaric hypoxia at 8% oxygen for 48 hours followed by rapid reoxygenation and incubation for further 24 h under normoxic conditions. T2*-, diffusion-weighted and T2-relaxometry MRI was performed before exposure, immediately after 48 hours of hypoxia and 24 hours after reoxygenation. Cerebral microhemorrhages, previously described in humans suffering from severe high altitude cerebral edema, were also detected in mice upon hypoxia-reoxygenation with a strong region-specific clustering in the olfactory bulb, and to a lesser extent, in the basal ganglia and cerebral white matter. The number of microhemorrhages determined immediately after hypoxia was low, but strongly increased 24 hours upon onset of reoxygenation. Histologically verified microhemorrhages were exclusively located around cerebral microvessels with disrupted interendothelial tight junction protein ZO-1. In contrast, quantitative T2 and apparent-diffusion-coefficient values immediately after hypoxia and after 24 hours of reoxygenation did not show any region-specific alteration, consistent with subtle multifocal but not with regional or global brain edema.
Fiber-based hybrid probe for non-invasive cerebral monitoring in neonatology
NASA Astrophysics Data System (ADS)
Rehberger, Matthias; Giovannella, Martina; Pagliazzi, Marco; Weigel, Udo; Durduran, Turgut; Contini, Davide; Spinelli, Lorenzo; Pifferi, Antonio; Torricelli, Alessandro; Schmitt, Robert
2015-07-01
Improved cerebral monitoring systems are needed to prevent preterm infants from long-term cognitive and motor restrictions. Combining advanced near-infrared diffuse spectroscopy measurement technologies, time-resolved spectroscopy (TRS) and diffuse correlation spectroscopy (DCS) will introduce novel indicators of cerebral oxygen metabolism and blood flow for neonatology. For non-invasive sensing a fiber-optical probe is used to send and receive light from the infant head. In this study we introduce a new fiber-based hybrid probe that is designed for volume production. The probe supports TRS and DCS measurements in a cross geometry, thus both technologies gain information on the same region inside the tissue. The probe is highly miniaturized to perform cerebral measurements on heads of extreme preterm infants down to head diameters of 6cm. Considerations concerning probe production focus on a reproducible accuracy in shape and precise optical alignment. In this way deviations in measurement data within a series of probes should be minimized. In addition to that, requirements for clinical use like robustness and hygiene are considered. An additional soft-touching sleeve made of FDA compatible silicone allows for a flexible attachment with respect to the individual anatomy of each patient. We present the technical concept of the hybrid probe and corresponding manufacturing methods. A prototype of the probe is shown and tested on tissue phantoms as well as in vivo to verify its operational reliability.
Zuo, Lian; Zhang, Yue; Xu, Xiahong; Li, Ying; Bao, Huan; Hao, Junjie; Wang, Xin; Li, Gang
2015-01-01
We aimed to investigate the clinicoradiologic determinants of negative diffusion-weighted image (DWI) results in patients with acute cerebral infarction (ACI). The medical records were reviewed of ACI patients. Patients were divided to the DWI positive and negative group. Positive DWI was used as independent variable and patients' clinicoradiologic factors were used as co-variables for multivariate logistic regression analysis. 349 patients received initial cerebral MRI within 72 hours of admission. Lacunar infarction was most common (42.1%) followed by posterior circulation infarction (30.1%) and partial anterior circulation infarction (18.1%). The majority of the patients (72.2%) had an NIHSS score of less than 5 at admission. 316 patients (90.54%) were positive on initial DWI. Patients with smoking, initial SBP ≥ 140 or DBP ≥ 90 mmHg, initial fasting plasma glucose (FPG) ≥7.0 mmol/L, initial MRI from onset of disease >1 d and anterior circulation infarction were liable to show positive DWI. Furthermore, DWI negative patients had significantly lower NIHSS scores (IQR 0,1,2) than DWI positive patients (IQR 1,2,4) (P = 0.000) at two weeks post onset of acute cerebral infarction. In conclusion, multiple clinicoradiologic factors are associated with negative and positive DWI and further delineation of these factors is required in future prospective studies. PMID:25777182
NASA Astrophysics Data System (ADS)
Verdecchia, Kyle; Diop, Mamadou; Lee, Ting-Yim; St. Lawrence, Keith
2013-02-01
Preterm infants are highly susceptible to ischemic brain injury; consequently, continuous bedside monitoring to detect ischemia before irreversible damage occurs would improve patient outcome. In addition to monitoring cerebral blood flow (CBF), assessing the cerebral metabolic rate of oxygen (CMRO2) would be beneficial considering that metabolic thresholds can be used to evaluate tissue viability. The purpose of this study was to demonstrate that changes in absolute CMRO2 could be measured by combining diffuse correlation spectroscopy (DCS) with time-resolved near-infrared spectroscopy (TR-NIRS). Absolute CBF was determined using bolus-tracking TR-NIRS to calibrate the DCS measurements. Cerebral venous blood oxygenation (SvO2) was determined by multiwavelength TR-NIRS measurements, the accuracy of which was assessed by directly measuring the oxygenation of sagittal sinus blood. In eight newborn piglets, CMRO2 was manipulated by varying the anesthetics and by injecting sodium cyanide. No significant differences were found between the two sets of SvO2 measurements obtained by TR-NIRS or sagittal sinus blood samples and the corresponding CMRO2 measurements. Bland-Altman analysis showed a mean CMRO2 difference of 0.0268±0.8340 mL O2/100 g/min between the two techniques over a range from 0.3 to 4 mL O2/100 g/min.
Segmentation of the canine corpus callosum using diffusion-tensor imaging tractography.
Pierce, Theodore T; Calabrese, Evan; White, Leonard E; Chen, Steven D; Platt, Simon R; Provenzale, James M
2014-01-01
We set out to determine functional white matter (WM) connections passing through the canine corpus callosum; these WM connections would be useful for subsequent studies of canine brains that serve as models for human WM pathway disease. Based on prior studies, we anticipated that the anterior corpus callosum would send projections to the anterior cerebral cortex whereas progressively posterior segments would send projections to more posterior cortex. A postmortem canine brain was imaged using a 7-T MRI system producing 100-μm-isotropic-resolution diffusion-tensor imaging analyzed by tractography. Using regions of interest (ROIs) within cortical locations, which were confirmed by a Nissl stain that identified distinct cortical architecture, we successfully identified six important WM pathways. We also compared fractional anisotropy (FA), apparent diffusion coefficient (ADC), radial diffusivity, and axial diffusivity in tracts passing through the genu and splenium. Callosal fibers were organized on the basis of cortical destination (e.g., fibers from the genu project to the frontal cortex). Histologic results identified the motor cortex on the basis of cytoarchitectonic criteria that allowed placement of ROIs to discriminate between frontal and parietal lobes. We also identified cytoarchitecture typical of the orbital frontal, anterior frontal, and occipital regions and placed ROIs accordingly. FA, ADC, radial diffusivity, and axial diffusivity values were all higher in posterior corpus callosum fiber tracts. Using six cortical ROIs, we identified six major WM tracts that reflect major functional divisions of the cerebral hemispheres, and we derived quantitative values that can be used for study of canine models of human WM pathologic states.
Sodium 4-phenylbutyrate protects against cerebral ischemic injury.
Qi, Xin; Hosoi, Toru; Okuma, Yasunobu; Kaneko, Masayuki; Nomura, Yasuyuki
2004-10-01
Sodium 4-phenylbutyrate (4-PBA) is a low molecular weight fatty acid that has been used for treatment of urea cycle disorders in children, sickle cell disease, and thalassemia. It has been demonstrated recently that 4-PBA can act as a chemical chaperone by reducing the load of mutant or mislocated proteins retained in the endoplasmic reticulum (ER) under conditions associated with cystic fibrosis and liver injury. In the present study, we evaluated the neuroprotective effect of 4-PBA on cerebral ischemic injury. Pre- or post-treatment with 4-PBA at therapeutic doses attenuated infarction volume, hemispheric swelling, and apoptosis and improved neurological status in a mouse model of hypoxia-ischemia. Moreover, 4-PBA suppressed ER-mediated apoptosis by inhibiting eukaryotic initiation factor 2alpha phosphorylation, CCAAT/enhancer-binding protein homologous protein induction, and caspase-12 activation. In neuroblastoma neuro2a cells, 4-PBA reduced caspase-12 activation, DNA fragmentation, and cell death induced by hypoxia/reoxygenation. It protected against ER stress-induced but not mitochondria-mediated cell death. Additionally, 4-PBA inhibited the expression of inducible nitric-oxide synthase and tumor necrosis factor-alpha in primary cultured glial cells under hypoxia/reoxygenation. These results indicate that 4-PBA could protect against cerebral ischemia through inhibition of ER stress-mediated apoptosis and inflammation. Therefore, the multiple actions of 4-PBA may provide a strong effect in treatment of cerebral ischemia, and its use as a chemical chaperone would provide a novel approach for the treatment of stroke.
Xu, Boyan; Su, Lu; Wang, Zhenxiong; Fan, Yang; Gong, Gaolang; Zhu, Wenzhen; Gao, Peiyi; Gao, Jia-Hong
2018-04-17
Anomalous diffusion model has been introduced and shown to be beneficial in clinical applications. However, only the directionally averaged values of anomalous diffusion parameters were investigated, and the anisotropy of anomalous diffusion remains unexplored. The aim of this study was to demonstrate the feasibility of using anisotropy of anomalous diffusion for differentiating low- and high-grade cerebral gliomas. Diffusion MRI images were acquired from brain tumor patients and analyzed using the fractional motion (FM) model. Twenty-two patients with histopathologically confirmed gliomas were selected. An anisotropy metric for the FM-related parameters, including the Noah exponent (α) and the Hurst exponent (H), was introduced and their values were statistically compared between the low- and high-grade gliomas. Additionally, multivariate logistic regression analysis was performed to assess the combination of the anisotropy metric and the directionally averaged value for each parameter. The diagnostic performances for grading gliomas were evaluated using a receiver operating characteristic (ROC) analysis. The Hurst exponent H was more anisotropic in high-grade than in low-grade gliomas (P = 0.015), while no significant difference was observed for the anisotropy of α. The ROC analysis revealed that larger areas under the ROC curves were produced for the combination of α (1) and the combination of H (0.813) compared with the directionally averaged α (0.979) and H (0.594), indicating an improved performance for tumor differentiation. The anisotropy of anomalous diffusion can provide distinctive information and benefit the differentiation of low- and high-grade gliomas. The utility of anisotropic anomalous diffusion may have an improved effect for investigating pathological changes in tissues. Copyright © 2018 Elsevier Inc. All rights reserved.
Effect of Intracranial Stenosis Revascularization on Dynamic and Static Cerebral Autoregulation.
Ortega-Gutierrez, Santiago; Samaniego, Edgar A; Huang, Amy; Masurkar, Arjun; Zheng-Lin, Binbin; Derdeyn, Colin P; Hasan, David; Marshall, Randolph; Petersen, Nils
2018-06-01
Severe intracranial stenosis might lead to acute cerebral ischemia. It is imperative to better assess patients who may benefit from immediate reperfusion and blood pressure management to prevent injury to peri-infarct tissue. We assessed cerebral autoregulation using static and dynamic methods in an 81-year-old woman suffering acute cerebral ischemia from severe intracranial stenosis in the petrous segment of the left internal carotid artery (LICA). Static cerebral autoregulation, which is evaluated by magnetic resonance imaging and magnetic resonance perfusion studies showed a progression of infarcts and a large perfusion-diffusion mismatch in the entire LICA territory between the second and third days after onset despite maximized medical therapy. Dynamic methods, including transfer function analysis and mean velocity index, demonstrated an increasingly impaired dynamic cerebral autoregulation (DCA) on the affected side between these days. Revascularization through acute intracranial stenting resulted in improved perfusion in the LICA territory and normalization of both dynamic and static cerebral autoregulation. Thus, DCA, a noninvasive bedside method, may be useful in helping to identify and select patients with large-vessel flow-failure syndromes that would benefit from immediate revascularization of intracranial atherosclerotic disease.
The pathogenesis of pediatric cerebral malaria: eye exams, autopsies, and neuroimaging.
Taylor, Terrie E; Molyneux, Malcolm E
2015-04-01
Several advances in our understanding of pediatric cerebral malaria (CM) have been made over the past 25 years. Accurate clinical diagnosis is enhanced by the identification of a characteristic retinopathy, visible by direct or indirect ophthalmoscopy, the retinal changes (retinal whitening, vessel color changes, white-centered hemorrhages) being consistently associated with intracerebral sequestration of parasites in autopsy studies. Autopsies have yielded information at tissue levels in fatal CM, but new insights into critical pathogenetic processes have emerged from neuroimaging studies, which, unlike autopsy-based studies, permit serial observations over time and allow comparisons between fatal cases and survivors. Brain swelling has emerged as the major risk factor for death, and, among survivors, brain volume diminishes spontaneously over 24-48 hours. Studies of life-threatening and fatal malaria are suggesting new approaches to identifying and caring for those at highest risk; potential adjuvants should be evaluated and implemented where they are most needed. © 2015 New York Academy of Sciences.
Asymmetries of the arcuate fasciculus in monozygotic twins: genetic and nongenetic influences.
Häberling, Isabelle S; Badzakova-Trajkov, Gjurgjica; Corballis, Michael C
2013-01-01
We assessed cerebral asymmetry for language in 35 monozygotic twin pairs. Using DTI, we reconstructed the arcuate fasciculus in each twin. Among the male twins, right-handed pairs showed greater left-sided asymmetry of connectivity in the arcuate fasciculus than did those with discordant handedness, and within the discordant group the right-handers had greater left-sided volume asymmetry of the arcuate fasciculus than did their left-handed co-twins. There were no such effects in the female twins. Cerebral asymmetry for language showed more consistent results, with the more left-cerebrally dominant twins also showing more leftward asymmetry of high anisotropic fibers in the arcuate fasciculus, a result applying equally to female as to male twins. Reversals of arcuate fasciculus asymmetry were restricted to pairs discordant for language dominance, with the left-cerebrally dominant twins showing leftward and the right-cerebrally dominant twins rightward asymmetry of anisotropic diffusion in the arcuate fasciculus. Because monozygotic twin pairs share the same genotype, our results indicate a strong nongenetic component in arcuate fasciculus asymmetry, particularly in those discordant for cerebral asymmetry.
Effect of cerebral spinal fluid suppression for diffusional kurtosis imaging.
Yang, Alicia W; Jensen, Jens H; Hu, Caixia C; Tabesh, Ali; Falangola, Maria F; Helpern, Joseph A
2013-02-01
To evaluate the cerebral spinal fluid (CSF) partial volume effect on diffusional kurtosis imaging (DKI) metrics in white matter and cortical gray matter. Four healthy volunteers participated in this study. Standard DKI and fluid-attenuated inversion recovery (FLAIR) DKI experiments were performed using a twice-refocused-spin-echo diffusion sequence. The conventional diffusion tensor imaging (DTI) metrics of fractional anisotropy (FA), mean, axial, and radial diffusivity (MD, D[symbol in text], D[symbol in text] together with DKI metrics of mean, axial, and radial kurtosis (MK, K[symbol in text], K[symbol in text], were measured and compared. Single image slices located above the lateral ventricles, with similar anatomical features for each subject, were selected to minimize the effect of CSF from the ventricles. In white matter, differences of less than 10% were observed between diffusion metrics measured with standard DKI and FLAIR-DKI sequences, suggesting minimal CSF contamination. For gray matter, conventional DTI metrics differed by 19% to 52%, reflecting significant CSF partial volume effects. Kurtosis metrics, however, changed by 11% or less, indicating greater robustness with respect to CSF contamination. Kurtosis metrics are less sensitive to CSF partial voluming in cortical gray matter than conventional diffusion metrics. The kurtosis metrics may then be more specific indicators of changes in tissue microstructure, provided the effect sizes for the changes are comparable. Copyright © 2012 Wiley Periodicals, Inc.
Baumgartner, Sasa; Lahajnar, Gojmir; Sepe, Ana; Kristl, Julijana
2005-02-01
Many pharmaceutical tablets are based on hydrophilic polymers, which, after exposure to water, form a gel layer around the tablet that limits the dissolution and diffusion of the drug and provides a mechanism for controlled drug release. Our aim was to determine the thickness of the swollen gel layer of matrix tablets and to develop a method for calculating the polymer concentration profile across the gel layer. MR imaging has been used to investigate the in situ swelling behaviour of cellulose ether matrix tablets and NMR spectroscopy experiments were performed on homogeneous hydrogels with known polymer concentration. The MRI results show that the thickest gel layer was observed for hydroxyethylcellulose tablets, followed by definitely thinner but almost equal gel layer for hydroxypropylcellulose and hydroxypropylmethylcellulose of both molecular weights. The water proton NMR relaxation parameters were combined with the MRI data to obtain a quantitative description of the swelling process on the basis of the concentrations and mobilities of water and polymer as functions of time and distance. The different concentration profiles observed after the same swelling time are the consequence of the different polymer characteristics. The procedure developed here could be used as a general method for calculating polymer concentration profiles on other similar polymeric systems.
2010-01-01
Permanent middle cerebral artery (MCA) occlusion (pMCAO) by electrocoagulation is a commonly used model but with potential traumatic lesions. Early MRI monitoring may assess pMCAO for non-specific brain damage. The surgical steps of pMCAO were evaluated for traumatic cerebral injury in 22 Swiss mice using diffusion and T2-weighted MRI (7T) performed within 1 h and 24 h after surgery. Temporal muscle cauterization without MCA occlusion produced an early T2 hyperintensity mimicking an infarct. No lesion was visible after temporal muscle incision or craniotomy. Early MRI monitoring is useful to identify non-specific brain injury that could hamper neuroprotective drugs assessment. PMID:20298536
Dixit, Ritu B.; Uplana, Rahul A.; Patel, Vishnu A.; Dixit, Bharat C.; Patel, Tarosh S.
2010-01-01
Cefadroxil drug loaded biopolymeric films of chitosan-furfural schiff base were prepared by reacting chitosan with furfural in presence of acetic acid and perchloric acid respectively for the external use. Prepared films were evaluated for their strength, swelling index, thickness, drug content, uniformity, tensile strength, percent elongation, FTIR spectral analysis and SEM. The results of in vitro diffusion studies revealed that the films exhibited enhanced drug diffusion as compared to the films prepared using untreated chitosan. The films also demonstrated good to moderate antibacterial activities against selective gram positive and gram negative bacteria. PMID:21179325
Diagnostics of breast cancer by analysis of spectra diffuse reflections
NASA Astrophysics Data System (ADS)
Kuzmina, Natalya V.; Plaksin, Fedor G.; Polovnikov, Eugeny S.
2001-05-01
The work is dedicated to problems of diagnostic oncologic diseases by a spectroscopic-optical method and is prolongation of long-term examinations held earlier by Vovk S.M, Naumov S.A. and Pushkarev S.V. The actual spectra of a diffuse reflection removed in vivo and in vitro are given, is angry- and good-quality neoplasms, healthy tissue and blood of breast and other organs. Problems of a clinical oncology are in a center of attention in medicine because the cases of disease malignant swellings increase, which is stipulated by an irregularity of present methods of diagnostic.
Saksena, Sona; Rai, Vijan; Saraswat, Vivek Anand; Rathore, Ramkishore Singh; Purwar, Ankur; Kumar, Manoj; Thomas, M Albert; Gupta, Rakesh Kumar
2008-07-01
Cerebral edema is a major complication in patients with fulminant hepatic failure (FHF). The aim of this study was to evaluate the metabolite alterations and cerebral edema in patients with FHF using in vivo proton magnetic resonance spectroscopy (MRS) and diffusion tensor imaging, and to look for its reversibility in survivors. Ten FHF patients along with 10 controls were studied. Five of the 10 patients who recovered had a repeat imaging after three weeks. N-acetylaspartate, choline (Cho), glutamine (Gln), glutamine/glutamate (Glx), and myoinositol ratios were calculated with respect to creatine (Cr). Mean diffusivity (MD) and fractional anisotropy (FA) were calculated in different brain regions. Patients exhibited significantly increased Gln/Cr and Glx/Cr, and reduced Cho/Cr ratios, compared to controls. In the follow-up study, all metabolite ratios were normalized except Glx/Cr. Significantly decreased Cho/Cr were observed in deceased patients compared to controls. In patients, significantly decreased MD and FA values were observed in most topographical locations of the brain compared to controls. MD and FA values showed insignificant increase in the follow-up study compared to their first study. We conclude that the Cho/Cr ratio appears to be an in vivo marker of prognosis in FHF. Decreased MD values suggest predominant cytotoxic edema may be present. Persistence of imaging and MRS abnormalities at three weeks' clinical recovery suggests that metabolic recovery may take longer than clinical recovery in FHF patients.
Glial diffusion barriers during aging and pathological states.
Syková, E
2001-01-01
In conclusion, glial cells control not only ECS ionic composition, but also ECS size and geometry. Since ECS ionic and volume changes have been shown to play an important role in modulating the complex synaptic and extrasynaptic signal transmission in the CNS, glial cells may thus affect neuronal interaction, synchronization and neuron-glia communication. As shown in Fig. 2, a link between ionic and volume changes and signal transmission has been proposed as a model for the non-specific feedback mechanism suppressing neuronal activity (Syková, 1997; Ransom, 2000). First, neuronal activity results in the accumulation of [K+]e, which in turn depolarizes glial cells, and this depolarization induces an alkaline shift in glial pHi. Second, the glial cells extrude acid and the resulting acid shift causes a decrease in the neuronal excitability. Because ionic transmembrane shifts are always accompanied by water, this feedback mechanism is amplified by activity-related glial swelling compensated for by ECS volume shrinkage and by increased tortuosity, presumably by the crowding of molecules of the ECS matrix and/or by the swelling of fine glial processes. This, in turn, results in a larger accumulation of ions and other neuroactive substances in the brain due to increased diffusion hinderance in the ECS. Astrocyte hypertrophy, proliferation and swelling influence the size of the ECS volume and tortuosity around neurons, slowing diffusion in the ECS. Their organization may also affect diffusion anisotropy, which could be an underlying mechanism for the specificity of extrasynaptic transmission, including 'cross-talk' between distinct synapses (Barbour and Hausser, 1997; Kullmann and Asztely, 1998). An increased concentration of transmitter released into a synapse (e.g. repetitive adequate stimuli or during high frequency electrical stimulation which induces LTP) results in a significant activation of high-affinity receptors at neighboring synapses. The efficacy of such synaptic cross-talk would be dependent on the extracellular space surrounding the synapses, i.e. on intersynaptic geometry and diffusion parameters. Other recent studies have also suggested an important role for proteoglycans, known to participate in multiple cellular processes, such as axonal outgrowth, axonal branching and synaptogenesis (Hardington and Fosang, 1992; Margolis and Margolis, 1993) that are important for the formation of memory traces. Recent observation of a decrease of fibronectin and chondroitin sulfate proteoglycan staining in the hippocampus of behaviorally impaired aged rats (Syková et al., 1998a,b) supports this hypothesis. It is reasonable to assume that besides neuronal and glial processes, macromolecules of the extracellular matrix contribute to diffusion barriers in the ECS. It is therefore apparent that glial cells play an important role in the local architecture of the CNS and they may also be involved in the modulation of signal transmission, in plastic changes, LTP, LTD and in changes of behavior and memory formation.
Wei, Lai; Lei, Huai-Cheng; Yu, Xiao-Jun; Lai, Xiao-Ping; Qian, Hong; Xu, Xiao-Hu; Zhu, Fang-Cheng
2013-04-01
By observing the cerebral beta-amyloid precursor protein (beta-APP) expression in the chronic alcoholism rats with slight cerebral injury, to discuss the correlation of chronic alcoholism and death caused by traumatic subarachnoid haemorrhage (TSAH). Sixty male SD rats were randomly divided into watering group, watering group with strike, alcoholism group and alcoholism group with strike. Among them, the alcohol was used for continuous 4 weeks in alcoholism groups and the concussion was made in groups with strike. In each group, HE staining and immunohistochemical staining of the cerebral tissues were done and the results were analyzed by the histopathologic image system. In watering group, there was no abnormal. In watering group with strike, mild neuronic congestion was found. In alcoholism group, vascular texture on cerebral surface was found. And the neurons arranged in disorder with dilated intercellular space. In alcoholism group with strike, diffuse congestion on cerebral surface was found. And there was TSAH with thick-layer patches around brainstem following irregular axonotmesis. The quantity of beta-APP IOD in alcoholism group was significantly higher in the frontal lobe, hippocampus, cerebellum, brainstem than those in watering group with strike and alcoholism group with strike. The cerebral tissues with chronic alcoholism, due to the decreasing tolerance, could cause fatal TSAH and pathological changes in cerebral tissues of rats under slight cerebral injury.
Lee, E-Jian; Hung, Yu-Chang; Tai, Shih-Huang; Chen, Hung-Yi; Chen, Tsung-Ying; Wu, Tian-Shung
2012-01-01
Neuroprotective efficacy of magnolol, 5,5′-dially-2,2′-dihydroxydiphenyl, was investigated in a model of stroke and cultured neurons exposed to glutamate-induced excitotoxicity. Rats were subjected to permanent middle cerebral artery occlusion (pMCAO). Magnolol or vehicle was administered intraperitoneally, at 1 hr pre-insult or 1–6 hrs post-insult. Brain infarction was measured upon sacrifice. Relative to controls, animals pre-treated with magnolol (50–200 mg/kg) had significant infarct volume reductions by 30.9–37.8% and improved neurobehavioral outcomes (P<0.05, respectively). Delayed treatment with magnolol (100 mg/kg) also protected against ischemic brain damage and improved neurobehavioral scores, even when administered up to 4 hrs post-insult (P<0.05, respectively). Additionally, magnolol (0.1 µM) effectively attenuated the rises of intracellular Ca2+ levels, [Ca2+](i), in cultured neurons exposed to glutamate. Consequently, magnolol (0.1–1 µM) significantly attenuated glutamate-induced cytotoxicity and cell swelling (P<0.05). Thus, magnolol offers neuroprotection against permanent focal cerebral ischemia with a therapeutic window of 4 hrs. This neuroprotection may be, partly, mediated by its ability to limit the glutamate-induced excitotoxicity. PMID:22808077
Cerebrovascular reactivity and white matter integrity.
Sam, Kevin; Peltenburg, Boris; Conklin, John; Sobczyk, Olivia; Poublanc, Julien; Crawley, Adrian P; Mandell, Daniel M; Venkatraghavan, Lakshmikumar; Duffin, James; Fisher, Joseph A; Black, Sandra E; Mikulis, David J
2016-11-29
To compare the diffusion and perfusion MRI metrics of normal-appearing white matter (NAWM) with and without impaired cerebrovascular reactivity (CVR). Seventy-five participants with moderate to severe leukoaraiosis underwent blood oxygen level-dependent CVR mapping using a 3T MRI system with precise carbon dioxide stimulus manipulation. Several MRI metrics were statistically compared between areas of NAWM with positive and negative CVR using one-way analysis of variance with Bonferroni correction for multiple comparisons. Areas of NAWM with negative CVR showed a significant reduction in fractional anisotropy by a mean (SD) of 3.7% (2.4), cerebral blood flow by 22.1% (8.2), regional cerebral blood volume by 22.2% (7.0), and a significant increase in mean diffusivity by 3.9% (3.1) and time to maximum by 10.9% (13.2) (p < 0.01), compared to areas with positive CVR. Impaired CVR is associated with subtle changes in the tissue integrity of NAWM, as evaluated using several quantitative diffusion and perfusion MRI metrics. These findings suggest that impaired CVR may contribute to the progression of white matter disease. © 2016 American Academy of Neurology.
Guerrero, Waldo R; Varghese, Shaun; Savitz, Sean; Wu, Tzu Ching
2013-06-17
Heat stress results in multiorgan failure and CNS injury. There a few case reports in the literature on the neurological consequences of heat stress. We describe a patient with heat stress presenting with encephalopathy and bilateral cerebral, cerebellar, and thalamic lesions and intraventricular hemorrhage on MRI. Heat stress should be in the differential diagnosis of patients presenting with encephalopathy and elevated serum inflammatory markers especially if the history suggests a preceding episode of hyperthermia.
TMEM16A Channels Contribute to the Myogenic Response in Cerebral Arteries
Bulley, Simon; Neeb, Zachary P.; Burris, Sarah K.; Bannister, John P.; Thomas-Gatewood, Candice M.; Jangsangthong, Wanchana; Jaggar, Jonathan H.
2013-01-01
Rationale Pressure-induced arterial depolarization and constriction (the myogenic response), is a smooth muscle cell (myocyte)-specific mechanism that controls regional organ blood flow and systemic blood pressure. Several different non-selective cation channels contribute to pressure-induced depolarization, but signaling mechanisms involved are unclear. Similarly uncertain is the contribution of anion channels to the myogenic response and physiological functions and mechanisms of regulation of recently discovered transmembrane 16A (TMEM16A) chloride (Cl−) channels in arterial myocytes. Objective Investigate the hypothesis that myocyte TMEM16A channels control membrane potential and contractility and contribute to the myogenic response in cerebral arteries. Methods and Results Cell swelling induced by hyposmotic bath solution stimulated Cl− currents in arterial myocytes that were blocked by TMEM16A channel inhibitory antibodies, RNAi-mediated selective TMEM16A channel knockdown, removal of extracellular calcium (Ca2+), replacement of intracellular EGTA with BAPTA, a fast Ca2+ chelator, and Gd3+ and SKF-96365, non-selective cation channel blockers. In contrast, nimodipine, a voltage-dependent Ca2+ channel inhibitor, or thapsigargin, which depletes intracellular Ca2+ stores, did not alter swelling-activated TMEM16A currents. Pressure (−40 mmHg)-induced membrane stretch activated ion channels in arterial myocyte cell-attached patches that were inhibited by TMEM16A antibodies and were of similar amplitude to recombinant TMEM16A channels. TMEM16A knockdown reduced intravascular pressure-induced depolarization and vasoconstriction, but did not alter depolarization (60 mmol/L K+)-induced vasoconstriction. Conclusions Membrane stretch activates arterial myocyte TMEM16A channels, leading to membrane depolarization and vasoconstriction. Data also provide a mechanism by which a local Ca2+ signal generated by non-selective cation channels stimulates TMEM16A channels to induce myogenic constriction. PMID:22872152
White Matter Integrity Linked To Functional Impairments in Aging and Early Alzheimer’s Disease
Kavcic, Voyko; Ni, Hongyan; Zhu, Tong; Zhong, Jianhui; Duffy, Charles J.
2008-01-01
Background Alzheimer’s disease (AD) is associated with changes in cerebral white matter (WM) but the functional significance of such findings is not yet established. We hypothesized that diffusion tensor imaging (DTI) might reveal links between regional WM changes and specific neuropsychologically and psychophysically defined impairments in early AD. Methods Older adult control subjects (OA, n=18) and mildly impaired AD patients (n=14) underwent neuropsychological and visual perceptual testing along with DTI of cerebral WM. DTI yielded factional anisotropy (FA) and mean diffusivity (
NASA Astrophysics Data System (ADS)
Steinberg, Idan; Harbater, Osnat; Gannot, Israel
2014-07-01
The diffusion approximation is useful for many optical diagnostics modalities, such as near-infrared spectroscopy. However, the simple normal incidence, semi-infinite layer model may prove lacking in estimation of deep-tissue optical properties such as required for monitoring cerebral hemodynamics, especially in neonates. To answer this need, we present an analytical multilayered, oblique incidence diffusion model. Initially, the model equations are derived in vector-matrix form to facilitate fast and simple computation. Then, the spatiotemporal reflectance predicted by the model for a complex neonate head is compared with time-resolved Monte Carlo (TRMC) simulations under a wide range of physiologically feasible parameters. The high accuracy of the multilayer model is demonstrated in that the deviation from TRMC simulations is only a few percent even under the toughest conditions. We then turn to solve the inverse problem and estimate the oxygen saturation of deep brain tissues based on the temporal and spatial behaviors of the reflectance. Results indicate that temporal features of the reflectance are more sensitive to deep-layer optical parameters. The accuracy of estimation is shown to be more accurate and robust than the commonly used single-layer diffusion model. Finally, the limitations of such approaches are discussed thoroughly.
Liu, Chunming; Dong, Zhengchao; Xu, Liang; Khursheed, Aiman; Dong, Longchun; Liu, Zhenxing; Yang, Jun; Liu, Jun
2015-11-01
The aims of this study were to observe magnetic resonance imaging (MRI) features and the frequency of hemorrhagic transformation (HT) in patients with acute cerebral infarction and to identify the risk factors of HT. We first performed multimodal MRI (anatomical, diffusion weighted, and susceptibility weighted) scans on 87 patients with acute cerebral infarction within 24 hours after symptom onset and documented the image findings. We then performed follow-up examinations 3 days to 2 weeks after the onset or whenever the conditions of the patients worsened within 3 days. We utilized univariate statistics to identify the correlations between HT and image features and used multivariate logistical regression to correct for confounding factors to determine relevant independent image features of HT. HT was observed in 17 out of total 87 patients (19.5 %). The infarct size (p = 0.021), cerebral microbleeds (CMBs) (p = 0.004), relative apparent diffusion (rADC) (p = 0.023), and venous anomalies (p = 0.000) were significantly related with HT in the univariate statistics. Multivariate analysis demonstrated that CMBs (odd ratio (OR) = 0.082; 95 % confidence interval (CI) = 0.011-0.597; p = 0.014), rADC (OR = 0.000; 95 % CI = 0.000-0.692; p = 0.041), and venous anomalies (OR = 0.066; 95 % CI = 0.011-0.403; p = 0.003) were independent risk factors for HT. The frequency of HT is 19.5 % in this study. CMBs, rADC, and venous anomalies are independent risk factors for HT of acute cerebral infarction.
Antimicrobial Wound Dressing. Phase 1
1987-06-11
12 a. Antimicrobial Sensitivity Tests 12 b. Anin.il Model 13 5. Preparatiua of Microcapsules 14 B. Results 15 1. AIn Vit Diffusion 15 a. PVA... Microcapsules 35 Table 5 Tetracycline Hydrochloride Cellulose 36 Triacetate Microcapsules Table 6 Polyethylene Oxide Hydrogels 37 Table 7 Swelling of...Water and Crosslinking Effect Figure 24 In Vi trq Chlorhexidine Release 70 Polyacrylamide Hydrogel - Microcapsules Figure 25 In _Vitro Tetracycline
Development of a self-cleaning sensor membrane for implantable biosensors.
Gant, Rebecca M; Hou, Yaping; Grunlan, Melissa A; Coté, Gerard L
2009-09-01
Fibrous tissue encapsulation may slow the diffusion of the target analyte to an implanted sensor and compromise the optical signal. Poly(N-isopropylacrylamide) (PNIPAAm) hydrogels are thermoresponsive, exhibiting temperature-modulated swelling behavior that could be used to prevent biofouling. Unfortunately, PNIPAAm hydrogels are limited by poor mechanical strength. In this study, a unique thermoresponsive nanocomposite hydrogel was developed to create a mechanically robust self-cleaning sensor membrane for implantable biosensors. This hydrogel was prepared by the photochemical cure of an aqueous solution of NIPAAm and copoly(dimethylsiloxane/methylvinylsiloxane) colloidal nanoparticles ( approximately 219 nm). At temperatures above the volume phase transition temperature (VPTT) of approximately 33-34 degrees C, the hydrogel deswells and becomes hydrophobic, whereas lowering the temperature below the VPTT causes the hydrogel to swell and become hydrophilic. The potential of this material to minimize biofouling via temperature-modulation while maintaining sensor viability was investigated using glucose as a target analyte. PNIPAAm composite hydrogels with and without poration were compared to a pure PNIPAAm hydrogel and a nonthermoresponsive poly(ethylene glycol) (PEG) hydrogel. Poration led to a substantial increase in diffusion. Cycling the temperature of the nanocomposite hydrogels around the VPTT caused significant detachment of GFP-H2B 3T3 fibroblast cells.
NASA Astrophysics Data System (ADS)
Rest, J.; Hofman, G. L.; Kim, Yeon Soo
2009-04-01
An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than ˜7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.
Kusafuka, Kimihide; Onitsuka, Tetsuro; Muramatsu, Koji; Miki, Tomoko; Murai, Chika; Suda, Toshihito; Fuke, Tomohito; Kamijo, Tomoyuki; Iida, Yoshiyuki; Nakajima, Takashi
2014-01-01
Background Salivary duct carcinoma with rhabdoid features is extremely rare. Methods We report 2 cases of salivary duct carcinoma with rhabdoid features treated at our institution. Results Case 1 was a 44-year-old Japanese man who had swelling in the left parotid region. This tumor consisted of residual pleomorphic adenoma and widely invasive carcinoma, which showed a diffuse growth pattern by atypical rhabdoid cells. Case 2 was a 66-year-old Japanese man who had swelling of the right cervical region. This submandibular tumor was also composed of both residual pleomorphic adenoma region and invasive adenocarcinoma components, whereas some metastatic lesions were purely composed of rhabdoid cells. Such cells were strongly and diffusely positive for cytokeratins (CKs), gross cystic disease fluid protein-15 (GCDFP), and androgen receptor (AR). Case 1 was also positive for Her-2 and p53. Conclusion Both patients were diagnosed with carcinoma ex pleomorphic adenoma and their carcinomatous components were composed of salivary duct carcinoma with rhabdoid features, which is a highly aggressive tumor, similar to salivary duct carcinoma. © 2013 The Authors. Head & Neck published by Wiley Periodicals, Inc. Head Neck 36: E28–E35, 2014 PMID:24038506
Transient swelling behavior and drug delivery from a dissolving film deploying anti-HIV microbicide
NASA Astrophysics Data System (ADS)
Tasoglu, Savas; Katz, David F.; Szeri, Andrew J.
2010-11-01
Despite more than two decades of HIV vaccine research, there is still no efficacious HIV vaccine. Very recently, a research group has shown that a microbicide gel formulation of antiretroviral drug Tenofovir, significantly inhibits HIV transmission to women [1]. However, there is a widespread agreement that more effective and diverse drug delivery vehicles must be developed. In this setting, there is now great interest in developing different delivery vehicles such as vaginal rings, gels, and films. Here, we develop a model for transient fluid uptake and swelling behavior, and subsequent dissolution and drug deployment from a film containing anti-HIV microbicide. In the model, the polymer structural relaxation via water uptake is assumed to follow first order kinetics. In the case of a film loaded with an osmotically active solute, the kinetic equation is modified to account for the osmotic effect. The transport rate of solvent and solute within the matrix is characterized by a diffusion equation. After the matrix is relaxed to a specified concentration of solvent, lubrication theory and convective-diffusive transport are employed for flow of the liquefied matrix and drug dispersion respectively. [1] Karim, et al., Science, 2010.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selin, Victor; Ankner, John F.; Sukhishvili, Svetlana A.
Here in this paper, we report on the role of molecular diffusivity in the formation of nonlinearly growing polyelectrolyte multilayers (nlPEMs). Electrostatically bound polyelectrolyte multilayers were assembled from poly(methacrylic acid) (PMAA) as a polyanion and quaternized poly(2-(dimethylamino)ethyl methacrylate) (QPC) as a polycation. Film growth as measured by ellipsometry was strongly dependent on the time allowed for each polymer deposition step, suggesting that the diffusivities of the components are crucial in controlling the rate of film growth. Uptake of polyelectrolytes within nlPEMs was relatively slow and occurred on time scales ranging from minutes to hours, depending on the film thickness. Spectroscopicmore » ellipsometry measurements with nlPEM films exposed to aqueous solutions exhibited high (severalfold) degrees of film swelling and different swelling values for films exposed to QPC or PMAA solutions. FTIR spectroscopy showed that the average ionization of film-assembled PMAA increased upon binding of QPC and decreased upon binding of PMAA, in agreement with the charge regulation mechanism for weak polyelectrolytes. The use of neutron reflectometry (NR) enabled quantification of chain intermixing within the film, which was drastically enhanced when longer times were allowed for polyelectrolyte deposition. Diffusion coefficients of the polycation derived from the uptake rates of deuterated chains within hydrogenated films were of the order of 10 –14 cm 2/s, i.e., 5–6 orders of magnitude smaller than those found for diffusion of free polymer chains in solution. Exchange of the polymer solutions to buffer inhibited film intermixing. Taken together, these results contribute to understanding the mechanism of the growth of nonlinear polyelectrolyte multilayers and demonstrate the possibility of controlling film intermixing, which is highly desirable for potential future applications.« less
CT and MRI Findings in Cerebral Aspergilloma.
Gärtner, Friederike; Forstenpointner, Julia; Ertl-Wagner, Birgit; Hooshmand, Babak; Riedel, Christian; Jansen, Olav
2017-11-20
Purpose Invasive aspergillosis usually affects immunocompromised patients. It carries a high risk of morbidity and mortality and usually has a nonspecific clinical presentation. Early diagnosis is essential in order to start effective treatment and improve clinical outcome. Materials and Methods In a retrospective search of the PACS databases from two medical centers, we identified 9 patients with histologically proven cerebral aspergilloma. We systematically analyzed CT and MRI imaging findings to identify typical imaging appearances of cerebral aspergilloma. Results CT did not show a typical appearance of the aspergillomas. In 100 % (9/9) there was a rim-attenuated diffusion restriction on MRI imaging. Multiple hypointense layers in the aspergillus wall, especially on the internal side, were detected in 100 % on T2-weighted imaging (9/9). Aspergillomas were T1-hypointense in 66 % of cases (6/9) and partly T1-hyperintense in 33 % (3/9). In 78 % (7/9) of cases, a rim-attenuated diffusion restriction was detected after contrast agent application. Conclusion Nine cases were identified. Whereas CT features were less typical, we observed the following imaging features on MRI: A strong, rim-attenuated diffusion restriction (9/9); onion layer-like hypointense zones, in particular in the innermost part of the abscess wall on T2-weighted images (9/9). Enhancement of the lesion border was present in the majority of the cases (7/9). Key points · There are typical MRI imaging features of aspergillomas.. · However, these findings could be affected by the immune status of the patient.. · Swift identification of aspergilloma imaging patterns is essential to allow for adequate therapeutic decision making.. Citation Format · Gärtner F, Forstenpointner J, Ertl-Wagner B et al. CT and MRI Findings in Cerebral Aspergilloma. Fortschr Röntgenstr 2017; DOI: 10.1055/s-0043-120766. © Georg Thieme Verlag KG Stuttgart · New York.
Value of diffusion-weighted MRI during carotid angioplasty and stenting.
McDonnell, C O; Fearn, S J; Baker, S R; Goodman, M A; Price, D; Lawrence-Brown, M M D
2006-07-01
The incidence of neurological injury following carotid angioplasty and stenting is of great interest to those advocating it as an alternative to endarterectomy in the management of critical carotid stenosis. A significant inter-observer variation exists in determining the presence or absence of a neurological deficit following the procedure objective imaging would be advantageous. In this study, we sought to assess diffusion weighted MRI as a diagnostic tool in evaluating the incidence of neurological injury following carotid angioplasty and stenting (CAS). The first 110 cases of CAS in our unit were included in this series. The procedure was abandoned in three patients. Patients underwent intracranial and extracranial MR angiography, together with diffusion-weighted MRI (DWI) prior to and following CAS and had a formal neurological assessment in the intensive care unit after the procedure. One hundred and ten Procedures were attempted in 98 patients. Twenty-eight percent were asymptomatic. Following CAS, 7.2% of patients had a positive neurological exam (two major strokes with one fatality) and 21% had positive DWI scans, equating to a sensitivity of 86% and a specificity of 85% for DWI in detecting cerebral infarction following CAS. The positive predictive value of the test was 0.3 and negative predictive value 0.99. The major stroke and death rate was 1.8%. While the use of a cerebral protection device appeared to significantly reduce the incidence of cerebral infarction (5% vs. 25%, p = 0.031) this may be a reflection of the learning curve encountered during the study. The incidence of subclinical DWI detected neurological injury was significantly higher than clinical neurological deficit following CAS. Conventional methods of neurological assessment of patients undergoing CAS may be too crude to detect subtle changes and more sensitive tests of cerebral function are required to establish whether these subclinical lesions are relevant.
Viswanathan, Anand; Patel, Pratik; Rahman, Rosanna; Nandigam, R N Kaveer; Kinnecom, Catherine; Bracoud, Luc; Rosand, Jonathan; Chabriat, Hugues; Greenberg, Steven M; Smith, Eric E
2008-07-01
Cerebral amyloid angiopathy (CAA) is a major cause of lobar intracerebral hemorrhage and cognitive impairment and is associated with white matter hyperintensities and cerebral microbleeds. MRI diffusion tensor imaging detects microstructural tissue damage in advanced CAA even in areas that appear normal on conventional MRI. We hypothesized that higher global mean apparent diffusion coefficient (mean ADC), reflecting a higher amount of chronic tissue disruption caused by CAA, would be independently associated with CAA-related cognitive impairment. Preintracerebral hemorrhage cognitive impairment was systematically assessed using a standardized questionnaire (IQCODE) in 49 patients. Volume of white matter hyperintensities, number of microbleeds, and mean ADC were determined from MRIs obtained within 14.0+/-22.5 days of intracerebral hemorrhage cognitive impairment. White matter hyperintensities and mean ADC were measured in the hemisphere uninvolved by intracerebral hemorrhage to avoid confounding. Preintracerebral hemorrhage cognitive impairment was identified in 10 of 49 subjects. Mean ADC was the only variable associated with preintracerebral hemorrhage cognitive impairment and was elevated in those with preintracerebral hemorrhage cognitive impairment compared with those without (12.4x10(-4) versus 11.7x10(-4) mm(2)/s; P=0.03). Mean ADC positively correlated with age but not white matter hyperintensities or number of microbleeds. In logistic regression controlling for age and visible cerebral atrophy, mean ADC was independently associated with preintracerebral hemorrhage cognitive impairment (OR per 1x10(-4) mm(2)/s increase=2.45, 95% CI 1.11 to 5.40, P=0.04). Mean ADC is independently associated with preintracerebral hemorrhage cognitive impairment in CAA. The lack of correlation with other MRI markers of CAA suggests that mean ADC may be sensitive to distinct aspects of CAA pathology and its tissue consequences. These results suggest that global MRI diffusion changes are sensitive to clinically relevant microstructural alterations and may be useful markers of CAA-related tissue damage.
Viswanathan, Anand; Patel, Pratik; Rahman, Rosanna; Nandigam, R.N. Kaveer; Kinnecom, Catherine; Bracoud, Luc; Rosand, Jonathan; Chabriat, Hugues; Greenberg, Steven M.; Smith, Eric E.
2009-01-01
Background and Purpose Cerebral amyloid angiopathy (CAA) is a major cause of lobar intracerebral hemorrhage and cognitive impairment and is associated with white matter hyperintensities and cerebral microbleeds. MRI diffusion tensor imaging detects microstructural tissue damage in advanced CAA even in areas that appear normal on conventional MRI. We hypothesized that higher global mean apparent diffusion coefficient (mean ADC), reflecting a higher amount of chronic tissue disruption caused by CAA, would be independently associated with CAA-related cognitive impairment. Methods Preintracerebral hemorrhage cognitive impairment was systematically assessed using a standardized questionnaire (IQCODE) in 49 patients. Volume of white matter hyperintensities, number of microbleeds, and mean ADC were determined from MRIs obtained within 14.0±22.5 days of intracerebral hemorrhage cognitive impairment. White matter hyperintensities and mean ADC were measured in the hemisphere uninvolved by intracerebral hemorrhage to avoid confounding. Results Preintracerebral hemorrhage cognitive impairment was identified in 10 of 49 subjects. Mean ADC was the only variable associated with preintracerebral hemorrhage cognitive impairment and was elevated in those with preintracerebral hemorrhage cognitive impairment compared with those without (12.4×10-4 versus 11.7×10-4 mm2/s; P=0.03). Mean ADC positively correlated with age but not white matter hyperintensities or number of microbleeds. In logistic regression controlling for age and visible cerebral atrophy, mean ADC was independently associated with preintracerebral hemorrhage cognitive impairment (OR per 1×10-4 mm2/s increase=2.45, 95% CI 1.11 to 5.40, P=0.04). Conclusions Mean ADC is independently associated with preintracerebral hemorrhage cognitive impairment in CAA. The lack of correlation with other MRI markers of CAA suggests that mean ADC may be sensitive to distinct aspects of CAA pathology and its tissue consequences. These results suggest that global MRI diffusion changes are sensitive to clinically relevant microstructural alterations and may be useful markers of CAA-related tissue damage. PMID:18436874
Solvent and solute ingress into hydrogels resolved by a combination of imaging techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, D.; Burbach, J.; Egelhaaf, S. U.
2016-05-28
Using simultaneous neutron, fluorescence, and optical brightfield transmission imaging, the diffusion of solvent, fluorescent dyes, and macromolecules into a crosslinked polyacrylamide hydrogel was investigated. This novel combination of different imaging techniques enables us to distinguish the movements of the solvent and fluorescent molecules. Additionally, the swelling or deswelling of the hydrogels can be monitored. From the sequence of images, dye and solvent concentrations were extracted spatially and temporally resolved. Diffusion equations and different boundary conditions, represented by different models, were used to quantitatively analyze the temporal evolution of these concentration profiles and to determine the diffusion coefficients of solvent andmore » solutes. Solute size and network properties were varied and their effect was investigated. Increasing the crosslinking ratio or partially drying the hydrogel was found to hinder solute diffusion due to the reduced pore size. By contrast, solvent diffusion seemed to be slightly faster if the hydrogel was only partially swollen and hence solvent uptake enhanced.« less
Song, Jinsuk; Han, Oc Hee; Han, Songi
2015-03-16
Nafion, the most widely used polymer for electrolyte membranes (PEMs) in fuel cells, consists of a fluorocarbon backbone and acidic groups that, upon hydration, swell to form percolated channels through which water and ions diffuse. Although the effects of the channel structures and the acidic groups on water/ion transport have been studied before, the surface chemistry or the spatially heterogeneous diffusivity across water channels has never been shown to directly influence water/ion transport. By the use of molecular spin probes that are selectively partitioned into heterogeneous regions of the PEM and Overhauser dynamic nuclear polarization relaxometry, this study reveals that both water and proton diffusivity are significantly faster near the fluorocarbon and the acidic groups lining the water channels than within the water channels. The concept that surface chemistry at the (sub)nanometer scale dictates water and proton diffusivity invokes a new design principle for PEMs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nakayama, N; Okumura, A; Shinoda, J; Nakashima, T; Iwama, T
2006-07-01
The cerebral metabolism of patients in the chronic stage of traumatic diffuse brain injury (TDBI) has not been fully investigated. To study the relationship between regional cerebral metabolism (rCM) and consciousness disturbance in patients with TDBI. 52 patients with TDBI in the chronic stage without large focal lesions were enrolled, and rCM was evaluated by fluorine-18-fluorodeoxyglucose positron emission tomography (FDG-PET) with statistical parametric mapping (SPM). All the patients were found to have disturbed consciousness or cognitive function and were divided into the following three groups: group A (n = 22), patients in a state with higher brain dysfunction; group B (n = 13), patients in a minimally conscious state; and group C (n = 17), patients in a vegetative state. rCM patterns on FDG-PET among these groups were evaluated and compared with those of normal control subjects on statistical parametric maps. Hypometabolism was consistently indicated bilaterally in the medial prefrontal regions, the medial frontobasal regions, the cingulate gyrus and the thalamus. Hypometabolism in these regions was the most widespread and prominent in group C, and that in group B was more widespread and prominent than that in group A. Bilateral hypometabolism in the medial prefrontal regions, the medial frontobasal regions, the cingulate gyrus and the thalamus may reflect the clinical deterioration of TDBI, which is due to functional and structural disconnections of neural networks rather than due to direct cerebral focal contusion.
Investigation of Oxygen Diffusion in Irradiated UO2 with MD Simulation
NASA Astrophysics Data System (ADS)
Günay, Seçkin D.
2016-11-01
In this study, irradiated UO2 is analyzed by atomistic simulation method to obtain diffusion coefficient of oxygen ions. For this purpose, a couple of molecular dynamics (MD) supercells containing Frenkel, Schottky, vacancy and interstitial types for both anion and cation defects is constructed individually. Each of their contribution is used to calculate the total oxygen diffusion for both intrinsic and extrinsic ranges. The results display that irradiation-induced defects contribute the most to the overall oxygen diffusion at temperatures below 800-1,200 K. This result is quite sensible because experimental data shows that, from room temperature to about 1,500 K, irradiation-induced swelling decreases and irradiated UO2 lattice parameter is gradually recovered because defects annihilate each other. Another point is that, concentration of defects enhances the irradiation-induced oxygen diffusion. Irradiation type also has the similar effect, namely oxygen diffusion in crystals irradiated with α-particles is more than the crystals irradiated with neutrons. Dynamic Frenkel defects dominate the oxygen diffusion data above 1,500—1,800 K. In all these temperature ranges, thermally induced Frenkel defects make no significant contribution to overall oxygen diffusion.
[From Brownian motion to mind imaging: diffusion MRI].
Le Bihan, Denis
2006-11-01
The success of diffusion MRI, which was introduced in the mid 1980s is deeply rooted in the powerful concept that during their random, diffusion-driven movements water molecules probe tissue structure at a microscopic scale well beyond the usual image resolution. The observation of these movements thus provides valuable information on the structure and the geometric organization of tissues. The most successful application of diffusion MRI has been in brain ischemia, following the discovery that water diffusion drops at a very early stage of the ischemic event. Diffusion MRI provides some patients with the opportunity to receive suitable treatment at a very acute stage when brain tissue might still be salvageable. On the other hand, diffusion is modulated by the spatial orientation of large bundles of myelinated axons running in parallel through in brain white matter. This feature can be exploited to map out the orientation in space of the white matter tracks and to visualize the connections between different parts of the brain on an individual basis. Furthermore, recent data suggest that diffusion MRI may also be used to visualize rapid dynamic tissue changes, such as neuronal swelling, associated with cortical activation, offering a new and direct approach to brain functional imaging.
Sharbatian, Atena; Abedini, Ali; Qi, ZhenBang; Sinton, David
2018-02-20
Carbon capture, storage, and utilization technologies target a reduction in net CO 2 emissions to mitigate greenhouse gas effects. The largest such projects worldwide involve storing CO 2 through enhanced oil recovery-a technologically and economically feasible approach that combines both storage and oil recovery. Successful implementation relies on detailed measurements of CO 2 -oil properties at relevant reservoir conditions (P = 2.0-13.0 MPa and T = 23 and 50 °C). In this paper, we demonstrate a microfluidic method to quantify the comprehensive suite of mutual properties of a CO 2 and crude oil mixture including solubility, diffusivity, extraction pressure, minimum miscibility pressure (MMP), and contact angle. The time-lapse oil swelling/extraction in response to CO 2 exposure under stepwise increasing pressure was quantified via fluorescence microscopy, using the inherent fluorescence property of the oil. The CO 2 solubilities and diffusion coefficients were determined from the swelling process with measurements in strong agreement with previous results. The CO 2 -oil MMP was determined from the subsequent oil extraction process with measurements within 5% of previous values. In addition, the oil-CO 2 -silicon contact angle was measured throughout the process, with contact angle increasing with pressure. In contrast with conventional methods, which require days and ∼500 mL of fluid sample, the approach here provides a comprehensive suite of measurements, 100-fold faster with less than 1 μL of sample, and an opportunity to better inform large-scale CO 2 projects.
Fat Embolism Syndrome With Cerebral Fat Embolism Associated With Long-Bone Fracture.
DeFroda, Steven F; Klinge, Stephen A
Fat embolism syndrome (FES) is a well-known sequela of long-bone fracture and fixation. FES most commonly affects the pulmonary system. Brain emboli may lead to a symptomatic cerebral fat embolism (CFE), which is devastating. In this article, we review the presentation, causes, and management of FES presenting with CFE, report a case, and review the literature. The case involved an otherwise healthy 42-year-old woman who developed CFE after reamed intramedullary nail fixation of femoral and tibial shaft fractures during a single operation. When the patient presented after surgery, she was nonverbal and was having diffuse extremity weakness. The diagnosis was stroke and resultant diffuse encephalopathy secondary to CFE. Within days of urgent management, the patient's cognitive and ophthalmologic deficits were substantially improved. Six months after surgery, cognitive and ophthalmologic recovery was excellent, and the fractures were healing with good functional recovery in the affected limb.
Mannitol Improves Brain Tissue Oxygenation in a Model of Diffuse Traumatic Brain Injury.
Schilte, Clotilde; Bouzat, Pierre; Millet, Anne; Boucheix, Perrine; Pernet-Gallay, Karin; Lemasson, Benjamin; Barbier, Emmanuel L; Payen, Jean-François
2015-10-01
Based on evidence supporting a potential relation between posttraumatic brain hypoxia and microcirculatory derangements with cell edema, we investigated the effects of the antiedematous agent mannitol on brain tissue oxygenation in a model of diffuse traumatic brain injury. Experimental study. Neurosciences and physiology laboratories. Adult male Wistar rats. Thirty minutes after diffuse traumatic brain injury (impact-acceleration model), rats were IV administered with either a saline solution (traumatic brain injury-saline group) or 20% mannitol (1 g/kg) (traumatic brain injury-mannitol group). Sham-saline and sham-mannitol groups received no insult. Two series of experiments were conducted 2 hours after traumatic brain injury (or equivalent) to investigate 1) the effect of mannitol on brain edema and oxygenation, using a multiparametric magnetic resonance-based approach (n = 10 rats per group) to measure the apparent diffusion coefficient, tissue oxygen saturation, mean transit time, and blood volume fraction in the cortex and caudoputamen; 2) the effect of mannitol on brain tissue PO2 and on venous oxygen saturation of the superior sagittal sinus (n = 5 rats per group); and 3) the cortical ultrastructural changes after treatment (n = 1 per group, taken from the first experiment). Compared with the sham-saline group, the traumatic brain injury-saline group had significantly lower tissue oxygen saturation, brain tissue PO2, and venous oxygen saturation of the superior sagittal sinus values concomitant with diffuse brain edema. These effects were associated with microcirculatory collapse due to astrocyte swelling. Treatment with mannitol after traumatic brain injury reversed all these effects. In the absence of traumatic brain injury, mannitol had no effect on brain oxygenation. Mean transit time and blood volume fraction were comparable between the four groups of rats. The development of posttraumatic brain edema can limit the oxygen utilization by brain tissue without evidence of brain ischemia. Our findings indicate that an antiedematous agent such as mannitol can improve brain tissue oxygenation, possibly by limiting astrocyte swelling and restoring capillary perfusion.
[Two cases of cerebral infarction caused by fat embolism during orthopedic bone surgeries].
Takinami, Yoshikazu
2009-08-01
I report on two cases of cerebral infarction caused by fat embolism during the orthopedic surgeries. The first patient was a 77-year-old woman with a femur neck fracture, who developed coma after orthopedic operation. The other was a 70-year-old woman with open fractures in the femur and the fibula, who developed hemiplegia after operation. By echogram, no embolus was demonstrated in the heart, in the carotid arteries or in deep veins, also paradoxical cerebral infarction was denied in the both cases. Diffusion-weighted MR image and FLAIR MR image showing multiple hyperintense signals in the hemispheres were very useful as a diagnosing modality in acute stage. The patients gradually recovered with the intensive treatment.
Chen, K C; Nicholson, C
2000-07-18
Diffusion of molecules in brain extracellular space is constrained by two macroscopic parameters, tortuosity factor lambda and volume fraction alpha. Recent studies in brain slices show that when osmolarity is reduced, lambda increases while alpha decreases. In contrast, with increased osmolarity, alpha increases, but lambda attains a plateau. Using homogenization theory and a variety of lattice models, we found that the plateau behavior of lambda can be explained if the shape of brain cells changes nonuniformly during the shrinking or swelling induced by osmotic challenge. The nonuniform cellular shrinkage creates residual extracellular space that temporarily traps diffusing molecules, thus impeding the macroscopic diffusion. The paper also discusses the definition of tortuosity and its independence of the measurement frame of reference.
Roche-Labarbe, Nadège; Fenoglio, Angela; Aggarwal, Alpna; Dehaes, Mathieu; Carp, Stefan A; Franceschini, Maria Angela; Grant, Patricia Ellen
2012-03-01
Little is known about cerebral blood flow, cerebral blood volume (CBV), oxygenation, and oxygen consumption in the premature newborn brain. We combined quantitative frequency-domain near-infrared spectroscopy measures of cerebral hemoglobin oxygenation (SO(2)) and CBV with diffusion correlation spectroscopy measures of cerebral blood flow index (BF(ix)) to determine the relationship between these measures, gestational age at birth (GA), and chronological age. We followed 56 neonates of various GA once a week during their hospital stay. We provide absolute values of SO(2) and CBV, relative values of BF(ix), and relative cerebral metabolic rate of oxygen (rCMRO(2)) as a function of postmenstrual age (PMA) and chronological age for four GA groups. SO(2) correlates with chronological age (r=-0.54, P value ≤0.001) but not with PMA (r=-0.07), whereas BF(ix) and rCMRO(2) correlate better with PMA (r=0.37 and 0.43, respectively, P value ≤0.001). Relative CMRO2 during the first month of life is lower when GA is lower. Blood flow index and rCMRO(2) are more accurate biomarkers of the brain development than SO(2) in the premature newborns.
Characterization of White Matter Injury in a Rat Model of Chronic Cerebral Hypoperfusion.
Choi, Bo-Ryoung; Kim, Dong-Hee; Back, Dong Bin; Kang, Chung Hwan; Moon, Won-Jin; Han, Jung-Soo; Choi, Dong-Hee; Kwon, Kyoung Ja; Shin, Chan Young; Kim, Bo-Ram; Lee, Jongmin; Han, Seol-Heui; Kim, Hahn Young
2016-02-01
Chronic cerebral hypoperfusion can lead to ischemic white matter injury resulting in vascular dementia. To characterize white matter injury in vascular dementia, we investigated disintegration of diverse white matter components using a rat model of chronic cerebral hypoperfusion. Chronic cerebral hypoperfusion was modeled in Wistar rats by permanent occlusion of the bilateral common carotid arteries. We performed cognitive behavioral tests, including the water maze task, odor discrimination task, and novel object test; histological investigation of neuroinflammation, oligodendrocytes, myelin basic protein, and nodal or paranodal proteins at the nodes of Ranvier; and serial diffusion tensor imaging. Cilostazol was administered to protect against white matter injury. Diverse cognitive impairments were induced by chronic cerebral hypoperfusion. Disintegration of white matter was characterized by neuroinflammation, loss of oligodendrocytes, attenuation of myelin density, structural derangement at the nodes of Ranvier, and disintegration of white matter tracts. Cilostazol protected against cognitive impairments and white matter disintegration. White matter injury induced by chronic cerebral hypoperfusion can be characterized by disintegration of diverse white matter components. Cilostazol might be a therapeutic strategy against white matter disintegration in patients with vascular dementia. © 2015 American Heart Association, Inc.
Effects of insulin resistance on white matter microstructure in middle-aged and older adults
Coutu, Jean-Philippe; Rosas, H. Diana; Salat, David H.
2014-01-01
Objective: To investigate the potential relationship between insulin resistance (IR) and white matter (WM) microstructure using diffusion tensor imaging in cognitively healthy middle-aged and older adults. Methods: Diffusion tensor imaging was acquired from 127 individuals (age range 41–86 years). IR was evaluated by the homeostasis model assessment of IR (HOMA-IR). Participants were divided into 2 groups based on HOMA-IR values: “high HOMA-IR” (≥2.5, n = 27) and “low HOMA-IR” (<2.5, n = 100). Cross-sectional voxel-based comparisons were performed using Tract-Based Spatial Statistics and anatomically defined regions of interest analysis. Results: The high HOMA-IR group demonstrated decreased axial diffusivity broadly throughout the cerebral WM in areas such as the corpus callosum, corona radiata, cerebral peduncle, posterior thalamic radiation, and right superior longitudinal fasciculus, and WM underlying the frontal, parietal, and temporal lobes, as well as decreased fractional anisotropy in the body and genu of corpus callosum and parts of the superior and anterior corona radiata, compared with the low HOMA-IR group, independent of age, WM signal abnormality volume, and antihypertensive medication status. These regions additionally demonstrated linear associations between diffusion measures and HOMA-IR across all subjects, with higher HOMA-IR values being correlated with lower axial diffusivity. Conclusions: In generally healthy adults, greater IR is associated with alterations in WM tissue integrity. These cross-sectional findings suggest that IR contributes to WM microstructural alterations in middle-aged and older adults. PMID:24771537
Porencephaly in a fennec fox (Vulpes zerda).
Yamazaki, Mutsumi; Yoshimoto, Saeko; Ishikawa, Tomoko; Une, Yumi
2016-12-01
A postmortem examination revealed a large brain cavity in the right cerebral hemisphere of a 9-year-old male fennec (Vulpes zerda). The cavity was filled with cerebrospinal fluid and extended to the right lateral ventricle. Swelling and displacement of the right hippocampal area were also observed. Histologic examination revealed no evidence of previous infarct lesions, hemorrhage, inflammation or invasive tumor cells. Observation of the defective part suggested a local circulatory disorder during the fetal stage, although the cause was not detected. No neurological symptoms that could enable a provisional diagnosis were observed during the course of his life. This is the first report of asymptomatic porencephaly in a fennec fox.
The entrance of water into beef and dog red cells.
VILLEGAS, R; BARTON, T C; SOLOMON, A K
1958-11-20
The rate constants for diffusion of THO across the red cell membrane of beef and dog, and the rate of entrance of water into the erythrocytes of these species under an osmotic pressure gradient have been measured. For water entrance into the erythrocyte by diffusion the rate constants are 0.10 +/- 0.02 msec.(-1) (beef) and 0.14 +/- 0.03 msec.(-1) (dog); the permeability coefficients for water entrance under a pressure gradient of 1 osmol./cm(3) are 0.28 See PDF for Equation These values permit the calculation of an equivalent pore radius for the erythrocyte membrane of 4.1 A for beef and 7.4 A for dog. In the beef red cell the change in THO diffusion due to osmotically produced cell volume shifts has been studied. The resistance to THO diffusion increases as the cell volume increases. At the maximum volume, (1.06 times normal), THO diffusion is decreased to 0.84 times the normal rate. This change in diffusion is attributed to swelling of the cellular membrane.
Shimoda, M; Oda, S; Hirayama, A; Imai, M; Komatsu, F; Hoshikawa, K; Shigematsu, H; Nishiyama, J; Osada, T
2016-09-01
Reversible cerebral vasoconstriction syndrome is characterized by thunderclap headache and diffuse segmental vasoconstriction that resolves spontaneously within 3 months. Previous reports have proposed that vasoconstriction first involves small distal arteries and then progresses toward major vessels at the time of thunderclap headache remission. The purpose of this study was to confirm centripetal propagation of vasoconstriction on MRA at the time of thunderclap headache remission compared with MRA at the time of reversible cerebral vasoconstriction syndrome onset. Of the 39 patients diagnosed with reversible cerebral vasoconstriction syndrome at our hospital during the study period, participants comprised the 16 patients who underwent MR imaging, including MRA, within 72 hours of reversible cerebral vasoconstriction syndrome onset (initial MRA) and within 48 hours of thunderclap headache remission. In 14 of the 16 patients (87.5%), centripetal propagation of vasoconstriction occurred from the initial MRA to remission of thunderclap headache, with typical segmental vasoconstriction of major vessels. These mainly involved the M1 portion of the MCA (10 cases), P1 portion of the posterior cerebral artery (10 cases), and A1 portion of the anterior cerebral artery (5 cases). This study found evidence of centripetal propagation of vasoconstriction on MRA obtained at the time of thunderclap headache remission, compared with MRA obtained at the time of reversible cerebral vasoconstriction syndrome onset. If clinicians remain unsure of the diagnosis during early-stage reversible cerebral vasoconstriction syndrome, this time point represents the best opportunity to diagnose reversible cerebral vasoconstriction syndrome with confidence. © 2016 by American Journal of Neuroradiology.
Self-healing of optical functions by molecular metabolism in a swollen elastomer
NASA Astrophysics Data System (ADS)
Saito, Mitsunori; Nishimura, Tatsuya; Sakiyama, Kohei; Inagaki, Sota
2012-12-01
Optical functions of organic dyes, e.g., fluorescence or photochromism, tend to degrade by light irradiation, which causes a short lifetime of photonic devices. Self-healing of optical functions is attainable by metabolizing bleached molecules with nonirradiated ones. A polydimethylsiloxane elastomer provides a useful matrix for dye molecules, since its flexible structure with nano-sized intermolecular spaces allows dye diffusion from a reservoir to an operation region. Swelling the elastomer with a suitable solvent promotes both dissolution and diffusion of dye molecules. This self-healing function was demonstrated by an experiment in which a photochromic elastomer exhibited improved durability against a repeated coloring-decoloring process.
Diffusion, Perfusion, and Histopathologic Characteristics of Desmoplastic Infantile Ganglioglioma.
Ho, Chang Y; Gener, Melissa; Bonnin, Jose; Kralik, Stephen F
2016-07-01
We present a case series of a rare tumor, the desmoplastic infantile ganglioglioma (DIG) with MRI diffusion and perfusion imaging quantification as well as histopathologic characterization. Four cases with pathologically-proven DIG had diffusion weighted imaging (DWI) and two of the four had dynamic susceptibility contrast imaging. All four tumors demonstrate DWI findings compatible with low-grade pediatric tumors. For the two cases with perfusion imaging, a higher relative cerebral blood volume was associated with higher proliferation index on histopathology for one of the cases. Our results are discussed in conjunction with a literature review.
Diffusion, Perfusion, and Histopathologic Characteristics of Desmoplastic Infantile Ganglioglioma
Ho, Chang Y; Gener, Melissa; Bonnin, Jose; Kralik, Stephen F
2016-01-01
We present a case series of a rare tumor, the desmoplastic infantile ganglioglioma (DIG) with MRI diffusion and perfusion imaging quantification as well as histopathologic characterization. Four cases with pathologically-proven DIG had diffusion weighted imaging (DWI) and two of the four had dynamic susceptibility contrast imaging. All four tumors demonstrate DWI findings compatible with low-grade pediatric tumors. For the two cases with perfusion imaging, a higher relative cerebral blood volume was associated with higher proliferation index on histopathology for one of the cases. Our results are discussed in conjunction with a literature review. PMID:27761184
Polyelectrolyte polymer properties in relation to male contraceptive RISUG action.
Roy, Sohini; Ghosh, Debidas; Guha, Sujoy K
2009-02-15
RISUG a polyelectrolytic hydrogel (styrene maleic anhydride and dimethyl sulfoxide) has proven to be efficacious as a contraceptive for a long term when injected into the lumen of vas deferens. Currently it is in advanced phase III clinical trials in India. Present investigation analyzes the swelling characteristics of RISUG hydrogel in different pH buffers and various biological fluids to understand its retention in the vas deferens as reported in previous studies. Significant variation in degree of swelling and equilibrium swelling ratio with transformation of Fickian to non-Fickian mode of diffusion was observed with increased pH. This might be due to ionization of carboxylic groups at high pH resulting in increased electrostatic repulsive force and high osmotic pressure inside the hydrogel network affecting its physical cross-linking and increases the free volume. Conversely, at low pH the dissociation of carboxylic group is limited making the hydrogel more stable. Interaction with various biomolecules present in various biological fluids was also studied. SEM, AFM and FTIR were used to analyze the topological and structural parameters of the polymer in different mediums. Loosening of structure and increasing porosity with significant adsorption of various biomolecules was observed. AFM revealed a significant change in overall roughness of polymer surface on interaction with different biological fluids. These observations suggest that the swelling and increased roughness will lead to increased resistance to sperm movement in the vas deferens.
Modeling the effects of pH and ionic strength on swelling of anionic polyelectrolyte gels
NASA Astrophysics Data System (ADS)
Drozdov, A. D.; deClaville Christiansen, J.
2015-07-01
A constitutive model is developed for the elastic response of an anionic polyelectrolyte gel under swelling in water with an arbitrary pH and an arbitrary molar fraction of dissolved monovalent salt. A gel is treated as a three-phase medium consisting of a solid phase (polymer network), solvent (water), and solute (mobile ions). Transport of solvent and solute is thought of as their diffusion through the polymer network accelerated by an electric field formed by mobile and fixed ions and accompanied by chemical reactions (dissociation of functional groups attached to polymer chains and formation of ion pairs between bound charges and mobile counter-ions). Constitutive equations are derived by means of the free energy imbalance inequality for an arbitrary three-dimensional deformation with finite strains. These relations are applied to analyze equilibrium swelling diagrams on poly(acrylic acid) gel, poly(methacrylic acid) gel, and three composite hydrogels under water uptake in a bath (i) with a fixed molar fraction of salt and varied pH, and (ii) with a fixed pH and varied molar fraction of salt. To validate the ability of the model to predict observations quantitatively, material constants are found by matching swelling curves under one type of experimental conditions and results of simulation are compared with experimental data in the other type of tests.
Katoh, Hirotaka; Saito, Yu; Ohwan, Yoshiyuki; Kasai, Hideyo; Fujita, Kazuhisa; Kawamura, Mitsuru
2014-10-01
We report a 47-year-old woman who developed a thunderclap headache. Head axial, fluid-attenuated inversion recovery magnetic resonance imaging (FLAIR MRI) revealed high signal lesions in the left occipital and right parietal lobes. Apparent diffusion coefficient mapping showed a vasogenic edema pattern. Upon admission, the patient's blood pressure was normal and the neurological examination was unremarkable. As thunderclap headaches are associated with a repeated rise in blood pressure, we considered cerebral vasoconstriction and administered a calcium channel blocker. Thereafter, her headache with high blood pressure eased significantly and the high signal lesions on FLAIR MRI disappeared. We diagnosed the condition as posterior reversible encephalopathy syndrome (PRES). In addition, head magnetic resonance angiogram showed vasoconstriction of the right anterior cerebral artery, left middle cerebral artery, and bilateral posterior cerebral artery. Calcium channel blocker use was continued and vasoconstriction improved by day 70. In this case, the presenting symptom was thunderclap headache, which is a characteristic feature of reversible cerebral vasoconstriction syndrome (RCVS). Therefore, PRES may be caused by RCVS.
Role of susceptibility-weighted imaging in demonstration of cerebral fat embolism
Yeap, Pheyming; Kanodia, Avinash Kumar; Main, Gavin; Yong, Aiwain
2015-01-01
Cerebral fat embolism (CFE) is a rare but potentially lethal complication of long bone fractures. Many cases of CFE occur as subclinical events and remain undiagnosed. We report a case of a 22-year-old man, with multiple long bone fractures from a road traffic accident, who subsequently developed hypoxia, neurological abnormality and petechial rash. CT of the head was normal. MRI of the head confirmed the diagnosis with lesions markedly conspicuous and most widespread on susceptibility-weighted imaging as compared to all other sequences including diffusion-weighted imaging. PMID:25572601
Barcelo, C; Catalaa, I; Loubes-Lacroix, F; Cognard, C; Bonneville, F
2010-03-01
We report an atypical case of cerebral toxoplasmosis (CT) in a 70-year-old woman with a history of breast cancer. Contrast-enhanced computed tomography revealed a single ring-enhancing lesion in the pons with perifocal oedema and mass effect. Toxoplasma encephalitis was suggested by means of diffusion weighted imaging, MR perfusion and MR spectroscopy, leading to the discovery of HIV infection. The patient was put on antitoxoplasma therapy. Subsequent clinical and radiological improvements confirmed the diagnosis. (c) 2009 Elsevier Masson SAS. All rights reserved.
Numerical Simulation of Rheological, Chemical and Hydromechanical Processes of Thrombolysis
NASA Astrophysics Data System (ADS)
Khramchenkov, E.; Khramchenkov, M.
2015-04-01
Mathematical model of clot lysis in blood vessels is developed on the basis of equations of convection-diffusion. Fibrin of the clot is considered stationary solid phase, and plasminogen, plasmin and plasminogen-activators - as dissolved fluid phases. As a result of numerical solution of the model predictions of lysis process are gained. Important influence of clot swelling on the process of lysis is revealed.
Mulon, Pierre-Yves; Achard, Damien; Babkine, Marie
2010-01-01
A 17-month-old Holstein heifer was presented for persistent enlargement above the right hind fetlock of 1-month’s duration. Diffuse plantar soft tissue swelling was present on the radiographs and ultrasonography revealed the presence of multiple porcupine quill extremities embedded in the subcutaneous tissue within the flexor tendon sheath wall. Surgical removal was performed. PMID:21037892
Correlation of quantitative sensorimotor tractography with clinical grade of cerebral palsy.
Trivedi, Richa; Agarwal, Shruti; Shah, Vipul; Goyel, Puneet; Paliwal, Vimal K; Rathore, Ram K S; Gupta, Rakesh K
2010-08-01
The purpose of this study was to determine whether tract-specific diffusion tensor imaging measures in somatosensory and motor pathways correlate with clinical grades as defined using the Gross Motor Function Classification System (GMFCS) in cerebral palsy (CP) children. Quantitative diffusion tensor tractography was performed on 39 patients with spastic quadriparesis (mean age = 8 years) and 14 age/sex-matched controls. All patients were graded on the basis of GMFCS scale into grade II (n = 12), grade IV (n = 22), and grade V (n = 5) CP and quantitative analysis reconstruction of somatosensory and motor tracts performed. Significant inverse correlation between clinical grade and fractional anisotropy (FA) was observed in both right and left motor and sensory tracts. A significant direct correlation of mean diffusivity values from both motor and sensory tracts was also observed with clinical grades. Successive decrease in FA values was observed in all tracts except for left motor tracts moving from age/sex-matched controls to grade V through grades II and IV. We conclude that white matter tracts from both the somatosensory and the motor cortex play an important role in the pathophysiology of motor disability in patients with CP.
Zeestraten, Eva Anna; Benjamin, Philip; Lambert, Christian; Lawrence, Andrew John; Williams, Owen Alan; Morris, Robin Guy; Barrick, Thomas Richard; Markus, Hugh Stephen
2016-01-01
Cerebral small vessel disease (SVD) is the major cause of vascular cognitive impairment, resulting in significant disability and reduced quality of life. Cognitive tests have been shown to be insensitive to change in longitudinal studies and, therefore, sensitive surrogate markers are needed to monitor disease progression and assess treatment effects in clinical trials. Diffusion tensor imaging (DTI) is thought to offer great potential in this regard. Sensitivity of the various parameters that can be derived from DTI is however unknown. We aimed to evaluate the differential sensitivity of DTI markers to detect SVD progression, and to estimate sample sizes required to assess therapeutic interventions aimed at halting decline based on DTI data. We investigated 99 patients with symptomatic SVD, defined as clinical lacunar syndrome with MRI confirmation of a corresponding infarct as well as confluent white matter hyperintensities over a 3 year follow-up period. We evaluated change in DTI histogram parameters using linear mixed effect models and calculated sample size estimates. Over a three-year follow-up period we observed a decline in fractional anisotropy and increase in diffusivity in white matter tissue and most parameters changed significantly. Mean diffusivity peak height was the most sensitive marker for SVD progression as it had the smallest sample size estimate. This suggests disease progression can be monitored sensitively using DTI histogram analysis and confirms DTI's potential as surrogate marker for SVD.
Hidalgo de la Cruz, M; Domínguez Rubio, R; Luque Buzo, E; Díaz Otero, F; Vázquez Alén, P; Orcajo Rincón, J; Prieto Montalvo, J; Contreras Chicote, A; Grandas Pérez, F
2017-04-17
HaNDL syndrome (transient headache and neurological deficits with cerebrospinal fluid lymphocytosis) is characterised by one or more episodes of headache and transient neurological deficits associated with cerebrospinal fluid lymphocytosis. To date, few cases of HaNDL manifesting with confusional symptoms have been described. Likewise, very few patients with HaNDL and confusional symptoms have been evaluated with transcranial Doppler ultrasound (TCD). TCD data from patients with focal involvement reveal changes consistent with vasomotor alterations. We present the case of a 42-year-old man who experienced headache and confusional symptoms and displayed pleocytosis, diffuse slow activity on EEG, increased blood flow velocity in both middle cerebral arteries on TCD, and single-photon emission computed tomography (SPECT) findings suggestive of diffuse involvement, especially in the left hemisphere. To our knowledge, this is the first description of a patient with HaNDL, confusional symptoms, diffuse slow activity on EEG, and increased blood flow velocity in TCD. Our findings suggest a relationship between cerebral vasomotor changes and the pathophysiology of HaNDL. TCD may be a useful tool for early diagnosis of HaNDL. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gozukirmizi, E.; Meyer, J.S.; Okabe, T.
1982-01-01
Cerebral blood flow (CBF) measurements were combined with sleep polysomnography in nine patients with complex partial seizures. Two methods were used: the 133Xe method for measuring regional (rCBF) and the stable xenon CT method for local (LCBF). Compared to nonepileptic subjects, who show diffuse CBF decreases during stages I-II, non-REM sleep onset, patients with complex partial seizures show statistically significant increases in CBF which are maximal in regions where the EEG focus is localized and are predominantly seen in one temporal region but are also propagated to other cerebral areas. Both CBF methods gave comparable results, but greater statistical significancemore » was achieved by stable xenon CT methodology. CBF increases are more diffuse than predicted by EEG paroxysmal activity recorded from scalp electrodes. An advantage of the 133Xe inhalation method was achievement of reliable data despite movement of the head. This was attributed to the use of a helmet which maintained the probes approximated to the scalp. Disadvantages were poor resolution (7 cm3) and two-dimensional information. The advantage of stable xenon CT method is excellent resolution (80 mm3) in three dimensions, but a disadvantage is that movement of the head in patients with seizure disorders may limit satisfactory measurements.« less
Detailed magnetic resonance imaging features of a case series of primary gliosarcoma.
Sampaio, Luísa; Linhares, Paulo; Fonseca, José
2017-12-01
Objective We aimed to characterise the magnetic resonance imaging (MRI) features of a case series of primary gliosarcoma, with the inclusion of diffusion-weighted imaging and perfusion imaging with dynamic susceptibility contrast MRI. Materials and methods We conducted a retrospective study of cases of primary gliosarcoma from the Pathology Department database from January 2006 to December 2014. Clinical and demographic data were obtained. Two neuroradiologists, blinded to diagnosis, assessed tumour location, signal intensity in T1 and T2-weighted images, pattern of enhancement, diffusion-weighted imaging and dynamic susceptibility contrast MRI studies on preoperative MRI. Results Seventeen patients with primary gliosarcomas had preoperative MRI study: seven men and 10 women, with a mean age of 59 years (range 27-74). All lesions were well demarcated, supratentorial and solitary (frontal n = 5, temporal n = 4, parietal n = 3); 13 tumours abutted the dural surface (8/13 with dural enhancement); T1 and T2-weighted imaging patterns were heterogeneous and the majority of lesions (12/17) showed a rim-like enhancement pattern with focal nodularities/irregular thickness. Restricted diffusion (mean apparent diffusion coefficient values 0.64 × 10 -3 mm 2 /s) in the more solid/thick components was present in eight out of 11 patients with diffusion-weighted imaging study. Dynamic susceptibility contrast MRI study ( n = 8) consistently showed hyperperfusion in non-necrotic/cystic components on relative cerebral volume maps. Conclusions The main distinguishing features of primary gliosarcoma are supratentorial and peripheral location, well-defined boundaries and a rim-like pattern of enhancement with an irregular thick wall. Diffusion-weighted imaging and relative cerebral volume map analysis paralleled primary gliosarcoma with high-grade gliomas, thus proving helpful in differential diagnosis.
Ben-Shachar, Michal; Feldman, Heidi M.
2015-01-01
Premature birth is highly prevalent and associated with neurodevelopmental delays and disorders. Adverse outcomes, particularly in children born before 32 weeks of gestation, have been attributed in large part to white matter injuries, often found in periventricular regions using conventional imaging. To date, tractography studies of white matter pathways in children and adolescents born preterm have evaluated only a limited number of tracts simultaneously. The current study compares diffusion properties along 18 major cerebral white matter pathways in children and adolescents born preterm (n = 27) and full term (n = 19), using diffusion magnetic resonance imaging and tractography. We found that compared to the full term group, the preterm group had significantly decreased FA in segments of the bilateral uncinate fasciculus and anterior segments of the right inferior fronto-occipital fasciculus. Additionally, the preterm group had significantly increased FA in segments of the right and left anterior thalamic radiations, posterior segments of the right inferior fronto-occipital fasciculus, and the right and left inferior longitudinal fasciculus. Increased FA in the preterm group was generally associated with decreased radial diffusivity. These findings indicate that prematurity-related white matter differences in later childhood and adolescence do not affect all tracts in the periventricular zone and can involve both decreased and increased FA. Differences in the patterns of radial diffusivity and axial diffusivity suggest that the tissue properties underlying group FA differences may vary within and across white matter tracts. Distinctive diffusion properties may relate to variations in the timing of injury in the neonatal period, extent of white matter dysmaturity and/or compensatory processes in childhood. PMID:26560745
Nakao, M; Kawaguchi, R; Nakatani, K; Niinai, H; Takezaki, T; Hanaki, C
1996-06-01
A 61-year-old male with coma and undiagnosed dilated cardiomyopathy received emergency cerebral aneurysm surgery. Anesthesia was induced with thiamylal, fentanyl and vecuronium and maintained with 66% N2O and 1.0% isoflurane. Five hundred ml of 20% mannitol was infused in 30 min. At the end of the infusion, hypotension occurred. Immediately after the injection of ephedrine, acute brain swelling was observed. The operation was switched to external decompression. Post-operative echocardiography revealed the presence of dilated cardiomyopathy (DCM). The ejection fraction was 34%. Two weeks later, the second operation was scheduled. The anesthesia was induced with fentanyl, midazolam and vecuronium and maintained with N2O and 0.7% isoflurane. Nitroglycerine, lidocaine, PGE1, dopamine and dobutamine were infused throughout the operation. Five hundred ml of 20% mannitol was infused in 60 min. There were no considerable hemodynamic changes and no episode of brain expansion during operation. We conclude that the rapid infusion of mannitol can trigger acute cardiac failure and brain edema in patients with DCM.
Severe Cerebral Vasospasm and Childhood Arterial Ischemic Stroke After Intrathecal Cytarabine.
Tibussek, Daniel; Natesirinilkul, Rungrote; Sun, Lisa R; Wasserman, Bruce A; Brandão, Leonardo R; deVeber, Gabrielle
2016-02-01
We report on 2 patients who developed widespread cerebral vasospasm and arterial ischemic strokes (AIS) after application of intrathecal (IT) cytarabine. In a 3-year-old child with acute lymphoblastic leukemia (ALL), left leg weakness, hyperreflexia, and clonus were noted 4 days after her first dose of IT cytarabine during the induction phase of her chemotherapy. Cerebral MRI revealed multiple acute cerebral ischemic infarcts and widespread cerebral vasospasm. A 5-year-old girl complained of right arm and leg pain and began limping 11 days after IT cytarabine. Symptoms progressed to right dense hemiplegia, left gaze deviation, headache, and speech arrest. MRI revealed 2 large cortical areas of diffusion restriction in the right frontal and left parietal lobes. Cerebral magnetic resonance angiography (MRA) showed irregular narrowing affecting much of the intracranial arterial circulation. Although the first child fully recovered from her neurologic symptoms, the second patient had persistent hemiplegia on follow-up. Including this report, there are now 4 pediatric ALL cases of severe cerebral vasospasm and AIS in the context of IT cytarabine administration, strongly suggesting a true association. Differential diagnosis and management issues are discussed. Along with the more widespread use of MRI and MRA, the true frequency of this severe adverse effect will become clearer in future. For any child with neurologic symptoms within hours or days of receiving IT cytarabine, a low threshold for cerebral imaging with MRI and MRA is recommended. Copyright © 2016 by the American Academy of Pediatrics.
Neubauer, Vera; Djurdjevic, Tanja; Griesmaier, Elke; Biermayr, Marlene; Gizewski, Elke Ruth; Kiechl-Kohlendorfer, Ursula
2018-01-01
Recent advances in magnetic resonance imaging (MRI) techniques have prompted reconsideration of the anatomical correlates of adverse outcomes in preterm infants. The importance of the contribution made by the cerebellum is now increasingly appreciated. The effect of cerebellar haemorrhage (CBH) on the microstructure of the cerebellar-cerebral circuit is largely unexplored. To investigate the effect of CBH on the microstructure of cerebellar-cerebral connections in preterm infants aged <32 gestational weeks. Infants underwent diffusion tensor MRI at term-equivalent age. MRI was evaluated for CBH and additional supratentorial brain injury using a validated scoring system. Region of interest-based measures of brain microstructure (fractional anisotropy [FA] and apparent diffusion coefficient) were quantified in 5 vulnerable regions (the centrum semiovale, posterior limb of the internal capsule, corpus callosum, and superior and middle cerebellar peduncles). Group differences between infants with CBH and infants without CBH were assessed. There were 267 infants included in the study. Infants with CBH (isolated and combined) had significantly lower FA values in all regions investigated. Infants with isolated CBH showed lower FA in the middle and superior cerebellar peduncles and in the posterior limb of the internal capsule. This study provides evidence that CBH causes alterations in localised and remote WM pathways in the developing brain. The disruption of the cerebellar-cerebral microstructure at multiple sites adds further support for the concept of developmental diaschisis, which is propagated as an explanation for the consequences of early cerebellar injury on cognitive and affective domains. © 2017 S. Karger AG, Basel.
Vuruskan, Ertan; Saracoglu, Erhan; Ergun, Ugur; Poyraz, Fatih; Duzen, İrfan Veysel
2017-01-01
The aim of this study was to compare the simultaneous double-protection method (proximal balloon plus distal filter) with distal-filter protection or proximal-balloon protection alone in asymptomatic patients during carotid artery stenting. 119 consecutive patients were investigated for carotid artery stentings in the extracranial internal carotid artery with the use of distal filters (n = 41, 34.4 %), proximal balloon (MoMa) protection (n = 40, 33.6 %) or double protection (n = 38, 31.9 %). Magnetic resonance imaging (MRI) was performed on all patients before the procedure, and control diffusion-weighted MRI (DW-MRI) was obtained within 24-48 h after the procedure. Procedural data, complications, success rate, major adverse cardiovascular events, and MRI findings were collected. New cerebral high-intensity (HI) lesions were observed in 47 (39.4 %) patients. HI lesions were observed in 22 (53.6 %), 15 (37.5 %), and 10 (26.3 %) of the patients with distal filters, proximal protection, and double protection, respectively (p = 0.004). The average number of HI lesions on DW-MRI was 1.80 in the distal-filter group, 0.90 in the proximal-balloon group, and 0.55 in the double-protection group (p < 0.001). Procedure and fluoroscopy times were slightly longer in the double-protection group compared to the distal- or proximal-protection groups (p = 0.001). The double (proximal plus distal) cerebral embolic protection technique is safe and effective for minimizing the risk of cerebral embolization, even in patients with asymptomatic carotid artery stenosis, despite slightly longer procedure and fluoroscopy times. .
How Do Organic Vapors Swell Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1?
Ogieglo, Wojciech; Rahimi, Khosorov; Rauer, Sebastian Bernhard; Ghanem, Bader; Ma, Xiaohua; Pinnau, Ingo; Wessling, Matthias
2017-07-27
Dynamic sorption of ethanol and toluene vapor into ultrathin supported films of polymer of intrinsic microporosity PIM-1 down to a thickness of 6 nm are studied with a combination of in situ spectroscopic ellipsometry and in situ X-ray reflectivity. Both ethanol and toluene significantly swell the PIM-1 matrix and, at the same time, induce persistent structural relaxations of the frozen-in glassy PIM-1 morphology. For ethanol below 20 nm, three effects were identified. First, the swelling magnitude at high vapor pressures is reduced by about 30% as compared to that of thicker films. Second, at low penetrant activities (below 0.3p/p 0 ), films below 20 nm are able to absorb slightly more penetrant as compared with thicker films despite a similar swelling magnitude. Third, for the ultrathin films, the onset of the dynamic penetrant-induced glass transition P g has been found to shift to higher values, indicating higher resistance to plasticization. All of these effects are consistent with a view where immobilization of the superglassy PIM-1 at the substrate surface leads to an arrested, even more rigid, and plasticization-resistant, yet still very open, microporous structure. PIM-1 in contact with the larger and more condensable toluene shows very complex, heterogeneous swelling dynamics, and two distinct penetrant-induced relaxation phenomena, probably associated with the film outer surface and the bulk, are detected. Following the direction of the penetrant's diffusion, the surface seems to plasticize earlier than the bulk, and the two relaxations remain well separated down to 6 nm film thickness, where they remarkably merge to form just a single relaxation.
Pachydermoperiostosis in a Patient with Crohn's Disease: Treatment and Literature Review.
Mobini, Maryam; Akha, Ozra; Fakheri, Hafez; Majidi, Hadi; Fattahi, Sanam
2018-01-01
Pachydermoperiostosis (PDP) is a rare disorder characterized by pachydermia, digital clubbing, periostitis, and an excess of affected males. It is the primary form of hypertrophic osteoarthropathy (HOA) and there are some rare associations of PDP with other disorders. Here we describe a patient with Crohn's disease associated with PDP. A 26-year-old man, who was a known case of Crohn's disease, referred with diffuse swelling in the upper and lower limbs and cutis verticis gyrata since 7 years ago. PDP was suspected and endocrinological and radiological studies were conducted for the evaluation of underlying disease. He was prescribed celecoxib, low-dose prednisolone, and pamidronate to control the swelling, periostitis, azathiopurine, and mesalazine according to gastrointestinal involvement. In conclusion, it is important to identify this condition since a misdiagnosis might subject the patient to unnecessary investigations.
Ibaraki, Masanobu; Shinohara, Yuki; Nakamura, Kazuhiro; Miura, Shuichi; Kinoshita, Fumiko; Kinoshita, Toshibumi
2010-07-01
Regional cerebral blood flow (CBF) and oxygen metabolism can be measured by positron emission tomography (PET) with (15)O-labeled compounds. Hemoglobin (Hb) concentration of blood, a primary determinant of arterial oxygen content (C(a)O(2)), influences cerebral circulation. We investigated interindividual variations of CBF, cerebral blood volume (CBV), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO(2)) in relation to Hb concentration in healthy human volunteers (n=17) and in patients with unilateral steno-occlusive disease (n=44). For the patients, data obtained only from the contralateral hemisphere (normal side) were analyzed. The CBF and OEF were inversely correlated with Hb concentration, but CMRO(2) was independent of Hb concentration. Oxygen delivery defined as a product of C(a)O(2) and CBF (C(a)O(2) CBF) increased with a rise of Hb concentration. The analysis with a simple oxygen model showed that oxygen diffusion parameter (L) was constant over the range of Hb concentration, indicating that a homeostatic mechanism controlling CBF is necessary to maintain CMRO(2). The current findings provide important knowledge to understand the control mechanism of cerebral circulation and to interpret the (15)O PET data in clinical practice.
Dehaes, Mathieu; Aggarwal, Alpna; Lin, Pei-Yi; Rosa Fortuno, C; Fenoglio, Angela; Roche-Labarbe, Nadège; Soul, Janet S; Franceschini, Maria Angela; Grant, P Ellen
2014-01-01
Pathophysiologic mechanisms involved in neonatal hypoxic ischemic encephalopathy (HIE) are associated with complex changes of blood flow and metabolism. Therapeutic hypothermia (TH) is effective in reducing the extent of brain injury, but it remains uncertain how TH affects cerebral blood flow (CBF) and metabolism. Ten neonates undergoing TH for HIE and seventeen healthy controls were recruited from the NICU and the well baby nursery, respectively. A combination of frequency domain near infrared spectroscopy (FDNIRS) and diffuse correlation spectroscopy (DCS) systems was used to non-invasively measure cerebral hemodynamic and metabolic variables at the bedside. Results showed that cerebral oxygen metabolism (CMRO2i) and CBF indices (CBFi) in neonates with HIE during TH were significantly lower than post-TH and age-matched control values. Also, cerebral blood volume (CBV) and hemoglobin oxygen saturation (SO2) were significantly higher in neonates with HIE during TH compared with age-matched control neonates. Post-TH CBV was significantly decreased compared with values during TH whereas SO2 remained unchanged after the therapy. Thus, FDNIRS–DCS can provide information complimentary to SO2 and can assess individual cerebral metabolic responses to TH. Combined FDNIRS–DCS parameters improve the understanding of the underlying physiology and have the potential to serve as bedside biomarkers of treatment response and optimization. PMID:24064492
Ferradal, Silvina L.; Yuki, Koichi; Vyas, Rutvi; Ha, Christopher G.; Yi, Francesca; Stopp, Christian; Wypij, David; Cheng, Henry H.; Newburger, Jane W.; Kaza, Aditya K.; Franceschini, Maria A.; Kussman, Barry D.; Grant, P. Ellen
2017-01-01
The neonatal brain is extremely vulnerable to injury during periods of hypoxia and/or ischemia. Risk of brain injury is increased during neonatal cardiac surgery, where pre-existing hemodynamic instability and metabolic abnormalities are combined with long periods of low cerebral blood flow and/or circulatory arrest. Our understanding of events associated with cerebral hypoxia-ischemia during cardiopulmonary bypass (CPB) remains limited, largely due to inadequate tools to quantify cerebral oxygen delivery and consumption non-invasively and in real-time. This pilot study aims to evaluate cerebral blood flow (CBF) and oxygen metabolism (CMRO2) intraoperatively in neonates by combining two novel non-invasive optical techniques: frequency-domain near-infrared spectroscopy (FD-NIRS) and diffuse correlation spectroscopy (DCS). CBF and CMRO2 were quantified before, during and after deep hypothermic cardiopulmonary bypass (CPB) in nine neonates. Our results show significantly decreased CBF and CMRO2 during hypothermic CPB. More interestingly, a change of coupling between both variables is observed during deep hypothermic CPB in all subjects. Our results are consistent with previous studies using invasive techniques, supporting the concept of FD-NIRS/DCS as a promising technology to monitor cerebral physiology in neonates providing the potential for individual optimization of surgical management. PMID:28276534
Ferradal, Silvina L; Yuki, Koichi; Vyas, Rutvi; Ha, Christopher G; Yi, Francesca; Stopp, Christian; Wypij, David; Cheng, Henry H; Newburger, Jane W; Kaza, Aditya K; Franceschini, Maria A; Kussman, Barry D; Grant, P Ellen
2017-03-09
The neonatal brain is extremely vulnerable to injury during periods of hypoxia and/or ischemia. Risk of brain injury is increased during neonatal cardiac surgery, where pre-existing hemodynamic instability and metabolic abnormalities are combined with long periods of low cerebral blood flow and/or circulatory arrest. Our understanding of events associated with cerebral hypoxia-ischemia during cardiopulmonary bypass (CPB) remains limited, largely due to inadequate tools to quantify cerebral oxygen delivery and consumption non-invasively and in real-time. This pilot study aims to evaluate cerebral blood flow (CBF) and oxygen metabolism (CMRO 2 ) intraoperatively in neonates by combining two novel non-invasive optical techniques: frequency-domain near-infrared spectroscopy (FD-NIRS) and diffuse correlation spectroscopy (DCS). CBF and CMRO 2 were quantified before, during and after deep hypothermic cardiopulmonary bypass (CPB) in nine neonates. Our results show significantly decreased CBF and CMRO 2 during hypothermic CPB. More interestingly, a change of coupling between both variables is observed during deep hypothermic CPB in all subjects. Our results are consistent with previous studies using invasive techniques, supporting the concept of FD-NIRS/DCS as a promising technology to monitor cerebral physiology in neonates providing the potential for individual optimization of surgical management.
Nourhashemi, Mina; Kongolo, Guy; Mahmoudzadeh, Mahdi; Goudjil, Sabrina; Wallois, Fabrice
2017-04-01
The mechanisms responsible for coupling between relative cerebral blood flow (rCBF), relative cerebral blood volume (rCBV), and relative cerebral metabolic rate of oxygen ([Formula: see text]), an important function of the microcirculation in preterm infants, remain unclear. Identification of a causal relationship between rCBF-rCBV and [Formula: see text] in preterms may, therefore, help to elucidate the principles of cortical hemodynamics during development. We simultaneously recorded rCBF and rCBV and estimated [Formula: see text] by two independent acquisition systems: diffuse correlation spectroscopy and near-infrared spectroscopy, respectively, in 10 preterms aged between 28 and 35 weeks of gestational age. Transfer entropy was calculated in order to determine the directionality between rCBF-rCBV and [Formula: see text]. The surrogate method was applied to determine statistical significance. The results show that rCBV and [Formula: see text] have a predominant driving influence on rCBF at the resting state in the preterm neonatal brain. Statistical analysis robustly detected the correct directionality of rCBV on rCBF and [Formula: see text] on rCBF. This study helps to clarify the early organization of the rCBV-rCBF and [Formula: see text] inter-relationship in the immature cortex.
Fluid flow and convective transport of solutes within the intervertebral disc.
Ferguson, Stephen J; Ito, Keita; Nolte, Lutz P
2004-02-01
Previous experimental and analytical studies of solute transport in the intervertebral disc have demonstrated that for small molecules diffusive transport alone fulfils the nutritional needs of disc cells. It has been often suggested that fluid flow into and within the disc may enhance the transport of larger molecules. The goal of the study was to predict the influence of load-induced interstitial fluid flow on mass transport in the intervertebral disc. An iterative procedure was used to predict the convective transport of physiologically relevant molecules within the disc. An axisymmetric, poroelastic finite-element structural model of the disc was developed. The diurnal loading was divided into discrete time steps. At each time step, the fluid flow within the disc due to compression or swelling was calculated. A sequentially coupled diffusion/convection model was then employed to calculate solute transport, with a constant concentration of solute being provided at the vascularised endplates and outer annulus. Loading was simulated for a complete diurnal cycle, and the relative convective and diffusive transport was compared for solutes with molecular weights ranging from 400 Da to 40 kDa. Consistent with previous studies, fluid flow did not enhance the transport of low-weight solutes. During swelling, interstitial fluid flow increased the unidirectional penetration of large solutes by approximately 100%. Due to the bi-directional temporal nature of disc loading, however, the net effect of convective transport over a full diurnal cycle was more limited (30% increase). Further study is required to determine the significance of large solutes and the timing of their delivery for disc physiology.
2008-02-11
sample , could explain large swelling in blend samples which might enhance ions diffusion and lead to an increase of bending. 21 References [1...1 Final Report on Electro-responsive behaviour multi-wall nanotubes/gelatin composites and cross-linked gelatin electrospun mats...12-10-2007 4. TITLE AND SUBTITLE Electro-responsive behaviour multi-wall nanotubes/gelatin composites and cross-linked gelatin electrospun mats
Jesus, Celso R N; Molina, Eduardo F; Pulcinelli, Sandra H; Santilli, Celso V
2018-06-06
In this work, we report the effects of incorporation of variable amounts (1-20 wt %) of sodium montmorillonite (MMT) into a siloxane-poly(ethylene oxide) hybrid hydrogel prepared by the sol-gel route. The aim was to control the nanostructural features of the nanocomposite, improve the release profile of the sodium diclofenac (SDCF) drug, and optimize the swelling behavior of the hydrophilic matrix. The nanoscopic characteristics of the siloxane-cross-linked poly(ethylene oxide) network, the semicrystallinity of the hybrid, and the intercalated or exfoliated structure of the clay were investigated by X-ray diffraction, small-angle X-ray scattering, and differential scanning calorimetry. The correlation between the nanoscopic features of nanocomposites containing different amounts of MMT and the swelling behavior revealed the key role of exfoliated silicate in controlling the water uptake by means of a flow barrier effect. The release of the drug from the nanocomposite displayed a stepped pattern kinetically controlled by the diffusion of SDCF molecules through the mass transport barrier created by the exfoliated silicate. The sustained SDCF release provided by the hybrid hydrogel nanocomposite could be useful for the prolonged treatment of painful conditions, such as arthritis, sprains and strains, gout, migraine, and pain after surgical procedures.
Dahlberg, Carina; Millqvist-Fureby, Anna; Schuleit, Michael; Furó, István
2010-10-01
Solid dispersion tablets prepared by either spray drying or rotoevaporation and exhibiting different grain and pore sizes were investigated under the process of hydration-swelling-gelation. (2)H and (1)H NMR microimaging experiments were used to selectively follow water penetration and polymer mobilization kinetics, respectively, while the drug release kinetics was followed by (1)H NMR spectroscopy. The obtained data, in combination with morphological information by scanning electron microscopy (SEM), reveal a complex process that ultimately leads to release of the drug into the aqueous phase. We find that the rate of water ingress has no direct influence on release kinetics, which also renders air in the tablets a secondary factor. On the other hand, drug release is directly correlated with the polymer mobilization kinetics. Water diffusion into the originally dry polymer grains determines the rate of grain swelling and the hydration within the grains varies strongly with grain size. We propose that this sets the stage for creating homogeneous gels for small grain sizes and heterogeneous gels for large grain sizes. Fast diffusion through water-rich sections of the inhomogeneous gels that exhibit a large mesh size is the factor which yields a faster drug release from tablets prepared by rotoevaporation. Copyright © 2010. Published by Elsevier B.V.
High-temperature annealing of proton irradiated beryllium – A dilatometry-based study
Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; ...
2016-04-07
S—200 F grade beryllium has been irradiated with 160 MeV protons up to 1.2 10 20 cm –2 peak fluence and irradiation temperatures in the range of 100–200 °C. To address the effect of proton irradiation on dimensional stability, an important parameter in its consideration in fusion reactor applications, and to simulate high temperature irradiation conditions, multi-stage annealing using high precision dilatometry to temperatures up to 740 °C were conducted in air. X-ray diffraction studies were also performed to compliment the macroscopic thermal study and offer a microscopic view of the irradiation effects on the crystal lattice. The primary objectivemore » was to qualify the competing dimensional change processes occurring at elevated temperatures namely manufacturing defect annealing, lattice parameter recovery, transmutation 4He and 3H diffusion and swelling and oxidation kinetics. Further, quantification of the effect of irradiation dose and annealing temperature and duration on dimensional changes is sought. Here, the study revealed the presence of manufacturing porosity in the beryllium grade, the oxidation acceleration effect of irradiation including the discontinuous character of oxidation advancement, the effect of annealing duration on the recovery of lattice parameters recovery and the triggering temperature for transmutation gas diffusion leading to swelling.« less
[A case of MM1+2 Creutzfeldt-Jakob disease with a longitudinal study of EEG and MRI].
Katsube, Mizuho; Shiota, Yuri; Harada, Takayuki; Shibata, Hiroshi; Nagai, Atsushi
2013-11-01
We report a case of definite MM1 + 2 sporadic Creutzfeldt-Jakob disease (sCJD). A 66-year-old woman was admitted to our hospital with memory disturbance and disorientation for three months. On admission she presented a progressive cognitive insufficiency. Electroencephalography (EEG) revealed a frontal intermittent rhythmical delta activity (FIRDA) and the brain magnetic resonance imaging (MRI) showed high signal intensities in cerebral cortex on diffusion weighted images (DWI). After four months from the onset, she reached the akinetic mutism state followed by myoclonus. Follow up examination revealed that periodic synchronous discharge (PSD) was found in EEG, and DWI revealed enlargement of high signal intensity lesions in cerebral cortex. At seven months from the onset, PSD and high signal intensities of cortex became unclear with disappearance of myoclonus, and brain white matter lesions were evident on MRI. Serial studies of EEG and MRI revealed that PSD generalized from frontal lobe dominant pattern, while high signal intensity lesions of cortex diffusely increased on DWI. At ten months from the onset patient died. Pathological examination in brain showed moderate and diffuse neuronal cell loss and gliosis in cerebral cortex corresponding with DWI changes. The genotype at codon 129 of the prion protein (PrP) was homozygous methionine (MM) and the type of protease-resistant PrP (PrPres) was the mixed type of 1 and 2 in Western blot analysis. It has been rare to analyze the changes of EEG and MRI in the entire stage and to investigate pathological finding in the case of sCJD-MM1 + 2. A longitudinal examination of EEG and MRI is useful for early diagnosis of CJD. Also we could correlate these findings with clinical and histopathological phenotype.
Grejs, Anders Morten; Gjedsted, Jakob; Pedersen, Michael; Birke-Sørensen, Hanne; Rauff-Mortensen, Andreas; Andersen, Kristian Kjær; Kirkegaard, Hans
2016-12-01
The aim of this randomized porcine study was to compare surface targeted temperature management (TTM) to endovascular TTM evaluated by cerebral diffusion-weighted magnetic resonance imaging (MRI): apparent diffusion coefficient (ADC), and by intracerebral/intramuscular microdialysis. It is well known that alteration in the temperature affects ADC, but the relationship between cerebral ADC values and the cooling method per se has not been established. Eighteen anesthetized 60-kg female swine were hemodynamically and intracerebrally monitored and subsequently subjected to a baseline MRI. The animals were then randomized into three groups: (1) surface cooling (n = 6) at 33.5°C using EMCOOLSpad ® , (2) endovascular cooling (n = 6) at 33.5°C using an Icy ® cooling catheter with the CoolGard 3000 ® , or (3) control (n = 6) at 38.5°C using a Bair Hugger™. The swine were treated with TTM for 6 hours followed by a second MRI examination, including ADC. Blood and microdialysate were sampled regularly throughout the experiment, and glucose, lactate, pyruvate, glycerol, and the lactate/pyruvate ratio did not differ among groups, neither intracerebrally nor intramuscularly. Surface cooling yielded a significantly lower median ADC than endovascular cooling: 714 (634; 804) × 10 -6 mm 2 /s versus 866 (828; 927) × 10 -6 mm 2 /s, (p < 0.05). The surface cooling ADC was lowered to a range usually attributed to cytotoxic edema and these low values could not be explained solely by the temperature effect per se. To what extent the ADC is fully reversible at rewarming is unknown and the clinical implications should be further investigated in clinical studies.
Detection of Explosive Vapors: The Roles of Exciton and Molecular Diffusion in Real-Time Sensing.
Ali, Mohammad A; Shoaee, Safa; Fan, Shengqiang; Burn, Paul L; Gentle, Ian R; Meredith, Paul; Shaw, Paul E
2016-11-04
Time-resolved quartz crystal microbalance with in situ fluorescence measurements are used to monitor the sorption of the nitroaromatic (explosive) vapor, 2,4-dinitrotoluene (DNT) into a porous pentiptycene-containing poly(phenyleneethynylene) sensing film. Correlation of the nitroaromatic mass uptake with fluorescence quenching shows that the analyte diffusion follows the Case-II transport model, a film-swelling-limited process, in which a sharp diffusional front propagates at a constant velocity through the film. At a low vapor pressure of DNT of ≈16 ppb, the analyte concentration in the front is sufficiently high to give an average fluorophore-analyte separation of ≈1.5 nm. Hence, a long exciton diffusion length is not required for real-time sensing in the solid state. Rather the diffusion behavior of the analyte and the strength of the binding interaction between the analyte and the polymer play first-order roles in the fluorescence quenching process. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Varaprasad, Kokkarachedu; Jayaramudu, Tippabattini; Sadiku, Emmanuel Rotimi
2017-05-15
Carboxymethyl cellulose has been used for the design of novel engineered hydrogels in order to obtain effective three-dimensional structures for industrial applications. In this work, dye removal carboxymethyl cellulose-acrylamide-graphene oxide (CMC-AM-GO) hydrogels were prepared by a free-radical polymerization method. The GO was developed by the modified Hummers method. The CMC-AM-GO and GO were characterized by FTIR, XRD and SEM. The swelling and swelling kinetics were calculated using gravimetric process. The kinetic parameter, swelling exponent values [n=0.59-0.7507] explained the fact that the CMC-AM-GO hydrogles have super Case II diffusion transport mechanism. CMCx-AM-GO (x=1-4) and CMC-AM hydrogels were used for removal of Acid Blue-133. The result explains that composite hydrogels significantly removed the acid blue when compared to the neat hydrogel. The maximum AB absorption (185.45mg/g) capacity was found in the case of CMC 2 -AM-GO hydrogel. Therefore, cellulose-based GO hydrogels can be termed as smart systems for the abstraction of dye in water purification applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
FDG PET/CT Findings in Primary Diffuse Large B-cell Lymphoma, Leg Type.
Ni, Chiayi; Lewis, Michael; Berenji, Gholam
2016-01-01
A 64-year-old man presented with complaints of worsening left foot pain and swelling. MRI showed a soft tissue mass overlying the dorsolateral aspect of the left foot. Following a 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT), the left foot mass was biopsied and pathology indicated a diagnosis of primary diffuse large B-cell lymphoma, leg type (PDLBCL, LT). Review of the PET/CT images demonstrated hypermetabolic activity associated with the left foot mass, multiple subcutaneous nodules/nodes, sclerotic osseous lesions in the lower extremities, and left external iliac/left inguinal lymphadenopathy. At the moment, the patient is undergoing chemotherapy.
Flexman, Alana M; Gooderham, Peter A; Griesdale, Donald E; Argue, Ruth; Toyota, Brian
2017-06-01
Although recruitment maneuvers have been advocated as part of a lung protective ventilation strategy, their effects on cerebral physiology during elective neurosurgery are unknown. Our objectives were to determine the effects of an alveolar recruitment maneuver on subdural pressure (SDP), brain relaxation score (BRS), and cerebral perfusion pressure among patients undergoing supratentorial tumour resection. In this prospective crossover study, patients scheduled for resection of a supratentorial brain tumour were randomized to undergo either a recruitment maneuver (30 cm of water for 30 sec) or a "sham" maneuver (5 cm of water for 30 sec), followed by the alternative intervention after a 90-sec equilibration period. Subdural pressure was measured through a dural perforation following opening of the cranium. Subdural pressure and mean arterial pressure (MAP) were recorded continuously. The blinded neurosurgeon provided a BRS at baseline and at the end of each intervention. During each treatment, the changes in SDP, BRS, and MAP were compared. Twenty-one patients underwent the study procedure. The increase in SDP was higher during the recruitment maneuver than during the sham maneuver (difference, 3.9 mmHg; 95% confidence interval [CI], 2.2 to 5.6; P < 0.001). Mean arterial pressure decreased further in the recruitment maneuver than in the sham maneuver (difference, -9.0 mmHg; 95% CI, -12.5 to -5.6; P < 0.001). Cerebral perfusion pressure decreased 14 mmHg (95% CI, 4 to 24) during the recruitment maneuver. The BRS did not change with either maneuver. Our results suggest that recruitment maneuvers increase subdural pressure and reduce cerebral perfusion pressure, although the clinical importance of these findings is thus far unknown. This trial was registered with ClinicalTrials.gov, NCT02093117.
Li, Shaojing; Wu, Chuanhong; Zhu, Li; Gao, Jian; Fang, Jing; Li, Defeng; Fu, Meihong; Liang, Rixin; Wang, Lan; Cheng, Ming; Yang, Hongjun
2012-11-09
Ischemic stroke is a devastating disease with a complex pathophysiology. Galangin is a natural flavonoid isolated from the rhizome of Alpina officinarum Hance, which has been widely used as an antioxidant agent. However, its effects against ischemic stroke have not been reported and its related neuroprotective mechanism has not really been explored. In this study, neurological behavior, cerebral infarct volumes and the improvement of the regional cortical blood flow (rCBF) were used to evaluate the therapeutic effect of galangin in rats impaired by middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia. Furthermore, the determination of mitochondrial function and Western blot of apoptosis-related proteins were performed to interpret the neuroprotective mechanism of galangin. The results showed that galangin alleviated the neurologic impairments, reduced cerebral infarct at 24 h after MCAO and exerted a protective effect on the mitochondria with decreased production of mitochondrial reactive oxygen species (ROS). These effects were consistent with improvements in the membrane potential level (Dym), membrane fluidity, and degree of mitochondrial swelling in a dose-dependent manner. Moreover, galangin significantly improved the reduced rCBF after MCAO. Western blot analysis revealed that galangin also inhibited apoptosis in a dose-dependent manner concomitant with the up-regulation of Bcl-2 expression, down-regulation of Bax expression and the Bax/Bcl-2 ratio, a reduction in cytochrome c release from the mitochondria to the cytosol, the reduced expression of activated caspase-3 and the cleavage of poly(ADP-ribose) polymerase (PARP). All these data in this study demonstrated that galangin might have therapeutic potential for ischemic stroke and play its protective role through the improvement in rCBF, mitochondrial protection and inhibiting caspase-dependent mitochondrial cell death pathway for the first time.
Porencephaly in a fennec fox (Vulpes zerda)
YAMAZAKI, Mutsumi; YOSHIMOTO, Saeko; ISHIKAWA, Tomoko; UNE, Yumi
2016-01-01
A postmortem examination revealed a large brain cavity in the right cerebral hemisphere of a 9-year-old male fennec (Vulpes zerda). The cavity was filled with cerebrospinal fluid and extended to the right lateral ventricle. Swelling and displacement of the right hippocampal area were also observed. Histologic examination revealed no evidence of previous infarct lesions, hemorrhage, inflammation or invasive tumor cells. Observation of the defective part suggested a local circulatory disorder during the fetal stage, although the cause was not detected. No neurological symptoms that could enable a provisional diagnosis were observed during the course of his life. This is the first report of asymptomatic porencephaly in a fennec fox. PMID:27523321
Sonographic assessment of normal and abnormal patterns of fetal cerebral lamination.
Pugash, D; Hendson, G; Dunham, C P; Dewar, K; Money, D M; Prayer, D
2012-12-01
Prenatal development of the brain is characterized by gestational age-specific changes in the laminar structure of the brain parenchyma before 30 gestational weeks. Cerebral lamination patterns of normal fetal brain development have been described histologically, by postmortem in-vitro magnetic resonance imaging (MRI) and by in-vivo fetal MRI. The purpose of this study was to evaluate the sonographic appearance of laminar organization of the cerebral wall in normal and abnormal brain development. This was a retrospective study of ultrasound findings in 92 normal fetuses and 68 fetuses with abnormal cerebral lamination patterns for gestational age, at 17-38 weeks' gestation. We investigated the visibility of the subplate zone relative to the intermediate zone and correlated characteristic sonographic findings of cerebral lamination with gestational age in order to evaluate transient structures. In the normal cohort, the subplate zone-intermediate zone interface was identified as early as 17 weeks, and in all 57 fetuses examined up to 28 weeks. In all of these fetuses, the subplate zone appeared anechoic and the intermediate zone appeared homogeneously more echogenic than did the subplate zone. In the 22 fetuses between 28 and 34 weeks, there was a transition period when lamination disappeared in a variable fashion. The subplate zone-intermediate zone interface was not identified in any fetus after 34 weeks (n=13). There were three patterns of abnormal cerebral lamination: (1) no normal laminar pattern before 28 weeks (n=32), in association with severe ventriculomegaly, diffuse ischemia, microcephaly, teratogen exposure or lissencephaly; (2) focal disruption of lamination before 28 weeks (n=24), associated with hemorrhage, porencephaly, stroke, migrational abnormalities, thanatophoric dysplasia, meningomyelocele or encephalocele; (3) increased prominence and echogenicity of the intermediate zone before 28 weeks and/or persistence of a laminar pattern beyond 33 weeks (n=10), associated with Type 1 lissencephaly or CMV infection. There was a mixed focal/diffuse pattern in two fetuses. In CMV infection, the earliest indication of the infection was focal heterogeneity and increased echogenicity of the intermediate zone, which predated the development of microcephaly, ventriculomegaly and intracranial calcification. The fetal subplate and intermediate zones can be demonstrated reliably on routine sonography before 28 weeks and disappear after 34 weeks. These findings represent normal gestational age-dependent transient laminar patterns of cerebral development and are consistent with histological studies. Abnormal fetal cerebral lamination patterns for gestational age are also visible on sonography, and may indicate abnormal brain development. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Ayral-Cinar, Derya; Demond, Avery H.
2017-12-01
Diffusion is regarded as the dominant transport mechanism into and out of low permeable subsurface lenses and layers in the subsurface. But, some reports of mass storage in such zones are higher than what might be attributable to diffusion, based on estimated diffusion coefficients. Despite the importance of diffusion to efforts to estimate the quantity of residual contamination in the subsurface, relatively few studies present measured diffusion coefficients of organic solutes in saturated low permeability soils. This study reports the diffusion coefficients of a trichloroethylene (TCE), and an anionic surfactant, Aerosol OT (AOT), in water-saturated silt and a silt-montmorillonite (25:75) mixture, obtained using steady-state experiments. The relative diffusivity ranged from 0.11 to 0.17 for all three compounds for the silt and the silt-clay mixture that was allowed to expand. In the case in which the swelling was constrained, the relative diffusivity was about 0.07. In addition, the relative diffusivity of 13C-labeled TCE through a water saturated silt-clay mixture that had contacted a field dense non-aqueous phase liquid (DNAPL) for 18 months was measured and equaled 0.001. These experimental results were compared with the estimates generated using common correlations, and it was found that, in all cases, the measured diffusion coefficients were significantly lower than the estimated. Thus, the discrepancy between mass accumulations observed in the field and the mass storage that can attributable to diffusion may be greater than previously believed.
Wang, S; Martinez-Lage, M; Sakai, Y; Chawla, S; Kim, S G; Alonso-Basanta, M; Lustig, R A; Brem, S; Mohan, S; Wolf, R L; Desai, A; Poptani, H
2016-01-01
Early assessment of treatment response is critical in patients with glioblastomas. A combination of DTI and DSC perfusion imaging parameters was evaluated to distinguish glioblastomas with true progression from mixed response and pseudoprogression. Forty-one patients with glioblastomas exhibiting enhancing lesions within 6 months after completion of chemoradiation therapy were retrospectively studied. All patients underwent surgery after MR imaging and were histologically classified as having true progression (>75% tumor), mixed response (25%-75% tumor), or pseudoprogression (<25% tumor). Mean diffusivity, fractional anisotropy, linear anisotropy coefficient, planar anisotropy coefficient, spheric anisotropy coefficient, and maximum relative cerebral blood volume values were measured from the enhancing tissue. A multivariate logistic regression analysis was used to determine the best model for classification of true progression from mixed response or pseudoprogression. Significantly elevated maximum relative cerebral blood volume, fractional anisotropy, linear anisotropy coefficient, and planar anisotropy coefficient and decreased spheric anisotropy coefficient were observed in true progression compared with pseudoprogression (P < .05). There were also significant differences in maximum relative cerebral blood volume, fractional anisotropy, planar anisotropy coefficient, and spheric anisotropy coefficient measurements between mixed response and true progression groups. The best model to distinguish true progression from non-true progression (pseudoprogression and mixed) consisted of fractional anisotropy, linear anisotropy coefficient, and maximum relative cerebral blood volume, resulting in an area under the curve of 0.905. This model also differentiated true progression from mixed response with an area under the curve of 0.901. A combination of fractional anisotropy and maximum relative cerebral blood volume differentiated pseudoprogression from nonpseudoprogression (true progression and mixed) with an area under the curve of 0.807. DTI and DSC perfusion imaging can improve accuracy in assessing treatment response and may aid in individualized treatment of patients with glioblastomas. © 2016 by American Journal of Neuroradiology.
Role of susceptibility-weighted imaging in demonstration of cerebral fat embolism.
Yeap, Pheyming; Kanodia, Avinash Kumar; Main, Gavin; Yong, Aiwain
2015-01-08
Cerebral fat embolism (CFE) is a rare but potentially lethal complication of long bone fractures. Many cases of CFE occur as subclinical events and remain undiagnosed. We report a case of a 22-year-old man, with multiple long bone fractures from a road traffic accident, who subsequently developed hypoxia, neurological abnormality and petechial rash. CT of the head was normal. MRI of the head confirmed the diagnosis with lesions markedly conspicuous and most widespread on susceptibility-weighted imaging as compared to all other sequences including diffusion-weighted imaging. 2015 BMJ Publishing Group Ltd.
Diffuse sclerosing variant of thyroid carcinoma presenting as Hashimoto thyroiditis: a case report.
Vukasović, Anamarija; Kuna, Sanja Kusacić; Ostović, Karmen Trutin; Prgomet, Drago; Banek, Tomislav
2012-11-01
The aim of report is to present a case of a rare diffuse sclerosing variant of a papillary thyroid carcinoma. A 15-year old girl referred for ultrasound examination because of painless thyroid swelling lasting 10 days before. An ultrasound of the neck showed diffusely changed thyroid parenchyma, without nodes, looking as lymphocytic thyroiditis Hashimoto at first, but with snow-storm appearance, predominantly in the right lobe. Positive thyroid peroxidase antibodies (TPO-AT) also suggested Hashimoto thyroiditis. Repeated US-FNAB (fine needle-aspiration biopsy) of the right lobe revealed diffuse sclerosing variant of papillary thyroid carcinoma and patient underwent total thyreoidectomy. Patohistologic finding confirmed diffuse sclerosing variant of a papillary thyroid carcinoma in the both thyroid lobes and several metastatic lymph nodes. Two months later patient recived radioablative therapy with 3700 MBq (100 mCi) of 1-131 followed by levothyroxine replacement. At the moment, patient is without evidence of local or distant metastases and next regular control is scheduled in 6 months. In conclusion, a diffuse sclerosing variant is rare form of papillary thyroid carcinoma that echographically looks similar to Hashimoto thyroiditis and sometimes could be easily overlooked.
Neurological Impairment and Hypersensitivity among Psychiatrically Disturbed Adolescents.
ERIC Educational Resources Information Center
Thurber, Steven; Hollingsworth, David K.
1994-01-01
Because of recent developments in measurements, investigated possible covariation between hyperactivity and cerebral deficits in adolescent psychiatric inpatients. Used several different measures on 45 patients (32 boys, 13 girls). The limited amount of covariation found suggests that neuropsychological deficits may be a diffuse problem that…
2017-04-27
Acoustic Schwannoma; Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Craniopharyngioma; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade I Meningioma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Subependymal Giant Cell Astrocytoma; Adult Subependymoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Supratentorial Ependymoma; Meningeal Melanocytoma; Newly Diagnosed Childhood Ependymoma; Recurrent Adult Brain Tumor; Recurrent Childhood Anaplastic Astrocytoma; Recurrent Childhood Anaplastic Oligoastrocytoma; Recurrent Childhood Anaplastic Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Diffuse Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Fibrillary Astrocytoma; Recurrent Childhood Gemistocytic Astrocytoma; Recurrent Childhood Giant Cell Glioblastoma; Recurrent Childhood Glioblastoma; Recurrent Childhood Gliomatosis Cerebri; Recurrent Childhood Gliosarcoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Oligoastrocytoma; Recurrent Childhood Oligodendroglioma; Recurrent Childhood Pilocytic Astrocytoma; Recurrent Childhood Pilomyxoid Astrocytoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Pleomorphic Xanthoastrocytoma; Recurrent Childhood Protoplasmic Astrocytoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Untreated Childhood Anaplastic Astrocytoma; Untreated Childhood Anaplastic Oligodendroglioma; Untreated Childhood Brain Stem Glioma; Untreated Childhood Cerebellar Astrocytoma; Untreated Childhood Cerebral Astrocytoma; Untreated Childhood Diffuse Astrocytoma; Untreated Childhood Fibrillary Astrocytoma; Untreated Childhood Gemistocytic Astrocytoma; Untreated Childhood Giant Cell Glioblastoma; Untreated Childhood Glioblastoma; Untreated Childhood Gliomatosis Cerebri; Untreated Childhood Gliosarcoma; Untreated Childhood Medulloblastoma; Untreated Childhood Oligoastrocytoma; Untreated Childhood Oligodendroglioma; Untreated Childhood Pilocytic Astrocytoma; Untreated Childhood Pilomyxoid Astrocytoma; Untreated Childhood Pineoblastoma; Untreated Childhood Pleomorphic Xanthoastrocytoma; Untreated Childhood Protoplasmic Astrocytoma; Untreated Childhood Subependymal Giant Cell Astrocytoma; Untreated Childhood Supratentorial Primitive Neuroectodermal Tumor; Untreated Childhood Visual Pathway and Hypothalamic Glioma; Untreated Childhood Visual Pathway Glioma
A fast atlas-guided high density diffuse optical tomography system for brain imaging
NASA Astrophysics Data System (ADS)
Dai, Xianjin; Zhang, Tao; Yang, Hao; Jiang, Huabei
2017-02-01
Near infrared spectroscopy (NIRS) is an emerging functional brain imaging tool capable of assessing cerebral concentrations of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) during brain activation noninvasively. As an extension of NIRS, diffuse optical tomography (DOT) not only shares the merits of providing continuous readings of cerebral oxygenation, but also has the ability to provide spatial resolution in the millimeter scale. Based on the scattering and absorption properties of nonionizing near-infrared light in biological tissue, DOT has been successfully applied in the imaging of breast tumors, osteoarthritis and cortex activations. Here, we present a state-of-art fast high density DOT system suitable for brain imaging. It can achieve up to a 21 Hz sampling rate for a full set of two-wavelength data for 3-D DOT brain image reconstruction. The system was validated using tissue-mimicking brain-model phantom. Then, experiments on healthy subjects were conducted to demonstrate the capability of the system.
Traumatic thrombosis of internal carotid artery sustained by transfer of kinetic energy.
Kalcioglu, Mahmut Tayyar; Celbis, Osman; Mizrak, Bulent; Firat, Yezdan; Selimoglu, Erol
2012-06-01
A 31-year-old male patient with a fatal thrombosis of the internal carotid artery caused by gun shot injury was presented in this case report. The patient was referred to the hospital with a diffuse edema on his left cheek. On otolaryngologic examination, there was a bullet entrance hole at the left mandibular corpus. No exit hole could be found. The finding from his axial computed tomography of neck and paranasal sinuses was normal. On neurological examination, a dense right hemiparesis was observed. In his cerebral angiogram, left common carotid artery was totally obliterated. Diffuse ischemia was observed in the left cerebral hemisphere. Despite intensive interventions, the patient died 4 days after the accident. In the autopsy, a large thrombosis was obtained in the left common carotid artery. This case emphasizes a fatal kinetic energy effect in vascular structures. It is stressed that a gun shot injury could be fatal with its indirect kinetic energy effects at subacute phase.
Kochunov, P; Chiappelli, J; Hong, L E
2013-01-01
Diffusion tensor imaging (DTI) assumes a single pool of anisotropically diffusing water to calculate fractional anisotropy (FA) and is commonly used to ascertain white matter (WM) deficits in schizophrenia. At higher b-values, diffusion-signal decay becomes bi-exponential, suggesting the presence of two, unrestricted and restricted, water pools. Theoretical work suggests that semi-permeable cellular membrane rather than the presence of two physical compartments is the cause. The permeability-diffusivity (PD) parameters measured from bi-exponential modeling may offer advantages, over traditional DTI-FA, in identifying WM deficits in schizophrenia. Imaging was performed in N = 26/26 patients/controls (age = 20-61 years, average age = 40.5 ± 12.6). Imaging consisted of fifteen b-shells: b = 250-3800 s/mm(2) with 30 directions/shell, covering seven slices of mid-sagittal corpus callosum (CC) at 1.7 × 1.7 × 4.6 mm. 64-direction DTI was also collected. Permeability-diffusivity-index (PDI), the ratio of restricted to unrestricted apparent diffusion coefficients, and the fraction of unrestricted compartment (Mu) were calculated for CC and cingulate gray matter (GM). FA values for CC were calculated using tract-based-spatial-statistics. Patients had significantly reduced PDI in CC (p ≅ 10(- 4)) and cingulate GM (p = 0.002), while differences in CC FA were modest (p ≅ .03). There was no group-related difference in Mu. Additional theoretical-modeling analysis suggested that reduced PDI in patients may be caused by reduced cross-membrane water molecule exchanges. PDI measurements for cerebral WM and GM yielded more robust patient-control differences than DTI-FA. Theoretical work offers an explanation that patient-control PDI differences should implicate abnormal active membrane permeability. This would implicate abnormal activities in ion-channels that use water as substrate for ion exchange, in cerebral tissues of schizophrenia patients.
Bidar, Fatemeh; Faeghi, Fariborz; Ghorbani, Askar
2016-01-01
Background: The purpose of this study is to demonstrate the advantages of gradient echo (GRE) sequences in the detection and characterization of cerebral venous sinus thrombosis compared to conventional magnetic resonance sequences. Methods: A total of 17 patients with cerebral venous thrombosis (CVT) were evaluated using different magnetic resonance imaging (MRI) sequences. The MRI sequences included T1-weighted spin echo (SE) imaging, T*2-weighted turbo SE (TSE), fluid attenuated inversion recovery (FLAIR), T*2-weighted conventional GRE, and diffusion weighted imaging (DWI). MR venography (MRV) images were obtained as the golden standard. Results: Venous sinus thrombosis was best detectable in T*2-weighted conventional GRE sequences in all patients except in one case. Venous thrombosis was undetectable in DWI. T*2-weighted GRE sequences were superior to T*2-weighted TSE, T1-weighted SE, and FLAIR. Enhanced MRV was successful in displaying the location of thrombosis. Conclusion: T*2-weighted conventional GRE sequences are probably the best method for the assessment of cerebral venous sinus thrombosis. The mentioned method is non-invasive; therefore, it can be employed in the clinical evaluation of cerebral venous sinus thrombosis. PMID:27326365
Lee, Chang Yeob; Kim, Chang Hyun; Lee, Chang-Young; Sohn, Sung-Il; Hong, Jeong-Ho
2017-01-01
Although the benefits of extracranial-intracranial bypass surgery remain controversial, there is some surgical rationale for the augmentation of cerebral blood flow in cases of acute ischemic stroke with hemodynamic instability. We report a case of a 62-year-old woman who suddenly developed right hemiplegia and global aphasia. Initial magnetic resonance imaging and magnetic resonance angiography revealed a small acute ischemic lesion in left parietal lobe with occlusion at the left middle cerebral artery. We performed an endovascular thrombectomy, which failed. Her neurological deficits remained unchanged. On the basis of immediate postendovascular magnetic resonance perfusion, diffusion-weighted imaging (DWI), and neurological examination, an obvious clinical-DWI and a DWI-perfusion-weighted imaging mismatch were detected. We decided to perform emergency superficial temporal artery to middle cerebral artery bypass to prevent further progression of cerebral ischemia. On a 3-month follow-up, neurological deficits remained minimal motor aphasia and dysarthria. Following failed endovascular treatment in patients with acute symptoms attributed to major cerebral artery occlusion, we recommend immediate multimodal neuroimaging. If there are clinical-DWI and DWI-perfusion-weighted imaging mismatch indications, surgical revascularization could be considered as the next salvageable strategy.
Effect of x-radiation to brain on cerebral glucose utilization in the rat.
D'Aquino, S; Cicciarello, R; D'Avella, D; Mesiti, M; Albiero, F; Princi, P; Gagliardi, M E; Russi, E; D'Aquino, A
1990-01-01
We assessed, by means of the [14C]-2-deoxy-D-glucose autoradiography method, the effect of whole-brain x-radiation on local cerebral glucose utilization in the rat brain. Animals were exposed to conventional fractionation (200 +/- cGy/day given 5 days a week) to a total dose of 4000 cGy. Metabolic experiments were made 2 weeks after completion of the radiation exposure. In comparison with control and sham-irradiated animals, cerebral metabolic activity was diffusely decreased following irradiation. Statistically significant decreases in metabolic activity were observed in 13 of 27 brain regions studied. In general, brain areas with the highest basal metabolic rates showed the greatest percentage drop of glucose utilization. Post-irradiation metabolic alterations possibly provide an explanation for the syndrome of early delayed deterioration observed in humans after whole-brain radiotherapy.
Zeestraten, Eva Anna; Benjamin, Philip; Lambert, Christian; Lawrence, Andrew John; Williams, Owen Alan; Morris, Robin Guy; Barrick, Thomas Richard; Markus, Hugh Stephen
2016-01-01
Cerebral small vessel disease (SVD) is the major cause of vascular cognitive impairment, resulting in significant disability and reduced quality of life. Cognitive tests have been shown to be insensitive to change in longitudinal studies and, therefore, sensitive surrogate markers are needed to monitor disease progression and assess treatment effects in clinical trials. Diffusion tensor imaging (DTI) is thought to offer great potential in this regard. Sensitivity of the various parameters that can be derived from DTI is however unknown. We aimed to evaluate the differential sensitivity of DTI markers to detect SVD progression, and to estimate sample sizes required to assess therapeutic interventions aimed at halting decline based on DTI data. We investigated 99 patients with symptomatic SVD, defined as clinical lacunar syndrome with MRI confirmation of a corresponding infarct as well as confluent white matter hyperintensities over a 3 year follow-up period. We evaluated change in DTI histogram parameters using linear mixed effect models and calculated sample size estimates. Over a three-year follow-up period we observed a decline in fractional anisotropy and increase in diffusivity in white matter tissue and most parameters changed significantly. Mean diffusivity peak height was the most sensitive marker for SVD progression as it had the smallest sample size estimate. This suggests disease progression can be monitored sensitively using DTI histogram analysis and confirms DTI’s potential as surrogate marker for SVD. PMID:26808982
Narberhaus, A; Segarra-Castells, M D; Verger-Maestre, K; Serra-Grabulosa, J M; Salgado-Pineda, P; Bartomeus-Jené, F; Mercader-Sobrequés, J M
Diffuse damage secondary to traumatic brain injury (TBI) can be studied through volumetric analysis of several structures that are sensible to this kind of injury, such as corpus callosum, ventricular system, hippocampus, basal ganglia and the volume of cerebrospinal fluid spaces. Our aim is to describe how closed head injury (CHI) occurred in early years produce diffuse damage, and how this damage affects general cognitive functioning at long term. Initially the group of subjects was composed of 27 head injured children and adolescents following paediatric moderate to severe TBI. From this initial group we selected 15 patients without focal lesion, or in case of having suffered focal lesion, this was smaller than 2,600 mm3. These subjects were assessed by means of volumetric analysis of cerebrospinal fluid spaces, corpus callosum, hippocampus and caudate nucleus, comparing the results with a matched control group. We calculated the degree of general cognitive ability of these subjects through tests of intellectual, memory, frontal lobe and motor speed functioning. This study demonstrates that early CHI produce a volume decrease in all measured structures. Corpus callosum atrophy is the factor that better explains general cognitive impairment. Diffuse damage secondary to moderate to severe peadiatric TBI has long term effects on several cerebral structures and on cognitive performance. Corpus callosum atrophy is the best predictor for general cognitive impairment, compared with other affected structures.
Segmentation of the Canine Corpus Callosum using Diffusion Tensor Imaging Tractography
Pierce, T.T.; Calabrese, E.; White, L.E.; Chen, S.D.; Platt, S.R.; Provenzale, J.M.
2014-01-01
Background We set out to determine functional white matter (WM) connections passing through the canine corpus callosum useful for subsequent studies of canine brains that serve as models for human WM pathway disease. Based on prior studies, we anticipated that the anterior corpus callosum would send projections to the anterior cerebral cortex while progressively posterior segments would send projections to more posterior cortex. Methods A post mortem canine brain was imaged using a 7T MRI producing 100 micron isotropic resolution DTI analyzed by tractography. Using ROIs within cortical locations, which were confirmed by a Nissl stain that identified distinct cortical architecture, we successfully identified 6 important WM pathways. We also compared fractional anisotropy (FA), apparent diffusion coefficient (ADC), radial diffusivity (RD), and axial diffusivity (AD) in tracts passing through the genu and splenium. Results Callosal fibers were organized based upon cortical destination, i.e. fibers from the genu project to the frontal cortex. Histologic results identified the motor cortex based on cytoarchitectonic criteria that allowed placement of ROIs to discriminate between frontal and parietal lobes. We also identified cytoarchitecture typical of the orbital frontal, anterior frontal, and occipital regions and placed ROIs accordingly. FA, ADC, RD and AD values were all higher in posterior corpus callosum fiber tracts. Conclusions Using 6 cortical ROIs, we identified 6 major white matter tracts that reflect major functional divisions of the cerebral hemispheres and we derived quantitative values that can be used for study of canine models of human WM pathological states. PMID:24370161
Astrocytes and extracellular matrix in extrasynaptic volume transmission.
Vargová, Lýdia; Syková, Eva
2014-10-19
Volume transmission is a form of intercellular communication that does not require synapses; it is based on the diffusion of neuroactive substances across the brain extracellular space (ECS) and their binding to extrasynaptic high-affinity receptors on neurons or glia. Extracellular diffusion is restricted by the limited volume of the ECS, which is described by the ECS volume fraction α, and the presence of diffusion barriers, reflected by tortuosity λ, that are created, for example, by fine astrocytic processes or extracellular matrix (ECM) molecules. Organized astrocytic processes, ECM scaffolds or myelin sheets channel the extracellular diffusion so that it is facilitated in a certain direction, i.e. anisotropic. The diffusion properties of the ECS are profoundly influenced by various processes such as the swelling and morphological rebuilding of astrocytes during either transient or persisting physiological or pathological states, or the remodelling of the ECM in tumorous or epileptogenic tissue, during Alzheimer's disease, after enzymatic treatment or in transgenic animals. The changing diffusion properties of the ECM influence neuron-glia interaction, learning abilities, the extent of neuronal damage and even cell migration. From a clinical point of view, diffusion parameter changes occurring during pathological states could be important for diagnosis, drug delivery and treatment. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straaton, K.V.; Lopez-Mendez, A.; Alarcon, G.S.
We describe 3 patients with rheumatoid arthritis who presented with diffuse pain, swelling, and erythema of the distal aspect of the lower extremity, suggestive of either cellulitis or thrombophlebitis, but were found to have insufficiency fractures of the distal tibia. The value of technetium-99m diphosphonate bone scintigraphy in the early recognition of these fractures and a possible explanation for the associated inflammatory symptoms are discussed.
ERIC Educational Resources Information Center
Kendi, Mustafa; Kendi, Ayse Tuba Karagulle; Lehericy, Stephane; Ducros, Mathieu; Lim, Kelvin O.; Ugurbil, Kamil; Schulz, S. Charles; White, Tonya
2008-01-01
The study attempts to establish the relationship between aberrations in cerebral tracts and abnormalities in the fornix with pathophysiology of schizophrenia. The results indicate that early stages of schizophrenia are associated with a decrease in the volume of the fornix.
Selb, Juliette; Boas, David A.; Chan, Suk-Tak; Evans, Karleyton C.; Buckley, Erin M.; Carp, Stefan A.
2014-01-01
Abstract. Near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) are two diffuse optical technologies for brain imaging that are sensitive to changes in hemoglobin concentrations and blood flow, respectively. Measurements for both modalities are acquired on the scalp, and therefore hemodynamic processes in the extracerebral vasculature confound the interpretation of cortical hemodynamic signals. The sensitivity of NIRS to the brain versus the extracerebral tissue and the contrast-to-noise ratio (CNR) of NIRS to cerebral hemodynamic responses have been well characterized, but the same has not been evaluated for DCS. This is important to assess in order to understand their relative capabilities in measuring cerebral physiological changes. We present Monte Carlo simulations on a head model that demonstrate that the relative brain-to-scalp sensitivity is about three times higher for DCS (0.3 at 3 cm) than for NIRS (0.1 at 3 cm). However, because DCS has higher levels of noise due to photon-counting detection, the CNR is similar for both modalities in response to a physiologically realistic simulation of brain activation. Even so, we also observed higher CNR of the hemodynamic response during graded hypercapnia in adult subjects with DCS than with NIRS. PMID:25453036
Pachydermoperiostosis in a Patient with Crohn’s Disease: Treatment and Literature Review
Mobini, Maryam; Akha, Ozra; Fakheri, Hafez; Majidi, Hadi; Fattahi, Sanam
2018-01-01
Pachydermoperiostosis (PDP) is a rare disorder characterized by pachydermia, digital clubbing, periostitis, and an excess of affected males. It is the primary form of hypertrophic osteoarthropathy (HOA) and there are some rare associations of PDP with other disorders. Here we describe a patient with Crohn’s disease associated with PDP. A 26-year-old man, who was a known case of Crohn’s disease, referred with diffuse swelling in the upper and lower limbs and cutis verticis gyrata since 7 years ago. PDP was suspected and endocrinological and radiological studies were conducted for the evaluation of underlying disease. He was prescribed celecoxib, low-dose prednisolone, and pamidronate to control the swelling, periostitis, azathiopurine, and mesalazine according to gastrointestinal involvement. In conclusion, it is important to identify this condition since a misdiagnosis might subject the patient to unnecessary investigations. PMID:29398756
[Severe iatrogenic airway obstruction due to lingual lymphangioma].
Segado Arenas, A; Flores González, J-C; Rubio Quiñones, F; Quintero Otero, S; Hernández González, A; Pantoja Rosso, S
2011-09-01
Lymphangioma of the tongue is a rare and benign tumour involving congenital and cystic abnormalities derived from lymphatic vessels. Treatment modalities include surgery and a large number of different intralesional injections of sclerosing agents. Presently, OK-432 (Picibanil(®)) is the preferred sclerosant and when administered intralesionally will result in inflammation, sclerosis, and cicatricial contraction of the lesion. We report a case of microcystic lymphangioma of the tongue in a 5-year-old boy treated with an intralesional injection of OK-432. In the immediate postoperative period, the patient suffered severe diffuse swelling, progressive upper airway obstruction with inspiratory stridor, and respiratory distress requiring emergency fiberoptic nasotracheal intubation. Although OK-432 injections are found to be safe and effective as a first line of treatment for lymphangiomas, local swelling with potentially life-threatening airway compromise should be anticipated, especially when treating lesions near the upper airway. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
The analytical solution for drug delivery system with nonhomogeneous moving boundary condition
NASA Astrophysics Data System (ADS)
Saudi, Muhamad Hakimi; Mahali, Shalela Mohd; Harun, Fatimah Noor
2017-08-01
This paper discusses the development and the analytical solution of a mathematical model based on drug release system from a swelling delivery device. The mathematical model is represented by a one-dimensional advection-diffusion equation with nonhomogeneous moving boundary condition. The solution procedures consist of three major steps. Firstly, the application of steady state solution method, which is used to transform the nonhomogeneous moving boundary condition to homogeneous boundary condition. Secondly, the application of the Landau transformation technique that gives a significant impact in removing the advection term in the system of equation and transforming the moving boundary condition to a fixed boundary condition. Thirdly, the used of separation of variables method to find the analytical solution for the resulted initial boundary value problem. The results show that the swelling rate of delivery device and drug release rate is influenced by value of growth factor r.
Holographic humidity response of slanted gratings in moisture-absorbing acrylamide photopolymer.
Yu, Dan; Liu, Hongpeng; Mao, Dongyao; Geng, Yaohui; Wang, Weibo; Sun, Liping; Lv, Jiang
2015-08-01
Holographic humidity response is characterized in detail using transmission and reflection geometry in moisture-absorbing acrylamide photopolymer. The diffraction spectrum and its temporal evolution at various relative humidity are measured and analyzed. The quantitative relations between relative humidity and holographic properties of slanted gratings are determined. The responsibility of holographic gratings for various relative humidity is observed by the spectrum response of gratings. The extracted humidity constants reflect the applicability of reflection and transmission gratings at different humidity regions. The humidity reversibility experiment is achieved for confirming repeatability of the sensor. These experiments provide a probability for improving the applicability of a holographic humidity sensor. Finally, the extended diffusion model is derived by introducing the expansion coefficient to describe the dynamic swelling process. This work can accelerate development of the holographic sensor and provide a novel strategy for exploring the swelling mechanism of photopolymer.
Gautheron, Vincent; Xie, Yu; Tisserand, Marie; Raoult, Hélène; Soize, Sébastien; Naggara, Olivier; Bourcier, Romain; Richard, Sébastien; Guillemin, Francis; Bracard, Serge; Oppenheim, Catherine
2018-03-01
Stroke patients with large diffusion-weighted imaging (DWI) volumes are often excluded from reperfusion because of reckoned futility. In those with DWI volume >70 mL, included in the THRACE trial (Mechanical Thrombectomy After Intravenous Alteplase Versus Alteplase Alone After Stroke), we report the associations between baseline parameters and outcome. We examined 304 patients with anterior circulation stroke and pretreatment magnetic resonance imaging. Variables were extracted from the THRACE database, and DWI volumes were measured semiautomatically. Among 53 patients with DWI volume >70 mL, 12 had favorable outcome (modified Rankin Scale score, ≤2) at 3 months; they had less coronary disease (0/12 versus 12/38; P =0.046) and less history of smoking (1/10 versus 12/31; P =0.013) than patients with modified Rankin Scale score >2. None of the 8 patients >75 years of age reached modified Rankin Scale score ≤2. Favorable outcome occurred in 12 of 37 M1-occluded patients but in 0 of 16 internal carotid-T/L-occluded patients ( P =0.010). Favorable outcome was more frequent (6/13) when DWI lesion was limited to the superficial middle cerebral artery territory than when it extended to the deep middle cerebral artery territory (6/40; P =0.050). Stroke patients with DWI lesion >70 mL may benefit from reperfusion therapy, especially those with isolated M1 occlusion or ischemia restricted to the superficial middle cerebral artery territory. The benefit of treatment seems questionable for patients with carotid occlusion or lesion extending to the deep middle cerebral artery territory. © 2018 American Heart Association, Inc.
Lynch, Jennifer M.; Buckley, Erin M.; Schwab, Peter J.; McCarthy, Ann L.; Winters, Madeline E.; Busch, David R.; Xiao, Rui; Goff, Donna A.; Nicolson, Susan C.; Montenegro, Lisa M.; Fuller, Stephanie; Gaynor, J. William; Spray, Thomas L.; Yodh, Arjun G.; Naim, Maryam Y.; Licht, Daniel J.
2014-01-01
Objective Hypoxic-ischemic white mater brain injury commonly occurs in neonates with hypoplastic left heart syndrome (HLHS). Approximately half of the HLHS survivors exhibit neurobehavioral symptoms believed to be associated with this injury, though the exact timing of the injury is not known. Methods Neonates with HLHS were recruited for pre- and post-operative monitoring of cerebral oxygen saturation (ScO2), cerebral oxygen extraction fraction (OEF), and cerebral blood flow (CBF) using two non-invasive optical-based techniques, namely diffuse optical spectroscopy and diffuse correlation spectroscopy. Anatomical magnetic resonance imaging (MRI) scans were performed prior to and approximately one week after surgery in order to quantify the extent and timing of the acquired white matter injury. Risk factors for developing new or worsened white matter injury were assessed using uni- and multi-variate logistic regression. Results Thirty-seven neonates with HLHS were studied. In a univariate analysis, neonates who developed a large volume of new, or worsened, postoperative white matter injury had a significantly longer time-to-surgery (p=0.0003). In a multivariate model, longer time between birth and surgery (i.e., time-to-surgery), delayed sternal closure, and higher pre-operative CBF were predictors of post-operative white matter injury. Additionally, longer time-to-surgery and higher pre-operative CBF on morning of surgery were correlated with lower ScO2 (p=0.03 and p=0.05) and higher OEF (p=0.05 and p=0.05). Conclusions Longer time-to-surgery is associated with new post-operative white matter injury in otherwise healthy neonates with HLHS. The results suggest that earlier Norwood palliation may decrease the likelihood of acquiring postoperative white matter injury. PMID:25109755
Mascalchi, Mario; Ginestroni, Andrea; Toschi, Nicola; Poggesi, Anna; Cecchi, Paolo; Salvadori, Emilia; Tessa, Carlo; Cosottini, Mirco; De Stefano, Nicola; Pracucci, Giovanni; Pantoni, Leonardo; Inzitari, Domenico; Diciotti, Stefano
2014-03-01
The term leuko-araiosis (LA) describes a common chronic affection of the cerebral white matter (WM) in the elderly due to small vessel disease with variable clinical correlates. To explore whether severity of LA entails some adaptive reorganization in the cerebral cortex we evaluated with functional MRI (fMRI) the cortical activation pattern during a simple motor task in 60 subjects with mild cognitive impairment and moderate or severe (moderate-to-severe LA group, n = 46) and mild (mild LA group, n = 14) LA extension on visual rating. The microstructural damage associated with LA was measured on diffusion tensor data by computation of the mean diffusivity (MD) of the cerebral WM and by applying tract based spatial statistics (TBSS). Subjects were examined with fMRI during continuous tapping of the right dominant hand with task performance measurement. Moderate-to-severe LA group showed hyperactivation of left primary sensorimotor cortex (SM1) and right cerebellum. Regression analyses using the individual median of WM MD as explanatory variable revealed a posterior shift of activation within the left SM1 and hyperactivation of the left SMA and paracentral lobule and of the bilateral cerebellar crus. These data indicate that brain activation is modulated by increasing severity of LA with a local remapping within the SM1 and increased activity in ipsilateral nonprimary sensorimotor cortex and bilateral cerebellum. These potentially adaptive changes as well lack of contralateral cerebral hemisphere hyperactivation are in line with sparing of the U fibers and brainstem and cerebellar WM tracts and the emerging microstructual damage of the corpus callosum revealed by TBSS with increasing severity of LA. Copyright © 2012 Wiley Periodicals, Inc.
Advanced fiber tracking in early acquired brain injury causing cerebral palsy.
Lennartsson, F; Holmström, L; Eliasson, A-C; Flodmark, O; Forssberg, H; Tournier, J-D; Vollmer, B
2015-01-01
Diffusion-weighted MR imaging and fiber tractography can be used to investigate alterations in white matter tracts in patients with early acquired brain lesions and cerebral palsy. Most existing studies have used diffusion tensor tractography, which is limited in areas of complex fiber structures or pathologic processes. We explored a combined normalization and probabilistic fiber-tracking method for more realistic fiber tractography in this patient group. This cross-sectional study included 17 children with unilateral cerebral palsy and 24 typically developing controls. DWI data were collected at 1.5T (45 directions, b=1000 s/mm(2)). Regions of interest were defined on a study-specific fractional anisotropy template and mapped onto subjects for fiber tracking. Probabilistic fiber tracking of the corticospinal tract and thalamic projections to the somatosensory cortex was performed by using constrained spherical deconvolution. Tracts were qualitatively assessed, and DTI parameters were extracted close to and distant from lesions and compared between groups. The corticospinal tract and thalamic projections to the somatosensory cortex were realistically reconstructed in both groups. Structural changes to tracts were seen in the cerebral palsy group and included splits, dislocations, compaction of the tracts, or failure to delineate the tract and were associated with underlying pathology seen on conventional MR imaging. Comparisons of DTI parameters indicated primary and secondary neurodegeneration along the corticospinal tract. Corticospinal tract and thalamic projections to the somatosensory cortex showed dissimilarities in both structural changes and DTI parameters. Our proposed method offers a sensitive means to explore alterations in WM tracts to further understand pathophysiologic changes following early acquired brain injury. © 2015 by American Journal of Neuroradiology.
Inoue, Yasuo; Aoki, Ichio; Mori, Yuki; Kawai, Yuko; Ebisu, Toshihiko; Osaka, Yasuhiko; Houri, Takashi; Mineura, Katsuyoshi; Higuchi, Toshihiro; Tanaka, Chuzo
2010-04-01
Immediate and certain determination of the treatable area is important for choosing risky treatments such as thrombolysis for brain ischemia, especially in the super-acute phase. Although it has been suggested that the mismatch between regions displaying 'large abnormal perfusion' and 'small abnormal diffusion' indicates a treatable area on an MRI, it has also been reported that the mismatch region is an imperfect approximation of the treatable region named the 'penumbra'. Manganese accumulation reflecting calcium influx into cells was reported previously in a middle cerebral artery occlusion (MCAO) model using activity-induced manganese-enhanced (AIM) MRI. However, in the super-acute phase, there have been no reports about mismatches between areas showing changes to the apparent diffusion coefficient (ADC) and regions that are enhanced in AIM MRI. It is expected that the AIM signal can be enhanced immediately after cerebral ischemia in the necrotic core region due to calcium influx. In this study, a remote embolic rat model, created using titanium-oxide macrospheres, was used to observe necrotic neural responses in the super-acute phase after ischemia. In addition, images were evaluated by comparison between ADC, AIM MRI, and histology. The signal enhancement in AIM MRI was detected at 2 min after the cerebral infarction using a remote embolic method. The enhanced area on the AIM MRI was significantly smaller than that on the ADC map. The tissue degeneration highlighted by histological analysis corresponded more closely to the enhanced area on the AIM MRI than that on the ADC map. Thus, the manganese-enhanced region in brain ischemia might indicate 'necrotic' irreversible tissue that underwent calcium influx. 2010 John Wiley & Sons, Ltd.
Keser, Zafer; Hasan, Khader M.; Mwangi, Benson I.; Kamali, Arash; Ucisik-Keser, Fehime Eymen; Riascos, Roy F.; Yozbatiran, Nuray; Francisco, Gerard E.; Narayana, Ponnada A.
2015-01-01
Cerebellar white matter (WM) connections to the central nervous system are classified functionally into the Spinocerebellar (SC), vestibulocerebellar (VC), and cerebrocerebellar subdivisions. The SC pathways project from spinal cord to cerebellum, whereas the VC pathways project from vestibular organs of the inner ear. Cerebrocerebellar connections are composed of feed forward and feedback connections between cerebrum and cerebellum including the cortico-ponto-cerebellar (CPC) pathways being of cortical origin and the dentate-rubro-thalamo-cortical (DRTC) pathway being of cerebellar origin. In this study we systematically quantified the whole cerebellar system connections using diffusion tensor magnetic resonance imaging (DT-MRI). Ten right-handed healthy subjects (7 males and 3 females, age range 20–51 years) were studied. DT-MRI data were acquired with a voxel size = 2 mm × 2 mm × 2 mm at a 3.0 Tesla clinical MRI scanner. The DT-MRI data were prepared and analyzed using anatomically-guided deterministic tractography methods to reconstruct the SC, DRTC, fronto-ponto-cerebellar (FPC), parieto-ponto-cerebellar (PPC), temporo-ponto-cerebellar (TPC) and occipito-ponto-cerebellar (OPC). The DTI-attributes or the cerebellar tracts along with their cortical representation (Brodmann areas) were presented in standard Montréal Neurological Institute space. All cerebellar tract volumes were quantified and correlated with volumes of cerebral cortical, subcortical gray matter (GM), cerebral WM and cerebellar GM, and cerebellar WM. On our healthy cohort, the ratio of total cerebellar GM-to-WM was ~3.29 ± 0.24, whereas the ratio of cerebral GM-to-WM was approximately 1.10 ± 0.11. The sum of all cerebellar tract volumes is ~25.8 ± 7.3 mL, or a percentage of 1.6 ± 0.45 of the total intracranial volume (ICV). PMID:25904851
Time and diffusion lesion size in major anterior circulation ischemic strokes.
Hakimelahi, Reza; Vachha, Behroze A; Copen, William A; Papini, Giacomo D E; He, Julian; Higazi, Mahmoud M; Lev, Michael H; Schaefer, Pamela W; Yoo, Albert J; Schwamm, Lee H; González, R Gilberto
2014-10-01
Major anterior circulation ischemic strokes caused by occlusion of the distal internal carotid artery or proximal middle cerebral artery or both account for about one third of ischemic strokes with mostly poor outcomes. These strokes are treatable by intravenous tissue-type plasminogen activator and endovascular methods. However, dynamics of infarct growth in these strokes are poorly documented. The purpose was to help understand infarct growth dynamics by measuring acute infarct size with diffusion-weighted imaging (DWI) at known times after stroke onset in patients with documented internal carotid artery/middle cerebral artery occlusions. Retrospectively, we included 47 consecutive patients with documented internal carotid artery/middle cerebral artery occlusions who underwent DWI within 30 hours of stroke onset. Prospectively, 139 patients were identified using the same inclusion criteria. DWI lesion volumes were measured and correlated to time since stroke onset. Perfusion data were reviewed in those who underwent perfusion imaging. Acute infarct volumes ranged from 0.41 to 318.3 mL. Infarct size and time did not correlate (R2=0.001). The majority of patients had DWI lesions that were <25% the territory at risk (<70 mL) whether they were imaged <8 or >8 hours after stroke onset. DWI lesions corresponded to areas of greatly reduced perfusion. Poor correlation between infarct volume and time after stroke onset suggests that there are factors more powerful than time in determining infarct size within the first 30 hours. The observations suggest that highly variable cerebral perfusion via the collateral circulation may primarily determine infarct growth dynamics. If verified, clinical implications include the possibility of treating many patients outside traditional time windows. © 2014 American Heart Association, Inc.
Sudden Death After Febrile Seizure Case Report: Cerebral Suppression Precedes Severe Bradycardia.
Myers, Kenneth A; McPherson, Robyn E; Clegg, Robin; Buchhalter, Jeffrey
2017-11-01
A 20-month-old girl with a complex chromosomal disorder had first presentation of febrile status epilepticus and was admitted to the hospital. Two days after her initial seizure, she died suddenly and unexpectedly during a video EEG monitoring study. An advanced analysis of the physiologic changes in the hours and minutes leading up to death was undertaken. The electrocardiography over the last 19 minutes of life was reviewed, and the R-R intervals were manually measured. Heart rate variability was assessed through calculation of the SD of the R-R intervals and the root mean square of successive differences over successive 100 beat periods. Instantaneous heart rate, SD of the R-R intervals, the root mean square of successive differences, and oxygen saturation were plotted against time over the last 19 minutes of life. Diffuse cerebral suppression on EEG was observed 10 minutes before death, followed minutes later by severe bradycardia and increased heart rate variability. Although the child did not meet criteria for a diagnosis of epilepsy, the sequence of physiologic changes leading up to death suggests a pathophysiology similar to sudden unexplained death in epilepsy. A comparable pattern of diffuse cerebral suppression preceding parasympathetic overactivity has been suggested in some rare cases of adults who have experienced sudden unexplained death in epilepsy during video EEG monitoring. Copyright © 2017 by the American Academy of Pediatrics.
Posterior reversible encephalopathy syndrome: a case of unusual diffusion-weighted MR images.
Benziada-Boudour, A; Schmitt, E; Kremer, S; Foscolo, S; Rivière, A-S; Tisserand, M; Boudour, A; Bracard, S
2009-05-01
Posterior reversible encephalopathy (PRES) represents an uncommon entity related to multiple pathologies, the most common of which is hypertensive crisis. PRES is classically characterized as symmetrical parieto-occipital edema, but may affect other areas of the brain. Diffusion-weighted magnetic resonance imaging (DWI) is important for differentiating between vasogenic and cytotoxic edema. We present here the case of a 43-year-old woman, known to suffer from arterial hypertension and severe renal failure, who developed PRES with restricted apparent diffusion coefficients (ADC) in various cerebral areas, suggesting irreversible tissue damage. Nevertheless, follow-up cranial MRI revealed complete remission, indicating that restricted diffusion does not always lead to cell death in this pathology. The underlying pathophysiological mechanism is not well understood. Such reversibility of diffusion anomalies has already been reported with transient ischemia, vasospasm after subarachnoid hemorrhage and epilepsy but, to our knowledge, never before in PRES.
Kawadler, Jamie M; Kirkham, Fenella J; Clayden, Jonathan D; Hollocks, Matthew J; Seymour, Emma L; Edey, Rosanna; Telfer, Paul; Robins, Andrew; Wilkey, Olu; Barker, Simon; Cox, Tim C S; Clark, Chris A
2015-07-01
Sickle cell anemia is associated with compromised oxygen-carrying capability of hemoglobin and a high incidence of overt and silent stroke. However, in children with no evidence of cerebral infarction, there are changes in brain morphometry relative to healthy controls, which may be related to chronic anemia and oxygen desaturation. A whole-brain tract-based spatial statistics analysis was carried out in 25 children with sickle cell anemia with no evidence of abnormality on T2-weighted magnetic resonance imaging (13 male, age range: 8-18 years) and 14 age- and race-matched controls (7 male, age range: 10-19 years) to determine the extent of white matter injury. The hypotheses that white matter damage is related to daytime peripheral oxygen saturation and steady-state hemoglobin were tested. Fractional anisotropy was found to be significantly lower in patients in the subcortical white matter (corticospinal tract and cerebellum), whereas mean diffusivity and radial diffusivity were higher in patients in widespread areas. There was a significant negative relationship between radial diffusivity and oxygen saturation (P<0.05) in the anterior corpus callosum and a trend-level negative relationship between radial diffusivity and hemoglobin (P<0.1) in the midbody of the corpus callosum. These data show widespread white matter abnormalities in a sample of asymptomatic children with sickle cell anemia, and provides for the first time direct evidence of a relationship between brain microstructure and markers of disease severity (eg, peripheral oxygen saturation and steady-state hemoglobin). This study suggests that diffusion tensor imaging metrics may serve as a biomarker for future trials of reducing hypoxic exposure. © 2015 American Heart Association, Inc.
Marques-Neto, Silvio Rodrigues; Castiglione, Raquel Carvalho; Pontes, Aiza; Oliveira, Dahienne Ferreira; Ferraz, Emanuelle Baptista; Nascimento, José Hamilton Matheus; Bouskela, Eliete
2016-01-01
Obesity promotes cardiac and cerebral microcirculatory dysfunction that could be improved by incretin-based therapies. However, the effects of this class of compounds on neuro-cardiovascular system damage induced by high fat diet remain unclear. The aim of this study was to investigate the effects of incretin-based therapies on neuro-cardiovascular dysfunction induced by high fat diet in Wistar rats. We have evaluated fasting glucose levels and insulin resistance, heart rate variability quantified on time and frequency domains, cerebral microcirculation by intravital microscopy, mean arterial blood pressure, ventricular function and mitochondrial swelling. High fat diet worsened biometric and metabolic parameters and promoted deleterious effects on autonomic, myocardial and haemodynamic parameters, decreased capillary diameters and increased functional capillary density in the brain. Biometric and metabolic parameters were better improved by glucagon like peptide-1 (GLP-1) compared with dipeptdyl peptidase-4 (DPP-4) inhibitor. On the other hand, both GLP-1 agonist and DPP-4 inhibitor reversed the deleterious effects of high fat diet on autonomic, myocardial, haemodynamic and cerebral microvascular parameters. GLP-1 agonist and DPP-4 inhibitor therapy also increased mitochondrial permeability transition pore resistance in brain and heart tissues of rats subjected to high fat diet. Incretin-based therapies improve deleterious cardiovascular effects induced by high fat diet and may have important contributions on the interplay between neuro-cardiovascular dynamic controls through mitochondrial dysfunction associated to metabolic disorders.
Assessing the sensitivity of diffusion MRI to detect neuronal activity directly.
Bai, Ruiliang; Stewart, Craig V; Plenz, Dietmar; Basser, Peter J
2016-03-22
Functional MRI (fMRI) is widely used to study brain function in the neurosciences. Unfortunately, conventional fMRI only indirectly assesses neuronal activity via hemodynamic coupling. Diffusion fMRI was proposed as a more direct and accurate fMRI method to detect neuronal activity, yet confirmative findings have proven difficult to obtain. Given that the underlying relation between tissue water diffusion changes and neuronal activity remains unclear, the rationale for using diffusion MRI to monitor neuronal activity has yet to be clearly established. Here, we studied the correlation between water diffusion and neuronal activity in vitro by simultaneous calcium fluorescence imaging and diffusion MR acquisition. We used organotypic cortical cultures from rat brains as a biological model system, in which spontaneous neuronal activity robustly emerges free of hemodynamic and other artifacts. Simultaneous fluorescent calcium images of neuronal activity are then directly correlated with diffusion MR signals now free of confounds typically encountered in vivo. Although a simultaneous increase of diffusion-weighted MR signals was observed together with the prolonged depolarization of neurons induced by pharmacological manipulations (in which cell swelling was demonstrated to play an important role), no evidence was found that diffusion MR signals directly correlate with normal spontaneous neuronal activity. These results suggest that, whereas current diffusion MR methods could monitor pathological conditions such as hyperexcitability, e.g., those seen in epilepsy, they do not appear to be sensitive or specific enough to detect or follow normal neuronal activity.
Assessing the sensitivity of diffusion MRI to detect neuronal activity directly
Bai, Ruiliang; Stewart, Craig V.; Plenz, Dietmar; Basser, Peter J.
2016-01-01
Functional MRI (fMRI) is widely used to study brain function in the neurosciences. Unfortunately, conventional fMRI only indirectly assesses neuronal activity via hemodynamic coupling. Diffusion fMRI was proposed as a more direct and accurate fMRI method to detect neuronal activity, yet confirmative findings have proven difficult to obtain. Given that the underlying relation between tissue water diffusion changes and neuronal activity remains unclear, the rationale for using diffusion MRI to monitor neuronal activity has yet to be clearly established. Here, we studied the correlation between water diffusion and neuronal activity in vitro by simultaneous calcium fluorescence imaging and diffusion MR acquisition. We used organotypic cortical cultures from rat brains as a biological model system, in which spontaneous neuronal activity robustly emerges free of hemodynamic and other artifacts. Simultaneous fluorescent calcium images of neuronal activity are then directly correlated with diffusion MR signals now free of confounds typically encountered in vivo. Although a simultaneous increase of diffusion-weighted MR signals was observed together with the prolonged depolarization of neurons induced by pharmacological manipulations (in which cell swelling was demonstrated to play an important role), no evidence was found that diffusion MR signals directly correlate with normal spontaneous neuronal activity. These results suggest that, whereas current diffusion MR methods could monitor pathological conditions such as hyperexcitability, e.g., those seen in epilepsy, they do not appear to be sensitive or specific enough to detect or follow normal neuronal activity. PMID:26941239
First detection of diffuse and cerebral theileria equi infection in neonatal filly
USDA-ARS?s Scientific Manuscript database
Theileria equi is a tick borne hemoparasite that may cause severe illness in equids. Intrauterine transmission of T. equi can occurs and may result in abortion, still birth or neonatal piroplasmosis of foals. Theileria equi and Babesia caballi infection are present in Israel and sub-clinical infecti...
Inter-Parietal White Matter Development Predicts Numerical Performance in Young Children
ERIC Educational Resources Information Center
Cantlon, Jessica F.; Davis, Simon W.; Libertus, Melissa E.; Kahane, Jill; Brannon, Elizabeth M.; Pelphrey, Kevin A.
2011-01-01
In an effort to understand the role of interhemispheric transfer in numerical development, we investigated the relationship between children's developing knowledge of numbers and the integrity of their white matter connections between the cerebral hemispheres (the corpus callosum). We used diffusion tensor imaging (DTI) tractography analyses to…
Witt, C; Kissel, T
2001-05-01
Erosion of biodegradable parenteral delivery systems (PDS) based on ABA copolymers consisting of poly(L-lactide-co-glycolide) (PLGA) A-blocks attached to polyethylene oxide (PEO) B-blocks, or PLGA is important for the release of macromolecular drugs. The degradation behavior of four types of PDS, namely extruded rods, tablets, films and microspheres, was studied with respect to molecular weight, mass, polymer composition and shape and microstructure of the PDS. For each device the onset time of bulk erosion (t(on)) and the apparent rate of mass loss (k(app)) were calculated. In the case of PLGA, the t(on) was 16.2 days for microspheres, 19.2 days for films and 30.1 days for cylindrical implants and tablets. The k(app) was 0.04 days(-1) for microspheres, 0.09 days(-1) for films, 0.11 days(-1) for implants and 0.10 days(-1) for tablets. The degradation rates were in the same range irrespective of the geometry and the micrographs of eroding PDS demonstrated pore formation; therefore, a complex pore diffusion mechanism seems to control the erosion of PLGA devices. In contrast, PDS based on ABA copolymers showed swelling, followed by a parallel process of molecular weight degradation and polymer erosion, independent of the geometry. The contact angles of ABA films increased either with decreasing PEO content or with increasing chain length of the PEO B-blocks. In summary, the insertion of a hydrophilic B-block leads to an erosion controlled by degradation of ABA copolymers, whereas for PLGA a complex pore diffusion of degradation products controls the rate of bulk erosion.
Swelling and gas release in oxide fuels during fast temperature transients
NASA Astrophysics Data System (ADS)
Dollins, C. C.; Jursich, M.
1982-05-01
A previously reported intergranular swelling and gas release model for oxide fuels has been modified to predict fission gas behavior during fast temperature transients. Under steady state or slowly varying conditions it has been assumed in the previous model that the pressure caused by the fission gas within the gas bubbles is in equilibrium with the surface tension of the bubbles. During a fast transient, however, net vacancy migration to the bubbles may be insufficient to maintain this equilibrium. In order to ascertain the net vacancy flow, it is necessary to model the point defect behavior in the fuel. Knowing the net flow of vacancies to the bubble and the bubble size, the bubble diffusivity can be determined and the long range migration of the gas out of the fuel can be calculated. The model has also been modified to allow release of all the gas on the grain boundaries during a fast temperature transient. The gas release predicted by the revised model shows good agreement to fast transient gas release data from an EBR-II TREAT H-3 (Transient Reactor Test Facility) test. Agreement has also been obtained between predictions using the model and gas release data obtained by Argonne National Laboratory from out-of-reactor transient heating experiments on irradiated UO 2. It was found necessary to increase the gas bubble diffusivity used in the model by a factor of thirty during the transient to provide agreement between calculations and measurements. Other workers have also found that such an increase is necessary for agreement and attribute the increased diffusivity to yielding at the bubble surface due to the increased pressure.
Hamberger, Anders; Viano, David C; Säljö, Annette; Bolouri, Hayde
2009-06-01
An animal model of concussions in National Football League players has been described in a previous study. It involves a freely moving 300-g Wistar rat impacted on the side of the head at velocities of 7.4 to 11.2 m/s with a 50-g impactor. The impact causes a 6% to 28% incidence of meningeal hemorrhages and 0.1- to 0.3-mm focal petechiae depending on the impact velocity. This study addresses the immunohistochemical responses of the brain. Twenty-seven tests were conducted with a 50-g impactor and velocities of 7.4, 9.3, or 11.2 m/s. The left temporal region of the helmet-protected head was hit 1 or 3 times. Thirty-one additional tests were conducted with a 100-g impactor. Diffuse axonal injury in distant regions of the brain was assessed with immunohistochemistry for NF-200, the heaviest neurofilament subunit, and glial fibrillary acidic protein, an intermediate filament protein in astrocytes. Hemorrhages were analyzed by unspecific peroxidase. There were 10 controls. A single impact at 7.4 and 9.3 m/s velocity with the 50-g impactor causes minimal neuronal injury and astrocytosis. Repeat impacts with 11.2 m/s velocity and more than 9.3-m/s impacts with 100 g cause diffuse axonal injury and distant injury bilaterally in the cerebral cortex, the subcortical, the white matter, the hippocampus CA1, the corpus callosum, and the striatum, as indicated by NF-200 accumulation in neuronal perikarya 10 days after impact. It also causes reactive astrocytosis in the midline regions of the cerebral cortex and periventricularly. Regions with erythrocyte-loaded blood capillaries indicated brain edema in regions of the cerebral cortex, the brainstem, and the cerebellum. When the immunohistochemical results are extrapolated to professional football players, concussions result in no or minimal brain injury. Repeat impacts at higher velocity or with a heavier mass impactor cause extensive and distant diffuse axonal injury. Based on this model, the threshold for diffuse axonal injury is above even the most severe conditions for National Football League concussion.
Ayral-Cinar, Derya; Demond, Avery H
2017-12-01
Diffusion is regarded as the dominant transport mechanism into and out of low permeable subsurface lenses and layers in the subsurface. But, some reports of mass storage in such zones are higher than what might be attributable to diffusion, based on estimated diffusion coefficients. Despite the importance of diffusion to efforts to estimate the quantity of residual contamination in the subsurface, relatively few studies present measured diffusion coefficients of organic solutes in saturated low permeability soils. This study reports the diffusion coefficients of a trichloroethylene (TCE), and an anionic surfactant, Aerosol OT (AOT), in water-saturated silt and a silt-montmorillonite (25:75) mixture, obtained using steady-state experiments. The relative diffusivity ranged from 0.11 to 0.17 for all three compounds for the silt and the silt-clay mixture that was allowed to expand. In the case in which the swelling was constrained, the relative diffusivity was about 0.07. In addition, the relative diffusivity of 13 C-labeled TCE through a water saturated silt-clay mixture that had contacted a field dense non-aqueous phase liquid (DNAPL) for 18months was measured and equaled 0.001. These experimental results were compared with the estimates generated using common correlations, and it was found that, in all cases, the measured diffusion coefficients were significantly lower than the estimated. Thus, the discrepancy between mass accumulations observed in the field and the mass storage that can attributable to diffusion may be greater than previously believed. Copyright © 2017. Published by Elsevier B.V.
MRI as a Translational Tool for the Study of Neonatal Stroke
Dzietko, Mark; Wendland, Michael; Derugin, Nikita; Ferriero, Donna M.; Vexler, Zinaida S.
2013-01-01
More than half of neonatal stroke survivors have long-term sequelae, including seizures and neurological deficits. Although the immature brain has tremendous potential for recovery, mechanisms governing repair are essentially unexplored. We explored whether magnetic resonance imaging (MRI) early or late after transient middle cerebral arterial occlusion in 10-day-old (P10) rats can serve as an intermediate endpoint for long-term studies. Injured animals selected by diffusion-weighted MRI during middle cerebral arterial occlusion were scanned using T2-weighted MRI at P18 and P25 (injury volumes on MRI and histology were compared), or were subjected to contrast-enhanced MRI at P13 to characterize cerebral microcirculatory disturbances and blood-brain barrier leakage. Injury volume did not predict histological outcome at 2 weeks. Major reductions occurred by P18, with no further changes by P25. Cerebral perfusion was significantly reduced in the injured caudate but blood-brain barrier leakage was small. Therefore, conventional T2-weighted MRI performed during a subchronic injury phase predicts long-term histological outcome after experimental neonatal focal stroke. PMID:21670390
Novo, Jorge; Lin, Diana; Shanks, Megan; Kocak, Mehmet; Arvanitis, Leonidas
2017-11-01
Adult-onset leukoencephalopathies with increased cerebral volume can present a potentially challenging diagnosis for the pathologist. We present the case of a patient with a rare adult-onset disease called Leukoencephalopathy with cerebral Calcifications and Cysts (LCC). A 55-year-old woman with a history of morning headaches, mild memory loss, diabetes, and hypertension presented to the emergency department with acute onset altered mental status. CT scan revealed multiple small hypodense lesions in the white matter with calcifications in the bilateral cerebral hemispheres, basal ganglia, pons, and cerebellar hemispheres. MRI showed multiple complex/hemorrhagic cystic lesions with partial enhancement in addition to calcifications bilaterally in the frontotemporal white matter, pons, and cerebellar hemispheres, and diffuse white matter signal abnormality. The differential diagnosis included chronic infection, chronic thromboembolic disease, and neoplasm. The biopsy revealed extensive geode-like mineralization as well as smaller calcifications (calcospherites) with associated sclerosis, Rosenthal fibers, angiomatous proliferation of blood vessels with thrombosis and microbleeds. We discuss the differential diagnosis, radiologic and detailed histologic features of LCC. Copyright © 2017 Elsevier GmbH. All rights reserved.
Fantini, Sergio; Sassaroli, Angelo; Tgavalekos, Kristen T.; Kornbluth, Joshua
2016-01-01
Abstract. Cerebral blood flow (CBF) and cerebral autoregulation (CA) are critically important to maintain proper brain perfusion and supply the brain with the necessary oxygen and energy substrates. Adequate brain perfusion is required to support normal brain function, to achieve successful aging, and to navigate acute and chronic medical conditions. We review the general principles of CBF measurements and the current techniques to measure CBF based on direct intravascular measurements, nuclear medicine, X-ray imaging, magnetic resonance imaging, ultrasound techniques, thermal diffusion, and optical methods. We also review techniques for arterial blood pressure measurements as well as theoretical and experimental methods for the assessment of CA, including recent approaches based on optical techniques. The assessment of cerebral perfusion in the clinical practice is also presented. The comprehensive description of principles, methods, and clinical requirements of CBF and CA measurements highlights the potentially important role that noninvasive optical methods can play in the assessment of neurovascular health. In fact, optical techniques have the ability to provide a noninvasive, quantitative, and continuous monitor of CBF and autoregulation. PMID:27403447
NASA Astrophysics Data System (ADS)
Le, Tien Dung; Moyne, Christian; Murad, Marcio A.
2015-01-01
A new three-scale model is proposed to describe the movement of ionic species of different valences in swelling clays characterized by three separate length scales (nano, micro, and macro) and two levels of porosity (nano- and micropores). At the finest (nano) scale the medium is treated as charged clay particles saturated by aqueous electrolyte solution containing monovalent and divalent ions forming the electrical double layer. A new constitutive law is constructed for the disjoining pressure based on the numerical resolution of non-local problem at the nanoscale which, in contrast to the Poisson-Boltzmann theory for point charge ions, is capable of capturing the short-range interactions between the ions due to their finite size. At the intermediate scale (microscale), the two-phase homogenized particle/electrolyte solution system is represented by swollen clay clusters (or aggregates) with the nanoscale disjoining pressure incorporated in a modified form of Terzaghi's effective principle. At the macroscale, the electro-chemical-mechanical couplings within clay clusters is homogenized with the ion transport in the bulk fluid lying in the micro pores. The resultant macroscopic picture is governed by a three-scale model wherein ion transport takes place in the bulk solution strongly coupled with the mechanics of the clay clusters which play the role of sources/sinks of mass to the bulk fluid associated with ion adsorption/desorption in the electrical double layer at the nanoscale. Within the context of the quasi-steady version of the multiscale model, wherein the electrolyte solution in the nanopores is assumed at instantaneous thermodynamic equilibrium with the bulk fluid in the micropores, we build-up numerically the ion-adsorption isotherms along with the constitutive law of the retardation coefficients of monovalent and divalent ions. In addition, the constitutive law for the macroscopic swelling pressure is reconstructed numerically showing patterns of attractive forces between particles for bivalent ions for particular ranges of bulk concentrations. The three-scale model is applied to numerically simulate ion diffusion in a compacted clay liner underneath a sanitary landfill. Owing to the distinct constitutive behavior of the swelling pressure and partition coefficient for each ionic species, different compaction regimes and diffusion/adsorption patterns, with totally different characteristic time scales, are observed for sodium and calcium migration in the clay liner.
Lysosome Transport as a Function of Lysosome Diameter
Bandyopadhyay, Debjyoti; Cyphersmith, Austin; Zapata, Jairo A.; Kim, Y. Joseph; Payne, Christine K.
2014-01-01
Lysosomes are membrane-bound organelles responsible for the transport and degradation of intracellular and extracellular cargo. The intracellular motion of lysosomes is both diffusive and active, mediated by motor proteins moving lysosomes along microtubules. We sought to determine how lysosome diameter influences lysosome transport. We used osmotic swelling to double the diameter of lysosomes, creating a population of enlarged lysosomes. This allowed us to directly examine the intracellular transport of the same organelle as a function of diameter. Lysosome transport was measured using live cell fluorescence microscopy and single particle tracking. We find, as expected, the diffusive component of intracellular transport is decreased proportional to the increased lysosome diameter. Active transport of the enlarged lysosomes is not affected by the increased lysosome diameter. PMID:24497985
Bilateral ophthalmic artery occlusion in rhino-orbito-cerebral mucormycosis.
Song, Yoo Mi; Shin, Sun Young
2008-03-01
To report a case of bilateral ophthalmic artery occlusion in rhino-orbito-cerebral mucormycosis. Reviewed clinical charts, photographs, and fluorescein angiography An 89-year-old man with poorly controlled diabetes developed sudden bilateral ptosis, complete ophthalmoplegia of the right eye, and superior rectus palsy of the left eye. Brain and orbit magnetic resonance imaging showed midbrain infarction and mild diffuse sinusitis. On the 2nd day of hospitalization, sudden visual loss and light reflex loss developed. There were retinal whitening, absence of retinal arterial filling, and a total lack of choroidal perfusion on fluorescein angiography of the right eye. The left eye showed a cherry red spot in the retina and the absence of retinal arterial filling and partial choroidal perfusion on fluorescein angiography. On rhinologic examination, mucormyosis was noticed. Despite treatment, visual acuity and light reflex did not recover and he died 4 days after admission. Bilateral ophthalmic artery occlusion can occur in rhino-orbital-cerebral mucormycosis.
Cerebral oxygen delivery is reduced in newborns with congenital heart disease.
Lim, Jessie Mei; Kingdom, Theodore; Saini, Brahmdeep; Chau, Vann; Post, Martin; Blaser, Susan; Macgowan, Christopher; Miller, Steven P; Seed, Mike
2016-10-01
To investigate preoperative cerebral hemodynamics in newborns with congenital heart disease. We hypothesized that cerebral blood flow and oxygen delivery would be decreased in newborns with congenital heart disease compared with controls. Using a "feed-and-sleep" approach to performing neonatal magnetic resonance imaging, we measured cerebral blood flow by using a slice prescription perpendicular to the right and left internal carotid arteries and basilar artery at the level of the clivus. We calculated brain volume by segmenting a 3-dimensional steady-state free procession acquisition of the whole brain, allowing quantification of cerebral blood flow indexed to brain volume. Cerebral oxygen delivery was calculated as the product of cerebral blood flow and preductal systemic arterial oxygen content obtained via a combination of conventional pulse oximetry and laboratory analysis of venous blood samples for hemoglobin concentration. A complete set of measurements were obtained in 32 newborns with heart disease and 31 controls. There was no difference in gestational age between the heart disease and control groups. There was no difference in cerebral blood flow compared with controls (103.5 ± 34.0 vs 119.7 ± 40.4 mL/min), whereas cerebral oxygen delivery was significantly lower in the congenital heart disease subjects (1881 ± 625.7 vs 2712 ± 915.7 mLO2/min). Ten newborns with congenital heart disease had diffuse excessive high signal intensity in their white matter and 2 had white matter injury whereas another 5 had both. Newborns with unrepaired cyanotic congenital heart disease have decreased cerebral oxygen delivery due to arterial desaturation. If brain growth and development are adversely affected through oxygen conformance, our findings could have clinical implications in terms of timing of surgical repair. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Hiel, C. C.; Adamson, M. J.
1986-01-01
The epoxy resins currently in use can slowly absorb moisture from the atmosphere over a long period. This reduces those mechanical properties of composites which depend strongly on the matrix, such as compressive strength and buckling instabilities. The effect becomes greater at elevated temperatures. The paper will discuss new phenomena which occur under simultaneous temperature and moisture variations. An analytical model will also be discussed and documented.
Muraoka, Shinsuke; Araki, Yoshio; Kondo, Goro; Kurimoto, Michihiro; Shiba, Yoshiki; Uda, Kenji; Ota, Shinji; Okamoto, Sho; Wakabayashi, Toshihiko
2018-05-01
Although revascularization surgery for patients with moyamoya disease can effectively prevent ischemic events and thus improve the long-term clinical outcome, the incidence of postoperative ischemic complications affects patients' quality of life. This study aimed to clarify the risk factors associated with postoperative ischemic complications and to discuss the appropriate perioperative management. Fifty-eight revascularization operations were performed in 37 children with moyamoya disease. Patients with moyamoya syndrome were excluded from this study. Magnetic resonance imaging was performed within 7 days after surgery. Postoperative cerebral infarction was defined as a diffusion-weighted imaging high-intensity lesion with or without symptoms. We usually use fentanyl and dexmedetomidine as postoperative analgesic and sedative drugs for patients with moyamoya disease. We used barbiturate coma therapy for pediatric patients with moyamoya disease who have all postoperative cerebral infarction risk factors. Postoperative ischemic complications were observed in 10.3% of the children with moyamoya disease (6 of 58). Preoperative cerebral infarctions (P = 0.0005), younger age (P = 0.038), higher Suzuki grade (P = 0.003), and posterior cerebral artery stenosis/occlusion (P = 0.003) were related to postoperative ischemic complications. Postoperative cerebral infarction occurred all pediatric patients using barbiturate coma therapy. The risk factors associated with postoperative ischemic complications for children with moyamoya disease are preoperative infarction, younger age, higher Suzuki grade, and posterior cerebral artery stenosis/occlusion. Barbiturate coma therapy for pediatric patients with moyamoya disease who have the previous risk factors is insufficient for prevention of postoperative cerebral infarction. More studies are needed to identify the appropriate perioperative management. Copyright © 2018 Elsevier Inc. All rights reserved.
The habenula and iron metabolism in cerebral mouse models of multiple sclerosis
Sands, Scott A.; Tsau, Sheila; LeVine, Steven M.
2015-01-01
Iron accumulates in the CNS of patients with multiple sclerosis, but our understanding of the mechanism accounting for this accumulation is unclear. Mouse models of cerebral experimental autoimmune encephalomyelitis (EAE) in C57BL/6 and SJL mice were used together with a histochemical stain for iron and immunohistochemical stains for transferrin receptor, synaptophysin, iron regulatory protein 1 (IRP1) and/or IRP2 to investigate the role of disease activity on CNS iron metabolism. The expression of transferrin receptor, but not IRP1 or IRP2, increased in the medial habenula, which is adjacent to the third ventricle, in response to both types of cerebral EAE. In the habenula, the elevated expression of transferrin receptor in C57BL/6 mice with cerebral EAE was generally restricted to the medial habenula while the expression in SJL mice with cerebral EAE was more diffusely expressed. Iron levels were increased in all regions of the habenula in C57BL/6 mice with cerebral EAE, and in the medial and medial lateral but not the lateral habenula in SJL mice with cerebral EAE. Synaptophysin, which has been observed previously in endocytic vesicles together with the transferrin receptor, was concentrated at the medial habenula, but its levels did not increase with disease in C57BL/6 mice with cerebral EAE. Our results support the model that the medial habenula responds to disease activity by upregulating transferrin receptor to facilitate the movement of iron into the brain from the third ventricle, raising the possibility that a similar mechanism accounts for iron accumulation in deep gray matter structures in patients with multiple sclerosis. PMID:26362814
NASA Astrophysics Data System (ADS)
Gong, Jianliang; Zhang, Aijuan; Bai, Hua; Zhang, Qingkun; Du, Can; Li, Lei; Hong, Yanzhen; Li, Jun
2013-01-01
Polymeric films with nanoscale networks were prepared by selectively swelling an amphiphilic diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), with the CO2-expanded liquid (CXL), CO2-methanol. The phase behavior of the CO2-methanol system was investigated by both theoretical calculation and experiments, revealing that methanol can be expanded by CO2, forming homogeneous CXL under the experimental conditions. When treated with the CO2-methanol system, the spin cast compact PS-b-P4VP film was transformed into a network with interconnected pores, in a pressure range of 12-20 MPa and a temperature range of 45-60 °C. The formation mechanism of the network, involving plasticization of PS and selective swelling of P4VP, was proposed. Because the diblock copolymer diffusion process is controlled by the activated hopping of individual block copolymer chains with the thermodynamic barrier for moving PVP segments from one to another, the formation of the network structures is achieved in a short time scale and shows ``thermodynamically restricted'' character. Furthermore, the resulting polymer networks were employed as templates, for the preparation of polypyrrole networks, by an electrochemical polymerization process. The prepared porous polypyrrole film was used to fabricate a chemoresistor-type gas sensor which showed high sensitivity towards ammonia.Polymeric films with nanoscale networks were prepared by selectively swelling an amphiphilic diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), with the CO2-expanded liquid (CXL), CO2-methanol. The phase behavior of the CO2-methanol system was investigated by both theoretical calculation and experiments, revealing that methanol can be expanded by CO2, forming homogeneous CXL under the experimental conditions. When treated with the CO2-methanol system, the spin cast compact PS-b-P4VP film was transformed into a network with interconnected pores, in a pressure range of 12-20 MPa and a temperature range of 45-60 °C. The formation mechanism of the network, involving plasticization of PS and selective swelling of P4VP, was proposed. Because the diblock copolymer diffusion process is controlled by the activated hopping of individual block copolymer chains with the thermodynamic barrier for moving PVP segments from one to another, the formation of the network structures is achieved in a short time scale and shows ``thermodynamically restricted'' character. Furthermore, the resulting polymer networks were employed as templates, for the preparation of polypyrrole networks, by an electrochemical polymerization process. The prepared porous polypyrrole film was used to fabricate a chemoresistor-type gas sensor which showed high sensitivity towards ammonia. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33188h
2016-01-01
Diffusion models are important in tissue engineering as they enable an understanding of gas, nutrient, and signaling molecule delivery to cells in cell cultures and tissue constructs. As three-dimensional (3D) tissue constructs become larger, more intricate, and more clinically applicable, it will be essential to understand internal dynamics and signaling molecule concentrations throughout the tissue and whether cells are receiving appropriate nutrient delivery. Diffusion characteristics present a significant limitation in many engineered tissues, particularly for avascular tissues and for cells whose viability, differentiation, or function are affected by concentrations of oxygen and nutrients. This article seeks to provide novel analytic solutions for certain cases of steady-state and nonsteady-state diffusion and metabolism in basic 3D construct designs (planar, cylindrical, and spherical forms), solutions that would otherwise require mathematical approximations achieved through numerical methods. This model is applied to cerebral organoids, where it is shown that limitations in diffusion and organoid size can be partially overcome by localizing metabolically active cells to an outer layer in a sphere, a regionalization process that is known to occur through neuroglial precursor migration both in organoids and in early brain development. The given prototypical solutions include a review of metabolic information for many cell types and can be broadly applied to many forms of tissue constructs. This work enables researchers to model oxygen and nutrient delivery to cells, predict cell viability, study dynamics of mass transport in 3D tissue constructs, design constructs with improved diffusion capabilities, and accurately control molecular concentrations in tissue constructs that may be used in studying models of development and disease or for conditioning cells to enhance survival after insults like ischemia or implantation into the body, thereby providing a framework for better understanding and exploring the characteristics and behaviors of engineered tissue constructs. PMID:26650970
An isolated nasolacrimal duct osteoma.
Kim, Joo Yeon; Kwon, Jae Hwan
2013-07-01
Osteomas of the nose and paranasal sinus are common benign tumors that can extend to surrounding structures and result in orbital or intracranial involvement. Presenting symptoms include facial pain, headache, cerebral symptoms, ocular symptoms, and so on, depending on the location and size of the tumor. They commonly occur within the frontal, ethmoid, maxillary, and sphenoid sinuses; however, there are rare cases of reported osteomas in the nasal cavity, turbinate, or orbit. Our case report describes a patient with nasolacrimal duct osteoma who presented with ipsilateral ocular pain, epiphora, and medial canthal swelling. We performed intranasal dacryocystorhinostomy using a nasal endoscope and removed the lacrimal duct osteoma. This report describes symptoms and management of an isolated nasolacrimal duct stone with a review of the literature.
Ikram, Md.; Gilhotra, Neeraj; Gilhotra, Ritu Mehra
2015-01-01
Background: This study was undertaken with an aim to systematically design a model of factors that would yield an optimized sustained release dosage form of an anti-hypertensive agent, losartan potassium, using response surface methodology (RSM) by employing 32 full factorial design. Materials and Methods: Mucoadhesive buccal patches were prepared using different grades of hydroxypropyl methylcellulose (HPMC) (K4M and K100M) and polyvinylpyrrolidone-K30 by solvent casting method. The amount of the release retardant polymers – HPMC K4M (X1) and HPMC K100M (X2) was taken as an independent variable. The dependent variables were the burst release in 30 min (Y1), cumulative percentage release of drug after 8 h (Y2) and swelling index (Y3) of the patches. In vitro release and swelling studies were carried out and the data were fitted to kinetic equations. Results: The physicochemical, bioadhesive, and swelling properties of patches were found to vary significantly depending on the viscosity of the polymers and their combination. Patches showed an initial burst release preceding a more gradual sustained release phase following a nonfickian diffusion process. Discussion: The results indicate that suitable bioadhesive buccal patches with desired permeability could be prepared, facilitated with the RSM. PMID:26682205
Investigating the time-dependent zeta potential of wood surfaces.
Muff, Livius F; Luxbacher, Thomas; Burgert, Ingo; Michen, Benjamin
2018-05-15
This work reports on streaming potential measurements through natural capillaries in wood and investigates the cause of a time-dependent zeta potential measured during the equilibration of wood cell-walls with an electrolyte solution. For the biomaterial, this equilibration phase takes several hours, which is much longer than for many other materials that have been characterized by electrokinetic measurements. During this equilibration phase the zeta potential magnitude is decaying due to two parallel mechanisms: (i) the swelling of the cell-wall which causes a dimensional change reducing the charge density at the capillary interface; (ii) the transport of ions from the electrolyte solution into the permeable cell-wall which alters the electrical potential at the interface by internal charge compensation. The obtained results demonstrate the importance of equilibration kinetics for an accurate determination of the zeta potential, especially for materials that interact strongly with the measurement electrolyte. Moreover, the change in zeta potential with time can be correlated with the bulk swelling of wood if the effect of electrolyte ion diffusion is excluded. This study shows the potential of streaming potential measurements of wood, and possibly of other hygroscopic and nanoporous materials, to reveal kinetic information about their interaction with liquids, such as swelling and ion uptake. Copyright © 2018 Elsevier Inc. All rights reserved.
Palesi, Fulvia; Tournier, Jacques-Donald; Calamante, Fernando; Muhlert, Nils; Castellazzi, Gloria; Chard, Declan; D'Angelo, Egidio; Wheeler-Kingshott, Claudia A M
2015-11-01
In addition to motor functions, it has become clear that in humans the cerebellum plays a significant role in cognition too, through connections with associative areas in the cerebral cortex. Classical anatomy indicates that neo-cerebellar regions are connected with the contralateral cerebral cortex through the dentate nucleus, superior cerebellar peduncle, red nucleus and ventrolateral anterior nucleus of the thalamus. The anatomical existence of these connections has been demonstrated using virus retrograde transport techniques in monkeys and rats ex vivo. In this study, using advanced diffusion MRI tractography we show that it is possible to calculate streamlines to reconstruct the pathway connecting the cerebellar cortex with contralateral cerebral cortex in humans in vivo. Corresponding areas of the cerebellar and cerebral cortex encompassed similar proportion (about 80%) of the tract, suggesting that the majority of streamlines passing through the superior cerebellar peduncle connect the cerebellar hemispheres through the ventrolateral thalamus with contralateral associative areas. This result demonstrates that this kind of tractography is a useful tool to map connections between the cerebellum and the cerebral cortex and moreover could be used to support specific theories about the abnormal communication along these pathways in cognitive dysfunctions in pathologies ranging from dyslexia to autism.
Elekofehinti, Olusola Olalekan; Kamdem, Jean Paul; Bolingon, Aline Augusti; Athayde, Margareth Linde; Lopes, Seeger Rodrigo; Waczuk, Emily Pansera; Kade, Ige Joseph; Adanlawo, Isaac Gbadura; Rocha, Joao Batista Teixeira
2013-10-01
To evaluate the antioxidant and radical scavenging activities of Solanum anguivi fruit (SAG) and its possible effect on mitochondrial permeability transition pore as well as mitochondrial membrane potential (ΔΨm) isolated from rat liver. Antioxidant activity of SAG was assayed by using 2,2-diphenyl-1-picrylhydrazyl (DPPH), reducing power, iron chelation and ability to inhibit lipid peroxidation in both liver and brain homogenate of rats. Also, the effect of SAG on mitochondrial membrane potential and mitochondrial swelling were determined. Identification and quantification of bioactive polyphenolics was done by HPLC-DAD. SAG exhibited potent and concentration dependent free radical-scavenging activity (IC50/DPPH=275.03±7.8 μg/mL). Reductive and iron chelation abilities also increase with increase in SAG concentration. SAG also inhibited peroxidation of cerebral and hepatic lipids subjected to iron oxidative assault. SAG protected against Ca(2+) (110 μmol/L)-induced mitochondrial swelling and maintained the ΔΨm. HPLC analysis revealed the presence of gallic acid [(17.54±0.04) mg/g], chlorogenic acid (21.90±0.02 mg/g), caffeic acid (16.64±0.01 mg/g), rutin [(14.71±0.03) mg/g] and quercetin [(7.39±0.05) mg/g]. These effects could be attributed to the bioactive polyphenolic compounds present in the extract. Our results suggest that SAG extract is a potential source of natural antioxidants that may be used not only in pharmaceutical and food industry but also in the treatment of diseases associated with oxidative stress. Copyright © 2013 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.
Cerebral blood flow and metabolism during exercise: implications for fatigue.
Secher, Neils H; Seifert, Thomas; Van Lieshout, Johannes J
2008-01-01
During exercise: the Kety-Schmidt-determined cerebral blood flow (CBF) does not change because the jugular vein is collapsed in the upright position. In contrast, when CBF is evaluated by (133)Xe clearance, by flow in the internal carotid artery, or by flow velocity in basal cerebral arteries, a approximately 25% increase is detected with a parallel increase in metabolism. During activation, an increase in cerebral O(2) supply is required because there is no capillary recruitment within the brain and increased metabolism becomes dependent on an enhanced gradient for oxygen diffusion. During maximal whole body exercise, however, cerebral oxygenation decreases because of eventual arterial desaturation and marked hyperventilation-related hypocapnia of consequence for CBF. Reduced cerebral oxygenation affects recruitment of motor units, and supplemental O(2) enhances cerebral oxygenation and work capacity without effects on muscle oxygenation. Also, the work of breathing and the increasing temperature of the brain during exercise are of importance for the development of so-called central fatigue. During prolonged exercise, the perceived exertion is related to accumulation of ammonia in the brain, and data support the theory that glycogen depletion in astrocytes limits the ability of the brain to accelerate its metabolism during activation. The release of interleukin-6 from the brain when exercise is prolonged may represent a signaling pathway in matching the metabolic response of the brain. Preliminary data suggest a coupling between the circulatory and metabolic perturbations in the brain during strenuous exercise and the ability of the brain to access slow-twitch muscle fiber populations.
Sustained Release of Naproxen in a New Kind Delivery System of Carbon Nanotubes Hydrogel
Peng, Xiahui; Zhuang, Qiang; Peng, Dongming; Dong, Qiuli; Tan, Lini; Jiao, Feipeng; Liu, Linqi; Liu, jingyu; Zhao, Chenxi; Wang, Xiaomei
2013-01-01
In this paper, carbon nanotubes (CNTs) were added into chitosan (CS) hydrogels in the form of chitosan modified CNTs (CS-CNTs) composites to prepare carbon nanotubes hydrogels (CNTs-GEL). The products, named CS-MWCNTs, were characterized by scanning electron microscope (SEM) and Fourier transform infrared (FTIR) spectroscopy. Swelling properties and effect of pH on controlled release performance of the two kinds of hydrogels, CNTs- GEL and pure chitosan hydrogels without CNTs (GEL), were investigated respectively. The results showed that CNTs-GEL possess better controlled release performance than GEL. The releasing equilibrium time of CNTs-GEL was longer than that of GEL in both pH = w7.4 and pH=1.2 conditions, although the release ratios of the model drug are similar in the same pH buffer solutions. It is found that release kinetics is better fitted Ritger-Peppas empirical model indicating a fick-diffusion process in pH = 1.2, while in pH = 7.4 it was non-fick diffusion involving surface diffusion and corrosion diffusion processes. PMID:24523738
Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes.
Bienert, Gerd P; Møller, Anders L B; Kristiansen, Kim A; Schulz, Alexander; Møller, Ian M; Schjoerring, Jan K; Jahn, Thomas P
2007-01-12
The metabolism of aerobic organisms continuously produces reactive oxygen species. Although potentially toxic, these compounds also function in signaling. One important feature of signaling compounds is their ability to move between different compartments, e.g. to cross membranes. Here we present evidence that aquaporins can channel hydrogen peroxide (H2O2). Twenty-four aquaporins from plants and mammals were screened in five yeast strains differing in sensitivity toward oxidative stress. Expression of human AQP8 and plant Arabidopsis TIP1;1 and TIP1;2 in yeast decreased growth and survival in the presence of H2O2. Further evidence for aquaporin-mediated H2O2 diffusion was obtained by a fluorescence assay with intact yeast cells using an intracellular reactive oxygen species-sensitive fluorescent dye. Application of silver ions (Ag+), which block aquaporin-mediated water diffusion in a fast kinetics swelling assay, also reversed both the aquaporin-dependent growth repression and the H2O2-induced fluorescence. Our results present the first molecular genetic evidence for the diffusion of H2O2 through specific members of the aquaporin family.
A Simulation Model of Periarterial Clearance of Amyloid-β from the Brain
Diem, Alexandra K.; Tan, Mingyi; Bressloff, Neil W.; Hawkes, Cheryl; Morris, Alan W. J.; Weller, Roy O.; Carare, Roxana O.
2016-01-01
The accumulation of soluble and insoluble amyloid-β (Aβ) in the brain indicates failure of elimination of Aβ from the brain with age and Alzheimer's disease (AD). There is a variety of mechanisms for elimination of Aβ from the brain. They include the action of microglia and enzymes together with receptor-mediated absorption of Aβ into the blood and periarterial lymphatic drainage of Aβ. Although the brain possesses no conventional lymphatics, experimental studies have shown that fluid and solutes, such as Aβ, are eliminated from the brain along 100 nm wide basement membranes in the walls of cerebral capillaries and arteries. This lymphatic drainage pathway is reflected in the deposition of Aβ in the walls of human arteries with age and AD as cerebral amyloid angiopathy (CAA). Initially, Aβ diffuses through the extracellular spaces of gray matter in the brain and then enters basement membranes in capillaries and arteries to flow out of the brain. Although diffusion through the extracellular spaces of the brain has been well characterized, the exact mechanism whereby perivascular elimination of Aβ occurs has not been resolved. Here we use a computational model to describe the process of periarterial drainage in the context of diffusion in the brain, demonstrating that periarterial drainage along basement membranes is very rapid compared with diffusion. Our results are a validation of experimental data and are significant in the context of failure of periarterial drainage as a mechanism underlying the pathogenesis of AD as well as complications associated with its immunotherapy. PMID:26903861
Righini, Andrea; Doneda, Chiara; Parazzini, Cecilia; Arrigoni, Filippo; Matta, Ursula; Triulzi, Fabio
2010-11-01
The main purpose was to investigate any early diffusion tensor imaging (DTI) changes in corpus callosum (CC) associated with acute cerebral hemisphere lesions in term newborns. We retrospectively analysed 19 cases of term newborns acutely affected by focal or multi-focal lesions: hypoxic-ischemic encephalopathy, hypoglycaemic encephalopathy, focal ischemic stroke and deep medullary vein associated lesions. DTI was acquired at 1.5 Tesla with dedicated neonatal coil. DTI metrics (apparent diffusion coefficient (ADC), fractional anisotropy (FA), axial λ(∐) and radial λ(⟂) diffusivity) were measured in the hemisphere lesions and in the CC. The control group included seven normal newborns. The following significant differences were found between patients and normal controls in the CC: mean ADC was lower in patients (0.88 SD 0.23 versus 1.18 SD 0.07 μm(2)/s) and so was mean FA (0.50 SD 0.1 versus 0.67 SD 0.05) and mean λ(∐) value (1.61 SD 0.52 versus 2.36 SD 0.14 μm(2)/s). In CC the percentage of ADC always diminished independently of lesion age (with one exception), whereas in hemisphere lesions, it was negative in earlier lesions, but exceeded normal values in the older lesions. CC may undergo early DTI changes in newborns with acute focal or multi-focal hemisphere lesions of different aetiology. Although a direct insult to CC cannot be totally ruled out, DTI changes in CC (in particular λ(∐)) may also be compatible with very early Wallerian degeneration or pre-Wallerian degeneration.
NASA Astrophysics Data System (ADS)
Davies, C. W.; Davie, D. C.; Charles, D. A.
2015-12-01
Geological disposal of nuclear waste is being increasingly considered to deal with the growing volume of waste resulting from the nuclear legacy of numerous nations. Within the UK there is 650,000 cubic meters of waste safely stored and managed in near-surface interim facilities but with no conclusive permanent disposal route. A Geological Disposal Facility with incorporated Engineered Barrier Systems are currently being considered as a permanent waste management solution (Fig.1). This research focuses on the EBS bentonite buffer/waste canister interface, and experimentally replicates key environmental phases that would occur after canister emplacement. This progresses understanding of the temporal evolution of the EBS and the associated impact on its engineering, mineralogical and physicochemical state and considers any consequences for the EBS safety functions of containment and isolation. Correlation of engineering properties to the physicochemical state is the focus of this research. Changes to geotechnical properties such as Atterberg limits, swelling pressure and swelling kinetics are measured after laboratory exposure to THMC variables from interface and batch experiments. Factors affecting the barrier, post closure, include corrosion product interaction, precipitation of silica, near-field chemical environment, groundwater salinity and temperature. Results show that increasing groundwater salinity has a direct impact on the buffer, reducing swelling capacity and plasticity index by up to 80%. Similarly, thermal loading reduces swelling capacity by 23% and plasticity index by 5%. Bentonite/steel interaction studies show corrosion precipitates diffusing into compacted bentonite up to 3mm from the interface over a 4 month exposure (increasing with temperature), with reduction in swelling capacity in the affected zone, probably due to the development of poorly crystalline iron oxides. These results indicate that groundwater conditions, temperature and corrosion may affect the engineering performance of the bentonite buffer such that any interfaces between bentonite blocks that may be present immediately following buffer emplacement may persist in the longer term.
NASA Astrophysics Data System (ADS)
Majer, Günter; Southan, Alexander
2017-06-01
The diffusion of small molecules through hydrogels is of great importance for many applications. Especially in biological contexts, the diffusion of nutrients through hydrogel networks defines whether cells can survive inside the hydrogel or not. In this contribution, hydrogels based on poly(ethylene glycol) diacrylate with mesh sizes ranging from ξ = 1.1 to 12.9 nm are prepared using polymers with number-average molecular weights between Mn = 700 and 8000 g/mol. Precise measurements of diffusion coefficients D of adenosine triphosphate (ATP), an important energy carrier in biological systems, in these hydrogels are performed by pulsed field gradient nuclear magnetic resonance. Depending on the mesh size, ξ, and on the polymer volume fraction of the hydrogel after swelling, ϕ, it is possible to tune the relative ATP diffusion coefficient D/D0 in the hydrogels to values between 0.14 and 0.77 compared to the ATP diffusion coefficient D0 in water. The diffusion coefficients of ATP in these hydrogels are compared with predictions of various mathematical expressions developed under different model assumptions. The experimental data are found to be in good agreement with the predictions of a modified obstruction model or the free volume theory in combination with the sieving behavior of the polymer chains. No reasonable agreement was found with the pure hydrodynamic model.
Näsi, Tiina; Mäki, Hanna; Hiltunen, Petri; Heiskala, Juha; Nissilä, Ilkka; Kotilahti, Kalle; Ilmoniemi, Risto J
2013-03-01
The effect of task-related extracerebral circulatory changes on diffuse optical tomography (DOT) of brain activation was evaluated using experimental data from 14 healthy human subjects and computer simulations. Total hemoglobin responses to weekday-recitation, verbal-fluency, and hand-motor tasks were measured with a high-density optode grid placed on the forehead. The tasks caused varying levels of mental and physical stress, eliciting extracerebral circulatory changes that the reconstruction algorithm was unable to fully distinguish from cerebral hemodynamic changes, resulting in artifacts in the brain activation images. Crosstalk between intra- and extracranial layers was confirmed by the simulations. The extracerebral effects were attenuated by superficial signal regression and depended to some extent on the heart rate, thus allowing identification of hemodynamic changes related to brain activation during the verbal-fluency task. During the hand-motor task, the extracerebral component was stronger, making the separation less clear. DOT provides a tool for distinguishing extracerebral components from signals of cerebral origin. Especially in the case of strong task-related extracerebral circulatory changes, however, sophisticated reconstruction methods are needed to eliminate crosstalk artifacts.
Bauer, Corinna M.; Heidary, Gena; Koo, Bang-Bon; Killiany, Ronald J.; Bex, Peter; Merabet, Lotfi B.
2014-01-01
Cortical (cerebral) visual impairment (CVI) is characterized by visual dysfunction associated with damage to the optic radiations and/or visual cortex. Typically it results from pre- or perinatal hypoxic damage to postchiasmal visual structures and pathways. The neuroanatomical basis of this condition remains poorly understood, particularly with regard to how the resulting maldevelopment of visual processing pathways relates to observations in the clinical setting. We report our investigation of 2 young adults diagnosed with CVI and visual dysfunction characterized by difficulties related to visually guided attention and visuospatial processing. Using high-angular-resolution diffusion imaging (HARDI), we characterized and compared their individual white matter projections of the extrageniculo-striate visual system with a normal-sighted control. Compared to a sighted control, both CVI cases revealed a striking reduction in association fibers, including the inferior frontal-occipital fasciculus as well as superior and inferior longitudinal fasciculi. This reduction in fibers associated with the major pathways implicated in visual processing may provide a neuroanatomical basis for the visual dysfunctions observed in these patients. PMID:25087644
Breschi, Gian Luca; Librizzi, Laura; Pastori, Chiara; Zucca, Ileana; Mastropietro, Alfonso; Cattalini, Alessandro; de Curtis, Marco
2010-08-01
Magnetic resonance imaging (MRI) during the acute phase of a stroke contributes to recognize ischemic regions and is potentially useful to predict clinical outcome. Yet, the functional significance of early MRI alterations during brain ischemia is not clearly understood. We achieved an experimental study to interpret MRI signals in a novel model of focal ischemia in the in vitro isolated guinea pig brain. By combining neurophysiological and morphological analysis with MR-imaging, we evaluated the suitability of MR to identify ischemic and peri-ischemic regions. Extracellular recordings demonstrated depolarizations in the ischemic core, but not in adjacent areas, where evoked activity was preserved and brief peri-infarct depolarizations occurred. Diffusion-weighted MRI and immunostaining performed after neurophysiological characterization showed changes restricted to the core region. Diffusion-weighted MR alterations did not include the penumbra region characterized by peri-infarct depolarizations. Therefore, by comparing neurophysiological, imaging and anatomical data, we can conclude that DW-MRI underestimates the extension of the tissue damage involved in brain ischemia.
Murayama, Kazuhiro; Katada, Kazuhiro; Hayakawa, Motoharu; Toyama, Hiroshi
We aimed to clarify the cause of shortened mean transit time (MTT) in acute ischemic cerebrovascular disease and examined its relationship with reperfusion. Twenty-three patients with acute ischemic cerebrovascular disease underwent whole-brain computed tomography perfusion (CTP). The maximum MTT (MTTmax), minimum MTT (MTTmin), ratio of maximum and minimum MTT (MTTmin/max), and minimum cerebral blood volume (CBV) (CBVmin) were measured by automatic region of interest analysis. Diffusion weighted image was performed to calculate infarction volume. We compared these CTP parameters between reperfusion and nonreperfusion groups and calculated correlation coefficients between the infarction core volume and CTP parameters. Significant differences were observed between reperfusion and nonreperfusion groups (MTTmin/max: P = 0.014; CBVmin ratio: P = 0.038). Regression analysis of CTP and high-intensity volume on diffusion weighted image showed negative correlation (CBVmin ratio: r = -0.41; MTTmin/max: r = -0.30; MTTmin ratio: r = -0.27). A region of shortened MTT indicated obstructed blood flow, which was attributed to the singular value decomposition method error.
Seeing more clearly through the fog of encephalopathy.
Kaplan, Peter W; Sutter, Raoul
2013-10-01
Patients with acute confusional states (often referred to as encephalopathy or delirium) pose diagnostic and management challenges for treating physicians. Encephalopathy is associated with a high morbidity and mortality rate, and the diagnosis rests on clinical grounds but may also be supported by the finding of electroencephalographic (EEG) evidence for diffuse cerebral dysfunction. The myriad cerebral transmitter and metabolic disruptions are generated by systemic organ system failures, principal among which are those of the liver, kidneys, lungs, heart, and endocrine system, along with the effects of exogenous toxins and medications. In most cases, several of these organ failures together contribute to the confusional state, frequently in the context of a diffuse cerebral atrophy that affects the aging brain. This special issue of the Journal of Clinical Neurophysiology is dedicated to exploring the electrophysiology of these conditions. It reviews the pathophysiology, psychiatric manifestations, clinical and imaging correlations of the many causes and types of encephalopathy. A literature review of the EEG abnormalities in the various types of encephalopathy provides an overview that ranges from paraneoplastic causes, through organ system failures, postcardiorespiratory arrest, to postoperative delirium. The issue is supplemented by tables of relevant clinical correlations, graphs, Venn diagrams, and the use of mathematical modeling used to explain how defects in the neuronal interplay might generate the EEG patterns seen in encephalopathy. We hope that this assembly will act as a springboard for further discussion and investigation into the EEG underpinnings, clinical correlations, diagnosis. and prognostication of these common and morbid disturbances of brain function.
Cauli, Omar; López-Larrubia, Pilar; Rodrigo, Regina; Agusti, Ana; Boix, Jordi; Nieto-Charques, Laura; Cerdán, Sebastián; Felipo, Vicente
2011-02-01
Patients with acute liver failure (ALF) often die of intracranial pressure (IP) and cerebral herniation. Main contributors to increased IP are ammonia, glutamine, edema, and blood flow. The sequence of events and underlying mechanisms, as well as the temporal pattern, regional distribution, and contribution of each parameter to the progression of neurologic deterioration and IP, are unclear. We studied rats with ALF to follow the progression of changes in ammonia, glutamine, grade and type (vasogenic or cytotoxic) of edema, blood-brain barrier permeability, cerebral blood flow, and IP. We assessed whether the changes in these parameters were similar between frontal cortex and cerebellum and evaluated the presence, type, and progression of edema in 12 brain areas. ALF was induced by injection of galactosamine. The grade and type of edema was assessed by measuring the apparent diffusion coefficient by magnetic resonance imaging. Cerebral blood flow was measured by magnetic resonance and blood-brain barrier permeability by Evans blue-albumin extravasation. Increased IP arises from an early increase of blood-brain barrier permeability in certain areas (including cerebellum but not frontal cortex) followed by vasogenic edema. Ammonia and glutamine then increase progressively, leading to cytotoxic edema in many areas. Alterations in lactate and cerebral blood flow are later events that further increase IP. Different mechanisms in specific regions of the brain contribute, with different temporal patterns, to the progression of cerebral alterations and IP in ALF. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
Diffusion and Equilibrium Swelling of Macromolecular Networks by Their Linear Homologs.
1982-10-01
C/ . 29 OYN 6/81 DISTRIBUTION LIST No. Copies No. Copies Dr. L.V. Schmtdt 1 Dr. F. Roberto 1 Assistant Secretary of the Navy Code AFRPL MKPA (RE, and...Scientific Advisor Directorate of Aerospace Sciences Commandant of the Marine Corps Bolling Air Force Base Code RD-1 Washington, D.C. 20332 Washington...Directorate of Chemical Sciences Arlington VA 22217 Bolling Air Force Base t VWashington, D.C. 20332 Mr. David Siegel Office of Naval Research Dr. John S
El-Bahy, Khaled
2009-10-01
Several approaches are described for olfactory groove meningiomas (OGMs) varying from a very wide bifrontal craniotomy to minimally invasive endoscopic techniques. The goal of this study was to evaluate the results of the frontolateral approach for olfactory groove meningioma. Pitfalls related to this corridor will be described. The impact of tumor size and encasement of the anterior cerebral artery complex on the degree of tumor removal will be described on the basis of experience with 18 cases. Eighteen patients with OGM underwent microsurgical removal using the frontolateral approach. A retrospective study was conducted by analyzing clinical data, neuroimaging studies, operative findings, clinical outcome, and degree of tumor removal. The patients were classified into group A with tumor size less than 4 cm in diameter (7 out of 18 cases, 38.9%) and group B with tumor size more than 4 cm in diameter (11 out of 18 cases, 61.1%). CSF rhinorrhea was observed in three patients (16.7%). Postoperative left frontal intracerebral hematoma occurred in one patient (5.6%) belonging to group A. In another patient (5.6%) belonging to group B, marked right frontal lobe swelling was evident after dural opening, which necessitated partial right frontal pole resection. Total tumor removal (Simpson grade 1 and 2) was achieved in 14 out of 18 patients (77.8%), while subtotal removal (Simpson grade 3 and 4) was achieved in 4 patients (22.2%). In the 14 patients in whom total removal was achieved, 7 belonged to group A (all 7 patients of group A with 100% removal), while the remaining 7 patients belonged to group B (7 out of 11 patients, 63.6% removal; one of them had anterior cerebral artery complex encasement). The four patients in whom subtotal removal was achieved belonged to group B; three of them showed anterior cerebral artery complex encasement, and one elderly patient had non-extensive paranasal sinus involvement. One patient (5.6%) in group B died from cerebral infarction after subtotal tumor removal with anterior cerebral artery injury during its dissection from the tumor capsule. The frontolateral approach has the advantages of both the pterional and conventional bifrontal approaches. The frontolateral approach allows quick and minimally invasive access to OGMs less than 4 cm in diameter, and also to tumors more than 4 cm in diameter without encasement of the anterior cerebral artery complex. Tumor size more than 4 cm in diameter and encasement of the anterior cerebral artery complex are limiting factors for the frontolateral approach if radical tumor removal is considered.
Yamaguchi, Yoshitaka; Hayakawa, Mikito; Kinoshita, Naoto; Yokota, Chiaki; Ishihara, Toshiya; Toyoda, Kazunori
2018-03-01
A 63-year-old woman with end-stage renal disease on maintenance hemodialysis discontinued her medication for rheumatoid arthritis with prednisolone and azathioprine. One month later, she was admitted because of consciousness disturbance and right hemiparesis. Diffusion-weighted brain magnetic resonance imaging (MRI) revealed multiple hyperintensities in her left frontal and parietal lobes. She also developed high fever and left neck pain. Carotid ultrasonography showed calcified plaque with vessel wall swelling at the bifurcation of the left common carotid artery (LCCA) and surrounding hypoechoic soft tissue. The tissue was identified as an isodense lesion on noncontrast computed tomography (CT) and as a high-intensity lesion on fat-saturated T2-weighted MRI. From her symptoms and radiological findings, she was diagnosed with carotidynia. Cervical MRI also showed that the LCCA was transposed to a retropharyngeal location, suggesting a moving carotid artery. Carotid ultrasonography revealed that the LCCA moved to and from the retropharyngeal position with swallowing and was thus being compressed by the hyoid bone. After corticosteroid therapy was initiated with 30 mg of prednisolone, her symptoms and radiological findings improved. To our knowledge, this is the first report of a case of cerebral embolism due to carotidynia. The repetitive compressions by the hyoid bone during swallowing were presumed to have provoked shear stress and inflammation of the carotid vessel wall, which was aggravated by discontinuation of steroid therapy in our case. These mechanical and inflammatory stresses might cause dysfunction of endothelial cells, hypercoagulation, platelet hyperaggregation, and vulnerability and rupture of carotid plaques, and may subsequently result in embolic strokes. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Exploratory analysis of glyburide as a novel therapy for preventing brain swelling.
Sheth, Kevin N; Kimberly, W Taylor; Elm, Jordan J; Kent, Thomas A; Yoo, Albert J; Thomalla, Götz; Campbell, Bruce; Donnan, Geoffrey A; Davis, Stephen M; Albers, Gregory W; Jacobson, Sven; del Zoppo, Gregory; Simard, J Marc; Stern, Barney J; Mandava, Pitchaiah
2014-08-01
Malignant infarction is characterized by the formation of cerebral edema, and medical treatment is limited. Preclinical data suggest that glyburide, an inhibitor of SUR1-TRPM4, is effective in preventing edema. We previously reported feasibility of the GAMES-Pilot study, a two-center prospective, open label, phase IIa trial of 10 subjects at high risk for malignant infarction based on diffusion weighted imaging (DWI) threshold of 82 cm(3) treated with RP-1127 (glyburide for injection). In this secondary analysis, we tested the hypothesis that RP-1127 may be efficacious in preventing poor outcome when compared to controls. Controls suffering large hemispheric infarction were obtained from the EPITHET and MMI-MRI studies. We first screened subjects for controls with the same DWI threshold used for enrollment into GAMES-Pilot, 82 cm(3). Next, to address imbalances, we applied a weighted Euclidean matching. Ninety day mRS 0-4, rate of decompressive craniectomy, and mortality were the primary clinical outcomes of interest. The mean age of the GAMES cohort was 51 years and initial DWI volume was 102 ± 23 cm(3). After Euclidean matching, GAMES subjects showed similar NIHSS, higher DWI volume, younger age and had mRS 0-4-90% versus 50% in controls p = 0.049; with a similar trend in mRS 0-3 (40 vs. 25%; p = 0.43) and trend toward lower mortality (10 vs. 35%; p = 0.21). In this pilot study, RP-1127-treated subjects showed better clinical outcomes when compared to historical controls. An adequately powered and randomized phase II trial of patients at risk for malignant infarction is needed to evaluate the potential efficacy of RP-1127.
Hsueh, C-S; Li, W-T; Jeng, C-R; Pang, V F; Chang, H-W
2018-04-01
An adult female California king snake (Lampropeltis getula californiae) housed in Taipei Zoo was presented with a 2-week history of anorexia, fatigue and abdominal swelling. Exploratory laparotomy revealed a gastric mass with two circular perforations and multiple mottled white to beige protuberances along the mucosal surface. Histologically, the gastric mass showed an invasive, transmural growth of epithelial cells arranged in nests, lobules, acini and sheets in the mucosa and submucosa that progressively transformed into signet ring cells in the muscularis externa and subserosa. All of the neoplastic cells expressed pan-cytokeratin immunohistochemically. Based on the World Health Organization histological criteria, a diagnosis of diffuse-type gastric mucinous and signet ring cell adenocarcinoma was made. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Durduran, Turgut; Zhou, Chao; Buckley, Erin M.; Kim, Meeri N.; Yu, Guoqiang; Choe, Regine; Gaynor, J. William; Spray, Thomas L.; Durning, Suzanne M.; Mason, Stefanie E.; Montenegro, Lisa M.; Nicolson, Susan C.; Zimmerman, Robert A.; Putt, Mary E.; Wang, Jiongjiong; Greenberg, Joel H.; Detre, John A.; Yodh, Arjun G.; Licht, Daniel J.
2010-05-01
We employ a hybrid diffuse correlation spectroscopy (DCS) and near-infrared spectroscopy (NIRS) monitor for neonates with congenital heart disease (n=33). The NIRS-DCS device measured changes during hypercapnia of oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentrations; cerebral blood flow (rCBFDCS); and oxygen metabolism (rCMRO2). Concurrent measurements with arterial spin-labeled magnetic resonance imaging (rCBFASL-MRI, n=12) cross-validate rCBFDCS against rCBFASL-MRI, showing good agreement (R=0.7, p=0.01). The study demonstrates use of NIRS-DCS on a critically ill neonatal population, and the results indicate that the optical technology is a promising clinical method for monitoring this population.
Mikac, Ursa; Sepe, Ana; Kristl, Julijana; Baumgartner, Sasa
2010-08-03
The key element in drug release from hydrophilic matrix tablets is the gel layer that regulates the penetration of water and controls drug dissolution and diffusion. We have selected magnetic resonance imaging (MRI) as the method of choice for visualizing the dynamic processes occurring during the swelling of xanthan tablets in a variety of media. The aims were (i) to develop a new method using MRI for accurate determination of penetration, swelling and erosion fronts, (ii) to investigate the effects of pH and ionic strength on swelling, and (iii) to study the influence of structural changes in xanthan gel on drug release. Two dimensional (2D) MRI and one dimensional single point imaging (SPI) of swollen xanthan tablets were recorded, together with T(2) mapping. The border between dry and hydrated glassy xanthan-the penetration front-was determined from 1D SPI signal intensity profiles. The erosion front was obtained from signal intensity profiles of 2D MR images. The swelling front, where xanthan is transformed from a glassy to a rubbery state (gel formation), was determined from T(2) profiles. Further, the new combination of MRI methods for swelling front determination enables to explain the appearance of the unusual "bright front" observed on 2D MR images in tablets swollen in HCl pH 1.2 media, which represents the position of swelling front. All six media studied, differing in pH and ionic strength, penetrate through the whole tablet in 4h+/-0.3h, but formation of the gel layer is significantly delayed. Unexpectedly, the position of the swelling front was the same, independently of the different xanthan gel structures formed under different conditions of pH and ionic strength. The position of the erosion front, on the other hand, is strongly dependent on pH and ionic strength, as reflected in different thicknesses of the gel layers. The latter are seen to be the consequence of the different hydrodynamic radii of the xanthan molecules, which affect the drug release kinetics. The slowest release of pentoxifylline was observed in water where the thickest gel was formed, whereas the fastest release was observed in HCl pH 1.2, in which the gel layer was thinnest. Moreover, experiments simulating physiological conditions showed that changes of pH and ionic strength influence the xanthan gel structure relatively quickly, and consequently the drug release kinetics. It is therefore concluded that drug release is greatly influenced by changes in the xanthan molecular conformation, as reflected in changed thickness of the gel layer. A new method utilizing combination of SPI, multi-echo MRI and T(2) mapping eliminates the limitations of standard methods used in previous studies for determining moving fronts and improves current understanding of the dynamic processes involved in polymer swelling. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Cerebral infarction caused by traumatic carotid artery dissection.
Bayır, Ayşegül; Aydoğdu Kıreşi, Demet; Söylemez, Ali; Demirci, Osman
2012-07-01
Traumatic carotid artery dissection, if not diagnosed and treated early, is a serious problem with permanent neurological deficit and a high mortality rate of up to 40%. We present a case with delayed diagnosis of traumatic carotid artery dissection in a 21-year-old female. While there were no ischemic infarct findings on the admission cerebral computerized tomography (CT), such findings were observed on two cerebral CTs taken because of the left hemiplegia noticed seven days later when the patient regained consciousness. The patient was referred to our emergency service, and definitive diagnosis was achieved with arterial Doppler ultrasonography, cerebral magnetic resonance imaging (MRI), diffusion MRI, and MR angiography. We did not consider invasive treatment since the neurological damage was permanent and dissection grade was IV according to angiography findings. The case was discharged within a week and physiotherapy was advised. Despite the advances in diagnostic methods, diagnosis of traumatic carotid artery dissection is still missed or delayed, as in the case presented here. Early diagnosis can ameliorate permanent neurological damage or even prevent it. However, the vital factors for early diagnosis are the obtained anamnesis leading to appropriate radiological examinations, detailed physical examination and high clinical suspicion.
Noh, Byoungho H; Cho, Sang-Won; Ahn, Sung Yeon
2016-02-01
Diabetic ketoacidosis (DKA) is one of the precipitating factors that can evoke a thyroid storm. Thyroid storm may cause cerebral ischemia in Moyamoya disease, which can coexist in patients with Graves' disease. A 16-year-old girl complaining of dizziness and palpitations visited the emergency department and was diagnosed with DKA combined with hyperthyroidism. A thyroid storm occurred 6 h after the start of DKA management. Her Burch and Wartofsky score was 65 points. Right hemiplegia developed during the thyroid storm, and brain magnetic resonance (MR) diffusion-weighted images revealed multiple acute infarcts in both hemispheres. MR angiography showed stenosis of both distal internal carotid arteries and both M1 portions of the middle cerebral arteries, consistent with Moyamoya disease. After acute management for the thyroid storm with methimazole, Lugol solution and hydrocortisone, the patient's neurological symptoms completely resolved within 1 month, and free T4 level normalized within 2 months. Thyroid storm may trigger cerebral ischemia in Moyamoya disease and lead to rapid progression of cerebrovascular occlusive disease. As a simultaneous occurrence of DKA, thyroid storm and cerebrovascular accident in Moyamoya disease highly elevates morbidity and mortality, prompt recognition and management are critical to save the patient's life.
Neuroimaging findings in children with retinopathy-confirmed cerebral malaria.
Potchen, Michael J; Birbeck, Gretchen L; Demarco, J Kevin; Kampondeni, Sam D; Beare, Nicholas; Molyneux, Malcolm E; Taylor, Terrie E
2010-04-01
To describe brain CT findings in retinopathy-confirmed, paediatric cerebral malaria. In this outcomes study of paediatric cerebral malaria, a subset of children with protracted coma during initial presentation was scanned acutely. Survivors experiencing adverse neurological outcomes also underwent a head CT. All children had ophthalmological examination to confirm the presence of the retinopathy specific for cerebral malaria. Independent interpretation of CT images was provided by two neuroradiologists. Acute brain CT findings in three children included diffuse oedema with obstructive hydrocephalus (2), acute cerebral infarctions in multiple large vessel distributions with secondary oedema and herniation (1), and oedema of thalamic grey matter (1). One child who was reportedly normal prior to admission had parenchymal atrophy suggestive of pre-existing CNS injury. Among 56 survivors (9-84 months old), 15 had adverse neurologic outcomes-11/15 had a follow-up head CT, 3/15 died and 1/15 refused CT. Follow-up head CTs obtained 7-18 months after the acute infection revealed focal and multifocal lobar atrophy correlating to regions affected by focal seizures during the acute infection (5/11). Other findings were communicating hydrocephalus (2/11), vermian atrophy (1/11) and normal studies (3/11). The identification of pre-existing imaging abnormalities in acute cerebral malaria suggests that population-based studies are required to establish the rate and nature of incidental imaging abnormalities in Malawi. Children with focal seizures during acute cerebral malaria developed focal cortical atrophy in these regions at follow-up. Longitudinal studies are needed to further elucidate mechanisms of CNS injury and death in this common fatal disease. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Baumbach, Andreas; Mullen, Michael; Brickman, Adam M; Aggarwal, Suneil K; Pietras, Cody G; Forrest, John K; Hildick-Smith, David; Meller, Stephanie M; Gambone, Louise; den Heijer, Peter; Margolis, Pauliina; Voros, Szilard; Lansky, Alexandra J
2015-05-01
This study aimed to evaluate the safety and performance of the TriGuard™ Embolic Deflection Device (EDD), a nitinol mesh filter positioned in the aortic arch across all three major cerebral artery take-offs to deflect emboli away from the cerebral circulation, in patients undergoing transcatheter aortic valve replacement (TAVR). The prospective, multicentre DEFLECT I study (NCT01448421) enrolled 37 consecutive subjects undergoing TAVR with the TriGuard EDD. Subjects underwent clinical and cognitive follow-up to 30 days; cerebral diffusion-weighted magnetic resonance imaging (DW-MRI) was performed pre-procedure and at 4±2 days post procedure. The device performed as intended with successful cerebral coverage in 80% (28/35) of cases. The primary safety endpoint (in-hospital EDD device- or EDD procedure-related cardiovascular mortality, major stroke disability, life-threatening bleeding, distal embolisation, major vascular complications, or need for acute cardiac surgery) occurred in 8.1% of subjects (VARC-defined two life-threatening bleeds and one vascular complication). The presence of new cerebral ischaemic lesions on post-procedure DW-MRI (n=28) was similar to historical controls (82% vs. 76%, p=NS). However, an exploratory analysis found that per-patient total lesion volume was 34% lower than reported historical data (0.2 vs. 0.3 cm3), and 89% lower in patients with complete (n=17) versus incomplete (n=10) cerebral vessel coverage (0.05 vs. 0.45 cm3, p=0.016). Use of the first-generation TriGuard EDD during TAVR is safe, and device performance was successful in 80% of cases during the highest embolic-risk portions of the TAVR procedure. The potential of the TriGuard EDD to reduce total cerebral ischaemic burden merits further randomised investigation.
Hereditary and non-hereditary microangiopathies in the young. An up-date.
Ringelstein, E Bernd; Kleffner, Ilka; Dittrich, Ralf; Kuhlenbäumer, Gregor; Ritter, Martin A
2010-12-15
In recent years, a considerable number of new sporadic or hereditary small artery diseases of the brain have been detected which preferably occur in younger age, below 45 years. Cerebral microangiopathies constitute an appreciable portion of all strokes. In middle aged patients, hereditary cerebral small vessel diseases have to be separated from sporadic degenerative cerebral microangiopathy which is mainly due to a high vascular risk load. Features of the following disorders and details how to differentiate them, are reviewed here, namely CADASIL, MELAS, AD-RVLC, HEMID, CARASIL, PADMAL, FABRY, COL4A1-related cerebral small vessel diseases and a Portuguese type of autosomal dominant cerebral small vessel disease (SVDB). The symptomatic overlap of the cerebral microangiopathies include also other distinctive non-hereditary diseases like posterior (reversible) encephalopathy and Susac's syndrome which are also described. Some of the microangiopathies described here are not only seen in the young but also in the elderly. The precise diagnosis has direct therapeutic implications in several of these entities. Cerebral microangiopathies cause recurring strokes and diffuse white matter lesions leading to a broad spectrum of gait disturbances and in most of these disorders cognitive impairment or even vascular dementia in the long term. Often, they also involve the eye, the inner ear or the kidney. Several typical imaging findings from illustrative cases are presented. The order in which these diseases are presented here is not dictated by an inner logic principle, because a genetically or pathophysiologically based classification system of all these entities does not exist yet. Some entities are well established and not unusual, whereas others have only been described in a few cases in total. Copyright © 2010 Elsevier B.V. All rights reserved.
Hydrogels Synthesized by Electron Beam Irradiation for Heavy Metal Adsorption
Manaila, Elena; Craciun, Gabriela; Ighigeanu, Daniel; Cimpeanu, Catalina; Barna, Catalina; Fugaru, Viorel
2017-01-01
Poly(acrylamide co-acrylic acid) hydrogels were prepared by free-radical copolymerization of acrylamide and acrylic acid in aqueous solutions using electron beam irradiation in the dose range of 2.5 kGy to 6 kGy in atmospheric conditions and at room temperature. The influence of the absorbed dose, the amount of cross-linker (trimethylolpropane trimethacrylate) and initiator (potassium persulfate) on the swelling properties and the diffusion coefficient and network parameters of hydrogels were investigated. The structure and morphology of hydrogels were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The use of the obtained hydrogels by the removal of Cu2+ and Cr6+ from aqueous solutions was investigated at room temperature. During the adsorption of metal ions on hydrogels, the residual metal ion concentration in the solution was measured by an atomic absorption spectrophotometer (AAS). It has been established that the use of a relatively small amount of trimethylolpropane trimethacrylate for hydrogel preparation has led to the increasing of swelling up to 8500%. PMID:28772904
Hydrogels Synthesized by Electron Beam Irradiation for Heavy Metal Adsorption.
Manaila, Elena; Craciun, Gabriela; Ighigeanu, Daniel; Cimpeanu, Catalina; Barna, Catalina; Fugaru, Viorel
2017-05-18
Poly(acrylamide co-acrylic acid) hydrogels were prepared by free-radical copolymerization of acrylamide and acrylic acid in aqueous solutions using electron beam irradiation in the dose range of 2.5 kGy to 6 kGy in atmospheric conditions and at room temperature. The influence of the absorbed dose, the amount of cross-linker (trimethylolpropane trimethacrylate) and initiator (potassium persulfate) on the swelling properties and the diffusion coefficient and network parameters of hydrogels were investigated. The structure and morphology of hydrogels were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The use of the obtained hydrogels by the removal of Cu 2+ and Cr 6+ from aqueous solutions was investigated at room temperature. During the adsorption of metal ions on hydrogels, the residual metal ion concentration in the solution was measured by an atomic absorption spectrophotometer (AAS). It has been established that the use of a relatively small amount of trimethylolpropane trimethacrylate for hydrogel preparation has led to the increasing of swelling up to 8500%.
NASA Astrophysics Data System (ADS)
Kinasih, N. A.; Fathurrohman, M. I.; Winarto, D. A.
2017-07-01
Epoxidized natural rubber (ENR) with different level of epoxidation (i.e. 10, 20, 30, 40 and 50 mol% indicated as ENR ENR10, ENR20, ENR30, ENR40 and ENR50, respectively) were prepared. They were then vulcanized by using efficient system vulcanization. The effect of epoxide content on curing characteristic, swelling and mechanical properties in N-pentane was investigated. The Attenuated Resonance Fourier Transform Infrared (ATR-FTIR) and H-Nuclear Magnetic Resonance (H-NMR) were used to determine the epoxidation level. Glass transition (Tg) of ENR samples was determined by using Direct Scanning Calorimetry (DSC). The result revealed that the resistance of ENR in N-pentane increased with increasing epoxidation level, which indicated by decreasing equilibrium mol uptake and diffusion coefficient. The compression set of ENR and aging resistance increased with increasing epoxide content, except ENR50 was due to ENR 50 have two Tg value. However, the value of hardness and tensile strength were not effected by epoxidation level.
How does low-molecular-weight polystyrene dissolve: osmotic swelling vs. surface dissolution.
Marcon, Valentina; van der Vegt, Nico F A
2014-12-07
By means of multiscale hierarchical modeling we study the real time evolution of low-molecular-weight polystyrene, below the glass transition temperature, in contact with its solvent, toluene. We observe two concurrent phenomena taking place: (1) the solvent diffuses into the polymer by a Case II mechanism, leading to osmotic driven swelling and progressive chain dilution (inside-out mechanism); (2) polymer chains are solvated, detach from the interface and move into the solvent before the film is completely swollen (outside-in mechanism). From our simulations we conclude that, below the entanglement length, a thin swollen layer, also observed in previous experiments, forms almost instantaneously, which allows for the outside-in mechanism to start a few tens of nanoseconds after the polymer-solvent initial contact. After this initial transient time the two mechanisms are concurrent. We furthermore observe that the presence of the solvent significantly enhances the mobility of the polymer chains of the surface layer, but only in the direction parallel to the interface.
Induction of lyme arthritis in LSH hamsters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitz, J.L.; Schell, R.F.; Hejka, A.
1988-09-01
In studies of experimental Lyme disease, a major obstacle has been the unavailability of a suitable animal model. We found that irradiated LSH/Ss Lak hamsters developed arthritis after injection of Borrelia burgdorferi in the hind paws. When nonirradiated hamsters were injected in the hind paws with B. burgdorferi, acute transient synovitis was present. A diffuse neutrophilic infiltrate involved the synovia and periarticular structures. The inflammation was associated with edema, hyperemia, and granulation tissue. Numerous spirochetes were seen in the synovial and subsynovial tissues. The histopathologic changes were enhanced in irradiated hamsters. The onset and duration of the induced swelling weremore » dependent on the dose of radiation and the inoculum of spirochetes. Inoculation of irradiated hamsters with Formalin-killed spirochetes or medium in which B. burgdorferi had grown for 7 days failed to induce swelling. This animal model should prove useful for studies of the immune response to B. burgdorferi and the pathogenesis of Lyme arthritis.« less
Orofacial granulomatosis affecting lip and gingiva in a 15-year-old patient: A rare case report.
Bansal, Monika; Singh, Nootan; Patne, Shashikant; Singh, Satyendra Kumar
2015-03-01
Orofacial granulomatosis (OFG) is a rare disorder affecting the orofacial region, and clinically characterized by diffuse, nontender, soft to firm, painless swelling restricted to one or both lips and intraoral sites such as tongue, gingiva and buccal mucosa. Histologically, OFG is characterized by noncaseating granulomatous inflammation. The early diagnosis of OFG is essential for the better prognosis of the lesion. Delay in diagnosis of OFG results into formation of indurated and permanent swelling of the lip that not only compromises esthetic appearance but also causes impairment in function such as speaking and eating. Early diagnosis of OFG is challenging to the health care professionals due to clinical and histological resemblance to other chronic granulomatous disorders. Thus, dentists may act as a first person to diagnose the lesion and play an important role in the multidisciplinary treatment of granulomatous disorders. Here, we present a case of OFG affecting lips and gingiva in a 15-year-old patient without any identifiable systemic or local causes.
Hydrogels of poly(ethylene glycol): mechanical characterization and release of a model drug.
Iza, M; Stoianovici, G; Viora, L; Grossiord, J L; Couarraze, G
1998-03-02
Thermosensitive polymer networks were synthesized from poly(ethylene glycol), hexamethylene diisocyanate and 1,2,6-hexanetriol in stoichiometric proportions. By varying the amount of 1,2,6-hexanetriol and the molar mass of the poly(ethylene glycol), a wide range of networks with different crosslinking densities was prepared. The networks obtained were characterized by the temperature dependence of their degree of equilibrium swelling in water and by their Young's moduli. For each network, the molecular weight between crosslinks was estimated. The structure of the hydrogels was analysed with respect to scaling laws, and it was found that the results obtained with PEG 1500 and PEG 6000 hydrogels are in agreement with theoretical predictions, whereas those obtained with PEG 400 hydrogels are in disagreement. The release properties of PEG hydrogels were studied by the determination of the diffusion coefficient for acebutolol chlorhydrate and by an analysis of the effect of temperature on these coefficients. Finally, these release properties were correlated with the swelling and structural properties of the hydrogels.
NASA Astrophysics Data System (ADS)
Castin, N.; Bakaev, A.; Bonny, G.; Sand, A. E.; Malerba, L.; Terentyev, D.
2017-09-01
We propose an object kinetic Monte Carlo (OKMC) model for describing the microstructural evolution in pure tungsten under neutron irradiation. We here focus on low doses (under 1 dpa), and we neglect transmutation in first approximation. The emphasis is mainly centred on an adequate description of neutron irradiation, the subsequent introduction of primary defects, and their thermal diffusion properties. Besides grain boundaries and the dislocation network, our model includes the contribution of carbon impurities, which are shown to have a strong influence on the onset of void swelling. Our parametric study analyses the quality of our model in detail, and confronts its predictions with experimental microstructural observations with satisfactory agreement. We highlight the importance for an accurate determination of the dissolved carbon content in the tungsten matrix, and we advocate for an accurate description of atomic collision cascades, in light of the sensitivity of our results with respect to correlated recombination.
Enhanced structural stability of nanoporous zirconia under irradiation of He
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Tengfei; Huang, Xuejun; Wang, Chenxu
2012-01-01
This work reports a greatly enhanced tolerance for He irradiation-induced swelling in nanocrystalline zirconia film with interconnected nanoporous structure (hereinafter referred as to NC-C). Compared to bulk yttria-stabilized zirconia (YSZ) and another nanocrystalline zirconia film only with discrete nano voids (hereinafter referred as to NC-V), the NC-C film reveals good tolerance for irradiation of high-fluence He. No appreciable surface blistering can be found even at the highest fluence of 6 1017 cm2 in NCC film. From TEM analysis of as-irradiated samples, the enhanced tolerance for volume swelling in NCC film is attributed to the enhanced diffusion mechanism of deposited Hemore » via widely distributed nano channels. Furthermore, the growth of grain size is quite small for both nanocrystalline zirconia films after irradiation, which is ascribed to the decreasing of area of grain boundary due to loose structure and low energy of primary knock-on atoms for He ions.« less
Witono, J R; Noordergraaf, I W; Heeres, H J; Janssen, L P B M
2014-03-15
An important application of starch grafted with copolymers from unsaturated organic acids is the use as water absorbent. Although much research has been published in recent years, the kinetics of water absorption and the swelling behavior of starch based superabsorbents are relatively unexplored. Also, water retention under mechanical strain is usually not reported. Cassava starch was used since it has considerable economic potential in Asia. The gelatinized starch was grafted with acrylic acid and Fenton's initiator and crosslinked with N,N'-methylenebisacrylamide (MBAM). Besides a good initial absorption capacity, the product could retain up to 63 g H2O/g under severe suction. The material thus combines a good absorption capacity with sufficient gel strength. The mathematical analysis of the absorption kinetics shows that at conditions of practical interest, the rate of water penetration into the gel is determined by polymer chain relaxations and not by osmotic driven diffusion. Copyright © 2013 Elsevier Ltd. All rights reserved.
Singh, Baljit; Singh, Baldev
2017-06-01
Present work is an attempt, to explore the potential of graphene oxide nanoplates impregnation, on the mechanical and drug delivery properties of sterculia gum-polyacrylamide composite hydrogel formed by radiation induced polymerization. These polymers were characterized by SEM, cryo-SEM, AFM, FTIR's, 13 C NMR and swelling studies. Release profile of an anticancer drug 'gemcitabine' was studied to determine the drug release mechanism and best fit kinetic model. Furthermore, some important biomedical properties of the polymers such as blood compatibility, mucoadhesion, antioxidant properties and gel strength were also studied. Impregnation of GO into sterculia gum-poly(AAm) hydrogels decreased the swelling of hydrogels but improved the mechanical, drug loading and drug release properties of the hydrogels. Release of gemcitabine from drug loaded hydrogels occurred through non-Fickian diffusion mechanism and release profile was best fitted in first order kinetic model. These hydrogels have been found as haemocompatible, mucoadhesive, and antioxidant in nature. Copyright © 2017 Elsevier B.V. All rights reserved.
Kaunisto, Erik; Marucci, Mariagrazia; Borgquist, Per; Axelsson, Anders
2011-10-10
The time required for the design of a new delivery device can be sensibly reduced if the release mechanism is understood and an appropriate mathematical model is used to characterize the system. Once all the model parameters are obtained, in silico experiments can be performed, to provide estimates of the release from devices with different geometries and compositions. In this review coated and matrix systems are considered. For coated formulations, models describing the diffusional drug release, the osmotic pumping drug release, and the lag phase of pellets undergoing cracking in the coating due to the build-up of a hydrostatic pressure are reviewed. For matrix systems, models describing pure polymer dissolution, diffusion in the polymer and drug release from swelling and eroding polymer matrix formulations are reviewed. Importantly, the experiments used to characterize the processes occurring during the release and to validate the models are presented and discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Figueroa-Pizano, M D; Vélaz, I; Peñas, F J; Zavala-Rivera, P; Rosas-Durazo, A J; Maldonado-Arce, A D; Martínez-Barbosa, M E
2018-09-01
The freezing-thawing is an advantageous method to produce hydrogels without crosslinking agents. In this study chitosan-poly(vinyl alcohol) (CS-PVA) hydrogels were prepared by varying the freezing conditions and composition, which affect the final characteristics of the products. The swelling degree, morphology, porosity, and diflunisal drug loading, as well as the drug release profiles were evaluated. The hydrogel swelling ratio was found to be mainly affected by the CS content, the number of freezing cycles and the temperature. SEM micrographs and porosity data confirm that pore size increases with the chitosan content. However, the use of either lower temperatures or longer freezing times, results in higher porosity and smaller pores. The drug release times of the CS-PVA hydrogels were as long as 30 h, and according to the mathematical fitting, a simple diffusion mechanism dominates the process. Moreover, a mathematical model predicting the hydrogels physical and structural behavior is proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Amaral, Alexandre Umpierrez; Seminotti, Bianca; Cecatto, Cristiane; Fernandes, Carolina Gonçalves; Busanello, Estela Natacha Brandt; Zanatta, Ângela; Kist, Luiza Wilges; Bogo, Maurício Reis; de Souza, Diogo Onofre Gomes; Woontner, Michael; Goodman, Stephen; Koeller, David M; Wajner, Moacir
2012-11-01
Mitochondrial dysfunction has been proposed to play an important role in the neuropathology of glutaric acidemia type I (GA I). However, the relevance of bioenergetics disruption and the exact mechanisms responsible for the cortical leukodystrophy and the striatum degeneration presented by GA I patients are not yet fully understood. Therefore, in the present work we measured the respiratory chain complexes activities I-IV, mitochondrial respiratory parameters state 3, state 4, the respiratory control ratio and dinitrophenol (DNP)-stimulated respiration (uncoupled state), as well as the activities of α-ketoglutarate dehydrogenase (α-KGDH), creatine kinase (CK) and Na+, K+-ATPase in cerebral cortex, striatum and hippocampus from 30-day-old Gcdh-/- and wild type (WT) mice fed with a normal or a high Lys (4.7%) diet. When a baseline (0.9% Lys) diet was given, we verified mild alterations of the activities of some respiratory chain complexes in cerebral cortex and hippocampus, but not in striatum from Gcdh-/- mice as compared to WT animals. Furthermore, the mitochondrial respiratory parameters and the activities of α-KGDH and CK were not modified in all brain structures from Gcdh-/- mice. In contrast, we found a significant reduction of Na(+), K(+)-ATPase activity associated with a lower degree of its expression in cerebral cortex from Gcdh-/- mice. Furthermore, a high Lys (4.7%) diet did not accentuate the biochemical alterations observed in Gcdh-/- mice fed with a normal diet. Since Na(+), K(+)-ATPase activity is required for cell volume regulation and to maintain the membrane potential necessary for a normal neurotransmission, it is presumed that reduction of this enzyme activity may represent a potential underlying mechanism involved in the brain swelling and cortical abnormalities (cortical atrophy with leukodystrophy) observed in patients affected by GA I. Copyright © 2012 Elsevier Inc. All rights reserved.
Nuñez-Figueredo, Yanier; Ramírez-Sánchez, Jeney; Hansel, Gisele; Simões Pires, Elisa Nicoloso; Merino, Nelson; Valdes, Odalys; Delgado-Hernández, René; Parra, Alicia Lagarto; Ochoa-Rodríguez, Estael; Verdecia-Reyes, Yamila; Salbego, Christianne; Costa, Silvia L; Souza, Diogo O; Pardo-Andreu, Gilberto L
2014-10-01
We previously showed that JM-20, a novel 1,5-benzodiazepine fused to a dihydropyridine moiety, possessed an anxiolytic profile similar to diazepam and strong neuroprotective activity in different cell models relevant to cerebral ischemia. Here, we investigated whether JM-20 protects against ischemic neuronal damage in vitro and in vivo. The effects of JM-20 were evaluated on hippocampal slices subjected to oxygen and glucose deprivation (OGD). For in vivo studies, Wistar rats were subjected 90 min of middle cerebral artery occlusion (MCAo) and oral administration of JM-20 at 2, 4 and 8 mg/kg 1 h following reperfusion. Twenty-four hours after cerebral blood flow restoration, neurological deficits were scored, and the infarct volume, histopathological changes in cortex, number of hippocampal and striatal neurons, and glutamate/aspartate concentrations in the cerebrospinal fluid were measured. Susceptibility to brain mitochondrial swelling, membrane potential dissipation, H2O2 generation, cytochrome c release, Ca2+ accumulation, and morphological changes in the organelles were assessed 24 h post-ischemia. In vitro, JM-20 (1 and 10 μM) administered during reperfusion significantly reduced cell death in hippocampal slices subjected to OGD. In vivo, JM-20 treatment (4 and 8 mg/kg) significantly decreased neurological deficit scores, edema formation, total infarct volumes and histological alterations in different brain regions. JM-20 treatment also protected brain mitochondria from ischemic damage, most likely by preventing Ca2+ accumulation in organelles. Moreover, an 8-mg/kg JM-20 dose reduced glutamate and aspartate concentrations in cerebrospinal fluid and the deleterious effects of MCAo even when delivered 8 h after blood flow restoration. These results suggest that in rats, JM-20 is a robust neuroprotective agent against ischemia/reperfusion injury with a wide therapeutic window. Our findings support the further examination of potential clinical JM-20 use to treat acute ischemic stroke. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kinetics of Contact Formation and End-to-End Distance Distributions of Swollen Disordered Peptides
Soranno, Andrea; Longhi, Renato; Bellini, Tommaso; Buscaglia, Marco
2009-01-01
Unstructured polypeptide chains are subject to various degrees of swelling or compaction depending on the combination of solvent condition and amino acid sequence. Highly denatured proteins generally behave like random-coils with excluded volume repulsion, whereas in aqueous buffer more compact conformations have been observed for the low-populated unfolded state of globular proteins as well as for naturally disordered sequences. To quantitatively account for the different mechanisms inducing the swelling of polypeptides, we have examined three 14-residues peptides in aqueous buffer and in denaturant solutions, including the well characterized AGQ repeat as a reference and two variants, in which we have successively introduced charged side chains and removed the glycines. Quenching of the triplet state of tryptophan by close contact with cysteine has been used in conjunction with Förster resonance energy transfer to study the equilibrium and kinetic properties of the peptide chains. The experiments enable accessing end-to-end root mean-square distance, probability of end-to-end contact formation and intrachain diffusion coefficient. The data can be coherently interpreted on the basis of a simple chain model with backbone angles obtained from a library of coil segments of proteins and hard sphere repulsion at each Cα position. In buffered water, we find that introducing charges in a glycine-rich sequence induces a mild chain swelling and a significant speed-up of the intrachain dynamics, whereas the removal of the glycines results in almost a two-fold increase of the chain volume and a drastic slowing down. In denaturants we observe a pronounced swelling of all the chains, with significant differences between the effect of urea and guanidinium chloride. PMID:19217868
Cruz, Maria C Pinto; Ravagnani, Sergio P; Brogna, Fabio M S; Campana, Sérgio P; Triviño, Galo Cardenas; Lisboa, Antonio C Luz; Mei, Lucia H Innocentini
2004-12-01
Diffusion studies of OTC (oxytetracycline) entrapped in microbeads of calcium alginate, calcium alginate coacervated with chitosan (of high, medium and low viscosity) and calcium alginate coacervated with chitosan of low viscosity, covered with PEG [poly(ethylene glycol) of molecular mass 2, 4.6 and 10 kDa, were carried out at 37+/-0.5 degrees C, in pH 7.4 and pH 1.2 buffer solutions - conditions similar to those found in the gastrointestinal system. The diffusion coefficient, or diffusivity (D), of OTC was calculated by equations provided by Crank [(1975) Mathematics in Diffusion, p. 85, Clarendon Press, Oxford] for diffusion, which follows Fick's [(1855) Ann. Physik (Leipzig) 170, 59] second law, considering the diffusion from the inner parts to the surface of the microbeads. The least-squares and the Newton-Raphson [Carnahan, Luther and Wilkes (1969) Applied Numerical Methods, p. 319, John Wiley & Sons, New York] methods were used to obtain the diffusion coefficients. The microbead swelling at pH 7.4 and OTC diffusion is classically Fickian, suggesting that the OTC transport, in this case, is controlled by the exchange rates of free water and relaxation of calcium alginate chains. In case of acid media, it was observed that the phenomenon did not follow Fick's law, owing, probably, to the high solubility of the OTC in this environment. It was possible to modulate the release rate of OTC in several types of microbeads. The presence of cracks formed during the process of drying the microbeads was observed by scanning electron microscopy.
NASA Astrophysics Data System (ADS)
Lin, Pei-Yi; Hagan, Katherine; Fenoglio, Angela; Grant, P. Ellen; Franceschini, Maria Angela
2016-05-01
Low-grade germinal matrix-intraventricular hemorrhage (GM-IVH) is the most common complication in extremely premature neonates. The occurrence of GM-IVH is highly associated with hemodynamic instability in the premature brain, yet the long-term impact of low-grade GM-IVH on cerebral blood flow and neuronal health have not been fully investigated. We used an innovative combination of frequency-domain near infrared spectroscopy and diffuse correlation spectroscopy (FDNIRS-DCS) to measure cerebral oxygen saturation (SO2) and an index of cerebral blood flow (CBFi) at the infant’s bedside and compute an index of cerebral oxygen metabolism (CMRO2i). We enrolled twenty extremely low gestational age (ELGA) neonates (seven with low-grade GM-IVH) and monitored them weekly until they reached full-term equivalent age. During their hospital stay, we observed consistently lower CBFi and CMRO2i in ELGA neonates with low-grade GM-IVH compared to neonates without hemorrhages. Furthermore, lower CBFi and CMRO2i in the former group persists even after the resolution of the hemorrhage. In contrast, SO2 does not differ between groups. Thus, CBFi and CMRO2i may have better sensitivity than SO2 in detecting GM-IVH-related effects on infant brain development. FDNIRS-DCS methods may have clinical benefit for monitoring the evolution of GM-IVH, evaluating treatment response, and potentially predicting neurodevelopmental outcome.
Diffuse Palmoplantar Keratoderma, Onychodystrophy, universal Hypotrichosis and Cysts.
Arif, Tasleem; Amin, Syed Suhail; Adil, Mohammad; Mohtashim, Mohd
2017-07-01
Dear Editor, Clouston syndrome, also called hidrotic ectodermal dysplasia (HED), is an autosomal dominant ectodermal dysplasia characterized by a clinical triad of onychodystrophy, generalized hypotrichosis, and palmoplantar keratoderma (1). Herein we report the case of a 24-year-old male with the distinctive clinical triad associated with multiple epidermoid cysts, which probably reflects the phenotype of Clouston syndrome. A 24-year-old male presented to our Department with diffuse thickening of the skin of his palms and soles since infancy. He also complained of sparsity to near absence of body hair and also reported thickening of the nails and multiple swellings involving the genitals and head since childhood. There was no history of consanguinity or of recurrent painful paronychia or abnormality in sweating. The patient denied any history of deafness, diminution of vision, redness, or watering of the eyes. On examination, diffuse hyperkeratosis of the palms and soles was observed (Figure 1 a, b) However, there was no extension of this hyperkeratosis to the dorsal aspects of the hands and feet or any proximal extension to the forearms or legs. Extensor aspects of the elbows and knees did not reveal any hyperkeratotic skin lesions. The nails were yellowish-brown, thickened, and hyperconvex, which was more pronounced in the finger nails than the toe nails (Figure 1 c, d). There was no associated paronychia. The scalp hair was very sparse, fine, and pale in color, reaching just a length of 3-4 mm in some places while totally absent in other places. The hair from the beard, eyebrows, eyelashes, moustaches, and pubic and axillary regions was very sparse to nearly absent (Figure 2 a, b, c). General body hair was also absent. In the left pre-auricular area there was a 3×2.5 cm swelling, soft to firm in consistency, non-tender, and non-pulsatile with no sinus or scar over it (Figure 2c). Multiple similar swellings of variable size measuring 0.6 to 1.3 cm were present over the scrotum (Figure 2 d). Systemic examination including oro-dental and ophthalmological examination was unremarkable. Physical tests for hearing were normal. Nail clippings for KOH examination did not reveal any fungal components. Fine needle aspiration from the pre-auricular swelling was consistent with epidermoid cyst. The classical triad of onychodystrophy, universal hypotrichosis, and palmoplantar hyperkeratosis with normal sweating and teeth indicated a diagnosis of Clouston syndrome. Hidrotic ectodermal dysplasia was first described in a French-Canadian kindred (2). However, it has subsequently been described in other ethnic and geographical areas. There is a mutation in the β gap junction protein gene which codes for the protein connexin 30 (Cx30) (3). This condition primarily affects the hair, nails, and skin, while sparing the teeth and sweat glands. The hair is sparse and pale, and the alopecia can be patchy or total. Hair loss may lead to total alopecia by puberty. The eyelashes are short and sparse, and the eyebrows as well as axillary and pubic hair are also sparse or absent (1), as in our case. During infancy, the nails are typically milky white, gradually thickening throughout childhood. The nail plate is short, thick, slow-growing, and discolored, which was consistent with our patient's nail changes. Diffuse palmoplantar hyperkeratosis is a characteristic sign which may extend to the dorsum of the hands and feet (4). However, our case had no transgradient component. There are other less common abnormalities reported in Clouston syndrome, which include conjunctivitis, strabismus, congenital cataract, oral leucoplakia, diffuse eccrine poromatosis, sensorineural hearing loss, thickened skull bones, and tufting of the terminal phalanges (2,5-8). However, to the best of our knowledge, the presence of epidermoid cysts in Clouston syndrome has not been previously reported, making our case a unique clinical presentation. Pachyonychia congenita is a very close differential diagnosis for this entity. However, universal hypotrichosis and the lack of oral leukokeratosis were the differentiating features in our case. Additionally, palmoplantar keratoderma in pachyonychia congenita is mainly focal rather than diffuse, as in our case. However, genetic studies are needed to establish such a diagnosis.
Localized cerebral energy failure in DNA polymerase gamma-associated encephalopathy syndromes.
Tzoulis, Charalampos; Neckelmann, Gesche; Mørk, Sverre J; Engelsen, Bernt E; Viscomi, Carlo; Moen, Gunnar; Ersland, Lars; Zeviani, Massimo; Bindoff, Laurence A
2010-05-01
Mutations in the catalytic subunit of the mitochondrial DNA-polymerase gamma cause a wide spectrum of clinical disease ranging from infantile hepato-encephalopathy to juvenile/adult-onset spinocerebellar ataxia and late onset progressive external ophthalmoplegia. Several of these syndromes are associated with an encephalopathy that characteristically shows episodes of rapid neurological deterioration and the development of acute cerebral lesions. The purpose of this study was to investigate the nature, distribution and natural evolution of central nervous system lesions in polymerase gamma associated encephalopathy focusing particularly on lesions identified by magnetic resonance imaging. We compared radiological, electrophysiological and pathological findings where available to study potential mechanisms underlying the episodes of exacerbation and acute cerebral lesions. We studied a total of 112 magnetic resonance tomographies and 11 computed tomographies in 32 patients with polymerase gamma-encephalopathy, including multiple serial examinations performed during both the chronic and acute phases of the disease and, in several cases, magnetic resonance spectroscopy and serial diffusion weighted studies. Data from imaging, electroencephalography and post-mortem examination were compared in order to study the underlying disease process. Our findings show that magnetic resonance imaging in polymerase gamma-related encephalopathies has high sensitivity and can identify patterns that are specific for individual syndromes. One form of chronic polymerase gamma-encephalopathy, that is associated with the c.1399G > A and c.2243G > C mutations, is characterized by progressive cerebral and cerebellar atrophy and focal lesions of the thalamus, deep cerebellar structures and medulla oblongata. Acute encephalopathies, both infantile and later onset, show similar pictures with cortical stroke-like lesions occurring during episodes of exacerbation. These lesions can occur both with and without electroencephalographic evidence of concurrent epileptic activity, and have diffusion, spectroscopic and histological profiles strongly suggestive of neuronal energy failure. We suggest therefore that both infantile and later onset polymerase gamma related encephalopathies are part of a continuum.
NASA Astrophysics Data System (ADS)
Serduc, Raphaël; van de Looij, Yohan; Francony, Gilles; Verdonck, Olivier; van der Sanden, Boudewijn; Laissue, Jean; Farion, Régine; Bräuer-Krisch, Elke; Siegbahn, Erik Albert; Bravin, Alberto; Prezado, Yolanda; Segebarth, Christoph; Rémy, Chantal; Lahrech, Hana
2008-03-01
Cerebral edema is one of the main acute complications arising after irradiation of brain tumors. Microbeam radiation therapy (MRT), an innovative experimental radiotherapy technique using spatially fractionated synchrotron x-rays, has been shown to spare radiosensitive tissues such as mammal brains. The aim of this study was to determine if cerebral edema occurs after MRT using diffusion-weighted MRI and microgravimetry. Prone Swiss nude mice's heads were positioned horizontally in the synchrotron x-ray beam and the upper part of the left hemisphere was irradiated in the antero-posterior direction by an array of 18 planar microbeams (25 mm wide, on-center spacing 211 mm, height 4 mm, entrance dose 312 Gy or 1000 Gy). An apparent diffusion coefficient (ADC) was measured at 7 T 1, 7, 14, 21 and 28 days after irradiation. Eventually, the cerebral water content (CWC) was determined by microgravimetry. The ADC and CWC in the irradiated (312 Gy or 1000 Gy) and in the contralateral non-irradiated hemispheres were not significantly different at all measurement times, with two exceptions: (1) a 9% ADC decrease (p < 0.05) was observed in the irradiated cortex 1 day after exposure to 312 Gy, (2) a 0.7% increase (p < 0.05) in the CWC was measured in the irradiated hemispheres 1 day after exposure to 1000 Gy. The results demonstrate the presence of a minor and transient cellular edema (ADC decrease) at 1 day after a 312 Gy exposure, without a significant CWC increase. One day after a 1000 Gy exposure, the CWC increased, while the ADC remained unchanged and may reflect the simultaneous presence of cellular and vasogenic edema. Both types of edema disappear within a week after microbeam exposure which may confirm the normal tissue sparing effect of MRT. For more information on this article, see medicalphysicsweb.org
Chatelain, Mathieu; Guizien, Katell
2010-03-01
A one-dimensional vertical unsteady numerical model for diffusion-consumption of dissolved oxygen (DO) above and below the sediment-water interface was developed to investigate DO profile dynamics under wind waves and sea swell (high-frequency oscillatory flows with periods ranging from 2 to 30s). We tested a new approach to modelling DO profiles that coupled an oscillatory turbulent bottom boundary layer model with a Michaelis-Menten based consumption model. The flow regime controls both the mean value and the fluctuations of the oxygen mass transfer efficiency during a wave cycle, as expressed by the non-dimensional Sherwood number defined with the maximum shear velocity (Sh). The Sherwood number was found to be non-dependent on the sediment biogeochemical activity (mu). In the laminar regime, both cycle-averaged and variance of the Sherwood number are very low (Sh <0.05, VAR(Sh)<0.1%). In the turbulent regime, the cycle-averaged Sherwood number is larger (Sh approximately 0.2). The Sherwood number also has intra-wave cycle fluctuations that increase with the wave Reynolds number (VAR(Sh) up to 30%). Our computations show that DO mass transfer efficiency under high-frequency oscillatory flows in the turbulent regime are water-side controlled by: (a) the diffusion time across the diffusive boundary layer and (b) diffusive boundary layer dynamics during a wave cycle. As a result of these two processes, when the wave period decreases, the Sh minimum increases and the Sh maximum decreases. Sh values vary little, ranging from 0.17 to 0.23. For periods up to 30s, oxygen penetration depth into the sediment did not show any intra-wave fluctuations. Values for the laminar regime are small (
Dynamical studies of confined fluids and polymers
NASA Astrophysics Data System (ADS)
Grabowski, Christopher A.
Soft matter, a class of materials including polymers, colloids, and surfactant molecules, are ubiquitous in our everyday lives. Plastics, soaps, foods and living organisms are mostly comprised of soft materials. Research conducted to understand soft matter behavior at the molecular level is essential to create new materials with unique properties. Self-healing plastics, targeted drug delivery, and nanowire assemblies have all been further advanced by soft matter research. The author of this dissertation investigates fundamental soft matter systems, including polymer solutions and melts, colloid dispersions in polymer melts, and interfacial fluids. The dynamics of polymers and confined fluids were studied using the single-molecule sensitive technique of fluorescence correlation spectroscopy (FCS). Here, fluorescent dyes are attached to polymer coils or by introducing free dyes directly into the solution/film. Complementary experiments were also performed, utilizing atomic force microscopy (AFM) and ellipsometry. FCS and AFM experiments demonstrated the significant difference in properties of thin fluid films of the nearly spherical, nonpolar molecule TEHOS (tetrakis(2-ethylhexoxy)silane) when compared to its bulk counterpart. AFM experiments confirmed TEHOS orders in layers near a solid substrate. FCS experiments show that free dyes introduced in these thin films do not have a single diffusion coefficient, indicating that these films have heterogeneity at the molecular level. FCS experiments have been applied to study the diffusion of gold colloids. The diffusion of gold colloids in polymer melts was found to dramatically depart from the Stokes-Einstein prediction when colloid size was smaller than the surrounding polymer mesh size. This effect is explained by noting the viscosity experienced by the colloid is not equivalent to the overall bulk viscosity of the polymer melt. The conformational change of polymers immersed in a binary solvent was measured via FCS. This experiment was conducted to test a theory proposed by Brochard and de Gennes, who postulated a polymer chain undergoes a collapse and a dramatic re-swelling as the critical point of the binary mixture is approached. Measuring polymer chain diffusion as a function of temperature, this theory was confirmed. To my knowledge, this was the first experimental evidence of contraction/re-swelling for polymers in critical binary solvents.
Improvements in brain activation detection using time-resolved diffuse optical means
NASA Astrophysics Data System (ADS)
Montcel, Bruno; Chabrier, Renee; Poulet, Patrick
2005-08-01
An experimental method based on time-resolved absorbance difference is described. The absorbance difference is calculated over each temporal step of the optical signal with the time-resolved Beer-Lambert law. Finite element simulations show that each step corresponds to a different scanned zone and that cerebral contribution increases with the arrival time of photons. Experiments are conducted at 690 and 830 nm with a time-resolved system consisting of picosecond laser diodes, micro-channel plate photo-multiplier tube and photon counting modules. The hemodynamic response to a short finger tapping stimulus is measured over the motor cortex. Time-resolved absorbance difference maps show that variations in the optical signals are not localized in superficial regions of the head, which testify for their cerebral origin. Furthermore improvements in the detection of cerebral activation is achieved through the increase of variations in absorbance by a factor of almost 5 for time-resolved measurements as compared to non-time-resolved measurements.
Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers.
Koehler, Raymond C; Fronticelli, Clara; Bucci, Enrico
2008-10-01
The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4-34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery.
Scheck, Simon M.; Pannek, Kerstin; Raffelt, David A.; Fiori, Simona; Boyd, Roslyn N.; Rose, Stephen E.
2015-01-01
In this work we investigate the structural connectivity of the anterior cingulate cortex (ACC) and its link with impaired executive function in children with unilateral cerebral palsy (UCP) due to periventricular white matter lesions. Fifty two children with UCP and 17 children with typical development participated in the study, and underwent diffusion and structural MRI. Five brain regions were identified for their high connectivity with the ACC using diffusion MRI fibre tractography: the superior frontal gyrus, medial orbitofrontal cortex, rostral middle frontal gyrus, precuneus and isthmus cingulate. Structural connectivity was assessed in pathways connecting these regions to the ACC using three diffusion MRI derived measures: fractional anisotropy (FA), mean diffusivity (MD) and apparent fibre density (AFD), and compared between participant groups. Furthermore we investigated correlations of these measures with executive function as assessed by the Flanker task. The ACC–precuneus tract had significantly different MD (p < 0.0001) and AFD (p = 0.0072) between groups, with post-hoc analysis showing significantly increased MD in the right hemisphere of children with left hemiparesis compared with controls. The ACC–superior frontal gyrus tract had significantly different FA (p = 0.0049) and MD (p = 0.0031) between groups. AFD in this tract (contralateral to side of hemiparesis; right hemisphere in controls) showed a significant relationship with Flanker task performance (p = 0.0045, β = −0.5856), suggesting that reduced connectivity correlates with executive dysfunction. Reduced structural integrity of ACC tracts appears to be important in UCP, in particular the connection to the superior frontal gyrus. Although damage to this area is heterogeneous it may be important in early identification of children with impaired executive function. PMID:26640762
Ceccarelli, Antonia; Rocca, Maria A; Valsasina, Paola; Rodegher, Mariaemma; Pagani, Elisabetta; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo
2009-09-01
The purpose of this study is to define the topographical distribution of gray matter (GM) and white matter (WM) damage in patients with primary progressive multiple sclerosis (PPMS), using a multiparametric MR-based approach. Using a 3 Tesla scanner, dual-echo, 3D fast-field echo (FFE), and diffusion tensor (DT) MRI scans were acquired from 18 PPMS patients and 17 matched healthy volunteers. An optimized voxel-based (VB) analysis was used to investigate the patterns of regional GM density changes and to quantify GM and WM diffusivity alterations of the entire brain. In PPMS patients, GM atrophy was found in the thalami and the right insula, while mean diffusivity (MD) changes involved several cortical-subcortical structures in all cerebral lobes and the cerebellum. An overlap between decreased WM fractional anisotropy (FA) and increased WM MD was found in the corpus callosum, the cingulate gyrus, the left short temporal fibers, the right short frontal fibers, the optic radiations, and the middle cerebellar peduncles. Selective MD increase, not associated with FA decrease, was found in the internal capsules, the corticospinal tracts, the superior longitudinal fasciculi, the fronto-occipital fasciculi, and the right cerebral peduncle. A discrepancy was found between regional WM diffusivity changes and focal lesions because several areas had DT MRI abnormalities but did not harbor T2-visible lesions. Our study allowed to detect tissue damage in brain areas associated with motor and cognitive functions, which are known to be impaired in PPMS patients. Combining regional measures derived from different MR modalities may be a valuable tool to improve our understanding of PPMS pathophysiology. 2009 Wiley-Liss, Inc.
Gramegna, L L; Pisano, A; Testa, C; Manners, D N; D'Angelo, R; Boschetti, E; Giancola, F; Pironi, L; Caporali, L; Capristo, M; Valentino, M L; Plazzi, G; Casali, C; Dotti, M T; Cenacchi, G; Hirano, M; Giordano, C; Parchi, P; Rinaldi, R; De Giorgio, R; Lodi, R; Carelli, V; Tonon, C
2018-01-18
Mitochondrial neurogastrointestinal encephalopathy is a rare disorder due to recessive mutations in the thymidine phosphorylase gene, encoding thymidine phosphorylase protein required for mitochondrial DNA replication. Clinical manifestations include gastrointestinal dysmotility and diffuse asymptomatic leukoencephalopathy. This study aimed to elucidate the mechanisms underlying brain leukoencephalopathy in patients with mitochondrial neurogastrointestinal encephalopathy by correlating multimodal neuroradiologic features to postmortem pathology. Seven patients underwent brain MR imaging, including single-voxel proton MR spectroscopy and diffusion imaging. Absolute concentrations of metabolites calculated by acquiring unsuppressed water spectra at multiple TEs, along with diffusion metrics based on the tensor model, were compared with those of healthy controls using unpaired t tests in multiple white matters regions. Brain postmortem histologic, immunohistochemical, and molecular analyses were performed in 1 patient. All patients showed bilateral and nearly symmetric cerebral white matter hyperintensities on T2-weighted images, extending to the cerebellar white matter and brain stem in 4. White matter, N -acetylaspartate, creatine, and choline concentrations were significantly reduced compared with those in controls, with a prominent increase in the radial water diffusivity component. At postmortem examination, severe fibrosis of brain vessel smooth muscle was evident, along with mitochondrial DNA replication depletion in brain and vascular smooth-muscle and endothelial cells, without neuronal loss, myelin damage, or gliosis. Prominent periependymal cytochrome C oxidase deficiency was also observed. Vascular functional and histologic alterations account for leukoencephalopathy in mitochondrial neurogastrointestinal encephalopathy. Thymidine toxicity and mitochondrial DNA replication depletion may induce microangiopathy and blood-brain-barrier dysfunction, leading to increased water content in the white matter. Periependymal cytochrome C oxidase deficiency could explain prominent periventricular impairment. © 2018 by American Journal of Neuroradiology.
Penile angioedema developing after 3 years of ACEI therapy.
Miller, Daniel G; Sweis, Rolla T; Toerne, Theodore S
2012-08-01
Angiotensin-converting enzyme inhibitor-related angioedema (ACEI-RA) is a well-described condition, yet isolated genital ACEI-RA is a little-known entity. A case of isolated genital angioedema is presented with photographic documentation. Possible complications and therapeutic options are discussed. A 71-year-old man presented with painless, nonpruritic genital swelling of 4 h duration. Medical history included peptic ulcer disease, hypertension, and benign prostatic hypertrophy. His medications included pantoprazole, hydrochlorothiazide, and lisinopril, which he had been taking for 3 years without any recent change in dosing. He was otherwise asymptomatic and previously had been in good health generally. The physical examination was positive only for diffuse, soft, nonpitting edema isolated to the scrotum and uncircumcised penis. The foreskin was only partially retractable. Urinalysis was normal. All symptoms resolved without complications within 48 h of discontinuing lisinopril and had not recurred at follow-up 4 months later. All cases of ACEI-RA isolated to the genitals that have been reported in the literature resolved without complications. ACEI-RA can present as isolated swelling of the genitals and is a potential cause of genital swelling. Patients who have no evidence of airway compromise, paraphimosis, or urinary retention from complications such as phimosis can be safely discharged with instructions to discontinue the offending agent and to return in case of development of the aforementioned conditions. Published by Elsevier Inc.
The Role of Cell Swelling in Ischemic Renal Damage and the Protective Effect of Hypertonic Solute
Flores, Jorge; DiBona, Donald R.; Beck, Clyde H.; Leaf, Alexander
1972-01-01
The failure of blood flow to return to the kidney following a transient period of ischemia has long been recognized. The cause of this “no-reflow” has been investigated in the rat after a transient period of total obstruction of the renal arteries. The vascular pattern of the kidneys as visualized with silicone rubber injection shows a diffuse patchy ischemia throughout the kidney, which persists after release of the obstructed renal artery. Electron microscopic studies of ischemic kidneys showed that all cellular elements were swollen and limiting the available vascular space. Functional studies revealed an increase in plasma urea nitrogen and creatinine after 1 hr or longer ischemic periods. The ischemia, cell swelling, “no-reflow,” and subsequent renal dysfunction occurring after obstruction to the renal arteries were corrected by the administration of hypertonic mannitol, but were unaffected by an equivalent expansion of the extracellular fluid volume either with isotonic saline or isotonic mannitol, showing that the osmotic effect was primary. The hypothesis is presented that ischemic swelling of cells may occlude small blood vessels so that recirculation does not resume even after the initial cause of the ischemia is no longer present; solutes which do not penetrate cell membranes are able to shrink swollen cells, increase the available vascular space and thus permit reflow of blood to the ischemic organ. Images PMID:5007042
Mahdavinia, Gholam Reza; Mosallanezhad, Amirabbas; Soleymani, Moslem; Sabzi, Mohammad
2017-04-01
The aim of the present work was to develop green carriers for methotrexate using κ-carrageenan/chitosan complexes. Magnetic Fe 3 O 4 nanoparticles were first synthesized in the presence of κ-carrageenan through in situ method. Then, the obtained magnetic κ-carrageenan was crosslinked using the polycation chitosan biopolymer. The physical and structural properties of hydrogels were investigated by FTIR, XRD, SEM, TEM, TGA, and VSM techniques. The pH-dependent swelling behavior of hydrogels was examined in various buffer solutions. All of the prepared hydrogels showed a high swelling capacity in basic solutions. The introduction of magnetite nanoparticles into κ-carrageenan/chitosan complexes had a significant effect on the swelling capacity of magnetic hydrogels, as the water absorbency of hydrogels decreased with increasing magnetite content. Methotrexate as an anticancer and model drug was loaded on hydrogels and the release profiles were investigated at pH=7.4 and 5.3. The methotrexate encapsulation efficiency was increased by increasing magnetite and chitosan contents. The results demonstrated that the release of methotrexate from magnetic hydrogels is pH-dependent with a high release content at pH=7.4. The release profiles were analyzed by Peppas's empirical model and the release of drug from hydrogels followed Fickian type of diffusion mechanism at both pHs. Copyright © 2017 Elsevier B.V. All rights reserved.
van der Eerden, Anke W; Khalilzadeh, Omid; Perlbarg, Vincent; Dinkel, Julien; Sanchez, Paola; Vos, Pieter E; Luyt, Charles-Edouard; Stevens, Robert D; Menjot de Champfleur, Nicolas; Delmaire, Christine; Tollard, Eleonore; Gupta, Rajiv; Dormont, Didier; Laureys, Steven; Benali, Habib; Vanhaudenhuyse, Audrey; Galanaud, Damien; Puybasset, Louis
2014-02-01
To analyze white matter pathologic abnormalities by using diffusion-tensor (DT) imaging in a multicenter prospective cohort of comatose patients following cardiac arrest or traumatic brain injury (TBI). Institutional review board approval and informed consent from proxies and control subjects were obtained. DT imaging was performed 5-57 days after insult in 49 cardiac arrest and 40 TBI patients. To control for DT imaging-processing variability, patients' values were normalized to those of 111 control subjects. Automated segmentation software calculated normalized axial diffusivity (λ1) and radial diffusivity (λ⊥) in 19 predefined white matter regions of interest (ROIs). DT imaging variables were compared by using general linear modeling, and side-to-side Pearson correlation coefficients were calculated. P values were corrected for multiple testing (Bonferroni). In central white matter, λ1 differed from that in control subjects in six of seven TBI ROIs and five of seven cardiac arrest ROIs (all P < .01). The λ⊥ differed from that in control subjects in all ROIs in both patient groups (P < .01). In hemispheres, λ1 was decreased compared with that in control subjects in three of 12 TBI ROIs (P < .05) and nine of 12 cardiac arrest ROIs (P < .01). The λ⊥ was increased in all TBI ROIs (P < .01) and in seven of 12 cardiac arrest ROIs (P < .05). Cerebral hemisphere λ1 was lower in cardiac arrest than in TBI in six of 12 ROIs (P < .01), while λ⊥ was higher in TBI than in cardiac arrest in eight of 12 ROIs (P < .01). Diffusivity values were symmetrically distributed in cardiac arrest (P < .001 for side-to-side correlation) but not in TBI patients. DT imaging findings are consistent with the known predominance of cerebral hemisphere axonal injury in cardiac arrest and chiefly central myelin injury in TBI. This consistency supports the validity of DT imaging for differentiating axon and myelin damage in vivo in humans. © RSNA, 2013
NASA Astrophysics Data System (ADS)
Vogt, William C.; Romero, Edwin; LaConte, Stephen M.; Rylander, Christopher G.
2013-03-01
Functional near-infrared spectroscopy (fNIRS) is a well-known technique for non-invasively measuring cerebral blood oxygenation, and many studies have demonstrated that fNIRS signals can be related to cognitive function. However, the fNIRS signal is attenuated by the skin, while scalp blood content has been reported to influence cerebral oxygenation measurements. Mechanical indentation has been shown to increase light transmission through soft tissues by causing interstitial water and blood flow away from the compressed region. To study the effects of indentation on fNIRS, a commercial fNIRS system with 16 emitter/detector pairs was used to measure cerebral blood oxygenation at 2 Hz. This device used diffuse reflectance at 730 nm and 850 nm to calculate deoxy- and oxy-hemoglobin concentrations. A borosilicate glass hemisphere was epoxied over each sensor to function as both an indenter and a lens. After placing the indenter/sensor assembly on the forehead, a pair of plastic bands was placed on top of the fNIRS headband and strapped to the head to provide uniform pressure and tightened to approx. 15 N per strap. Cerebral blood oxygenation was recorded during a breath holding regime (15 second hold, 15 second rest, 6 cycles) in 4 human subjects both with and without the indenter array. Results showed that indentation increased raw signal intensity by 85 +/- 35%, and that indentation increased amplitude of hemoglobin changes during breath cycles by 313% +/- 105%. These results suggest that indentation improves sensing of cerebral blood oxygenation, and may potentially enable sensing of deeper brain tissues.
Kikuchi, Shingo; Onuki, Yoshinori; Kuribayashi, Hideto; Takayama, Kozo
2012-01-01
We reported previously that sustained release matrix tablets showed zero-order drug release without being affected by pH change. To understand drug release mechanisms more fully, we monitored the swelling and erosion of hydrating tablets using magnetic resonance imaging (MRI). Three different types of tablets comprised of polyion complex-forming materials and a hydroxypropyl methylcellulose (HPMC) were used. Proton density- and diffusion-weighted images of the hydrating tablets were acquired at intervals. Furthermore, apparent self-diffusion coefficient maps were generated from diffusion-weighted imaging to evaluate the state of hydrating tablets. Our findings indicated that water penetration into polyion complex tablets was faster than that into HPMC matrix tablets. In polyion complex tablets, water molecules were dispersed homogeneously and their diffusivity was relatively high, whereas in HPMC matrix tablets, water molecule movement was tightly restricted within the gel. An optimal tablet formulation determined in a previous study had water molecule penetration and diffusivity properties that appeared intermediate to those of polyion complex and HPMC matrix tablets; water molecules were capable of penetrating throughout the tablets and relatively high diffusivity was similar to that in the polyion complex tablet, whereas like the HPMC matrix tablet, it was well swollen. This study succeeded in characterizing the tablet hydration process. MRI provides profound insight into the state of water molecules in hydrating tablets; thus, it is a useful tool for understanding drug release mechanisms at a molecular level.
Geophysical aspects of underground fluid dynamics and mineral transformation process
NASA Astrophysics Data System (ADS)
Khramchenkov, Maxim; Khramchenkov, Eduard
2014-05-01
The description of processes of mass exchange between fluid and poly-minerals material in porous media from various kinds of rocks (primarily, sedimentary rocks) have been examined. It was shown that in some important cases there is a storage equation of non-linear diffusion equation type. In addition, process of filtration in un-swelling soils, swelling porous rocks and coupled process of consolidation and chemical interaction between fluid and particles material were considered. In the latter case equations of physical-chemical mechanics of conservation of mass for fluid and particles material were used. As it is well known, the mechanics of porous media is theoretical basis of such branches of science as rock mechanics, soil physics and so on. But at the same moment some complex processes in the geosystems lacks full theoretical description. The example of such processes is metamorphosis of rocks and correspondent variations of stress-strain state. In such processes chemical transformation of solid and fluid components, heat release and absorption, phase transitions, rock destruction occurs. Extensive usage of computational resources in limits of traditional models of the mechanics of porous media cannot guarantee full correctness of obtained models and results. The process of rocks consolidation which happens due to filtration of underground fluids is described from the position of rock mechanics. As an additional impact, let us consider the porous media consolidating under the weight of overlying rock with coupled complex geological processes, as a continuous porous medium of variable mass. Problems of obtaining of correct storage equations for coupled processes of consolidation and mass exchange between underground fluid and skeleton material are often met in catagenesi processes description. The example of such processes is metamorphosis of rocks and correspondent variations of stress-strain state. In such processes chemical transformation of solid and fluid components, heat release and absorption, phase transitions, rock destruction occurs. Extensive usage of computational resources in limits of traditional models of the mechanics of porous media cannot guarantee full correctness of obtained models and results. The present work is dedicated to the retrieval of new ways to formulate and construct such models. It was shown that in some important cases there is a governing equation of non-linear diffusion equation type (well-known Fisher equation). In addition, some geophysical aspects of filtration process in usual non-swelling soils, swelling porous rocks and coupled process of consolidation and chemical interaction between fluid and skeleton material, including earth quakes, are considered.
Zhou, Yuhang; Li, Junjie; Zhang, Ying; Dong, Dianyu; Zhang, Ershuai; Ji, Feng; Qin, Zhihui; Yang, Jun; Yao, Fanglian
2017-02-02
Prediction of the diffusion coefficient of solute, especially bioactive molecules, in hydrogel is significant in the biomedical field. Considering the randomness of solute movement in a hydrogel network, a physical diffusion RMP-1 model based on obstruction theory was established in this study. The physical properties of the solute and the polymer chain and their interactions were introduced into this model. Furthermore, models RMP-2 and RMP-3 were established to understand and predict the diffusion behaviors of proteins in hydrogel. In addition, zwitterionic poly(sulfobetaine methacrylate) (PSBMA) hydrogels with wide range and fine adjustable mesh sizes were prepared and used as efficient experimental platforms for model validation. The Flory characteristic ratios, Flory-Huggins parameter, mesh size, and polymer chain radii of PSBMA hydrogels were determined. The diffusion coefficients of the proteins (bovine serum albumin, immunoglobulin G, and lysozyme) in PSBMA hydrogels were studied by the fluorescence recovery after photobleaching technique. The measured diffusion coefficients were compared with the predictions of obstruction models, and it was found that our model presented an excellent predictive ability. Furthermore, the assessment of our model revealed that protein diffusion in PSBMA hydrogel would be affected by the physical properties of the protein and the PSBMA network. It was also confirmed that the diffusion behaviors of protein in zwitterionic hydrogels can be adjusted by changing the cross-linking density of the hydrogel and the ionic strength of the swelling medium. Our model is expected to possess accurate predictive ability for the diffusion coefficient of solute in hydrogel, which will be widely used in the biomedical field.
Current Topics in Sports-related Head Injuries: A Review
NAGAHIRO, Shinji; MIZOBUCHI, Yoshifumi
2014-01-01
We review the current topic in sports-related head injuries including acute subdural hematoma (ASDH), concussion, and chronic traumatic encephalopathy (CTE). Sports-related ASDH is a leading cause of death and severe morbidity in popular contact sports like American football in the USA and judo in Japan. It is thought that rotational acceleration is most likely to produce not only cerebral concussion but also ASDH due to the rupture of a parasagittal bridging vein, depending on the severity of the rotational acceleration injury. Repeated sports head injuries increase the risk for future concussion, cerebral swelling, ASDH or CTE. To avoid fatal consequences or CTE resulting from repeated concussions, an understanding of the criteria for a safe post-concussion return to play (RTP) is essential. Once diagnosed with a concussion, the athlete must not be allowed to RTP the same day and should not resume play before the concussion symptoms have completely resolved. If brain damage has been confirmed or a subdural hematoma is present, the athlete should not be allowed to participate in any contact sports. As much remains unknown regarding the pathogenesis and pathophysiology of sports-related concussion, ASDH, and CTE, basic and clinical studies are necessary to elucidate the crucial issues in sports-related head injuries. PMID:25367588
Neurologic manifestations of major electrolyte abnormalities.
Diringer, M
2017-01-01
The brain operates in an extraordinarily intricate environment which demands precise regulation of electrolytes. Tight control over their concentrations and gradients across cellular compartments is essential and when these relationships are disturbed neurologic manifestations may develop. Perturbations of sodium are the electrolyte disturbances that most often lead to neurologic manifestations. Alterations in extracellular fluid sodium concentrations produce water shifts that lead to brain swelling or shrinkage. If marked or rapid they can result in profound changes in brain function which are proportional to the degree of cerebral edema or contraction. Adaptive mechanisms quickly respond to changes in cell size by either increasing or decreasing intracellular osmoles in order to restore size to normal. Unless cerebral edema has been severe or prolonged, correction of sodium disturbances usually restores function to normal. If the rate of correction is too rapid or overcorrection occurs, however, new neurologic manifestations may appear as a result of osmotic demyelination syndrome. Disturbances of magnesium, phosphate and calcium all may contribute to alterations in sensorium. Hypomagnesemia and hypocalcemia can lead to weakness, muscle spasms, and tetany; the weakness from hypophosphatemia and hypomagnesemia can impair respiratory function. Seizures can be seen in cases with very low concentrations of sodium, magnesium, calcium, and phosphate. © 2017 Elsevier B.V. All rights reserved.
Current topics in sports-related head injuries: a review.
Nagahiro, Shinji; Mizobuchi, Yoshifumi
2014-01-01
We review the current topic in sports-related head injuries including acute subdural hematoma (ASDH), concussion, and chronic traumatic encephalopathy (CTE). Sports-related ASDH is a leading cause of death and severe morbidity in popular contact sports like American football in the USA and judo in Japan. It is thought that rotational acceleration is most likely to produce not only cerebral concussion but also ASDH due to the rupture of a parasagittal bridging vein, depending on the severity of the rotational acceleration injury. Repeated sports head injuries increase the risk for future concussion, cerebral swelling, ASDH or CTE. To avoid fatal consequences or CTE resulting from repeated concussions, an understanding of the criteria for a safe post-concussion return to play (RTP) is essential. Once diagnosed with a concussion, the athlete must not be allowed to RTP the same day and should not resume play before the concussion symptoms have completely resolved. If brain damage has been confirmed or a subdural hematoma is present, the athlete should not be allowed to participate in any contact sports. As much remains unknown regarding the pathogenesis and pathophysiology of sports-related concussion, ASDH, and CTE, basic and clinical studies are necessary to elucidate the crucial issues in sports-related head injuries.
Masago, Kayo; Kihara, Yasuyuki; Yanagida, Keisuke; Hamano, Fumie; Nakagawa, Shinsuke; Niwa, Masami; Shimizu, Takao
2018-07-02
Cerebral edema is a life-threatening neurological condition characterized by brain swelling due to the accumulation of excess fluid both intracellularly and extracellularly. Fulminant hepatic failure (FHF) develops cerebral edema by disrupting blood-brain barrier (BBB). However, the mechanisms by which mediator induces brain edema in FHF remain to be elucidated. Here, we assessed a linkage between brain edema and lysophosphatidic acid (LPA) signaling by utilizing an animal model of FHF and in vitro BBB model. Azoxymethane-treated mice developed FHF and hepatic encephalopathy, associated with higher autotaxin (ATX) activities in serum than controls. Using in vitro BBB model, LPA disrupted the structural integrity of tight junction proteins including claudin-5, occludin, and ZO-1. Furthermore, LPA decreased transendothelial electrical resistances in in vitro BBB model, and induced cell contraction in brain endothelial monolayer cultures, both being inhibited by a Rho-associated protein kinase inhibitor, Y-27632. The brain capillary endothelial cells predominantly expressed LPA 6 mRNA, whose knockdown blocked the LPA-induced endothelial cell contraction. Taken together, the up-regulation of serum ATX in hepatic encephalopathy may activate the LPA-LPA 6 -G 12/13 -Rho pathway in brain capillary endothelial cells, leading to enhancement of BBB permeability and brain edema. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rajaram, Ajay; St. Lawrence, Keith; Diop, Mamadou
2017-02-01
In Canada, 8% of births occur prematurely. Preterm infants weighing less than 1500g are at a high risk of neurodevelopmental impairment: 5-10% develop major disabilities such as cerebral palsy and 40-50% show other cognitive and behavioural deficits. The brain is vulnerable to periods of low cerebral blood flow (CBF) that can impair energy metabolism and cause tissue damage. There is, therefore, a need for an efficient neuromonitoring system to alert the neonatal intensive care team to clinically significant changes in CBF and metabolism, before injury occurs. Optical technologies offer safe, non-invasive, and cost-effective methods for neuromonitoring. Cerebral oxygen saturation (ScO2) can be measured by exploiting the absorption properties of hemoglobin though Near-Infrared Spectroscopy (NIRS), and Diffuse Correlation Spectroscopy (DCS) can monitor CBF by tracking red blood cells. These measures can be combined to describe metabolism, a key indicator of tissue viability. In this study we present the development and testing of a hybrid broadband NIRS/DCS neuromonitor. This system is novel in its ability to simultaneously acquire broadband NIRS and DCS signals, providing a truly real-time measure of metabolism. Narrow bandpass and notch filters have been incorporated to diminish light contamination between the two modalities, preferentially filtering out each source from the opposing detector, allowing for an accurate measure of ScO2, CBF, and metabolism. With a broadband NIRS/DCS system, a real-time measure of CBF and metabolism within the developing brain can aid clinicians in monitoring events that precede brain injury, ultimately leading to better clinical outcomes.
Ceschin, Rafael; Lee, Vince K; Schmithorst, Vince; Panigrahy, Ashok
2015-01-01
Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL), are known to have motor, visual and cognitive impairments. Most diffusion tensor imaging (DTI) studies performed in this group have demonstrated widespread abnormalities using averaged deterministic tractography and voxel-based DTI measurements. Little is known about structural network correlates of white matter topography and reorganization in preterm cerebral palsy, despite the availability of new therapies and the need for brain imaging biomarkers. Here, we combined novel post-processing methodology of probabilistic tractography data in this preterm cohort to improve spatial and regional delineation of longitudinal cortical association tract abnormalities using an along-tract approach, and compared these data to structural DTI cortical network topology analysis. DTI images were acquired on 16 preterm children with cerebral palsy (mean age 5.6 ± 4) and 75 healthy controls (mean age 5.7 ± 3.4). Despite mean tract analysis, Tract-Based Spatial Statistics (TBSS) and voxel-based morphometry (VBM) demonstrating diffusely reduced fractional anisotropy (FA) reduction in all white matter tracts, the along-tract analysis improved the detection of regional tract vulnerability. The along-tract map-structural network topology correlates revealed two associations: (1) reduced regional posterior-anterior gradient in FA of the longitudinal visual cortical association tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiation, posterior thalamic radiation) correlated with reduced posterior-anterior gradient of intra-regional (nodal efficiency) metrics with relative sparing of frontal and temporal regions; and (2) reduced regional FA within frontal-thalamic-striatal white matter pathways (anterior limb/anterior thalamic radiation, superior longitudinal fasciculus and cortical spinal tract) correlated with alteration in eigenvector centrality, clustering coefficient (inter-regional) and participation co-efficient (inter-modular) alterations of frontal-striatal and fronto-limbic nodes suggesting re-organization of these pathways. Both along tract and structural topology network measurements correlated strongly with motor and visual clinical outcome scores. This study shows the value of combining along-tract analysis and structural network topology in depicting not only selective parietal occipital regional vulnerability but also reorganization of frontal-striatal and frontal-limbic pathways in preterm children with cerebral palsy. These finding also support the concept that widespread, but selective posterior-anterior neural network connectivity alterations in preterm children with cerebral palsy likely contribute to the pathogenesis of neurosensory and cognitive impairment in this group.
Edlow, Brian L; Giacino, Joseph T; Hirschberg, Ronald E; Gerrard, Jason; Wu, Ona; Hochberg, Leigh R
2013-12-01
Prognostication in the early stage of traumatic coma is a common challenge in the neuro-intensive care unit. We report the unexpected recovery of functional milestones (i.e., consciousness, communication, and community reintegration) in a 19-year-old man who sustained a severe traumatic brain injury. The early magnetic resonance imaging (MRI) findings, at the time, suggested a poor prognosis. During the first year of the patient's recovery, MRI with diffusion tensor imaging and T2*-weighted imaging was performed on day 8 (coma), day 44 (minimally conscious state), day 198 (post-traumatic confusional state), and day 366 (community reintegration). Mean apparent diffusion coefficient (ADC) and fractional anisotropy values in the corpus callosum, cerebral hemispheric white matter, and thalamus were compared with clinical assessments using the Disability Rating Scale (DRS). Extensive diffusion restriction in the corpus callosum and bihemispheric white matter was observed on day 8, with ADC values in a range typically associated with neurotoxic injury (230-400 × 10(-6 )mm(2)/s). T2*-weighted MRI revealed widespread hemorrhagic axonal injury in the cerebral hemispheres, corpus callosum, and brainstem. Despite the presence of severe axonal injury on early MRI, the patient regained the ability to communicate and perform activities of daily living independently at 1 year post-injury (DRS = 8). MRI data should be interpreted with caution when prognosticating for patients in traumatic coma. Recovery of consciousness and community reintegration are possible even when extensive traumatic axonal injury is demonstrated by early MRI.
Tsai, Ming-Jun; Lin, Ming-Wei; Huang, Yaw-Bin; Kuo, Yu-Min; Tsai, Yi-Hung
2016-01-01
Animal and clinical studies have revealed that hyperglycemia during ischemic stroke increases the stroke's severity and the infarct size in clinical and animal studies. However, no conclusive evidence demonstrates that acute hyperglycemia worsens post-stroke outcomes and increases infarct size in lacunar stroke. In this study, we developed a rat model of lacunar stroke that was induced via the injection of artificial embolic particles during full consciousness. We then used this model to compare the acute influence of hyperglycemia in lacunar stroke and diffuse infarction, by evaluating neurologic behavior and the rate, size, and location of the infarction. The time course of the neurologic deficits was clearly recorded from immediately after induction to 24 h post-stroke in both types of stroke. We found that acute hyperglycemia aggravated the neurologic deficit in diffuse infarction at 24 h after stroke, and also aggravated the cerebral infarct. Furthermore, the infarct volumes of the basal ganglion, thalamus, hippocampus, and cerebellum but not the cortex were positively correlated with serum glucose levels. In contrast, acute hyperglycemia reduced the infarct volume and neurologic symptoms in lacunar stroke within 4 min after stroke induction, and this effect persisted for up to 24 h post-stroke. In conclusion, acute hyperglycemia aggravated the neurologic outcomes in diffuse infarction, although it significantly reduced the size of the cerebral infarct and improved the neurologic deficits in lacunar stroke. PMID:27226775
Kim, Heakyung; Lee, Yung; Weiner, Daniel; Kaye, Robin; Cahill, Anne Marie; Yudkoff, Marc
2006-01-01
We describe 2 children with severe spastic quadriplegic cerebral palsy (CP) who have significant drooling and frequent aspiration pneumonia. They underwent simultaneous botulinum toxin type A (BTX-A) injections to salivary glands for drooling and prevention of aspiration pneumonia along with single-event multilevel chemoneurolysis (SEMLC) with BTX-A and 5% phenol for severe diffuse spasticity. There was significant improvement in drooling, frequency of aspiration pneumonia, and spasticity without adverse effect. BTX-A injections into the salivary glands, in addition to SEMLC, for these 2 children with medically complicated severe spastic quadriplegic CP, were safe and highly successful procedures, which improved their health-related quality of life.
Membrane formation and drug loading effects in high amylose starch tablets studied by NMR imaging.
Thérien-Aubin, Héloïse; Zhu, X X; Ravenelle, François; Marchessault, Robert H
2008-04-01
Cross-linked high amylose starch is used as an excipient in the preparation of pharmaceutical tablets for the sustained release of drugs. NMR imaging with contrast enhanced by proton density and by self-diffusion coefficient was used to follow the water uptake and swelling, two critical parameters controlling the drug release of the cross-linked starch tablets containing 10 wt % of ciprofloxacin and of acetaminophen, respectively. The drug-loaded tablets were studied in a H2O/D2O mixture at 37 degrees C in comparison to the tablets without any drug loading. The diffusion of water in the tablets all showed a Fickian behavior, but the kinetics of water uptake was faster in the case of the drug-loaded tablets. The formation of a membrane at the water/tablet interface was observed.
Technique of diffusion weighted imaging and its application in stroke
NASA Astrophysics Data System (ADS)
Li, Enzhong; Tian, Jie; Han, Ying; Wang, Huifang; Li, Wu; He, Huiguang
2003-05-01
To study the application of diffusion weighted imaging and image post processing in the diagnosis of stroke, especially in acute stroke, 205 patients were examined by 1.5 T or 1.0 T MRI scanner and the images such as T1, T2 and diffusion weighted images were obtained. Image post processing was done with "3D Med System" developed by our lab to analyze data and acquire the apparent diffusion coefficient (ADC) map. In acute and subacute stage of stroke, the signal in cerebral infarction areas changed to hyperintensity in T2- and diffusion-weighted images, normal or hypointensity in T1-weighted images. In hyperacute stage, however, the signal was hyperintense just in the diffusion weighted imaes; others were normal. In the chronic stage, the signal in T1- and diffusion-weighted imaging showed hypointensity and hyperintensity in T2 weighted imaging. Because ADC declined obviously in acute and subacute stage of stroke, the lesion area was hypointensity in ADC map. With the development of the disease, ADC gradually recovered and then changed to hyperintensity in ADC map in chronic stage. Using diffusion weighted imaging and ADC mapping can make a diagnosis of stroke, especially in the hyperacute stage of stroke, and can differentiate acute and chronic stroke.
Chronic thinner intoxication: clinico-pathologic report of a human case.
Escobar, A; Aruffo, C
1980-01-01
A 27 year old Mexican male addicted for 12 years to glue-sniffing and thinner inhalation developed neurological and behavioural disturbances which led to hospital admission and death. Autopsy disclosed diffuse cerebral and cerebellar cortex atrophy and giant axonopathy both central and peripheral. The corpus callosum was atrophic secondarily to neuron loss in the neocortex. Images PMID:7441282
NASA Astrophysics Data System (ADS)
Hebden, Jeremy C.; Cooper, Robert J.; Gibson, Adam; Everdell, Nick; Austin, Topun
2012-06-01
An optical imaging system has been developed which uses measurements of diffusely reflected near-infrared light to produce maps of changes in blood flow and oxygenation occurring within the cerebral cortex. Optical sources and detectors are coupled to the head via an array of optical fibers, on a probe held in contact with the scalp, and data is collected at a rate of 10 Hz. A clinical electroencephalography (EEG) system has been integrated with the optical system to enable simultaneous observation of electrical and hemodynamic activity in the cortex of neurologically compromised newborn infants diagnosed with seizures. Studies have made a potentially critically important discovery of previously unknown transient hemodynamic events in infants treated with anticonvulsant medication. We observed repeated episodes of small increases in cortical oxyhemoglobin concentration followed by a profound decrease in 3 of 4 infants studied, each with cerebral injury who presented with neonatal seizures. This was not accompanied by clinical or EEG seizure activity and was not present in nineteen matched controls. The underlying cause of these changes is currently unknown. We tentatively suggest that our results may be associated with a phenomenon known as cortical spreading depolarization, not previously observed in the infant brain.
Jacquesson, Timothée; Frindel, Carole; Cotton, Francois
2017-04-01
A 24-year-old woman was hit by a bus and suffered an isolated complete oculomotor nerve palsy. Computed tomography scan did not show a skull base fracture. T2*-weighted magnetic resonance imaging revealed petechial cerebral hemorrhages sparing the brainstem. T2 constructive interference in steady state suggested a partial sectioning of the left oculomotor nerve just before entering the superior orbital fissure. Diffusion tensor imaging fiber tractography confirmed a sharp arrest of the left oculomotor nerve. This recent imaging technique could be of interest to assess white fiber damage and help make a diagnosis or prognosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Brain activation and connectivity of social cognition using diffuse optical imaging
NASA Astrophysics Data System (ADS)
Zhu, Banghe; Godavarty, Anuradha
2009-02-01
In the current research, diffuse optical imaging (DOI) is used for the first time towards studies related to sociocommunication impairments, which is a characteristic feature of autism. DOI studies were performed on normal adult volunteers to determine the differences in the brain activation (cognitive regions) in terms of the changes in the cerebral blood oxygenation levels in response to joint and non-joint attention based stimulus (i.e. socio-communicative paradigms shown as video clips). Functional connectivity models are employed to assess the extent of synchronization between the left and right pre-frontal regions of the brain in response to the above stimuli.
Water-induced nanochannel networks in self-assembled block ionomers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mineart, Kenneth P.; Al-Mohsin, Heba A.; Lee, Byeongdu
2016-03-07
Block ionomers cast from solution exhibit solvent-templated morphologies that can be altered by solvent-vapor annealing. When cast from a mixed solvent, a midblock-sulfonated pentablock ion- omer self-assembles into spherical ionic microdomains that are loosely connected. Upon exposure to liquid water, nanoscale channels irreversibly develop between the microdomains due to swelling and form a continuous mesoscale network. We use electron tomography and real-time X-ray scat- tering to follow this transformation and show that the resultant morphology provides a highly effec- tive diffusive pathway.
Orthner, M.P.; Buetefisch, Sebastian; Magda, J.; Rieth, L.W.; Solzbacher, F.
2010-01-01
Hydrogels have been demonstrated to swell in response to a number of external stimuli including pH, CO2, glucose, and ionic strength making them useful for detection of metabolic analytes. To measure hydrogel swelling pressure, we have fabricated and tested novel perforated diaphragm piezoresistive pressure sensor arrays that couple the pressure sensing diaphragm with a perforated semi-permeable membrane. The 2×2 arrays measure approximately 3 × 5 mm2 and consist of four square sensing diaphragms with widths of 1.0, 1.25, and 1.5 mm used to measure full scale pressures of 50, 25, and 5 kPa, respectively. An optimized geometry of micro pores was etched in silicon diaphragm to allow analyte diffusion into the sensor cavity where the hydrogel material is located. The 14-step front side wafer process was carried out by a commercial foundry service (MSF, Frankfurt (Oder), Germany) and diaphragm pores were created using combination of potassium hydroxide (KOH) etching and deep reactive ion etching (DRIE). Sensor characterization was performed (without the use of hydrogels) using a custom bulge testing apparatus that simultaneously measured deflection, pressure, and electrical output. Test results are used to quantify the sensor sensitivity and demonstrate proof-of-concept. Simulations showed that the sensitivity was slightly improved for the perforated diaphragm designs while empirical electrical characterization showed that the perforated diaphragm sensors were slightly less sensitive than solid diaphragm sensors. This discrepancy is believed to be due to the influence of compressive stress found within passivation layers and poor etching uniformity. The new perforated diaphragm sensors were fully functional with sensitivities ranging from 23 to 252 μV/V-kPa (FSO= 5 to 80mV), and show a higher nonlinearity at elevated pressures than identical sensors with solid diaphragms. Sensors (1.5×1.5 mm2) with perforated diaphragms (pores=40 μm) have a nonlinearity of approximately 10% while for the identical solid diaphragm sensor it was roughly 3 % over the entire 200 kPa range. This is the first time piezoresistive pressure sensors with integrated diffusion pores for detection of hydrogel swelling pressure have been fabricated and tested. PMID:20657810
NASA Astrophysics Data System (ADS)
Birkholzer, J. T.; Zheng, L.; Xu, H.; Rutqvist, J.
2017-12-01
Compacted bentonite is commonly used as backfill material in emplacement tunnels of nuclear waste repositories because of its low permeability, high swelling pressure, and retardation capacity of radionuclide. To assess whether this backfill material can maintain these favorable features when undergoing heating from the waste package and hydration from the host rock, we need a thorough understanding of the thermal, hydrological, mechanical, and chemical evolution of bentonite under disposal conditions. Dedicated field tests integrated with THMC modeling provide an effective way to deepen such understanding. Here, we present coupled THMC models for an in situ heater test which was conducted at the Grimsel Test Site in Switzerland for 18 years. The comprehensive monitoring data obtained in the test provide a unique opportunity to evaluate bentonite integrity and test coupled THMC models. We developed a modeling strategy where conceptual model complexity is increased gradually by adding/testing processes such as Non-Darcian flow, enhanced vapor diffusion, thermal osmosis and different constitutive relationships for permeability/porosity changes due to swelling. The final THMC model explains well all the THM data and the concentration profiles of conservative chemical species. Over the course of modeling the in situ test, we learned that (1) including Non-Darcian flow into the model leads to a significant underestimation of hydration rate of bentonite, (2) chemical data provide an important additional piece of information for calibrating a THM model; (3) key processes needed to reproduce the data include vapor diffusion, as well as porosity and permeability changes due to swelling and thermal osmosis; (4) the concentration profiles of cations (calcium, potassium, magnesium and sodium) were largely shaped by transport processes despite their concentration levels being affected by mineral dissolution/precipitation and cation exchange. The concentration profiles of pH, bicarbonate and sulphate were largely determined by chemical reactions. These findings enable more reliable calculation of the time frame and condition of the early unsaturated phase in bentonite, the porosity and permeability after the bentonite becomes fully saturated, and how transport processes interact with reactions.
Shrivastava, Amulya Nidhi; Aperia, Anita; Melki, Ronald; Triller, Antoine
2017-07-05
Several neurodegenerative disorders, such as Alzheimer's and Parkinson's disease, are characterized by prominent loss of synapses and neurons associated with the presence of abnormally structured or misfolded protein assemblies. Cell-to-cell transfer of misfolded proteins has been proposed for the intra-cerebral propagation of these diseases. When released, misfolded proteins diffuse in the 3D extracellular space before binding to the plasma membrane of neighboring cells, where they diffuse on a 2D plane. This reduction in diffusion dimension and the cell surface molecular crowding promote deleterious interactions with native membrane proteins, favoring clustering and further aggregation of misfolded protein assemblies. These processes open up new avenues for therapeutics development targeting the initial interactions of deleterious proteins with the plasma membrane or the subsequent pathological signaling. Copyright © 2017 Elsevier Inc. All rights reserved.
Sorby-Adams, Annabel J.; Marcoionni, Amanda M.; Dempsey, Eden R.; Woenig, Joshua A.; Turner, Renée J.
2017-01-01
Acute central nervous system (CNS) injury, encompassing traumatic brain injury (TBI) and stroke, accounts for a significant burden of morbidity and mortality worldwide, largely attributable to the development of cerebral oedema and elevated intracranial pressure (ICP). Despite this, clinical treatments are limited and new therapies are urgently required to improve patient outcomes and survival. Originally characterised in peripheral tissues, such as the skin and lungs as a neurally-elicited inflammatory process that contributes to increased microvascular permeability and tissue swelling, neurogenic inflammation has now been described in acute injury to the brain where it may play a key role in the secondary injury cascades that evolve following both TBI and stroke. In particular, release of the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) appear to be critically involved. In particular, increased SP expression is observed in perivascular tissue following acute CNS injury, with the magnitude of SP release being related to both the frequency and degree of the insult. SP release is associated with profound blood-brain barrier disruption and the subsequent development of vasogenic oedema, as well as neuronal injury and poor functional outcomes. Inhibition of SP through use of a neurokinin 1 (NK1) antagonist is highly beneficial following both TBI and ischaemic stroke in pre-clinical models. The role of CGRP is more unclear, especially with respect to TBI, with both elevations and reductions in CGRP levels reported following trauma. However, a beneficial role has been delineated in stroke, given its potent vasodilatory effects. Thus, modulating neuropeptides represents a novel therapeutic target in the treatment of cerebral oedema following acute CNS injury. PMID:28817088
Yang, Di; Li, Suk-Yee; Yeung, Chung-Man; Chang, Raymond Chuen-Chung; So, Kwok-Fai; Wong, David; Lo, Amy C. Y.
2012-01-01
Background and Purpose Ischemic stroke is a destructive cerebrovascular disease and a leading cause of death. Yet, no ideal neuroprotective agents are available, leaving prevention an attractive alternative. The extracts from the fruits of Lycium barbarum (LBP), a Chinese anti-aging medicine and food supplement, showed neuroprotective function in the retina when given prophylactically. We aim to evaluate the protective effects of LBP pre-treatment in an experimental stroke model. Methods C57BL/6N male mice were first fed with either vehicle (PBS) or LBP (1 or 10 mg/kg) daily for 7 days. Mice were then subjected to 2-hour transient middle cerebral artery occlusion (MCAO) by the intraluminal method followed by 22-hour reperfusion upon filament removal. Mice were evaluated for neurological deficits just before sacrifice. Brains were harvested for infarct size estimation, water content measurement, immunohistochemical analysis, and Western blot experiments. Evans blue (EB) extravasation was determined to assess blood-brain barrier (BBB) disruption after MCAO. Results LBP pre-treatment significantly improved neurological deficits as well as decreased infarct size, hemispheric swelling, and water content. Fewer apoptotic cells were identified in LBP-treated brains by TUNEL assay. Reduced EB extravasation, fewer IgG-leaky vessels, and up-regulation of occludin expression were also observed in LBP-treated brains. Moreover, immunoreactivity for aquaporin-4 and glial fibrillary acidic protein were significantly decreased in LBP-treated brains. Conclusions Seven-day oral LBP pre-treatment effectively improved neurological deficits, decreased infarct size and cerebral edema as well as protected the brain from BBB disruption, aquaporin-4 up-regulation, and glial activation. The present study suggests that LBP may be used as a prophylactic neuroprotectant in patients at high risk for ischemic stroke. PMID:22438957
Maturation of the Mitochondrial Redox Response to Profound Asphyxia in Fetal Sheep
Drury, Paul P.; Bennet, Laura; Booth, Lindsea C.; Davidson, Joanne O.; Wassink, Guido; Gunn, Alistair J.
2012-01-01
Fetal susceptibility to hypoxic brain injury increases over the last third of gestation. This study examined the hypothesis that this is associated with impaired mitochondrial adaptation, as measured by more rapid oxidation of cytochrome oxidase (CytOx) during profound asphyxia. Methods: Chronically instrumented fetal sheep at 0.6, 0.7, and 0.85 gestation were subjected to either 30 min (0.6 gestational age (ga), n = 6), 25 min (0.7 ga, n = 27) or 15 min (0.85 ga, n = 17) of complete umbilical cord occlusion. Fetal EEG, cerebral impedance (to measure brain swelling) and near-infrared spectroscopy-derived intra-cerebral oxygenation (ΔHb = HbO2 – Hb), total hemoglobin (THb) and CytOx redox state were monitored continuously. Occlusion was associated with profound, rapid fall in ΔHb in all groups to a plateau from 6 min, greatest at 0.85 ga compared to 0.6 and 0.7 ga (p<0.05). THb initially increased at all ages, with the greatest rise at 0.85 ga (p<0.05), followed by a progressive fall from 7 min in all groups. CytOx initially increased in all groups with the greatest rise at 0.85 ga (p<0.05), followed by a further, delayed increase in preterm fetuses, but a striking fall in the 0.85 group after 6 min of occlusion. Cerebral impedance (a measure of cytotoxic edema) increased earlier and more rapidly with greater gestation. In conclusion, the more rapid rise in CytOx and cortical impedance during profound asphyxia with greater maturation is consistent with increasing dependence on oxidative metabolism leading to earlier onset of neural energy failure before the onset of systemic hypotension. PMID:22720088
The effect of brain atrophy on outcome after a large cerebral infarction.
Lee, Sang Hyung; Oh, Chang Wan; Han, Jung Ho; Kim, Chae-Yong; Kwon, O-Ki; Son, Young-Je; Bae, Hee-Joon; Han, Moon-Ku; Chung, Young Seob
2010-12-01
We retrospectively evaluated the effect of brain atrophy on the outcome of patients after a large cerebral infarct. Between June 2003 and Oct 2008, 134 of 2975 patients with stroke were diagnosed as having a large cerebral infarct. The mean age of the patients was 70 (21-95) y. The mean infarct volume was 223.6±95.2 cm(3) (46.0-491.0). The inter-caudate distance (ICD) was calculated as an indicator of brain atrophy by measuring the hemi-ICD of the intact side and then multiplying by two to account for brain swelling at the infarct site. The mean ICD was 18.0±4.8 mm (9.6-37.6). Forty-nine (36.6%) patients experienced a malignant clinical outcome (MCO) during management in the hospital. Thirty-one (23.1%) patients had a favourable functional outcome (FO) (modified Rankin scale (mRS) ≤3) and 49 (36.6%) had an acceptable functional outcome (AO) (mRS≤4) at 6 months after stroke onset. In the multivariate analysis, brain atrophy (ICD≥20 mm) had a significant and independent protective effect on MCO (p=0.003; OR=0.137; 95% CI 0.037 to 0.503). With respect to FO, the age and infarct volume reached statistical significance (p<0.001, OR=0.844, 95% CI 0.781 to 0.913; p=0.006, OR=0.987, 95% CI 0.977 to 0.996, respectively). Brain atrophy (ICD≥20 mm) was negatively associated only with AO (p=0.022; OR=0.164; 95% CI 0.035 to 0.767). Brain atrophy may have an association with clinical outcome after a large stroke by a trend of saving patients from an MCO but also by interfering with their functional recovery.
Brain-water diffusion coefficients reflect the severity of inherited prion disease
Hyare, H.; Wroe, S.; Siddique, D.; Webb, T.; Fox, N. C.; Stevens, J.; Collinge, J.; Yousry, T.; Thornton, J. S.
2010-01-01
Objective: Inherited prion diseases are progressive neurodegenerative conditions, characterized by cerebral spongiosis, gliosis, and neuronal loss, caused by mutations within the prion protein (PRNP) gene. We wished to assess the potential of diffusion-weighted MRI as a biomarker of disease severity in inherited prion diseases. Methods: Twenty-five subjects (mean age 45.2 years) with a known PRNP mutation including 19 symptomatic patients, 6 gene-positive asymptomatic subjects, and 7 controls (mean age 54.1 years) underwent conventional and diffusion-weighted MRI. An index of normalized brain volume (NBV) and region of interest (ROI) mean apparent diffusion coefficient (ADC) for the head of caudate, putamen, and pulvinar nuclei were recorded. ADC histograms were computed for whole brain (WB) and gray matter (GM) tissue fractions. Clinical assessment utilized standardized clinical scores. Mann-Whitney U test and regression analyses were performed. Results: Symptomatic patients exhibited an increased WB mean ADC (p = 0.006) and GM mean ADC (p = 0.024) compared to controls. Decreased NBV and increased mean ADC measures significantly correlated with clinical measures of disease severity. Using a stepwise multivariate regression procedure, GM mean ADC was an independent predictor of Clinician's Dementia Rating score (p = 0.001), Barthel Index of activities of daily living (p = 0.001), and Rankin disability score (p = 0.019). Conclusions: Brain volume loss in inherited prion diseases is accompanied by increased cerebral apparent diffusion coefficient (ADC), correlating with increased disease severity. The association between gray matter ADC and clinical neurologic status suggests this measure may prove a useful biomarker of disease activity in inherited prion diseases. GLOSSARY ADAS-Cog = Alzheimer's Disease Assessment Scale–Cognitive subscale; ADC = apparent diffusion coefficient; ADL = Barthel Activities of Daily Living scale; BET = brain extraction tool; BPRS = Brief Psychiatric Rating Scale; BSE = bovine spongiform encephalopathy; CDR = Clinician's Dementia Rating Scale; CGIS = Clinician's Global Impression of Disease; CI = confidence interval; DWI = diffusion-weighted imaging; FLAIR = fluid-attenuated inversion recovery; FOV = field of view; GM = gray matter; LC = left head of caudate; LP = left putamen; LPu = left pulvinar; MMSE = Mini-Mental State Examination; NBV = normalized brain volume; PH = peak height; PL = peak location; RC = right head of caudate; RP = right putamen; RPu = right pulvinar; ROI = region of interest; sCJD = sporadic Creutzfeldt-Jakob disease; TE = echo time; TI = inversion time; TR = repetition time; vCJD = variant Creutzfeldt-Jakob disease; WB = whole brain; WM = white matter. PMID:20177119
Chi, Nai-Fang; Liu, Ho-Ling; Yang, Jen-Tsung; Lin, Jr-Rung; Liao, Shu-Li; Peng, Bo-Han; Lee, Yen-Tung; Lee, Tsong-Hai
2014-01-01
BNG-1 is a herb complex used in traditional Chinese medicine to treat stroke. In this study, we attempted to identify the neuroprotective mechanism of BNG-1 by using neuroimaging and neurotrophin analyses of a stroke animal model. Rats were treated with either saline or BNG-1 for 7 d after 60-min middle cerebral artery occlusion by filament model. The temporal change of magnetic resonance (MR) imaging of brain was studied using a 7 Tesla MR imaging (MRI) system and the temporal expressions of neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) in brain were analyzed before operation and at 4 h, 2 d, and 7 d after operation. Compared with the saline group, the BNG-1 group exhibited a smaller infarction volume in the cerebral cortex in T2 image from as early as 4 h to 7 d, less edema in the cortex in diffusion weighted image from 2 to 7 d, earlier reduction of postischemic hyperperfusion in both the cortex and striatum in perfusion image at 4 h, and earlier normalization of the ischemic pattern in the striatum in susceptibility weighted image at 2 d. NT-3 and BDNF levels were higher in the BNG-1 group than the saline group at 7 d. We concluded that the protective effect of BNG-1 against cerebral ischemic injury might act through improving cerebral hemodynamics and recovering neurotrophin generation.
Catatonia After Cerebral Hypoxia: Do the Usual Treatments Apply?
Quinn, Davin K.; Abbott, Christopher C.
2014-01-01
Introduction Neurologic deterioration occurring days to weeks after a cerebral hypoxic event accompanied by diffuse white matter demyelination is called delayed post-hypoxic leukoencephalopathy (DPHL). Manifestations of DPHL are diverse, and include dementia, gait disturbance, incontinence, pyramidal tract signs, parkinsonism, chorea, mood and thought disorders, akinetic mutism, and rarely catatonia. Methods The authors report a case of malignant catatonia in a patient diagnosed with DPHL that was refractory to electroconvulsive therapy (ECT), and review the literature on catatonia in DHPL. Results The patient was a 56 year-old female with schizoaffective disorder who was admitted with catatonia two weeks after hospitalization for drug overdose and respiratory failure. Her catatonic symptoms did not respond to lorazepam, amantadine, methylphenidate, or ten sessions of bilateral ECT at maximum energy. Repeat magnetic resonance imaging revealed extensive periventricular white matter lesions not present on admission scans, and she was diagnosed with DPHL. Discussion No treatment for DPHL has been proven to be widely effective. Hyperbaric oxygen treatments may reduce the rate of development, and symptom improvement has been reported with stimulants and other psychotropic agents. Review of the literature reveals rare success with GABAergic agents for catatonia after cerebral hypoxia, and no cases successfully treated with ECT. There are seven case reports of neurologic decompensation during ECT treatment after a cerebral hypoxic event. Conclusion Caution is advised when considering ECT for catatonia when delayed sequelae of cerebral hypoxia are on the differential diagnosis, as there is a dearth of evidence to support this treatment approach. PMID:25262046
Kim, Dae Yoon; Park, Jung Cheol; Kim, Jae Kyun; Sung, Yu Sub; Park, Eun Suk; Kwak, Jae Hyuk; Choi, Choong-Gon
2015-01-01
Purpose Diffusion-weighted MR images (DWI) obtained after endovascular treatment of cerebral aneurysms frequently show multiple high-signal intensity (HSI) dots. The purpose of this study was to see whether we could reduce their incidence after embolization of unruptured cerebral aneurysms by modification of our coiling technique, which involves the deliberate aspiration of the microcatheter lumen right after delivery of each detachable coil into the aneurysm sac. Materials and Methods From January 2011 to June 2011, all 71 patients with unruptured cerebral aneurysms were treated using various endovascular methods. During the earlier period, 37 patients were treated using our conventional embolization technique (conventional period). Then 34 patients were treated with a modified coiling technique (modified period). DWI was obtained on the following day. We compared the occurrence of any DWI HSI lesions and the presence of the symptomatic lesions during the two time periods. Results The incidence of the DWI HSI lesions differed significantly at 89.2% (33/37) during the conventional period and 26.5% (9/34) during the modified period (p < 0.0001). The incidence of symptomatic lesions differed between the two periods (29.7% during the conventional period vs. 2.9% during the modified period, p < 0.003). Conclusion Aspiration of the inner content of the microcatheter right after detachable coil delivery was helpful for the reduction of the incidence of microembolisms after endovascular coil embolization for the treatment of unruptured cerebral aneurysms. PMID:26389009
Susceptibility-weighted imaging in acute-stage pediatric convulsive disorders.
Iwasaki, Hiroki; Fujita, Yukihiko; Hara, Mitsuhiko
2015-10-01
The aim of this preliminary study was to investigate the clinical use of acute-stage susceptibility-weighted imaging (SWI) in children with prolonged convulsive disorder. Ten children with prolonged convulsive disorder who underwent SWI within 2 h after termination of seizure (acute-stage SWI group) and 15 control children who underwent SWI > 2 h after their seizures terminated or for other purposes were enrolled. The cerebral venous vasculature was compared between the groups. The acute-stage SWI group was further divided into three subgroups: normal group, those with regional low signals in the cerebral veins (regional group) and those with diffuse low signals in the cerebral veins (generalized group). Inter-ictal electroencephalography (EEG) and venous blood gas findings during seizure activity were compared between these subgroups. All patients in the acute-stage SWI group had low cerebral vein signal. Four patients were assigned to the regional group and six patients to the generalized group. Decrease of venous pH and the increase of venous pCO2 during seizure activity was more prominent in the regional group than in the generalized group. In the regional group, low-signal areas in the cerebral veins were consistent with abnormal areas on EEG; these low-signal areas resolved completely in all patients on follow-up SWI. Ten patients in the control group had normal SWI, and five had a generalized low signal. Acute-stage SWI may be a useful alternative for identifying lateralization of seizures in children with prolonged convulsive disorder. © 2015 Japan Pediatric Society.
Relation between brain temperature and white matter damage in subacute carbon monoxide poisoning
Fujiwara, Shunrou; Yoshioka, Yoshichika; Matsuda, Tsuyoshi; Nishimoto, Hideaki; Ogawa, Akira; Ogasawara, Kuniaki; Beppu, Takaaki
2016-01-01
In the previous studies, carbon monoxide (CO) poisoning showed an imbalance between cerebral perfusion and metabolism in the acute phase and the brain temperature (BT) in these patients remained abnormally high from the acute to the subacute phase. As observed in chronic ischemic patients, BT can continuously remain high depending on impairments of cerebral blood flow and metabolism; this is because heat removal and production system in the brain may mainly be maintained by the balance of these two factors; thus, cerebral white matter damage (WMD) affecting normal metabolism may affect the BT in patients with CO poisoning. Here, we investigated whether the BT correlates with the degree of WMD in patients with subacute CO-poisoning. In 16 patients with subacute CO-poisoning, the BT and degree of WMD were quantitatively measured by using magnetic resonance spectroscopy and the fractional anisotropy (FA) value from diffusion tensor imaging dataset. Consequently, the BT significantly correlated with the degree of WMD. In particular, BT observed in patients with delayed neuropsychiatric sequelae, a crucial symptom with sudden-onset in the chronic phase after CO exposure, might indicate cerebral hypo-metabolism and abnormal hemodynamics like “matched perfusion,” in which the reduced perfusion matches the reduced metabolism. PMID:27819312
Optical monitoring of cerebral microcirculation in neurointensive care.
Rejmstad, Peter; Haj-Hosseini, Neda; Åneman, Oscar; Wårdell, Karin
2017-12-08
Continuous optical monitoring of local cerebral microcirculation could benefit neurointensive care patients treated for subarachnoid hemorrhage (SAH). The aim of the study was to evaluate laser Doppler flowmetry (LDF) and diffuse reflectance spectroscopy (DRS) for long-term monitoring of brain microcirculation and oxygen saturation (SO 2 ) in the neurointensive care unit (NICU). A fiber optic probe was designed for intraparenchymal use and connected to LDF and DRS for assessment of the local blood flow (perfusion and tissue reflectance (TLI)) and SO 2 in the brain. The optically monitored parameters were compared with conventional NICU monitors and Xe-CT. The LDF signals were low with median and 25 to 75% interquartiles of perfusion = 70 (59 to 83) a.u. and TLI = 2.0 (1.0 to 2.4) a.u. and showed correlation with the NICU monitors in terms of heart rate. Median and interquartiles of SO 2 were 17.4 (15.7 to 19.8) %. The lack of correlation between local perfusion and cerebral perfusion pressure indicated intact cerebral autoregulation. The systems were capable of monitoring both local perfusion and SO 2 with stable signals in the NICU over 4 days. Further clinical studies are required to evaluate the optical systems' potential for assessing the onset of secondary brain injury.
Kontani, Satoru; Nakamura, Akinobu; Tokumi, Hiroshi; Hirose, Genjirou
2014-01-01
A 83 years old woman was slipped and injured with right femoral neck fracture. After three days from the fracture, she underwent an artificial head bone replacement operation. Immediately after surgery, she complained of chest discomfort, nausea and dyspnea. A few hours later, she became comatose. Brain CT showed no abnormality and clinical diagnosis of heart failure was made without pulmonary embolism on enhanced chest CT. Magnetic resonance imaging (MRI) of the brain next day showed multiple small patchy hyperintense lesion in bilateral hemispheres on diffusion-weighted images (DWI), producing a "star field pattern''. Based on Criteria of Gurd, this patient had one major criterion and four minor criteria. And according to the Criteria of Schonfeld, this patient had 5 points, consistent with clinical diagnosis of fat embolism. Because of these criteria, she was diagnosed as cerebral fat embolism syndrome. We started supported care and edaravon. Two weeks after surgery, her condition recovered and remaind to stuporous state even six month after surgery. We experienced a typical case of cerebral fat embolism, after bone surgery with diagnostic findings on MRI-DWI. Diagnosis of cerebral fat embolism syndrome requires a history of long bone fracture and/or replacing surgery with typical finding on MRI images, such as "star field pattern''.
Weiss, N; Miller, F; Cazaubon, S; Couraud, P-O
2010-03-01
Over the last few years, the blood-brain barrier has come to be considered as the main limitation for the treatment of neurological diseases caused by inflammatory, tumor or neurodegenerative disorders. In the blood-brain barrier, the close intercellular contact between cerebral endothelial cells due to tight junctions prevents the passive diffusion of hydrophilic components from the bloodstream into the brain. Several specific transport systems (via transporters expressed on cerebral endothelial cells) are implicated in the delivery of nutriments, ions and vitamins to the brain; other transporters expressed on cerebral endothelial cells extrude endogenous substances or xenobiotics, which have crossed the cerebral endothelium, out of the brain and into the bloodstream. Recently, several strategies have been proposed to target the brain, (i) by by-passing the blood-brain barrier by central drug administration, (ii) by increasing permeability of the blood-brain barrier, (iii) by modulating the expression and/or the activity of efflux transporters, (iv) by using the physiological receptor-dependent blood-brain barrier transport, and (v) by creating new viral or chemical vectors to cross the blood-brain barrier. This review focuses on the illustration of these different approaches. Copyright (c) 2009 Elsevier Masson SAS. All rights reserved.
Cicciarello, R; Russi, E; Albiero, F; Mesiti, M; Torre, E; D'Aquino, A; Raffaele, L; Bertolani, S; D'Avella, D
1990-11-01
Whole brain irradiation (WBR) can produce acute and chronic neurological adverse effects, which are usually divided into acute, early delayed and late delayed reactions according to the time of onset. To assess the impact of WBR on brain functional parameters during the early-delayed phase, we employed the [14C]-2-deoxyglucose (2-DG) and the [14C]-alfa-aminoisobutyric (AIB) acid quantitative autoradiographic techniques to study local cerebral glucose utilization and blood-brain barrier permeability, respectively. Sprague-Dowley albino rats were exposed to conventional fractionation (200 Gy/day 5 days a week) for a total dose of 4000 Gy. Experiments were made 3 weeks after completion of the radiation exposure. In comparison with control and sham-irradiated animals, cerebral metabolic activity was diffusely decreased following irradiation. As a rule, brain areas with the highest basal metabolic rates showed the highest percentage drop in glucose utilization. Changes in blood-brain barrier function, as assessed by an increased transcapillary transport of AIB, were also demonstrated in specific brain regions. This study illustrates how moderate doses of WBR induce well-defined changes in brain metabolism and BBB function, which are possibly involved in the pathogenesis of the early-delayed radiation-induced cerebral dysfunction in humans.
Amemiya, Takeo; Uesaka, Toshio; Kameda, Katsuharu; Uno, Junji; Nagaoka, Shintaro; Ikai, Yoshiaki; Gi, Hidefuku
2017-07-01
We describe a case of deep cerebral venous sinus thrombosis(DCVST)that was successfully treated by oral administration of the Xa inhibitor edoxaban. A 53-year-old man was admitted to our hospital because of a headache and undifferentiated dizziness. Computed tomography(CT)demonstrated a low-density area in the bilateral thalamus and high-density lesions in the internal cerebral veins(ICVs)and vein of Galen. Magnetic resonance imaging with diffusion-weighted images detected areas of hyperintensity in the bilateral thalamus. Additionally, the inferior sagittal sinus, ICV, and vein of Galen were not detected by CT venography or cerebral angiography. We therefore diagnosed DCVST and started anticoagulation therapy with heparin(IV)and warfarin. A week after admission, lesions that showed hypointensity on T2* images and high density on CT scans were detected in the bilateral thalamus. We thought that hemorrhagic infarction had occurred in association with DCVST, and changed the anticoagulation therapy to oral administration of edoxaban on day 9. The patient's symptoms gradually diminished, and CT venography indicated partial recanalization of the DCV from the ICV to the vein of Galen on day 72. We report our experience, and discuss the safety and usefulness of the Xa inhibitor for treating DCVST with hemorrhagic infarction.
Kato, Ayumi; Shinohara, Yuki; Kuya, Keita; Sakamoto, Makoto; Kowa, Hisanori; Ogawa, Toshihide
2017-07-01
The congestion of spin-labeled blood at large-vessel occlusion can present as hyperintense signals on perfusion magnetic resonance imaging with 3-dimensional pseudo-continuous arterial spin labeling (proximal bright vessel sign). The purpose of this study was to clarify the difference between proximal bright vessel sign and susceptibility vessel sign in acute cardioembolic cerebral infarction. Forty-two patients with cardioembolic cerebral infarction in the anterior circulation territory underwent magnetic resonance imaging including diffusion-weighted imaging, 3-dimensional pseudo-continuous arterial spin labeling perfusion magnetic resonance imaging, T2*-weighted imaging, and 3-dimensional time-of-flight magnetic resonance angiography using a 3-T magnetic resonance scanner. Visual assessments of proximal bright vessel sign and the susceptibility vessel sign were performed by consensus of 2 experienced neuroradiologists. The relationship between these signs and the occlusion site of magnetic resonance angiography was also investigated. Among 42 patients with cardioembolic cerebral infarction, 24 patients showed proximal bright vessel sign (57.1%) and 25 showed susceptibility vessel sign (59.5%). There were 19 cases of proximal bright vessel sign and susceptibility vessel sign-clear, 12 cases of proximal bright vessel sign and susceptibility vessel sign-unclear, and 11 mismatched cases. Four out of 6 patients with proximal bright vessel sign-unclear and susceptibility vessel sign-clear showed distal middle cerebral artery occlusion, and 2 out of 5 patients with proximal bright vessel sign-clear and susceptibility vessel sign-unclear showed no occlusion on magnetic resonance angiography. Proximal bright vessel sign is almost compatible with susceptibility vessel sign in patients with cardioembolic cerebral infarction. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Obusez, E C; Hui, F; Hajj-Ali, R A; Cerejo, R; Calabrese, L H; Hammad, T; Jones, S E
2014-08-01
High-resolution MR imaging is an emerging tool for evaluating intracranial artery disease. It has an advantage of defining vessel wall characteristics of intracranial vascular diseases. We investigated high-resolution MR imaging arterial wall characteristics of CNS vasculitis and reversible cerebral vasoconstriction syndrome to determine wall pattern changes during a follow-up period. We retrospectively reviewed 3T-high-resolution MR imaging vessel wall studies performed on 26 patients with a confirmed diagnosis of CNS vasculitis and reversible cerebral vasoconstriction syndrome during a follow-up period. Vessel wall imaging protocol included black-blood contrast-enhanced T1-weighted sequences with fat suppression and a saturation band, and time-of-flight MRA of the circle of Willis. Vessel wall characteristics including enhancement, wall thickening, and lumen narrowing were collected. Thirteen patients with CNS vasculitis and 13 patients with reversible cerebral vasoconstriction syndrome were included. In the CNS vasculitis group, 9 patients showed smooth, concentric wall enhancement and thickening; 3 patients had smooth, eccentric wall enhancement and thickening; and 1 patient was without wall enhancement and thickening. Six of 13 patients had follow-up imaging; 4 patients showed stable smooth, concentric enhancement and thickening; and 2 patients had resoluton of initial imaging findings. In the reversible cerebral vasoconstriction syndrome group, 10 patients showed diffuse, uniform wall thickening with negligible-to-mild enhancement. Nine patients had follow-up imaging, with 8 patients showing complete resolution of the initial findings. Postgadolinium 3T-high-resolution MR imaging appears to be a feasible tool in differentiating vessel wall patterns of CNS vasculitis and reversible cerebral vasoconstriction syndrome changes during a follow-up period. © 2014 by American Journal of Neuroradiology.
Ignat'ev, I M; Bredikhin, R A; Falina, T G; Vinogradova, V V; Khismatullina, L I
2010-01-01
The authors analysed a total of 152 surgical interventions on the brachiocephalic arteries (BCAs) performed in 142 patients. All the patients were subjected to intraoperative monitoring of cerebral haemodynamics by means of transcranial Doppler (TCD) ultrasonography simultaneously accompanied by electroencephalography (EEG). Additionally, the state of the reconstructed carotid arteries was controlled by means of ultrasonographic duplex scanning (USDS). Comparing the findings of the TCD recording and EEG made it possible to single out 5 groups of the operated patients. The EEG technique turned out to have more informative value as compared with TCD ultrasonography in determining the degree of cerebral ischaemia during clamping of the carotid arteries (CAs). Nine (5.9%) patients demonstrated lower tolerance of the brain to ischaemia, and the operation on the BCA was performed with the use of a temporal intraluminal bypass graft. Microembolic signals (MES) were registered in 54.6% of cases. Single MES were detected in six patients, sporadic MES--in 53, and multiple MES--in 24. Mention should be made that the--MES associated with the placement of the bypass graft appeared to be multiple and were registered in all the operated patients. Diffusion-weighted magnetic resonance tomography revealed fresh foci of lacunar cerebral infarctions in 14 (25%) of the 56 patients thus examined. Intraoperative USDS of the reconstructed carotid arteries revealed floatation of the residual remnants of the intima in two patients, which was the cause of a repeat intervention. Combined monitoring of cerebral haemodynamics makes it possible to timely prevent cerebral ischaemia, to narrow the indications for placement of an intraluminal bypass graft, and to dramatically decrease the rate of postoperative complications.
Specificity of diffusion channels produced by lambda phage receptor protein of Escherichia coli.
Luckey, M; Nikaido, H
1980-01-01
The lamB protein, the receptor for phage lambda, was purified from the outer membrane of Escherichia coli K-12 by extraction with Triton X-100 and EDTA, chromatography on DEAE-Sephacel in Triton X-100, exchange of Triton for cholate by gel filtration, and chromatography on Sephacryl S-200 in cholate, NaCl, and EDTA. The purified protein appeared to exist as several oligomeric species. In an equilibrium retention assay with reconstituted vesicles containing phospholipids and lipopolysaccharide, the lamB protein conferred permeability for disaccharides. In a liposome swelling assay designed to measure rates of diffusion, the lamB protein conferred permeability to phospholipid liposomes for a variety of substrates. The rates obtained indicate the permeation facilitated by the lamB protein is specific, discriminating among substrates by both size and configuration. For example, maltose diffused into liposomes 40 times faster than sucrose, about 8 times faster than cellobiose, and about 12 times faster than maltoheptaose. The results suggest that the lamB protein forms a transmembrane channel containing a site (or sites) that loosely interacts with the solutes. Images PMID:6444720
Dynamic Light Scattering Study of Pig Vitreous Body
NASA Astrophysics Data System (ADS)
Matsuura, Toyoaki; Idota, Naokazu; Hara, Yoshiaki; Annaka, Masahiko
The phase behaviors and dynamical properties of pig vitreous body were studied by macroscopic observation of swelling behavior and dynamic light scattering under various conditions. From the observations of the dynamics of light scattered by the pig vitreous body under physiological condition, intensity autocorrelation functions that revealed two diffusion coefficients, D fast and D slow were obtained. We developed the theory for describing the density fluctuation of the entities in the vitreous gel system with sodium hyaluronate filled in the meshes of collagen fiber network. The dynamics of collagen and sodium hyaluronate explains two relaxation modes of the fluctuation. The diffusion coefficient of collagen obtained from D fast and D slow is very close to that in aqueous solution, which suggests the vitreous body is in the swollen state. Divergent behavior in the measured total scattered light intensities and diffusion coefficients upon varying the concentration of salt (NaCl and CaCl2) was observed. Namely, a slowing down of the dynamic modes accompanied by increased “static” scattered intensities was observed. This is indicative of the occurrence of a phase transition upon salt concentration.
Nickel-hydrogen battery with oxygen and electrolyte management features
Sindorf, John F.
1991-10-22
A nickel-hydrogen battery or cell having one or more pressure vessels containing hydrogen gas and a plurality of cell-modules therein. Each cell-module includes a configuration of cooperatively associated oxygen and electrolyte mangement and component alignment features. A cell-module having electrolyte includes a negative electrode, a positive electrode adapted to facilitate oxygen diffusion, a separator disposed between the positive and negative electrodes for separating them and holding electrolyte for ionic conductivity, an absorber engaging the surface of the positive electrode facing away from the separator for providing electrolyte to the positive electrode, and a pair of surface-channeled diffusion screens for enclosing the positive and negative electrodes, absorber, and separator and for maintaining proper alignment of these components. The screens, formed in the shape of a pocket by intermittently sealing the edges together along as many as three sides, permit hydrogen gas to diffuse therethrough to the negative electrodes, and prevent the edges of the separator from swelling. Electrolyte is contained in the cell-module, absorbhed by the electrodes, the separator and the absorber.
Zacharzewska-Gondek, Anna; Maksymowicz, Hanna; Szymczyk, Małgorzata; Sąsiadek, Marek; Bladowska, Joanna
2017-01-01
Restricted diffusion that is found on magnetic resonance diffusion-weighted imaging (DWI) typically indicates acute ischaemic stroke. However, restricted diffusion can also occur in other diseases, like metastatic brain tumours, which we describe in this case report. A 57-year-old male, with a diagnosis of small-cell cancer of the right lung (microcellular anaplastic carcinoma), was admitted with focal neurological symptoms. Initial brain MRI revealed multiple, disseminated lesions that were hyperintense on T2-weighted images and did not enhance after contrast administration; notably, some lesions manifested restricted diffusion on DWI images. Based on these findings, disseminated ischaemic lesions were diagnosed. On follow-up MRI that was performed after 2 weeks, we observed enlargement of the lesions; there were multiple, disseminated, sharply outlined, contrast-enhancing, oval foci with persistent restriction of diffusion. We diagnosed the lesions as disseminated brain metastases due to lung cancer. To our knowledge, this is the first description of a patient with brain metastases that were characterised by restricted diffusion and no contrast enhancement. Multiple, disseminated brain lesions, that are characterised by restricted diffusion on DWI, typically indicate acute or hyperacute ischemic infarcts; however, they can also be due to hypercellular metastases, even if no contrast enhancement is observed. This latter possibility should be considered particularly in patients with cancer.
Apelin-13 Protects against Ischemic Blood-Brain Barrier Damage through the Effects of Aquaporin-4.
Chu, Heling; Yang, Xiaobo; Huang, Chuyi; Gao, Zidan; Tang, Yuping; Dong, Qiang
2017-01-01
Apelin-13 has been found to have protective effects on many neurological diseases, including cerebral ischemia. However, whether Apelin-13 acts on blood-brain barrier (BBB) disruption following cerebral ischemia is largely unknown. Aquaporin-4 (AQP4) has a close link with BBB due to the high concentration in astrocyte foot processes and regulation of astrocytes function. Here, we aimed to test Apelin-13's effects on ischemic BBB injury and examine whether the effects were dependent on AQP4. We detected the expression of AQP4 induced by Apelin-13 injection at 1, 3, and 7 days after middle cerebral artery occlusion. Meanwhile, we examined the effects of Apelin-13 on neurological function, infarct volume, and BBB disruption owing to cerebral ischemia in wild type mice, and tested whether such effects were AQP4 dependent by using AQP4 knock-out mice. Furthermore, we assessed the possible signal transduction pathways activated by Apelin-13 to regulate AQP4 expression via astrocyte cultures. It was found that Apelin-13 highly increased AQP4 expression as well as reduced neurological scores and infarct volume. Importantly, Apelin-13 played a role of BBB protection in both types of mice by reducing BBB permeability, increased vascular endothelial growth factor, upregulated endothelial nitric oxide synthase, and downregulated inducible NOS. In morphology, we demonstrated Apelin-13 suppressed tight junction opening and endothelial cell swelling via electron microscopy detection. Meanwhile, Apelin-13 also alleviated apoptosis of astrocytes and promoted angiogenesis. Interestingly, effects of AQP4 on neurological function and infarct volume varied with time course, while AQP4 elicited protective effects on BBB at all time points. Statistical analysis of 2-way analysis of variance with replication indicated that AQP4 was required for these effects. In addition, Apelin-13 upregulated phosphorylation of extracellular signal-regulated kinase (ERK) and Akt as well as AQP4 protein in cultured astrocytes. The latter was inhibited by ERK and phosphatidylinositol 3'-kinase (PI3K) inhibitors. Our data suggest that Apelin-13 protects BBB from disruption after cerebral ischemia both morphologically and functionally, which is highly associated with the increased levels of AQP4, possibly through the activation of ERK and PI3K/Akt pathways. This study provides double targets to protection of ischemic BBB damage, which can present new insights to drugs development. © 2017 S. Karger AG, Basel.
Singh, Satish; Houng, Aiilyan K; Reed, Guy L
2018-04-15
During acute brain ischemia, α2-antiplasmin markedly enhances brain injury, blood-brain barrier breakdown and matrix metalloproteinase-9 (MMP-9) expression. Although α2-antiplasmin inhibits fibrin thrombus-degradation, and MMP-9 is a collagen-degrading enzyme altering blood-brain barrier, both have similar deleterious effects on the ischemic brain. We examined the hypothesis that MMP-9 is an essential downstream mediator of α2-antiplasmin's deleterious effects during brain ischemia. Middle cerebral artery thromboembolic stroke was induced in a randomized, blinded fashion in mice with increased blood levels of α2-antiplasmin. There was a robust increase in MMP-9 expression (immunofluorescence) in the ischemic vs. the non-ischemic hemisphere of MMP-9 +/+ but not MMP-9 -/- mice, 24 h after stroke. Brain swelling and hemorrhage were significantly increased in the ischemic vs. the non-ischemic hemisphere of MMP-9 +/+ mice. By comparison to MMP-9 +/+ mice, the ischemic hemispheres of MMP-9 -/- mice showed a ∼6-fold reduction in brain swelling (p < 0.001) and a ∼9-fold reduction in brain hemorrhage. Brain infarction (p < 0.0001) and TUNEL-positive cell death (p < 0.001) were significantly diminished in the ischemic hemisphere of MMP-9 -/- mice vs. MMP-9 +/+ mice. Ischemic breakdown of the blood-brain barrier and fibrin deposition were also significantly reduced in MMP-9 -/- mice vs. MMP-9 +/+ mice (p < 0.05), as measured by quantitative immunofluorescence. We conclude that MMP-9 deficiency ablates many of the deleterious effects of high α2-antiplasmin levels, significantly reducing blood-brain barrier breakdown, TUNEL-positive cell death, brain hemorrhage, swelling and infarction. This suggests that the two molecules may be in a shared pathway in which MMP-9 is essential downstream for the deleterious effects of α2-antiplasmin in ischemic stroke. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Environmental stress cracking in gamma-irradiated polycarbonate - A diffusion approach
NASA Astrophysics Data System (ADS)
Silva, Pietro Paolo J. C. de O.; Araújo, Patricia L. B.; da Silveira, Leopoldo B. B.; Araújo, Elmo S.
2017-01-01
Polycarbonate (PC) is an engineering polymer which presents interesting properties. This material has been also used in medical devices, which is frequently exposed to gamma radiosterilization and to chemical agents. This may produce significant changes in polymer structure, leading to failure in service. The present work brings about a new approach on environmental stress cracking (ESC) processes elucidation in 100 kGy gamma-irradiated PC, by evaluating the diffusion process of methanol or 2-propanol in test specimens and determining the diffusion parameters on solvent-irradiated polymer systems. A comparison of diffusion parameters for both solvents indicated that methanol has a considerable ESC action on PC, with diffusion parameter of 7.5×10-14±1% m2 s-1 for non-irradiated PC and 7.8×10-14±2.8% m2 s-1 for PC irradiated at 100 kGy. In contrast, 2-propanol did not act as an ESC agent, as it did promote neither swelling nor cracks in the test specimens. These results were confirmed by visual analysis and optical microscopy. Unexpectedly, structural damages evidenced in tensile strength tests suggested that 2-propanol is as aggressive as methanol chemical for PC. Moreover, although some manufacturers indicate the use of 2-propanol as a cleaning product for PC artifacts, such use should be avoided in parts under mechanical stress.
Use of ion beams to simulate reaction of reactor fuels with their cladding
NASA Astrophysics Data System (ADS)
Birtcher, R. C.; Baldo, P.
2006-01-01
Processes occurring within reactor cores are not amenable to direct experimental observation. Among major concerns are damage, fission gas accumulation and reaction between the fuel and its cladding all of which lead to swelling. These questions can be investigated through simulation with ion beams. As an example, we discuss the irradiation driven interaction of uranium-molybdenum alloys, intended for use as low-enrichment reactor fuels, with aluminum, which is used as fuel cladding. Uranium-molybdenum coated with a 100 nm thin film of aluminum was irradiated with 3 MeV Kr ions to simulate fission fragment damage. Mixing and diffusion of aluminum was followed as a function of irradiation with RBS and nuclear reaction analysis using the 27Al(p,γ)28Si reaction which occurs at a proton energy of 991.9 keV. During irradiation at 150 °C, aluminum diffused into the uranium alloy at a irradiation driven diffusion rate of 30 nm2/dpa. At a dose of 90 dpa, uranium diffusion into the aluminum layer resulted in formation of an aluminide phase at the initial interface. The thickness of this phase grew until it consumed the aluminum layer. The rapid diffusion of Al into these reactor fuels may offer explanation of the observation that porosity is not observed in the fuel particles but on their periphery.